WO2020189272A1 - Bubble generation device - Google Patents

Bubble generation device Download PDF

Info

Publication number
WO2020189272A1
WO2020189272A1 PCT/JP2020/009072 JP2020009072W WO2020189272A1 WO 2020189272 A1 WO2020189272 A1 WO 2020189272A1 JP 2020009072 W JP2020009072 W JP 2020009072W WO 2020189272 A1 WO2020189272 A1 WO 2020189272A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
bubble generator
piezoelectric element
pores
vibration
Prior art date
Application number
PCT/JP2020/009072
Other languages
French (fr)
Japanese (ja)
Inventor
藤本 克己
良浩 小木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080011877.4A priority Critical patent/CN113396011B/en
Priority to JP2021507171A priority patent/JP7180749B2/en
Publication of WO2020189272A1 publication Critical patent/WO2020189272A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • This disclosure relates to a bubble generator.
  • Patent Document 1 a bubble generator for generating fine bubbles.
  • the air flowing through the pores becomes bubbles at the interface between the diaphragm and the liquid and rises in the liquid.
  • the bubbles generated on the surface of the diaphragm rise at once along with the flow of the direct jet pushed out from the pores, and the water surface of the water tank. Will be released into the atmosphere. Therefore, the bubble generator described in Patent Document 1 has a problem that the generated bubbles cannot be suspended in the liquid for a long time and the amount of fine bubbles remaining in the liquid is reduced.
  • an object of the present disclosure is to provide a bubble generator capable of increasing the amount of fine bubbles remaining in the liquid.
  • the bubble generator according to one embodiment of the present disclosure is a bubble generator that generates fine bubbles in a liquid by vibration, in which a plurality of openings are formed, one surface is in contact with the liquid in the liquid tank, and the other.
  • a diaphragm whose surface is in contact with a gas and a piezoelectric element that vibrates the diaphragm are provided, and the vibration direction for vibrating the diaphragm includes at least a direction different from the direction of the gas flowing through the plurality of openings.
  • the vibration direction for vibrating the diaphragm includes at least a direction different from the direction of the gas flowing through the plurality of openings, the amount of fine bubbles remaining in the liquid can be increased.
  • FIG. 5 is a partial cross-sectional view of a vibrating body of the bubble generator according to the first embodiment. It is a figure which shows the vibration state of the vibrating body of the bubble generator which concerns on this Embodiment 1. It is a top view of the diaphragm which concerns on this Embodiment 1. It is sectional drawing of the opening formed in the diaphragm which concerns on Embodiment 1. It is the schematic of the water quality purification apparatus which uses the bubble generator which concerns on this Embodiment 2.
  • FIG. 1 is a schematic view of a water purification device 100 in which the bubble generator 1 according to the first embodiment is used.
  • the bubble generator 1 shown in FIG. 1 is provided, for example, at the bottom of a water tank (liquid tank) 10 and is used in a water purification device 100 that generates fine bubbles in the water of the water tank 10.
  • the use of the bubble generator 1 is not limited to the water purification device 100, and can be applied to various uses such as a wastewater treatment device and a fish farming aquarium.
  • the bubble generator 1 includes a diaphragm 2, a vibrating body 3, a piezoelectric element 4, a holding portion 5, and a supporting portion 6.
  • the bubble generator 1 is provided with a vibrating body 3 held by the holding portion 5 in a hole formed in a part of the bottom of the water tank 10.
  • the boundary portion between the vibrating body 3 and the holding portion 5 is sealed, and the internal space of the holding portion 5 and the water in the water tank 10 are completely separated. Since the piezoelectric element 4 is provided on the side surface of the vibrating body 3 in the internal space of the holding portion 5, it is possible to prevent the electrical wiring and the like of the piezoelectric element 4 from being immersed in the liquid.
  • the vibrating body 3 is provided with an introduction hole 3d for passing air, and one end of the introduction hole 3d is provided on the internal space side of the holding portion 5.
  • the holding portion 5 is provided on the supporting portion 6.
  • the support portion 6 is provided with an introduction hole 6a, and air is sent from the introduction hole 6a into the internal space of the holding portion 5.
  • the air sent from the introduction hole 6a into the internal space of the holding portion 5 passes through the introduction hole 3d of the vibrating body 3 and reaches the diaphragm 2 provided at the first end portion 3a and the second end portion 3b.
  • a plurality of air sent through the introduction hole 3d are formed in the diaphragm 2 by vibrating the diaphragm 2 and the diaphragm 3 with the piezoelectric element 4 provided on the side surface of the diaphragm 3. It is generated as fine bubbles from the pores (openings).
  • the diaphragm 2 is made of a glass plate.
  • the diaphragm 2 may be formed of a glass plate that transmits ultraviolet light having a wavelength of 200 nm to 380 nm and deep ultraviolet light.
  • a glass plate that transmits ultraviolet light and deep ultraviolet light a light source that emits ultraviolet light to the water in the water tank 10 from the other surface side of the vibrating plate 2 is provided, and sterilization by ozone generation and ultraviolet light irradiation are performed. It can also be used for sterilization.
  • quartz glass or pseudo-quartz synthetic glass whose composition is controlled and the transmittance of deep ultraviolet rays is improved is used.
  • the diaphragm 2 may be formed of a metal plate, or may be formed of a material other than glass (for example, metal, resin, etc.).
  • the diaphragm 2 is formed with a plurality of pores, one surface of which is in contact with the water (liquid) of the water tank 10, and the other surface of which is in contact with the first end 3a or the second end 3b of the vibrating body 3. ing.
  • air that has passed through the introduction hole 3d provided in the vibrating body 3 is sent from the first end portion 3a and the second end portion 3b to the water in the water tank 10 through the pores of the diaphragm 2. Generates fine bubbles.
  • FIG. 2 is a schematic view of the vibrating body 3 of the bubble generator 1 according to the first embodiment.
  • 2 (a) is a perspective view of the vibrating body 3
  • FIG. 2 (b) is a side view of the vibrating body 3
  • FIG. 2 (c) is a plan view of the vibrating body 3.
  • FIG. 3 is a partial cross-sectional view of the vibrating body 3 of the bubble generator 1 according to the first embodiment.
  • the vibrating body 3 has a first end portion 3a and a second end portion 3b opposite to the first end portion 3a.
  • the vibrating body 3 has a disk-shaped first end portion 3a, a second end portion 3b, and a pillar-shaped portion 3c connected to each other.
  • the second end portion 3b is located on the side opposite to the first end portion 3a in the long side direction of the pillar-shaped portion 3c.
  • the first end portion 3a and the second end portion 3b are connected to the diaphragm 2, respectively. That is, the pores of the diaphragm 2 are connected to the introduction hole 3d on the first end 3a side and the introduction hole 3d on the second end 3b side.
  • the second end portion 3b and the introduction hole 3d are also provided in the pillar-shaped portion 3c of the vibrating body 3.
  • the vibrating body 3 is made of an aluminum alloy in this embodiment.
  • another metal material such as stainless steel may be used.
  • a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
  • the vibrating body 3 has a shape in which the central portion is cut into a pillar shape, leaving the first end portion 3a and the second end portion 3b of the cylinder. Therefore, in the vibrating body 3, the first end portion 3a, the second end portion 3b, and the pillar-shaped portion 3c are integrally formed of the same material.
  • the pillar-shaped portion 3c is joined to the first end portion 3a and the second end portion 3b as separate members, and the pillar-shaped portion 3c, the first end portion 3a, and the first end portion 3a are joined.
  • the end portion 3b of 2 may be made of a separate member.
  • the piezoelectric element 4 is fixed to the pillar-shaped portion 3c of the vibrating body 3.
  • the piezoelectric element 4 has a piezoelectric body and electrodes provided on both sides of the piezoelectric body.
  • the piezoelectric body is polarized in the thickness direction, that is, in the direction parallel to the planes of the first end 3a and the second end 3b of the vibrating body 3.
  • the piezoelectric body is made of a piezoelectric material such as piezoelectric ceramics.
  • the piezoelectric element 4 By driving the piezoelectric element 4 in the bending vibration mode in a structure in which the piezoelectric element 4 is joined to the column-shaped portion 3c of the vibrating body 3, a vibrating body that flexes and vibrates the diaphragm 2 and the vibrating body 3 is configured. There is.
  • the piezoelectric element 4 has, for example, a width of 8 mm, a length of 16 mm, and a thickness of 1 mm. Further, the piezoelectric element 4 is driven, for example, under operating conditions of a rectangular waveform having a voltage of 50 Vpp to 70 Vpp and a duty ratio of 50%.
  • the driving of the piezoelectric element 4 in the bending vibration mode vibrates the diaphragm 2 and the vibrating body 3 to generate fine bubbles.
  • a controller signal (not shown) is supplied to the electrodes of the piezoelectric element 4, and the piezoelectric element 4 is driven based on the signal.
  • one piezoelectric element 4 is provided on one surface of the pillar-shaped portion 3c, but the present invention is not limited to this.
  • a plurality of piezoelectric elements 4 may be provided on one surface of the pillar-shaped portion 3c.
  • FIG. 4 is a diagram showing a vibration state of the vibrating body of the bubble generator according to the first embodiment.
  • FIG. 4 shows the displacement as a result of simulating the vibration of the vibrating body 3 of the bubble generator 1.
  • the piezoelectric element 4 is provided in the pillar-shaped portion 3c.
  • the piezoelectric element 4 is driven in the bending vibration mode to cause the vibrating body 3 to bend and vibrate. Due to the displacement of the bending vibration, the diaphragms 2 provided at the first end 3a and the second end 3b of the vibrating body 3 are displaced in the left-right direction (vibration direction) in the drawing.
  • the direction of the gas flowing through the plurality of pores formed in the diaphragm 2 is the vertical direction in the drawing, which is different from the vibration direction of the diaphragm 2 which vibrates by driving the piezoelectric element 4.
  • the vibration direction for vibrating the diaphragm 2 includes a vibration component that is perpendicular to the direction of the gas flowing through the plurality of pores. Therefore, in the bubble generator 1, the bubbles generated on the surface of the diaphragm 2 are not easily affected by the flow of the direct jet extruded from the pores, and the bubbles rise at once and enter the atmosphere on the water surface of the water tank 10. It can be prevented from being dissipated. Further, in the bubble generator 1, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
  • the bubble generator 1 is not limited to the case where the vibration direction for vibrating the diaphragm 2 is the direction perpendicular to the direction of the gas flowing through the plurality of pores, and the vibration of the diaphragm 2 As long as it contains at least a vibration component that is perpendicular to the direction of the gas flowing through the plurality of pores, it is sufficient that the bubbles are not easily affected by the flow of the direct jet flow pushed out from the pores. ..
  • FIG. 5 is a plan view of the diaphragm according to the present embodiment.
  • a plurality of pores 2b are formed in a region of 5 mm ⁇ 5 mm provided in the central portion of a glass plate 2a having a diameter of 14 mm.
  • the diaphragm 2 can form 441 pores 2b in a region of 5 mm ⁇ 5 mm.
  • the pore diameter of the pores 2b and the spacing between the pores 2b are different from the actual scale.
  • the pores 2b provided in the diaphragm 2 have a pore diameter of 1 ⁇ m to 20 ⁇ m on the surface in contact with the liquid.
  • the air introduced from the pores 2b generates fine bubbles having a diameter about 10 times that of the water in the water tank 10. Since a plurality of pores 2b are formed at intervals of 10 times or more the pore diameter, it is possible to prevent fine bubbles generated from one pore 2b from connecting with fine bubbles generated from adjacent pores 2b. The performance to generate independent fine bubbles is improved.
  • a method for forming a plurality of pores 2b in the glass plate 2a for example, there is a method in which a laser and liquid phase etting are combined. Specifically, in this method, by irradiating the glass plate 2a with a laser, the glass plate 2a is subjected to composition modification by laser energy, and the portion is eroded by a liquid fluoride-based etiquette or the like to cause a plurality of pieces. It forms pores 2b.
  • FIG. 6 is a cross-sectional view of the pores (openings) 2b formed in the diaphragm according to the present embodiment.
  • the shape of the pores 2b formed in the glass plate 2a is a tapered shape in which the pore diameter of the upper surface is larger than the pore diameter of the lower surface in the drawing.
  • the glass plate 2a is used for the diaphragm 2
  • Precious metals must be used to prevent the elution of metal ions into the liquid. Therefore, if the metal plate having pores formed is plated with a noble metal, the cost of the diaphragm becomes high.
  • the bubble generator 1 is a bubble generator 1 that generates fine bubbles in a liquid by vibration.
  • a plurality of pores 2b openings are formed, one surface is in contact with the water (liquid) of the water tank 10, and the other surface is in contact with the gas, vibrating the diaphragm 2 and the diaphragm 2.
  • It is provided with a piezoelectric element 4 for causing vibration.
  • the vibration direction for vibrating the diaphragm 2 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b.
  • the bubble generator 1 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b in the vibration direction for vibrating the diaphragm, so that the flow of the direct jet extruded from the pores 2b The bubbles are not easily affected, and the amount of fine bubbles remaining in the liquid can be increased.
  • the vibration direction of the diaphragm 2 that drives the piezoelectric element 4 in the bending vibration mode and vibrates by driving the piezoelectric element 4 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b.
  • the bubble generator 1 can drive the piezoelectric element 4 in the bending vibration mode to increase the amount of fine bubbles remaining in the liquid.
  • the vibration direction for vibrating the diaphragm 2 may include at least a vibration component in the direction perpendicular to the direction of the gas flowing through the plurality of pores 2b.
  • the diaphragm 2 may be formed of a glass plate.
  • the bubble generator 1 can prevent liquid contamination due to elution of metal ions into the water (liquid) of the water tank 10.
  • the diaphragm 2 may form a plurality of pores 2b having a pore diameter of 1 ⁇ m to 20 ⁇ m on the surface in contact with the liquid at intervals of 10 times or more the pore diameter.
  • the bubble generator 1 can prevent the fine bubbles 200 generated from one pore 2b from being connected to the fine bubbles 200 generated from the adjacent pores 2b, and generate independent fine bubbles 200. be able to.
  • the shape of the pores 2b may be a tapered shape in which the pore diameter of the other surface in contact with the gas is larger than the pore diameter of one surface in contact with the water (liquid) of the water tank 10.
  • the bubble generator 1 can make the diameter of the fine bubbles 200 generated in the pores 2b smaller.
  • the vibrating body 3 is provided by the holding portion 5 provided in the water of the water tank 10 so that the vibrating direction for vibrating the diaphragm 2 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b.
  • the configuration for holding the above was described.
  • a configuration will be described in which the vibration direction for vibrating the diaphragm includes at least a direction different from the direction of the gas flowing through the plurality of pores without providing the holding portion.
  • FIG. 7 is a schematic view of the water purification device 110 in which the bubble generator 1a according to the second embodiment is used.
  • the water purification device 110 according to the second embodiment has the same configuration as the water purification device 100 according to the first embodiment shown in FIG. 1, and the same reference numerals are given to the configurations, and detailed description thereof will not be repeated.
  • the bubble generator 1a shown in FIG. 7 is provided, for example, at the bottom of the water tank (liquid tank) 10 and is used in the water purification device 110 that generates fine bubbles in the water of the water tank 10.
  • the use of the bubble generator 1a is not limited to the water purification device 110, and can be applied to various uses such as a wastewater treatment device and a fish farming aquarium.
  • the bubble generator 1a includes a diaphragm 2, a vibrating body 30, and a piezoelectric element 4.
  • the vibrating body 30 has an H-shaped (tuning fork) shape, is held in a hole made in a part of the bottom of the water tank 10, and a part of the vibrating body 30 is arranged on the water side (liquid side) of the water tank 10. Has been done.
  • the boundary portion between the vibrating body 30 and the bottom of the water tank 10 is sealed, and the portion of the vibrating body 30 on the outside (gas side) of the water tank 10 and the water in the water tank 10 are completely separated. Since the piezoelectric element 4 is provided in the portion of the vibrating body 30 outside the water tank 10, it is possible to prevent the electrical wiring and the like of the piezoelectric element 4 from being immersed in the liquid.
  • the vibrating body 30 is provided with an introduction hole 30d for passing air, one end of the introduction hole 30d is provided on the water side of the water tank 10, and the other end of the introduction hole 30d is provided on the outside of the water tank 10. ..
  • the air sent from the other end of the introduction hole 30d passes through the introduction hole 30d and reaches the diaphragm 2 provided at one end of the vibrating body 30 (the water side of the water tank 10).
  • the diaphragm 2 and the diaphragm 30 are vibrated by the piezoelectric element 4 provided on the side surface of the diaphragm 30 outside the water tank 10, so that the air sent through the introduction hole 30d is sent to the diaphragm. It is generated as fine bubbles from a plurality of pores (openings) formed in 2.
  • FIG. 8 is a perspective view of the vibrating body 30 of the bubble generator 1a according to the second embodiment.
  • the vibrating body 30 has a pillar-shaped portion 30a and a pillar-shaped portion 30b arranged in parallel with the pillar-shaped portion 30a.
  • the vibrating body 30 has an H-shape in which the central portion of the pillar-shaped portion 30a and the pillar-shaped portion 30b is connected by the connecting portion 30c.
  • a diaphragm 2 is provided at one end (water side of the water tank 10) of the pillar-shaped portion 30a and the pillar-shaped portion 30b, respectively. Since the shape of one end of the pillar-shaped portion 30a and the pillar-shaped portion 30b is rectangular, the outer shape of the diaphragm 2 is also rectangular, but as shown in FIG. 5, a plurality of pores 2b are formed in the glass plate 2a. Is formed.
  • the vibrating body 30 is made of an aluminum alloy.
  • the aluminum alloy instead of the aluminum alloy, another metal material such as stainless steel may be used.
  • a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
  • the vibrating body 30 has an H-shaped (tuning fork) shape in which the central portion of the pillar-shaped portion 30a and the pillar-shaped portion 30b is connected by the connecting portion 30c. Therefore, in the vibrating body 30, the pillar-shaped portion 30a, the pillar-shaped portion 30b, and the connecting portion 30c are integrally made of the same material. In the vibrating body 30, the pillar-shaped portion 30a and the pillar-shaped portion 30b as separate members are joined to the connecting portion 30c, and the connecting portion 30c and the pillar-shaped portion 30a and the pillar-shaped portion 30b are separated. It may be composed of members.
  • FIG. 9 is a diagram showing a vibration state of the vibrating body 30 of the bubble generator 1a according to the second embodiment.
  • FIG. 9 shows the displacement as a result of simulating the vibration of the vibrating body 30 of the bubble generator 1a.
  • the piezoelectric element 4 is provided in the pillar-shaped portion 30a and the pillar-shaped portion 30b.
  • the piezoelectric element 4 is driven in the bending vibration mode to cause the vibrating body 30 to bend and vibrate. Due to the displacement of the bending vibration, the diaphragms 2 provided at the first end 3a and the second end 3b of the vibrating body 30 are displaced in the arrow direction (vibration direction) in the drawing.
  • the direction of the gas flowing through the plurality of pores 2b formed in the diaphragm 2 is the vertical direction in the drawing, which is different from the vibration direction of the diaphragm 2 that vibrates by driving the piezoelectric element 4.
  • the vibration direction for vibrating the diaphragm 2 is perpendicular to the direction of the gas flowing through the plurality of pores 2b. Therefore, in the bubble generator 1a, the bubbles generated on the surface of the diaphragm 2 are not easily affected by the flow of the direct jet extruded from the pores 2b, and the bubbles rise at once on the water surface of the water tank 10. It can be prevented from being released into the atmosphere. Further, in the bubble generator 1a, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
  • the bubble generator 1a is not limited to the case where the vibration direction for vibrating the diaphragm 2 is perpendicular to the direction of the gas flowing through the plurality of pores 2b as shown in FIG. If the vibration direction and the direction of the gas flowing through the plurality of pores 2b are different and include at least a vibration component that is in the vertical direction, the bubbles are affected by the flow of the direct jet flow pushed out from the pores 2b. I hope it can be difficult.
  • the piezoelectric element 4 is driven in the bending vibration mode, and a plurality of pores are formed in the vibration direction of the diaphragm 2 which is vibrated by the drive of the piezoelectric element 4. It includes at least a direction different from the direction of the gas flowing through 2b.
  • the direction of the gas flowing through the plurality of pores 2b and the vibration direction for vibrating the diaphragm 2 are different, and the bubbles affect the flow of the direct jet extruded from the pores 2b. It can be made difficult to receive.
  • FIG. 10 is a schematic view of a water purification device 120 in which the bubble generator 1b according to the third embodiment is used.
  • the water purification device 120 according to the third embodiment has the same configuration as the water purification device 100 according to the first embodiment shown in FIG. 1, and the same reference numerals are given to the configurations, and detailed description thereof will not be repeated.
  • the bubble generator 1b includes a diaphragm 21, a vibrating body 31, a piezoelectric element 41, a holding portion 51, and a supporting portion 6.
  • the bubble generator 1b is provided with a diaphragm 21 held by the holding portion 51 in a hole formed in a part of the bottom of the water tank 10.
  • the boundary portion between the diaphragm 21 and the holding portion 51 is sealed, and the internal space of the holding portion 51 and the water in the water tank 10 are completely separated. Since the piezoelectric element 41 is provided on the lower surface of the diaphragm 21 in the internal space of the holding portion 51, it is possible to prevent the electrical wiring and the like of the piezoelectric element 41 from being immersed in the liquid.
  • a vibrating body 31 is provided on the lower surface of the diaphragm 21 with the piezoelectric element 41 interposed therebetween.
  • the vibrating body 31 is provided with an introduction hole 31d for passing air, and one end of the introduction hole 31d is provided on the outside (gas side) of the water tank 10.
  • the holding portion 51 is provided on the supporting portion 6.
  • the support portion 6 is provided with an introduction hole 6a, and air is sent from the introduction hole 6a to the introduction hole 31d. The air sent from the introduction hole 6a reaches the diaphragm 21 through the introduction hole 31d of the vibrating body 31.
  • the diaphragm 21 and the diaphragm 31 are vibrated by the piezoelectric element 41 provided at the outer peripheral end of the diaphragm 31, so that the air sent through the introduction hole 31d is formed in the diaphragm 21. It is generated as fine bubbles from the pores (openings) of.
  • the diaphragm 21 has a plurality of pores formed in the vicinity of the position where the piezoelectric element 41 is arranged, and one surface is in contact with the water (liquid) of the water tank 10 and the other surface is in contact with the piezoelectric element 41.
  • fine bubbles are generated by sending air that has passed through the introduction hole 31d provided in the vibrating body 31 into the water in the water tank 10 through the pores of the diaphragm 21.
  • FIG. 11 is a schematic view of the vibrating body 31 of the bubble generator 1b according to the third embodiment. 11 (a) is a partial cross-sectional view of the vibrating body 31, and FIG. 11 (b) is a side view of the vibrating body 31.
  • the vibrating body 31 is a donut-shaped plate provided in the introduction hole 31d at the center, and is connected to a ring-shaped piezoelectric element 41 at the outer peripheral end. Further, the piezoelectric element 41 is connected to the diaphragm 21 on the opposite surface connected to the vibrating body 31.
  • the vibrating body 31 is made of an aluminum alloy.
  • the aluminum alloy instead of the aluminum alloy, another metal material such as stainless steel may be used.
  • a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
  • the piezoelectric element 41 has a piezoelectric body and electrodes provided on both sides of the piezoelectric body.
  • the piezoelectric body is polarized in the thickness direction, that is, in the direction in which the vibrating body 31 and the diaphragm 21 are overlapped with each other.
  • the piezoelectric body is made of a piezoelectric material such as piezoelectric ceramics.
  • the piezoelectric element 41 is connected to the outer peripheral end of the vibrating body 31, and the piezoelectric element 41 is expanded and driven in the vibration mode to form a vibrating body that expands and vibrates the diaphragm 21 and the vibrating body 31.
  • the piezoelectric element 41 can be driven in a spreading vibration mode that spreads in the plane direction of a thin square plate or disk by utilizing the mechanical resonance of the piezoelectric ceramics and its resonance frequency (for example, 100 kHz to several MHz).
  • the driving of the piezoelectric element 41 in the spreading vibration mode vibrates the diaphragm 21 and the vibrating body 31 to generate fine bubbles.
  • a controller signal (not shown) is supplied to the electrodes of the piezoelectric element 41, and the piezoelectric element 41 is driven based on the signal.
  • the piezoelectric element 41 is provided with one ring-shaped piezoelectric element on one surface of the vibrating body 31, the present invention is not limited to this.
  • the piezoelectric element 41 may have, for example, a configuration in which a plurality of piezoelectric elements are arranged in a ring shape on one surface of the vibrating body 31.
  • FIG. 12 is a diagram showing a vibration state of the vibrating body 31 of the bubble generator 1b according to the third embodiment.
  • FIG. 12 shows the displacement direction as a result of simulating the vibration of the vibrating body 31 of the bubble generator 1b.
  • a piezoelectric element 41 is provided at the outer peripheral end of the vibrating body 31.
  • a plurality of pores 21b are formed not in the central portion but in the vicinity of the position where the piezoelectric element 41 is arranged.
  • the piezoelectric element 41 By applying an AC electric field between the electrodes of the piezoelectric element 41, the piezoelectric element 41 is expanded and driven in the vibration mode to expand and vibrate the diaphragm 21. Due to the displacement of the spreading vibration, the diaphragm 21 is displaced in the direction of the arrow (vibration direction) in the figure from the center to the outer circumference. On the other hand, the direction of the gas flowing through the plurality of pores 21b formed in the diaphragm 21 is the vertical direction (direction perpendicular to the surface of the diaphragm 21) in the figure, and the diaphragm 21 vibrates by driving the piezoelectric element 41. It is different from the vibration direction.
  • the vibration direction for vibrating the diaphragm 21 is perpendicular to the direction of the gas flowing through the plurality of pores 21b. Therefore, in the bubble generator 1b, the bubbles generated on the surface of the diaphragm 21 are not easily affected by the flow of the direct jet extruded from the pores 21b, and the bubbles rise at once on the water surface of the water tank 10. It can be prevented from being released into the atmosphere. Further, in the bubble generator 1b, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
  • the bubble generator 1b is not limited to the case where the vibration direction for vibrating the diaphragm 21 is perpendicular to the direction of the gas flowing through the plurality of pores 21b as shown in FIG. If the vibration direction and the direction of the gas flowing through the plurality of pores 21b are different from each other and include at least a vibration component that is in the vertical direction, the bubbles are less likely to be affected by the flow of the direct jet flow pushed out from the pores. I hope I can.
  • the vibration component in the vibration direction that vibrates the vibration plate 21 includes the expansion vibration component in the vertical direction.
  • the bending vibration component in the parallel direction is small with respect to the spreading vibration component in the vertical direction, the influence of the bubbles on the flow of the direct jet is small.
  • the piezoelectric element 41 is expanded and driven in the vibration mode, and a plurality of pores 21b are provided in the range from the peripheral portion to the central portion of the diaphragm 21.
  • the peripheral portion of the diaphragm 21 is vibrated by driving the piezoelectric element 41.
  • the bubble generator 1b drives the piezoelectric element 41 in the expanding vibration mode, causes the direction of the gas flowing through the plurality of pores 21b to be different from the vibration direction for vibrating the diaphragm 21, and is extruded from the pores 21b. It is possible to make the bubbles less susceptible to the flow of the direct jet.
  • FIG. 13 is a schematic view of the water purification device 130 in which the bubble generator 1c according to the fourth embodiment is used.
  • the water purification device 130 according to the fourth embodiment has the same configuration as the water purification device 100 according to the first embodiment shown in FIG. 1, and the same reference numerals are given to the configurations, and detailed description thereof will not be repeated.
  • the bubble generator 1c includes a diaphragm 22, a vibrating body 32, a piezoelectric element 42, holding portions 52a and 52b, and a supporting portion 62.
  • the bubble generator 1c is provided with a vibrating body 32 held by the holding portion 52a in a hole formed in a part of the bottom of the water tank 10.
  • the boundary portion between the vibrating body 32 and the holding portion 52a is sealed, and the space below the holding portion 52a and the water in the water tank 10 are completely separated. Since the piezoelectric element 42 is provided in the space below the holding portion 52a, it is possible to prevent the electrical wiring and the like of the piezoelectric element 42 from being immersed in the liquid.
  • a diaphragm 22 is provided on the upper surface of the holding portion 52a with the vibrating body 32 interposed therebetween.
  • the vibrating body 32 is a tubular body that allows air to pass through.
  • the holding portion 52b is provided on the supporting portion 62 and is connected to the holding portion 52a with the piezoelectric element 42 interposed therebetween.
  • the holding portion 52a and the holding portion 52b have an opening in the central portion. Air can be passed through the support portion 62 through a tubular body, and air is sent to the diaphragm 22 by connecting with the vibrating body 32 via the holding portion 52a and the holding portion 52b.
  • the diaphragm 22 and the vibrating body 32 are vibrated by the piezoelectric element 42 provided at the outer peripheral end of the vibrating body 32, so that the air sent through the support portion 62 and the vibrating body 32 is sent to the diaphragm 22. It is generated as fine bubbles from a plurality of pores (openings) formed in.
  • the vibrating plate 22 is subjected to the support portion 62 and the vibrating body 32. Air is supplied to a plurality of formed pores.
  • a plurality of pores are formed not between the central portion of the diaphragm 22 but between the outer peripheral end portion and the central portion, one surface is in contact with the water (liquid) of the water tank 10, and the other surface vibrates. It is in contact with the body 32.
  • FIG. 14 is an exploded perspective view of a vibrating body or the like of the bubble generator 1c according to the fourth embodiment.
  • the vibrating body 32 is a tubular body and has a shape in which brims are provided at both ends.
  • the vibrating body 32 is connected to the piezoelectric element 42 via the holding portion 52a.
  • a plurality of piezoelectric elements are arranged along the opening of the holding portion 52a.
  • the piezoelectric element 42 is connected to the support portion 62 via the holding portion 52b.
  • the vibrating body 32 is made of an aluminum alloy in this embodiment.
  • another metal material such as stainless steel may be used.
  • a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
  • the piezoelectric element 42 has a piezoelectric body and electrodes provided on both sides of the piezoelectric body.
  • the piezoelectric body does not use polarization in the thickness direction, and is polarized parallel to the length direction of the piezoelectric body as shown by the arrow direction shown in FIG.
  • the piezoelectric body is made of a piezoelectric material such as piezoelectric ceramics.
  • each piezoelectric element is vibrated in the length direction so as to vibrate in the plane of the diaphragm 22. ..
  • the diaphragm 22 is vibrated in a plane by being driven by the piezoelectric element 42 to generate fine bubbles.
  • a controller signal (not shown) is supplied to the electrodes of the piezoelectric element 42, and the piezoelectric element 42 is driven based on the signal.
  • FIG. 15 is a diagram showing a vibration state of the diaphragm 22 of the bubble generator 1c according to the fourth embodiment.
  • FIG. 15 shows the displacement direction as a result of simulating the vibration of the diaphragm 22 of the bubble generator 1c.
  • the piezoelectric element 42 is provided at a position corresponding to the outer peripheral end portion of the vibrating body 32.
  • a plurality of pores 22b are formed not in the central portion but in the vicinity of the position where the piezoelectric element 42 is arranged.
  • the torsional vibration caused by the piezoelectric element 42 is generated. It can be placed in a large position.
  • the plurality of pores 22b formed in the diaphragm 22 also have pores 2b as shown in FIG.
  • the diaphragm 22 By applying an AC electric field between the electrodes of the piezoelectric element 42, the diaphragm 22 is twisted and vibrated by driving the piezoelectric element 42. Due to the displacement of the torsional vibration, the displacement in the arrow direction (vibration direction) in the figure is larger in the outer peripheral portion than in the central portion of the diaphragm 22. On the other hand, the direction of the gas flowing through the plurality of pores 22b formed in the diaphragm 22 is the vertical direction in the figure (direction perpendicular to the surface of the diaphragm 22), and the diaphragm 22 vibrates by driving the piezoelectric element 42. It is different from the vibration direction.
  • the vibration direction for vibrating the diaphragm 22 is perpendicular to the direction of the gas flowing through the plurality of pores 22b. Therefore, in the bubble generator 1c, the bubbles generated on the surface of the diaphragm 22 are not easily affected by the flow of the direct jet extruded from the pores 22b, and the bubbles rise at once on the water surface of the water tank 10. It can be prevented from being released into the atmosphere. Further, in the bubble generator 1c, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
  • the bubble generator 1c is not limited to the case where the vibration direction for vibrating the diaphragm 22 is perpendicular to the direction of the gas flowing through the plurality of pores 22b as shown in FIG. If the vibration direction and the direction of the gas flowing through the plurality of pores 22b are different and include at least a vibration component that is in the vertical direction, the bubbles are less likely to be affected by the flow of the direct jet flow pushed out from the pores. I hope I can.
  • a plurality of piezoelectric elements 42 are arranged at positions corresponding to the peripheral portions of the diaphragm 22, and the range from the peripheral portion to the central portion of the diaphragm 22 is provided. Is provided with a plurality of pores 22b.
  • the bubble generator 1c vibrates the diaphragm 22 by driving the plurality of piezoelectric elements 42 so as to twist in the plane of the diaphragm 22 forming the plurality of pores 22b.
  • the bubble generator 1c vibrates the diaphragm 22 by torsional vibration to make the direction of the gas flowing through the plurality of pores 22b different from the vibration direction that vibrates the diaphragm 22 and pushes the diaphragm 22 out of the pores 22b. Bubbles can be made less susceptible to the flow of the direct jet.
  • 1,1a to 1c bubble generator 2,21,22 diaphragm, 2a glass plate, 2b, 21b, 22b pores, 3,30,31,32 vibrating body, 4,41,42 piezoelectric element, 10 water tank, 100, 110, 120, 130 Water purification device.

Abstract

Disclosed is a bubble generation device (1) that generates fine bubbles in a liquid by vibration. The bubble generation device (1) comprises: a vibration plate (2) in which a plurality of pores (openings) are formed, one face of which contacts water (liquid) in a water tank (10), and the other face of which contacts air; and a piezoelectric element (4) that vibrates the vibration plate (2). The vibration direction in which the vibration plate (2) vibrates includes at least a direction that differs from the direction in which the air flows through the plurality of pores (openings).

Description

気泡発生装置Bubble generator
 本開示は、気泡発生装置に関する。 This disclosure relates to a bubble generator.
 近年、微細な気泡を使って水質浄化、排水処理、魚の養殖などが行なわれており、微細な気泡が様々な分野で利用されている。そのため、微細な気泡を発生する気泡発生装置が開発されている(特許文献1)。 In recent years, water purification, wastewater treatment, fish farming, etc. have been carried out using fine bubbles, and fine bubbles are used in various fields. Therefore, a bubble generator for generating fine bubbles has been developed (Patent Document 1).
 特許文献1に記載の気泡発生装置では、圧電素子を利用して微細な気泡を発生させている。この気泡発生装置では、屈曲振動する振動板の中央部での上下振動を利用して、振動板に形成した細孔で発生した気泡を振動で引きちぎり微細化している。そのため、この気泡発生装置は、振動板に形成した細孔を流れる空気の方向と、振動板の振動方向とが平行であった。 In the bubble generator described in Patent Document 1, fine bubbles are generated by using a piezoelectric element. In this bubble generator, the vertical vibration in the central portion of the diaphragm that flexes and vibrates is used to tear off the bubbles generated in the pores formed in the diaphragm and make them finer. Therefore, in this bubble generator, the direction of air flowing through the pores formed in the diaphragm is parallel to the vibration direction of the diaphragm.
特許第6108526号公報Japanese Patent No. 6108526
 細孔に流れる空気は、振動板と液体との界面で気泡となり液体中を上昇することになる。細孔を流れる空気の方向と、振動板の振動方向とが平行である場合、振動板の表面に発生した気泡が、細孔から押し出される直噴流の流れに乗って一気に上昇し、水槽の水面で大気中に放散されることになる。そのため、特許文献1に記載の気泡発生装置では、発生させた気泡を液体中に長く浮遊させることができず、液体中に残留する微細な気泡の量が少なくなる問題があった。 The air flowing through the pores becomes bubbles at the interface between the diaphragm and the liquid and rises in the liquid. When the direction of the air flowing through the pores and the vibration direction of the diaphragm are parallel, the bubbles generated on the surface of the diaphragm rise at once along with the flow of the direct jet pushed out from the pores, and the water surface of the water tank. Will be released into the atmosphere. Therefore, the bubble generator described in Patent Document 1 has a problem that the generated bubbles cannot be suspended in the liquid for a long time and the amount of fine bubbles remaining in the liquid is reduced.
 そこで、本開示の目的は、液体中に残留する微細な気泡の量を増加させることができる気泡発生装置を提供することである。 Therefore, an object of the present disclosure is to provide a bubble generator capable of increasing the amount of fine bubbles remaining in the liquid.
 本開示の一形態に係る気泡発生装置は、振動により微細な気泡を液体中に発生させる気泡発生装置であって、複数の開口部が形成され、一方の面が液体槽の液体と接し、他方の面が気体と接する振動板と、振動板を振動させる圧電素子とを備え、振動板を振動させる振動方向には、複数の開口部を流れる気体の方向と異なる方向を少なくとも含む。 The bubble generator according to one embodiment of the present disclosure is a bubble generator that generates fine bubbles in a liquid by vibration, in which a plurality of openings are formed, one surface is in contact with the liquid in the liquid tank, and the other. A diaphragm whose surface is in contact with a gas and a piezoelectric element that vibrates the diaphragm are provided, and the vibration direction for vibrating the diaphragm includes at least a direction different from the direction of the gas flowing through the plurality of openings.
 本開示によれば、振動板を振動させる振動方向には、複数の開口部を流れる気体の方向と異なる方向を少なくとも含むため、液体中に残留する微細な気泡の量を増加させることができる。 According to the present disclosure, since the vibration direction for vibrating the diaphragm includes at least a direction different from the direction of the gas flowing through the plurality of openings, the amount of fine bubbles remaining in the liquid can be increased.
本実施の形態1に係る気泡発生装置が用いられる水質浄化装置の概略図である。It is the schematic of the water quality purification apparatus which uses the bubble generator which concerns on this Embodiment 1. 本実施の形態1に係る気泡発生装置の振動体の概略図である。It is a schematic diagram of the vibrating body of the bubble generator which concerns on Embodiment 1. 本実施の形態1に係る気泡発生装置の振動体の部分断面図である。FIG. 5 is a partial cross-sectional view of a vibrating body of the bubble generator according to the first embodiment. 本実施の形態1に係る気泡発生装置の振動体の振動状態を示す図である。It is a figure which shows the vibration state of the vibrating body of the bubble generator which concerns on this Embodiment 1. 本実施の形態1に係る振動板の平面図である。It is a top view of the diaphragm which concerns on this Embodiment 1. 本実施の形態1に係る振動板に形成した開口部の断面図である。It is sectional drawing of the opening formed in the diaphragm which concerns on Embodiment 1. 本実施の形態2に係る気泡発生装置が用いられる水質浄化装置の概略図である。It is the schematic of the water quality purification apparatus which uses the bubble generator which concerns on this Embodiment 2. 本実施の形態2に係る気泡発生装置の振動体の斜視図である。It is a perspective view of the vibrating body of the bubble generator which concerns on Embodiment 2. 本実施の形態2に係る気泡発生装置の振動体の振動状態を示す図である。It is a figure which shows the vibration state of the vibrating body of the bubble generator which concerns on Embodiment 2. 本実施の形態3に係る気泡発生装置が用いられる水質浄化装置の概略図である。It is the schematic of the water quality purification apparatus which uses the bubble generator which concerns on this Embodiment 3. 本実施の形態3に係る気泡発生装置の振動体の概略図である。It is the schematic of the vibrating body of the bubble generator which concerns on embodiment 3. 本実施の形態3に係る気泡発生装置の振動体の振動状態を示す図である。It is a figure which shows the vibration state of the vibrating body of the bubble generator which concerns on this Embodiment 3. 本実施の形態4に係る気泡発生装置が用いられる水質浄化装置の概略図である。It is the schematic of the water quality purification apparatus which uses the bubble generator which concerns on this Embodiment 4. 本実施の形態4に係る気泡発生装置の振動体等の分解斜視図である。It is an exploded perspective view of the vibrating body and the like of the bubble generator which concerns on Embodiment 4. 本実施の形態4に係る気泡発生装置の振動板の振動状態を示す図である。It is a figure which shows the vibration state of the diaphragm of the bubble generator which concerns on this Embodiment 4.
 (実施の形態1)
 以下に、本実施の形態1に係る気泡発生装置について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
(Embodiment 1)
Hereinafter, the bubble generator according to the first embodiment will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 まず、図1は、本実施の形態1に係る気泡発生装置1が用いられる水質浄化装置100の概略図である。図1に示す気泡発生装置1は、例えば水槽(液体槽)10の底部に設けられ、水槽10の水に微細な気泡を発生させる水質浄化装置100に用いられる。なお、気泡発生装置1の用途は、水質浄化装置100に限定されず、排水処理装置、魚の養殖用水槽などの様々な用途に適用することができる。 First, FIG. 1 is a schematic view of a water purification device 100 in which the bubble generator 1 according to the first embodiment is used. The bubble generator 1 shown in FIG. 1 is provided, for example, at the bottom of a water tank (liquid tank) 10 and is used in a water purification device 100 that generates fine bubbles in the water of the water tank 10. The use of the bubble generator 1 is not limited to the water purification device 100, and can be applied to various uses such as a wastewater treatment device and a fish farming aquarium.
 気泡発生装置1は、振動板2と、振動体3と、圧電素子4と、保持部5と、支持部6とを備えている。気泡発生装置1は、水槽10の底部の一部に開けた孔に保持部5に保持された振動体3を設けている。振動体3と保持部5との境界部分は封止してあり、保持部5の内部空間と水槽10の水とを完全分離してある。保持部5の内部空間には、振動体3の側面に圧電素子4が設けられているので、圧電素子4の電気配線等が液体に浸かることを防止できる。 The bubble generator 1 includes a diaphragm 2, a vibrating body 3, a piezoelectric element 4, a holding portion 5, and a supporting portion 6. The bubble generator 1 is provided with a vibrating body 3 held by the holding portion 5 in a hole formed in a part of the bottom of the water tank 10. The boundary portion between the vibrating body 3 and the holding portion 5 is sealed, and the internal space of the holding portion 5 and the water in the water tank 10 are completely separated. Since the piezoelectric element 4 is provided on the side surface of the vibrating body 3 in the internal space of the holding portion 5, it is possible to prevent the electrical wiring and the like of the piezoelectric element 4 from being immersed in the liquid.
 振動体3には、空気を通すための導入孔3dが設けられてあり、導入孔3dの一端が保持部5の内部空間側に設けられている。保持部5は、支持部6上に設けられている。支持部6には、導入孔6aが設けてあり、導入孔6aから保持部5の内部空間に空気が送り込まれる。導入孔6aから保持部5の内部空間に送り込まれた空気は、振動体3の導入孔3dを通って第1の端部3aおよび第2の端部3bに設けた振動板2に至る。 The vibrating body 3 is provided with an introduction hole 3d for passing air, and one end of the introduction hole 3d is provided on the internal space side of the holding portion 5. The holding portion 5 is provided on the supporting portion 6. The support portion 6 is provided with an introduction hole 6a, and air is sent from the introduction hole 6a into the internal space of the holding portion 5. The air sent from the introduction hole 6a into the internal space of the holding portion 5 passes through the introduction hole 3d of the vibrating body 3 and reaches the diaphragm 2 provided at the first end portion 3a and the second end portion 3b.
 気泡発生装置1では、振動体3の側面に設けた圧電素子4で振動板2および振動体3を振動させることで、導入孔3dを通って送り込まれた空気を振動板2に形成した複数の細孔(開口部)から微細な気泡として発生させている。気泡発生装置1では、図1に示す方向に背圧(例えば、0.08atm~0.12atm(8~12kPa)程度)を加えることで、導入孔3dを介して振動板2に形成した複数の細孔に空気を供給している。 In the bubble generator 1, a plurality of air sent through the introduction hole 3d are formed in the diaphragm 2 by vibrating the diaphragm 2 and the diaphragm 3 with the piezoelectric element 4 provided on the side surface of the diaphragm 3. It is generated as fine bubbles from the pores (openings). In the bubble generator 1, a plurality of diaphragms 2 formed on the diaphragm 2 through the introduction holes 3d by applying back pressure (for example, about 0.08 atm to 0.12 atm (8 to 12 kPa)) in the direction shown in FIG. It supplies air to the pores.
 振動板2は、ガラス板で形成されている。振動板2をガラス板で形成する場合、例えば、波長が200nm~380nmの紫外光および深紫外光を透過させるガラス板で形成してもよい。紫外光および深紫外光を透過させるガラス板で形成することで、振動板2の他方の面側から水槽10の水に対して紫外光を発する光源を設け、オゾン生成による殺菌と紫外光照射による殺菌とを兼用させることができる。なお、ガラス板には、石英ガラスや、組成がコントロールされ深紫外線の透過度を向上させた疑似石英合成ガラスなどが用いられる。なお、振動板2は、金属板で形成してもよく、ガラス以外に他の材質(例えば、金属、樹脂など)で形成してもよい。 The diaphragm 2 is made of a glass plate. When the diaphragm 2 is formed of a glass plate, for example, it may be formed of a glass plate that transmits ultraviolet light having a wavelength of 200 nm to 380 nm and deep ultraviolet light. By forming a glass plate that transmits ultraviolet light and deep ultraviolet light, a light source that emits ultraviolet light to the water in the water tank 10 from the other surface side of the vibrating plate 2 is provided, and sterilization by ozone generation and ultraviolet light irradiation are performed. It can also be used for sterilization. As the glass plate, quartz glass or pseudo-quartz synthetic glass whose composition is controlled and the transmittance of deep ultraviolet rays is improved is used. The diaphragm 2 may be formed of a metal plate, or may be formed of a material other than glass (for example, metal, resin, etc.).
 振動板2は、複数の細孔が形成され、一方の面が水槽10の水(液体)と接し、他方の面が振動体3の第1の端部3aまたは第2の端部3bと接している。気泡発生装置1では、振動体3に設けた導入孔3dを通った空気を第1の端部3aおよび第2の端部3bから振動板2の細孔を通って水槽10の水に送り込むことで微細な気泡を発生させている。 The diaphragm 2 is formed with a plurality of pores, one surface of which is in contact with the water (liquid) of the water tank 10, and the other surface of which is in contact with the first end 3a or the second end 3b of the vibrating body 3. ing. In the bubble generator 1, air that has passed through the introduction hole 3d provided in the vibrating body 3 is sent from the first end portion 3a and the second end portion 3b to the water in the water tank 10 through the pores of the diaphragm 2. Generates fine bubbles.
 気泡発生装置1では、圧電素子4で振動板2および振動体3を振動させている。図2は、本実施の形態1に係る気泡発生装置1の振動体3の概略図である。図2(a)は、振動体3の斜視図、図2(b)は、振動体3の側面図、図2(c)は、振動体3の平面図である。図3は、本実施の形態1に係る気泡発生装置1の振動体3の部分断面図である。 In the bubble generator 1, the piezoelectric element 4 vibrates the diaphragm 2 and the vibrating body 3. FIG. 2 is a schematic view of the vibrating body 3 of the bubble generator 1 according to the first embodiment. 2 (a) is a perspective view of the vibrating body 3, FIG. 2 (b) is a side view of the vibrating body 3, and FIG. 2 (c) is a plan view of the vibrating body 3. FIG. 3 is a partial cross-sectional view of the vibrating body 3 of the bubble generator 1 according to the first embodiment.
 振動体3は、第1の端部3aと、第1の端部3aとは反対側の第2の端部3bとを有する。振動体3は、円板形状の第1の端部3aと第2の端部3bと柱形状の部分3cで連結した形状である。第2の端部3bは、柱形状の部分3cの長辺方向において、第1の端部3aと反対側に位置している。 The vibrating body 3 has a first end portion 3a and a second end portion 3b opposite to the first end portion 3a. The vibrating body 3 has a disk-shaped first end portion 3a, a second end portion 3b, and a pillar-shaped portion 3c connected to each other. The second end portion 3b is located on the side opposite to the first end portion 3a in the long side direction of the pillar-shaped portion 3c.
 第1の端部3aおよび第2の端部3bが、振動板2にそれぞれ連結されている。すなわち、振動板2の細孔が、第1の端部3a側の導入孔3dおよび第2の端部3b側の導入孔3dと連結されている。第2の端部3bが、導入孔3dは、振動体3の柱形状の部分3cにも設けられている。 The first end portion 3a and the second end portion 3b are connected to the diaphragm 2, respectively. That is, the pores of the diaphragm 2 are connected to the introduction hole 3d on the first end 3a side and the introduction hole 3d on the second end 3b side. The second end portion 3b and the introduction hole 3d are also provided in the pillar-shaped portion 3c of the vibrating body 3.
 振動体3は本実施の形態では、アルミ合金からなる。もっとも、アルミ合金に代えて、ステンレスなど他の金属材料が用いられてもよい。好ましくは、アルミ合金やステンレスなどの剛性の高い金属が望ましい。 The vibrating body 3 is made of an aluminum alloy in this embodiment. However, instead of the aluminum alloy, another metal material such as stainless steel may be used. Preferably, a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
 振動体3は、円柱の第1の端部3aおよび第2の端部3bを残し、中央部分を柱形状に削った形状である。そのため、振動体3は、第1の端部3a、第2の端部3bおよび柱形状の部分3cが同じ材料により一体に構成されている。なお、振動体3は、柱形状の部分3cに、別部材としての第1の端部3aおよび第2の端部3bが接合され、柱形状の部分3cと、第1の端部3aおよび第2の端部3bとが別部材で構成されていてもよい。 The vibrating body 3 has a shape in which the central portion is cut into a pillar shape, leaving the first end portion 3a and the second end portion 3b of the cylinder. Therefore, in the vibrating body 3, the first end portion 3a, the second end portion 3b, and the pillar-shaped portion 3c are integrally formed of the same material. In the vibrating body 3, the pillar-shaped portion 3c is joined to the first end portion 3a and the second end portion 3b as separate members, and the pillar-shaped portion 3c, the first end portion 3a, and the first end portion 3a are joined. The end portion 3b of 2 may be made of a separate member.
 振動体3の柱形状の部分3cには、圧電素子4が固定されている。圧電素子4は、圧電体と、圧電体の両面に設けられた電極とを有する。圧電体は、厚み方向に、すなわち振動体3の第1の端部3aおよび第2の端部3bの平面と平行方向に分極されている。圧電体は、圧電セラミックスなどの圧電体からなる。 The piezoelectric element 4 is fixed to the pillar-shaped portion 3c of the vibrating body 3. The piezoelectric element 4 has a piezoelectric body and electrodes provided on both sides of the piezoelectric body. The piezoelectric body is polarized in the thickness direction, that is, in the direction parallel to the planes of the first end 3a and the second end 3b of the vibrating body 3. The piezoelectric body is made of a piezoelectric material such as piezoelectric ceramics.
 圧電素子4が振動体3の柱形状の部分3cに接合されている構造で圧電素子4を屈曲振動モードで駆動することにより、振動板2および振動体3を屈曲振動する振動体を構成している。なお、圧電素子4は、例えば、幅が8mm、長さが16mm、厚みが1mmである。また、圧電素子4は、例えば、電圧が50Vpp~70Vpp、デューティ比50%の矩形波形の動作条件で駆動される。 By driving the piezoelectric element 4 in the bending vibration mode in a structure in which the piezoelectric element 4 is joined to the column-shaped portion 3c of the vibrating body 3, a vibrating body that flexes and vibrates the diaphragm 2 and the vibrating body 3 is configured. There is. The piezoelectric element 4 has, for example, a width of 8 mm, a length of 16 mm, and a thickness of 1 mm. Further, the piezoelectric element 4 is driven, for example, under operating conditions of a rectangular waveform having a voltage of 50 Vpp to 70 Vpp and a duty ratio of 50%.
 気泡発生装置1では、この圧電素子4における屈曲振動モードでの駆動が、振動板2および振動体3を振動させて微細な気泡を発生させている。圧電素子4の電極には、図示していないコントローラの信号が供給され、当該信号に基づいて圧電素子4が駆動される。 In the bubble generator 1, the driving of the piezoelectric element 4 in the bending vibration mode vibrates the diaphragm 2 and the vibrating body 3 to generate fine bubbles. A controller signal (not shown) is supplied to the electrodes of the piezoelectric element 4, and the piezoelectric element 4 is driven based on the signal.
 なお、圧電素子4は、柱形状の部分3cの一面に一つ設けると説明したが、これに限定されない。圧電素子4は、例えば、柱形状の部分3cの一面に複数設けた構成でもよい。 It has been explained that one piezoelectric element 4 is provided on one surface of the pillar-shaped portion 3c, but the present invention is not limited to this. For example, a plurality of piezoelectric elements 4 may be provided on one surface of the pillar-shaped portion 3c.
 次に、気泡発生装置1での振動板2および振動体3の振動について詳しく説明する。図4は、本実施の形態1に係る気泡発生装置の振動体の振動状態を示す図である。図4には、気泡発生装置1の振動体3の振動についてシミュレーションした結果の変位が示されている。 Next, the vibration of the diaphragm 2 and the vibrating body 3 in the bubble generator 1 will be described in detail. FIG. 4 is a diagram showing a vibration state of the vibrating body of the bubble generator according to the first embodiment. FIG. 4 shows the displacement as a result of simulating the vibration of the vibrating body 3 of the bubble generator 1.
 図4に示す振動体3では、柱形状の部分3cに圧電素子4が設けられている。この圧電素子4の電極間に交流電界を印加することで、圧電素子4を屈曲振動モードで駆動して振動体3を屈曲振動させる。この屈曲振動の変位により、振動体3の第1の端部3aおよび第2の端部3bに設けた振動板2が図中左右方向(振動方向)に変位する。一方、振動板2に形成した複数の細孔を流れる気体の方向は図中上下方向であり、圧電素子4の駆動で振動する振動板2の振動方向と異なっている。 In the vibrating body 3 shown in FIG. 4, the piezoelectric element 4 is provided in the pillar-shaped portion 3c. By applying an AC electric field between the electrodes of the piezoelectric element 4, the piezoelectric element 4 is driven in the bending vibration mode to cause the vibrating body 3 to bend and vibrate. Due to the displacement of the bending vibration, the diaphragms 2 provided at the first end 3a and the second end 3b of the vibrating body 3 are displaced in the left-right direction (vibration direction) in the drawing. On the other hand, the direction of the gas flowing through the plurality of pores formed in the diaphragm 2 is the vertical direction in the drawing, which is different from the vibration direction of the diaphragm 2 which vibrates by driving the piezoelectric element 4.
 気泡発生装置1では、図4に示すように振動板2を振動させる振動方向が、複数の細孔を流れる気体の方向に対して垂直方向となる振動成分を含んでいる。そのため、気泡発生装置1では、振動板2の表面に発生した気泡が、細孔から押し出される直噴流の流れに対して影響を受け難く、気泡が一気に上昇して水槽10の水面で大気中に放散されることを防止できる。また、気泡発生装置1では、発生させた気泡を水槽10の水中に長く浮遊させることができ、水中に残留する微細な気泡の量を多くすることができる。 In the bubble generator 1, as shown in FIG. 4, the vibration direction for vibrating the diaphragm 2 includes a vibration component that is perpendicular to the direction of the gas flowing through the plurality of pores. Therefore, in the bubble generator 1, the bubbles generated on the surface of the diaphragm 2 are not easily affected by the flow of the direct jet extruded from the pores, and the bubbles rise at once and enter the atmosphere on the water surface of the water tank 10. It can be prevented from being dissipated. Further, in the bubble generator 1, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
 特に、振動板2を振動させる振動方向が、複数の細孔を流れる気体の方向に対して垂直方向であれば、細孔から押し出される直噴流の流れに対して気泡が影響をより受け難くすることができる。なお、気泡発生装置1は、図4に示すように振動板2を振動させる振動方向が、複数の細孔を流れる気体の方向に対して垂直方向である場合に限られず、振動板2の振動方向と、複数の細孔を流れる気体の方向とを異ならせて垂直方向となる振動成分を少なくとも含むのであれば、細孔から押し出される直噴流の流れに対して気泡が影響を受け難くできればよい。 In particular, if the vibration direction for vibrating the diaphragm 2 is perpendicular to the direction of the gas flowing through the plurality of pores, the bubbles are less affected by the flow of the direct jet extruded from the pores. be able to. As shown in FIG. 4, the bubble generator 1 is not limited to the case where the vibration direction for vibrating the diaphragm 2 is the direction perpendicular to the direction of the gas flowing through the plurality of pores, and the vibration of the diaphragm 2 As long as it contains at least a vibration component that is perpendicular to the direction of the gas flowing through the plurality of pores, it is sufficient that the bubbles are not easily affected by the flow of the direct jet flow pushed out from the pores. ..
 振動板2には、複数の細孔が形成されている。図5は、本実施の形態に係る振動板の平面図である。図5に示す振動板2は、直径14mmのガラス板2aの中央部に設けた5mm×5mmの領域に複数の細孔2bが形成されている。振動板2は、例えば、細孔2bの孔径を10μm、細孔2bの間隔を0.25mmにした場合、5mm×5mmの領域に441個の細孔2bを形成することができる。なお、図5では、ガラス板2aに複数の細孔2bが形成されていることをイメージし易くするため、細孔2bの孔径および細孔2bの間隔が実際のスケールとは異なっている。 A plurality of pores are formed in the diaphragm 2. FIG. 5 is a plan view of the diaphragm according to the present embodiment. In the diaphragm 2 shown in FIG. 5, a plurality of pores 2b are formed in a region of 5 mm × 5 mm provided in the central portion of a glass plate 2a having a diameter of 14 mm. For example, when the pore diameter of the pores 2b is 10 μm and the distance between the pores 2b is 0.25 mm, the diaphragm 2 can form 441 pores 2b in a region of 5 mm × 5 mm. In addition, in FIG. 5, in order to make it easy to imagine that a plurality of pores 2b are formed in the glass plate 2a, the pore diameter of the pores 2b and the spacing between the pores 2b are different from the actual scale.
 振動板2に設けられる細孔2bは、液体と接する側の面での孔径が1μm~20μmである。当該細孔2bから導入された空気により、水槽10の水に約10倍の径の微細な気泡が発生する。細孔2bは、孔径の10倍以上の間隔で複数形成されているので、1つの細孔2bから発生した微細な気泡が隣の細孔2bから発生した微細な気泡とつながることを防止して独立した微細な気泡を発生させる性能を向上させている。 The pores 2b provided in the diaphragm 2 have a pore diameter of 1 μm to 20 μm on the surface in contact with the liquid. The air introduced from the pores 2b generates fine bubbles having a diameter about 10 times that of the water in the water tank 10. Since a plurality of pores 2b are formed at intervals of 10 times or more the pore diameter, it is possible to prevent fine bubbles generated from one pore 2b from connecting with fine bubbles generated from adjacent pores 2b. The performance to generate independent fine bubbles is improved.
 ガラス板2aに複数の細孔2bを形成するための方法として、例えば、レーザと液相エッティングとを組み合わせた方法がある。具体的に、この方法では、ガラス板2aにレーザを照射することにより、レーザエネルギーでガラス板2aに組成変性を起こさせ、その部分を液体フッ化物系のエッティング材などで侵食させて複数の細孔2bを形成している。 As a method for forming a plurality of pores 2b in the glass plate 2a, for example, there is a method in which a laser and liquid phase etting are combined. Specifically, in this method, by irradiating the glass plate 2a with a laser, the glass plate 2a is subjected to composition modification by laser energy, and the portion is eroded by a liquid fluoride-based etiquette or the like to cause a plurality of pieces. It forms pores 2b.
 図6は、本実施の形態に係る振動板に形成した細孔(開口部)2bの断面図である。図6に示すように、ガラス板2aに形成される細孔2bの形状は、図中下側の面の孔径に比べ、上側の面の孔径が大きいテーパ形状である。孔径の小さい面を水槽10の水と接する面に、孔径の大きい面を気体と接する面にして振動板2を配置することで、細孔2bで発生する微細な気泡の径をより小さくすることができる。もちろん、孔径の大きい面を水槽10の水と接する面に、孔径の小さい面を気体と接する面にして振動板2を配置してもよい。 FIG. 6 is a cross-sectional view of the pores (openings) 2b formed in the diaphragm according to the present embodiment. As shown in FIG. 6, the shape of the pores 2b formed in the glass plate 2a is a tapered shape in which the pore diameter of the upper surface is larger than the pore diameter of the lower surface in the drawing. By arranging the diaphragm 2 with the surface having a small pore diameter in contact with water in the water tank 10 and the surface having a large pore diameter in contact with gas, the diameter of fine bubbles generated in the pores 2b can be made smaller. Can be done. Of course, the diaphragm 2 may be arranged with the surface having a large pore diameter in contact with water in the water tank 10 and the surface having a small pore diameter in contact with gas.
 振動板2にガラス板2aを使用した場合、金属板を利用する場合と比較して、液体への金属イオンの溶出による液体汚染を防ぐことができるメリットがある。また、金属板に細孔を形成した場合、金属の腐食防止のためにメッキを行う必要がある。液体への金属イオンの溶出を防止するには、貴金属を用いる必要がある。そのため、細孔を形成した金属板を貴金属でメッキを行うと、振動板のコストが高価になる。 When the glass plate 2a is used for the diaphragm 2, there is an advantage that liquid contamination due to elution of metal ions into the liquid can be prevented as compared with the case where the metal plate is used. Further, when pores are formed in the metal plate, it is necessary to perform plating to prevent corrosion of the metal. Precious metals must be used to prevent the elution of metal ions into the liquid. Therefore, if the metal plate having pores formed is plated with a noble metal, the cost of the diaphragm becomes high.
 以上のように、本実施の形態1に係る気泡発生装置1は、振動により微細な気泡を液体中に発生させる気泡発生装置である。気泡発生装置1は、複数の細孔2b(開口部)が形成され、一方の面が水槽10の水(液体)と接し、他方の面が気体と接する振動板2と、振動板2を振動させる圧電素子4とを備えている。振動板2を振動させる振動方向には、複数の細孔2bを流れる気体の方向と異なる方向を少なくとも含む。 As described above, the bubble generator 1 according to the first embodiment is a bubble generator 1 that generates fine bubbles in a liquid by vibration. In the bubble generator 1, a plurality of pores 2b (openings) are formed, one surface is in contact with the water (liquid) of the water tank 10, and the other surface is in contact with the gas, vibrating the diaphragm 2 and the diaphragm 2. It is provided with a piezoelectric element 4 for causing vibration. The vibration direction for vibrating the diaphragm 2 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b.
 これにより、気泡発生装置1は、振動板を振動させる振動方向には、複数の細孔2bを流れる気体の方向と異なる方向を少なくとも含むため、細孔2bから押し出される直噴流の流れに対して気泡が影響を受け難く、液体中に残留する微細な気泡の量を増加させることができる。 As a result, the bubble generator 1 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b in the vibration direction for vibrating the diaphragm, so that the flow of the direct jet extruded from the pores 2b The bubbles are not easily affected, and the amount of fine bubbles remaining in the liquid can be increased.
 圧電素子4を屈曲振動モードで駆動し、圧電素子4の駆動で振動する振動板2の振動方向には、複数の細孔2bを流れる気体の方向と異なる方向を少なくとも含む。これにより、気泡発生装置1は、屈曲振動モードで圧電素子4を駆動し、液体中に残留する微細な気泡の量を増加させることができる。 The vibration direction of the diaphragm 2 that drives the piezoelectric element 4 in the bending vibration mode and vibrates by driving the piezoelectric element 4 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b. As a result, the bubble generator 1 can drive the piezoelectric element 4 in the bending vibration mode to increase the amount of fine bubbles remaining in the liquid.
 振動板2を振動させる振動方向には、複数の細孔2bを流れる気体の方向に対して垂直方向の振動成分を少なくとも含むものであればよい。これにより、細孔から押し出される直噴流の流れに対して気泡が影響をより受け難くすることができ、液体中に残留する微細な気泡の量をより増加させることができる。 The vibration direction for vibrating the diaphragm 2 may include at least a vibration component in the direction perpendicular to the direction of the gas flowing through the plurality of pores 2b. As a result, the bubbles can be made less affected by the flow of the direct jet extruded from the pores, and the amount of fine bubbles remaining in the liquid can be further increased.
 また、振動板2は、ガラス板で形成されてもよい。これにより、気泡発生装置1は、水槽10の水(液体)への金属イオンの溶出による液体汚染を防ぐことができる。 Further, the diaphragm 2 may be formed of a glass plate. As a result, the bubble generator 1 can prevent liquid contamination due to elution of metal ions into the water (liquid) of the water tank 10.
 また、振動板2は、液体と接する側の面での孔径が1μm~20μmの細孔2bを、孔径の10倍以上の間隔で複数形成してもよい。これにより、気泡発生装置1は、1つの細孔2bから発生した微細な気泡200が隣の細孔2bから発生した微細な気泡200とつながることを防止でき、独立した微細な気泡200を発生させることができる。 Further, the diaphragm 2 may form a plurality of pores 2b having a pore diameter of 1 μm to 20 μm on the surface in contact with the liquid at intervals of 10 times or more the pore diameter. As a result, the bubble generator 1 can prevent the fine bubbles 200 generated from one pore 2b from being connected to the fine bubbles 200 generated from the adjacent pores 2b, and generate independent fine bubbles 200. be able to.
 さらに、細孔2bの形状は、水槽10の水(液体)と接する一方の面の孔径に比べ、気体と接する他方の面の孔径が大きいテーパ形状であってもよい。これにより、気泡発生装置1は、細孔2bで発生する微細な気泡200の径をより小さくすることができる。 Further, the shape of the pores 2b may be a tapered shape in which the pore diameter of the other surface in contact with the gas is larger than the pore diameter of one surface in contact with the water (liquid) of the water tank 10. As a result, the bubble generator 1 can make the diameter of the fine bubbles 200 generated in the pores 2b smaller.
 (実施の形態2)
 実施の形態1では、振動板2を振動させる振動方向に、複数の細孔2bを流れる気体の方向と異なる方向が少なくとも含まれるように、水槽10の水中に設けた保持部5で振動体3を保持する構成について説明した。本実施の形態2では、保持部を設けることなく、振動板を振動させる振動方向に、複数の細孔を流れる気体の方向と異なる方向を少なくとも含ませる構成について説明する。
(Embodiment 2)
In the first embodiment, the vibrating body 3 is provided by the holding portion 5 provided in the water of the water tank 10 so that the vibrating direction for vibrating the diaphragm 2 includes at least a direction different from the direction of the gas flowing through the plurality of pores 2b. The configuration for holding the above was described. In the second embodiment, a configuration will be described in which the vibration direction for vibrating the diaphragm includes at least a direction different from the direction of the gas flowing through the plurality of pores without providing the holding portion.
 図7は、本実施の形態2に係る気泡発生装置1aが用いられる水質浄化装置110の概略図である。なお、本実施の形態2に係る水質浄化装置110は、図1に示す実施の形態1に係る水質浄化装置100の構成と同じで構成について同じ符号を付して詳細な説明を繰返さない。 FIG. 7 is a schematic view of the water purification device 110 in which the bubble generator 1a according to the second embodiment is used. The water purification device 110 according to the second embodiment has the same configuration as the water purification device 100 according to the first embodiment shown in FIG. 1, and the same reference numerals are given to the configurations, and detailed description thereof will not be repeated.
 図7に示す気泡発生装置1aは、例えば水槽(液体槽)10の底部に設けられ、水槽10の水に微細な気泡を発生させる水質浄化装置110に用いられる。なお、気泡発生装置1aの用途は、水質浄化装置110に限定されず、排水処理装置、魚の養殖用水槽などの様々な用途に適用することができる。 The bubble generator 1a shown in FIG. 7 is provided, for example, at the bottom of the water tank (liquid tank) 10 and is used in the water purification device 110 that generates fine bubbles in the water of the water tank 10. The use of the bubble generator 1a is not limited to the water purification device 110, and can be applied to various uses such as a wastewater treatment device and a fish farming aquarium.
 気泡発生装置1aは、振動板2と、振動体30と、圧電素子4とを備えている。振動体30は、H字(音叉)の形状をしており、水槽10の底部の一部に開けた孔に保持され、振動体30の一部が水槽10の水側(液体側)に配置されている。振動体30と水槽10の底部との境界部分は封止してあり、水槽10の外側(気体側)にある振動体30の部分と水槽10の水とを完全分離してある。水槽10の外側にある振動体30の部分には、圧電素子4が設けられているので、圧電素子4の電気配線等が液体に浸かることを防止できる。 The bubble generator 1a includes a diaphragm 2, a vibrating body 30, and a piezoelectric element 4. The vibrating body 30 has an H-shaped (tuning fork) shape, is held in a hole made in a part of the bottom of the water tank 10, and a part of the vibrating body 30 is arranged on the water side (liquid side) of the water tank 10. Has been done. The boundary portion between the vibrating body 30 and the bottom of the water tank 10 is sealed, and the portion of the vibrating body 30 on the outside (gas side) of the water tank 10 and the water in the water tank 10 are completely separated. Since the piezoelectric element 4 is provided in the portion of the vibrating body 30 outside the water tank 10, it is possible to prevent the electrical wiring and the like of the piezoelectric element 4 from being immersed in the liquid.
 振動体30には、空気を通すための導入孔30dが設けられてあり、導入孔30dの一端が水槽10の水側に、導入孔30dの他端が水槽10の外側にそれぞれ設けられている。導入孔30dの他端から送り込まれた空気は、導入孔30dを通って振動体30の一端(水槽10の水側)に設けた振動板2に至る。 The vibrating body 30 is provided with an introduction hole 30d for passing air, one end of the introduction hole 30d is provided on the water side of the water tank 10, and the other end of the introduction hole 30d is provided on the outside of the water tank 10. .. The air sent from the other end of the introduction hole 30d passes through the introduction hole 30d and reaches the diaphragm 2 provided at one end of the vibrating body 30 (the water side of the water tank 10).
 気泡発生装置1aでは、水槽10の外側にある振動体30の側面に設けた圧電素子4で振動板2および振動体30を振動させることで、導入孔30dを通って送り込まれた空気を振動板2に形成した複数の細孔(開口部)から微細な気泡として発生させている。気泡発生装置1aでは、図7に示す方向に背圧(例えば、0.08atm~0.12atm(8~12kPa)程度)を加えることで、導入孔30dを介して振動板2に形成した複数の細孔に空気を供給している。 In the bubble generator 1a, the diaphragm 2 and the diaphragm 30 are vibrated by the piezoelectric element 4 provided on the side surface of the diaphragm 30 outside the water tank 10, so that the air sent through the introduction hole 30d is sent to the diaphragm. It is generated as fine bubbles from a plurality of pores (openings) formed in 2. In the bubble generator 1a, a plurality of diaphragms 2 formed on the diaphragm 2 through the introduction holes 30d by applying back pressure (for example, about 0.08 atm to 0.12 atm (8 to 12 kPa)) in the direction shown in FIG. Air is supplied to the pores.
 気泡発生装置1aでは、圧電素子4で振動板2および振動体30を振動させている。図8は、本実施の形態2に係る気泡発生装置1aの振動体30の斜視図である。 In the bubble generator 1a, the piezoelectric element 4 vibrates the diaphragm 2 and the vibrating body 30. FIG. 8 is a perspective view of the vibrating body 30 of the bubble generator 1a according to the second embodiment.
 振動体30は、柱形状の部分30aと、柱形状の部分30aとは平行に配置されている柱形状の部分30bとを有する。振動体30は、柱形状の部分30aと柱形状の部分30bとの中央部を連結部分30cで連結したH字の形状である。柱形状の部分30aおよび柱形状の部分30bの一端(水槽10の水側)には、振動板2がそれぞれ設けられている。なお、柱形状の部分30aおよび柱形状の部分30bの一端の形状が矩形であるため、振動板2の外形も矩形であるが、図5で示したようにガラス板2aに複数の細孔2bが形成されている。 The vibrating body 30 has a pillar-shaped portion 30a and a pillar-shaped portion 30b arranged in parallel with the pillar-shaped portion 30a. The vibrating body 30 has an H-shape in which the central portion of the pillar-shaped portion 30a and the pillar-shaped portion 30b is connected by the connecting portion 30c. A diaphragm 2 is provided at one end (water side of the water tank 10) of the pillar-shaped portion 30a and the pillar-shaped portion 30b, respectively. Since the shape of one end of the pillar-shaped portion 30a and the pillar-shaped portion 30b is rectangular, the outer shape of the diaphragm 2 is also rectangular, but as shown in FIG. 5, a plurality of pores 2b are formed in the glass plate 2a. Is formed.
 振動体30は本実施の形態では、アルミ合金からなる。もっとも、アルミ合金に代えて、ステンレスなど他の金属材料が用いられてもよい。好ましくは、アルミ合金やステンレスなどの剛性の高い金属が望ましい。 In the present embodiment, the vibrating body 30 is made of an aluminum alloy. However, instead of the aluminum alloy, another metal material such as stainless steel may be used. Preferably, a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
 振動体30は、柱形状の部分30aと柱形状の部分30bとの中央部を連結部分30cで連結したH字(音叉)の形状である。そのため、振動体30は、柱形状の部分30a、柱形状の部分30bおよび連結部分30cが同じ材料により一体に構成されている。なお、振動体30は、連結部分30cに、別部材としての柱形状の部分30aおよび柱形状の部分30bが接合され、連結部分30cと、柱形状の部分30aおよび柱形状の部分30bとが別部材で構成されていてもよい。 The vibrating body 30 has an H-shaped (tuning fork) shape in which the central portion of the pillar-shaped portion 30a and the pillar-shaped portion 30b is connected by the connecting portion 30c. Therefore, in the vibrating body 30, the pillar-shaped portion 30a, the pillar-shaped portion 30b, and the connecting portion 30c are integrally made of the same material. In the vibrating body 30, the pillar-shaped portion 30a and the pillar-shaped portion 30b as separate members are joined to the connecting portion 30c, and the connecting portion 30c and the pillar-shaped portion 30a and the pillar-shaped portion 30b are separated. It may be composed of members.
 次に、気泡発生装置1aでの振動板2および振動体30の振動について詳しく説明する。図9は、本実施の形態2に係る気泡発生装置1aの振動体30の振動状態を示す図である。図9には、気泡発生装置1aの振動体30の振動についてシミュレーションした結果の変位が示されている。 Next, the vibration of the diaphragm 2 and the vibrating body 30 in the bubble generator 1a will be described in detail. FIG. 9 is a diagram showing a vibration state of the vibrating body 30 of the bubble generator 1a according to the second embodiment. FIG. 9 shows the displacement as a result of simulating the vibration of the vibrating body 30 of the bubble generator 1a.
 図9に示す振動体30では、柱形状の部分30aおよび柱形状の部分30bに圧電素子4が設けられている。この圧電素子4の電極間に交流電界を印加することで、圧電素子4を屈曲振動モードで駆動して振動体30を屈曲振動させる。この屈曲振動の変位により、振動体30の第1の端部3aおよび第2の端部3bに設けた振動板2が図中矢印方向(振動方向)に変位する。一方、振動板2に形成した複数の細孔2bを流れる気体の方向は図中上下方向であり、圧電素子4の駆動で振動する振動板2の振動方向と異なっている。 In the vibrating body 30 shown in FIG. 9, the piezoelectric element 4 is provided in the pillar-shaped portion 30a and the pillar-shaped portion 30b. By applying an AC electric field between the electrodes of the piezoelectric element 4, the piezoelectric element 4 is driven in the bending vibration mode to cause the vibrating body 30 to bend and vibrate. Due to the displacement of the bending vibration, the diaphragms 2 provided at the first end 3a and the second end 3b of the vibrating body 30 are displaced in the arrow direction (vibration direction) in the drawing. On the other hand, the direction of the gas flowing through the plurality of pores 2b formed in the diaphragm 2 is the vertical direction in the drawing, which is different from the vibration direction of the diaphragm 2 that vibrates by driving the piezoelectric element 4.
 気泡発生装置1aでは、図9に示すように振動板2を振動させる振動方向が、複数の細孔2bを流れる気体の方向に対して垂直方向となっている。そのため、気泡発生装置1aでは、振動板2の表面に発生した気泡が、細孔2bから押し出される直噴流の流れに対して気泡が影響を受け難く、気泡が一気に上昇して水槽10の水面で大気中に放散されることを防止できる。また、気泡発生装置1aでは、発生させた気泡を水槽10の水中に長く浮遊させることができ、水中に残留する微細な気泡の量を多くすることができる。 In the bubble generator 1a, as shown in FIG. 9, the vibration direction for vibrating the diaphragm 2 is perpendicular to the direction of the gas flowing through the plurality of pores 2b. Therefore, in the bubble generator 1a, the bubbles generated on the surface of the diaphragm 2 are not easily affected by the flow of the direct jet extruded from the pores 2b, and the bubbles rise at once on the water surface of the water tank 10. It can be prevented from being released into the atmosphere. Further, in the bubble generator 1a, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
 特に、振動板2を振動させる振動方向が、複数の細孔2bを流れる気体の方向に対して垂直方向であれば、細孔2bから押し出される直噴流の流れに対して気泡が影響をより受け難くすることができる。なお、気泡発生装置1aは、図9に示すように振動板2を振動させる振動方向が、複数の細孔2bを流れる気体の方向に対して垂直方向である場合に限られず、振動板2の振動方向と、複数の細孔2bを流れる気体の方向とを異ならせて垂直方向となる振動成分を少なくとも含むのであれば、細孔2bから押し出される直噴流の流れに気泡が対して影響を受け難くできればよい。 In particular, if the vibration direction for vibrating the diaphragm 2 is perpendicular to the direction of the gas flowing through the plurality of pores 2b, the bubbles are more affected by the flow of the direct jet extruded from the pores 2b. It can be difficult. The bubble generator 1a is not limited to the case where the vibration direction for vibrating the diaphragm 2 is perpendicular to the direction of the gas flowing through the plurality of pores 2b as shown in FIG. If the vibration direction and the direction of the gas flowing through the plurality of pores 2b are different and include at least a vibration component that is in the vertical direction, the bubbles are affected by the flow of the direct jet flow pushed out from the pores 2b. I hope it can be difficult.
 以上のように、本実施の形態2に係る気泡発生装置1aは、圧電素子4を屈曲振動モードで駆動し、圧電素子4の駆動で振動する振動板2の振動方向には、複数の細孔2bを流れる気体の方向と異なる方向を少なくとも含む。これにより、気泡発生装置1aは、複数の細孔2bを流れる気体の方向と、振動板2を振動させる振動方向とを異ならせ、細孔2bから押し出される直噴流の流れに対して気泡が影響を受け難くさせることができる。 As described above, in the bubble generator 1a according to the second embodiment, the piezoelectric element 4 is driven in the bending vibration mode, and a plurality of pores are formed in the vibration direction of the diaphragm 2 which is vibrated by the drive of the piezoelectric element 4. It includes at least a direction different from the direction of the gas flowing through 2b. As a result, in the bubble generator 1a, the direction of the gas flowing through the plurality of pores 2b and the vibration direction for vibrating the diaphragm 2 are different, and the bubbles affect the flow of the direct jet extruded from the pores 2b. It can be made difficult to receive.
 (実施の形態3)
 実施の形態1では、圧電素子4を屈曲振動モードで駆動して振動体3を屈曲振動させる構成について説明した。本実施の形態3では、圧電素子を屈曲振動モード以外で駆動して振動体を振動させる構成について説明する。
(Embodiment 3)
In the first embodiment, the configuration in which the piezoelectric element 4 is driven in the bending vibration mode to cause the vibrating body 3 to bend and vibrate has been described. In the third embodiment, a configuration in which the piezoelectric element is driven in a mode other than the bending vibration mode to vibrate the vibrating body will be described.
 図10は、本実施の形態3に係る気泡発生装置1bが用いられる水質浄化装置120の概略図である。なお、本実施の形態3に係る水質浄化装置120は、図1に示す実施の形態1に係る水質浄化装置100の構成と同じで構成について同じ符号を付して詳細な説明を繰返さない。 FIG. 10 is a schematic view of a water purification device 120 in which the bubble generator 1b according to the third embodiment is used. The water purification device 120 according to the third embodiment has the same configuration as the water purification device 100 according to the first embodiment shown in FIG. 1, and the same reference numerals are given to the configurations, and detailed description thereof will not be repeated.
 気泡発生装置1bは、振動板21と、振動体31と、圧電素子41と、保持部51と、支持部6とを備えている。気泡発生装置1bは、水槽10の底部の一部に開けた孔に保持部51に保持された振動板21を設けている。振動板21と保持部51との境界部分は封止してあり、保持部51の内部空間と水槽10の水とを完全分離してある。保持部51の内部空間には、振動板21の下面に圧電素子41が設けられているので、圧電素子41の電気配線等が液体に浸かることを防止できる。 The bubble generator 1b includes a diaphragm 21, a vibrating body 31, a piezoelectric element 41, a holding portion 51, and a supporting portion 6. The bubble generator 1b is provided with a diaphragm 21 held by the holding portion 51 in a hole formed in a part of the bottom of the water tank 10. The boundary portion between the diaphragm 21 and the holding portion 51 is sealed, and the internal space of the holding portion 51 and the water in the water tank 10 are completely separated. Since the piezoelectric element 41 is provided on the lower surface of the diaphragm 21 in the internal space of the holding portion 51, it is possible to prevent the electrical wiring and the like of the piezoelectric element 41 from being immersed in the liquid.
 振動板21の下面に圧電素子41を挟んで振動体31が設けられている。振動体31には、空気を通すための導入孔31dが設けられてあり、導入孔31dの一端が水槽10の外側(気体側)に設けられている。保持部51は、支持部6上に設けられている。支持部6には、導入孔6aが設けてあり、導入孔6aから導入孔31dに空気が送り込まれる。導入孔6aから送り込まれた空気は、振動体31の導入孔31dを通って振動板21に至る。 A vibrating body 31 is provided on the lower surface of the diaphragm 21 with the piezoelectric element 41 interposed therebetween. The vibrating body 31 is provided with an introduction hole 31d for passing air, and one end of the introduction hole 31d is provided on the outside (gas side) of the water tank 10. The holding portion 51 is provided on the supporting portion 6. The support portion 6 is provided with an introduction hole 6a, and air is sent from the introduction hole 6a to the introduction hole 31d. The air sent from the introduction hole 6a reaches the diaphragm 21 through the introduction hole 31d of the vibrating body 31.
 気泡発生装置1bでは、振動体31の外周端に設けた圧電素子41で振動板21および振動体31を振動させることで、導入孔31dを通って送り込まれた空気を振動板21に形成した複数の細孔(開口部)から微細な気泡として発生させている。気泡発生装置1bでは、図10に示す方向に背圧(例えば、0.08atm~0.12atm(8~12kPa)程度)を加えることで、導入孔31dを介して振動板21に形成した複数の細孔に空気を供給している。 In the bubble generator 1b, the diaphragm 21 and the diaphragm 31 are vibrated by the piezoelectric element 41 provided at the outer peripheral end of the diaphragm 31, so that the air sent through the introduction hole 31d is formed in the diaphragm 21. It is generated as fine bubbles from the pores (openings) of. In the bubble generator 1b, a plurality of diaphragms 21 formed on the diaphragm 21 through the introduction holes 31d by applying back pressure (for example, about 0.08 atm to 0.12 atm (8 to 12 kPa)) in the direction shown in FIG. Air is supplied to the pores.
 振動板21は、複数の細孔が圧電素子41を配置した位置近傍に形成され、一方の面が水槽10の水(液体)と接し、他方の面が圧電素子41と接している。気泡発生装置1bでは、振動体31に設けた導入孔31dを通った空気を振動板21の細孔を通って水槽10の水に送り込むことで微細な気泡を発生させている。 The diaphragm 21 has a plurality of pores formed in the vicinity of the position where the piezoelectric element 41 is arranged, and one surface is in contact with the water (liquid) of the water tank 10 and the other surface is in contact with the piezoelectric element 41. In the bubble generator 1b, fine bubbles are generated by sending air that has passed through the introduction hole 31d provided in the vibrating body 31 into the water in the water tank 10 through the pores of the diaphragm 21.
 気泡発生装置1bでは、圧電素子41で振動板21および振動体31を振動させている。図11は、本実施の形態3に係る気泡発生装置1bの振動体31の概略図である。図11(a)は、振動体31の部分断面図、図11(b)は、振動体31の側面図である。 In the bubble generator 1b, the piezoelectric element 41 vibrates the diaphragm 21 and the vibrating body 31. FIG. 11 is a schematic view of the vibrating body 31 of the bubble generator 1b according to the third embodiment. 11 (a) is a partial cross-sectional view of the vibrating body 31, and FIG. 11 (b) is a side view of the vibrating body 31.
 振動体31は、中心部に導入孔31dに設けたドーナツ状の板で、外周端部にリング状の圧電素子41に連結されている。さらに、圧電素子41は、振動体31と連結した反対側の面で振動板21に連結されている。 The vibrating body 31 is a donut-shaped plate provided in the introduction hole 31d at the center, and is connected to a ring-shaped piezoelectric element 41 at the outer peripheral end. Further, the piezoelectric element 41 is connected to the diaphragm 21 on the opposite surface connected to the vibrating body 31.
 振動体31は本実施の形態では、アルミ合金からなる。もっとも、アルミ合金に代えて、ステンレスなど他の金属材料が用いられてもよい。好ましくは、アルミ合金やステンレスなどの剛性の高い金属が望ましい。 In the present embodiment, the vibrating body 31 is made of an aluminum alloy. However, instead of the aluminum alloy, another metal material such as stainless steel may be used. Preferably, a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
 圧電素子41は、圧電体と、圧電体の両面に設けられた電極とを有する。圧電体は、厚み方向に、すなわち振動体31と振動板21とを重ねる方向に分極されている。圧電体は、圧電セラミックスなどの圧電体からなる。 The piezoelectric element 41 has a piezoelectric body and electrodes provided on both sides of the piezoelectric body. The piezoelectric body is polarized in the thickness direction, that is, in the direction in which the vibrating body 31 and the diaphragm 21 are overlapped with each other. The piezoelectric body is made of a piezoelectric material such as piezoelectric ceramics.
 圧電素子41が振動体31の外周端部に連結されている構造で圧電素子41を拡がり振動モードで駆動することにより、振動板21および振動体31を拡がり振動する振動体を構成している。圧電素子41では、圧電セラミックスの機械的共振を利用し、その共振周波数(例えば、100kHz~数MHz)によって薄い角板または円板の面方向に拡がる拡がり振動モードで駆動することができる。 The piezoelectric element 41 is connected to the outer peripheral end of the vibrating body 31, and the piezoelectric element 41 is expanded and driven in the vibration mode to form a vibrating body that expands and vibrates the diaphragm 21 and the vibrating body 31. The piezoelectric element 41 can be driven in a spreading vibration mode that spreads in the plane direction of a thin square plate or disk by utilizing the mechanical resonance of the piezoelectric ceramics and its resonance frequency (for example, 100 kHz to several MHz).
 気泡発生装置1bでは、この圧電素子41における拡がり振動モードでの駆動が、振動板21および振動体31を振動させて微細な気泡を発生させている。圧電素子41の電極には、図示していないコントローラの信号が供給され、当該信号に基づいて圧電素子41が駆動される。 In the bubble generator 1b, the driving of the piezoelectric element 41 in the spreading vibration mode vibrates the diaphragm 21 and the vibrating body 31 to generate fine bubbles. A controller signal (not shown) is supplied to the electrodes of the piezoelectric element 41, and the piezoelectric element 41 is driven based on the signal.
 なお、圧電素子41は、リング状の圧電素子を振動体31の一面に一つ設けると説明したが、これに限定されない。圧電素子41は、例えば、振動体31の一面に複数の圧電素子をリング状に並べて設けた構成でもよい。 Although it has been explained that the piezoelectric element 41 is provided with one ring-shaped piezoelectric element on one surface of the vibrating body 31, the present invention is not limited to this. The piezoelectric element 41 may have, for example, a configuration in which a plurality of piezoelectric elements are arranged in a ring shape on one surface of the vibrating body 31.
 次に、気泡発生装置1bの振動板21および振動体31の振動について詳しく説明する。図12は、本実施の形態3に係る気泡発生装置1bの振動体31の振動状態を示す図である。図12には、気泡発生装置1bの振動体31の振動についてシミュレーションした結果の変位方向が示されている。 Next, the vibration of the diaphragm 21 and the vibrating body 31 of the bubble generator 1b will be described in detail. FIG. 12 is a diagram showing a vibration state of the vibrating body 31 of the bubble generator 1b according to the third embodiment. FIG. 12 shows the displacement direction as a result of simulating the vibration of the vibrating body 31 of the bubble generator 1b.
 図12に示す振動体31では、振動体31の外周端部に圧電素子41が設けられている。なお、振動板21には、図5で示した振動板2とは異なり、複数の細孔21bを中央部ではなく圧電素子41を配置した位置近傍に形成している。振動板21の中央部ではなく外周端部と中央部との間(振動板21の周辺部から中央部までの範囲)に複数の細孔21bを配置することで、圧電素子41による拡がり振動の大きい位置に配置することができる。振動板21に形成される複数の細孔21bも、図6で示したような細孔2bが形成されている。 In the vibrating body 31 shown in FIG. 12, a piezoelectric element 41 is provided at the outer peripheral end of the vibrating body 31. In the diaphragm 21, unlike the diaphragm 2 shown in FIG. 5, a plurality of pores 21b are formed not in the central portion but in the vicinity of the position where the piezoelectric element 41 is arranged. By arranging a plurality of pores 21b between the outer peripheral end portion and the central portion (the range from the peripheral portion to the central portion of the diaphragm 21) instead of the central portion of the diaphragm 21, the spread vibration by the piezoelectric element 41 can be generated. It can be placed in a large position. The plurality of pores 21b formed in the diaphragm 21 also have pores 2b as shown in FIG.
 この圧電素子41の電極間に交流電界を印加することで、圧電素子41を拡がり振動モードで駆動して振動板21を拡がり振動させる。この拡がり振動の変位により、振動板21の中心から外周に向かう図中矢印方向(振動方向)に変位する。一方、振動板21に形成した複数の細孔21bを流れる気体の方向は図中上下方向(振動板21の面に対して垂直方向)であり、圧電素子41の駆動で振動する振動板21の振動方向と異なっている。 By applying an AC electric field between the electrodes of the piezoelectric element 41, the piezoelectric element 41 is expanded and driven in the vibration mode to expand and vibrate the diaphragm 21. Due to the displacement of the spreading vibration, the diaphragm 21 is displaced in the direction of the arrow (vibration direction) in the figure from the center to the outer circumference. On the other hand, the direction of the gas flowing through the plurality of pores 21b formed in the diaphragm 21 is the vertical direction (direction perpendicular to the surface of the diaphragm 21) in the figure, and the diaphragm 21 vibrates by driving the piezoelectric element 41. It is different from the vibration direction.
 気泡発生装置1bでは、図12に示すように振動板21を振動させる振動方向が、複数の細孔21bを流れる気体の方向に対して垂直方向となっている。そのため、気泡発生装置1bでは、振動板21の表面に発生した気泡が、細孔21bから押し出される直噴流の流れに対して気泡が影響を受け難く、気泡が一気に上昇して水槽10の水面で大気中に放散されることを防止できる。また、気泡発生装置1bでは、発生させた気泡を水槽10の水中に長く浮遊させることができ、水中に残留する微細な気泡の量を多くすることができる。 In the bubble generator 1b, as shown in FIG. 12, the vibration direction for vibrating the diaphragm 21 is perpendicular to the direction of the gas flowing through the plurality of pores 21b. Therefore, in the bubble generator 1b, the bubbles generated on the surface of the diaphragm 21 are not easily affected by the flow of the direct jet extruded from the pores 21b, and the bubbles rise at once on the water surface of the water tank 10. It can be prevented from being released into the atmosphere. Further, in the bubble generator 1b, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
 特に、振動板21を振動させる振動方向が、複数の細孔21bを流れる気体の方向に対して垂直方向であれば、細孔21bから押し出される直噴流の流れに対して気泡が影響をより受け難くすることができる。なお、気泡発生装置1bは、図12に示すように振動板21を振動させる振動方向が、複数の細孔21bを流れる気体の方向に対して垂直方向である場合に限られず、振動板21の振動方向と、複数の細孔21bを流れる気体の方向とを異ならせて垂直方向となる振動成分を少なくとも含むのであれば、細孔から押し出される直噴流の流れに対して気泡が影響を受け難くできればよい。なお、圧電素子41を拡がり振動モードで駆動し、振動板21に高次モードの屈曲振動が生じた場合、振動板21を振動させる振動方向の振動成分には、垂直方向の拡がり振動成分以外に、平行方向の屈曲振動成分を含むことがある。しかし、平行方向の屈曲振動成分が、垂直方向の拡がり振動成分に対してわずかであれば、直噴流の流れに対する気泡の影響は小さい。 In particular, if the vibration direction for vibrating the diaphragm 21 is perpendicular to the direction of the gas flowing through the plurality of pores 21b, the bubbles are more affected by the flow of the direct jet extruded from the pores 21b. It can be difficult. The bubble generator 1b is not limited to the case where the vibration direction for vibrating the diaphragm 21 is perpendicular to the direction of the gas flowing through the plurality of pores 21b as shown in FIG. If the vibration direction and the direction of the gas flowing through the plurality of pores 21b are different from each other and include at least a vibration component that is in the vertical direction, the bubbles are less likely to be affected by the flow of the direct jet flow pushed out from the pores. I hope I can. When the piezoelectric element 41 is driven in the expanded vibration mode and the vibration plate 21 is subjected to bending vibration in the higher-order mode, the vibration component in the vibration direction that vibrates the vibration plate 21 includes the expansion vibration component in the vertical direction. , May contain bending vibration components in the parallel direction. However, if the bending vibration component in the parallel direction is small with respect to the spreading vibration component in the vertical direction, the influence of the bubbles on the flow of the direct jet is small.
 以上のように、本実施の形態3に係る気泡発生装置1bは、圧電素子41を拡がり振動モードで駆動し、振動板21の周辺部から中央部までの範囲に複数の細孔21bを設け、振動板21の周辺部を圧電素子41の駆動で振動させる。これにより、気泡発生装置1bは、拡がり振動モードで圧電素子41を駆動し、複数の細孔21bを流れる気体の方向と、振動板21を振動させる振動方向とを異ならせ、細孔21bから押し出される直噴流の流れに対して気泡が影響を受け難くさせることができる。 As described above, in the bubble generator 1b according to the third embodiment, the piezoelectric element 41 is expanded and driven in the vibration mode, and a plurality of pores 21b are provided in the range from the peripheral portion to the central portion of the diaphragm 21. The peripheral portion of the diaphragm 21 is vibrated by driving the piezoelectric element 41. As a result, the bubble generator 1b drives the piezoelectric element 41 in the expanding vibration mode, causes the direction of the gas flowing through the plurality of pores 21b to be different from the vibration direction for vibrating the diaphragm 21, and is extruded from the pores 21b. It is possible to make the bubbles less susceptible to the flow of the direct jet.
 (実施の形態4)
 実施の形態1では、圧電素子4を屈曲振動モードで駆動して振動体3を屈曲振動させる構成について説明した。本実施の形態4では、振動体を屈曲振動以外で振動させる構成について説明する。
(Embodiment 4)
In the first embodiment, the configuration in which the piezoelectric element 4 is driven in the bending vibration mode to cause the vibrating body 3 to bend and vibrate has been described. In the fourth embodiment, a configuration in which the vibrating body is vibrated other than bending vibration will be described.
 図13は、本実施の形態4に係る気泡発生装置1cが用いられる水質浄化装置130の概略図である。なお、本実施の形態4に係る水質浄化装置130は、図1に示す実施の形態1に係る水質浄化装置100の構成と同じで構成について同じ符号を付して詳細な説明を繰返さない。 FIG. 13 is a schematic view of the water purification device 130 in which the bubble generator 1c according to the fourth embodiment is used. The water purification device 130 according to the fourth embodiment has the same configuration as the water purification device 100 according to the first embodiment shown in FIG. 1, and the same reference numerals are given to the configurations, and detailed description thereof will not be repeated.
 気泡発生装置1cは、振動板22と、振動体32と、圧電素子42と、保持部52a,52bと、支持部62を備えている。気泡発生装置1cは、水槽10の底部の一部に開けた孔に保持部52aに保持された振動体32を設けている。振動体32と保持部52aとの境界部分は封止してあり、保持部52aよりも下側の空間と水槽10の水とを完全分離してある。保持部52aよりも下側の空間には、圧電素子42が設けられているので、圧電素子42の電気配線等が液体に浸かることを防止できる。 The bubble generator 1c includes a diaphragm 22, a vibrating body 32, a piezoelectric element 42, holding portions 52a and 52b, and a supporting portion 62. The bubble generator 1c is provided with a vibrating body 32 held by the holding portion 52a in a hole formed in a part of the bottom of the water tank 10. The boundary portion between the vibrating body 32 and the holding portion 52a is sealed, and the space below the holding portion 52a and the water in the water tank 10 are completely separated. Since the piezoelectric element 42 is provided in the space below the holding portion 52a, it is possible to prevent the electrical wiring and the like of the piezoelectric element 42 from being immersed in the liquid.
 保持部52aの上面に振動体32を挟んで振動板22が設けられている。振動体32は、筒体で空気を通すことができる。保持部52bは、支持部62上に設けられ、圧電素子42を挟んで保持部52aと連結している。保持部52aおよび保持部52bは、中央部に開口部を有している。支持部62は、筒体で空気を通すことができ、保持部52aおよび保持部52bを介して振動体32と連結することで振動板22に空気が送り込まれる。 A diaphragm 22 is provided on the upper surface of the holding portion 52a with the vibrating body 32 interposed therebetween. The vibrating body 32 is a tubular body that allows air to pass through. The holding portion 52b is provided on the supporting portion 62 and is connected to the holding portion 52a with the piezoelectric element 42 interposed therebetween. The holding portion 52a and the holding portion 52b have an opening in the central portion. Air can be passed through the support portion 62 through a tubular body, and air is sent to the diaphragm 22 by connecting with the vibrating body 32 via the holding portion 52a and the holding portion 52b.
 気泡発生装置1cでは、振動体32の外周端に設けた圧電素子42で振動板22および振動体32を振動させることで、支持部62および振動体32を通って送り込まれた空気を振動板22に形成した複数の細孔(開口部)から微細な気泡として発生させている。気泡発生装置1cでは、図13に示す方向に背圧(例えば、0.08atm~0.12atm(8~12kPa)程度)を加えることで、支持部62および振動体32を介して振動板22に形成した複数の細孔に空気を供給している。 In the bubble generator 1c, the diaphragm 22 and the vibrating body 32 are vibrated by the piezoelectric element 42 provided at the outer peripheral end of the vibrating body 32, so that the air sent through the support portion 62 and the vibrating body 32 is sent to the diaphragm 22. It is generated as fine bubbles from a plurality of pores (openings) formed in. In the bubble generator 1c, by applying back pressure (for example, about 0.08 atm to 0.12 atm (8 to 12 kPa)) in the direction shown in FIG. 13, the vibrating plate 22 is subjected to the support portion 62 and the vibrating body 32. Air is supplied to a plurality of formed pores.
 振動板22は、複数の細孔が振動板22の中央部ではなく外周端部と中央部との間に形成され、一方の面が水槽10の水(液体)と接し、他方の面が振動体32と接している。 In the diaphragm 22, a plurality of pores are formed not between the central portion of the diaphragm 22 but between the outer peripheral end portion and the central portion, one surface is in contact with the water (liquid) of the water tank 10, and the other surface vibrates. It is in contact with the body 32.
 図14は、本実施の形態4に係る気泡発生装置1cの振動体等の分解斜視図である。振動体32は、筒体で、両端につば部を設けた形状である。振動体32は、保持部52aを介して圧電素子42と連結している。圧電素子42は、保持部52aの開口部に沿って複数の圧電素子が配置されている。圧電素子42は、保持部52bを介して支持部62に連結されている。 FIG. 14 is an exploded perspective view of a vibrating body or the like of the bubble generator 1c according to the fourth embodiment. The vibrating body 32 is a tubular body and has a shape in which brims are provided at both ends. The vibrating body 32 is connected to the piezoelectric element 42 via the holding portion 52a. In the piezoelectric element 42, a plurality of piezoelectric elements are arranged along the opening of the holding portion 52a. The piezoelectric element 42 is connected to the support portion 62 via the holding portion 52b.
 振動体32は本実施の形態では、アルミ合金からなる。もっとも、アルミ合金に代えて、ステンレスなど他の金属材料が用いられてもよい。好ましくは、アルミ合金やステンレスなどの剛性の高い金属が望ましい。 The vibrating body 32 is made of an aluminum alloy in this embodiment. However, instead of the aluminum alloy, another metal material such as stainless steel may be used. Preferably, a highly rigid metal such as an aluminum alloy or stainless steel is desirable.
 圧電素子42は、圧電体と、圧電体の両面に設けられた電極とを有する。圧電体は、厚み方向の分極を使用せず、図14に示す矢印方向のように圧電体の長さ方向に対して平行に分極されている。圧電体は、圧電セラミックスなどの圧電体からなる。 The piezoelectric element 42 has a piezoelectric body and electrodes provided on both sides of the piezoelectric body. The piezoelectric body does not use polarization in the thickness direction, and is polarized parallel to the length direction of the piezoelectric body as shown by the arrow direction shown in FIG. The piezoelectric body is made of a piezoelectric material such as piezoelectric ceramics.
 圧電素子42は、振動板22の周辺部に対応する位置に複数の圧電素子を配置し、各々の圧電素子を長さ方向に振動させることで、振動板22の面内でねじるように振動させる。 In the piezoelectric element 42, a plurality of piezoelectric elements are arranged at positions corresponding to the peripheral portions of the diaphragm 22, and each piezoelectric element is vibrated in the length direction so as to vibrate in the plane of the diaphragm 22. ..
 気泡発生装置1cでは、この圧電素子42における駆動により、振動板22を面内でねじるように振動させて微細な気泡を発生させている。圧電素子42の電極には、図示していないコントローラの信号が供給され、当該信号に基づいて圧電素子42が駆動される。 In the bubble generator 1c, the diaphragm 22 is vibrated in a plane by being driven by the piezoelectric element 42 to generate fine bubbles. A controller signal (not shown) is supplied to the electrodes of the piezoelectric element 42, and the piezoelectric element 42 is driven based on the signal.
 次に、気泡発生装置1cの振動板22の振動について詳しく説明する。図15は、本実施の形態4に係る気泡発生装置1cの振動板22の振動状態を示す図である。図15には、気泡発生装置1cの振動板22の振動についてシミュレーションした結果の変位方向が示されている。 Next, the vibration of the diaphragm 22 of the bubble generator 1c will be described in detail. FIG. 15 is a diagram showing a vibration state of the diaphragm 22 of the bubble generator 1c according to the fourth embodiment. FIG. 15 shows the displacement direction as a result of simulating the vibration of the diaphragm 22 of the bubble generator 1c.
 図15に示す振動体32では、振動体32の外周端部に対応する位置に圧電素子42が設けられている。なお、振動板22には、図5で示した振動板2とは異なり、複数の細孔22bを中央部ではなく圧電素子42を配置した位置近傍に形成している。振動板22の中央部ではなく外周端部と中央部との間(振動板22の周辺部から中央部までの範囲)に複数の細孔22bを配置することで、圧電素子42によるねじり振動の大きい位置に配置することができる。振動板22に形成される複数の細孔22bも、図6で示したような細孔2bが形成されている。 In the vibrating body 32 shown in FIG. 15, the piezoelectric element 42 is provided at a position corresponding to the outer peripheral end portion of the vibrating body 32. In the diaphragm 22, unlike the diaphragm 2 shown in FIG. 5, a plurality of pores 22b are formed not in the central portion but in the vicinity of the position where the piezoelectric element 42 is arranged. By arranging a plurality of pores 22b between the outer peripheral end portion and the central portion (the range from the peripheral portion to the central portion of the diaphragm 22) instead of the central portion of the diaphragm 22, the torsional vibration caused by the piezoelectric element 42 is generated. It can be placed in a large position. The plurality of pores 22b formed in the diaphragm 22 also have pores 2b as shown in FIG.
 この圧電素子42の電極間に交流電界を印加することで、圧電素子42の駆動により振動板22をねじり振動させる。このねじり振動の変位により、振動板22の中央部よりも外周部の方が大きい図中矢印方向(振動方向)の変位となる。一方、振動板22に形成した複数の細孔22bを流れる気体の方向は図中上下方向(振動板22の面に対して垂直方向)であり、圧電素子42の駆動で振動する振動板22の振動方向と異なっている。 By applying an AC electric field between the electrodes of the piezoelectric element 42, the diaphragm 22 is twisted and vibrated by driving the piezoelectric element 42. Due to the displacement of the torsional vibration, the displacement in the arrow direction (vibration direction) in the figure is larger in the outer peripheral portion than in the central portion of the diaphragm 22. On the other hand, the direction of the gas flowing through the plurality of pores 22b formed in the diaphragm 22 is the vertical direction in the figure (direction perpendicular to the surface of the diaphragm 22), and the diaphragm 22 vibrates by driving the piezoelectric element 42. It is different from the vibration direction.
 気泡発生装置1cでは、図15に示すように振動板22を振動させる振動方向が、複数の細孔22bを流れる気体の方向に対して垂直方向となっている。そのため、気泡発生装置1cでは、振動板22の表面に発生した気泡が、細孔22bから押し出される直噴流の流れに対して気泡が影響を受け難く、気泡が一気に上昇して水槽10の水面で大気中に放散されることを防止できる。また、気泡発生装置1cでは、発生させた気泡を水槽10の水中に長く浮遊させることができ、水中に残留する微細な気泡の量を多くすることができる。 In the bubble generator 1c, as shown in FIG. 15, the vibration direction for vibrating the diaphragm 22 is perpendicular to the direction of the gas flowing through the plurality of pores 22b. Therefore, in the bubble generator 1c, the bubbles generated on the surface of the diaphragm 22 are not easily affected by the flow of the direct jet extruded from the pores 22b, and the bubbles rise at once on the water surface of the water tank 10. It can be prevented from being released into the atmosphere. Further, in the bubble generator 1c, the generated bubbles can be suspended in the water of the water tank 10 for a long time, and the amount of fine bubbles remaining in the water can be increased.
 特に、振動板22を振動させる振動方向が、複数の細孔22bを流れる気体の方向に対して垂直方向であれば、細孔22bから押し出される直噴流の流れに対して気泡が影響をより受け難くすることができる。なお、気泡発生装置1cは、図15に示すように振動板22を振動させる振動方向が、複数の細孔22bを流れる気体の方向に対して垂直方向である場合に限られず、振動板22の振動方向と、複数の細孔22bを流れる気体の方向とを異ならせて垂直方向となる振動成分を少なくとも含むのであれば、細孔から押し出される直噴流の流れに対して気泡が影響を受け難くできればよい。 In particular, if the vibration direction for vibrating the diaphragm 22 is perpendicular to the direction of the gas flowing through the plurality of pores 22b, the bubbles are more affected by the flow of the direct jet extruded from the pores 22b. It can be difficult. The bubble generator 1c is not limited to the case where the vibration direction for vibrating the diaphragm 22 is perpendicular to the direction of the gas flowing through the plurality of pores 22b as shown in FIG. If the vibration direction and the direction of the gas flowing through the plurality of pores 22b are different and include at least a vibration component that is in the vertical direction, the bubbles are less likely to be affected by the flow of the direct jet flow pushed out from the pores. I hope I can.
 以上のように、本実施の形態4に係る気泡発生装置1cは、振動板22の周辺部に対応する位置に複数の圧電素子42を配置し、振動板22の周辺部から中央部までの範囲に複数の細孔22bを設けている。気泡発生装置1cは、複数の細孔22bを形成した振動板22の面内でねじるように、振動板22を複数の圧電素子42の駆動で振動させる。これにより、気泡発生装置1cは、ねじり振動で振動板22を振動させて、複数の細孔22bを流れる気体の方向と、振動板22を振動させる振動方向とを異ならせ、細孔22bから押し出される直噴流の流れに対して気泡が影響を受け難くさせることができる。 As described above, in the bubble generator 1c according to the fourth embodiment, a plurality of piezoelectric elements 42 are arranged at positions corresponding to the peripheral portions of the diaphragm 22, and the range from the peripheral portion to the central portion of the diaphragm 22 is provided. Is provided with a plurality of pores 22b. The bubble generator 1c vibrates the diaphragm 22 by driving the plurality of piezoelectric elements 42 so as to twist in the plane of the diaphragm 22 forming the plurality of pores 22b. As a result, the bubble generator 1c vibrates the diaphragm 22 by torsional vibration to make the direction of the gas flowing through the plurality of pores 22b different from the vibration direction that vibrates the diaphragm 22 and pushes the diaphragm 22 out of the pores 22b. Bubbles can be made less susceptible to the flow of the direct jet.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,1a~1c 気泡発生装置、2,21,22 振動板、2a ガラス板、2b,21b,22b 細孔、3,30,31,32 振動体、4,41,42 圧電素子、10 水槽、100,110,120,130 水質浄化装置。 1,1a to 1c bubble generator, 2,21,22 diaphragm, 2a glass plate, 2b, 21b, 22b pores, 3,30,31,32 vibrating body, 4,41,42 piezoelectric element, 10 water tank, 100, 110, 120, 130 Water purification device.

Claims (8)

  1.  振動により微細な気泡を液体中に発生させる気泡発生装置であって、
     複数の開口部が形成され、一方の面が液体槽の液体と接し、他方の面が気体と接する振動板と、
     前記振動板を振動させる圧電素子とを備え、
     前記振動板を振動させる振動方向には、前記複数の開口部を流れる気体の方向と異なる方向を少なくとも含む、気泡発生装置。
    A bubble generator that generates fine bubbles in a liquid by vibration.
    A diaphragm in which multiple openings are formed, one surface in contact with the liquid in the liquid tank and the other surface in contact with the gas.
    A piezoelectric element that vibrates the diaphragm is provided.
    A bubble generator that includes at least a direction different from the direction of the gas flowing through the plurality of openings in the vibration direction for vibrating the diaphragm.
  2.  前記圧電素子を屈曲振動モードで駆動し、
     前記圧電素子の駆動で振動する前記振動板の振動方向には、前記複数の開口部を流れる気体の方向と異なる方向を少なくとも含む、請求項1に記載の気泡発生装置。
    The piezoelectric element is driven in the bending vibration mode,
    The bubble generator according to claim 1, wherein the vibration direction of the diaphragm that vibrates by driving the piezoelectric element includes at least a direction different from the direction of the gas flowing through the plurality of openings.
  3.  前記圧電素子を拡がり振動モードで駆動し、
     前記振動板の周辺部から中央部までの範囲に前記複数の開口部を設け、前記振動板の周辺部を前記圧電素子の駆動で振動させる、請求項1に記載の気泡発生装置。
    The piezoelectric element is expanded and driven in the vibration mode,
    The bubble generator according to claim 1, wherein the plurality of openings are provided in a range from the peripheral portion to the central portion of the diaphragm, and the peripheral portion of the diaphragm is vibrated by driving the piezoelectric element.
  4.  前記振動板の周辺部に対応する位置に複数の前記圧電素子を配置し、
     前記振動板の周辺部から中央部までの範囲に前記複数の開口部を設け、前記複数の開口部を形成した前記振動板の面内でねじるように、前記振動板を複数の前記圧電素子の駆動で振動させる、請求項1に記載の気泡発生装置。
    A plurality of the piezoelectric elements are arranged at positions corresponding to the peripheral portions of the diaphragm.
    The plurality of openings are provided in a range from the peripheral portion to the central portion of the diaphragm, and the diaphragm is twisted in the plane of the diaphragm forming the plurality of openings. The bubble generator according to claim 1, which vibrates by driving.
  5.  前記振動板を振動させる振動方向には、前記複数の開口部を流れる気体の方向に対して垂直方向の振動成分を少なくとも含む、請求項1~請求項4のいずれか1項に記載の気泡発生装置。 The bubble generation according to any one of claims 1 to 4, wherein the vibration direction for vibrating the diaphragm includes at least a vibration component in a direction perpendicular to the direction of the gas flowing through the plurality of openings. apparatus.
  6.  前記振動板は、ガラス板で形成されている、請求項1~請求項5のいずれか1項に記載の気泡発生装置。 The bubble generator according to any one of claims 1 to 5, wherein the diaphragm is made of a glass plate.
  7.  前記振動板は、孔径が1μm~20μmの前記開口部を、孔径の10倍以上の間隔で複数形成してある、請求項1~請求項6のいずれか1項に記載の気泡発生装置。 The bubble generator according to any one of claims 1 to 6, wherein the diaphragm has a plurality of openings having a hole diameter of 1 μm to 20 μm formed at intervals of 10 times or more the hole diameter.
  8.  前記開口部の形状は、前記液体槽の液体と接する前記一方の面の孔径に比べ、気体と接する前記他方の面の孔径が大きいテーパ形状である、請求項1~請求項7のいずれか1項に記載の気泡発生装置。 Any one of claims 1 to 7, wherein the shape of the opening is a tapered shape in which the pore diameter of the other surface in contact with the gas is larger than the pore diameter of the one surface in contact with the liquid in the liquid tank. The bubble generator according to the section.
PCT/JP2020/009072 2019-03-20 2020-03-04 Bubble generation device WO2020189272A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080011877.4A CN113396011B (en) 2019-03-20 2020-03-04 Bubble generating device
JP2021507171A JP7180749B2 (en) 2019-03-20 2020-03-04 bubble generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053325 2019-03-20
JP2019-053325 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189272A1 true WO2020189272A1 (en) 2020-09-24

Family

ID=72520244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009072 WO2020189272A1 (en) 2019-03-20 2020-03-04 Bubble generation device

Country Status (3)

Country Link
JP (1) JP7180749B2 (en)
CN (1) CN113396011B (en)
WO (1) WO2020189272A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190865A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system
WO2022190570A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system
WO2022190571A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039139B2 (en) * 1982-03-05 1985-09-04 スペツツイアルノエ プロエクトノ−コンストルクトルスコエ イテクノロギチエスコエ ビユ−ロ エレクトロテルミチエスコゴ オボルドヴアニア プロイズヴオドストヴエンノゴ オビエデイネニア“シベレクトロテルム” Equipment for refining metal melt from insoluble impurities
JPH0623994A (en) * 1992-07-09 1994-02-01 Fujitsu Ltd Manufacture of ink jet head
JP2003093858A (en) * 2001-09-21 2003-04-02 Nkk Corp Method and apparatus for forming fine gas bubble
JP2006087984A (en) * 2004-09-21 2006-04-06 Ngk Insulators Ltd Apparatus for jetting air bubble
JP2007253000A (en) * 2006-03-22 2007-10-04 Toshiba Corp Apparatus and process for producing micro bubble
JP2008093902A (en) * 2006-10-10 2008-04-24 Canon Inc Transfer method of thin film diaphragm and inkjet recorder using it
JP2016209825A (en) * 2015-05-11 2016-12-15 国立大学法人群馬大学 Gas minimizing device
JP2017176979A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Slime inhibiting method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605167A (en) * 1982-01-18 1986-08-12 Matsushita Electric Industrial Company, Limited Ultrasonic liquid ejecting apparatus
JPS5912775A (en) * 1982-07-14 1984-01-23 Matsushita Electric Ind Co Ltd Atomizing pump unit
GB2200211B (en) * 1986-12-08 1991-01-16 Fuji Electric Co Ltd Vibration-type transducer
CN2611051Y (en) * 2003-03-14 2004-04-14 杨青 Double piezoelectricity, micro-spray atomizer for atomization administration
JP2008246278A (en) * 2007-03-29 2008-10-16 Koichi Suzumori Discharger for fluid, and particulate fluid producing apparatus
WO2010089822A1 (en) * 2009-02-09 2010-08-12 株式会社村田製作所 Atomizing member and atomizer equipped with same
JP2011031231A (en) * 2009-08-03 2011-02-17 Yukio Ishiyama Ultrasonic fine air bubble generator
WO2012017475A1 (en) * 2010-08-03 2012-02-09 アート電子株式会社 Microbubble-generating device
CN202877025U (en) * 2012-09-18 2013-04-17 广州市番禺奥迪威电子有限公司 Micro-pore atomizing film
CN104667769A (en) * 2013-11-29 2015-06-03 托客乐思股份有限公司 Micro bubble generating device
WO2017149654A1 (en) * 2016-03-01 2017-09-08 ヒロセ・ユニエンス株式会社 Gas introducing/retaining device, gas introducing/retaining method, and gas release head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039139B2 (en) * 1982-03-05 1985-09-04 スペツツイアルノエ プロエクトノ−コンストルクトルスコエ イテクノロギチエスコエ ビユ−ロ エレクトロテルミチエスコゴ オボルドヴアニア プロイズヴオドストヴエンノゴ オビエデイネニア“シベレクトロテルム” Equipment for refining metal melt from insoluble impurities
JPH0623994A (en) * 1992-07-09 1994-02-01 Fujitsu Ltd Manufacture of ink jet head
JP2003093858A (en) * 2001-09-21 2003-04-02 Nkk Corp Method and apparatus for forming fine gas bubble
JP2006087984A (en) * 2004-09-21 2006-04-06 Ngk Insulators Ltd Apparatus for jetting air bubble
JP2007253000A (en) * 2006-03-22 2007-10-04 Toshiba Corp Apparatus and process for producing micro bubble
JP2008093902A (en) * 2006-10-10 2008-04-24 Canon Inc Transfer method of thin film diaphragm and inkjet recorder using it
JP2016209825A (en) * 2015-05-11 2016-12-15 国立大学法人群馬大学 Gas minimizing device
JP2017176979A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Slime inhibiting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190865A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system
WO2022190570A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system
WO2022190571A1 (en) * 2021-03-09 2022-09-15 株式会社村田製作所 Bubble generation device and bubble generation system
JP7468777B2 (en) 2021-03-09 2024-04-16 株式会社村田製作所 Air bubble generating device and air bubble generating system

Also Published As

Publication number Publication date
JPWO2020189272A1 (en) 2021-10-21
JP7180749B2 (en) 2022-11-30
CN113396011A (en) 2021-09-14
CN113396011B (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP7180748B2 (en) bubble generator
WO2020189272A1 (en) Bubble generation device
JP7359304B2 (en) Air bubble generator and air bubble generation system
WO2020189271A1 (en) Bubble generation device
US6659364B1 (en) Droplet generation method and device
JP2009173415A (en) Minute component aligning device and aligning method
JP4906728B2 (en) Ultrasonic vibration unit and ultrasonic atomizer
WO2022190570A1 (en) Bubble generation device and bubble generation system
WO2021245996A1 (en) Bubble generation device and bubble generation system
CN111148579B (en) Mounting of an aerosol generator orifice plate to a support
US20170151446A1 (en) Method and apparatus for effecting alternating ultrasonic transmissions without cavitation
WO2022190571A1 (en) Bubble generation device and bubble generation system
JP5245064B2 (en) ULTRASONIC VIBRATION ELEMENT, ITS MANUFACTURING METHOD, AND ULTRASONIC CLEANING DEVICE
JP7468777B2 (en) Air bubble generating device and air bubble generating system
WO2011086810A1 (en) Atomizer
WO2023228588A1 (en) Bubble generation device and bubble generation system
JP6488514B2 (en) Atomizer
WO2023228589A1 (en) Bubble generator and bubble generating system
KR102360216B1 (en) Apparatus and method for generating nano or micro bubble using porous membrane and ultrasonic transducer
RU2620709C2 (en) Method of experiment for implementating and monitoring acoustic processes in liquid medium and device for its implementation
JP5426815B2 (en) Droplet generating apparatus and droplet generating method
CN116897074A (en) Bubble generating device and bubble generating system
JPH01242405A (en) Ozonizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773422

Country of ref document: EP

Kind code of ref document: A1