JP2017144811A - Chemical spraying method and program by unmanned flight body - Google Patents
Chemical spraying method and program by unmanned flight body Download PDFInfo
- Publication number
- JP2017144811A JP2017144811A JP2016026609A JP2016026609A JP2017144811A JP 2017144811 A JP2017144811 A JP 2017144811A JP 2016026609 A JP2016026609 A JP 2016026609A JP 2016026609 A JP2016026609 A JP 2016026609A JP 2017144811 A JP2017144811 A JP 2017144811A
- Authority
- JP
- Japan
- Prior art keywords
- boundary line
- field
- drone
- camera
- air vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title abstract description 9
- 238000005507 spraying Methods 0.000 title description 27
- 238000000034 method Methods 0.000 claims abstract description 39
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000003814 drug Substances 0.000 claims description 35
- 229940079593 drug Drugs 0.000 claims description 11
- 238000009513 drug distribution Methods 0.000 claims description 6
- 239000007921 spray Substances 0.000 abstract description 7
- 239000003905 agrochemical Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Catching Or Destruction (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
本願発明は、無人飛行体(ドローン)を用いた農薬などの薬剤散布の方法とプログラム、特に複雑な形状の狭い圃場でも正確な散布が可能な装置、方法とプログラムに関する。 The present invention relates to a method and program for spraying chemicals such as agricultural chemicals using an unmanned aerial vehicle (drone), and more particularly to an apparatus, method and program capable of accurate spraying even in a narrow field with a complicated shape.
一般にドローンと呼ばれる遠隔操縦型小型無人ヘリコプターの応用が進んでいる。その応用分野のひとつとして農地への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が広くない日本においては、有人の飛行機やヘリコプターではなく、ドローンの使用が適しているケースが多い。 The application of a remote control type small unmanned helicopter generally called drone is progressing. As one of its application fields, spraying of chemicals such as agricultural chemicals and liquid fertilizers onto farmland can be cited (for example, Patent Document 1). In Japan, where farmland is not as large as in Europe and America, it is often appropriate to use drones rather than manned airplanes and helicopters.
ドローンによる薬剤散布は、日本において典型的な狭く複雑な地形の農地でも効率的かつ正確に薬剤散布を行なえるという長所がある。この長所を最大限に発揮するためには、ドローンの飛行制御を正確に行なう必要がある。飛行制御の正確性が不十分であり、たとえば、隣接する無農薬栽培の農地や住宅の庭に本来散布してはならない農薬を散布してしまうと大きな問題になる。また、農薬や肥料の重複散布や散布漏れが発生して生育状況に差ができてしまうと、規格外作物として商品流通できない、商品の等級が下がるといった問題が生じる。 Drug spraying by drone has the advantage of being able to spray the drug efficiently and accurately even on farmland with narrow and complex terrain typical in Japan. To maximize this advantage, it is necessary to accurately control the drone flight. The accuracy of flight control is inadequate, and, for example, it becomes a big problem if pesticides that should not be sprayed on adjacent agricultural land and non-pesticide-grown farmland or residential gardens are sprayed. In addition, if there is a difference in the growth situation due to overlapping spraying or spraying of agricultural chemicals and fertilizers, problems such as inability to distribute products as non-standard crops and reduction in product grade arise.
準天頂衛星システムやRTK−GPSなどの技術により、ドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることが可能になっている。しかし、薬剤散布対象となる圃場の形状を正確に把握できていなければ、正確な薬剤散布を行なうことはできない。ここで、圃場の正確な形状図が事前に入手可能であるとは限らない。航空写真から圃場形状を計測することは可能だが、航空写真の位置精度は10メートル程度であり、農薬散布に必要な精度(0.5メートル程度)には不十分である。また、航空写真の圃場画像は、農薬散布時点の作物の状態(稲の場合は毎年の田植え状態により変わる)を示していないという問題もある。特許文献2では、無人ヘリコプター(ドローン)を地図情報に基づいて飛行エリアの外周部に飛行させることにより、地図情報を補正する技術が開示されているが、実際の地形と地図情報が異なっていた場合には、手作業で地図情報を修正することが必要であり、必ずしも効率的とは言えなかった。 Technologies such as the Quasi-Zenith Satellite System and RTK-GPS make it possible for a drone to know the absolute position of its own aircraft accurately in centimeters during flight. However, accurate drug distribution cannot be performed unless the shape of the field to be sprayed is accurately grasped. Here, an accurate shape diagram of the field is not always available in advance. Although it is possible to measure the field shape from an aerial photograph, the position accuracy of the aerial photograph is about 10 meters, which is insufficient for the accuracy necessary for spraying agricultural chemicals (about 0.5 meters). There is also a problem that the aerial field images do not show the state of the crop at the time of spraying the pesticide (in the case of rice, it changes depending on the annual rice planting state). Patent Document 2 discloses a technique for correcting map information by flying an unmanned helicopter (drone) to the outer periphery of a flight area based on map information, but the actual landform and map information are different. In some cases, it is necessary to manually correct the map information, which is not always efficient.
事前に正確な地図情報を入手できない場合であっても、複雑な地形の圃場への正確な薬剤散布をドローンに行なわせる方法とプログラムを提供する。 A method and program are provided that allow drones to accurately apply medicines to fields with complex terrain even when accurate map information is not available in advance.
本願発明は、圃場に対して薬剤撒布を行なう、カメラを備えた無人飛行体の飛行制御方法であって、前記カメラによって前記圃場を撮影するステップと、前記カメラによって撮影された画像中の前記圃場の境界線を認識するステップと、前記認識された境界線が前記カメラの映像中の所定の位置に位置するよう前記無人飛行体の位置を調整するステップと、前記調整を行ないながら前記無人飛行体を前記圃場の境界線の内側を一周させるステップとを含む飛行制御方法を提供することで上記課題を解決する。 The present invention relates to a flight control method for an unmanned air vehicle equipped with a camera that performs drug distribution on a field, the step of photographing the field with the camera, and the field in an image photographed by the camera. Recognizing the boundary line, adjusting the position of the unmanned air vehicle so that the recognized boundary line is located at a predetermined position in the image of the camera, and performing the adjustment while the unmanned air vehicle The above-mentioned problem is solved by providing a flight control method including the step of making a round of the inside of the boundary line of the field.
また、本願発明は、前記認識された境界線が前記カメラの映像中の所定の位置に位置するよう前記無人飛行体の位置を調整するステップは、前記認識された境界線が前記無人飛行体から仰角30度から60度の間に位置するよう制御するステップである段落0007に記載の飛行制御方法を提供することで上記課題を解決する。 In the present invention, the step of adjusting the position of the unmanned air vehicle so that the recognized boundary line is positioned at a predetermined position in the image of the camera includes the step of adjusting the recognized boundary line from the unmanned air vehicle. The above problem is solved by providing the flight control method according to paragraph 0007, which is a step of controlling the elevation angle to be between 30 degrees and 60 degrees.
また、本願発明は、複数の前記圃場の境界線が認識された時には前記無人飛行体と最も近い境界線を選択するステップをさらに含む段落0008または段落0008に記載の飛行制御方法を提供することで上記課題を解決する。 Further, the present invention provides a flight control method according to paragraph 0008 or paragraph 0008, further comprising a step of selecting a boundary line closest to the unmanned air vehicle when a plurality of boundary lines of the field are recognized. Solve the above problems.
また、本願発明は、圃場に対して薬剤撒布を行なう、カメラを備えた無人飛行体の飛行制御プログラムであって、前記カメラによって薬剤撒布対象の圃場を撮影する手順と、前記カメラによって撮影された画像中の前記圃場の境界線を認識する手順と、前記認識された境界線が前記カメラの映像中の所定の位置に位置するよう前記無人飛行体の位置を調整する手順と、前記調整を行ないながら前記無人飛行体を前記圃場の境界線の内側を一周させる手順とをコンピューターに実行させる飛行制御プログラムを提供することで上記課題を解決する。 The invention of the present application is a flight control program for an unmanned air vehicle equipped with a camera that performs drug distribution on a field, the procedure for shooting a field for drug distribution with the camera and the camera. Performing a procedure for recognizing a boundary line of the field in the image, a procedure for adjusting the position of the unmanned air vehicle so that the recognized boundary line is positioned at a predetermined position in the video of the camera, and the adjustment. However, the above-described problem is solved by providing a flight control program that causes a computer to execute a procedure for causing the unmanned air vehicle to go around the inside of the boundary line of the field.
また、本願発明は、前記認識された境界線が前記カメラの映像中の所定の位置に位置するよう前記無人飛行体の位置を調整する前記手順は、前記認識された境界線が前記無人飛行体から仰角30度から60度の間に位置するよう制御する手順である段落0010記載の飛行制御プログラムを提供することで上記課題を解決する。 In the present invention, the procedure for adjusting the position of the unmanned aerial vehicle so that the recognized boundary line is positioned at a predetermined position in the video of the camera includes the step of adjusting the recognized boundary line to be the unmanned air vehicle. The above problem is solved by providing a flight control program described in paragraph 0010, which is a procedure for controlling the angle of elevation from 30 degrees to 60 degrees.
また、本願発明は、複数の前記圃場の境界線が認識された時には前記無人飛行体と最も近い境界線を選択する手順をさらにコンピューターに実行させる段落0010または段落0011に記載の飛行制御プログラムを提供することで上記課題を解決する。
Further, the present invention provides the flight control program according to paragraph 0010 or paragraph 0011, further causing a computer to execute a procedure for selecting a boundary line closest to the unmanned air vehicle when a plurality of boundary lines of the field are recognized. This solves the above problem.
日本において典型的な複雑な形状の農地においても、また、農地の正確な形状データが事前に入手できていない場合においても、正確な薬剤散布を実現可能になる。 Even in the case of farmland having a complicated shape typical in Japan, and even when accurate shape data of the farmland is not available in advance, accurate drug distribution can be realized.
以下、図を参照しながら、本願発明を実施するための形態について説明する。 Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings.
図1に本願発明に係る薬剤散布装置の実施例の全体図を示す(図は概念図であり縮尺は正確ではない)。図1−aは正面図(水平方向から見た図)であり、図1−bは平面図(上空から見た図)である。ドローン(101)は薬剤散布を行なうための無人飛行体である。一般に、ドローンとは複数の回転翼を持つ無線操縦型の小型無人ヘリコプター(マルチコプター)を指すことが多いが、本願明細書では、機体の大きさ、回転翼の数、飛行方式(プロペラ、ジェットエンジン等)、自律型であるか遠隔操縦型であるか、有線操縦であるか無線操縦であるか等にかかわらず、無人飛行体の総称としてドローンという名称を使用することとする。また、ドローンが散布する薬剤には、農薬、殺虫剤、液肥、水等、空中から地上に向けて散布可能な任意の液体・粉体が含まれるものとする。操縦器(102)は、通常は無線によってドローン(101)を人間(オペレーター)が操縦するための機器であり、一般的なスマートフォンやタブレット端末を使用することが望ましい。圃場(103)は薬剤散布の対象となる農地である。 FIG. 1 shows an overall view of an embodiment of a medicine spraying apparatus according to the present invention (the figure is a conceptual diagram and the scale is not accurate). 1A is a front view (viewed from the horizontal direction), and FIG. 1B is a plan view (viewed from the sky). The drone (101) is an unmanned air vehicle for spraying medicine. In general, a drone often refers to a radio-operated small unmanned helicopter (multicopter) having a plurality of rotor blades. In this specification, the size of the aircraft, the number of rotor blades, the flight method (propeller, jet) Regardless of whether it is an autonomous type, a remote control type, a wired control, or a wireless control, the name drone is used as a general term for an unmanned air vehicle. The drug sprayed by the drone includes any liquid / powder that can be sprayed from the air toward the ground, such as agricultural chemicals, insecticides, liquid fertilizer, and water. The maneuver (102) is a device for a human (operator) to maneuver the drone (101) normally by radio, and it is desirable to use a general smartphone or tablet terminal. The farm field (103) is a farmland that is a target for drug spraying.
図2に本願発明に係るドローン(101)の機能構成の例を示す。制御手段(201)は、ドローン(101)の水平位置、高度、飛行速度等を制御すると共に、薬剤散布手段(203)等の他の構成要素も制御する構成要素であり、典型的には組み込み機器向けの小型コンピューターと専用ソフトウェアにより実現される。通信手段(202)は操縦器(102)との無線または有線の通信により、制御手段(201)にドローン(101)操縦のための指令を提供し、また、ドローン(101)の状態(電池の残量等)やカメラ(205)で撮影した画像を操縦器(102)に送信する等の処理を行なう構成要素であり、典型的には無線LAN等の通信用ハードウェアと専用ソフトウェアにより実現される。薬剤散布手段(203)は、タンク、ノズル、および、ポンプ等から成る構成要素であり、制御機能(201)からの指令にしたがって圃場(103)への薬剤散布を行なう構成要素である。薬剤散布手段(203)は、常時薬剤を散布するのではなく、制御機能(201)からの指令を受けた時のみ薬剤を散布する構造となっていることが望ましい。位置把握手段(204)は、GPS等の技術により、ドローン(101)の正確な位置及び高度を把握するための手段である。加えて、ドローン(101)の傾きをジャイロセンサーと加速度センサーにより測定する機能を供えていることが望ましい。カメラ(205)は、圃場(103)を上空から撮影するための機器である。圃場境界線把握手段(206)は、カメラ(205)で撮影した圃場(103)の画像から圃場(103)の境界線を把握するための手段であり、一般的な画像認識アルゴリズムを実装したソフトウェアとコンピューターにより実現される。圃場マップ保存手段(207)は、圃場境界線把握手段(206)の分析結果と位置把握手段(204)の情報に基づいて作成された、薬剤散布対象となる圃場(103)の正確な地図を保存するための手段である。農地マップ保存手段(207)は、制御手段(201)を構成するコンピューターのメモリー上にあってもよいし、操縦器(104)のメモリー上にあってもよいし、その両方に分散されてあってもよいし、他のコンピューター上にあってもよい。プロペラ等の飛行手段や姿勢安定手段はドローン(101)における一般的技術であるため特に図示していない。 FIG. 2 shows an example of the functional configuration of the drone (101) according to the present invention. The control means (201) is a component that controls the horizontal position, altitude, flight speed, etc. of the drone (101), and also controls other components such as the drug spraying means (203), and is typically built-in. It is realized by a small computer for equipment and dedicated software. The communication means (202) provides commands for controlling the drone (101) to the control means (201) by wireless or wired communication with the pilot (102), and the state of the drone (101) (battery status) Remaining component) and an image captured by the camera (205) are transmitted to the controller (102), and are typically implemented by communication hardware such as a wireless LAN and dedicated software. The The medicine spraying means (203) is a constituent element including a tank, a nozzle, a pump, and the like, and is a constituent element that sprays the medicine onto the field (103) according to a command from the control function (201). It is desirable that the medicine spraying means (203) has a structure that sprays the medicine only when receiving a command from the control function (201) instead of always spraying the medicine. The position grasping means (204) is a means for grasping the exact position and altitude of the drone (101) by a technique such as GPS. In addition, it is desirable to provide a function of measuring the inclination of the drone (101) using a gyro sensor and an acceleration sensor. The camera (205) is a device for photographing the farm field (103) from above. The field boundary line grasping means (206) is means for grasping the boundary line of the field (103) from the image of the field (103) taken by the camera (205), and is a software that implements a general image recognition algorithm. And realized by computer. The agricultural field map storage means (207) generates an accurate map of the agricultural field (103) to be applied with the medicine created based on the analysis result of the agricultural field boundary line grasping means (206) and the information of the position grasping means (204). It is a means for storing. The farm map storage means (207) may be on the memory of the computer that constitutes the control means (201), may be on the memory of the controller (104), or is distributed in both. It may be on another computer. The flying means such as a propeller and the attitude stabilizing means are not particularly shown because they are general techniques in the drone (101).
本願発明に係るドローン(101)は、2つのモード、すなわち、圃場形状把握モードと薬剤散布モードで稼働する。圃場形状把握モードは圃場(103)の周辺部を飛行することで、圃場(103)の形状を把握し、圃場マップ保存手段(207)に保存するためのモードである。圃場形状把握モードにおいても、圃場形状の把握と並行して薬剤散布を行なうよう制御されることが望ましい。薬剤散布モードは、圃場マップ保存手段(207)に保存された情報に基づいて、圃場の周辺部以外の場所に薬剤散布を行なうモードである。いずれのモードにおいても、ドローン(101)はその位置と高度を自律的に制御されることが望ましいが、操縦器(102)の操作により位置と高度を修正できるようになっていることが望ましい。 The drone (101) according to the present invention operates in two modes, that is, a field shape grasping mode and a medicine spraying mode. The field shape grasping mode is a mode for grasping the shape of the field (103) by flying around the periphery of the field (103) and storing it in the field map storage means (207). In the field shape grasping mode, it is desirable to control the medicine spraying in parallel with grasping the field shape. The medicine spraying mode is a mode in which the medicine is sprayed to a place other than the periphery of the field based on the information stored in the field map storage means (207). In any mode, it is desirable that the drone (101) is autonomously controlled in position and altitude, but it is desirable that the position and altitude can be corrected by operating the pilot (102).
図3に、操縦器(102)の操作画面の例を示す。ドローン(101)の進行方向、高度、薬剤散布の手作業による制御が可能になっていることが望ましい。また、ドローン(101)のバッテリー状態、薬剤量などのステータスが表示されることが望ましい。また、ドローン(101)の現在位置がマップ作成中の圃場(103)の地図と共にに示されていることが望ましい。さらに、自律飛行モードと手作業による操縦モードが切り替え可能になっていることが望ましい。 FIG. 3 shows an example of the operation screen of the pilot (102). It is desirable that the drone (101) can be manually controlled in the traveling direction, altitude, and drug spraying. Also, it is desirable to display the status of the drone (101) such as the battery status and the amount of medicine. Moreover, it is desirable that the current position of the drone (101) is shown together with the map of the field (103) for which the map is being created. Furthermore, it is desirable that the autonomous flight mode and the manual operation mode can be switched.
図4に、圃場形状把握モードにおけるドローン(101)の飛行位置制御方法を示す。カメラ(205)の画像をコンピューターにより分析することで、圃場(103)の境界線(401)を認識することが可能である。圃場内と圃場外(畦道や道路等)との境界線は色相・彩度・明度において不連続な相違があるためである。圃場の作物の生育状態に応じた圃場の典型的な色相・彩度・明度をパラメーター化し、事前に登録できるようにすることで認識の精度を高めてもよい。圃場形状把握モードでは、ドローン(101)は認識した圃場の境界線の内側を境界線から一定の距離(d)を保ちながら飛行するよう制御される。これは、認識された境界線の位置がドローン(101)に対して所定の俯角(α)上に位置するよう、かつ、一定の高度(h)を保つようドローンの位置を制御することで実現される。 FIG. 4 shows a flight position control method of the drone (101) in the field shape grasping mode. By analyzing the image of the camera (205) with a computer, it is possible to recognize the boundary line (401) of the field (103). This is because the boundary lines between the field and the outside of the field (such as tunnels and roads) have discontinuous differences in hue, saturation, and brightness. The accuracy of recognition may be improved by parameterizing typical hue, saturation, and brightness of the field in accordance with the growth state of the crop in the field so that it can be registered in advance. In the field shape grasping mode, the drone (101) is controlled to fly while keeping a constant distance (d) from the boundary line inside the recognized boundary line of the field. This is achieved by controlling the position of the drone so that the position of the recognized boundary line is positioned on a predetermined depression angle (α) with respect to the drone (101) and maintaining a constant altitude (h). Is done.
図5に、カメラ(205)が境界線(401)を見る俯角の把握方法を説明する。カメラ(205)の画像エリア(501)の中央を原点とし、ドローン(101)の進行方向にY軸を取る。この場合、認識された境界線(401)がX=0で表わされる直線であれば、境界線(401)はカメラの真下に存在する、すなわち、俯角は90度である。Xの値が最大値(画像の端)である場合には、俯角はカメラ(205)の光学上の設計により定まる値(通常は30度程度)になる。境界線(401)が、X座標が0と最大値の間の一定値であるような直線上を通るようドローン(101)の位置を制御した場合、境界線(401)への俯角は一定に維持される。画像上のX座標と俯角の対応はカメラ(205)の光学上の設計により影響を受けるが、事前の実験によってXの値と俯角の対応表を作ることは容易にできるため、使用するハードウェアが同じであれば、境界線(401)を特定の俯角で見るためには、境界線(401)を画像中のどこに位置させればよいかを一意に決定することができる。なお、俯角は垂直に近い角度ではなく、60度から30度程度の斜め方向であることが好ましい。垂直に近い(つまり、真上から撮影する)と、作物の緑色よりも地表面の比率が高い画像になるため、境界線がコンピュータの画像処理によって認識しにくいが、60度から30度程度の斜め上方向から撮影すると、地表面よりも作物の緑色の比率が高くなることにより、境界線がコンピュータの画像処理によって認識しやすくなることが発明者の実験により明らかになっている。なお、風の影響等により、ドローン(101)が傾く場合があるが、傾きはジャイロセンサーと加速度センサーにより推測できるため、傾きに応じて俯角の測定値を調整するようにしてもよい。 FIG. 5 illustrates a method of grasping the depression angle at which the camera (205) views the boundary line (401). The center of the image area (501) of the camera (205) is set as the origin, and the Y axis is taken in the traveling direction of the drone (101). In this case, if the recognized boundary line (401) is a straight line represented by X = 0, the boundary line (401) exists directly under the camera, that is, the depression angle is 90 degrees. When the value of X is the maximum value (the edge of the image), the depression angle is a value (usually about 30 degrees) determined by the optical design of the camera (205). When the position of the drone (101) is controlled so that the boundary line (401) passes on a straight line such that the X coordinate is a constant value between 0 and the maximum value, the depression angle to the boundary line (401) is constant. Maintained. Although the correspondence between the X coordinate on the image and the depression angle is affected by the optical design of the camera (205), it is easy to create a correspondence table between the X value and the depression angle through prior experiments. Are the same, it is possible to uniquely determine where the boundary line (401) should be located in the image in order to view the boundary line (401) at a specific depression angle. In addition, it is preferable that the depression angle is not an angle close to vertical but an oblique direction of about 60 to 30 degrees. When the image is close to the vertical (that is, taken from directly above), the ratio of the ground surface is higher than the green color of the crop, so the boundary line is difficult to recognize by computer image processing. It has been clarified by an experiment by the inventors that when photographing from an obliquely upward direction, the boundary line becomes easier to recognize by computer image processing because the ratio of the green color of the crop is higher than the ground surface. Note that the drone (101) may be tilted due to the influence of wind or the like, but since the tilt can be estimated by a gyro sensor and an acceleration sensor, the measured value of the depression angle may be adjusted according to the tilt.
図6に圃場形状把握モードにおけるドローン(101)の飛行経路制御の例を示す。ドローン(101)は、前段落で述べた方法により、画像認識によって把握した圃場(103)の境界線が所定の俯角上にあるように位置を制御される。また、高度も一定に維持されるため、結果的に境界線との距離も一定に維持される。境界線を右に見ながら(上空から見て)反時計回りに飛行する、あるいは、境界線を左に見ながら(上空から見て)時計回りに飛行することで、圃場(103)の境界線から一定距離離れた内側をくまなく飛行することが可能である。初期位置に戻った時に圃場形状把握モードを終了するよう制御を行なうことが望ましい。圃場形状把握モードにおける、飛行経路の座標、特に、圃場(103)の境界線の頂点に当たる位置の座標を飛行中に圃場マップ保存手段(206)に保存することで、薬剤散布モードにおけるドローン(101)の飛行経路を決定するための正確な地図情報が得られる。地図情報を取得している時に薬剤散布も行なうよう制御することが望ましい。なお、航空写真等によって圃場(103)のおおまかな地図情報が入手可能な場合には、それにしたがって、ドローン(101)の初期位置を決定してもよい。または、初期位置は目視、あるいは、操縦器(102)に表示されたカメラ(205)の映像にしたがって、操縦器(102)のオペレーターが操作できるようにしてもよい。また、おおまかな地図情報を併用することで、万一、コンピューターの画像認識による圃場境界線の認識にエラーがあった場合でも、地図情報にしたがって補正可能にしてもよい。同様に、操縦器(102)のオペレーターが、操縦器(102)に表示されたカメラ(205)の映像にしたがって、あるいは、目視によりドローン(101)の飛行経路を補正できるようにしてもよい。 FIG. 6 shows an example of flight path control of the drone (101) in the field shape grasping mode. The position of the drone (101) is controlled by the method described in the previous paragraph so that the boundary line of the field (103) grasped by the image recognition is on a predetermined depression angle. Further, since the altitude is also maintained constant, as a result, the distance from the boundary line is also maintained constant. Flying counterclockwise while looking at the boundary line to the right (viewed from above), or flying clockwise while looking at the boundary line to the left (viewed from above), the boundary line of the field (103) It is possible to fly all the way inside a certain distance. It is desirable to perform control so as to end the field shape grasping mode when returning to the initial position. By storing the coordinates of the flight path in the field shape grasping mode, particularly the coordinates of the position corresponding to the apex of the boundary line of the field (103) in the field map storage means (206) during the flight, the drone (101 in the medicine spraying mode) ) Accurate map information for determining the flight route is obtained. It is desirable to perform control so that drug spraying is performed when map information is acquired. If rough map information of the field (103) is available by aerial photography or the like, the initial position of the drone (101) may be determined accordingly. Alternatively, the initial position may be operated by the operator of the pilot (102) according to visual observation or according to an image of the camera (205) displayed on the pilot (102). In addition, by using rough map information together, even if there is an error in recognition of the field boundary line by computer image recognition, correction may be made according to the map information. Similarly, the operator of the pilot (102) may be able to correct the flight path of the drone (101) according to the image of the camera (205) displayed on the pilot (102) or visually.
図7に、圃場(103)の角における飛行経路の制御方法を示す。カメラ(205)の画像内に複数の境界線が認識された時は、ドローン(101)に最も近い、すなわちカメラ(205)で撮影した画像の中央に最も近い境界線を選択し、その境界線を画像内の所定の位置に維持しつつ(つまり、その境界線にタイする俯角を一定に保ちつつ)ドローン(101)の飛行を制御することが望ましい。第一の境界線(401−1)をガイドにして飛行中(図7−a)に、画像内に第二の境界線(401−2)が出現し、現在ガイドにしている第一の境界線(401−1)より、ドローンに近くなった(つまり、画像の中心により近い位置に表示されるようになった)場合には、角に到達したと判断し、新たに出現した第二の境界線をガイドにして飛行を継続する(図7−c)。通常、ドローン(101)はいずれの方向にも飛行可能であるため、図7−cに示したように、機体の向きを変えずに進行方向だけを変えてもよいが、薬剤散布装置のノズルの形状等の条件によって好ましい場合には、機体の向きごと新たな方向に転換するようにしてもよい。境界線の角が鋭角である場合等、画像認識だけでの判断が困難である場合には、その位置でホバリングを行ない操縦器(102)へのオペレーターの入力を待つようにしてもよい。 FIG. 7 shows a method for controlling the flight path at the corner of the field (103). When a plurality of boundary lines are recognized in the image of the camera (205), the boundary line closest to the drone (101), that is, the boundary closest to the center of the image taken by the camera (205) is selected, and the boundary line is selected. It is desirable to control the flight of the drone (101) while maintaining a predetermined position in the image (that is, keeping the depression angle tied to the boundary line constant). During the flight using the first boundary line (401-1) as a guide (FIG. 7A), the second boundary line (401-2) appears in the image, and the first boundary currently used as a guide. If it is closer to the drone than the line (401-1) (that is, it is displayed at a position closer to the center of the image), it is determined that the corner has been reached, and a second newly appearing second The flight is continued with the boundary line as a guide (FIG. 7-c). Normally, since the drone (101) can fly in any direction, as shown in FIG. 7-c, it is possible to change only the traveling direction without changing the direction of the aircraft, If it is preferable depending on conditions such as the shape, the direction of the aircraft may be changed to a new direction. When it is difficult to make a judgment only by image recognition, such as when the angle of the boundary line is an acute angle, hovering may be performed at that position to wait for the operator's input to the pilot (102).
図8に薬剤散布モードにおけるドローン(101)の飛行経路の例を示す。圃場形状把握モードによる飛行によって圃場(103)の形状(特に、周辺の角の絶対位置座標)は正確に把握され、圃場マップ保存手段(207)に保存されているため、周辺部以外の圃場(103)の内部にくまなく薬剤散布を行なうことが容易に実現可能である。 FIG. 8 shows an example of the flight path of the drone (101) in the medicine spraying mode. The shape of the field (103) (especially the absolute position coordinates of the surrounding corners) is accurately grasped by the flight in the field shape grasping mode and stored in the field map storage means (207). 103), it is possible to easily disperse the medicine all over.
(本願発明による技術的に顕著な効果)
圃場の地図情報がない場合であっても、人手による煩雑な操縦作業やデータ入力作業なしに、圃場への正確な薬剤散布が行なえる。圃場のおおまかな地図情報はあるが現場と一致しているとは限らない場合でも、地図情報を参考に適宜補正を行ないながら、圃場への正確な薬剤散布が行なえる。
(Technologically significant effect of the present invention)
Even when there is no map information on the field, accurate medicine spraying to the field can be performed without complicated manual operation and data input. Even if there is rough map information on the field, but it is not always coincident with the actual site, accurate drug application to the field can be performed while making appropriate corrections with reference to the map information.
Claims (6)
前記カメラによって前記圃場を撮影するステップと、
前記カメラによって撮影された画像中の前記圃場の境界線を認識するステップと、
前記認識された境界線が前記カメラの映像中の所定の位置に位置するよう前記無人飛行体の位置を調整するステップと、
前記調整を行ないながら前記無人飛行体を前記圃場の境界線の内側を一周させるステップとを含む飛行制御方法。 A method for controlling the flight of an unmanned air vehicle with a camera that distributes medicines to a field,
Photographing the field with the camera;
Recognizing a boundary line of the field in an image taken by the camera;
Adjusting the position of the unmanned air vehicle so that the recognized boundary line is located at a predetermined position in the image of the camera;
A flight control method including the step of making the unmanned air vehicle travel around the inside of a boundary line of the field while performing the adjustment.
請求項1に記載の飛行制御方法。 The step of adjusting the position of the unmanned air vehicle so that the recognized boundary line is positioned at a predetermined position in the image of the camera includes the step of adjusting the recognized boundary line from an angle of 30 to 60 degrees from the unmanned air vehicle. The flight control method according to claim 1, wherein the flight control method is a step of controlling to be positioned between.
請求項1または請求項2に記載の飛行制御方法。 The flight control method according to claim 1 or 2, further comprising a step of selecting a boundary line closest to the unmanned air vehicle when a plurality of boundary lines of the field are recognized.
前記カメラによって薬剤撒布対象の圃場を撮影する手順と、
前記カメラによって撮影された画像中の前記圃場の境界線を認識する手順と、
前記認識された境界線が前記カメラの映像中の所定の位置に位置するよう前記無人飛行体の位置を調整する手順と、
前記調整を行ないながら前記無人飛行体を前記圃場の境界線の内側を一周させる手順とをコンピューターに実行させる飛行制御プログラム。 A flight control program for an unmanned air vehicle with a camera that distributes medicines to a field,
A procedure for photographing the field of drug distribution by the camera;
Recognizing the boundary line of the field in the image taken by the camera;
Adjusting the position of the unmanned air vehicle so that the recognized boundary line is located at a predetermined position in the video of the camera;
The flight control program which makes a computer perform the procedure which makes the said unmanned air vehicle round the inside of the boundary line of the said field, performing the said adjustment.
請求項4記載の飛行制御プログラム。 The procedure for adjusting the position of the unmanned air vehicle so that the recognized boundary line is located at a predetermined position in the image of the camera is performed by the step of adjusting the recognized boundary line from an angle of 30 to 60 from the unmanned air vehicle. 5. The flight control program according to claim 4, wherein the flight control program is a procedure for controlling to be located between degrees.
請求項4または請求項5に記載の飛行制御プログラム。 The flight control program according to claim 4 or 5, further causing a computer to execute a procedure of selecting a boundary line closest to the unmanned air vehicle when a plurality of boundary lines of the field are recognized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016026609A JP6621140B2 (en) | 2016-02-16 | 2016-02-16 | Method and program for spraying medicine by unmanned air vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016026609A JP6621140B2 (en) | 2016-02-16 | 2016-02-16 | Method and program for spraying medicine by unmanned air vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017144811A true JP2017144811A (en) | 2017-08-24 |
JP6621140B2 JP6621140B2 (en) | 2019-12-18 |
Family
ID=59682596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016026609A Active JP6621140B2 (en) | 2016-02-16 | 2016-02-16 | Method and program for spraying medicine by unmanned air vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6621140B2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108163196A (en) * | 2017-12-03 | 2018-06-15 | 刘福珍 | A kind of long-range pinpoint aircraft real-time control circuit |
CN108190023A (en) * | 2017-12-03 | 2018-06-22 | 刘福珍 | A kind of aircraft circuit method of work of real time remote gathered data |
CN109247324A (en) * | 2018-11-15 | 2019-01-22 | 山东理工大学 | The aviation of cotton defoliation medicament sprays operational method under one film, six row cultivation mode |
CN109328718A (en) * | 2018-11-15 | 2019-02-15 | 山东理工大学 | The aviation of cotton defoliation medicament sprays operational method under wide-and narrow-row cultivation mode |
CN109353521A (en) * | 2018-11-30 | 2019-02-19 | 郑州升达经贸管理学院 | A kind of UAV system and its control method precisely sprayed |
JP2019045898A (en) * | 2017-08-29 | 2019-03-22 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | Flying body control method, flying body, program and recording medium |
CN109511444A (en) * | 2018-11-15 | 2019-03-26 | 山东理工大学 | The aviation of cotton defoliation medicament sprays operational method under three films, 12 row cultivation mode |
CN109874772A (en) * | 2019-01-29 | 2019-06-14 | 山东昆丰农林科技股份有限公司 | A kind of aviation agrisilviculture monitoring method and system |
CN110162087A (en) * | 2019-05-17 | 2019-08-23 | 安徽舒州农业科技有限责任公司 | A kind of method and device of plant protection drone automatic identification corps diseases |
JP2019161464A (en) * | 2018-03-13 | 2019-09-19 | 富士通株式会社 | Program and method for base station movement control, and information processing device |
WO2019189077A1 (en) * | 2018-03-27 | 2019-10-03 | 株式会社ナイルワークス | Drone, control method thereof, and program |
JP2019187352A (en) * | 2018-04-27 | 2019-10-31 | 井関農機株式会社 | Work vehicle |
WO2019237412A1 (en) * | 2018-06-13 | 2019-12-19 | 仲恺农业工程学院 | Monitoring system and method for automatically operated unmanned aerial vehicle for plant protection |
WO2020004367A1 (en) * | 2018-06-28 | 2020-01-02 | 株式会社ナイルワークス | Chemical spraying system, control method of chemical spraying system, and chemical spraying system control program |
WO2020071305A1 (en) * | 2018-10-03 | 2020-04-09 | 株式会社ナイルワークス | Driving route generating device, driving route generating method, driving route generating program, and drone |
CN111133493A (en) * | 2017-09-20 | 2020-05-08 | 雅马哈发动机株式会社 | Replenishment planning device and replenishment planning method |
KR102089423B1 (en) * | 2019-10-01 | 2020-05-26 | 네이버시스템(주) | Real time drone control method and system for fertilizer application and pest control |
JP2020110113A (en) * | 2019-01-15 | 2020-07-27 | 株式会社クボタ | Spraying device |
WO2020162583A1 (en) * | 2019-02-08 | 2020-08-13 | 株式会社ナイルワークス | Drone system, drone, mobile unit, control device, drone system control method, and drone system control program |
WO2020162584A1 (en) * | 2019-02-08 | 2020-08-13 | 株式会社ナイルワークス | Drone system, drone, control device, and drone system control method |
WO2020171229A1 (en) * | 2019-02-22 | 2020-08-27 | 株式会社ナイルワークス | Drone piloting machine, and piloting program |
KR20210011195A (en) * | 2019-07-22 | 2021-02-01 | 주식회사 어플라이 | Apparatus and method for generating flight plan information |
WO2021140657A1 (en) * | 2020-01-10 | 2021-07-15 | 株式会社ナイルワークス | Drone system, flight management device, and drone |
CN113311861A (en) * | 2021-05-14 | 2021-08-27 | 国家电投集团青海光伏产业创新中心有限公司 | Automatic detection method and system for photovoltaic module subfissure characteristics |
WO2021205559A1 (en) * | 2020-04-08 | 2021-10-14 | 株式会社ナイルワークス | Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program |
CN113923984A (en) * | 2019-09-13 | 2022-01-11 | 株式会社久保田 | Agricultural work support system |
JP7008117B1 (en) | 2020-10-15 | 2022-02-14 | 西武建設株式会社 | Safe flight device for unmanned aircraft on the side of the road |
JP2022089140A (en) * | 2020-12-03 | 2022-06-15 | 浙江大学 | Field plant phenotypic information collection system and method |
WO2022141102A1 (en) * | 2020-12-29 | 2022-07-07 | 深圳市大疆创新科技有限公司 | Operation control method and apparatus for agricultural unmanned aerial vehicle, and agricultural unmanned aerial vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109845715B (en) * | 2019-03-06 | 2020-12-18 | 广州极飞科技有限公司 | Pesticide spraying control method, device, equipment and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11235124A (en) * | 1998-02-23 | 1999-08-31 | Yanmar Agricult Equip Co Ltd | Precise farming |
JP2002211494A (en) * | 2001-01-17 | 2002-07-31 | Todaka Seisakusho:Kk | Flight scheduling device for unmanned helicopter |
JP2002222014A (en) * | 2001-01-25 | 2002-08-09 | Mitsubishi Electric Corp | Flight device |
-
2016
- 2016-02-16 JP JP2016026609A patent/JP6621140B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11235124A (en) * | 1998-02-23 | 1999-08-31 | Yanmar Agricult Equip Co Ltd | Precise farming |
JP2002211494A (en) * | 2001-01-17 | 2002-07-31 | Todaka Seisakusho:Kk | Flight scheduling device for unmanned helicopter |
JP2002222014A (en) * | 2001-01-25 | 2002-08-09 | Mitsubishi Electric Corp | Flight device |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019045898A (en) * | 2017-08-29 | 2019-03-22 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | Flying body control method, flying body, program and recording medium |
US11492111B2 (en) | 2017-09-20 | 2022-11-08 | Yamaha Hatsudoki Kabushiki Kaisha | Replenishment planning device and replenishment planning method |
CN111133493A (en) * | 2017-09-20 | 2020-05-08 | 雅马哈发动机株式会社 | Replenishment planning device and replenishment planning method |
CN111133493B (en) * | 2017-09-20 | 2022-05-13 | 雅马哈发动机株式会社 | Replenishment planning device and replenishment planning method |
CN108163196A (en) * | 2017-12-03 | 2018-06-15 | 刘福珍 | A kind of long-range pinpoint aircraft real-time control circuit |
CN108190023A (en) * | 2017-12-03 | 2018-06-22 | 刘福珍 | A kind of aircraft circuit method of work of real time remote gathered data |
CN108190023B (en) * | 2017-12-03 | 2021-03-23 | 观典防务技术股份有限公司 | Aircraft circuit working method for remotely acquiring data in real time |
JP7124359B2 (en) | 2018-03-13 | 2022-08-24 | 富士通株式会社 | Base station mobility control program, base station mobility control method, and information processing device |
JP2019161464A (en) * | 2018-03-13 | 2019-09-19 | 富士通株式会社 | Program and method for base station movement control, and information processing device |
JPWO2019189077A1 (en) * | 2018-03-27 | 2020-10-22 | 株式会社ナイルワークス | Drones, how to control them, and programs |
WO2019189077A1 (en) * | 2018-03-27 | 2019-10-03 | 株式会社ナイルワークス | Drone, control method thereof, and program |
JP2019187352A (en) * | 2018-04-27 | 2019-10-31 | 井関農機株式会社 | Work vehicle |
WO2019237412A1 (en) * | 2018-06-13 | 2019-12-19 | 仲恺农业工程学院 | Monitoring system and method for automatically operated unmanned aerial vehicle for plant protection |
JPWO2020004367A1 (en) * | 2018-06-28 | 2020-12-17 | 株式会社ナイルワークス | Drug spraying system, control method of drug spraying system, and drug spraying system control program |
WO2020004367A1 (en) * | 2018-06-28 | 2020-01-02 | 株式会社ナイルワークス | Chemical spraying system, control method of chemical spraying system, and chemical spraying system control program |
CN112997129A (en) * | 2018-10-03 | 2021-06-18 | 株式会社尼罗沃克 | Travel route generation device, travel route generation method, travel route generation program, and unmanned aerial vehicle |
CN112997129B (en) * | 2018-10-03 | 2024-03-26 | 株式会社尼罗沃克 | Travel path generation device, travel path generation method, computer-readable storage medium, and unmanned aerial vehicle |
JPWO2020071305A1 (en) * | 2018-10-03 | 2021-09-24 | 株式会社ナイルワークス | Driving route generator, driving route generation method, driving route generation program, and drone |
JP7270265B2 (en) | 2018-10-03 | 2023-05-10 | 株式会社ナイルワークス | Driving route generation device, driving route generation method, driving route generation program, and drone |
WO2020071305A1 (en) * | 2018-10-03 | 2020-04-09 | 株式会社ナイルワークス | Driving route generating device, driving route generating method, driving route generating program, and drone |
CN109511444B (en) * | 2018-11-15 | 2020-09-15 | 山东理工大学 | Aerial spraying operation method of cotton defoliating agent under three-film twelve-row cultivation mode |
CN109328718B (en) * | 2018-11-15 | 2020-09-15 | 山东理工大学 | Aerial spraying operation method of cotton defoliating agent under wide-narrow row cultivation mode |
CN109247324A (en) * | 2018-11-15 | 2019-01-22 | 山东理工大学 | The aviation of cotton defoliation medicament sprays operational method under one film, six row cultivation mode |
CN109511444A (en) * | 2018-11-15 | 2019-03-26 | 山东理工大学 | The aviation of cotton defoliation medicament sprays operational method under three films, 12 row cultivation mode |
CN109328718A (en) * | 2018-11-15 | 2019-02-15 | 山东理工大学 | The aviation of cotton defoliation medicament sprays operational method under wide-and narrow-row cultivation mode |
CN109353521A (en) * | 2018-11-30 | 2019-02-19 | 郑州升达经贸管理学院 | A kind of UAV system and its control method precisely sprayed |
JP2020110113A (en) * | 2019-01-15 | 2020-07-27 | 株式会社クボタ | Spraying device |
CN109874772B (en) * | 2019-01-29 | 2022-08-23 | 山东昆丰农林科技股份有限公司 | Aviation agriculture and forestry operation monitoring method and system |
CN109874772A (en) * | 2019-01-29 | 2019-06-14 | 山东昆丰农林科技股份有限公司 | A kind of aviation agrisilviculture monitoring method and system |
JPWO2020162584A1 (en) * | 2019-02-08 | 2020-08-13 | ||
WO2020162584A1 (en) * | 2019-02-08 | 2020-08-13 | 株式会社ナイルワークス | Drone system, drone, control device, and drone system control method |
WO2020162583A1 (en) * | 2019-02-08 | 2020-08-13 | 株式会社ナイルワークス | Drone system, drone, mobile unit, control device, drone system control method, and drone system control program |
JP2022088441A (en) * | 2019-02-22 | 2022-06-14 | 株式会社ナイルワークス | Drone steering device and steering program |
JP7075695B2 (en) | 2019-02-22 | 2022-05-26 | 株式会社ナイルワークス | Drone pilot and pilot program |
WO2020171229A1 (en) * | 2019-02-22 | 2020-08-27 | 株式会社ナイルワークス | Drone piloting machine, and piloting program |
CN113518747A (en) * | 2019-02-22 | 2021-10-19 | 株式会社尼罗沃克 | Unmanned aerial vehicle manipulator and program for manipulation |
JPWO2020171229A1 (en) * | 2019-02-22 | 2021-12-02 | 株式会社ナイルワークス | Drone pilot and pilot program |
CN110162087A (en) * | 2019-05-17 | 2019-08-23 | 安徽舒州农业科技有限责任公司 | A kind of method and device of plant protection drone automatic identification corps diseases |
KR102237342B1 (en) * | 2019-07-22 | 2021-04-07 | 주식회사 어플라이 | Apparatus and method for generating flight plan information |
KR20210011195A (en) * | 2019-07-22 | 2021-02-01 | 주식회사 어플라이 | Apparatus and method for generating flight plan information |
CN113923984A (en) * | 2019-09-13 | 2022-01-11 | 株式会社久保田 | Agricultural work support system |
CN113923984B (en) * | 2019-09-13 | 2023-09-12 | 株式会社久保田 | Agricultural work support system |
KR102089423B1 (en) * | 2019-10-01 | 2020-05-26 | 네이버시스템(주) | Real time drone control method and system for fertilizer application and pest control |
JPWO2021140657A1 (en) * | 2020-01-10 | 2021-07-15 | ||
WO2021140657A1 (en) * | 2020-01-10 | 2021-07-15 | 株式会社ナイルワークス | Drone system, flight management device, and drone |
JP7137258B2 (en) | 2020-01-10 | 2022-09-14 | 株式会社ナイルワークス | Drone Systems, Flight Management Devices and Drones |
WO2021205559A1 (en) * | 2020-04-08 | 2021-10-14 | 株式会社ナイルワークス | Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program |
JPWO2021205559A1 (en) * | 2020-04-08 | 2021-10-14 | ||
JP7412039B2 (en) | 2020-04-08 | 2024-01-12 | 株式会社ナイルワークス | Display device, computer program |
JP2022065580A (en) * | 2020-10-15 | 2022-04-27 | 西武建設株式会社 | Safety flight device of unmanned flying object on roadside part |
JP7008117B1 (en) | 2020-10-15 | 2022-02-14 | 西武建設株式会社 | Safe flight device for unmanned aircraft on the side of the road |
JP2022089140A (en) * | 2020-12-03 | 2022-06-15 | 浙江大学 | Field plant phenotypic information collection system and method |
JP7179382B2 (en) | 2020-12-03 | 2022-11-29 | 浙江大学 | Phenotypic information collection system for field plants |
WO2022141102A1 (en) * | 2020-12-29 | 2022-07-07 | 深圳市大疆创新科技有限公司 | Operation control method and apparatus for agricultural unmanned aerial vehicle, and agricultural unmanned aerial vehicle |
CN113311861A (en) * | 2021-05-14 | 2021-08-27 | 国家电投集团青海光伏产业创新中心有限公司 | Automatic detection method and system for photovoltaic module subfissure characteristics |
Also Published As
Publication number | Publication date |
---|---|
JP6621140B2 (en) | 2019-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6621140B2 (en) | Method and program for spraying medicine by unmanned air vehicle | |
WO2018189848A1 (en) | Method for spraying chemical by unmanned flight vehicle, and program | |
WO2017175804A1 (en) | Method for chemical spraying using unmanned aerial vehicle, program, and device | |
WO2020195007A1 (en) | Work control system | |
US9641810B2 (en) | Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers | |
JP2017206066A (en) | Unmanned aircraft for spraying chemical solution | |
JP6390013B2 (en) | Control method for small unmanned aerial vehicles | |
JP6431395B2 (en) | Aerial sprayer | |
US9336568B2 (en) | Unmanned aerial vehicle image processing system and method | |
CN107108023B (en) | Unmanned plane and its control method | |
JP6948917B2 (en) | Spraying machine | |
JP2019120986A (en) | Flight course control system for unmanned aircraft and flight course control method for unmanned aircraft | |
Liu et al. | Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field | |
KR101908340B1 (en) | Method for controling real time of working object unmanned and working flight vehicle for agriculture | |
JP2022088441A (en) | Drone steering device and steering program | |
WO2021140657A1 (en) | Drone system, flight management device, and drone | |
KR20190076227A (en) | Automatic Obstacle Avoidance and Full automatic flight control method of Agricultrual Drone | |
WO2020103141A1 (en) | Agricultural mechanical device control method and agricultural mechanical device | |
CN113934232A (en) | Virtual image control-based plant protection unmanned aerial vehicle air route planning system and method | |
CN112313599B (en) | Control method, device and storage medium | |
CN115136090A (en) | Unmanned aerial vehicle system, operator and method for defining operation area | |
WO2023139628A1 (en) | Area setting system and area setting method | |
WO2021166101A1 (en) | Operation device and drone operation program | |
JP2019045898A (en) | Flying body control method, flying body, program and recording medium | |
WO2021081894A1 (en) | Work planning method and system for movable platform, and control terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6621140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S303 | Written request for registration of pledge or change of pledge |
Free format text: JAPANESE INTERMEDIATE CODE: R316303 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |