WO2011086810A1 - Atomizer - Google Patents
Atomizer Download PDFInfo
- Publication number
- WO2011086810A1 WO2011086810A1 PCT/JP2010/072681 JP2010072681W WO2011086810A1 WO 2011086810 A1 WO2011086810 A1 WO 2011086810A1 JP 2010072681 W JP2010072681 W JP 2010072681W WO 2011086810 A1 WO2011086810 A1 WO 2011086810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atomizer
- hole forming
- vibrating
- pressurizing chamber
- piezoelectric
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0638—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2209/00—Aspects relating to disinfection, sterilisation or deodorisation of air
- A61L2209/10—Apparatus features
- A61L2209/13—Dispensing or storing means for active compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/14—Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
Definitions
- the present invention relates to an atomizer.
- the present invention relates to an ink jet atomizer provided with a piezoelectric vibrator.
- the atomizer mainly includes a cavitation atomizer that performs cavitation spray and an ink jet atomizer that performs inkjet spray.
- the cavitation atomizer is equipped with an ultrasonic transducer.
- mist is generated from the surface of the liquid due to a large pressure fluctuation caused by the ultrasonic waves generated by the ultrasonic vibrator.
- the diameter of the generated fog correlates with the ultrasonic wave generated by the ultrasonic transducer. Specifically, the diameter of the mist becomes smaller as the ultrasonic frequency becomes higher. Therefore, in order to generate a so-called dry fog having a small diameter of about 5 ⁇ m, it is necessary to vibrate the ultrasonic vibrator at a high frequency, and a large amount of electric power is required to drive the ultrasonic vibrator. Therefore, it is not suitable for applications requiring power saving drive.
- the diameter of the mist is determined by the nozzle diameter, and the frequency of vibration does not significantly affect the mist diameter. For this reason, by reducing the diameter of the nozzle, it is possible to generate a dry fog having a small diameter even when the frequency of vibration is low. Therefore, the ink jet atomizer that generates dry fog can be driven with relatively small electric power.
- Patent Documents 1 and 2 various ink jet atomizers have been proposed.
- FIG. 10 is a schematic cross-sectional view of the atomizer described in Patent Document 1.
- the atomizer 100 includes a base body 101 having a pressurizing chamber 101a.
- a nozzle portion 102 in which a nozzle 102 a facing the pressurizing chamber 101 a is formed and a vibrator 103 that also faces the pressurizing chamber 101 a are attached to the base 101.
- the vibrator 103 includes a diaphragm 103a and a piezoelectric element 103b.
- the diaphragm 103a is also flexibly vibrated together with the piezoelectric element 103b.
- the pressure in the pressurizing chamber 101a varies.
- fog is discharged from the nozzle 102a.
- FIG. 11 is a schematic cross-sectional view of the atomizer described in Patent Document 2.
- the atomizer 200 includes a nozzle plate 202 having a nozzle 202 a facing the pressurizing chamber 201.
- a piezoelectric element 203 that flexures (bends) is attached.
- the piezoelectric element 203 is formed in a ring shape so as not to cover the central portion where the nozzle 202a of the nozzle plate 202 is provided.
- the piezoelectric vibration of the piezoelectric element 203 causes the nozzle plate 202 to bend and vibrate. Thereby, the pressure in the pressurizing chamber 201 varies. As a result, fog is discharged from the nozzle 202a.
- the vibrating plate 103a and the nozzle plate 202 When the vibrating plate 103a and the nozzle plate 202 are vibrated by the piezoelectric elements 103b and 203 like the atomizers 100 and 200, the vibrating plate 103a and the nozzle plate 202 may be changed depending on the shape of the vibrating plate 103a and the nozzle plate 202. There was a case where it did not vibrate properly. For example, only a part of the diaphragm 103a and the nozzle plate 202 may vibrate and other parts may not vibrate. For this reason, the shape of the diaphragm 103a and the nozzle plate 202 may not be a shape that can give a suitable pressure fluctuation to the pressurizing chambers 101a and 201. Therefore, the atomizers 100 and 200 have a problem that it is difficult to sufficiently realize the atomization performance.
- the present invention has been made in view of such a point, and an object thereof is to provide an atomizer capable of realizing high atomization performance.
- the atomizer according to the present invention includes an atomizer body and a piezoelectric vibrator.
- the atomizer main body is formed with a pressurizing chamber to which a liquid is supplied.
- the atomizer body includes a through hole forming part and a vibrating part.
- a through hole facing the pressurizing chamber is formed in the through hole forming portion.
- the vibration part faces the pressurizing chamber.
- the piezoelectric vibrator vibrates the vibration part.
- the piezoelectric vibrator has a cylindrical piezoelectric body, a first electrode, and a second electrode. One end of the piezoelectric body is joined to the outer edge of the vibration part.
- the first and second electrodes apply a voltage to the piezoelectric body.
- the through hole and the vibrating portion are opposed to each other through the pressurizing chamber.
- the pressure in the vicinity of the through hole forming portion of the pressurizing chamber can be varied efficiently. Therefore, higher atomization performance can be obtained.
- the vibration part is formed in a plate shape protruding to the opposite side to the through hole forming part.
- the pressure in the portion near the through hole forming portion of the pressurizing chamber can be changed more efficiently. Therefore, higher atomization performance can be obtained.
- the vibrating part is formed in a curved surface having a focal point, and the through hole forming part passes through the focal point of the vibrating part from an arbitrary point of the vibrating part. It arrange
- the through-hole forming portion is arranged at a position smaller than the wavefront generated from at least the vibrating portion.
- a through hole forming part may be arranged in a region between the vibrating part and the focal point.
- a curved surface having a focus includes a spherical surface, an elliptical surface, a paraboloid, and the like.
- the curved vibrating portion has a larger area than the through-hole forming portion. In this case, the vibration can be focused on the entirety of the through-hole forming portion, and vibration propagation to the plurality of through-holes can be facilitated.
- the focal point is not only a geometrical focal point, but also when a wavefront generated from a curved vibrating section propagates through a medium, the wavefront is minimal when the wavefront once converges and then diffuses.
- the vibration part is formed in a plate shape protruding toward the through hole forming part side, and the through hole forming part, the through hole forming part of the vibration part,
- the distance between the facing portions is a distance at which the liquid in the pressurized chamber is supplied by capillary action between the through hole forming portion and the vibrating portion.
- the piezoelectric body has a rotational symmetry axis. According to this configuration, the vibration part can be vibrated more efficiently.
- the piezoelectric body is cylindrical. According to this configuration, the vibration part can be vibrated more efficiently.
- the vibrating portion and the piezoelectric body are integrally formed.
- the vibration part and the piezoelectric body can be manufactured in the same process. Therefore, the manufacturing cost of the atomizer can be reduced.
- the bonding strength between the vibration part and the piezoelectric body can be increased.
- the piezoelectric vibration element vibrates in a cylindrical breath.
- the pressurized chamber is filled with a liquid.
- the atomizer further includes a liquid supply member that is disposed in the pressurizing chamber and supplies the liquid in the pressurizing chamber to the through-hole forming portion. ing.
- a piezoelectric vibrator having a cylindrical piezoelectric body polarized in the radial direction is connected to the outer edge portion of the vibrating portion. For this reason, the stress variation along the surface direction is given to the vibration part, and as a result, the vibration part vibrates. Therefore, the vibrating portion can be vibrated efficiently regardless of the shape of the vibrating portion. Therefore, it is possible to make the shape of the vibration part suitable for applying pressure fluctuation to the pressurizing chamber. As a result, high atomization performance can be realized.
- FIG. 1 is a schematic partial cross-sectional perspective view of an atomizer according to a first embodiment.
- FIG. 2 is a schematic cross-sectional view of the atomizer according to the first embodiment.
- FIGS. 3A to 3C are schematic cross-sectional views for explaining an atomization aspect of the atomizer according to the first embodiment.
- FIG. 4 is a schematic partial cross-sectional perspective view of an atomizer according to a second embodiment.
- FIG. 5 is a schematic partial cross-sectional perspective view of an atomizer according to a third embodiment.
- FIG. 6 is a schematic partial cross-sectional perspective view of an atomizer according to a fourth embodiment.
- FIG. 7 is a schematic perspective view of the piezoelectric vibrator according to the fifth embodiment.
- FIG. 8 is a schematic cross-sectional view of the piezoelectric vibrator according to the fifth embodiment.
- FIG. 9 is a schematic development view of electrodes of the piezoelectric vibrator in the fifth embodiment.
- FIG. 10 is a schematic cross-sectional view of an atomizer described in Patent Document 1.
- FIG. 11 is a schematic cross-sectional view of an atomizer described in Patent Document 2.
- the atomizers 1 to 3 shown in FIGS. 1 to 5 as examples.
- the atomizers 1 to 3 are merely examples.
- the present invention is not limited to the atomizers 1 to 3 at all.
- FIG. 1 is a schematic partial cross-sectional perspective view of an atomizer according to a first embodiment.
- FIG. 2 is a schematic cross-sectional view of the atomizer according to the first embodiment.
- the atomizer 1 of the present embodiment includes an atomizer body 10 and a piezoelectric vibrator 20.
- the atomizer body 10 includes a pressurizing chamber section 11 and a flange 12.
- the pressurizing chamber partitioning portion 11 includes a disk-shaped upper wall portion 11b, a disk-shaped bottom wall portion 11c, and a peripheral wall portion 11d.
- the bottom wall portion 11c faces the upper wall portion 11b.
- the peripheral wall portion 11d connects the peripheral edge of the upper wall portion 11b and the peripheral edge of the bottom wall portion 11c.
- the upper wall portion 11b, the bottom wall portion 11c, and the peripheral wall portion 11d define a pressurizing chamber 11a filled with a liquid to be atomized.
- the liquid supply member which absorbs liquids, such as a nonwoven fabric may be arrange
- a flange portion 12 is connected to a joint portion between the bottom wall portion 11c and the peripheral wall portion 11d.
- the flange portion 12 extends outward.
- the flange portion 12 is provided with a pipe portion 12a.
- a liquid supply passage 12a1 is formed inside the pipe portion 12a. A liquid to be atomized is supplied to the pressurizing chamber 11a through the liquid supply passage 12a1.
- liquid to be atomized is not particularly limited. Specific examples of the liquid to be atomized include water, aqueous solutions, organic solvents such as alcohol and petroleum.
- the liquid to be atomized may be, for example, a fragrance, a deodorant, an insecticide, an insect repellent, a perfume, a lotion, or a detergent.
- the material of the atomizer body 10 is not particularly limited.
- the atomizer body 10 can be formed of, for example, synthetic resin, metal, glass, ceramic, paper, or the like. Specifically, in this embodiment, the atomizer body 10 is formed of ceramic. More specifically, the piezoelectric body 20a and the atomizer body 10 to be described later are integrally formed of piezoelectric ceramic. For this reason, the atomizer 1 can be manufactured with few manufacturing processes. Therefore, the manufacturing cost of the atomizer 1 can be reduced. Moreover, the rigidity and intensity
- a through hole forming portion 13 is provided at the center of the upper wall portion 11b.
- One or a plurality of through holes 13a are formed in the through hole forming portion 13 at equal intervals.
- the through hole 13a is formed so as to face the pressurizing chamber 11a. As will be described in detail later, in the atomizer 1, the liquid is discharged as mist from the through-hole 13a.
- the shape dimension of the through-hole formation part 13 is not specifically limited as long as the through-hole 13a is formed at least.
- the through-hole formation part 13 does not need to be formed integrally with the upper wall part 11b.
- a disc-shaped through-hole forming part formed separately may be attached to the upper wall part.
- the through hole 13a is compared with the case where the upper wall portion 11b and the through hole forming portion 13 are formed integrally. Can be easily formed.
- the shape and size of the through hole 13a and the number of the through holes 13a are appropriately designed according to the diameter of the mist to be generated, the property of the liquid to be atomized (for example, viscosity), and the desired atomization performance. be able to.
- the diameter of the mist to be generated is 5 ⁇ m
- the diameter of the through hole 13a can be about 5 ⁇ m.
- the through-hole 13a may be a cylindrical hole whose diameter does not change in the penetration direction.
- the through hole 13a may be a hole having a portion whose diameter changes in the through direction.
- the through-hole 13a may be a hole that tapers outward in the penetration direction.
- the planar shape of the through-hole 13a may not be circular.
- the planar shape of the through hole 13a may be, for example, a polygonal shape or an elliptical shape.
- the vibration part 14 is provided in the center part of the bottom wall part 11c.
- the vibration portion 14 is a portion that vibrates in the vertical direction z shown in FIG. 2 and applies pressure fluctuation to the pressurizing chamber 11a when the piezoelectric vibrator 20 is driven.
- the vibrating part 14 is disposed so as to face the through hole 13a through the pressurizing chamber 11a.
- the vibration part 14 is formed in a plate shape protruding to the opposite side to the through hole forming part 13. That is, the vibration part 14 is formed in a dome shape. More specifically, as illustrated in FIG. 2, the vibration unit 14 is formed in a curved surface having a focal point F such as a spherical shape, an elliptical shape, or a parabolic shape.
- the through hole 13 a is disposed in a region A between the focal point F and the vibration part 14. In other words, the vibration part 14 is formed in a shape in which the through hole 13 a is located in the region A between the focal point F and the vibration part 14.
- the piezoelectric vibrator 20 includes a cylindrical piezoelectric body 20a and first and second electrodes 20b and 20c.
- the piezoelectric body 20a has a rotationally symmetric axis. Specifically, in the present embodiment, the piezoelectric body 20a is formed in a cylindrical shape. One end portion of the piezoelectric body 20 a is connected to the outer edge portion of the vibrating portion 14. The piezoelectric body 20 a is formed integrally with the vibration unit 14.
- the piezoelectric material constituting the piezoelectric body 20a is not particularly limited. Specific examples of the piezoelectric material include lead zirconate titanate (PZT) ceramics.
- the first and second electrodes 20b and 20c are electrodes for applying a voltage to the piezoelectric body 20a.
- the first electrode 20b is formed on the inner peripheral surface of the piezoelectric body 20a.
- the second electrode 20c is formed on the outer peripheral surface of the piezoelectric body 20a.
- the first and second electrodes 20b and 20c are not particularly limited as long as a voltage can be applied to the piezoelectric body 20a.
- the first and second electrodes 20b and 20c can be formed of, for example, a metal such as Ag, Cu, Au, Pt, Ni, or Sn, or an alloy such as a Cr / Ni alloy or a Ni / Cu alloy.
- a protective film may be formed on the surfaces of the first and second electrodes 20b and 20c.
- the protective film is not particularly limited as long as it has higher water resistance than the first and second electrodes 20b and 20c.
- the protective film can be formed of an elastic resin such as a silicone resin, a polyurethane resin, or a polyester resin.
- Examples of the method for forming the first and second electrodes 20b and 20c include a thin film forming method such as a sputtering method and a vapor deposition method, a method using a conductive paste, and the like.
- the piezoelectric body 20a is polarized in the radial direction of the piezoelectric body 20a by applying a voltage of about 3 kV / mm between the first and second electrodes 20b and 20c, for example. Therefore, when an AC voltage is applied between the first and second electrodes 20b and 20c, the piezoelectric vibrator 20 vibrates in the radial direction of the piezoelectric body 20a (hereinafter referred to as “cylindrical respiratory vibration”). To do. This cylindrical respiratory vibration is caused by at least one of the d31 mode and the d33 mode.
- the cylindrical breathing vibration is a vibration having a mode as shown in FIG. That is, as shown in FIGS. 3A to 3C, when a voltage is applied between the first and second electrodes 20b and 20c, the cylindrical piezoelectric body 20a expands and contracts due to the piezoelectric effect. Repeat with the diameter. For this reason, the stress fluctuation
- FIG. As a result, the vibration unit 14 vibrates along the vertical direction z. For this reason, irrespective of the shape of the vibration part 14, the vibration part 14 can be vibrated efficiently. Therefore, the shape of the vibration part 14 can be made a structure suitable for applying the pressure fluctuation of the pressurizing chamber 11a. For example, even if the vibrating portion 14 is formed in a dome shape as in the present embodiment, the vibrating portion 14 can be vibrated with high efficiency in the present embodiment using cylindrical respiratory vibration. Therefore, high atomization performance can be realized.
- the through hole forming unit 13 has an arbitrary distance from the arbitrary point of the vibrating unit 14 to the through hole forming unit 13 through the focal point F of the vibrating unit 14. It arrange
- the vibrating portion 14 is formed in a curved shape having a focal point F, and the through hole 13 a is disposed in a region A between the focal point F and the vibrating portion 14. Accordingly, it is possible to effectively vary the pressure in the region near the through hole 13a in the pressurizing chamber 11a. As a result, higher atomization performance can be realized.
- the piezoelectric body 20a has a cylindrical shape having a rotational symmetry axis. Therefore, higher atomization performance can be realized.
- the vibration of the piezoelectric body 20a may be self-excited or separately excited.
- the vibration of the piezoelectric body 20a is a separate excitation, the resonance frequency fluctuates when a liquid adheres to the surface of the piezoelectric vibrator 20. For this reason, a control circuit for preventing the frequency from changing is required. Therefore, the vibration of the piezoelectric body 20a is preferably self-excited.
- the waveform of the voltage applied to the piezoelectric body 20a may be, for example, a sine wave, a sawtooth wave, a square wave, or the like. Especially, it is preferable that the waveform of the voltage applied to the piezoelectric body 20a is a square wave. This is because higher atomization efficiency can be obtained by applying a square wave to the piezoelectric body 20a.
- the on / off control of atomization is performed by on / off control of the voltage applied to the piezoelectric body 20a.
- the waveform of the voltage applied to the piezoelectric body 20a may be subjected to AM modulation or FM modulation.
- FIG. 4 is a schematic partial cross-sectional perspective view of an atomizer according to a second embodiment.
- the shape of the vibrating portion is not limited to a dome shape.
- the vibration unit 14 may be formed in a flat plate shape.
- FIG. 5 is a schematic partial cross-sectional perspective view of an atomizer according to a third embodiment.
- the vibration part 14 is formed in the plate shape which protrudes in the through-hole formation part 13 side.
- the vibration part 14 includes a facing part 14a facing the through hole 13a.
- the distance between the facing portion 14a and the through hole forming portion 13 is a distance at which the liquid in the pressurizing chamber 11a is supplied between the through hole forming portion 13 and the facing portion 14a by capillary action. . That is, the liquid can enter the portion 11a1 of the pressurizing chamber 11a located between the through hole forming portion 13 and the facing portion 14a by capillary action. For this reason, a liquid can be efficiently supplied to the whole through-hole formation part 13 in which atomization is performed.
- FIG. 6 is a schematic partial cross-sectional perspective view of an atomizer according to a fourth embodiment.
- the liquid supply part 21 which supplies the liquid in the pressurization chamber 11a to the through-hole formation part 13 is arrange
- the liquid supply unit 21 is a member that supplies a liquid by capillary action, and includes, for example, felt, nonwoven fabric, woven fabric, non-woven paper, capillary, and the like.
- the pressurizing chamber 11a is not necessarily filled with liquid.
- the vibration of the vibration unit 14 propagates to the liquid supply unit 21 and the liquid located on the surface of the liquid supply unit 21 facing the through-hole forming unit 13 is atomized. For this reason, it is preferable that a certain amount of gap is formed between the through-hole forming part 13 and the liquid supply part 21.
- the thickness dimension of the liquid supply unit 21 is not particularly limited, but is preferably about 0.05 mm to 0.2 mm, for example. Further, the surface of the liquid supply unit 21 facing the through hole forming unit 13 is preferably formed in a concave shape. In these cases, the atomization efficiency can be further increased.
- FIG. 7 is a schematic perspective view of the piezoelectric vibrator according to the fifth embodiment.
- FIG. 8 is a schematic cross-sectional view of the piezoelectric vibrator according to the fifth embodiment.
- FIG. 9 is a schematic development view of electrodes of the piezoelectric vibrator in the fifth embodiment.
- the first electrode 20b is formed on the inner peripheral surface of the piezoelectric body 20a
- the second electrode 20c is formed on the outer peripheral surface of the piezoelectric body 20a.
- the present invention is not limited to this configuration.
- both of the first and second electrodes may be formed on the outer peripheral surface, or both may be formed on the inner peripheral surface.
- the first and second electrodes 20b and 20c are formed in a comb-tooth shape to be inserted into each other, and both are formed of the piezoelectric body 20a. It is provided on the outer peripheral surface. As shown in FIG. 8, the piezoelectric body 20a is polarized between the electrode fingers of the first and second electrodes 20b and 20c. The polarization of the piezoelectric body 20a can be performed by applying a voltage between the first and second electrodes 20b and 20c.
Landscapes
- Catching Or Destruction (AREA)
- Special Spraying Apparatus (AREA)
Abstract
An atomizer having high atomizing performance. An atomizer (1) is provided with an atomizer body (10) and a piezoelectric vibrator (20). The atomizer body (10) has formed therein a pressurizing chamber (11a) to which liquid is supplied. The atomizer body (10) includes a through-hole forming section (13) and a vibration section (14). The through-hole forming section (13) has formed therein a through-hole (13a) exposed to the pressurizing chamber (11a). The vibration section (14) is exposed to the pressurizing chamber (11a). The piezoelectric vibrator (20) vibrates the vibration section (14). The piezoelectric vibrator (20) is provided with a tubular piezoelectric body (20a), a first electrode (20b), and a second electrode (20c). One end of the piezoelectric body (20a) is joined to the outer edge of the vibration section (14). The first and second electrodes (20b, 20c) apply a voltage to the piezoelectric body (20a).
Description
本発明は、霧化器に関する。特には、本発明は、圧電振動子を備えるインクジェット式の霧化器に関する。
The present invention relates to an atomizer. In particular, the present invention relates to an ink jet atomizer provided with a piezoelectric vibrator.
従来、芳香剤や消臭剤などの種々の液体を霧化するための霧化器が種々提案されている。霧化器には、主として、キャビテーション噴霧を行うキャビテーション式霧化器と、インクジェット噴霧を行うインクジェット式霧化器とがある。
Conventionally, various atomizers for atomizing various liquids such as fragrances and deodorants have been proposed. The atomizer mainly includes a cavitation atomizer that performs cavitation spray and an ink jet atomizer that performs inkjet spray.
キャビテーション式霧化器は、超音波振動子を備えている。キャビテーション式霧化器では、この超音波振動子により発生する超音波によりもたらされる大きな圧力変動により、液体の表面から霧が発生する。このため、発生する霧の直径は、超音波振動子により発生する超音波と相関する。具体的には、霧の直径は、超音波の周波数が高くなるほど小さくなる。従って、5μm程度の小さな直径の所謂ドライフォッグを発生させるためには、超音波振動子を高周波で振動させる必要があり、超音波振動子の駆動に大きな電力が必要となる。よって、省電力駆動が求められる用途には適していない。
The cavitation atomizer is equipped with an ultrasonic transducer. In the cavitation atomizer, mist is generated from the surface of the liquid due to a large pressure fluctuation caused by the ultrasonic waves generated by the ultrasonic vibrator. For this reason, the diameter of the generated fog correlates with the ultrasonic wave generated by the ultrasonic transducer. Specifically, the diameter of the mist becomes smaller as the ultrasonic frequency becomes higher. Therefore, in order to generate a so-called dry fog having a small diameter of about 5 μm, it is necessary to vibrate the ultrasonic vibrator at a high frequency, and a large amount of electric power is required to drive the ultrasonic vibrator. Therefore, it is not suitable for applications requiring power saving drive.
一方、インクジェット式霧化器では、ノズルの直径によって霧の直径が決まり、振動の周波数は、霧の直径に大きく影響しない。このため、ノズルの直径を小さくすることにより、振動の周波数が低い場合であっても、直径が小さなドライフォッグを発生させることができる。従って、ドライフォッグを発生させるインクジェット式霧化器は、比較的小さな電力で駆動可能である。
On the other hand, in an inkjet atomizer, the diameter of the mist is determined by the nozzle diameter, and the frequency of vibration does not significantly affect the mist diameter. For this reason, by reducing the diameter of the nozzle, it is possible to generate a dry fog having a small diameter even when the frequency of vibration is low. Therefore, the ink jet atomizer that generates dry fog can be driven with relatively small electric power.
このため、例えば、下記の特許文献1,2などにおいて、種々のインクジェット式霧化器が提案されている。
For this reason, for example, in the following Patent Documents 1 and 2, various ink jet atomizers have been proposed.
図10は、特許文献1に記載の霧化器の略図的断面図である。図10に示すように、霧化器100は、加圧室101aを有する基体101を備えている。基体101には、加圧室101aに臨むノズル102aが形成されているノズル部102と、同じく加圧室101aに臨む振動子103とが取り付けられている。振動子103は、振動板103aと、圧電素子103bとにより構成されている。
FIG. 10 is a schematic cross-sectional view of the atomizer described in Patent Document 1. As shown in FIG. 10, the atomizer 100 includes a base body 101 having a pressurizing chamber 101a. A nozzle portion 102 in which a nozzle 102 a facing the pressurizing chamber 101 a is formed and a vibrator 103 that also faces the pressurizing chamber 101 a are attached to the base 101. The vibrator 103 includes a diaphragm 103a and a piezoelectric element 103b.
霧化器100では、圧電素子103bが屈曲振動することにより、圧電素子103bと共に振動板103aも屈曲振動する。これにより、加圧室101a内の圧力が変動する。その結果、ノズル102aから霧が放出される。
In the atomizer 100, when the piezoelectric element 103b is flexibly vibrated, the diaphragm 103a is also flexibly vibrated together with the piezoelectric element 103b. As a result, the pressure in the pressurizing chamber 101a varies. As a result, fog is discharged from the nozzle 102a.
図11は、特許文献2に記載の霧化器の略図的断面図である。図11に示すように、霧化器200は、加圧室201に臨むノズル202aを有するノズル板202を備えている。ノズル板202の加圧室201側の表面上には、たわみ振動(屈曲振動)する圧電素子203が取り付けられている。圧電素子203は、ノズル板202のノズル202aが設けられている中央部を覆わないように、リング状に形成されている。
FIG. 11 is a schematic cross-sectional view of the atomizer described in Patent Document 2. As shown in FIG. 11, the atomizer 200 includes a nozzle plate 202 having a nozzle 202 a facing the pressurizing chamber 201. On the surface of the nozzle plate 202 on the pressure chamber 201 side, a piezoelectric element 203 that flexures (bends) is attached. The piezoelectric element 203 is formed in a ring shape so as not to cover the central portion where the nozzle 202a of the nozzle plate 202 is provided.
霧化器200では、圧電素子203が屈曲振動することにより、ノズル板202も屈曲振動する。これにより、加圧室201内の圧力が変動する。その結果、ノズル202aから霧が放出される。
In the atomizer 200, the piezoelectric vibration of the piezoelectric element 203 causes the nozzle plate 202 to bend and vibrate. Thereby, the pressure in the pressurizing chamber 201 varies. As a result, fog is discharged from the nozzle 202a.
上記霧化器100,200のように、圧電素子103b、203により、振動板103aやノズル板202を振動させる場合、振動板103aやノズル板202の形状によっては、振動板103aやノズル板202が好適に振動しない場合があった。例えば、振動板103aやノズル板202の一部のみが振動し、他の部分が振動しない場合もあった。このため、振動板103aやノズル板202の形状を、加圧室101a、201に対して好適な圧力変動を付与できる形状にできない場合があった。従って、上記霧化器100,200では、十分に霧化性能を実現することが困難であるという問題があった。
When the vibrating plate 103a and the nozzle plate 202 are vibrated by the piezoelectric elements 103b and 203 like the atomizers 100 and 200, the vibrating plate 103a and the nozzle plate 202 may be changed depending on the shape of the vibrating plate 103a and the nozzle plate 202. There was a case where it did not vibrate properly. For example, only a part of the diaphragm 103a and the nozzle plate 202 may vibrate and other parts may not vibrate. For this reason, the shape of the diaphragm 103a and the nozzle plate 202 may not be a shape that can give a suitable pressure fluctuation to the pressurizing chambers 101a and 201. Therefore, the atomizers 100 and 200 have a problem that it is difficult to sufficiently realize the atomization performance.
本発明は、かかる点に鑑みてなされたものであり、その目的は、高い霧化性能を実現し得る霧化器を提供することにある。
The present invention has been made in view of such a point, and an object thereof is to provide an atomizer capable of realizing high atomization performance.
本発明に係る霧化器は、霧化器本体と、圧電振動子とを備えている。霧化器本体には、液体が供給される加圧室が形成されている。霧化器本体は、貫通孔形成部と振動部とを含む。貫通孔形成部には、加圧室に臨む貫通孔が形成されている。振動部は、加圧室に臨んでいる。圧電振動子は、振動部を振動させる。圧電振動子は、筒状の圧電体と、第1の電極と、第2の電極とを有する。圧電体の一方の端部は、振動部の外縁部に接合されている。第1及び第2の電極は、圧電体に電圧を印加する。
The atomizer according to the present invention includes an atomizer body and a piezoelectric vibrator. The atomizer main body is formed with a pressurizing chamber to which a liquid is supplied. The atomizer body includes a through hole forming part and a vibrating part. A through hole facing the pressurizing chamber is formed in the through hole forming portion. The vibration part faces the pressurizing chamber. The piezoelectric vibrator vibrates the vibration part. The piezoelectric vibrator has a cylindrical piezoelectric body, a first electrode, and a second electrode. One end of the piezoelectric body is joined to the outer edge of the vibration part. The first and second electrodes apply a voltage to the piezoelectric body.
本発明に係る霧化器のある特定の局面では、貫通孔と振動部とは、加圧室を介して対向している。この構成では、加圧室の貫通孔形成部付近の部分の圧力を効率的に変動させることができる。従って、より高い霧化性能を得ることができる。
In a specific aspect of the atomizer according to the present invention, the through hole and the vibrating portion are opposed to each other through the pressurizing chamber. In this configuration, the pressure in the vicinity of the through hole forming portion of the pressurizing chamber can be varied efficiently. Therefore, higher atomization performance can be obtained.
本発明に係る霧化器の他の特定の局面では、振動部は、貫通孔形成部とは反対側に突出する板状に形成されている。この構成では、加圧室の貫通孔形成部付近の部分の圧力をさらに効率的に変動させることができる。従って、さらに高い霧化性能を得ることができる。
In another specific aspect of the atomizer according to the present invention, the vibration part is formed in a plate shape protruding to the opposite side to the through hole forming part. In this configuration, the pressure in the portion near the through hole forming portion of the pressurizing chamber can be changed more efficiently. Therefore, higher atomization performance can be obtained.
本発明に係る霧化器の別の特定の局面では、振動部は、焦点を有する曲面状に形成されており、貫通孔形成部は、振動部の任意の点から振動部の焦点を通って貫通孔形成部に至るまでの距離が、上記振動部の任意の点から振動部の焦点までの距離の2倍以内となるように配置されている。すなわち、振動部から発生した波面が、貫通孔形成部に到達する時には、少なくとの振動部から発生した波面より小さくなる位置に、貫通孔形成部が配置されている。例えば、振動部と焦点との間の領域に貫通孔形成部が配置されていてもよい。この構成では、加圧室の貫通孔付近の部分の圧力を特に効率的に変動させることができる。従って、特に高い霧化性能を得ることができる。なお、焦点を有する曲面とは、球面、楕円面、放物面などが挙げられる。このとき、曲面状の振動部は、貫通孔形成部よりも面積が大きいことが好ましい。この場合、振動部で振動を、貫通孔形成部の全体に集束させることができ、複数の貫通孔への振動伝搬が容易になるためである。
なお、本発明では、焦点とは幾何的な焦点でだけでなく、曲面状の振動部から発生した波面が媒質を伝搬する場合、波面が一旦集束して、その後に拡散するとき、波面が極小となる領域を指す概念とする。 In another specific aspect of the atomizer according to the present invention, the vibrating part is formed in a curved surface having a focal point, and the through hole forming part passes through the focal point of the vibrating part from an arbitrary point of the vibrating part. It arrange | positions so that the distance to a through-hole formation part may be less than twice the distance from the arbitrary points of the said vibration part to the focus of a vibration part. In other words, when the wavefront generated from the vibrating portion reaches the through-hole forming portion, the through-hole forming portion is arranged at a position smaller than the wavefront generated from at least the vibrating portion. For example, a through hole forming part may be arranged in a region between the vibrating part and the focal point. In this configuration, the pressure in the portion near the through hole of the pressurizing chamber can be varied particularly efficiently. Therefore, particularly high atomization performance can be obtained. Note that a curved surface having a focus includes a spherical surface, an elliptical surface, a paraboloid, and the like. At this time, it is preferable that the curved vibrating portion has a larger area than the through-hole forming portion. In this case, the vibration can be focused on the entirety of the through-hole forming portion, and vibration propagation to the plurality of through-holes can be facilitated.
In the present invention, the focal point is not only a geometrical focal point, but also when a wavefront generated from a curved vibrating section propagates through a medium, the wavefront is minimal when the wavefront once converges and then diffuses. This is a concept that points to
なお、本発明では、焦点とは幾何的な焦点でだけでなく、曲面状の振動部から発生した波面が媒質を伝搬する場合、波面が一旦集束して、その後に拡散するとき、波面が極小となる領域を指す概念とする。 In another specific aspect of the atomizer according to the present invention, the vibrating part is formed in a curved surface having a focal point, and the through hole forming part passes through the focal point of the vibrating part from an arbitrary point of the vibrating part. It arrange | positions so that the distance to a through-hole formation part may be less than twice the distance from the arbitrary points of the said vibration part to the focus of a vibration part. In other words, when the wavefront generated from the vibrating portion reaches the through-hole forming portion, the through-hole forming portion is arranged at a position smaller than the wavefront generated from at least the vibrating portion. For example, a through hole forming part may be arranged in a region between the vibrating part and the focal point. In this configuration, the pressure in the portion near the through hole of the pressurizing chamber can be varied particularly efficiently. Therefore, particularly high atomization performance can be obtained. Note that a curved surface having a focus includes a spherical surface, an elliptical surface, a paraboloid, and the like. At this time, it is preferable that the curved vibrating portion has a larger area than the through-hole forming portion. In this case, the vibration can be focused on the entirety of the through-hole forming portion, and vibration propagation to the plurality of through-holes can be facilitated.
In the present invention, the focal point is not only a geometrical focal point, but also when a wavefront generated from a curved vibrating section propagates through a medium, the wavefront is minimal when the wavefront once converges and then diffuses. This is a concept that points to
本発明に係る霧化器のさらに他の特定の局面では、振動部は、貫通孔形成部側に突出する板状に形成されており、貫通孔形成部と、振動部の貫通孔形成部と対向している部分との間の距離は、貫通孔形成部と振動部との間に加圧室内の液体が毛細管現象により給液される距離とされている。この構成によれば、霧化が行われる貫通孔形成部の全体に効率的に液体を供給することができる。
In still another specific aspect of the atomizer according to the present invention, the vibration part is formed in a plate shape protruding toward the through hole forming part side, and the through hole forming part, the through hole forming part of the vibration part, The distance between the facing portions is a distance at which the liquid in the pressurized chamber is supplied by capillary action between the through hole forming portion and the vibrating portion. According to this configuration, the liquid can be efficiently supplied to the entire through-hole forming portion where atomization is performed.
本発明に係る霧化器のさらに別の特定の局面では、圧電体は、回転対称軸を有する。この構成によれば、振動部をより効率的に振動させることができる。
In yet another specific aspect of the atomizer according to the present invention, the piezoelectric body has a rotational symmetry axis. According to this configuration, the vibration part can be vibrated more efficiently.
本発明に係る霧化器のまた他の特定の局面では、圧電体は、円筒状である。この構成によれば、振動部をさらに効率的に振動させることができる。
In another specific aspect of the atomizer according to the present invention, the piezoelectric body is cylindrical. According to this configuration, the vibration part can be vibrated more efficiently.
本発明に係る霧化器のまた別の特定の局面では、振動部と圧電体とは一体に形成されている。この場合、振動部と圧電体とを同一工程で作製できる。従って、霧化器の製造コストを低減することができる。また、振動部と圧電体との接合強度を高めることができる。
In another specific aspect of the atomizer according to the present invention, the vibrating portion and the piezoelectric body are integrally formed. In this case, the vibration part and the piezoelectric body can be manufactured in the same process. Therefore, the manufacturing cost of the atomizer can be reduced. In addition, the bonding strength between the vibration part and the piezoelectric body can be increased.
本発明に係る霧化器のさらにまた他の特定の局面では、前記圧電振動素子は、円筒呼吸振動する。
In still another specific aspect of the atomizer according to the present invention, the piezoelectric vibration element vibrates in a cylindrical breath.
本発明に係る霧化器のさらにまた別の特定の局面では、加圧室には、液体が満たされる。
In yet another specific aspect of the atomizer according to the present invention, the pressurized chamber is filled with a liquid.
本発明に係る霧化器のまたさらに他の特定の局面では、霧化器は、加圧室に配置されており、加圧室内の液体を貫通孔形成部に供給する液体供給部材をさらに備えている。
In still another specific aspect of the atomizer according to the present invention, the atomizer further includes a liquid supply member that is disposed in the pressurizing chamber and supplies the liquid in the pressurizing chamber to the through-hole forming portion. ing.
本発明では、半径方向に分極されている筒状の圧電体を有する圧電振動子が振動部の外縁部に接続されている。このため、振動部に面方向に沿った応力変動が付与され、その結果、振動部が振動する。よって、振動部がどのような形状である場合にも、振動部を効率的に振動させることができる。従って、振動部の形状を加圧室に圧力変動を付与するのに適した構造とすることができる。その結果、高い霧化性能の実現が可能となる。
In the present invention, a piezoelectric vibrator having a cylindrical piezoelectric body polarized in the radial direction is connected to the outer edge portion of the vibrating portion. For this reason, the stress variation along the surface direction is given to the vibration part, and as a result, the vibration part vibrates. Therefore, the vibrating portion can be vibrated efficiently regardless of the shape of the vibrating portion. Therefore, it is possible to make the shape of the vibration part suitable for applying pressure fluctuation to the pressurizing chamber. As a result, high atomization performance can be realized.
以下、本発明を実施した好ましい形態について、図1~図5に示す霧化器1~3を例に挙げて説明する。但し、霧化器1~3は単なる例示である。本発明は、霧化器1~3に何ら限定されない。
Hereinafter, preferred embodiments of the present invention will be described by taking the atomizers 1 to 3 shown in FIGS. 1 to 5 as examples. However, the atomizers 1 to 3 are merely examples. The present invention is not limited to the atomizers 1 to 3 at all.
(第1の実施形態)
図1は、第1の実施形態に係る霧化器の略図的部分断面斜視図である。図2は、第1の実施形態に係る霧化器の略図的断面図である。 (First embodiment)
FIG. 1 is a schematic partial cross-sectional perspective view of an atomizer according to a first embodiment. FIG. 2 is a schematic cross-sectional view of the atomizer according to the first embodiment.
図1は、第1の実施形態に係る霧化器の略図的部分断面斜視図である。図2は、第1の実施形態に係る霧化器の略図的断面図である。 (First embodiment)
FIG. 1 is a schematic partial cross-sectional perspective view of an atomizer according to a first embodiment. FIG. 2 is a schematic cross-sectional view of the atomizer according to the first embodiment.
本実施形態の霧化器1は、霧化器本体10と、圧電振動子20とを備えている。
The atomizer 1 of the present embodiment includes an atomizer body 10 and a piezoelectric vibrator 20.
霧化器本体10は、加圧室区画部11と、フランジ部12とを備えている。加圧室区画部11は、円板状の上壁部11bと、円板状の底壁部11cと、周壁部11dとを備えている。底壁部11cは、上壁部11bと対向している。周壁部11dは、上壁部11bの周縁と、底壁部11cの周縁とを接続している。これら上壁部11b、底壁部11c及び周壁部11dによって、霧化対象となる液体が満たされる加圧室11aが区画形成されている。なお、加圧室11a内には、例えば、不織布などの、液体を吸収する給液部材が配置されていてもよい。
The atomizer body 10 includes a pressurizing chamber section 11 and a flange 12. The pressurizing chamber partitioning portion 11 includes a disk-shaped upper wall portion 11b, a disk-shaped bottom wall portion 11c, and a peripheral wall portion 11d. The bottom wall portion 11c faces the upper wall portion 11b. The peripheral wall portion 11d connects the peripheral edge of the upper wall portion 11b and the peripheral edge of the bottom wall portion 11c. The upper wall portion 11b, the bottom wall portion 11c, and the peripheral wall portion 11d define a pressurizing chamber 11a filled with a liquid to be atomized. In addition, in the pressurization chamber 11a, the liquid supply member which absorbs liquids, such as a nonwoven fabric, may be arrange | positioned, for example.
底壁部11cと周壁部11dとの接合部には、フランジ部12が接続されている。フランジ部12は、外方に向かって延びている。フランジ部12には、パイプ部12aが設けられている。パイプ部12aの内部には、液体供給通路12a1が形成されている。この液体供給通路12a1を経由して、霧化対象となる液体が加圧室11aに供給される。
A flange portion 12 is connected to a joint portion between the bottom wall portion 11c and the peripheral wall portion 11d. The flange portion 12 extends outward. The flange portion 12 is provided with a pipe portion 12a. A liquid supply passage 12a1 is formed inside the pipe portion 12a. A liquid to be atomized is supplied to the pressurizing chamber 11a through the liquid supply passage 12a1.
なお、霧化対象となる液体の種類は特に限定されない。霧化対象となる液体の具体例としては、例えば、水、水溶液、アルコールや石油類などの有機溶媒などが挙げられる。霧化対象となる液体は、例えば、芳香剤、消臭剤、殺虫剤、防虫剤、香水類、化粧水、洗剤などであってもよい。
Note that the type of liquid to be atomized is not particularly limited. Specific examples of the liquid to be atomized include water, aqueous solutions, organic solvents such as alcohol and petroleum. The liquid to be atomized may be, for example, a fragrance, a deodorant, an insecticide, an insect repellent, a perfume, a lotion, or a detergent.
また、霧化器本体10の材質も特に限定されない。霧化器本体10は、例えば、合成樹脂、金属、ガラス、セラミック、紙などにより形成することができる。具体的には、本実施形態では、霧化器本体10は、セラミックにより形成されている。より詳細には、後述する圧電体20aと霧化器本体10とは、圧電セラミックにより一体に形成されている。このため、少ない製造工程で霧化器1を製造することができる。従って、霧化器1の製造コストを低減することができる。また、霧化器1の剛性及び強度を高めることができる。
Also, the material of the atomizer body 10 is not particularly limited. The atomizer body 10 can be formed of, for example, synthetic resin, metal, glass, ceramic, paper, or the like. Specifically, in this embodiment, the atomizer body 10 is formed of ceramic. More specifically, the piezoelectric body 20a and the atomizer body 10 to be described later are integrally formed of piezoelectric ceramic. For this reason, the atomizer 1 can be manufactured with few manufacturing processes. Therefore, the manufacturing cost of the atomizer 1 can be reduced. Moreover, the rigidity and intensity | strength of the atomizer 1 can be improved.
上壁部11bの中央部には、貫通孔形成部13が設けられている。貫通孔形成部13には、1または複数の貫通孔13aが等間隔に形成されている。貫通孔13aは、加圧室11aに臨むように形成されている。後に詳述するように、霧化器1では、この貫通孔13aから液体が霧として放出される。
A through hole forming portion 13 is provided at the center of the upper wall portion 11b. One or a plurality of through holes 13a are formed in the through hole forming portion 13 at equal intervals. The through hole 13a is formed so as to face the pressurizing chamber 11a. As will be described in detail later, in the atomizer 1, the liquid is discharged as mist from the through-hole 13a.
なお、貫通孔形成部13の形状寸法は、少なくとも貫通孔13aが形成されている限りにおいて特に限定されない。また、貫通孔形成部13は、上壁部11bと一体に形成されていなくてもよい。例えば、別体に形成した円板状の貫通孔形成部を上壁部に取り付けてもよい。例えば上壁部11bと貫通孔形成部13とが別体に形成されている場合は、上壁部11bと貫通孔形成部13とが一体に形成されている場合と比較して、貫通孔13aの形成が容易となる。
In addition, the shape dimension of the through-hole formation part 13 is not specifically limited as long as the through-hole 13a is formed at least. Moreover, the through-hole formation part 13 does not need to be formed integrally with the upper wall part 11b. For example, a disc-shaped through-hole forming part formed separately may be attached to the upper wall part. For example, when the upper wall portion 11b and the through hole forming portion 13 are formed separately, the through hole 13a is compared with the case where the upper wall portion 11b and the through hole forming portion 13 are formed integrally. Can be easily formed.
貫通孔13aの形状及び寸法及び貫通孔13aの数量は、発生させようとする霧の直径や、霧化対象となる液体の性質(例えば粘性等)、所望の霧化性能に応じて適宜設計することができる。例えば、発生させようとする霧の直径が5μmである場合は、貫通孔13aの直径を約5μmとすることができる。
The shape and size of the through hole 13a and the number of the through holes 13a are appropriately designed according to the diameter of the mist to be generated, the property of the liquid to be atomized (for example, viscosity), and the desired atomization performance. be able to. For example, when the diameter of the mist to be generated is 5 μm, the diameter of the through hole 13a can be about 5 μm.
貫通孔13aは、貫通方向に直径が変化しない円筒状の孔であってもよい。また、貫通孔13aは、貫通方向に直径が変化する部分を有する孔であってもよい。例えば、貫通孔13aは、貫通方向外側に向かって先細る孔であってもよい。さらに、貫通孔13aの平面形状は、円形でなくてもよい。貫通孔13aの平面形状は、例えば、多角形状、楕円形状等であってもよい。
The through-hole 13a may be a cylindrical hole whose diameter does not change in the penetration direction. The through hole 13a may be a hole having a portion whose diameter changes in the through direction. For example, the through-hole 13a may be a hole that tapers outward in the penetration direction. Furthermore, the planar shape of the through-hole 13a may not be circular. The planar shape of the through hole 13a may be, for example, a polygonal shape or an elliptical shape.
底壁部11cの中央部には、振動部14が設けられている。この振動部14は、圧電振動子20が駆動されることにより、図2に示す上下方向zに振動し、加圧室11aに圧力変動を付与する部分である。
The vibration part 14 is provided in the center part of the bottom wall part 11c. The vibration portion 14 is a portion that vibrates in the vertical direction z shown in FIG. 2 and applies pressure fluctuation to the pressurizing chamber 11a when the piezoelectric vibrator 20 is driven.
振動部14は、加圧室11aを介して貫通孔13aと対向するように配置されている。振動部14は、貫通孔形成部13とは反対側に突出する板状に形成されている。すなわち、振動部14は、ドーム状に形成されている。より詳細には、図2に示すように、振動部14は、例えば、球面状、楕円面状、放物面状などの、焦点Fを有する曲面状に形成されている。貫通孔13aは、この焦点Fと振動部14との間の領域A内に配置されている。換言すれば、振動部14は、貫通孔13aが焦点Fと振動部14との間の領域A内に位置する形状に形成されている。
The vibrating part 14 is disposed so as to face the through hole 13a through the pressurizing chamber 11a. The vibration part 14 is formed in a plate shape protruding to the opposite side to the through hole forming part 13. That is, the vibration part 14 is formed in a dome shape. More specifically, as illustrated in FIG. 2, the vibration unit 14 is formed in a curved surface having a focal point F such as a spherical shape, an elliptical shape, or a parabolic shape. The through hole 13 a is disposed in a region A between the focal point F and the vibration part 14. In other words, the vibration part 14 is formed in a shape in which the through hole 13 a is located in the region A between the focal point F and the vibration part 14.
圧電振動子20は、筒状の圧電体20aと、第1及び第2の電極20b、20cとを備えている。圧電体20aは、回転対称軸を有する。詳細には、本実施形態では、圧電体20aは、円筒状に形成されている。圧電体20aの一方の端部は、振動部14の外縁部に接続されている。圧電体20aは、振動部14と一体に形成されている。
The piezoelectric vibrator 20 includes a cylindrical piezoelectric body 20a and first and second electrodes 20b and 20c. The piezoelectric body 20a has a rotationally symmetric axis. Specifically, in the present embodiment, the piezoelectric body 20a is formed in a cylindrical shape. One end portion of the piezoelectric body 20 a is connected to the outer edge portion of the vibrating portion 14. The piezoelectric body 20 a is formed integrally with the vibration unit 14.
圧電体20aを構成する圧電材料は、特に限定されない。圧電材料の具体例としては、チタン酸ジルコン酸鉛(PZT)系セラミックなどが挙げられる。
The piezoelectric material constituting the piezoelectric body 20a is not particularly limited. Specific examples of the piezoelectric material include lead zirconate titanate (PZT) ceramics.
第1及び第2の電極20b、20cは、圧電体20aに電圧を印加するための電極である。第1の電極20bは、圧電体20aの内周面上に形成されている。第2の電極20cは、圧電体20aの外周面上に形成されている。
The first and second electrodes 20b and 20c are electrodes for applying a voltage to the piezoelectric body 20a. The first electrode 20b is formed on the inner peripheral surface of the piezoelectric body 20a. The second electrode 20c is formed on the outer peripheral surface of the piezoelectric body 20a.
第1及び第2の電極20b、20cは、圧電体20aに電圧を印加可能であれば特に限定されない。第1及び第2の電極20b、20cは、例えば、Ag、Cu、Au、Pt、Ni、Snなどの金属やCr/Ni合金、Ni/Cu合金などの合金により形成することができる。
The first and second electrodes 20b and 20c are not particularly limited as long as a voltage can be applied to the piezoelectric body 20a. The first and second electrodes 20b and 20c can be formed of, for example, a metal such as Ag, Cu, Au, Pt, Ni, or Sn, or an alloy such as a Cr / Ni alloy or a Ni / Cu alloy.
なお、第1及び第2の電極20b、20cの耐水性が低い場合は、第1及び第2の電極20b、20cの表面に保護膜を形成してもよい。保護膜は、第1及び第2の電極20b、20cよりも耐水性の高いものであれば特に限定されない。保護膜は、例えば、シリコーン樹脂、ポリウレタン樹脂、ポリエステル樹脂などの弾性樹脂により形成することができる。
When the water resistance of the first and second electrodes 20b and 20c is low, a protective film may be formed on the surfaces of the first and second electrodes 20b and 20c. The protective film is not particularly limited as long as it has higher water resistance than the first and second electrodes 20b and 20c. The protective film can be formed of an elastic resin such as a silicone resin, a polyurethane resin, or a polyester resin.
第1及び第2の電極20b、20cの形成方法としては、例えば、スパッタ法や蒸着法などの薄膜形成方法や、導電性ペーストを用いた方法などが挙げられる。
Examples of the method for forming the first and second electrodes 20b and 20c include a thin film forming method such as a sputtering method and a vapor deposition method, a method using a conductive paste, and the like.
圧電体20aは、例えば、3kV/mm程度の電圧を第1及び第2の電極20b、20c間に印加することにより、圧電体20aの半径方向に分極されている。このため、圧電振動子20は、第1及び第2の電極20b、20c間に交流電圧が印加されると、圧電体20aの径方向に振動(以下、「円筒呼吸振動」と称呼する。)する。この円筒呼吸振動は、d31モード及びd33モードの少なくとも一方によるものである。
The piezoelectric body 20a is polarized in the radial direction of the piezoelectric body 20a by applying a voltage of about 3 kV / mm between the first and second electrodes 20b and 20c, for example. Therefore, when an AC voltage is applied between the first and second electrodes 20b and 20c, the piezoelectric vibrator 20 vibrates in the radial direction of the piezoelectric body 20a (hereinafter referred to as “cylindrical respiratory vibration”). To do. This cylindrical respiratory vibration is caused by at least one of the d31 mode and the d33 mode.
具体的には、円筒呼吸振動は、図3に示すような態様の振動である。すなわち、図3(a)~(c)に示すように、第1及び第2の電極20b、20c間に電圧が印加されると、圧電効果により、円筒状の圧電体20aが拡径と縮径とを繰り返す。このため、振動部14に面方向(振動部の延びる方向)に沿った応力変動が付与される。その結果、振動部14が上下方向zに沿って振動する。このため、振動部14の形状に関わらず、振動部14を効率的に振動させることができる。従って、振動部14の形状を加圧室11aの圧力変動を付与するのに適した構造とすることができる。例えば、本実施形態のように、振動部14をドーム状に形成した場合であっても、円筒呼吸振動を利用する本実施形態においては、高い効率で振動部14を振動させることができる。従って、高い霧化性能を実現することができる。
Specifically, the cylindrical breathing vibration is a vibration having a mode as shown in FIG. That is, as shown in FIGS. 3A to 3C, when a voltage is applied between the first and second electrodes 20b and 20c, the cylindrical piezoelectric body 20a expands and contracts due to the piezoelectric effect. Repeat with the diameter. For this reason, the stress fluctuation | variation along a surface direction (direction where a vibration part is extended) is provided to the vibration part 14. FIG. As a result, the vibration unit 14 vibrates along the vertical direction z. For this reason, irrespective of the shape of the vibration part 14, the vibration part 14 can be vibrated efficiently. Therefore, the shape of the vibration part 14 can be made a structure suitable for applying the pressure fluctuation of the pressurizing chamber 11a. For example, even if the vibrating portion 14 is formed in a dome shape as in the present embodiment, the vibrating portion 14 can be vibrated with high efficiency in the present embodiment using cylindrical respiratory vibration. Therefore, high atomization performance can be realized.
特に、本実施形態では、貫通孔形成部13は、振動部14の任意の点から振動部14の焦点Fを通って貫通孔形成部13に至るまでの距離が、上記振動部14の任意の点から振動部14の焦点Fまでの距離の2倍以内となるように配置されている。すなわち、振動部14から発生した波面が、貫通孔形成部13に到達する時には、少なくとの振動部14から発生した波面より小さくなる位置に、貫通孔形成部13が配置されている。具体的には、本実施形態では、振動部14が焦点Fを有する曲面状に形成されており、焦点Fと振動部14との間の領域A内に貫通孔13aが配置されている。従って、加圧室11a内の貫通孔13a付近の領域を効果的に圧力変動させることができる。その結果、より高い霧化性能を実現することができる。
In particular, in the present embodiment, the through hole forming unit 13 has an arbitrary distance from the arbitrary point of the vibrating unit 14 to the through hole forming unit 13 through the focal point F of the vibrating unit 14. It arrange | positions so that it may become less than twice the distance from the point to the focus F of the vibration part 14. FIG. That is, when the wavefront generated from the vibrating portion 14 reaches the through-hole forming portion 13, the through-hole forming portion 13 is disposed at a position smaller than the wavefront generated from at least the vibrating portion 14. Specifically, in the present embodiment, the vibrating portion 14 is formed in a curved shape having a focal point F, and the through hole 13 a is disposed in a region A between the focal point F and the vibrating portion 14. Accordingly, it is possible to effectively vary the pressure in the region near the through hole 13a in the pressurizing chamber 11a. As a result, higher atomization performance can be realized.
また、本実施形態では、圧電体20aが回転対称軸を有する円筒状とされている。従って、さらに高い霧化性能を実現することができる。
In the present embodiment, the piezoelectric body 20a has a cylindrical shape having a rotational symmetry axis. Therefore, higher atomization performance can be realized.
なお、圧電体20aの振動は、自励振であってもよいし、他励振であってもよい。但し、圧電体20aの振動が他励振の場合は、圧電振動子20の表面に液体が付着すると共振周波数が変動する。このため、周波数を変動させないための制御回路が必要となる。従って、圧電体20aの振動は、自励振であることが好ましい。
Note that the vibration of the piezoelectric body 20a may be self-excited or separately excited. However, when the vibration of the piezoelectric body 20a is a separate excitation, the resonance frequency fluctuates when a liquid adheres to the surface of the piezoelectric vibrator 20. For this reason, a control circuit for preventing the frequency from changing is required. Therefore, the vibration of the piezoelectric body 20a is preferably self-excited.
また、圧電体20aに印加する電圧の波形は、例えば、サイン波、ノコギリ波、方形波などであってもよい。中でも、圧電体20aに印加する電圧の波形は、方形波であることが好ましい。方形波を圧電体20aに印加することにより、より高い霧化効率を得ることができるからである。
Further, the waveform of the voltage applied to the piezoelectric body 20a may be, for example, a sine wave, a sawtooth wave, a square wave, or the like. Especially, it is preferable that the waveform of the voltage applied to the piezoelectric body 20a is a square wave. This is because higher atomization efficiency can be obtained by applying a square wave to the piezoelectric body 20a.
霧化のオン/オフ制御は、圧電体20aに印加する電圧をオン/オフ制御することにより行うが、圧電体20aに印加する電圧の波形をAM変調やFM変調するようにしてもよい。
The on / off control of atomization is performed by on / off control of the voltage applied to the piezoelectric body 20a. However, the waveform of the voltage applied to the piezoelectric body 20a may be subjected to AM modulation or FM modulation.
以下、他の実施形態及び変形例について説明する。なお、以下の他の実施形態及び変形例の説明において、上記第1の実施形態と実質的に同じ機能を有する部材を同じ符号で参照し、説明を省略する。
Hereinafter, other embodiments and modifications will be described. In the following description of other embodiments and modifications, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
(第2の実施形態)
図4は、第2の実施形態に係る霧化器の略図的部分断面斜視図である。 (Second Embodiment)
FIG. 4 is a schematic partial cross-sectional perspective view of an atomizer according to a second embodiment.
図4は、第2の実施形態に係る霧化器の略図的部分断面斜視図である。 (Second Embodiment)
FIG. 4 is a schematic partial cross-sectional perspective view of an atomizer according to a second embodiment.
上記第1の実施形態では、振動部14がドーム状に形成されている場合について説明した。但し、本発明において、振動部の形状はドーム状に限定されない。例えば、図4に示す霧化器2のように、振動部14は、平板状に形成されていてもよい。
In the first embodiment, the case where the vibrating portion 14 is formed in a dome shape has been described. However, in the present invention, the shape of the vibrating portion is not limited to a dome shape. For example, like the atomizer 2 illustrated in FIG. 4, the vibration unit 14 may be formed in a flat plate shape.
(第3の実施形態)
図5は、第3の実施形態に係る霧化器の略図的部分断面斜視図である。 (Third embodiment)
FIG. 5 is a schematic partial cross-sectional perspective view of an atomizer according to a third embodiment.
図5は、第3の実施形態に係る霧化器の略図的部分断面斜視図である。 (Third embodiment)
FIG. 5 is a schematic partial cross-sectional perspective view of an atomizer according to a third embodiment.
図5に示すように、本実施形態の霧化器3では、振動部14は、貫通孔形成部13側に突出する板状に形成されている。振動部14は、貫通孔13aと対向する対向部14aを備えている。この対向部14aと貫通孔形成部13との間の距離は、貫通孔形成部13と対向部14aとの間に加圧室11a内の液体が毛細管現象により給液される距離とされている。すなわち、加圧室11aのうち、貫通孔形成部13と対向部14aとの間に位置している部分11a1には、毛細管現象により液体が進入可能である。このため、霧化が行われる貫通孔形成部13の全体に効率的に液体を供給することができる。
As shown in FIG. 5, in the atomizer 3 of this embodiment, the vibration part 14 is formed in the plate shape which protrudes in the through-hole formation part 13 side. The vibration part 14 includes a facing part 14a facing the through hole 13a. The distance between the facing portion 14a and the through hole forming portion 13 is a distance at which the liquid in the pressurizing chamber 11a is supplied between the through hole forming portion 13 and the facing portion 14a by capillary action. . That is, the liquid can enter the portion 11a1 of the pressurizing chamber 11a located between the through hole forming portion 13 and the facing portion 14a by capillary action. For this reason, a liquid can be efficiently supplied to the whole through-hole formation part 13 in which atomization is performed.
(第4の実施形態)
図6は、第4の実施形態に係る霧化器の略図的部分断面斜視図である。図6に示すように、本実施形態では、加圧室11a内に、加圧室11a内の液体を貫通孔形成部13に供給する液体供給部21が配置されている。具体的には、液体供給部21は、毛細管現象により液体を供給する部材であり、例えば、フェルト、不織布、織布、不織紙、キャピラリなどにより構成されている。本実施形態のように、液体供給部21を設けた場合、加圧室11aには、液体が満たされている必要は必ずしもない。 (Fourth embodiment)
FIG. 6 is a schematic partial cross-sectional perspective view of an atomizer according to a fourth embodiment. As shown in FIG. 6, in this embodiment, theliquid supply part 21 which supplies the liquid in the pressurization chamber 11a to the through-hole formation part 13 is arrange | positioned in the pressurization chamber 11a. Specifically, the liquid supply unit 21 is a member that supplies a liquid by capillary action, and includes, for example, felt, nonwoven fabric, woven fabric, non-woven paper, capillary, and the like. When the liquid supply unit 21 is provided as in the present embodiment, the pressurizing chamber 11a is not necessarily filled with liquid.
図6は、第4の実施形態に係る霧化器の略図的部分断面斜視図である。図6に示すように、本実施形態では、加圧室11a内に、加圧室11a内の液体を貫通孔形成部13に供給する液体供給部21が配置されている。具体的には、液体供給部21は、毛細管現象により液体を供給する部材であり、例えば、フェルト、不織布、織布、不織紙、キャピラリなどにより構成されている。本実施形態のように、液体供給部21を設けた場合、加圧室11aには、液体が満たされている必要は必ずしもない。 (Fourth embodiment)
FIG. 6 is a schematic partial cross-sectional perspective view of an atomizer according to a fourth embodiment. As shown in FIG. 6, in this embodiment, the
本実施形態では、振動部14の振動が液体供給部21に伝搬し、貫通孔形成部13に対向している液体供給部21の表面上に位置する液体が霧化される。このため、貫通孔形成部13と液体供給部21との間には、ある程度のギャップが形成されていることが好ましい。
In the present embodiment, the vibration of the vibration unit 14 propagates to the liquid supply unit 21 and the liquid located on the surface of the liquid supply unit 21 facing the through-hole forming unit 13 is atomized. For this reason, it is preferable that a certain amount of gap is formed between the through-hole forming part 13 and the liquid supply part 21.
なお、液体供給部21の厚み寸法は、特に限定されないが、例えば、0.05mm~0.2mm程度であることが好ましい。また、液体供給部21の貫通孔形成部13と対向している表面は、凹状に形成されていることが好ましい。これらの場合には、霧化効率をより高めることができる。
The thickness dimension of the liquid supply unit 21 is not particularly limited, but is preferably about 0.05 mm to 0.2 mm, for example. Further, the surface of the liquid supply unit 21 facing the through hole forming unit 13 is preferably formed in a concave shape. In these cases, the atomization efficiency can be further increased.
(第5の実施形態)
図7は、第5の実施形態における圧電振動子の略図的斜視図である。図8は、第5の実施形態における圧電振動子の略図的断面図である。図9は、第5の実施形態における圧電振動子の電極の略図的展開図である。 (Fifth embodiment)
FIG. 7 is a schematic perspective view of the piezoelectric vibrator according to the fifth embodiment. FIG. 8 is a schematic cross-sectional view of the piezoelectric vibrator according to the fifth embodiment. FIG. 9 is a schematic development view of electrodes of the piezoelectric vibrator in the fifth embodiment.
図7は、第5の実施形態における圧電振動子の略図的斜視図である。図8は、第5の実施形態における圧電振動子の略図的断面図である。図9は、第5の実施形態における圧電振動子の電極の略図的展開図である。 (Fifth embodiment)
FIG. 7 is a schematic perspective view of the piezoelectric vibrator according to the fifth embodiment. FIG. 8 is a schematic cross-sectional view of the piezoelectric vibrator according to the fifth embodiment. FIG. 9 is a schematic development view of electrodes of the piezoelectric vibrator in the fifth embodiment.
上記第1の実施形態では、圧電体20aの内周面の上に第1の電極20bが形成されており、圧電体20aの外周面の上に第2の電極20cが形成されている例について説明した。但し、本発明は、この構成に限定されない。第1及び第2の電極は、例えば、両方が外周面上に形成されていてもよいし、両方が内周面上に形成されていてもよい。
In the first embodiment, the first electrode 20b is formed on the inner peripheral surface of the piezoelectric body 20a, and the second electrode 20c is formed on the outer peripheral surface of the piezoelectric body 20a. explained. However, the present invention is not limited to this configuration. For example, both of the first and second electrodes may be formed on the outer peripheral surface, or both may be formed on the inner peripheral surface.
図7~図9に示す第5の実施形態における圧電振動子20では、第1及び第2の電極20b、20cは、互いに間挿し合うくし歯状に形成されており、両方が圧電体20aの外周面上に設けられている。圧電体20aは、図8に示すように、第1及び第2の電極20b、20cの電極指間で分極されている。圧電体20aの分極は、第1及び第2の電極20b、20c間に電圧を印加することにより行うことができる。
In the piezoelectric vibrator 20 in the fifth embodiment shown in FIGS. 7 to 9, the first and second electrodes 20b and 20c are formed in a comb-tooth shape to be inserted into each other, and both are formed of the piezoelectric body 20a. It is provided on the outer peripheral surface. As shown in FIG. 8, the piezoelectric body 20a is polarized between the electrode fingers of the first and second electrodes 20b and 20c. The polarization of the piezoelectric body 20a can be performed by applying a voltage between the first and second electrodes 20b and 20c.
1~3…霧化器
10…霧化器本体
11…加圧室区画部
11a…加圧室
11b…上壁部
11c…底壁部
11d…周壁部
12…フランジ部
12a…パイプ部
12a1…液体供給通路
13…貫通孔形成部
13a…貫通孔
14…振動部
14a…対向部
20…圧電振動子
20a…圧電体
20b…第1の電極
20c…第2の電極
21…液体供給部 DESCRIPTION OF SYMBOLS 1-3 ...Atomizer 10 ... Atomizer main body 11 ... Pressurization chamber division part 11a ... Pressurization chamber 11b ... Upper wall part 11c ... Bottom wall part 11d ... Peripheral wall part 12 ... Flange part 12a ... Pipe part 12a1 ... Liquid Supply passage 13 ... Through-hole forming part 13a ... Through-hole 14 ... Vibrating part 14a ... Opposing part 20 ... Piezoelectric vibrator 20a ... Piezoelectric body 20b ... First electrode 20c ... Second electrode 21 ... Liquid supply part
10…霧化器本体
11…加圧室区画部
11a…加圧室
11b…上壁部
11c…底壁部
11d…周壁部
12…フランジ部
12a…パイプ部
12a1…液体供給通路
13…貫通孔形成部
13a…貫通孔
14…振動部
14a…対向部
20…圧電振動子
20a…圧電体
20b…第1の電極
20c…第2の電極
21…液体供給部 DESCRIPTION OF SYMBOLS 1-3 ...
Claims (11)
- 液体が供給される加圧室が形成されており、前記加圧室に臨む貫通孔が形成されている貫通孔形成部と、前記加圧室に臨む振動部とを有する霧化器本体と、
前記振動部を振動させる圧電振動子とを備える霧化器であって、
前記圧電振動子は、一方の端部が前記振動部の外縁部に接合されている筒状の圧電体と、前記圧電体に電圧を印加する第1の電極及び第2の電極とを有する、霧化器。
An atomizer body having a pressurizing chamber to which a liquid is supplied, a through-hole forming portion in which a through-hole facing the pressurizing chamber is formed, and a vibrating portion facing the pressurizing chamber;
An atomizer comprising a piezoelectric vibrator that vibrates the vibration part,
The piezoelectric vibrator includes a cylindrical piezoelectric body having one end joined to an outer edge of the vibrating section, and a first electrode and a second electrode that apply a voltage to the piezoelectric body. Atomizer.
- 前記貫通孔と前記振動部とは、前記加圧室を介して対向している、請求項1に記載の霧化器。 The atomizer according to claim 1, wherein the through-hole and the vibration part are opposed to each other through the pressurizing chamber.
- 前記振動部は、前記貫通孔形成部とは反対側に突出する板状に形成されている、請求項2に記載の霧化器。 The atomizer according to claim 2, wherein the vibrating part is formed in a plate shape protruding to the opposite side to the through hole forming part.
- 前記振動部は、焦点を有する曲面状に形成されており、前記貫通孔形成部は、前記振動部の任意の点から前記振動部の焦点を通って前記貫通孔形成部に至るまでの距離が、前記振動部の任意の点から前記振動部の焦点までの距離の2倍以内となるように配置されている、請求項3に記載の霧化器。 The vibrating part is formed in a curved surface having a focal point, and the through hole forming part has a distance from an arbitrary point of the vibrating part to the through hole forming part through the focal point of the vibrating part. The atomizer of Claim 3 arrange | positioned so that it may become less than twice the distance from the arbitrary points of the said vibration part to the focus of the said vibration part.
- 前記振動部は、前記貫通孔形成部側に突出する板状に形成されており、前記貫通孔形成部と、前記振動部の前記貫通孔形成部と対向している部分との間の距離は、前記貫通孔形成部と前記振動部との間に前記加圧室内の液体が毛細管現象により給液される距離とされている、請求項2に記載の霧化器。 The vibrating portion is formed in a plate shape protruding toward the through hole forming portion, and a distance between the through hole forming portion and a portion of the vibrating portion facing the through hole forming portion is The atomizer according to claim 2, wherein a distance between the through-hole forming portion and the vibrating portion is a distance at which the liquid in the pressurized chamber is supplied by capillary action.
- 前記圧電体は、回転対称軸を有する、請求項1~5のいずれか一項に記載の霧化器。 The atomizer according to any one of claims 1 to 5, wherein the piezoelectric body has a rotationally symmetric axis.
- 前記圧電体は、円筒状である、請求項6に記載の霧化器。 The atomizer according to claim 6, wherein the piezoelectric body has a cylindrical shape.
- 前記振動部と前記圧電体とは一体に形成されている、請求項1~7のいずれか一項に記載の霧化器。 The atomizer according to any one of claims 1 to 7, wherein the vibrating section and the piezoelectric body are integrally formed.
- 前記圧電振動素子は、円筒呼吸振動する、請求項1~8のいずれか一項に記載の霧化器。 The atomizer according to any one of claims 1 to 8, wherein the piezoelectric vibration element vibrates in a cylindrical breath.
- 前記加圧室には、前記液体が満たされる、請求項1~9のいずれか一項に記載の霧化器。 The atomizer according to any one of claims 1 to 9, wherein the pressurizing chamber is filled with the liquid.
- 前記加圧室に配置されており、前記加圧室内の液体を前記貫通孔形成部に供給する液体供給部材をさらに備える、請求項1~9のいずれか一項に記載の霧化器。 The atomizer according to any one of claims 1 to 9, further comprising a liquid supply member that is disposed in the pressurizing chamber and supplies the liquid in the pressurizing chamber to the through-hole forming portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011549888A JP5423813B2 (en) | 2010-01-12 | 2010-12-16 | Atomizer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010004150 | 2010-01-12 | ||
JP2010-004150 | 2010-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086810A1 true WO2011086810A1 (en) | 2011-07-21 |
Family
ID=44304101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072681 WO2011086810A1 (en) | 2010-01-12 | 2010-12-16 | Atomizer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5423813B2 (en) |
WO (1) | WO2011086810A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014121688A (en) * | 2012-12-21 | 2014-07-03 | Omron Healthcare Co Ltd | Atomizer |
JP2018507735A (en) * | 2015-03-16 | 2018-03-22 | ザ プロクター アンド ギャンブル カンパニー | System and method for dispensing material |
WO2022151904A1 (en) * | 2021-01-18 | 2022-07-21 | 深圳麦克韦尔科技有限公司 | Piezoelectric ceramic plate and electronic atomization device |
CN115515705A (en) * | 2020-06-03 | 2022-12-23 | 株式会社村田制作所 | Bubble generation device and bubble generation system |
US12083239B2 (en) | 2011-07-15 | 2024-09-10 | Soclean, Inc. | Devices, systems and methods for treating medical devices having passageways with ozone gas |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024059245A1 (en) | 2022-09-16 | 2024-03-21 | Soclean, Inc. | Disinfection systems and methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54174935U (en) * | 1978-05-30 | 1979-12-10 | ||
JPH06262109A (en) * | 1993-03-16 | 1994-09-20 | Matsushita Electric Ind Co Ltd | Atomizer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5862411A (en) * | 1981-10-12 | 1983-04-13 | Matsushita Electric Ind Co Ltd | Atomizer |
JPH0663474A (en) * | 1992-08-20 | 1994-03-08 | Matsushita Electric Ind Co Ltd | Atomizing device |
-
2010
- 2010-12-16 JP JP2011549888A patent/JP5423813B2/en not_active Expired - Fee Related
- 2010-12-16 WO PCT/JP2010/072681 patent/WO2011086810A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54174935U (en) * | 1978-05-30 | 1979-12-10 | ||
JPH06262109A (en) * | 1993-03-16 | 1994-09-20 | Matsushita Electric Ind Co Ltd | Atomizer |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083239B2 (en) | 2011-07-15 | 2024-09-10 | Soclean, Inc. | Devices, systems and methods for treating medical devices having passageways with ozone gas |
JP2014121688A (en) * | 2012-12-21 | 2014-07-03 | Omron Healthcare Co Ltd | Atomizer |
JP2018507735A (en) * | 2015-03-16 | 2018-03-22 | ザ プロクター アンド ギャンブル カンパニー | System and method for dispensing material |
CN115515705A (en) * | 2020-06-03 | 2022-12-23 | 株式会社村田制作所 | Bubble generation device and bubble generation system |
CN115515705B (en) * | 2020-06-03 | 2024-06-11 | 株式会社村田制作所 | Bubble generating device and bubble generating system |
WO2022151904A1 (en) * | 2021-01-18 | 2022-07-21 | 深圳麦克韦尔科技有限公司 | Piezoelectric ceramic plate and electronic atomization device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011086810A1 (en) | 2013-05-16 |
JP5423813B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5382004B2 (en) | Atomizing member and atomizer provided with the same | |
JP5365690B2 (en) | Atomization unit and atomizer equipped with the same | |
JP5423813B2 (en) | Atomizer | |
US5518179A (en) | Fluid droplets production apparatus and method | |
US6341732B1 (en) | Method and apparatus for maintaining control of liquid flow in a vibratory atomizing device | |
AU2001268438A1 (en) | Method and apparatus for maintaining control of liquid flow in a vibratory atomizing device | |
Al-Jumaily et al. | On the development of focused ultrasound liquid atomizers | |
US20090277971A1 (en) | Economical, dripless, reciprocating atomizer | |
US20200122182A1 (en) | Device for atomizing fluid | |
JP2012020207A (en) | Atomizing device and atomizer using the same | |
JP2644621B2 (en) | Ultrasonic atomizer | |
JP5505497B2 (en) | Atomizer | |
JP5238453B2 (en) | Electrostatic atomizer | |
JP4812657B2 (en) | Ultrasonic atomizer and equipment equipped with the same | |
JPH04298262A (en) | Ultrasonic liquid atomizer | |
JP3083902B2 (en) | Ultrasonic atomizer | |
WO2020102464A1 (en) | Compact ultrasonic atomizers using folded resonators | |
JP2011147913A (en) | Atomizer | |
JP2008207055A (en) | Ultrasonic atomizing device and equipment provided with the same | |
JP2013022199A (en) | Mist generator and cosmetic device | |
JPH04371273A (en) | Ultrasonic wave generating element | |
JP6375157B2 (en) | Ultrasonic vibration unit | |
JP2016147248A (en) | Atomizer | |
JPH04207799A (en) | Ultrasonic atomizer | |
JP2005040759A (en) | Vibration type atomizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843165 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011549888 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10843165 Country of ref document: EP Kind code of ref document: A1 |