JP2017176979A - Slime inhibiting method - Google Patents

Slime inhibiting method Download PDF

Info

Publication number
JP2017176979A
JP2017176979A JP2016066480A JP2016066480A JP2017176979A JP 2017176979 A JP2017176979 A JP 2017176979A JP 2016066480 A JP2016066480 A JP 2016066480A JP 2016066480 A JP2016066480 A JP 2016066480A JP 2017176979 A JP2017176979 A JP 2017176979A
Authority
JP
Japan
Prior art keywords
slime
water system
fine bubbles
fine
suppression method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016066480A
Other languages
Japanese (ja)
Inventor
愛里 田中
Airi Tanaka
愛里 田中
太郎 飯泉
Taro Iiizumi
太郎 飯泉
伊藤 司
Tsukasa Ito
司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Kurita Water Industries Ltd
Original Assignee
Gunma University NUC
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Kurita Water Industries Ltd filed Critical Gunma University NUC
Priority to JP2016066480A priority Critical patent/JP2017176979A/en
Publication of JP2017176979A publication Critical patent/JP2017176979A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively inhibiting slime from developing by keeping a dispersion state of a microbe by suppressing generation of extracellular polysaccharides of the microbe, without using a chemical substance usually used to remove slime formed in a water system.SOLUTION: A slime inhibiting method for inhibiting slime caused by a microbe in a water system from developing includes a fine-bubble supply step for supplying fine bubbles of a mean diameter of 1-100 μm from fine-bubble generating means to the water system. The fine-bubble generating means includes vibration means having one or more open holes through which the fine bubbles flow to the water system side and a protrusion which protrudes to the water system side and contains the open holes. The fine bubbles are supplied to the water system through the open holes while vibrating the vibration means.SELECTED DRAWING: None

Description

本発明はスライム抑制方法に関する。   The present invention relates to a slime suppression method.

各工場やビルの冷却水プロセス、製紙プロセス、膜処理プロセスでは、細菌等の微生物によってスライム(バイオフィルム)が系内に発生し、熱交換効率低下や水質劣化、膜の閉塞等の障害を引き起こす。このバイオフィルムは、微生物が環境ストレス等に晒された際に、これに対して抵抗性を高めるために、細胞外多糖類(細胞外マトリックスや細胞外ポリマーともいう)を分泌することで、細胞同士を接着させ集合体を形成させていると考えられている。このようなスライムによる障害を防ぐ方法として、原因となる微生物の死滅や増殖抑制を目的とした抗菌剤を添加したり、形成したスライムを剥離・洗浄したりする方法が利用されている。従来、殺菌剤としては次亜塩素酸ナトリウムや有機系抗菌剤のCl−MIT(5−クロロ−2−メチル−4−イソチアゾリン−3−オン)やDBNPA(2,2−ジブロモ−3−ニトリロプロピオンアミド)、剥離剤としてはヒドラジン、過酸化水素等が使用されてきた。   In the cooling water process, papermaking process, and membrane treatment process of each factory and building, slime (biofilm) is generated in the system by microorganisms such as bacteria, causing problems such as reduced heat exchange efficiency, water quality degradation, and membrane clogging. . This biofilm secretes extracellular polysaccharides (also called extracellular matrix or extracellular polymer) to increase resistance to microorganisms when exposed to environmental stress, etc. It is thought that they are bonded together to form an aggregate. As a method for preventing such damage caused by slime, a method of adding an antibacterial agent for the purpose of killing or suppressing the growth of the causing microorganism, or peeling and washing the formed slime is used. Conventional antibacterial agents include sodium hypochlorite, organic antibacterial agents such as Cl-MIT (5-chloro-2-methyl-4-isothiazolin-3-one) and DBNPA (2,2-dibromo-3-nitrilopropion). Amide) and hydrazine, hydrogen peroxide and the like have been used as release agents.

近年、環境規制等の強まりや薬剤コストの低減のために、化学物質使用量の低減が求められている。薬剤使用量を低減できる新たな方法の一つとして微細気泡によるスライムコントロール技術が挙げられる。   In recent years, there has been a demand for a reduction in the amount of chemical substances used in order to strengthen environmental regulations and reduce drug costs. One of the new methods that can reduce the amount of medicine used is a slime control technique using fine bubbles.

微細気泡(ファインバブルまたはウルトラファインバブル)を用いた技術は様々な産業分野で利用されている。ファインバブルとはおおむね100μmから1μmの径を持つ気泡を指し、ウルトラファインバブルとはおおむね1μm以下の径の気泡を指す。これらの微細気泡は、高い酸素溶解効率を示すだけでなく、気泡表面の帯電や圧壊によるフリーラジカルの発生、生物の活性化等の物理的特徴をもつことから、スライムコントロールへの利用も行われている。   Technologies using fine bubbles (fine bubbles or ultra fine bubbles) are used in various industrial fields. A fine bubble refers to a bubble having a diameter of approximately 100 μm to 1 μm, and an ultra fine bubble refers to a bubble having a diameter of approximately 1 μm or less. These fine bubbles not only show high oxygen dissolution efficiency, but also have physical characteristics such as free radical generation due to charging and crushing of the bubble surface, and activation of organisms, so they are also used for slime control. ing.

例えば、特許文献1では冷却水系内に設けた担体上の微生物を微細気泡で活性化し、その有機物分解能力を高めることで系内を清澄に保つ技術が開示されている。また、特許文献2では微細気泡への吸着により微生物を除去する技術が開示されている。特許文献3では、微細気泡と殺菌剤との併用効果について検討されており、浮遊性の細菌やスライム中の細菌の殺菌に効果を示すことが開示されている。   For example, Patent Document 1 discloses a technique for keeping the inside of a system clear by activating microorganisms on a carrier provided in a cooling water system with fine bubbles and enhancing the ability to decompose organic substances. Patent Document 2 discloses a technique for removing microorganisms by adsorption to fine bubbles. Patent Document 3 discusses the combined effect of microbubbles and a bactericidal agent, and discloses that it has an effect on sterilization of floating bacteria and bacteria in slime.

従来の微細気泡の発生方法は、旋回流で気体と液体を高速に混合させて発生させる方法(高速旋回流方式)や、高速回転するプロペラ等で気体をせん断して微細気泡化する方法(気液せん断方式)が主流であった。この他、微細気泡を発生させる方法には、気体を加圧して液体に溶解させた後で圧力を開放する方法(圧力開放方式)や、液体中に超音波を与えてキャビテーションにより発生させる方法(超音波方式)がある。   Conventional methods for generating fine bubbles are a method of generating gas and liquid by mixing them at high speed in a swirling flow (high-speed swirling flow method), or a method of shearing gas with a propeller that rotates at high speed to form fine bubbles (gas bubbles). Liquid shear method) was the mainstream. Other methods for generating fine bubbles include a method of releasing pressure after pressurizing and dissolving the gas in the liquid (pressure release method), and a method of generating ultrasonic waves in the liquid by cavitation ( Ultrasonic method).

また、特許文献4では、振動板を具備する微生物培養装置による微生物分散培養法や細胞外多糖類抑制方法が開示されている。当該装置によって、既述の方式よりも細菌へのストレスが少ない状態の培養が可能となり、細胞外多糖類の生成が抑制され、細菌を分散状態で培養することが可能となる。   Patent Document 4 discloses a microorganism dispersion culture method and an extracellular polysaccharide suppression method using a microorganism culture apparatus having a diaphragm. With this apparatus, it is possible to culture in a state where there is less stress on the bacteria than the above-described method, the production of extracellular polysaccharides is suppressed, and the bacteria can be cultured in a dispersed state.

特許4184390号公報Japanese Patent No. 4184390 特許5534414号公報Japanese Patent No. 5534414 特開2013−180956号公報JP 2013-180956 A 特開2014−150784号公報JP 2014-150784 A

特許文献1〜3では微細気泡によるスライムの抑制が開示されているが、いずれの方法も発生機構に特徴をもつものはなく、一般的な発生方式を用いている。また、既述の圧力開放方式や超音波方式も含め、これらの方法では水系に存在する微生物に損傷を与えてしまう可能性がある。また、いずれの方法も液体そのものに高流速やせん断や圧力などの負荷を与える方法である。このような気泡発生機構が原因となる細菌の損傷により、微生物の生産する細胞外多糖類の形成量は増加する(例えば、特許文献4参照)。細胞外多糖類はスライム形成に関与する重要な因子であるため、従来の気泡発生方式では細胞損傷によるスライム形成促進が起こり、スライム量の減少効果が低下することが予想される。   Patent Documents 1 to 3 disclose slime suppression by fine bubbles, but none of the methods has a feature in the generation mechanism, and a general generation method is used. In addition, these methods, including the pressure release method and the ultrasonic method described above, may damage microorganisms existing in the water system. In addition, any of these methods is a method of applying a load such as a high flow velocity, shearing or pressure to the liquid itself. Due to the damage of bacteria caused by such a bubble generation mechanism, the amount of extracellular polysaccharide produced by the microorganism increases (see, for example, Patent Document 4). Since extracellular polysaccharide is an important factor involved in slime formation, it is expected that the conventional bubble generation method promotes slime formation due to cell damage and reduces the slime reduction effect.

特許文献4では、ストレスを与えることなく微細な気泡を発生させ続けることにより、細胞外多糖類の生成を抑制し、微生物を分散状態で維持して培養することが可能であるが、スライム発生の抑制効果について評価はされていない。   In Patent Document 4, it is possible to suppress the production of extracellular polysaccharides by continuously generating fine bubbles without applying stress, and to maintain and culture microorganisms in a dispersed state. The inhibitory effect has not been evaluated.

以上から本発明は、水系において形成されるスライムを剥離するための化学物質を用いることなく、また、微生物の細胞外多糖類の発生を抑制することにより微生物の分散状態を良好に維持して、効果的にスライムを低減させる方法を提供する。   From the above, the present invention does not use a chemical substance for peeling slime formed in an aqueous system, and also maintains the dispersed state of microorganisms well by suppressing the generation of microbial extracellular polysaccharides, A method for effectively reducing slime is provided.

上記課題を解決すべく鋭意検討した結果、本発明者らは、下記本発明に想到し当該課題を解決できることを見出した。
すなわち、本発明は下記のとおりである。
As a result of intensive studies to solve the above problems, the present inventors have arrived at the following present invention and found that the problems can be solved.
That is, the present invention is as follows.

[1] 水系中の微生物に起因するスライムの発生を抑制するスライム抑制方法であって、平均径が1〜100μmである微細気泡を微細気泡発生手段から前記水系に供給する微細気泡供給工程を含み、前記微細気泡発生手段が振動手段を具備し、該振動手段が、前記微細気泡が前記水系側に通過する1以上の貫通孔を有し、かつ、前記水系側に突出し前記貫通孔を含む突部を有してなり、前記振動手段を振動させながら前記貫通孔を通じて前記微細気泡を前記水系に供給する、スライム抑制方法。
[2] 前記貫通孔は前記水系側に向かって径が小さくなっている、[1]に記載のスライム抑制方法。
[3] 前記貫通孔が前記突部にのみ設けられている、[1]又は[2]に記載のスライム抑制方法。
[4] 前記貫通孔の水系側の孔径が4〜10μmである、[1]〜[3]のいずれかに記載のスライム抑制方法。
[5] 前記微細気泡により、前記微生物を分散状態とし、材料表面へのスライム付着量を減少させる、[1]〜[4]のいずれかに記載のスライム抑制方法。
[6] 前記微細気泡の総気泡密度を500個/mL以上とする、[1]〜[5]のいずれかに記載のスライム抑制方法。
[7] 環境中に存在する細菌種により構成されるスライムに対して適用する、[1]〜[6]のいずれかに記載のスライム抑制方法。
[8] 前記スライムがシュードモナス(Pseudomonas)属により構成されるスライムに対して適用する、[1]〜[6]のいずれかに記載のスライム抑制方法。
[9] 前記スライムがシュードモナス・プチダ(Pseudomonas putida)に属する細菌により構成されるスライムに対して適用する、[1]〜[6]のいずれかに記載のスライム抑制方法。
[1] A slime suppression method for suppressing generation of slime caused by microorganisms in an aqueous system, comprising a fine bubble supplying step of supplying fine bubbles having an average diameter of 1 to 100 μm from the fine bubble generating means to the aqueous system The fine bubble generating means includes vibration means, and the vibration means has one or more through holes through which the fine bubbles pass to the water system side, and protrudes to the water system side and includes the through holes. And a slime suppression method for supplying the fine bubbles to the water system through the through-hole while vibrating the vibration means.
[2] The slime suppression method according to [1], wherein the through hole has a diameter that decreases toward the aqueous system.
[3] The slime suppression method according to [1] or [2], wherein the through hole is provided only in the protrusion.
[4] The slime-suppressing method according to any one of [1] to [3], wherein a diameter of the through hole on the water system side is 4 to 10 μm.
[5] The slime suppression method according to any one of [1] to [4], wherein the microorganisms are dispersed by the fine bubbles to reduce the amount of slime attached to the material surface.
[6] The slime suppression method according to any one of [1] to [5], wherein a total bubble density of the fine bubbles is 500 / mL or more.
[7] The slime suppression method according to any one of [1] to [6], which is applied to slime composed of bacterial species present in the environment.
[8] The slime suppression method according to any one of [1] to [6], wherein the slime is applied to a slime composed of a genus Pseudomonas.
[9] The slime suppression method according to any one of [1] to [6], wherein the slime is applied to a slime composed of bacteria belonging to Pseudomonas putida.

本発明によれば、水系において形成されるスライムを剥離するための化学物質を用いることなく、また、微生物の細胞外多糖類の発生を抑制することにより微生物の分散状態を良好に維持して、効果的にスライムを低減させる方法を提供することができる。   According to the present invention, without using a chemical substance for peeling slime formed in an aqueous system, and by suppressing the generation of microbial extracellular polysaccharides, the state of dispersion of microorganisms is well maintained, A method of effectively reducing slime can be provided.

本実施形態に係る微細気泡発生装置の概略構成図である。It is a schematic block diagram of the fine bubble generator which concerns on this embodiment. 本実施形態に係る微細気泡発生装置における振動板の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the diaphragm in the microbubble generator which concerns on this embodiment. 実施例で使用した試験装置の概略構成図である。It is a schematic block diagram of the test apparatus used in the Example. 通水日数と染色スライム抽出液の吸光度との関係を示す図である。It is a figure which shows the relationship between water passage days and the light absorbency of dyeing | staining slime extract.

本発明の一実施態様(「以下、「本実施態様」ということがある」)に係るスライム抑制方法は、水系中の微生物に起因するスライムの発生を抑制するスライム抑制方法であって、平均径が1〜100μmである微細気泡を微細気泡発生手段から前記水系に供給する微細気泡供給工程を含み、前記微細気泡発生手段が振動手段を具備し、該振動手段が、前記微細気泡が前記水系側に通過する1以上の貫通孔を有し、かつ、前記水系側に突出し前記貫通孔を含む突部を有してなり、前記振動手段を振動させながら前記貫通孔を通じて前記微細気泡を前記水系に供給する、スライム抑制方法である。   A slime suppression method according to an embodiment of the present invention (hereinafter, also referred to as “this embodiment”) is a slime suppression method that suppresses generation of slime due to microorganisms in an aqueous system, and has an average diameter. A fine bubble supplying step of supplying fine bubbles having a diameter of 1 to 100 μm from the fine bubble generating means to the aqueous system, the fine bubble generating means including a vibrating means, and the vibrating means includes the fine bubbles on the water system side. And having one or more through-holes that pass through, and having a protrusion that protrudes toward the aqueous system and includes the through-hole, the fine bubbles are introduced into the aqueous system through the through-hole while vibrating the vibration means. This is a slime suppression method to be supplied.

以下では、まず、微細気泡発生手段としての微細気泡発生装置について説明し、さらにこれを用いた微細気泡供給工程について説明する。   In the following, first, a microbubble generator as a microbubble generator will be described, and a microbubble supply process using the microbubble generator will be described.

(1)微細気泡発生装置
本実施態様に係る微細気泡発生装置としては特許文献4に記載された装置を適用することが好ましい。
(1) Microbubble generator The apparatus described in Patent Document 4 is preferably applied as the microbubble generator according to this embodiment.

具体的な構成を図1及び図2に示す。図1は、振動板2を水槽1内の下端に設けた例の概略図であり、当該微細気泡発生装置は、水槽1内の下端に突部を上(水槽1内部側)にして設置された、突部に1つ以上の貫通孔を有する振動板2と、振動板2の下側に接続され、水槽1にその振動板2の貫通孔を通じて所定の気体を供給するためのコンプレッサーまたはボンベ3と、振動板2に超音波振動を与えるための発振機4とを具備する。
なお、微細気泡発生装置は、水槽1でなく水系が存在する配管内に設けてもよい。この場合、微細気泡発生装置の突部を配管内部側に設置する。
A specific configuration is shown in FIGS. FIG. 1 is a schematic view of an example in which the diaphragm 2 is provided at the lower end in the water tank 1, and the microbubble generator is installed at the lower end in the water tank 1 with the protrusions up (inside the water tank 1). Further, the diaphragm 2 having one or more through holes in the protrusion, and a compressor or cylinder connected to the lower side of the diaphragm 2 for supplying a predetermined gas to the water tank 1 through the through holes of the diaphragm 2. 3 and an oscillator 4 for applying ultrasonic vibration to the diaphragm 2.
The fine bubble generating device may be provided not in the water tank 1 but in a pipe in which an aqueous system exists. In this case, the protrusion of the fine bubble generator is installed on the inside of the pipe.

微生物培養に必要な所定の気体が、コンプレッサーまたはボンベ3から、振動板2の貫通孔を通して水槽1に供給される。このとき、所定の周波数振動が、発振機4から高周波電圧を印加された圧電振動素子5から振動板2に与えられる。   A predetermined gas required for microbial culture is supplied from the compressor or cylinder 3 to the water tank 1 through the through hole of the diaphragm 2. At this time, a predetermined frequency vibration is applied to the diaphragm 2 from the piezoelectric vibration element 5 to which a high frequency voltage is applied from the oscillator 4.

図2(A)は、振動板2の断面図であり、ドーム状の突部8に複数の貫通孔6を有する。そして、水槽1内の下端に、突部8が上(水槽1内部)側にくるように設置される。そして図中下部はコンプレッサーまたはボンベ3に繋がっている。   FIG. 2A is a cross-sectional view of the diaphragm 2, and has a plurality of through holes 6 in the dome-shaped protrusion 8. And it installs in the lower end in the water tank 1 so that the protrusion 8 may be on the upper side (inside the water tank 1). The lower part of the figure is connected to the compressor or cylinder 3.

図2(B)は、振動板2を上方から見た上面図であり、当該図においてドーナツ状に見えるのは、発振機4からの高周波電圧を受けて超音波振動を振動板2に伝える圧電振動素子5であり、突部8は、ドーナツ状の中央部に位置する。このドーナツ状の圧電振動素子5が、発振機4からの高周波電圧の印加により振動すると、ドーナツ状の圧電振動素子5の中央部に位置する突部8も同様に振動する。そして、振動板2に振動を与えることにより、コンプレッサーまたはボンベ3から供給された気体は、突部8の貫通孔6を通るときに細かくちぎられ、微細気泡7となって水槽1内に放出される。   FIG. 2B is a top view of the diaphragm 2 as viewed from above. In FIG. 2B, a donut shape appears as a piezoelectric element that receives high-frequency voltage from the oscillator 4 and transmits ultrasonic vibrations to the diaphragm 2. It is the vibration element 5, and the protrusion 8 is located at the center of the donut shape. When the doughnut-shaped piezoelectric vibration element 5 vibrates by application of a high-frequency voltage from the oscillator 4, the protrusion 8 located at the center of the donut-shaped piezoelectric vibration element 5 vibrates in the same manner. Then, by giving vibration to the diaphragm 2, the gas supplied from the compressor or the cylinder 3 is finely broken when passing through the through hole 6 of the protrusion 8, and is discharged into the water tank 1 as a fine bubble 7. The

振動板2に超音波振動を伝える圧電振動素子5としては、例えば、国際公開第2007/026872号に記載の圧電セラミックスを有する超音波振動ユニットを好適に使用できるが、発振機4からの超音波を振動板2に伝えることができるものであれば制限なく使用できる。   As the piezoelectric vibration element 5 that transmits ultrasonic vibration to the diaphragm 2, for example, an ultrasonic vibration unit having piezoelectric ceramics described in International Publication No. 2007/026872 can be suitably used. Can be used without limitation as long as it can be transmitted to the diaphragm 2.

本実施態様における上記微細気泡とは、平均径100μm以下のものであることが微生物の細胞外多糖類生成抑制の観点などから好ましく、平均径50μm以下であることがより好ましい。微細気泡の平均径の下限は、通常1μmである。   The fine bubbles in the present embodiment are preferably those having an average diameter of 100 μm or less from the viewpoint of inhibiting the production of extracellular polysaccharides by microorganisms, and more preferably have an average diameter of 50 μm or less. The lower limit of the average diameter of the fine bubbles is usually 1 μm.

微細気泡の大きさ(気泡径)は、振動板2の形状、及び振動板2が有する貫通孔の形状、孔径及びピッチ間隔等を変更することにより、調整することが可能である。振動板2は、1枚で使用しても、2枚重ねて使用してもよく、2枚の振動板2の間にスペーサーメッシュを挟んでもよい。2枚重ねの場合は、2枚とも突部を有しても、水槽1に近い側の振動板2だけが突部を有するものでもよい。   The size of the fine bubbles (bubble diameter) can be adjusted by changing the shape of the diaphragm 2, the shape of the through holes of the diaphragm 2, the hole diameter, the pitch interval, and the like. The diaphragm 2 may be used singly or may be used by overlapping two sheets, or a spacer mesh may be sandwiched between the two diaphragms 2. When two sheets are stacked, both of them may have protrusions, or only the diaphragm 2 near the water tank 1 may have protrusions.

振動板2に存在する貫通孔は、1つだけでもよいが複数であることが好ましい。複数の場合、振動板2全体に存在しても、突部8にのみ存在してもよい。また、貫通孔の配置は、振動板2に1列に存在しても、千鳥配置であってもよいが、突部8のみに千鳥配置とするのが好ましい。   Although there may be only one through hole in the diaphragm 2, it is preferable to have a plurality of through holes. In the case of a plurality, it may exist on the entire diaphragm 2 or only on the protrusion 8. Further, the through holes may be arranged in a row on the diaphragm 2 or may be arranged in a staggered manner, but it is preferable that only the protrusions 8 are arranged in a staggered manner.

貫通孔は、孔が振動板2を貫通していればよく、その形状に特段の制限はないが、図2(C)に示すように、図中上部の水槽1側に開口する面の径aが図中下部の気体を供給する装置であるコンプレッサーまたはボンベ3接続側の面の径bよりも小さくなっていることが好ましく、ホーン形状、円錐台形状、テーパード形状などが例示される。ただし、貫通孔の水槽1内部側に面する部分の径aと気体を供給する装置に接続する側に面する部分の径bがa<bの関係にあれば、それらをつなぐ両横(側面)はどのような形状であっても、良好な微細気泡を発生し得る。仮に、径aと径bがa>bの関係にあれば、水槽1の液体が気体を供給する装置の側に向けて噴霧され続ける場合があり、送気に支障を生ずることがある。   As long as the through hole penetrates the diaphragm 2 and the shape thereof is not particularly limited, as shown in FIG. 2 (C), the diameter of the surface opened to the upper water tank 1 side in the figure. It is preferable that a is smaller than the diameter b of the compressor or cylinder 3 connection side which is a device for supplying gas in the lower part in the figure, and examples thereof include a horn shape, a truncated cone shape, and a tapered shape. However, if the diameter a of the portion facing the inside of the water tank 1 of the through hole and the diameter b of the portion facing the side supplying the gas supply device have a relationship of a <b, both sides (side surfaces) connecting them ) Can generate good fine bubbles in any shape. If the diameter a and the diameter b are in a relationship of a> b, the liquid in the water tank 1 may continue to be sprayed toward the gas supplying device, which may cause trouble in air supply.

微細気泡を平均径100μm以下とするには、貫通孔の水槽1内部側の孔径は4〜10μmが好ましく、また、貫通孔を複数設ける場合の貫通孔の孔数は1200個までが好ましく、126〜350個がより好ましい。   In order to make the fine bubbles have an average diameter of 100 μm or less, the diameter of the through holes in the water tank 1 is preferably 4 to 10 μm, and the number of through holes in the case of providing a plurality of through holes is preferably up to 1200, -350 are more preferable.

発振機4、コンプレッサーまたはボンベ3等の気体を供給するための装置、及びその他の装置や部材等については、特開2009−078223号公報等に記載の既存のものを使用することができる。   As an apparatus for supplying gas, such as the oscillator 4, the compressor or the cylinder 3, and other apparatuses and members, existing ones described in JP-A-2009-078223 can be used.

本実施態様に係る装置においては、気体を供給するための装置として、コンプレッサーの他に、空気、酸素、水素、メタン、二酸化炭素、またはこれらの混合ガスなどの気体を供給することができる、ポンプ、またはガスボンベなども利用できる。ガス供給装置からの気体の種類及び流量は、培養する微生物に合わせて適宜設定し得るが、流量は0.5〜3.0ml/分が好ましい。   In the apparatus according to this embodiment, as a device for supplying gas, a pump that can supply a gas such as air, oxygen, hydrogen, methane, carbon dioxide, or a mixed gas thereof in addition to a compressor. Alternatively, gas cylinders can be used. The type and flow rate of the gas from the gas supply device can be appropriately set according to the microorganism to be cultured, but the flow rate is preferably 0.5 to 3.0 ml / min.

また、発振機4が発する周波数は、90〜130kHzにある共振周波数の±5kHzの範囲が好ましく、振動板2が共振する共振周波数がより好ましい。この周波数による振動が振動板2に伝わると、水系中において気泡径が100μm以下、好ましくは50μm以下の微細気泡が発生しやすい。   The frequency emitted by the oscillator 4 is preferably in the range of ± 5 kHz of the resonance frequency in the range of 90 to 130 kHz, and more preferably the resonance frequency at which the diaphragm 2 resonates. When vibration due to this frequency is transmitted to the diaphragm 2, fine bubbles having a bubble diameter of 100 μm or less, preferably 50 μm or less, are likely to be generated in the aqueous system.

(2)微細気泡供給工程
微細気泡供給工程では、上記の微細気泡発生装置にて微細気泡を水系に供給することによりスライムの発生を抑制する。
(2) Microbubble supply process In a microbubble supply process, generation | occurence | production of slime is suppressed by supplying a microbubble to an aqueous system with said microbubble generator.

当該工程では、平均径が1〜100μmである微細気泡を、好ましくは総気泡数密度が500個/mL以上(より好ましくは1000個/mL以上)で供給する。微細気泡によるスライム抑制機構は一般的には明確ではないが、疎水性物質に対する微細気泡の吸着と浮上効果、あるいは圧壊時の衝撃やフリーラジカルの発生などの物理的効果が提唱されている。本実施態様では、水流によるせん断力が極めて小さい条件で微細気泡が形成されるため、細菌のストレスが緩和され、スライムの形成が抑制される。
ここで、総気泡数密度は「水系に対する微細気泡の個数」であり、その測定は、SALD−7500nano(島津製作所)を使用して行うことができる。
In this step, fine bubbles having an average diameter of 1 to 100 μm are preferably supplied at a total bubble number density of 500 / mL or more (more preferably 1000 / mL or more). The mechanism of slime suppression by microbubbles is not generally clear, but physical effects such as the adsorption and floating effect of microbubbles on hydrophobic substances, or the impact and generation of free radicals during crushing have been proposed. In this embodiment, since microbubbles are formed under conditions where the shearing force due to the water flow is extremely small, bacterial stress is alleviated and slime formation is suppressed.
Here, the total bubble number density is “the number of fine bubbles relative to the aqueous system”, and the measurement can be performed using SALD-7500 nano (Shimadzu Corporation).

微細気泡を含む水を対象系内に注入する、または被処理水に直接微細気泡を吹き込む、あるいは被処理水の一部の水を採取し微細気泡を吹き込んだ後、もとに戻すこともできる。いずれにしても、スライムに作用する際に微細気泡が存在すればよい。   Water containing fine bubbles can be injected into the target system, or fine bubbles can be blown directly into the water to be treated, or a part of the water to be treated can be collected and blown into fine bubbles, and then returned to the original condition. . In any case, fine bubbles may be present when acting on the slime.

処理対象となる水系としては、スライムが発生する水系であれば特に限定されず、例えば、各種工場のプラント冷却水系、スクラバー、紙パルプ水系、廃水処理水系、排水処理水系、鉄鋼水系、切削油水系、RO膜等の分離膜を用いた膜プロセス水系などが挙げられ、これらの装置、通水配管などのスライムを抑制することができる。   The water system to be treated is not particularly limited as long as it is a water system in which slime is generated. Membrane process water systems using separation membranes such as RO membranes can be mentioned, and slime such as these devices and water piping can be suppressed.

本実施態様を適用することで、環境中に存在する細菌の細胞外多糖類の形成量を減少させ、各工場のビルや冷却水プロセス、製紙プロセス、膜処理プロセスで発生するスライムを効果的に減少させることができる。   By applying this embodiment, the amount of bacterial extracellular polysaccharides present in the environment is reduced, and slime generated in each factory building, cooling water process, papermaking process, membrane treatment process is effectively reduced. Can be reduced.

特に、各工場のビルや冷却水プロセス、製紙プロセス、膜処理プロセスで発生するスライムに対する処理の観点から、(1)環境中に存在する細菌種により構成されるスライム、(2)シュードモナス(Pseudomonas)属により構成されるスライム、および(3)シュードモナス・プチダ(Pseudomonas putida)に属する細菌により構成されるスライムに関連する環境に対して適用することが好ましい。   In particular, from the viewpoint of treatment of slime generated in each factory building, cooling water process, papermaking process, membrane treatment process, (1) slime composed of bacterial species present in the environment, (2) Pseudomonas It is preferably applied to an environment related to a slime composed of a genus and (3) a slime composed of bacteria belonging to Pseudomonas putida.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.

[実施例1、比較例1]
<実験条件>
図3に示す試験装置を用いてPseudomonas putida由来スライムに対する抑制効果を評価する実験を行った。
[Example 1, Comparative Example 1]
<Experimental conditions>
Experiments were conducted to evaluate the inhibitory effect on Pseudomonas putida-derived slime using the test apparatus shown in FIG.

Pseudomonas putidaは、紙パルプ水系より単離され、16S rDNAの配列より同定された細菌を使用した。   Pseudomonas putida used bacteria isolated from a paper pulp water system and identified from the sequence of 16S rDNA.

当該試験装置は、保有水量1.5Lの水槽24と培地を供給するための配管25が設けられており、不図示のポンプにより配管26、シリコンチューブ27、配管28を通じて処理水を循環させる循環システムを備えている。水槽24には、東京理化器械製微生物用ファーメンターMBF−250MEを使用した。さらに、微細気泡または粗大気泡を水槽の保有水に供給するための振動板29を有する(微細)気泡発生手段30を備えている。また、攪拌翼23も備えている。また、水量を一定量に保つための排水配管20と不図示のポンプを備えている。なお、図中の矢印は気体や流体の流れ方向を示すものである。   The test apparatus is provided with a water tank 24 having a water volume of 1.5 L and a pipe 25 for supplying a culture medium, and a circulation system for circulating treated water through a pipe 26, a silicon tube 27, and a pipe 28 by a pump (not shown). It has. For the water tank 24, a fermenter for microorganisms MBF-250ME manufactured by Tokyo Rika Kikai Co., Ltd. was used. Furthermore, a (fine) bubble generating means 30 having a diaphragm 29 for supplying fine bubbles or coarse bubbles to the water retained in the water tank is provided. A stirring blade 23 is also provided. In addition, a drain pipe 20 and a pump (not shown) are provided to keep the amount of water constant. In addition, the arrow in a figure shows the flow direction of gas or a fluid.

実験はまず、グルコース45mg/L、ポリペプトン9.2mg/L、酵母エキス34.6mg/L、KHPO0.6mg/L、NaHPO0.9mg/L、残部脱塩素水道水からなる培地を30℃の温度条件下で、配管25を通じて水槽24内に供給した。この際1/10PY培地にて前培養したPseudomonas putida溶液を水槽24に対して1mL添加し、1日間の順化培養を行った。その後に配管26を通じて、内径3mmのシリコンチューブ27内に0.2m/秒の線速度で14日間通水し、スライムを形成させた。このとき、水槽24内では攪拌翼23で攪拌(回転数:75rpm)しながら、微細気泡または粗大気泡による通気を行った。 The experiment begins with glucose 45 mg / L, polypeptone 9.2 mg / L, yeast extract 34.6 mg / L, KH 2 PO 4 0.6 mg / L, Na 2 HPO 4 0.9 mg / L, and the remainder from dechlorinated tap water. The resulting culture medium was supplied into the water tank 24 through the pipe 25 under a temperature condition of 30 ° C. At this time, 1 mL of Pseudomonas putida solution pre-cultured in 1/10 PY medium was added to the water tank 24, and acclimation culture was performed for 1 day. Thereafter, water was passed through the pipe 26 through a silicon tube 27 having an inner diameter of 3 mm at a linear velocity of 0.2 m / sec for 14 days to form slime. At this time, aeration with fine bubbles or coarse bubbles was performed in the water tank 24 while stirring with the stirring blade 23 (rotation speed: 75 rpm).

微細気泡(実施例1)は特許文献4に記載された微細気泡発生装置を用いて供給した。当該気泡発生装置(気泡発生手段30)における振動板29は、水槽24側に突出する突部を有し、その振動板29が有する孔は、突部にのみ開いており、図2(C)のようなホーン形状であって、孔径aは10μm、孔数が350個、ピッチ間隔は150μmであるものを使用した。振動板29に超音波振動を伝えるものとしては、圧電セラミックスを有する国際公開第2007/026872号に記載の超音波振動ユニットを使用した。通気には7mの空気ボンベ(伊藤忠工業ガス)、発振機はTEXIO製のFG−274を使用した。また、当該装置は2台使用し、発振器が発する周波数は105〜112kHz、気体(ガス種:空気)の流量は1mL/minであった。
この装置は気泡径が平均50μmの気泡(ただし、気泡径は1〜100μmで、総気泡密度は2000個/mL)を発生させる。
The fine bubbles (Example 1) were supplied using the fine bubble generator described in Patent Document 4. The diaphragm 29 in the bubble generating device (bubble generating means 30) has a protruding portion that protrudes toward the water tank 24, and the hole of the vibrating plate 29 is opened only in the protruding portion. FIG. In which the hole diameter a is 10 μm, the number of holes is 350, and the pitch interval is 150 μm. For transmitting ultrasonic vibration to the diaphragm 29, an ultrasonic vibration unit described in International Publication No. 2007/026872 having piezoelectric ceramics was used. A 7 m 3 air cylinder (Itochu Industrial Gas) was used for ventilation, and FG-274 made by TEXIO was used as the oscillator. Moreover, the said apparatus was used 2 units | sets, the frequency which an oscillator emitted was 105-112 kHz, and the flow volume of gas (gas type: air) was 1 mL / min.
This apparatus generates bubbles having an average bubble diameter of 50 μm (however, the bubble diameter is 1 to 100 μm and the total bubble density is 2000 / mL).

また、粗大気泡の供給(比較例1)には、気泡発生手段30として東京理化器械製微生物用ファーメンターMBF−250MEの付属品であるリングスパージャーを使用し、直径約10mmの気泡を0.2L/minで供給した。   In addition, for the supply of coarse bubbles (Comparative Example 1), a ring sparger, which is an accessory of the microbial fermenter MBF-250ME manufactured by Tokyo Rika Kikai Co., Ltd., is used as the bubble generating means 30. It was supplied at 2 L / min.

スライム量の測定は、下記の手順により実施した。シリコンチューブ27の一部を採取し、15cmずつ切り取り、脱塩素水道水で洗浄した後、0.1%クリスタルバイオレット水溶液で20分間染色した。染色後、再び脱塩素水道水で洗浄し、スライムに付着したクリスタルバイオレットを、4mLのエタノールで抽出し590nmの吸光度を測定した。   The slime amount was measured according to the following procedure. A part of the silicon tube 27 was collected, cut out by 15 cm, washed with dechlorinated tap water, and then stained with a 0.1% crystal violet aqueous solution for 20 minutes. After staining, it was washed again with dechlorinated tap water, and crystal violet adhering to the slime was extracted with 4 mL of ethanol, and the absorbance at 590 nm was measured.

また、培養液の一部を採取し、0.45μmフィルターでろ過後、DOC−Labor製LC−OCD(Liquid Chromatography−Organic Carbon)により測定を行うことで、溶解性有機物分子量分布を測定し、分子量約10万の有機物濃度(高分子溶解性有機物の濃度)を算出した。   In addition, a part of the culture solution is collected, filtered with a 0.45 μm filter, and then measured with LC-OCD (Liquid Chromatography-Organic Carbon) manufactured by DOC-Labor to measure the molecular weight distribution of soluble organic matter, and the molecular weight An organic substance concentration (concentration of polymer-soluble organic substance) of about 100,000 was calculated.

<結果・考察>
スライム量の結果を図4に示す。実施例1では微細気泡、比較例1では粗大気泡の供給を行った。14日間の通水の間、比較例1と比較して実施例1は約3割程度のスライム量減少がみられた。
<Results and discussion>
The result of slime amount is shown in FIG. In Example 1, fine bubbles were supplied, and in Comparative Example 1, coarse bubbles were supplied. During the water flow for 14 days, the slime amount decreased by about 30% in Example 1 as compared with Comparative Example 1.

また、高分子溶解性有機物の濃度の測定結果を表1に示した。通水日数2〜14日の間、実施例1は比較例1に対して2〜3割の有機物量であった。   The measurement results of the concentration of the polymer-soluble organic substance are shown in Table 1. During the period of 2 to 14 days of water flow, Example 1 was 20 to 30% of the amount of organic matter compared to Comparative Example 1.

以上の結果より、実施例1は、比較例1である粗大気泡の通気と比較して、スライム付着量を減少させる効果があることが分かった。微細気泡により細菌の高分子有機物の形成量が減少したことで、材料表面または細菌同士の結合能が低下し、スライム量が減少したことが推察される。   From the above results, it was found that Example 1 had an effect of reducing the amount of slime adhesion as compared with the aeration of coarse bubbles in Comparative Example 1. It is inferred that the amount of formation of the macromolecular organic matter of the bacteria is reduced by the fine bubbles, so that the binding ability between the surface of the material or the bacteria is lowered and the amount of slime is reduced.

1 水槽
2 振動板
3 コンプレッサーまたはボンベ
4 発振機
5 圧電振動素子
6 貫通孔
7 微細気泡
8 突部
DESCRIPTION OF SYMBOLS 1 Water tank 2 Diaphragm 3 Compressor or cylinder 4 Oscillator 5 Piezoelectric vibration element 6 Through-hole 7 Fine bubble 8 Protrusion

Claims (9)

水系中の微生物に起因するスライムの発生を抑制するスライム抑制方法であって、
平均径が1〜100μmである微細気泡を微細気泡発生手段から前記水系に供給する微細気泡供給工程を含み、
前記微細気泡発生手段が振動手段を具備し、該振動手段が、前記微細気泡が前記水系側に通過する1以上の貫通孔を有し、かつ、前記水系側に突出し前記貫通孔を含む突部を有してなり、
前記振動手段を振動させながら前記貫通孔を通じて前記微細気泡を前記水系に供給する、スライム抑制方法。
A slime suppression method that suppresses generation of slime caused by microorganisms in an aqueous system,
Including a fine bubble supplying step of supplying fine bubbles having an average diameter of 1 to 100 μm from the fine bubble generating means to the water system,
The fine bubble generating means includes vibration means, and the vibration means has one or more through holes through which the fine bubbles pass to the water system side, and protrudes to the water system side and includes the through holes. Having
A slime suppression method for supplying the fine bubbles to the water system through the through-hole while vibrating the vibration means.
前記貫通孔は前記水系側に向かって径が小さくなっている、請求項1に記載のスライム抑制方法。   The slime suppression method according to claim 1, wherein the through hole has a diameter that decreases toward the water system side. 前記貫通孔が前記突部にのみ設けられている、請求項1又は2に記載のスライム抑制方法。   The slime suppression method according to claim 1 or 2, wherein the through hole is provided only in the protrusion. 前記貫通孔の水系側の孔径が4〜10μmである、請求項1〜3のいずれか1項に記載のスライム抑制方法。   The slime suppression method of any one of Claims 1-3 whose hole diameter by the side of the water system of the said through-hole is 4-10 micrometers. 前記微細気泡により、前記微生物を分散状態とし、材料表面へのスライム付着量を減少させる、請求項1〜4のいずれか1項に記載のスライム抑制方法。   The slime suppression method according to any one of claims 1 to 4, wherein the microorganisms are dispersed by the fine bubbles to reduce the amount of slime adhered to the material surface. 前記微細気泡の総気泡密度を500個/mL以上とする、請求項1〜5のいずれか1項に記載のスライム抑制方法。   The slime suppression method according to any one of claims 1 to 5, wherein a total bubble density of the fine bubbles is 500 / mL or more. 環境中に存在する細菌種により構成されるスライムに対して適用する、請求項1〜6のいずれか1項に記載のスライム抑制方法。   The slime suppression method of any one of Claims 1-6 applied with respect to the slime comprised by the bacterial species which exists in an environment. 前記スライムがシュードモナス(Pseudomonas)属により構成されるスライムに対して適用する、請求項1〜6のいずれか1項に記載のスライム抑制方法。   The slime suppression method according to any one of claims 1 to 6, wherein the slime is applied to a slime composed of a genus Pseudomonas. 前記スライムがシュードモナス・プチダ(Pseudomonas putida)に属する細菌により構成されるスライムに対して適用する、請求項1〜6のいずれか1項に記載のスライム抑制方法。   The slime suppression method according to any one of claims 1 to 6, wherein the slime is applied to slime composed of bacteria belonging to Pseudomonas putida.
JP2016066480A 2016-03-29 2016-03-29 Slime inhibiting method Pending JP2017176979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066480A JP2017176979A (en) 2016-03-29 2016-03-29 Slime inhibiting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066480A JP2017176979A (en) 2016-03-29 2016-03-29 Slime inhibiting method

Publications (1)

Publication Number Publication Date
JP2017176979A true JP2017176979A (en) 2017-10-05

Family

ID=60007999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066480A Pending JP2017176979A (en) 2016-03-29 2016-03-29 Slime inhibiting method

Country Status (1)

Country Link
JP (1) JP2017176979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189272A1 (en) * 2019-03-20 2020-09-24 株式会社村田製作所 Bubble generation device
WO2020189270A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Air bubble generation device
WO2020189271A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104806A (en) * 2001-09-28 2003-04-09 Hakuto Co Ltd Method of growth inhibition of microorganism in water system and method for sterilizing microorganism
JP2010540215A (en) * 2007-09-21 2010-12-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nano-composite membrane and method for making and using
JP2013180956A (en) * 2012-02-29 2013-09-12 Sunstar Engineering Inc Bactericidal agent composition
JP2014150784A (en) * 2013-02-13 2014-08-25 Gunma Univ Apparatus for microbial culture, method of culturing microorganism in dispersed state and method of controlling extracellular polysaccharide using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104806A (en) * 2001-09-28 2003-04-09 Hakuto Co Ltd Method of growth inhibition of microorganism in water system and method for sterilizing microorganism
JP2010540215A (en) * 2007-09-21 2010-12-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nano-composite membrane and method for making and using
JP2013180956A (en) * 2012-02-29 2013-09-12 Sunstar Engineering Inc Bactericidal agent composition
JP2014150784A (en) * 2013-02-13 2014-08-25 Gunma Univ Apparatus for microbial culture, method of culturing microorganism in dispersed state and method of controlling extracellular polysaccharide using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189270A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Air bubble generation device
WO2020189271A1 (en) * 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device
JPWO2020189270A1 (en) * 2019-03-19 2021-10-21 株式会社村田製作所 Bubble generator
JPWO2020189271A1 (en) * 2019-03-19 2021-10-28 株式会社村田製作所 Bubble generator
US20210379542A1 (en) * 2019-03-19 2021-12-09 Murata Manufacturing Co., Ltd. Bubble generator
JP7180748B2 (en) 2019-03-19 2022-11-30 株式会社村田製作所 bubble generator
WO2020189272A1 (en) * 2019-03-20 2020-09-24 株式会社村田製作所 Bubble generation device
CN113396011A (en) * 2019-03-20 2021-09-14 株式会社村田制作所 Bubble generating device
JPWO2020189272A1 (en) * 2019-03-20 2021-10-21 株式会社村田製作所 Bubble generator
JP7180749B2 (en) 2019-03-20 2022-11-30 株式会社村田製作所 bubble generator

Similar Documents

Publication Publication Date Title
Bagheri et al. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater
Aktij et al. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes
Khuntia et al. Microbubble-aided water and wastewater purification: a review
Qasim et al. The use of ultrasound to mitigate membrane fouling in desalination and water treatment
JP6108526B2 (en) Microorganism culture apparatus, microorganism dispersion culture method and extracellular polysaccharide suppression method using the same
KR101085840B1 (en) Nano Bubble proceded water Generator
JP2017176979A (en) Slime inhibiting method
US20140048466A1 (en) Apparatus for treating Lake Okeechobee water
WO2005084718A1 (en) Method for producing nano-bubble
JP4576118B2 (en) Method and apparatus for treating effluent, sludge, and organic substrates
Bachosz et al. Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review
JPWO2011043232A1 (en) Additives used in membrane separation activated sludge process
Patel et al. Alleviation of flux decline in cross flow nanofiltration of two-component dye and salt mixture by low frequency ultrasonic irradiation
WO2005076771A2 (en) On-board water treatment and management process and apparatus
CN109626551A (en) A kind of built-in electrochemistry micro-filtration membrane bioreactor of novel anode and cathode and its application
US6503449B1 (en) Process for the control of microbial contamination in water-based solids suspensions
Kesari et al. Physical methods in wastewater treatment
Lee et al. Electrically conductive carbon nanotube/graphene composite membrane for self-cleaning of biofouling via bubble generation
JP2007325558A (en) Method for water treatment and apparatus for water treatment
Cheng et al. Inactivation of Escherichia coli and bacteriophage T4 by high levels of dissolved CO 2
JP4648140B2 (en) Water treatment method, micro-nano bubble microbial activity unit and water treatment apparatus
JP2002200486A (en) Apparatus for treating microbe-containing subject to be treated
Erkan et al. Fouling control in MBR in a sustainable perspective
JP2005131613A (en) Water treatment system and water treatment method
JP2002361239A (en) Treating device for objective body containing microorganism

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512