WO2022190570A1 - Bubble generation device and bubble generation system - Google Patents

Bubble generation device and bubble generation system Download PDF

Info

Publication number
WO2022190570A1
WO2022190570A1 PCT/JP2021/047549 JP2021047549W WO2022190570A1 WO 2022190570 A1 WO2022190570 A1 WO 2022190570A1 JP 2021047549 W JP2021047549 W JP 2021047549W WO 2022190570 A1 WO2022190570 A1 WO 2022190570A1
Authority
WO
WIPO (PCT)
Prior art keywords
bubble generator
air bubble
spring portion
liquid
cylindrical body
Prior art date
Application number
PCT/JP2021/047549
Other languages
French (fr)
Japanese (ja)
Inventor
克己 藤本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022190570A1 publication Critical patent/WO2022190570A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present disclosure relates to an air bubble generator and an air bubble generation system.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-87984
  • the bubble generator described in Patent Document 1 uses a piezoelectric element to generate fine bubbles.
  • the vertical vibration at the central portion of the vibration plate that vibrates in bending is used to tear off the bubbles generated in the pores formed in the vibration plate by vibration to make them finer. Therefore, one surface of the diaphragm with pores formed therein is always exposed to liquid such as water, while the other surface needs to be provided with a space for introducing gas for generating air bubbles.
  • a piezoelectric element is arranged directly below the diaphragm. In this case, there is a possibility that the liquid seeps through the pores of the vibration plate, corrodes the piezoelectric element, and chemically and electrically degrades the piezoelectric element.
  • An object of the present disclosure is to provide an air bubble generator and an air bubble generation system that prevent chemical and electrical deterioration of piezoelectric elements caused by liquid seeping out from the pores of the diaphragm.
  • a bubble generator is a bubble generator that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank.
  • the air bubble generator includes a diaphragm provided at a position where a plurality of openings are formed, one surface is in contact with liquid and the other surface is in contact with gas, and a first cylindrical body supporting the diaphragm at one end. a plate-shaped spring supporting the other end of the first cylindrical body; and a second cylindrical body supporting the spring at one end at a position outside the position supporting the first cylindrical body. and a piezoelectric element that vibrates the spring portion.
  • the spring part has at least one communicating part that allows gas to flow from the side surface into the first tubular body on the other side of the diaphragm.
  • a bubble generation system includes the above-described bubble generation device and a liquid tank.
  • the piezoelectric element it is possible to prevent the piezoelectric element from chemically and electrically deteriorating due to liquid exuding from the pores of the diaphragm.
  • FIG. 1 is a schematic diagram of an air bubble generation system in which an air bubble generator according to an embodiment is used;
  • FIG. 1 is a perspective cross-sectional view of an air bubble generator according to an embodiment;
  • FIG. 1 is a cross-sectional view of an air bubble generator according to an embodiment;
  • FIG. It is a perspective view of a spring portion according to the present embodiment. It is a figure for demonstrating the vibration of the diaphragm of the air-bubble generator which concerns on this Embodiment.
  • It is a perspective sectional view of the air-bubble generator which concerns on the modified example 1 of this Embodiment.
  • It is a perspective sectional view of the air-bubble generator which concerns on the modified example 2 of this Embodiment.
  • FIG. 11 is a perspective view of a spring portion according to Modification 3 of the embodiment;
  • FIG. 1 is a schematic diagram of an air bubble generation system 100 in which an air bubble generator 1 according to this embodiment is used.
  • the air bubble generator 1 shown in FIG. 1 is provided at the bottom of a liquid tank 10 that stores liquid such as water, gasoline, light oil, etc., and is used as an air bubble generation system 100 that generates fine air bubbles 200 in the liquid in the liquid tank 10. Used.
  • the air bubble generating system 100 can be applied to various systems such as a water purification device, a wastewater treatment device, a fish tank, and a fuel injection device.
  • the liquid introduced into the liquid tank 10 differs depending on the system to be applied. Water is used in the case of a water purification device, but liquid fuel is used in the case of a fuel injection device.
  • the liquid tank 10 only needs to be able to temporarily store the liquid, and includes a tube into which the liquid is introduced and the liquid constantly flows through the tube.
  • the air bubble generator 1 includes a diaphragm 2, a cylindrical body 3, and a piezoelectric element 4.
  • the air bubble generator 1 is provided at the bottom of a liquid tank 10, and vibrates a vibration plate 2 protruding from the bottom of the liquid tank 10 to the liquid side by a piezoelectric element 4, thereby generating a plurality of pores ( The minute air bubbles 200 are generated from the opening).
  • the air bubble generator 1 is connected to the inner wall surface of the liquid tank 10 by the first holding plate 5 and the second holding plate 6 .
  • the diaphragm 2 is made of, for example, a resin plate, a metal plate, a Si or SOI (Silicon On Insulator) substrate, a porous ceramic plate, a glass plate, or the like.
  • the vibration plate 2 When the vibration plate 2 is made of a glass plate, it may be made of a glass plate that transmits ultraviolet light and deep ultraviolet light with wavelengths of 200 nm to 380 nm, for example.
  • a light source that emits ultraviolet light is provided from the other side of the diaphragm 2 to the liquid in the liquid tank 10, and sterilization by ozone generation and ultraviolet light irradiation. It can also be used as a sterilization by.
  • the vibration plate 2 has a plurality of pores, one surface is in contact with the liquid (eg water) of the liquid tank 10, and the other surface is in contact with gas (eg air).
  • the liquid and the air are separated by the diaphragm 2, and the gas is fed in the direction of the arrow shown in FIG.
  • the air bubble generator 1 generates fine air bubbles 200 by tearing off the gas sent through a plurality of pores by vibration of the diaphragm 2 .
  • the surface tension of the liquid prevents the gas from entering the liquid side, while the buoyancy of the gas acts to cut off the surface tension. become.
  • the diameter of the air bubble 200 is determined by this balance, and the vibration of the diaphragm 2 produces the effect of peeling the air bubble 200 from the wall surface of the pore, as if the surface tension were reduced.
  • the gas is torn off due to the vibration of the diaphragm 2, and the diameter of the fine particles is reduced to about 1/10 compared to when the vibration of the diaphragm 2 is not applied. bubbles 200 can be generated.
  • a plurality of pores are formed in a 5 mm x 5 mm area provided in the central portion of the diaphragm 2 with a diameter of 14 mm.
  • the pore diameter is 1 ⁇ m and the pore interval is 0.25 mm, 441 pores can be formed in an area of 5 mm ⁇ 5 mm.
  • FIG. 2 is a perspective cross-sectional view of the air bubble generator 1 according to this embodiment.
  • FIG. 3 is a cross-sectional view of the air bubble generator according to this embodiment.
  • FIG. 4 is a perspective view of the spring portion 32 according to this embodiment.
  • the tubular body 3 shown in FIG. 1 includes a first tubular body 31, a spring portion 32, a second tubular body 33, a flange portion 34, a third tubular body 35 and a weight portion 36 as shown in FIG. I'm in.
  • the end of the diaphragm 2 is held by the end of the cylindrical first tubular body 31 .
  • Diaphragm 2 is supported by first tubular body 31 at a position where the penetrating direction of the plurality of pores formed in diaphragm 2 is parallel to the vibration direction of first tubular body 31 .
  • the first cylindrical body 31 is supported by the spring portion 32 at the end opposite to the diaphragm 2 side.
  • the spring portion 32 is an elastically deformable plate-like member, supports the bottom surface of the first cylindrical body 31, and extends outward from the supported position.
  • the spring portion 32 has a circular shape with a depressed center.
  • the spring part 32 is supported by the second tubular body 33 at a position outside the position where the first tubular body 31 is supported.
  • the second cylindrical body 33 has a cylindrical shape.
  • the second cylindrical body 33 supports the spring portion 32 with one end.
  • the other end of the second tubular body 33 is supported by a third tubular body 35 via a flange portion 34 .
  • the third tubular body 35 has a cylindrical shape.
  • the third tubular body 35 supports the second tubular body 33 with one end.
  • the other end of the third cylindrical body 35 has a cylindrical weight portion 36 on the outside.
  • the shape, position and mass of the weight portion 36 satisfy the conditions that enable driving in which the outer end portion of the spring portion 32 or the outer surface of the second cylindrical body 33 becomes a vibration node.
  • the shape, position and mass of the weight 36 are determined by performing a simulation including other configurations of the air bubble generator 1 so as to satisfy the conditions.
  • the air bubble generator 1 may not have the weight 36 as long as it can be driven such that the outer end of the spring 32 or the outer surface of the second cylindrical body 33 becomes a vibration node. .
  • a circular piezoelectric element 4 is provided on the lower surface of the spring portion 32 so as to match the shape of the spring portion 32 and cover the entire inner diameter of the second cylindrical body 33 .
  • the piezoelectric element 4 vibrates in the penetrating direction of the first cylindrical body 31 (vertical direction in the drawing).
  • the spring portion 32 is vibrated in the penetrating direction of the first cylindrical body 31, and the first cylindrical body 31 is substantially uniformly displaced in the vertical direction.
  • the shape, position and mass of the weight 36 are determined by performing a simulation including other configurations of the air bubble generator 1 so as to satisfy the conditions.
  • the air bubble generator 1 does not have to have the weight 36 as long as the vibration plate 2 can be driven to vertically vibrate in parallel.
  • the first tubular body 31, the spring part 32, the second tubular body 33, the flange part 34, the third tubular body 35, and the weight part 36 are integrally formed.
  • the first tubular body 31, the spring portion 32, the second tubular body 33, the flange portion 34, the third tubular body 35, and the weight portion 36 are made of, for example, metal such as stainless steel or synthetic resin. Preferably, a highly rigid metal such as stainless steel is desirable.
  • the first tubular body 31, the spring portion 32, the second tubular body 33, the flange portion 34, the third tubular body 35, and the weight portion 36 may be formed as separate members or may be formed as separate members. You may A method for joining the diaphragm 2 and the first cylindrical body 31 is not particularly limited. Diaphragm 2 and first cylindrical body 31 may be joined by adhesive, welding, fitting, press-fitting, or the like.
  • the air bubble generator 1 is connected to the bottom side of the liquid tank 10 by the first holding plate 5 at the outer end of the spring portion 32, and the second tubular body 33 is connected to the side surface of the liquid tank 10. It is joined to the bottom side of the liquid tank 10 by means of a second retaining plate 6 on its outer side.
  • the outer end portion of the spring portion 32 or the outer surface of the second cylindrical body 33 is substantially non-vibrating even if the diaphragm 2 is vibrated by the piezoelectric element 4 as will be described later. Therefore, it is possible to substantially vibrate only the vibration plate 2 without transmitting the vibration of the piezoelectric element 4 to the liquid tank 10 .
  • the air bubble generator 1 is connected to the inner wall surface of the liquid tank 10 via the first retaining plate 5 and the second retaining plate 6 .
  • the first holding plate 5 is connected to the outer end of the spring portion 32 and the flange portion of the inner wall surface of the liquid tank 10 .
  • the second holding plate 6 is connected to a flange portion 33 a provided on the outer surface of the second cylindrical body 33 and a flange portion of the inner wall surface of the liquid tank 10 .
  • a space 10b is formed in a region sandwiched between the first holding plate 5 and the second holding plate 6.
  • a flange portion may be provided at the outer end portion of the spring portion 32, or the configuration may be such that the flange portion 33a on the outer surface of the second tubular body 33 is removed.
  • the spring part 32 is provided with a recess 32b in the center.
  • a communicating portion 32a is provided toward the outside of the spring portion 32 so as to be connected from the side surface of the recessed portion 32b.
  • the air that has flowed in from the vertical hole 10a of the liquid tank 10 flows through the space 10b, passes through the communicating portion 32a, and passes through the recessed portion 32b to the first cylindrical body 31 and the diaphragm 2. flow.
  • the piezoelectric element 4 vibrates by being polarized in the thickness direction, for example.
  • the piezoelectric element 4 is made of lead zirconate titanate piezoelectric ceramics.
  • other piezoelectric ceramics such as (K,Na)NbO3 may be used.
  • a piezoelectric single crystal such as LiTaO3 may be used.
  • the structure of the diaphragm 2 in contact with the liquid is, for example, a glass plate. and can be completely separated. By completely separating the space into which the gas is introduced from the liquid, it is possible to prevent the electrical wiring of the piezoelectric element 4 from being immersed in the liquid. Further, in the bubble generator 1, even when a light source that emits ultraviolet light is provided for the liquid in the liquid tank 10, the light source can be provided in the space into which the gas is introduced. It can also prevent drowning.
  • the bubble generator 1 since air flows into the first cylindrical body 31 from the side surface of the spring portion 32 having a bottom through the communication portion 32a, the liquid does not come into contact with the piezoelectric element 4 provided on the lower surface of the spring portion 32. There is no As a result, the bubble generator 1 can prevent the piezoelectric element 4 from chemically and electrically deteriorating due to the liquid seeping out from the pores of the diaphragm 2 .
  • FIG. 5 is a diagram for explaining the vibration of diaphragm 2 of air bubble generator 1 according to the present embodiment.
  • FIG. 5 shows a cross-sectional view of the air bubble generator 1 showing the displacement resulting from a simulation of vibration of the diaphragm 2 .
  • the dashed line indicates the reference position of the air bubble generator 1 before starting vibration, and the solid line indicates the position of the air bubble generator 1 after displacement.
  • the vibration of the piezoelectric element 4 is not substantially transmitted to the liquid reservoir 10 and the diaphragm 2 can be moved. It can vibrate.
  • the side surface of the spring portion 32 is provided with an opening communicating with the communicating portion 32a. Since the node is formed at the outer end of the spring portion 32, the node is formed at the opening leading to the communicating portion 32a. As a result, the gas can be effectively introduced from the opening leading to the communicating portion 32a which is not displaced even by the vibration of the piezoelectric element 4. As shown in FIG.
  • the spring portion 32 is displaced downward and then upward.
  • the entire first tubular body 31 is displaced upward, and as a result, it is held by the first tubular body 31.
  • the entire diaphragm 2 is displaced upward.
  • the air bubble generating device 1 by vibrating the piezoelectric element 4 as described above, the diaphragm 2 itself is substantially not deformed, and the entire diaphragm 2 is substantially uniformly displaced in the vertical direction. . Therefore, in the air bubble generator 1 , by driving the diaphragm 2 in a planar manner using the vertical resonance of the spring portion 32 , the same shear stress is applied at any position of the diaphragm 2 , and the plurality of fine lines of the diaphragm 2 are subjected to the same shear stress. The gas sent through the holes is torn off by the shear stress to generate uniform bubbles.
  • the bubble generator 1 is attached to the liquid tank 10 and generates fine bubbles in the liquid in the liquid tank 10 .
  • the air bubble generator 1 includes a diaphragm 2 , a first tubular body 31 , a spring portion 32 , a second tubular body 33 , and a piezoelectric element 4 .
  • Diaphragm 2 is provided at a position where a plurality of openings are formed and one surface is in contact with liquid and the other surface is in contact with gas.
  • the first tubular body 31 supports the diaphragm 2 at one end.
  • the spring portion 32 is a plate-like body and supports the other end of the first tubular body 31 .
  • the second tubular body 33 supports the spring portion 32 at a position outside the position where the first tubular body 31 is supported.
  • the piezoelectric element 4 vibrates the spring portion 32 .
  • the spring portion 32 has a communicating portion 32a that allows gas to flow into the first cylindrical body 31 on the other side of the diaphragm 2 from the side surface.
  • the bubble generator 1 can prevent the piezoelectric element 4 from chemically and electrically deteriorating due to the liquid seeping out from the pores of the diaphragm 2 .
  • the bubble generator 1 is held by the first holding plate 5 of the liquid tank 10 .
  • the air bubble generating device 1 is arranged such that the opening of the communicating portion 32a on the side surface of the spring portion 32 is located outside the liquid container side of the liquid tank 10, and the end portion of the first holding plate 5 and the side surface of the spring portion 32 are connected to each other. and are combined.
  • the bubble generator 1 can vibrate the vibration plate 2 without substantially transmitting the vibration of the piezoelectric element 4 to the liquid tank 10 because the outer end of the spring portion 32 serves as a node.
  • the bubble generator 1 is further held by the second holding plate 6 of the liquid tank 10 .
  • the air bubble generator 1 is positioned such that the opening of the communicating portion 32 a on the side surface of the spring portion 32 is sandwiched between the first holding plate 5 and the second holding plate 6 .
  • air bubble generator 1 air flows from the space 10b, which is the area sandwiched between the first holding plate 5 and the second holding plate 6, through the communicating portion 32a and into the first tubular body 31. It is possible to prevent the piezoelectric element 4 from chemically and electrically deteriorating due to the liquid exuding from the pores of the vibration plate 2 .
  • the piezoelectric element 4 is provided on the surface of the spring portion 32 that is supported by the second tubular body 33 . Thereby, the bubble generator 1 can vibrate the spring portion 32 effectively.
  • FIG. 6 is a perspective cross-sectional view of an air bubble generator 1a according to Modification 1 of the present embodiment.
  • the same components as those of the air bubble generator 1 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the pipe 7 is arranged to face the liquid tank 10 through the communicating portion 32a of the spring portion 32.
  • the bubble generator 1a is held by the first holding plate 5, and the second holding plate 6 is not provided.
  • the air from the outside of the liquid tank 10 flows into the inside of the first cylindrical body 31 through the pipes 7 extending in all directions. Therefore, in the air bubble generator 1a, unlike the air bubble generator 1 of the first embodiment, the second holding plate 6 for forming the gas flow path can be eliminated.
  • the pipe 7 may extend in at least one direction, may extend in two directions, three directions, or may extend in five or more directions.
  • the pipe 7 may extend from an opening in the side surface of the spring portion 32 instead of passing through the communicating portion 32a.
  • the air bubble generator 1a includes a pipe 7 that is connected to an opening of a communicating portion 32a on the side surface of the spring portion 32 and allows gas to flow into the communicating portion 32a.
  • the air passing through the pipe 7 flows into the first tubular body 31 in the air bubble generator 1 a , so that the piezoelectric element 4 is chemically and electrically affected by the liquid seeping out from the pores of the vibration plate 2 . Deterioration can be prevented.
  • FIG. 7 is a perspective cross-sectional view of an air bubble generator 1b according to Modification 2 of the present embodiment.
  • the same components as those of the air bubble generator 1a shown in Modification 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the air bubble generating device 1 a is provided with pipes 7 extending in all directions for introducing air from the outside of the liquid tank 10 into the inside of the first cylindrical body 31 .
  • the pipe 7 is arranged closer to the vibration plate 2 than the first holding plate 5, and thus is positioned in the liquid.
  • a lid portion 8 is provided on the lower surface side of the spring portion 32 to prevent liquid from entering from the first cylindrical body side.
  • the piezoelectric element 4 is provided in the circumferential direction at the end of the weight portion 36 opposite to the second cylindrical body 33 .
  • the bubble generator 1 b is held by the first holding plate 5 of the liquid tank 10 .
  • the end portion of the first holding plate 5 and the side surface of the second cylindrical body 33 are connected at a position where the opening of the communication portion 32a on the side surface of the spring portion 32 is inside the liquid tank 10.
  • the air bubble generator 1b includes a pipe 7 connected to an opening of a communicating portion 32a on the side surface of the spring portion 32 and allowing gas to flow into the communicating portion 32a.
  • air passing through the pipe 7 flows into the first tubular body 31 even when the opening of the communicating portion 32a is inside the liquid tank 10, so that the air bubble generating device 1b is closed to the pores of the diaphragm 2. It is possible to prevent chemical and electrical deterioration of the piezoelectric element 4 due to the liquid exuded from.
  • FIG. 8 is a perspective view of a spring portion 38 according to Modification 3 of the present embodiment.
  • the spring part 38 is provided with a recess 38b in the center.
  • a communication portion 38a through which gas flows is provided in a stepwise manner toward the side surface of the spring portion 38 so as to be connected from the side surface of the recess portion 38b.
  • the communicating portion 38 a can allow a large amount of air to flow in from the side surface of the liquid tank 10 .
  • the piezoelectric element 4 may be coated with a chemical-resistant and water-resistant coating that matches the liquid in the liquid tank 10 .
  • 1, 1a, 1b bubble generator 2 diaphragm, 3 cylindrical body, 4 piezoelectric element, 5 first holding plate, 6 second holding plate, 7 piping, 8 lid, 10 liquid tank, 10a vertical hole, 10b space , 20 controller, 31 first cylindrical body, 32 spring part, 32a communicating part, 32b recessed part, 33 second cylindrical body, 33a flange part, 34 flange part, 35 third cylindrical body, 36 weight part, 100 air bubble Generation system, 200 bubbles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)

Abstract

This bubble generation device (1) is provided with a vibrating plate (2), a first cylindrical body (31), a spring part (32), a second cylindrical body (33), and a piezoelectric element (4). The vibrating plate (2) has a plurality of opening parts formed therein, and is provided in a position so that one surface is in contact with a liquid and another surface is in contact with a gas. The first cylindrical body (31) holds the vibrating plate (2) at one end. The spring part (32) is plate-shaped and supports the other end of the first cylindrical body (31). The second cylindrical body (33) supports, at one end, a position of the spring part (32) which is outwards of the position where the first cylindrical body (31) is supported. The piezoelectric element (4) vibrates the spring part (32). The spring part (32) has a communication part (32a) for allowing gas to flow from a side surface into the first cylindrical body (31) on the other surface side of the vibrating plate (2).

Description

気泡発生装置、および気泡発生システムBubble generator and bubble generation system
 本開示は、気泡発生装置、および気泡発生システムに関する。 The present disclosure relates to an air bubble generator and an air bubble generation system.
 近年、微細な気泡を使って水質浄化、排水処理、魚の養殖などが行なわれており、微細な気泡が様々な分野で利用されている。そのため、微細な気泡を発生する気泡発生装置として特開2006-87984号公報(特許文献1)に記載されているような気泡発生装置が開発されている。 In recent years, fine air bubbles have been used in water purification, wastewater treatment, fish farming, etc., and are used in various fields. Therefore, as a bubble generator for generating fine bubbles, a bubble generator as described in Japanese Patent Application Laid-Open No. 2006-87984 (Patent Document 1) has been developed.
 特許文献1に記載の気泡発生装置では、圧電素子を利用して微細な気泡を発生させている。この気泡発生装置では、屈曲振動する振動板の中央部での上下振動を利用して、振動板に形成した細孔で発生した気泡を振動で引きちぎり微細化している。そのため、細孔を形成した振動板の一方の面は、常に水などの液体にさらされているが、他方の面は、気泡を発生させるための気体を導入する空間を設ける必要がある。 The bubble generator described in Patent Document 1 uses a piezoelectric element to generate fine bubbles. In this bubble generator, the vertical vibration at the central portion of the vibration plate that vibrates in bending is used to tear off the bubbles generated in the pores formed in the vibration plate by vibration to make them finer. Therefore, one surface of the diaphragm with pores formed therein is always exposed to liquid such as water, while the other surface needs to be provided with a space for introducing gas for generating air bubbles.
特開2006-87984号公報JP 2006-87984 A
 特許文献1に記載の気泡発生装置では、振動板の直下に圧電素子が配置されている。この場合、液体が振動板の細孔を通じて滲み出すことにより圧電素子側に浸食し圧電素子が化学的、電気的に劣化する可能性があった。 In the air bubble generator described in Patent Document 1, a piezoelectric element is arranged directly below the diaphragm. In this case, there is a possibility that the liquid seeps through the pores of the vibration plate, corrodes the piezoelectric element, and chemically and electrically degrades the piezoelectric element.
 本開示の目的は、振動板の細孔から滲み出した液体による圧電素子の化学的、電気的な劣化を防止する気泡発生装置、および気泡発生システムを提供することである。 An object of the present disclosure is to provide an air bubble generator and an air bubble generation system that prevent chemical and electrical deterioration of piezoelectric elements caused by liquid seeping out from the pores of the diaphragm.
 本開示の一形態に係る気泡発生装置は、液体槽に取り付け、液体槽の液体中に微細な気泡を発生させる気泡発生装置である。気泡発生装置は、複数の開口部が形成され、一方の面が液体と接し、他方の面が気体と接する位置に設けられる振動板と、一方の端で振動板を支持する第1筒状体と、第1筒状体の他方の端を支持する板状のバネ部と、第1筒状体を支持する位置より外側にある位置においてバネ部を一方の端で支持する第2筒状体と、バネ部を振動させる圧電素子と、を備える。バネ部は、側面から振動板の他方の面側の第1筒状体内に気体を流入させる少なくとも1つの連通部を有する。 A bubble generator according to one aspect of the present disclosure is a bubble generator that is attached to a liquid tank and generates fine bubbles in the liquid in the liquid tank. The air bubble generator includes a diaphragm provided at a position where a plurality of openings are formed, one surface is in contact with liquid and the other surface is in contact with gas, and a first cylindrical body supporting the diaphragm at one end. a plate-shaped spring supporting the other end of the first cylindrical body; and a second cylindrical body supporting the spring at one end at a position outside the position supporting the first cylindrical body. and a piezoelectric element that vibrates the spring portion. The spring part has at least one communicating part that allows gas to flow from the side surface into the first tubular body on the other side of the diaphragm.
 本開示の別の一形態に係る気泡発生システムは、前述の気泡発生装置と、液体槽と、を備える。 A bubble generation system according to another aspect of the present disclosure includes the above-described bubble generation device and a liquid tank.
 本開示によれば、振動板の細孔から滲み出した液体による圧電素子の化学的、電気的な劣化を防止することができる。 According to the present disclosure, it is possible to prevent the piezoelectric element from chemically and electrically deteriorating due to liquid exuding from the pores of the diaphragm.
本実施の形態に係る気泡発生装置が用いられる気泡発生システムの概略図である。1 is a schematic diagram of an air bubble generation system in which an air bubble generator according to an embodiment is used; FIG. 本実施の形態に係る気泡発生装置の斜視断面図である。1 is a perspective cross-sectional view of an air bubble generator according to an embodiment; FIG. 本実施の形態に係る気泡発生装置の断面図である。1 is a cross-sectional view of an air bubble generator according to an embodiment; FIG. 本実施の形態に係るバネ部の斜視図である。It is a perspective view of a spring portion according to the present embodiment. 本実施の形態に係る気泡発生装置の振動板の振動を説明するための図である。It is a figure for demonstrating the vibration of the diaphragm of the air-bubble generator which concerns on this Embodiment. 本実施の形態の変形例1に係る気泡発生装置の斜視断面図である。It is a perspective sectional view of the air-bubble generator which concerns on the modified example 1 of this Embodiment. 本実施の形態の変形例2に係る気泡発生装置の斜視断面図である。It is a perspective sectional view of the air-bubble generator which concerns on the modified example 2 of this Embodiment. 本実施の形態の変形例3に係るバネ部の斜視図である。FIG. 11 is a perspective view of a spring portion according to Modification 3 of the embodiment;
 (実施の形態)
 以下に、本実施の形態に係る気泡発生装置、および気泡発生システムについて、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
(Embodiment)
Below, the bubble generation device and the bubble generation system according to the present embodiment will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are given the same reference numerals, and the description thereof will not be repeated.
 図1は、本実施の形態に係る気泡発生装置1が用いられる気泡発生システム100の概略図である。図1に示す気泡発生装置1は、例えば、水,ガソリン,軽油などの液体を貯留する液体槽10の底部に設けられ、液体槽10の液体に微細な気泡200を発生させる気泡発生システム100に用いられる。なお、気泡発生システム100は、例えば、水質浄化装置、排水処理装置、魚の養殖用水槽、燃料噴射装置などの様々なシステムに適用することができる。 FIG. 1 is a schematic diagram of an air bubble generation system 100 in which an air bubble generator 1 according to this embodiment is used. The air bubble generator 1 shown in FIG. 1 is provided at the bottom of a liquid tank 10 that stores liquid such as water, gasoline, light oil, etc., and is used as an air bubble generation system 100 that generates fine air bubbles 200 in the liquid in the liquid tank 10. Used. The air bubble generating system 100 can be applied to various systems such as a water purification device, a wastewater treatment device, a fish tank, and a fuel injection device.
 液体槽10は、適用するシステムにより導入される液体が異なり、水質浄化装置であれば水であるが、燃料噴射装置であれば液体燃料になる。液体槽10は、液体を一時的に貯留することができればよく、液体が導入される管において当該管の中を常に液体が流れるようなものも含む。 The liquid introduced into the liquid tank 10 differs depending on the system to be applied. Water is used in the case of a water purification device, but liquid fuel is used in the case of a fuel injection device. The liquid tank 10 only needs to be able to temporarily store the liquid, and includes a tube into which the liquid is introduced and the liquid constantly flows through the tube.
 気泡発生装置1は、振動板2と、筒状体3と、圧電素子4とを備えている。気泡発生装置1は、液体槽10の底部に設けられ、液体槽10の底部から液体側に突き出た振動板2を圧電素子4により振動させることにより、振動板2に形成した複数の細孔(開口部)から微細な気泡200を発生させている。気泡発生装置1は、第1保持板5および第2保持板6により液体槽10の内壁面と結合している。 The air bubble generator 1 includes a diaphragm 2, a cylindrical body 3, and a piezoelectric element 4. The air bubble generator 1 is provided at the bottom of a liquid tank 10, and vibrates a vibration plate 2 protruding from the bottom of the liquid tank 10 to the liquid side by a piezoelectric element 4, thereby generating a plurality of pores ( The minute air bubbles 200 are generated from the opening). The air bubble generator 1 is connected to the inner wall surface of the liquid tank 10 by the first holding plate 5 and the second holding plate 6 .
 振動板2は、例えば、樹脂板、金属板、SiもしくはSOI(Silicon On Insulator)基板、多孔質のセラミック板、ガラス板などで形成されている。振動板2をガラス板により形成する場合、例えば、波長が200nm~380nmの紫外光および深紫外光を透過させるガラス板により形成してもよい。紫外光および深紫外光を透過させるガラス板により形成することで、振動板2の他方の面側から液体槽10の液体に対して紫外光を発する光源を設け、オゾン生成による殺菌と紫外光照射による殺菌とを兼用させることができる。 The diaphragm 2 is made of, for example, a resin plate, a metal plate, a Si or SOI (Silicon On Insulator) substrate, a porous ceramic plate, a glass plate, or the like. When the vibration plate 2 is made of a glass plate, it may be made of a glass plate that transmits ultraviolet light and deep ultraviolet light with wavelengths of 200 nm to 380 nm, for example. By forming a glass plate that transmits ultraviolet light and deep ultraviolet light, a light source that emits ultraviolet light is provided from the other side of the diaphragm 2 to the liquid in the liquid tank 10, and sterilization by ozone generation and ultraviolet light irradiation. It can also be used as a sterilization by.
 振動板2は、複数の細孔が形成され、一方の面が液体槽10の液体(例えば、水)と接し、他方の面が気体(例えば、空気)と接している。気泡発生装置1では、振動板2により液体と空気とを分離し、液体槽10に設けられた縦穴10aを通じて図1に示す矢印方向から気体が送り込まれる。気泡発生装置1は、複数の細孔を通って送り込まれた気体を、振動板2の振動により引きちぎることで微細な気泡200を発生させている。 The vibration plate 2 has a plurality of pores, one surface is in contact with the liquid (eg water) of the liquid tank 10, and the other surface is in contact with gas (eg air). In the air bubble generator 1, the liquid and the air are separated by the diaphragm 2, and the gas is fed in the direction of the arrow shown in FIG. The air bubble generator 1 generates fine air bubbles 200 by tearing off the gas sent through a plurality of pores by vibration of the diaphragm 2 .
 さらに詳しく説明すると、複数の細孔から気体が出ようとする際、液体の表面張力によって液体側へ気体が侵入するのを阻害される一方、気体の浮力によりその表面張力を断ち切る力が働くことになる。このバランスにより気泡200の径が決まることになるが、振動板2の振動により細孔の壁面からの引きはがし効果が生じ、あたかも表面張力が小さくなったかのような状態となる。その結果、複数の細孔から気体が出ようとする初期の段階で、振動板2の振動により気体が引きちぎられ、振動板2の振動を加えない場合に比べて1/10程度の径の微細な気泡200を発生させることができる。 In more detail, when gas tries to escape from multiple pores, the surface tension of the liquid prevents the gas from entering the liquid side, while the buoyancy of the gas acts to cut off the surface tension. become. The diameter of the air bubble 200 is determined by this balance, and the vibration of the diaphragm 2 produces the effect of peeling the air bubble 200 from the wall surface of the pore, as if the surface tension were reduced. As a result, at the initial stage when the gas is about to come out from the plurality of pores, the gas is torn off due to the vibration of the diaphragm 2, and the diameter of the fine particles is reduced to about 1/10 compared to when the vibration of the diaphragm 2 is not applied. bubbles 200 can be generated.
 図示していないが、たとえば、直径14mmの振動板2の中央部に設けた5mm×5mmの領域に複数の細孔が形成されている。細孔の孔径を1μm、細孔の間隔を0.25mmにした場合、5mm×5mmの領域に441個の細孔を形成することができる。 Although not shown, for example, a plurality of pores are formed in a 5 mm x 5 mm area provided in the central portion of the diaphragm 2 with a diameter of 14 mm. When the pore diameter is 1 μm and the pore interval is 0.25 mm, 441 pores can be formed in an area of 5 mm×5 mm.
 気泡発生装置1では、筒状体3を介して圧電素子4により振動板2を振動させている。図2は、本実施の形態に係る気泡発生装置1の斜視断面図である。図3は、本実施の形態に係る気泡発生装置の断面図である。図4は、本実施の形態に係るバネ部32の斜視図である。図1に示す筒状体3は、図3に示すように第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35および錘部36を含んでいる。 In the air bubble generator 1 , the vibration plate 2 is vibrated by the piezoelectric element 4 through the cylindrical body 3 . FIG. 2 is a perspective cross-sectional view of the air bubble generator 1 according to this embodiment. FIG. 3 is a cross-sectional view of the air bubble generator according to this embodiment. FIG. 4 is a perspective view of the spring portion 32 according to this embodiment. The tubular body 3 shown in FIG. 1 includes a first tubular body 31, a spring portion 32, a second tubular body 33, a flange portion 34, a third tubular body 35 and a weight portion 36 as shown in FIG. I'm in.
 振動板2の端部は、円筒状の第1筒状体31の端部により保持されている。振動板2に形成された複数の細孔の貫通方向が、第1筒状体31の振動方向に対して平行となる位置において、振動板2が第1筒状体31に支持されている。第1筒状体31は、振動板2側とは反対側の端部がバネ部32に支持されている。バネ部32は、弾性変形可能な板状の部材であり、円筒状の第1筒状体31の底面を支持し、支持した位置から外側に向かって延伸している。バネ部32は、中央が窪んだ円状の形態である。 The end of the diaphragm 2 is held by the end of the cylindrical first tubular body 31 . Diaphragm 2 is supported by first tubular body 31 at a position where the penetrating direction of the plurality of pores formed in diaphragm 2 is parallel to the vibration direction of first tubular body 31 . The first cylindrical body 31 is supported by the spring portion 32 at the end opposite to the diaphragm 2 side. The spring portion 32 is an elastically deformable plate-like member, supports the bottom surface of the first cylindrical body 31, and extends outward from the supported position. The spring portion 32 has a circular shape with a depressed center.
 バネ部32は、第1筒状体31を支持する位置の外側にある位置において第2筒状体33により支持されている。第2筒状体33は、円筒状の形態である。第2筒状体33は、一方の端によりバネ部32を支持する。第2筒状体33の他方の端は、つば部34を介して第3筒状体35により支持されている。第3筒状体35は、円筒状の形態である。第3筒状体35は、一方の端により第2筒状体33を支持する。第3筒状体35の他方の端には、外側に円筒状の錘部36を有している。 The spring part 32 is supported by the second tubular body 33 at a position outside the position where the first tubular body 31 is supported. The second cylindrical body 33 has a cylindrical shape. The second cylindrical body 33 supports the spring portion 32 with one end. The other end of the second tubular body 33 is supported by a third tubular body 35 via a flange portion 34 . The third tubular body 35 has a cylindrical shape. The third tubular body 35 supports the second tubular body 33 with one end. The other end of the third cylindrical body 35 has a cylindrical weight portion 36 on the outside.
 なお、錘部36の形状、位置および質量は、バネ部32の外側の端部または第2筒状体33の外側面が振動のノードとなる駆動が可能となる条件を満たしている。錘部36の形状、位置および質量は、気泡発生装置1の他の構成を含めてシミュレーションを行い、当該条件を満たすように決定する。もちろん、気泡発生装置1は、バネ部32の外側の端部または第2筒状体33の外側面が振動のノードとなる駆動が可能であれば、錘部36を有していなくてもよい。 The shape, position and mass of the weight portion 36 satisfy the conditions that enable driving in which the outer end portion of the spring portion 32 or the outer surface of the second cylindrical body 33 becomes a vibration node. The shape, position and mass of the weight 36 are determined by performing a simulation including other configurations of the air bubble generator 1 so as to satisfy the conditions. Of course, the air bubble generator 1 may not have the weight 36 as long as it can be driven such that the outer end of the spring 32 or the outer surface of the second cylindrical body 33 becomes a vibration node. .
 バネ部32の下面には、バネ部32の形状に合わせて第2筒状体33の内径の全面を覆う円状の圧電素子4が設けられている。圧電素子4は、第1筒状体31の貫通方向(図中、上下方向)に振動する。圧電素子4が第1筒状体31の貫通方向に振動することにより、バネ部32を第1筒状体31の貫通方向に振動させて第1筒状体31が略均一に上下方向に変位させる。なお、錘部36の形状、位置および質量は、圧電素子4を駆動させた場合に、振動板2が平行に上下振動する駆動が可能となる条件を満たしていることがさらに望ましい。錘部36の形状、位置および質量は、気泡発生装置1の他の構成を含めてシミュレーションを行い、当該条件を満たすように決定する。もちろん、気泡発生装置1は、振動板2が平行に上下振動する駆動が可能であれば、錘部36を有していなくてもよい。 A circular piezoelectric element 4 is provided on the lower surface of the spring portion 32 so as to match the shape of the spring portion 32 and cover the entire inner diameter of the second cylindrical body 33 . The piezoelectric element 4 vibrates in the penetrating direction of the first cylindrical body 31 (vertical direction in the drawing). By vibrating the piezoelectric element 4 in the penetrating direction of the first cylindrical body 31, the spring portion 32 is vibrated in the penetrating direction of the first cylindrical body 31, and the first cylindrical body 31 is substantially uniformly displaced in the vertical direction. Let Further, it is more desirable that the shape, position and mass of the weight 36 satisfy the conditions that when the piezoelectric element 4 is driven, the vibration plate 2 can be vertically vibrated in parallel. The shape, position and mass of the weight 36 are determined by performing a simulation including other configurations of the air bubble generator 1 so as to satisfy the conditions. Of course, the air bubble generator 1 does not have to have the weight 36 as long as the vibration plate 2 can be driven to vertically vibrate in parallel.
 第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36は、一体的に形成される。第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36は、たとえば、ステンレスなどの金属や合成樹脂からなる。好ましくは、ステンレスなどの剛性の高い金属が望ましい。なお、第1筒状体31、バネ部32、第2筒状体33、つば部34、第3筒状体35、および錘部36を別体として形成してもよいし、別部材として形成してもよい。振動板2と第1筒状体31との接合方法は、特に問わない。振動板2と第1筒状体31とを、接着剤、溶着、嵌合、圧入、などで接合してもよい。 The first tubular body 31, the spring part 32, the second tubular body 33, the flange part 34, the third tubular body 35, and the weight part 36 are integrally formed. The first tubular body 31, the spring portion 32, the second tubular body 33, the flange portion 34, the third tubular body 35, and the weight portion 36 are made of, for example, metal such as stainless steel or synthetic resin. Preferably, a highly rigid metal such as stainless steel is desirable. Note that the first tubular body 31, the spring portion 32, the second tubular body 33, the flange portion 34, the third tubular body 35, and the weight portion 36 may be formed as separate members or may be formed as separate members. You may A method for joining the diaphragm 2 and the first cylindrical body 31 is not particularly limited. Diaphragm 2 and first cylindrical body 31 may be joined by adhesive, welding, fitting, press-fitting, or the like.
 気泡発生装置1は、図1から図3に示すように、バネ部32の外側の端部において第1保持板5により液体槽10の底部の側面と結合するとともに、第2筒状体33の外側面において第2保持板6により液体槽10の底部の側面と結合している。バネ部32の外側の端部または第2筒状体33の外側面は、後述するように圧電素子4により振動板2を振動させても、ほぼ無振動である。そのため、圧電素子4の振動を液体槽10に伝えずに、実質的に振動板2のみを振動させることが可能である。 As shown in FIGS. 1 to 3, the air bubble generator 1 is connected to the bottom side of the liquid tank 10 by the first holding plate 5 at the outer end of the spring portion 32, and the second tubular body 33 is connected to the side surface of the liquid tank 10. It is joined to the bottom side of the liquid tank 10 by means of a second retaining plate 6 on its outer side. The outer end portion of the spring portion 32 or the outer surface of the second cylindrical body 33 is substantially non-vibrating even if the diaphragm 2 is vibrated by the piezoelectric element 4 as will be described later. Therefore, it is possible to substantially vibrate only the vibration plate 2 without transmitting the vibration of the piezoelectric element 4 to the liquid tank 10 .
 気泡発生装置1は、第1保持板5および第2保持板6を介して液体槽10の内壁面と結合している。第1保持板5は、バネ部32の外側の端部と液体槽10の内壁面のつば部とで結合している。第2保持板6は、第2筒状体33の外側面に設けられたフランジ部33aと液体槽10の内壁面のつば部とで結合している。第1保持板5と第2保持板6とで挟まれる領域には、空間10bが形成されている。なお、バネ部32の外側の端部にフランジ部を設けてもよく、第2筒状体33の外側面のフランジ部33aを除去した構成であってもよい。 The air bubble generator 1 is connected to the inner wall surface of the liquid tank 10 via the first retaining plate 5 and the second retaining plate 6 . The first holding plate 5 is connected to the outer end of the spring portion 32 and the flange portion of the inner wall surface of the liquid tank 10 . The second holding plate 6 is connected to a flange portion 33 a provided on the outer surface of the second cylindrical body 33 and a flange portion of the inner wall surface of the liquid tank 10 . A space 10b is formed in a region sandwiched between the first holding plate 5 and the second holding plate 6. As shown in FIG. A flange portion may be provided at the outer end portion of the spring portion 32, or the configuration may be such that the flange portion 33a on the outer surface of the second tubular body 33 is removed.
 図4に示すように、バネ部32は、中央に凹部32bが設けられている。凹部32bの側面から繋がるようにバネ部32の外側に向けて連通部32aが設けられている。図1から図4に示すように、液体槽10の縦穴10aから流入した空気は、空間10bを流れた後、連通部32aを通過し、凹部32bから第1筒状体31、振動板2へ流れる。 As shown in FIG. 4, the spring part 32 is provided with a recess 32b in the center. A communicating portion 32a is provided toward the outside of the spring portion 32 so as to be connected from the side surface of the recessed portion 32b. As shown in FIGS. 1 to 4, the air that has flowed in from the vertical hole 10a of the liquid tank 10 flows through the space 10b, passes through the communicating portion 32a, and passes through the recessed portion 32b to the first cylindrical body 31 and the diaphragm 2. flow.
 圧電素子4は、例えば、厚み方向において分極することで振動する。圧電素子4は、チタン酸ジルコン酸鉛系圧電セラミックスからなる。もっとも、(K,Na)NbO3などの他の圧電セラミックスが用いられてもよい。さらに、LiTaO3などの圧電単結晶が用いられてもよい。 The piezoelectric element 4 vibrates by being polarized in the thickness direction, for example. The piezoelectric element 4 is made of lead zirconate titanate piezoelectric ceramics. However, other piezoelectric ceramics such as (K,Na)NbO3 may be used. Furthermore, a piezoelectric single crystal such as LiTaO3 may be used.
 気泡発生装置1では、液体に接する振動板2の構造を例えばガラス板とし、筒状体3を介して圧電素子4により振動板2を振動させる構成にすることで、気体を導入する空間と液体とを完全分離することができる。気体を導入する空間と液体とを完全分離することで、圧電素子4の電気配線等が液体に浸かることを防止できる。また、気泡発生装置1では、液体槽10の液体に対して紫外光を発する光源を設ける場合でも、気体を導入する空間に当該光源を設けることができるので、当該光源の電気配線等が液体に浸かることも防止できる。 In the air bubble generating device 1, the structure of the diaphragm 2 in contact with the liquid is, for example, a glass plate. and can be completely separated. By completely separating the space into which the gas is introduced from the liquid, it is possible to prevent the electrical wiring of the piezoelectric element 4 from being immersed in the liquid. Further, in the bubble generator 1, even when a light source that emits ultraviolet light is provided for the liquid in the liquid tank 10, the light source can be provided in the space into which the gas is introduced. It can also prevent drowning.
 気泡発生装置1では、底部を有するバネ部32の側面から連通部32aを通じて第1筒状体31内に空気が流入するため、バネ部32の下面に設けられた圧電素子4に液体が触れることがない。これにより、気泡発生装置1は、振動板2の細孔から滲み出した液体による圧電素子4の化学的、電気的な劣化を防止することができる。 In the air bubble generator 1, since air flows into the first cylindrical body 31 from the side surface of the spring portion 32 having a bottom through the communication portion 32a, the liquid does not come into contact with the piezoelectric element 4 provided on the lower surface of the spring portion 32. There is no As a result, the bubble generator 1 can prevent the piezoelectric element 4 from chemically and electrically deteriorating due to the liquid seeping out from the pores of the diaphragm 2 .
 次に、気泡発生装置1での振動板2の振動について詳しく説明する。図5は、本実施の形態に係る気泡発生装置1の振動板2の振動を説明するための図である。図5には、気泡発生装置1の断面図に、振動板2の振動についてシミュレーションした結果の変位が示されている。図5では、振動を開始する前の気泡発生装置1の基準位置を破線で示し、変位後の気泡発生装置1の位置を実線で示す。  Next, the vibration of the diaphragm 2 in the air bubble generator 1 will be described in detail. FIG. 5 is a diagram for explaining the vibration of diaphragm 2 of air bubble generator 1 according to the present embodiment. FIG. 5 shows a cross-sectional view of the air bubble generator 1 showing the displacement resulting from a simulation of vibration of the diaphragm 2 . In FIG. 5, the dashed line indicates the reference position of the air bubble generator 1 before starting vibration, and the solid line indicates the position of the air bubble generator 1 after displacement.
 コントローラ20(図1参照)からの駆動信号に基づいて、圧電素子4を第1筒状体31の貫通方向に振動させると、例えば、図5に示すようにバネ部32が下方に変位する。第1筒状体31を支持しているバネ部32の位置が下側に沈み込むことにより、第1筒状体31の全体が下方に変位する結果、第1筒状体31に保持されている振動板2の全体が下方に変位する。このとき、ノード(圧電素子4の振動によっても変位しない部分)は、バネ部32の外側の端部または第2筒状体33の外側面に形成される。そのため、バネ部32の外側の端部または第2筒状体33の外側面において液体槽10と結合することにより、圧電素子4の振動を実質的に液体槽10に伝えずに振動板2を振動させることができる。 When the piezoelectric element 4 is vibrated in the penetrating direction of the first cylindrical body 31 based on the drive signal from the controller 20 (see FIG. 1), the spring portion 32 is displaced downward as shown in FIG. 5, for example. When the position of the spring portion 32 supporting the first tubular body 31 sinks downward, the first tubular body 31 as a whole is displaced downward. The entire vibrating plate 2 is displaced downward. At this time, a node (a portion that is not displaced by vibration of the piezoelectric element 4) is formed on the outer end of the spring portion 32 or the outer surface of the second cylindrical body 33. FIG. Therefore, by coupling the liquid reservoir 10 to the outer end of the spring portion 32 or the outer surface of the second cylindrical body 33 , the vibration of the piezoelectric element 4 is not substantially transmitted to the liquid reservoir 10 and the diaphragm 2 can be moved. It can vibrate.
 ここで、バネ部32の側面には、連通部32aに通じる開口が設けられている。ノードは、バネ部32の外側の端部に形成されるため、連通部32aに通じる開口にノードが形成されることになる。これにより、圧電素子4の振動によっても変位しない連通部32aに通じる開口から効果的に気体を流入させることができる。 Here, the side surface of the spring portion 32 is provided with an opening communicating with the communicating portion 32a. Since the node is formed at the outer end of the spring portion 32, the node is formed at the opening leading to the communicating portion 32a. As a result, the gas can be effectively introduced from the opening leading to the communicating portion 32a which is not displaced even by the vibration of the piezoelectric element 4. As shown in FIG.
 図示していないが、圧電素子4を振動させ続けることにより、バネ部32が下方に変位した後、バネ部32が上方に変位する。第1筒状体31を支持しているバネ部32の位置が上側にせり上がることにより、第1筒状体31の全体が上方に変位する結果、第1筒状体31に保持されている振動板2の全体が上方に変位する。 Although not shown, by continuing to vibrate the piezoelectric element 4, the spring portion 32 is displaced downward and then upward. When the position of the spring portion 32 supporting the first tubular body 31 rises upward, the entire first tubular body 31 is displaced upward, and as a result, it is held by the first tubular body 31. The entire diaphragm 2 is displaced upward.
 本実施の形態に係る気泡発生装置1では、上述したように圧電素子4を振動させることにより、振動板2自体がほぼ変形することなく、振動板2の全体が略均一に上下方向に変位する。そのため、気泡発生装置1では、バネ部32の上下共振を利用して振動板2を平面的に駆動することにより、振動板2のどの位置においても同じせん断応力となり、振動板2の複数の細孔を通って送り込まれた気体を当該せん断応力により引きちぎり均等な気泡を発生させる。 In the air bubble generating device 1 according to the present embodiment, by vibrating the piezoelectric element 4 as described above, the diaphragm 2 itself is substantially not deformed, and the entire diaphragm 2 is substantially uniformly displaced in the vertical direction. . Therefore, in the air bubble generator 1 , by driving the diaphragm 2 in a planar manner using the vertical resonance of the spring portion 32 , the same shear stress is applied at any position of the diaphragm 2 , and the plurality of fine lines of the diaphragm 2 are subjected to the same shear stress. The gas sent through the holes is torn off by the shear stress to generate uniform bubbles.
 (まとめ)
 以上のように、本実施の形態に係る気泡発生装置1は、液体槽10に取り付け、液体槽10の液体中に微細な気泡を発生させる。気泡発生装置1は、振動板2と、第1筒状体31と、バネ部32と第2筒状体33と、圧電素子4と、を備える。振動板2は、複数の開口部が形成され、一方の面が液体と接し、他方の面が気体と接する位置に設けられる。第1筒状体31は、一方の端で振動板2を支持する。バネ部32は、板状体であり、第1筒状体31の他方の端を支持する。第2筒状体33は、第1筒状体31を支持する位置より外側にある位置においてバネ部32を一方の端で支持する。圧電素子4は、バネ部32を振動させる。バネ部32は、側面から振動板2の他方の面側の第1筒状体31内に気体を流入させる連通部32aを有する。
(summary)
As described above, the bubble generator 1 according to the present embodiment is attached to the liquid tank 10 and generates fine bubbles in the liquid in the liquid tank 10 . The air bubble generator 1 includes a diaphragm 2 , a first tubular body 31 , a spring portion 32 , a second tubular body 33 , and a piezoelectric element 4 . Diaphragm 2 is provided at a position where a plurality of openings are formed and one surface is in contact with liquid and the other surface is in contact with gas. The first tubular body 31 supports the diaphragm 2 at one end. The spring portion 32 is a plate-like body and supports the other end of the first tubular body 31 . One end of the second tubular body 33 supports the spring portion 32 at a position outside the position where the first tubular body 31 is supported. The piezoelectric element 4 vibrates the spring portion 32 . The spring portion 32 has a communicating portion 32a that allows gas to flow into the first cylindrical body 31 on the other side of the diaphragm 2 from the side surface.
 これにより、気泡発生装置1は、バネ部32の側面から連通部32aを通じて第1筒状体31内に空気が流入するため、圧電素子4に液体が触れることがない。よって、気泡発生装置1は、振動板2の細孔から滲み出した液体による圧電素子4の化学的、電気的な劣化を防止することができる。 As a result, air flows into the first cylindrical body 31 from the side surface of the spring portion 32 through the communicating portion 32a in the air bubble generating device 1, so that the piezoelectric element 4 is not touched by the liquid. Therefore, the bubble generator 1 can prevent the piezoelectric element 4 from chemically and electrically deteriorating due to the liquid seeping out from the pores of the diaphragm 2 .
 気泡発生装置1は、液体槽10の第1保持板5で保持される。気泡発生装置1は、バネ部32の側面にある連通部32aの開口が液体槽10の液体を入れる側に対して外側となる位置で、第1保持板5の端部とバネ部32の側面とが結合する。これにより、気泡発生装置1は、バネ部32の外側の端部がノードとなるため、圧電素子4の振動を実質的に液体槽10に伝えずに振動板2を振動させることができる。 The bubble generator 1 is held by the first holding plate 5 of the liquid tank 10 . The air bubble generating device 1 is arranged such that the opening of the communicating portion 32a on the side surface of the spring portion 32 is located outside the liquid container side of the liquid tank 10, and the end portion of the first holding plate 5 and the side surface of the spring portion 32 are connected to each other. and are combined. As a result, the bubble generator 1 can vibrate the vibration plate 2 without substantially transmitting the vibration of the piezoelectric element 4 to the liquid tank 10 because the outer end of the spring portion 32 serves as a node.
 気泡発生装置1は、液体槽10の第2保持板6でさらに保持される。気泡発生装置1は、バネ部32の側面にある連通部32aの開口が、第1保持板5と第2保持板6との間に挟まれた位置にある。これにより、気泡発生装置1は、第1保持板5と第2保持板6とで挟まれる領域である空間10bから連通部32aを通過し空気が第1筒状体31内へ流入するため、振動板2の細孔から滲み出した液体による圧電素子4の化学的、電気的な劣化を防止することができる。 The bubble generator 1 is further held by the second holding plate 6 of the liquid tank 10 . The air bubble generator 1 is positioned such that the opening of the communicating portion 32 a on the side surface of the spring portion 32 is sandwiched between the first holding plate 5 and the second holding plate 6 . As a result, in the air bubble generator 1, air flows from the space 10b, which is the area sandwiched between the first holding plate 5 and the second holding plate 6, through the communicating portion 32a and into the first tubular body 31. It is possible to prevent the piezoelectric element 4 from chemically and electrically deteriorating due to the liquid exuding from the pores of the vibration plate 2 .
 圧電素子4は、第2筒状体33に支持される側のバネ部32の面に設けられている。これにより、気泡発生装置1は、バネ部32を効果的に振動させることができる。 The piezoelectric element 4 is provided on the surface of the spring portion 32 that is supported by the second tubular body 33 . Thereby, the bubble generator 1 can vibrate the spring portion 32 effectively.
 (変形例1)
 前述の実施の形態に係る気泡発生装置1では、バネ部32の連通部32a内を通じて液体槽10へ向けて配管7が配置されるようにし、第2保持板6を設けない構成としてもよい。筒状体3は、つば部34と第3筒状体35とを設けない構成であってもよい。図6は、本実施の形態の変形例1に係る気泡発生装置1aの斜視断面図である。なお、図6に示す気泡発生装置1aのうち、図1から図3に示す気泡発生装置1と同じ構成については同じ符号を付して詳しい説明は繰り返さない。
(Modification 1)
In the air bubble generator 1 according to the above-described embodiment, the pipe 7 may be arranged toward the liquid tank 10 through the communicating portion 32a of the spring portion 32, and the second holding plate 6 may not be provided. The tubular body 3 may have a configuration in which the flange portion 34 and the third tubular body 35 are not provided. FIG. 6 is a perspective cross-sectional view of an air bubble generator 1a according to Modification 1 of the present embodiment. In the air bubble generator 1a shown in FIG. 6, the same components as those of the air bubble generator 1 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 気泡発生装置1aは、バネ部32の連通部32a内を通じて液体槽10へ向けて配管7が配置される。気泡発生装置1aは、第1保持板5によって保持され、第2保持板6が設けられていない。気泡発生装置1aでは、液体槽10の外部からの空気が第1筒状体31の内側へ流入する四方に延びる配管7を通じて流入する。このため、気泡発生装置1aでは、実施の形態1の気泡発生装置1のように気体の流路を形成するための第2保持板6を無くすことができる。 In the air bubble generator 1a, the pipe 7 is arranged to face the liquid tank 10 through the communicating portion 32a of the spring portion 32. The bubble generator 1a is held by the first holding plate 5, and the second holding plate 6 is not provided. In the air bubble generator 1a, the air from the outside of the liquid tank 10 flows into the inside of the first cylindrical body 31 through the pipes 7 extending in all directions. Therefore, in the air bubble generator 1a, unlike the air bubble generator 1 of the first embodiment, the second holding plate 6 for forming the gas flow path can be eliminated.
 なお、図6において四方の配管7のうち一方向については図示されていない。配管7は、少なくとも一方向に延びていればよく、二方向、三方向であってもよく、五方向以上に延びるように設けてもよい。配管7は、連通部32a内を通じるのではなく、バネ部32の側面の開口から延びるようにしてもよい。 In addition, in FIG. 6, one direction of the four pipes 7 is not shown. The pipe 7 may extend in at least one direction, may extend in two directions, three directions, or may extend in five or more directions. The pipe 7 may extend from an opening in the side surface of the spring portion 32 instead of passing through the communicating portion 32a.
 気泡発生装置1aは、バネ部32の側面にある連通部32aの開口に接続され、連通部32aに気体を流入させる配管7を備えている。これにより、気泡発生装置1aは、配管7を通過した空気が第1筒状体31内へ流入するため、振動板2の細孔から滲み出した液体による圧電素子4の化学的、電気的な劣化を防止することができる。 The air bubble generator 1a includes a pipe 7 that is connected to an opening of a communicating portion 32a on the side surface of the spring portion 32 and allows gas to flow into the communicating portion 32a. As a result, the air passing through the pipe 7 flows into the first tubular body 31 in the air bubble generator 1 a , so that the piezoelectric element 4 is chemically and electrically affected by the liquid seeping out from the pores of the vibration plate 2 . Deterioration can be prevented.
 (変形例2)
 変形例2では、変形例1とは異なり筒状体3の構造が異なるようにしてもよい。具体的には、変形例2の気泡発生装置1bは、バネ部32Xを中空円状としてもよい。中空円状のバネ部32Xの下面には、圧電素子4の替わりに蓋部8を設けるようにすればよい。圧電素子4は、錘部36において第2筒状体33とは反対側の端部に設けられるようにすればよい。図7は、本実施の形態の変形例2に係る気泡発生装置1bの斜視断面図である。なお、図7に示す気泡発生装置1bのうち、変形例1に示す気泡発生装置1aと同じ構成については同じ符号を付して詳しい説明は繰り返さない。
(Modification 2)
In modified example 2, unlike modified example 1, the structure of the cylindrical body 3 may be different. Specifically, in the air bubble generator 1b of Modification 2, the spring portion 32X may be hollow circular. Instead of the piezoelectric element 4, the lid portion 8 may be provided on the lower surface of the hollow circular spring portion 32X. The piezoelectric element 4 may be provided at the end of the weight portion 36 opposite to the second cylindrical body 33 . FIG. 7 is a perspective cross-sectional view of an air bubble generator 1b according to Modification 2 of the present embodiment. In the air bubble generator 1b shown in FIG. 7, the same components as those of the air bubble generator 1a shown in Modification 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 気泡発生装置1bは、第2筒状体33の外側面と液体槽10の内壁面とが第1保持板5により結合されている。気泡発生装置1aは、液体槽10の外部からの空気を第1筒状体31の内側へ流入する四方に延びる配管7が設けられている。図7に示すように、配管7は、第1保持板5よりも振動板2側に配置されるため液体中に位置することになる。バネ部32の下面側には第1筒状体側から液体が進入しないように蓋部8が設けられている。圧電素子4は、錘部36において第2筒状体33とは反対側の端部の周方向に設けられている。 In the air bubble generator 1b, the outer surface of the second cylindrical body 33 and the inner wall surface of the liquid tank 10 are connected by the first holding plate 5. The air bubble generating device 1 a is provided with pipes 7 extending in all directions for introducing air from the outside of the liquid tank 10 into the inside of the first cylindrical body 31 . As shown in FIG. 7, the pipe 7 is arranged closer to the vibration plate 2 than the first holding plate 5, and thus is positioned in the liquid. A lid portion 8 is provided on the lower surface side of the spring portion 32 to prevent liquid from entering from the first cylindrical body side. The piezoelectric element 4 is provided in the circumferential direction at the end of the weight portion 36 opposite to the second cylindrical body 33 .
 気泡発生装置1bは、液体槽10の第1保持板5で保持されている。気泡発生装置1bは、バネ部32の側面にある連通部32aの開口が液体槽10の内側となる位置で、第1保持板5の端部と第2筒状体33の側面とが結合している。気泡発生装置1bは、バネ部32の側面にある連通部32aの開口に接続され、連通部32aに気体を流入させる配管7を備える。これにより、気泡発生装置1bは、連通部32aの開口が液体槽10の内側となる位置においても配管7を通過した空気が第1筒状体31内へ流入するため、振動板2の細孔から滲み出した液体による圧電素子4の化学的、電気的な劣化を防止することができる。 The bubble generator 1 b is held by the first holding plate 5 of the liquid tank 10 . In the air bubble generator 1b, the end portion of the first holding plate 5 and the side surface of the second cylindrical body 33 are connected at a position where the opening of the communication portion 32a on the side surface of the spring portion 32 is inside the liquid tank 10. ing. The air bubble generator 1b includes a pipe 7 connected to an opening of a communicating portion 32a on the side surface of the spring portion 32 and allowing gas to flow into the communicating portion 32a. As a result, air passing through the pipe 7 flows into the first tubular body 31 even when the opening of the communicating portion 32a is inside the liquid tank 10, so that the air bubble generating device 1b is closed to the pores of the diaphragm 2. It is possible to prevent chemical and electrical deterioration of the piezoelectric element 4 due to the liquid exuded from.
 (変形例3)
 前述の実施の形態に係る気泡発生装置1では、バネ部32に設けられる連通部32aの形状が水平方向に延びる穴であったが、これに限定されない。図8は、本実施の形態の変形例3に係るバネ部38の斜視図である。
(Modification 3)
In the air bubble generator 1 according to the above-described embodiment, the shape of the communicating portion 32a provided in the spring portion 32 is a hole extending in the horizontal direction, but it is not limited to this. FIG. 8 is a perspective view of a spring portion 38 according to Modification 3 of the present embodiment.
 図8に示すように、バネ部38は、中央に凹部38bが設けられている。凹部38bの側面から繋がるようにバネ部38の側面に向けて階段状に気体が流通する連通部38aが設けられている。このようにすれば、連通部38aは、液体槽10の側面から多くの空気を流入させることができる。 As shown in FIG. 8, the spring part 38 is provided with a recess 38b in the center. A communication portion 38a through which gas flows is provided in a stepwise manner toward the side surface of the spring portion 38 so as to be connected from the side surface of the recess portion 38b. By doing so, the communicating portion 38 a can allow a large amount of air to flow in from the side surface of the liquid tank 10 .
 (その他の変形例)
 前述の実施の形態に係る気泡発生装置1では、圧電素子4に液体槽10の液体に合わせ、耐薬品、耐水のコーティングを施してもよい。
(Other modifications)
In the air bubble generator 1 according to the above-described embodiment, the piezoelectric element 4 may be coated with a chemical-resistant and water-resistant coating that matches the liquid in the liquid tank 10 .
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1,1a,1b 気泡発生装置、2 振動板、3 筒状体、4 圧電素子、5 第1保持板、6 第2保持板、7 配管、8 蓋部、10 液体槽、10a 縦穴、10b 空間、20 コントローラ、31 第1筒状体、32 バネ部、32a 連通部、32b 凹部、33 第2筒状体、33a フランジ部、34 つば部、35 第3筒状体、36 錘部、100 気泡発生システム、200 気泡。 1, 1a, 1b bubble generator, 2 diaphragm, 3 cylindrical body, 4 piezoelectric element, 5 first holding plate, 6 second holding plate, 7 piping, 8 lid, 10 liquid tank, 10a vertical hole, 10b space , 20 controller, 31 first cylindrical body, 32 spring part, 32a communicating part, 32b recessed part, 33 second cylindrical body, 33a flange part, 34 flange part, 35 third cylindrical body, 36 weight part, 100 air bubble Generation system, 200 bubbles.

Claims (7)

  1.  液体槽に取り付け、前記液体槽の液体中に微細な気泡を発生させる気泡発生装置であって、
     複数の開口部が形成され、一方の面が液体と接し、他方の面が気体と接する位置に設けられる振動板と、
     一方の端で前記振動板を支持する第1筒状体と、
     前記第1筒状体の他方の端を支持する板状のバネ部と、
     前記第1筒状体を支持する位置より外側にある位置において前記バネ部を一方の端で支持する第2筒状体と、
     前記バネ部を振動させる圧電素子と、を備え、
     前記バネ部は、側面から前記振動板の前記他方の面側の前記第1筒状体内に気体を流入させる少なくとも1つの連通部を有する、気泡発生装置。
    A bubble generator attached to a liquid tank and generating fine bubbles in the liquid in the liquid tank,
    a diaphragm provided at a position where a plurality of openings are formed and one surface is in contact with the liquid and the other surface is in contact with the gas;
    a first tubular body supporting the diaphragm at one end;
    a plate-like spring portion that supports the other end of the first tubular body;
    a second tubular body that supports the spring portion at one end at a position outside the position that supports the first tubular body;
    and a piezoelectric element that vibrates the spring portion,
    The air bubble generating device, wherein the spring portion has at least one communication portion for allowing gas to flow into the first tubular body on the other surface side of the diaphragm from a side surface.
  2.  前記気泡発生装置が、前記液体槽の第1の保持板で保持され、
     前記バネ部の側面にある前記連通部の開口が前記液体槽の液体を入れる側に対して外側となる位置で、前記第1の保持板の端部と前記バネ部の側面とが結合する、請求項1に記載の気泡発生装置。
    The bubble generator is held by a first holding plate of the liquid tank,
    The end of the first holding plate and the side surface of the spring unit are coupled at a position where the opening of the communicating portion on the side surface of the spring portion is outside the liquid reservoir side of the liquid tank, The bubble generator according to claim 1.
  3.  前記気泡発生装置が、前記液体槽の第2の保持板でさらに保持され、
     前記バネ部の側面にある前記連通部の開口が、前記第1の保持板と前記第2の保持板との間に挟まれた位置にある、請求項2に記載の気泡発生装置。
    the bubble generator is further held by a second holding plate of the liquid bath;
    3. The air bubble generating device according to claim 2, wherein the opening of the communicating portion on the side surface of the spring portion is located between the first holding plate and the second holding plate.
  4.  前記バネ部の側面にある前記連通部の開口に接続され、前記連通部に気体を流入させる配管をさらに備える、請求項2または請求項3に記載の気泡発生装置。 The air bubble generating device according to claim 2 or 3, further comprising a pipe connected to an opening of said communication part on a side surface of said spring part and allowing gas to flow into said communication part.
  5.  前記気泡発生装置が、前記液体槽の第1の保持板で保持され、
     前記バネ部の側面にある前記連通部の開口が前記液体槽の内側となる位置で、前記第1の保持板の端部と前記第2筒状体の側面とが結合し、
     前記バネ部の側面にある前記連通部の開口に接続され、前記連通部に気体を流入させる配管をさらに備える、請求項1に記載の気泡発生装置。
    The bubble generator is held by a first holding plate of the liquid tank,
    the end of the first holding plate and the side surface of the second cylindrical body are coupled at a position where the opening of the communicating portion on the side surface of the spring portion is inside the liquid tank;
    2. The air bubble generator according to claim 1, further comprising a pipe connected to an opening of said communicating portion on a side surface of said spring portion and allowing gas to flow into said communicating portion.
  6.  前記圧電素子は、前記第2筒状体に支持される側の前記バネ部の面に設けられている、請求項1から請求項5のいずれか1項に記載の気泡発生装置。 The air bubble generator according to any one of claims 1 to 5, wherein the piezoelectric element is provided on the surface of the spring portion that is supported by the second cylindrical body.
  7.  請求項1~請求項6のいずれか1項に記載の気泡発生装置と、
     前記液体槽と、を備える、気泡発生システム。
    The air bubble generator according to any one of claims 1 to 6,
    and the liquid bath.
PCT/JP2021/047549 2021-03-09 2021-12-22 Bubble generation device and bubble generation system WO2022190570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037606 2021-03-09
JP2021037606 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190570A1 true WO2022190570A1 (en) 2022-09-15

Family

ID=83226581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047549 WO2022190570A1 (en) 2021-03-09 2021-12-22 Bubble generation device and bubble generation system

Country Status (1)

Country Link
WO (1) WO2022190570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228589A1 (en) * 2022-05-25 2023-11-30 株式会社村田製作所 Bubble generator and bubble generating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197594A (en) * 1999-10-28 2001-07-19 Murata Mfg Co Ltd Ultrasonic wave vibrator
JP2004097851A (en) * 2002-09-04 2004-04-02 Murata Mfg Co Ltd Ultrasonic vibration apparatus
JP2006087984A (en) * 2004-09-21 2006-04-06 Ngk Insulators Ltd Apparatus for jetting air bubble
WO2018207395A1 (en) * 2017-05-12 2018-11-15 株式会社村田製作所 Vibration device
WO2020189270A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Air bubble generation device
WO2020189272A1 (en) * 2019-03-20 2020-09-24 株式会社村田製作所 Bubble generation device
WO2020189271A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197594A (en) * 1999-10-28 2001-07-19 Murata Mfg Co Ltd Ultrasonic wave vibrator
JP2004097851A (en) * 2002-09-04 2004-04-02 Murata Mfg Co Ltd Ultrasonic vibration apparatus
JP2006087984A (en) * 2004-09-21 2006-04-06 Ngk Insulators Ltd Apparatus for jetting air bubble
WO2018207395A1 (en) * 2017-05-12 2018-11-15 株式会社村田製作所 Vibration device
WO2020189270A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Air bubble generation device
WO2020189271A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device
WO2020189272A1 (en) * 2019-03-20 2020-09-24 株式会社村田製作所 Bubble generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228589A1 (en) * 2022-05-25 2023-11-30 株式会社村田製作所 Bubble generator and bubble generating system

Similar Documents

Publication Publication Date Title
EP3943184B1 (en) Air bubble generation device
JP7359304B2 (en) Air bubble generator and air bubble generation system
US20210380448A1 (en) Bubble generator
WO2022190570A1 (en) Bubble generation device and bubble generation system
CN113396011B (en) Bubble generating device
JP2006087984A (en) Apparatus for jetting air bubble
WO2022190571A1 (en) Bubble generation device and bubble generation system
US20080142037A1 (en) Apparatus and method for cleaning liquid dispensing equipment
WO2022190865A1 (en) Bubble generation device and bubble generation system
WO2021245996A1 (en) Bubble generation device and bubble generation system
WO2023228588A1 (en) Bubble generation device and bubble generation system
WO2023228589A1 (en) Bubble generator and bubble generating system
CN116897074A (en) Bubble generating device and bubble generating system
JP4961607B2 (en) Ultrasonic atomizer
JP2017196546A (en) Gas introduction device and gas introduction method
WO2023233700A1 (en) Bubble generator and bubble generation system
JP2019181336A (en) Nanosize bubble generator and nanosize bubble generating method
RU2620709C2 (en) Method of experiment for implementating and monitoring acoustic processes in liquid medium and device for its implementation
WO2007113503A2 (en) Ultrasonic transducer/receiver
JP2007253121A (en) Ultrasonic cleaning device
JP2004170272A (en) Liquid testing apparatus
JPS6337111Y2 (en)
CN114067774A (en) Fluid device
JP2023012076A (en) Particle rotation method
KR20200142627A (en) Apparatus and method for generating nano or micro bubble using porous membrane and ultrasonic transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930415

Country of ref document: EP

Kind code of ref document: A1