WO2020189268A1 - 繊維強化樹脂物品、その製造方法、及びそれを含む積層体 - Google Patents

繊維強化樹脂物品、その製造方法、及びそれを含む積層体 Download PDF

Info

Publication number
WO2020189268A1
WO2020189268A1 PCT/JP2020/009052 JP2020009052W WO2020189268A1 WO 2020189268 A1 WO2020189268 A1 WO 2020189268A1 JP 2020009052 W JP2020009052 W JP 2020009052W WO 2020189268 A1 WO2020189268 A1 WO 2020189268A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced resin
fiber
sheet
chopped
uds
Prior art date
Application number
PCT/JP2020/009052
Other languages
English (en)
French (fr)
Inventor
一明 菊地
伊崎 健晴
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202080021468.2A priority Critical patent/CN113573864A/zh
Priority to JP2021507167A priority patent/JP7161604B2/ja
Priority to EP20773646.3A priority patent/EP3943267B1/en
Priority to US17/440,016 priority patent/US11951724B2/en
Publication of WO2020189268A1 publication Critical patent/WO2020189268A1/ja
Priority to JP2022146228A priority patent/JP7425844B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings

Definitions

  • the present invention includes a fiber-reinforced resin article having a unique marble-like appearance such as a random sheet and having no defects (holes, etc.) even when the thickness is relatively thin, a method for producing the same, and the like.
  • the laminate relates to a fiber reinforced resin article that is very useful in applications such as electrical parts, PC housings, mobile phone covers, automobile parts, furniture, and wallpaper for building materials.
  • fiber-reinforced resin articles in which reinforcing fibers are combined with matrix resin have been used in various fields.
  • the fiber reinforced resin article for example, a unidirectional fiber reinforced resin sheet, a laminate formed by laminating a plurality of unidirectional fiber reinforced resin sheets, or a random sheet is known.
  • Patent Document 1 as a reinforcing fiber bundle, a unidirectional fiber reinforced resin sheet (unidirectional material) using a specific carbon fiber bundle and a laminated body formed by laminating a plurality of unidirectional fiber reinforced resin sheets ( A unidirectional laminated material) and a random sheet (random stampable sheet) are described.
  • Random sheets are in-plane isotropic sheets generally called CTT materials (chopped carbon fiber tape reinforced thermoplastics), have a unique marble-like appearance, and are three-dimensional by molding methods such as stamp molding and press molding. It is a sheet that can be easily given a shape. This random sheet can be obtained, for example, by randomly laminating a large number of chopped sheets obtained by cutting a unidirectional fiber reinforced resin sheet into chips, and press-molding the chopped sheets to integrate them.
  • Patent Document 2 describes a structure that is a laminate of a random sheet molded body and a unidirectional sheet molded body, and the random sheet molded body is arranged on at least one side. It is explained that this structure is excellent in strength, strength anisotropy, moldability and molded appearance.
  • the random sheet is a sheet in which eight or more layers of chopped sheets are usually laminated and integrated in order to express in-plane isotropicity, the random sheet is considerably thicker than the unidirectional fiber reinforced resin sheet. In order to make this random sheet thin, it is necessary to reduce the number of laminated sheets, but if the number of layers is extremely reduced, holes will be created in places where the chopped sheets could not overlap, resulting in discontinuity. It tends to be a random sheet.
  • Patent Document 2 Since the structure described in Patent Document 2 is a laminated body in which a random sheet molded body is laminated on a unidirectional sheet molded body (unidirectional fiber reinforced resin sheet), it is not possible to sufficiently satisfy the above-mentioned thinning and weight reduction demands. Can not. This is because the random sheet molded product used in Patent Document 2 is laminated and integrated by stacking a large number of chopped prepregs (chopped sheets) (about 7 to 9 layers in the examples), similarly to the above-mentioned random sheet. This is because it is a molded product, which itself is quite thick. Moreover, since this thick random sheet molded body is laminated on the unidirectional sheet molded body, the total thickness of the structure is further increased.
  • chopped prepregs chopped sheets
  • an object of the present invention is a fiber reinforced resin article having a unique marble-like appearance such as a random sheet and having no defects (holes, etc.) even when the thickness is relatively thin, a method for producing the same, and a method for producing the same.
  • the purpose is to provide a laminate containing it.
  • the present inventors have found that it is very effective to integrate the chopped sheet on at least one surface of the unidirectional fiber reinforced resin sheet, and the present invention has been made. Has been completed. That is, the present invention is specified by the following matters.
  • a plurality of chopped sheets (CS) of the same or different unidirectional fiber reinforced resin sheet (CS) as the unidirectional fiber reinforced resin sheet (UDS) are formed on at least one surface of the unidirectional fiber reinforced resin sheet (UDS).
  • thermoplastic resin is at least one type of thermoplastic resin selected from the group consisting of polypropylene-based resins and polyamide-based resins.
  • a plurality of chopped sheets (CS) of the same or different unidirectional fiber reinforced resin sheet (CS) as the unidirectional fiber reinforced resin sheet (UDS) are formed on at least one surface of the unidirectional fiber reinforced resin sheet (UDS).
  • the process of arranging and A method for producing a fiber-reinforced resin article which comprises a step of heating and pressurizing the article after placement obtained in the step of arranging.
  • the fiber reinforced resin article is located on one surface of the foam layer.
  • the fiber reinforced resin article is located on one surface of the foam layer.
  • a unidirectional fiber reinforced plastic sheet (UDS) is located on the other surface of the foam layer.
  • the laminate according to [10], wherein the surface of the fiber-reinforced resin article facing the surface on the foam layer side includes a plurality of the chopped sheets (CS).
  • the fiber-reinforced resin articles are respectively located on both surfaces of the foam layer.
  • a laminate containing the above can be provided.
  • the fiber-reinforced resin article of the present invention has strength in a direction other than the 0 ° direction (direction parallel to the fiber direction of the unidirectional fiber-reinforced resin sheet) when compared with the unidirectional fiber-reinforced resin sheet (for example). Tensile strength) is improved.
  • the fiber-reinforced resin article of the present invention is thinner and lighter when compared with a random sheet, or when compared with a laminate of a random sheet and a unidirectional fiber-reinforced resin sheet as described in Patent Document 2. It is easy to meet the demands of.
  • a fiber reinforced resin article for sheet insert injection molding or as a surface material when processing a foam sheet or a honeycomb plate into a laminate such as a sandwich panel a lightweight and high-strength product can be provided.
  • FIG. 1 is a schematic plan view showing an embodiment of a fiber reinforced plastic article of the present invention.
  • the fiber-reinforced resin article of the present invention has a chopped sheet (CS) of a unidirectional fiber-reinforced resin sheet on at least one surface (sheet surface) of the unidirectional fiber-reinforced resin sheet (UDS) 1.
  • CS chopped sheet
  • UDS unidirectional fiber-reinforced resin sheet
  • the chopped sheet (CS) 2 shown in FIG. 1 is a small piece of a unidirectional fiber reinforced resin sheet, and can be obtained, for example, by cutting the unidirectional fiber reinforced resin sheet into chips.
  • the unidirectional fiber reinforced resin sheet used as the raw material of the chopped sheet (CS) 2 may be the same as or different from the unidirectional fiber reinforced resin sheet (UDS) 1. .. Specific examples of the unidirectional fiber reinforced resin sheet used as the raw material of the unidirectional fiber reinforced resin sheet (UDS) 1 and the chopped sheet (CS) 2 will be described in detail later.
  • the end face of the chopped sheet (CS) is likely to be the starting point of fracture, but in the fiber reinforced resin article of the present invention, the ratio of the number of end faces of the chopped sheet (CS) 2 is small, and moreover, one. Since the directional fiber reinforced resin sheet (UDS) 1 is present, it is difficult to break. Further, since the fiber direction of the chopped sheet (CS) 2 is random, extreme curl is unlikely to occur.
  • the unidirectional fiber reinforced resin sheet (UDS) 1 shown in FIG. 1 has a high strength (for example, tensile strength) in the 0 ° direction (direction parallel to the fiber direction of the unidirectional fiber reinforced resin sheet (UDS)) and is 0.
  • the strength in directions other than the ° direction is improved by the chopped sheet (CS) 2. Therefore, the fiber reinforced resin article of the present invention does not show extreme local anisotropy.
  • a molding method such as stamp molding or press molding
  • the fiber-reinforced resin article is less likely to tear and has excellent shape followability. Further, it is easy to perform insert molding or overinjection molding by inserting a fiber reinforced resin article into an injection molding die.
  • the unidirectional fiber reinforced resin sheet (UDS) 1 shown in FIG. 1 is a unidirectional fiber reinforced resin obtained by molding a large number of chopped sheets (CS) as described in Patent Document 2 into a sheet shape. Unlike the laminated body having a structure of being laminated on the sheet, a plurality of chopped sheets (CS) 2 are included in at least one surface (sheet surface) of the unidirectional fiber reinforced resin sheet (UDS) 1, so that the thin film is formed. It is easy to meet the demand for weight reduction and weight reduction.
  • the chopped sheets (CS) 2 are arranged so as not to overlap each other. It is preferable to arrange them so that they do not overlap as much as possible in this way, for example, in terms of thinning the fiber-reinforced resin article.
  • the present invention is not limited to this. Some of the many chopped sheets (CS) 2 may overlap each other.
  • the presence or absence of overlapping of the chopped sheet (CS) 2 and the number of layers thereof may be appropriately determined according to, for example, the target thickness of the fiber reinforced resin article.
  • the entire one side of the unidirectional fiber reinforced resin sheet (UDS) 1 includes a plurality of chopped sheets (CS) 2, but the present invention is not limited thereto.
  • both sides of the unidirectional fiber reinforced resin sheet (UDS) 1 may contain a plurality of chopped sheets (CS) 2, or only a part of one side or both sides contains a plurality of chopped sheets (CS) 2. You can stay.
  • a plurality of chopped sheets (CS) 2 may be contained on at least one surface of a laminate in which a plurality of unidirectional fiber reinforced resin sheets (UDS) 1 are laminated.
  • the size of a large number of chopped sheets (CS) 2 arranged is uniform, but the present invention is not limited to this.
  • two or more kinds of chopped sheets (CS) having different sizes may be used, or the sizes may be distributed.
  • the shape of the chopped sheet (CS) is not limited to a square shape, and may be any other shape.
  • a resin sheet that does not contain reinforcing fibers may be provided on the surface of the side containing the chopped sheet (CS) 2.
  • This resin sheet not only protects the surface of the fiber reinforced resin article, but also further improves the strength of the unidirectional fiber reinforced resin sheet (UDS) in directions other than the 0 ° direction, insert molding, and overinjection molding. It is also possible to reduce the warp deformation when the above is performed, or to impart weather resistance and flame retardancy.
  • the resin sheet preferably contains the same type of resin as the matrix resin of the unidirectional fiber reinforced resin sheet (UDS) 1 and / or the matrix resin of the chopped sheet (CS) 2. It may also contain additives such as weather stabilizers and flame retardants. Such a resin sheet can be provided, for example, by heat-laminating the surface containing the chopped sheet (CS) 2.
  • the ratio of the chopped sheet (CS) to 100 parts by mass of the unidirectional fiber reinforced resin sheet (UDS) is 40 parts by mass or more and 100 parts by mass or less, preferably 50 parts by mass or more and 90 parts by mass or less.
  • Increasing the amount of chopped sheet (CS) above such a specific amount improves the strength of the unidirectional fiber reinforced plastic sheet (UDS) in directions other than the 0 ° direction, and is unique in marble tone. It is preferable in terms of obtaining a good appearance.
  • reducing the overlapping portion of the chopped sheets (CS) for example, in terms of thinning and weight reduction of the fiber reinforced resin article, reducing the overlapping portion of the chopped sheets (CS), and reducing the overlapping portion.
  • the uniformity of the thickness of the fiber reinforced plastic article is improved by reducing the variation in the number of laminated layers, and the number of points (such as the end face of the chopped sheet (CS)) that are likely to be the starting points of fracture is reduced. ..
  • each of the unidirectional fiber reinforced resin sheet (UDS) and the chopped sheet (CS) is preferably 50 ⁇ m or more and 500 ⁇ m or less, and more preferably 100 ⁇ m or more and 250 ⁇ m or less. It is preferable to make these thicknesses equal to or more than such a specific thickness, for example, in terms of suppressing the transmission of light and obtaining a unique marble-like appearance. Further, making these thicknesses less than or equal to such a specific thickness is, for example, a point of thinning and weight reduction of the fiber reinforced resin article, a point of improving the uniformity of the thickness of the fiber reinforced resin article, and a starting point of fracture. It is preferable in terms of reducing the number of locations where
  • the thickness of the fiber-reinforced resin article is preferably 0.1 mm or more and 1.0 mm or less, and more preferably 0.15 mm or more and 0.5 mm or less. Increasing the thickness of the fiber reinforced plastic article to such a specific thickness or more can be applied to a laminate such as a sheet insert injection molding using a fiber reinforced resin article or a sandwich panel using a fiber reinforced resin article as a surface material. It is preferable because it is suitable for processing. Further, it is preferable to make these thicknesses equal to or less than such a specific thickness in terms of thinning and weight reduction of the fiber reinforced resin article, for example.
  • the fiber volume fraction Vf of each of the unidirectional fiber reinforced resin sheet (UDS) and the chopped sheet (CS) is preferably 0.3 or more and 0.7 or less, and more preferably 0.35 or more and 0.6 or less. ..
  • a specific calculation method of the fiber volume fraction Vf will be described in the column of Examples described later.
  • the size (length and width) of the unidirectional fiber reinforced resin sheet (UDS) is not particularly limited, and may be appropriately determined according to the application in which the fiber reinforced resin article is used.
  • the length (the length of the unidirectional fiber reinforced resin sheet (UDS) in the direction parallel to the fiber direction) is preferably 10 mm or more and 2000 mm or less, and the width (unidirectional fiber reinforced resin sheet (UDS)).
  • the length in the direction perpendicular to the fiber direction) is preferably 100 mm or more and 600 mm or less.
  • the width of the chopped sheet (CS) (the length in the direction perpendicular to the fiber direction of the chopped sheet (CS)) is preferably 3 mm or more and 50 mm or less, and more preferably 10 mm or more and 25 mm or less. It is preferable that the width of the chopped sheet (CS) is within such a specific range, for example, in terms of obtaining a unique marble-like appearance.
  • the length of the chopped sheet (CS) (the length in the direction parallel to the fiber direction of the chopped sheet (CS)) is preferably 10 mm or more and 50 mm or less, and more preferably 10 mm or more and 25 mm or less. Making the length of the chopped sheet (CS) within such a specific range, for example, improves the strength of the unidirectional fiber reinforced resin sheet (UDS) in a direction other than the 0 ° direction. preferable.
  • the aspect ratio (length / width) of the chopped sheet (CS) is preferably 0.5 or more and 5.0 or less, and more preferably 1.0 or more and 3.0 or less. Normally, when the chopped sheet (CS) is press-molded, it is difficult to spread in the fiber direction of the chopped sheet (CS), but it tends to spread easily in the direction perpendicular to the fiber direction. Therefore, it is preferable to set the aspect ratio of the chopped sheet (CS) to an aspect ratio within such a specific range, for example, from the viewpoint of appropriately suppressing the spread of the sheet during press molding.
  • the number of chopped sheets (CS) per unit area is preferably 500 to 7000 sheets / m 2 , and more preferably 700 to 7000 sheets / m 2 .
  • Setting this number to such a specific value or more is, for example, in terms of improving the strength of the unidirectional fiber reinforced plastic sheet (UDS) in a direction other than the 0 ° direction and obtaining a unique marble-like appearance. preferable. Further, setting this number to such a specific value or less is, for example, in terms of thinning and weight reduction of the fiber reinforced resin article, reducing the overlapping portion of the chopped sheets (CS), and reducing the overlapping portion.
  • the uniformity of the thickness of the fiber-reinforced resin article is improved by reducing the variation in the number of layers, and that the number of points (such as the end face of the chopped sheet (CS)) that are likely to be the starting points of fracture is reduced.
  • the "unit area" in this number means the unit area of the surface parallel to the sheet surface of the unidirectional fiber reinforced resin sheet (UDS).
  • the plurality of chopped sheets (CS) are arranged so that their fiber directions are random to each other.
  • "arranged so as to be in a random direction" means that the fiber directions are not aligned with each other in a specific direction and are arranged irregularly.
  • the chopped sheet (CS) of each size described above can be obtained by cutting a unidirectional fiber reinforced resin sheet using an instrument such as a cutter knife, scissors, a guillotine cutter, a shear cutter, or a laser cutter. ..
  • the types of the unidirectional fiber reinforced resin sheet (UDS) and the chopped sheet (CS) are not particularly limited, and known unidirectional fiber reinforced resin sheets and chopped sheets can be used.
  • the unidirectional fiber reinforced resin sheet (UDS) and chopped sheet (CS) preferably contain a thermoplastic resin from the viewpoint of ease of integration by heat molding (press molding, etc.), and polypropylene-based resin and polyamide-based resin. It is more preferable to contain at least one thermoplastic resin selected from the group consisting of.
  • the unidirectional fiber reinforced resin sheet (UDS) and the chopped sheet (CS) preferably contain the same type of resin from the viewpoint of stability such as being difficult to peel off after integration.
  • This resin is usually a resin contained as a matrix resin. Therefore, for example, when the unidirectional fiber reinforced resin sheet (UDS) contains a polypropylene resin as a matrix resin, it is preferable that the chopped sheet (CS) also contains a polypropylene resin as a matrix resin, and the unidirectional fiber reinforced resin sheet (UDS) also contains a polypropylene resin.
  • the chopped sheet (CS) also contains the polyamide resin as the matrix resin.
  • the unidirectional fiber reinforced resin sheet (UDS) and chopped sheet (CS) preferably contain at least one fiber selected from the group consisting of carbon fiber and glass fiber.
  • at least one fiber selected from the group consisting of carbon fiber and glass fiber In particular, in order to obtain a marble-like appearance, it is more preferable to contain carbon fibers.
  • the fiber-reinforced resin article of the present invention described above is not particularly limited in its manufacturing method.
  • unidirectional fibers that are the same as or different from the unidirectional fiber reinforced resin sheet (UDS) are formed on at least one surface of the unidirectional fiber reinforced resin sheet (UDS).
  • This is a method for producing a fiber reinforced resin article, which comprises a step of arranging a plurality of chopped sheets (CS) of the reinforced resin sheet and a step of heating and pressurizing the article after the arrangement obtained in this arranging step.
  • the chopped sheets (CS) In the step of arranging a plurality of chopped sheets (CS), it is preferable to arrange the chopped sheets (CS) so as not to overlap each other.
  • the present invention is not limited to this. As described above, some of the many chopped sheets (CS) may overlap each other.
  • the presence or absence of overlapping of the chopped sheets (CS) and the number of layers thereof may be appropriately determined according to, for example, the target thickness of the fiber reinforced resin article.
  • a step of rearranging the chopped sheets (CS) may be provided at the same time as or after the step of arranging the plurality of chopped sheets (CS) in order to reduce the overlap of the chopped sheets (CS).
  • the heating temperature is preferably equal to or higher than the melting point of the matrix resin used for the unidirectional fiber reinforced resin sheet (UDS) and the chopped sheet (CS).
  • the heating temperature is usually 165 ° C. or higher and 250 ° C. or lower.
  • the pressure is usually 0.5 MPa or more and 5.0 MPa or less.
  • the method for producing a fiber-reinforced resin article is a step of providing a resin sheet described above (for example, a thermal laminating step or affixing) to the fiber-reinforced resin article obtained through heating and pressurizing steps, if necessary. Step) may be further provided.
  • the type of the fiber-reinforced resin composition constituting the unidirectional fiber-reinforced resin sheet (UDS) and the chopped sheet (CS) used in the present invention is not particularly limited. A specific example will be described below.
  • the fiber-reinforced resin composition is usually a composition containing reinforcing fibers (preferably a reinforcing fiber bundle) and a matrix resin. Reinforcing fiber bundles are obtained, for example, by treating the reinforcing fibers with a sizing agent. Then, the fiber-reinforced resin composition can be obtained by aligning the reinforcing fiber bundles and bringing them into contact with, for example, a molten matrix resin.
  • the reinforcing fiber for example, high-strength, high-elasticity fiber such as carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and metal fiber can be used. These may be used in combination of two or more.
  • the reinforcing fibers preferably include at least one fiber selected from the group consisting of carbon fibers and glass fibers.
  • the average diameter of the single yarn is not particularly limited, but is preferably 1 to 20 ⁇ m, more preferably 4 to 10 ⁇ m from the viewpoint of mechanical properties and surface appearance.
  • the number of single yarns of the carbon fiber bundle is also not particularly limited, but is preferably 100 to 100,000, more preferably 1,000 to 50,000, from the viewpoint of productivity and characteristics.
  • Examples of the sizing agent used for the reinforcing fiber bundle include modified polyolefin.
  • the modified polyolefin is preferably a modified polyolefin containing at least a carboxylic acid metal salt bonded to the polymer chain.
  • Examples of the raw material (unmodified polyolefin) of the modified polyolefin include ethylene-based polymers having an ethylene-derived skeleton content of more than 50 mol% and propylene-based polymers having a propylene-derived skeleton content of more than 50 mol%.
  • Specific examples of the ethylene-based polymer include an ethylene homopolymer and a copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms.
  • propylene-based polymer examples include a propylene homopolymer and a copolymer of propylene and ethylene and / or an ⁇ -olefin having 4 to 10 carbon atoms. More specifically, homopolypropylene, homopolyethylene, ethylene / propylene copolymer, propylene / 1-butene copolymer, ethylene / propylene / 1-butene copolymer can be mentioned.
  • the modified polyolefin can be obtained, for example, by graft-introducing a carboxylic acid group, a carboxylic acid anhydride group or a carboxylic acid ester group into a polymer chain of an unmodified polyolefin, and converting the group into a salt state with a cation. Be done.
  • a reinforcing fiber bundle treated with the sizing agent can be obtained.
  • the content of the sizing agent in the emulsion is preferably 0.001% by mass or more and 10% by mass or less.
  • the amount of the sizing agent attached to the reinforcing fiber bundle is preferably 0.1% by mass or more and 5.0% by mass or less.
  • a fiber-reinforced resin composition can be obtained by aligning the reinforcing fiber bundles described above and bringing them into contact with, for example, a molten matrix resin.
  • the type of matrix resin is not limited, but a thermoplastic resin is preferable.
  • the thermoplastic resin include polyolefin resins (for example, polypropylene resins, polyethylene resins), polyamide resins, polyester resins, polycarbonate resins, polyacetal resins, polyetherketone resins, polyetheretherketone resins, polysulfone resins, and the like.
  • Thermoplastic resin can be mentioned.
  • the matrix resin more preferably contains at least one thermoplastic resin selected from the group consisting of polypropylene-based resins and polyamide-based resins. Further, the matrix resin may contain a modified polyolefin.
  • the fiber-reinforced resin article of the present invention described above is laminated on another article and used as a laminate.
  • the type of the laminate is not particularly limited, and specifically, it may be a sandwich panel in which the fiber-reinforced resin article of the present invention is laminated on one side or both sides of the foamed sheet or the honeycomb plate as described above. , And other types of laminates may be used.
  • the laminate of the present invention is a laminate containing the fiber-reinforced resin article of the present invention and a foam layer.
  • the fiber reinforced resin article and the foam layer may be in direct contact with each other, or may be laminated via another layer (intermediate layer or the like).
  • a preferred embodiment is a laminated structure having a portion where the fiber reinforced resin article and the foam layer are in contact with each other.
  • at least one surface of the laminate is a surface containing a plurality of chopped sheets (CS) (that is, a surface having a marble-like appearance).
  • the fiber-reinforced resin article is located on one surface of the foam layer, and the surface of the fiber-reinforced resin article facing the foam layer side is a chopped sheet ( Examples thereof include a laminated body containing a plurality of CS).
  • This aspect is typically a laminated body having a structure in which a fiber reinforced resin article (CS / UDS) / a foam layer is laminated in this order.
  • one surface of the foam layer is reinforced by a fiber reinforced resin article, and the surface of the reinforced side of the laminate has a marble-like appearance.
  • the fiber reinforced plastic article is located on one surface of the foam layer, and the unidirectional fiber reinforced resin sheet (UDS) is located on the other surface of the foam layer.
  • the surface of the fiber-reinforced resin article facing the surface on the foam layer side includes a plurality of chopped sheets (CS).
  • This aspect is typically a laminated body having a structure in which a fiber reinforced resin article (CS / UDS) / a foam layer / a unidirectional fiber reinforced resin sheet (UDS) is laminated in this order.
  • both surfaces of the foam layer are reinforced with a fiber reinforced resin article or a unidirectional fiber reinforced resin sheet, and the surface of the laminate on the side having the chopped sheet (CS) has a marble-like appearance. ..
  • the fiber-reinforced resin articles are respectively located on both surfaces of the foam layer and face the surfaces of the fiber-reinforced resin articles on the foam layer side.
  • Examples thereof include a laminate having a plurality of chopped sheets (CS) on the surface.
  • This aspect is typically a laminate (sandwich panel) having a structure in which a fiber-reinforced resin article (CS / UDS) / foam layer / fiber-reinforced resin article (UDS / CS) is laminated in this order.
  • both sides of the foam layer are reinforced with fiber reinforced resin articles, and both reinforced surfaces of the laminate have a marble-like appearance.
  • the resin contained in the foam layer (hereinafter referred to as “foam resin”] is not particularly limited, and various known resins can be used.
  • the foam resin may be a crosslinked resin or may be used.
  • a non-crosslinked material may be used.
  • Specific examples of the foam resin include heat of a polyethylene-based resin foam, a polypropylene-based resin foam, a polystyrene-based resin foam, a polystyrene-based resin foam having a polypropylene-based resin foam as an outer layer, and the like. Examples thereof include a plastic resin foam.
  • the foam resin is preferably composed of the same type of thermoplastic resin as the matrix resin contained in the fiber-reinforced resin article, and both are preferably polypropylene-based resins. With such a configuration, the adhesive strength tends to be further improved.
  • the "same type of thermoplastic resin” means that both the matrix resin and the foam layer contain, for example, a polyolefin resin. For example, even if the matrix resin contains a polypropylene resin and the foam layer contains a polybutene resin, both contain a polyolefin resin, so that the matrix resin and the foam layer are "the same type of thermoplastic resin".
  • polystyrene resin for example, polycarbonate resin, styrene resin, polyester resin, polyphenylene sulfide resin (PPS resin), modified polyphenylene ether resin (modified PPE resin), polyacetal resin (POM resin).
  • PPS resin polyphenylene sulfide resin
  • modified polyphenylene ether resin modified PPE resin
  • POM resin polyacetal resin
  • Liquid crystal polyester polyarylate, acrylic resin such as polymethylmethacrylate resin (PMMA), vinyl chloride, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone, polyethersulfone, polyketone, poly The same applies to ether ketones, polyether ether ketones (PEEK), modified polyolefins, phenol resins, phenoxy resins, and polyamide resins.
  • propylene resins means either a matrix resin or a foam layer. However, it means that it contains a polymer containing 50% by mass or
  • the density of the foam layer is preferably 0.2 to 0.7 g / cc, more preferably 0.25 to 0.4 g / cc.
  • the bubbles in the foam resin may be closed cells or continuous cells. In general, closed-cell foam resins tend to have high strength.
  • the foaming ratio of the foam layer is preferably 1.3 to 5 times, more preferably 2 to 4 times.
  • the foam layer may include a rib structure, and more specifically, a non-foam rib structure may be included in a part of the foam layer.
  • the rib structure has an action of suppressing shrinkage and deformation of the foam, for example.
  • the form of the rib structure is not particularly limited, and for example, it can take a form such as a lattice shape, a stripe shape, a columnar shape, or a ring shape. These shapes may take a form in which they overlap each other.
  • the rib structure may be an embodiment in which ribs in the cross-sectional direction having a shape such as a lattice shape are formed on the entire front surface and the back surface of the foam layer, or on the entire surface or a part of either the front surface or the back surface.
  • ribs in the cross-sectional direction having a shape such as a grid may be formed.
  • the structure on the front surface and the structure on the back surface may be connected.
  • a method of forming a non-foamed rib structure in a part of the foam layer for example, there is a method of bringing a heated knife into contact with a part of the foam layer to heat-melt a desired position.
  • a method of pressing a heated rod-shaped metal against the foam layer to form a columnar shape, or a method of pressing a heated pipe-shaped metal against the foam layer to form a ring-shaped shape. can be mentioned.
  • the thickness of the laminate of the present invention (the total thickness including the fiber-reinforced resin article and the foam layer) is preferably 2 to 16 mm, more preferably 2 to 10 mm.
  • each layer may be laminated in order and used as it is as a laminated body, a part or all of the interface of each layer may be adhered using an adhesive, or a device such as a press or an iron may be used. It may be pressurized and heated to fuse a part or all of the interface of each layer. Further, the end portion of each layer may be fixed using an adhesive tape, or a resin pin may be used to pierce an arbitrary portion of each layer so that the position does not shift. In particular, a method of pressurizing and heating to fuse a part or all of the interface of each layer is preferable.
  • the laminated body of the present invention may be a laminated body to which a three-dimensional shape is given.
  • the specific form of the three-dimensional shape is not particularly limited, and corresponds to this when a shape other than the planar shape is given to the surface.
  • Specific examples of the method for imparting a three-dimensional shape include a heat pressing method (for example, a heat and cool method and a stamping method) and a vacuum forming method.
  • the laminate of the present invention has an appearance such as cracks when a three-dimensional shape is given by a processing method such as hot pressing, as compared with a conventional laminate in which a foam sheet is reinforced only with a unidirectional fiber reinforced resin sheet. The above problems are unlikely to occur.
  • the fiber-reinforced resin article of the present invention and the laminate containing the same can be suitably used in various fields.
  • it is very useful in applications of lightweight and relatively strong articles such as electric parts, PC housings, mobile phone covers, automobile parts, furniture, partitions, screen walls, doors, and sliding doors.
  • articles that require design such as wallpaper for building materials, flooring materials, and decorative boards.
  • ⁇ Tensile test> Measurements were carried out at a tensile speed of 0.45 mm / min and 23 ° C. using a tensile tester AG-X 100 kN manufactured by Shimadzu Corporation. Tensile tests were performed under conditions conforming to JIS K7164 except for the thickness of the test piece, and Young's modulus and tensile strength were measured.
  • ⁇ c is the density of the sample (g / cm 3 )
  • ⁇ f is the density of the carbon fibers used in the sample (g / cm 3 ).
  • Example 1 Manufacturing of unidirectional fiber reinforced plastic sheet (UDS)
  • UDS unidirectional fiber reinforced plastic sheet
  • a unidirectional fiber reinforced resin sheet (however, the thickness is 162.4 ⁇ m and the fiber volume fraction Vf is 0.53) is prepared and cut out by the method described in Example 6 of International Publication No. 2016/114352.
  • a 200 mm ⁇ 200 mm unidirectional fiber reinforced resin sheet (UDS) was obtained.
  • the mass of this unidirectional fiber reinforced resin sheet (UDS) was 8.98 g.
  • the unidirectional fiber reinforced resin sheet (UDS) produced as described above is slit with a width of 12.5 mm to form a tape, which is further lengthened by about 15 mm. It was cut to obtain a large number of chopped sheets (CS).
  • Minitest press MP-WCH Minitest press MP-WCH
  • a press device adjusted to 15 ° C. and cooled by applying a pressure of 2 MPa for 30 seconds and then 4 MPa for 30 seconds.
  • the total mass of the fiber-reinforced resin article is 13.47 g
  • the ratio of the total mass of the fiber-reinforced resin article to the mass of the unidirectional fiber-reinforced resin sheet (UDS) (hereinafter referred to as "mass ratio") is 1.5. there were.
  • the Young's modulus in the 0 ° direction of the fiber reinforced resin article was 61.53 GPa
  • the tensile strength was 587 MPa
  • the Young's modulus in the 45 ° direction was 5.44 GPa
  • the tensile strength was 10.9 MPa
  • the Young's modulus in the 90 ° direction was 4. It was .05 GPa and the tensile strength was 9.0 MPa.
  • the appearance of the chopped sheet (CS) side of the fiber reinforced plastic article was marble-like.
  • FIG. 2 is a photograph of a part of the appearance taken from an oblique direction.
  • the Young's modulus in the 0 ° direction of the fiber reinforced resin article is 69.64 GPa, the tensile strength is 609 MPa, the Young's modulus in the 45 ° direction is 6.53 GPa, the tensile strength is 13.1 MPa, and the Young's modulus in the 90 ° direction is 5.42 GPa.
  • the tensile strength was 7.9 MPa.
  • the appearance of the chopped sheet (CS) side of the fiber reinforced resin article was marble-like.
  • the Young's modulus in the 0 ° direction of the fiber reinforced resin article is 64.94 GPa, the tensile strength is 588 MPa, the Young's modulus in the 45 ° direction is 22.7 GPa, the tensile strength is 24.3 MPa, and the Young's modulus in the 90 ° direction is 4.72 GPa.
  • the tensile strength was 11.3 MPa.
  • the appearance of the chopped sheet (CS) side of the fiber reinforced resin article was marble-like.
  • the Young's modulus in the 0 ° direction was 105.42 GPa
  • the tensile strength was 1499 MPa
  • the Young's modulus in the 45 ° direction was 5.03 GPa
  • the tensile strength was 9.3 MPa in the 90 ° direction.
  • Young's modulus was 3.43 GPa and tensile strength was 5.6 MPa, and the strength in the 45 ° direction and 90 ° direction was lower than that of the fiber-reinforced resin article of Example 1.
  • the unidirectional fiber-reinforced resin article as in Comparative Example 1 there is a high possibility that cracks will occur when the three-dimensional shape is given by press molding.
  • Example 2 One unidirectional fiber reinforced plastic sheet (UDS) prepared in Example 1 is laminated in the 0 ° direction and the other one is laminated in the 90 ° direction, and press molding is performed under the same conditions as in Example 1.
  • a fiber-reinforced resin article having a thickness of 314 ⁇ m was obtained.
  • the total mass of the fiber-reinforced resin article was 17.96 g, and the mass ratio was 2.0.
  • the mass ratio in Comparative Example 2 is the ratio of the total mass of the fiber reinforced resin article to the mass of the unidirectional fiber reinforced resin sheet (UDS) as the base.
  • the obtained fiber-reinforced resin article was significantly curled due to the difference in shrinkage between the 0 ° direction and the 90 ° direction.
  • the Young's modulus in the 0 ° direction (direction parallel to the fiber direction of the lower unidirectional fiber-reinforced resin sheet (UDS)) was 57.84 GPa, and the tensile strength was 699 MPa.
  • 45 ° Young's modulus is 4.92 GPa
  • tensile strength is 36.5 MPa
  • 90 ° direction (direction perpendicular to the fiber direction of the lower unidirectional fiber reinforced resin sheet (UDS)) is 50 It was 0.0 GPa and the tensile strength was 604 MPa.
  • the bidirectional (0 ° and 90 ° directions) fiber-reinforced resin articles as in Comparative Example 2 are inferior in shape followability, and cracks and wrinkles occur when a three-dimensional shape is given by press molding. there is a possibility.
  • a fiber-reinforced resin article was prepared in the same manner as in Example 1 except that the mass of the chopped sheet (CS) placed on the unidirectional fiber-reinforced resin sheet (UDS) was changed to 2.70 g, and a tensile test was performed.
  • the thickness of the fiber-reinforced resin article was 210 ⁇ m, the total mass was 11.67 g, and the mass ratio was 1.3.
  • the Young's modulus in the 0 ° direction of the fiber reinforced resin article is 58.50 GPa, the tensile strength is 516 MPa, the Young's modulus in the 45 ° direction is 4.70 GPa, the tensile strength is 8.2 MPa, and the Young's modulus in the 90 ° direction is 2.78 GPa.
  • the tensile strength was 4.5 MPa, which was inferior to that of the examples.
  • the appearance of the fiber reinforced resin article on the chopped sheet (CS) side had a large gap, and was mottled and could not be said to be marble-like.
  • FIG. 3 is a photograph of a part of the appearance taken from an oblique direction.
  • FIG. 4 is a photograph of a part of the appearance taken from an oblique direction.
  • Example 4 Manufacturing of fiber reinforced plastic articles
  • Two fiber-reinforced resin articles having the same thickness as in Example 1 and having a thickness of 255 ⁇ m were prepared.
  • the surface (inner surface) of each fiber-reinforced resin article in contact with the foam sheet is the surface of the unidirectional fiber-reinforced resin sheet (UDS), and the surface (outer surface) facing the surface is The surface on the chopped sheet (CS) side was used. Further, the fiber directions of the unidirectional fiber reinforced resin sheets (UDS) of each fiber reinforced resin article were set to the same direction (0 ° direction).
  • a release film is placed on the outer surface of each fiber-reinforced resin article, and this is placed in a press device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name: Minitest Press MP-WCL) heated to 200 ° C. to apply pressure. The pressure was applied at 0.8 MPa for 1 minute. Next, this was transferred to a press device (manufactured by Toyo Seiki Seisakusho Co., Ltd., device name: Minitest Press MP-WC) cooled with cooling water at 40 ° C., and cooled at a pressure of 0.2 MPa for 10 minutes.
  • a press device manufactured by Toyo Seiki Seisakusho Co., Ltd., device name: Minitest Press MP-WC
  • the fiber reinforced resin article of the present invention can be suitably used in various fields.
  • it is very useful in applications of lightweight and relatively strong articles such as electric parts, PC housings, mobile phone covers, automobile parts, furniture, partitions, screen walls, doors, and sliding doors.
  • articles that require design such as wallpaper for building materials, flooring materials, and decorative boards.
  • UDS One-way fiber reinforced plastic sheet
  • CS Chopped sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

一方向性繊維強化樹脂シート(UDS)1の少なくとも一方の面に、この一方向性繊維強化樹脂シート(UDS)と同一又は異なる一方向性繊維強化樹脂シートのチョップドシート(CS)2を複数含み、前記一方向性繊維強化樹脂シート(UDS)100質量部に対する前記チョップドシート(CS)の割合が、40質量部以上100質量部以下である繊維強化樹脂物品;そのチョップドシート(CS)2を複数配置する工程と、加熱及び加圧する工程とを有する繊維強化樹脂物品の製造方法;並びに、その繊維強化樹脂物品と発泡体層とを含む積層体が開示される。

Description

繊維強化樹脂物品、その製造方法、及びそれを含む積層体
 本発明は、ランダムシートのような大理石調の独特な外観を有し、且つ厚みが比較的薄い場合であっても欠陥(穴など)が無い繊維強化樹脂物品、その製造方法、及びそれを含む積層体に関する。特に本発明は、電気部品、PC筐体、携帯カバー、自動車部品、家具、建築材の壁紙等の用途において非常に有用な繊維強化樹脂物品に関する。
 従来、強化繊維をマトリックス樹脂と複合させた繊維強化樹脂物品が様々な分野で利用されている。この繊維強化樹脂物品としては、例えば、一方向性繊維強化樹脂シート、複数の一方向性繊維強化樹脂シートを積層してなる積層体、あるいはランダムシートが知られている。
 特許文献1には、強化繊維束として、特定の炭素繊維束を用いた一方向性繊維強化樹脂シート(一方向性材)、複数の一方向性繊維強化樹脂シートを積層してなる積層体(一方向性積層材)、及び、ランダムシート(ランダムスタンパブルシート)が記載されている。
 ランダムシートとは、一般にCTT材(chopped carbon fiber tape reinforced thermoplastics)と呼ばれる面内等方性のシートであり、大理石調の独特な外観を有し、スタンプ成形やプレス成形等の成形法によって3次元形状を付与することも容易なシートである。このランダムシートは、例えば、一方向性繊維強化樹脂シートをチップ状にカットした多数のチョップドシートをランダムに積層し、これをプレス成形して一体化することにより得られる。
 特許文献2には、ランダムシート成形体と一方向シート成形体の積層体であり、かつそのランダムシート成形体が少なくとも片面に配置された構造体が記載されている。そしてこの構造体は、強度、強度異方性、成形性及び成形外観が優れていることが説明されている。
国際公開第2016/114352号 特開2013-208725号公報
 近年、繊維強化樹脂物品に対しても薄膜化及び軽量化の要望が高まって来ている。しかし、ランダムシートは面内等方性を発現させる為にチョップドシートを通常8層以上重ねて積層一体化したシートなので、一方向性繊維強化樹脂シートよりもかなり厚くなる。このランダムシートを薄膜化する為には、チョップドシートの積層数を少なくする必要があるが、積層数を極端に少なくするとチョップドシートが重なり合うことができなかった箇所に穴が開いてしまい、不連続なシートになってしまう傾向にある。
 特許文献2に記載の構造体は、ランダムシート成形体を一方向シート成形体(一方向性繊維強化樹脂シート)に積層した積層体なので、上述した薄膜化及び軽量化の要望を十分満たすことはできない。なぜならば、特許文献2で使用されているランダムシート成形体は、上述したランダムシートと同様に、チョップドプリプレグ(チョップドシート)を多数(実施例では約7層~約9層)重ねて積層一体化した成形体であり、それ自体がかなり厚いからである。しかも、この厚いランダムシート成形体を一方向シート成形体に積層しているので、その構造体の合計厚みはさらに厚くなる。
 本発明は、以上の課題を解決する為になされたものである。すなわち本発明の目的は、ランダムシートのような大理石調の独特な外観を有し、且つ厚みが比較的薄い場合であっても欠陥(穴など)が無い繊維強化樹脂物品、その製造方法、及びそれを含む積層体を提供することにある。
 本発明者らは、上記課題を解決する為に鋭意検討した結果、一方向性繊維強化樹脂シートの少なくとも一方の面にチョップドシートを一体化することが非常に有効であることを見出し、本発明を完成するに至った。すなわち本発明は以下の事項により特定される。
[1]一方向性繊維強化樹脂シート(UDS)の少なくとも一方の面に、この一方向性繊維強化樹脂シート(UDS)と同一又は異なる一方向性繊維強化樹脂シートのチョップドシート(CS)を複数含み、
 前記一方向性繊維強化樹脂シート(UDS)100質量部に対する前記チョップドシート(CS)の割合が、40質量部以上100質量部以下である繊維強化樹脂物品。
[2]前記一方向性繊維強化樹脂シート(UDS)及び前記チョップドシート(CS)が、熱可塑性樹脂を含む[1]に記載の繊維強化樹脂物品。
[3]前記熱可塑性樹脂が、ポリプロピレン系樹脂及びポリアミド系樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂である[2]に記載の繊維強化樹脂物品。
[4]前記一方向性繊維強化樹脂シート(UDS)と前記チョップドシート(CS)が、同じ種類の樹脂を含む[1]に記載の繊維強化樹脂物品。
[5]厚みが0.1mm以上1.0mm以下である[1]に記載の繊維強化樹脂物品。
[6]前記一方向性繊維強化樹脂シート(UDS)及び前記チョップドシート(CS)が、炭素繊維及びガラス繊維からなる群より選択される少なくとも一種の繊維を含む[1]に記載の繊維強化樹脂物品。
[7]前記チョップドシート(CS)を含む側の表面に、強化繊維を含まない樹脂シートを有する[1]に記載の繊維強化樹脂物品。
[8]前記チョップドシート(CS)の単位面積当たりの個数が500~7000個/mである[1]に記載の繊維強化樹脂物品。
[9]一方向性繊維強化樹脂シート(UDS)の少なくとも一方の面に、この一方向性繊維強化樹脂シート(UDS)と同一又は異なる一方向性繊維強化樹脂シートのチョップドシート(CS)を複数配置する工程と、
 前記配置する工程で得られた配置後の物品を加熱及び加圧する工程とを有する繊維強化樹脂物品の製造方法。
[10][1]に記載の繊維強化樹脂物品と、発泡体層とを含む積層体。
[11]前記発泡体層の密度が0.2~0.7g/ccである[10]に記載の積層体。
[12]前記発泡体層の一方の面上に、前記繊維強化樹脂物品が位置し、
 前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む[10]に記載の積層体。
[10]に記載の積層体。
[13]前記発泡体層の一方の面上に、前記繊維強化樹脂物品が位置し、
 前記発泡体層の他方の面上に、一方向性繊維強化樹脂シート(UDS)が位置し、
 前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む[10]に記載の積層体。
[14]前記発泡体層の両方の面上に、前記繊維強化樹脂物品が各々位置し、
 各々の前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む請求項10に記載の積層体。
 本発明によれば、ランダムシートのような大理石調の独特な外観を有し、且つ厚みが比較的薄い場合であっても欠陥(例えば穴)が無い繊維強化樹脂物品、その製造方法、及びそれを含む積層体を提供できる。
 また、本発明の繊維強化樹脂物品は、一方向性繊維強化樹脂シートと比較した場合、0°方向(一方向性繊維強化樹脂シートの繊維方向に対し平行な方向)以外の方向における強度(例えば引張強度)が向上する。
 また、本発明の繊維強化樹脂物品は、ランダムシートと比較した場合、あるいは特許文献2に記載のようなランダムシートと一方向性繊維強化樹脂シートの積層体と比較した場合、薄膜化及び軽量化の要望を満たすことが容易である。
 また、繊維強化樹脂物品をシートインサート射出成形に用いたり、発泡シート又はハニカム板をサンドウィッチパネル等の積層体に加工する際の表面材として用いることで、軽量で高強度の製品を提供できる。
本発明の繊維強化樹脂物品の一実施形態を示す模式的平面図である。 実施例1で得た繊維強化樹脂物品の外観の一部を斜め方向から撮影した写真である。 比較例3で得た繊維強化樹脂物品の外観の一部を斜め方向から撮影した写真である。 比較例4で得た繊維強化樹脂物品の外観の一部を斜め方向から撮影した写真である。
 <繊維強化樹脂物品>
 図1は、本発明の繊維強化樹脂物品の一実施形態を示す模式的平面図である。本発明の繊維強化樹脂物品は、図1に示すように、一方向性繊維強化樹脂シート(UDS)1の少なくとも一方の面(シート面)に、一方向性繊維強化樹脂シートのチョップドシート(CS)2を複数含む物品である。
 図1に示すチョップドシート(CS)2は一方向性繊維強化樹脂シートの小片であり、例えば、一方向性繊維強化樹脂シートをチップ状にカットすることにより得られる。このチョップドシート(CS)2の原材となる一方向性繊維強化樹脂シートは、一方向性繊維強化樹脂シート(UDS)1と同一のものであっても良いし、異なるものであっても良い。一方向性繊維強化樹脂シート(UDS)1及びチョップドシート(CS)2の原材となる一方向性繊維強化樹脂シートの具体例は、後に詳述する。
 図1に示す繊維強化樹脂物品は、その表面に多数のチョップドシート(CS)2がランダムに分散配置されているので、繊維の配向方向のランダム性により光線の反射が複雑に変化し、大理石調の独特な外観になる。しかも、これらチョップドシート(CS)2は一方向性繊維強化樹脂シート(UDS)1の表面に一体化されているので、チョップドシート(CS)2が互いに重なり合っていなくても穴は生じない。また、従来のランダムシートにおいてはチョップドシート(CS)の端面が破壊の起点となり易いが、本発明の繊維強化樹脂物品においては、チョップドシート(CS)2の端面の数の割合が少なく、しかも一方向性繊維強化樹脂シート(UDS)1が存在するので破壊しにくい。また、チョップドシート(CS)2の繊維方向がランダムであるため、極端なカールが生じにくい。
 図1に示す一方向性繊維強化樹脂シート(UDS)1は0°方向(一方向性繊維強化樹脂シート(UDS)の繊維方向に対し平行な方向)の強度(例えば引張強度)が高く、0°方向以外の方向の強度に関してはチョップドシート(CS)2によって向上する。したがって、本発明の繊維強化樹脂物品は極端な局所異方性は示さない。これにより、例えば、繊維強化樹脂物品にスタンプ成形やプレス成形等の成形法によって3次元形状を付与する場合においても繊維強化樹脂物品が裂けにくく、形状追従性に優れている。さらに、繊維強化樹脂物品を射出成形金型内にインサートして行うインサート成形やオーバーインジェクション成形を行うことも容易である。
 図1に示す一方向性繊維強化樹脂シート(UDS)1は、特許文献2に記載のような多数のチョップドシート(CS)をシート状に成形して得られるランダムシートを一方向性繊維強化樹脂シートに積層した構成の積層体とは異なり、複数のチョップドシート(CS)2が一方向性繊維強化樹脂シート(UDS)1の少なくとも一方の面(シート面)に含まれる構成を有するので、薄膜化及び軽量化の要望を満たすことが容易である。
 図1に示す実施形態においては、各々のチョップドシート(CS)2は互いに重なり合わないように配置されている。このように出来る限り重なり合わないように配置することは、例えば、繊維強化樹脂物品の薄膜化の点で好ましい。ただし本発明はこれに限定されない。多数のチョップドシート(CS)2のうちの幾つかが互いに重なり合っていても構わない。チョップドシート(CS)2の重なり合いの有無やその積層数は、例えば繊維強化樹脂物品の目的とする厚みに応じて適宜決定すれば良い。
 図1に示す実施形態においては、一方向性繊維強化樹脂シート(UDS)1の片面の全体が複数のチョップドシート(CS)2を含むが、本発明はこれに限定されない。例えば、一方向性繊維強化樹脂シート(UDS)1の両面が複数のチョップドシート(CS)2を含んでいても良いし、片面又は両面の一部分のみに複数のチョップドシート(CS)2を含んでいても良い。また、一方向性繊維強化樹脂シート(UDS)1を複数積層した積層体の少なくとも一方の面に複数のチョップドシート(CS)2を含んでいても良い。
 図1に示す実施形態においては、配置されている多数のチョップドシート(CS)2のサイズは均一であるが、本発明はこれに限定されない。例えば、サイズが異なる2種以上のチョップドシート(CS)を用いても良いし、そのサイズに分布を持たせても良い。また、チョップドシート(CS)の形状も四角に限定されず、それ以外の形状であっても構わない。
 図1に示す実施形態においては、チョップドシート(CS)2を含む側の表面には何も積層されていないが、本発明はこれに限定されない。例えば、チョップドシート(CS)2を含む側の表面に、強化繊維を含まない樹脂シート(保護フィルムなど)を有していても良い。この樹脂シートは繊維強化樹脂物品の表面を保護するだけでなく、例えば、一方向性繊維強化樹脂シート(UDS)の0°方向以外の方向の強度をさらに向上したり、インサート成形、オーバーインジェクション成形を行った場合のそり変形を軽減したり、あるいは耐候性や難燃性を付与することもできる。樹脂シートは、一方向性繊維強化樹脂シート(UDS)1のマトリックス樹脂及び/又はチョップドシート(CS)2のマトリックス樹脂と同じ種類の樹脂を含むことが好ましい。また、耐候安定剤、難燃剤などの添加剤を含んでいても良い。このような樹脂シートは、例えば、チョップドシート(CS)2を含む側の表面に熱ラミネートすることにより設けることができる。
 一方向性繊維強化樹脂シート(UDS)100質量部に対するチョップドシート(CS)の割合は40質量部以上100質量部以下であり、好ましくは50質量部以上90質量部以下である。チョップドシート(CS)の量をそのような特定の量以上にすることは、例えば、一方向性繊維強化樹脂シート(UDS)の0°方向以外の方向の強度を向上する点及び大理石調の独特な外観を得る点で好ましい。また、この量をそのような特定の量以下にすることは、例えば、繊維強化樹脂物品の薄膜化及び軽量化の点、チョップドシート(CS)同士の重なり合う箇所を低減すること及び重なり合っている箇所の積層数のばらつきを低減することにより繊維強化樹脂物品の厚みの均一性を向上する点、並びに、破壊の起点となり易い箇所(チョップドシート(CS)の端面など)の数を少なくする点で好ましい。
 一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)の各々の厚みは、好ましくは50μm以上500μm以下、より好ましくは100μm以上250μm以下である。これらの厚みをそのような特定の厚み以上にすることは、例えば、光の透過を抑制して大理石調の独特な外観を得る点で好ましい。また、これらの厚みをそのような特定の厚み以下にすることは、例えば、繊維強化樹脂物品の薄膜化及び軽量化の点、繊維強化樹脂物品の厚みの均一性を向上する点及び破壊の起点となる箇所の数を少なくする点で好ましい。
 繊維強化樹脂物品の厚みは、好ましくは0.1mm以上1.0mm以下、より好ましくは0.15mm以上0.5mm以下である。維強化樹脂物品の厚みをそのような特定の厚み以上にすることは、例えば、繊維強化樹脂物品を用いるシートインサート射出成形や、繊維強化樹脂物品を表面材として用いるサンドウィッチパネル等の積層体への加工に適する点で好ましい。また、これらの厚みをそのような特定の厚み以下にすることは、例えば、繊維強化樹脂物品の薄膜化及び軽量化の点で好ましい。
 一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)の各々の繊維体積分率Vfは、好ましくは0.3以上0.7以下、より好ましくは0.35以上0.6以下である。繊維体積分率Vfの具体的な算定方法は、後述する実施例の欄に記載する。
 一方向性繊維強化樹脂シート(UDS)のサイズ(長さ及び幅)は特に限定されず、繊維強化樹脂物品が使用される用途に応じて適宜決定すれば良い。通常、その長さ(一方向性繊維強化樹脂シート(UDS)の繊維方向に対し平行な方向の長さ)は好ましくは10mm以上2000mm以下であり、その幅(一方向性繊維強化樹脂シート(UDS)の繊維方向に対し直角な方向の長さ)は好ましくは100mm以上600mm以下である。
 チョップドシート(CS)の幅(チョップドシート(CS)の繊維方向に対し直角な方向の長さ)は、好ましくは3mm以上50mm以下、より好ましくは10mm以上25mm以下である。チョップドシート(CS)の幅をそのような特定の範囲内の幅にすることは、例えば、大理石調の独特な外観を得る点で好ましい。
 チョップドシート(CS)の長さ(チョップドシート(CS)の繊維方向に対し平行な方向の長さ)は、好ましくは10mm以上50mm以下、より好ましくは10mm以上25mm以下である。チョップドシート(CS)の長さをそのような特定の範囲内の長さにすることは、例えば、一方向性繊維強化樹脂シート(UDS)の0°方向以外の方向の強度を向上する点で好ましい。
 チョップドシート(CS)のアスペクト比(長さ/幅)は、好ましくは0.5以上5.0以下、より好ましくは1.0以上3.0以下である。通常、チョップドシート(CS)をプレス成形すると、チョップドシート(CS)の繊維方向には広がりにくいが、繊維方向に対し直角な方向には広がり易い傾向がある。したがって、チョップドシート(CS)のアスペクト比をそのような特定の範囲内のアスペクト比にすることは、例えば、プレス成形する際のシートの広がりを適度に抑制する点で好ましい。
 チョップドシート(CS)の単位面積当たりの個数は、好ましくは500~7000個/m、より好ましくは700~7000個/mである。この個数をそのような特定値以上にすることは、例えば、一方向性繊維強化樹脂シート(UDS)の0°方向以外の方向の強度を向上する点及び大理石調の独特な外観を得る点で好ましい。また、この個数をそのような特定値以下にすることは、例えば、繊維強化樹脂物品の薄膜化及び軽量化の点、チョップドシート(CS)同士の重なり合う箇所を低減すること及び重なり合っている箇所の積層数のばらつきを低減することにより繊維強化樹脂物品の厚みの均一性を向上する点、並びに、破壊の起点となり易い箇所(チョップドシート(CS)の端面など)の数を少なくする点で好ましい。なお、この個数における「単位面積」とは、一方向性繊維強化樹脂シート(UDS)のシート面に対し平行な面の単位面積を意味する。
 複数のチョップドシート(CS)は、その繊維方向が互いにランダムな方向になるよう配置されていることが好ましい。その配置のランダム性が高くなるほど大理石調の独特な外観が特に得られる傾向にあり、かつ一方向性繊維強化樹脂シート(UDS)の0°方向以外の方向の強度向上の度合いが均一になる傾向にある。なお、「ランダムな方向になるよう配置されている」とは、その繊維方向が互いに特定の方向には揃えられておらず、不規則に配置されていることを意味する。
 以上説明した各サイズのチョップドシート(CS)は、例えば、カッターナイフ、はさみ、ギロチンカッター、シアカッター、レーザーカッター等の器具を用いて一方向性繊維強化樹脂シートをカットすることにより得ることができる。
 本発明において、一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)の種類は特に限定されず、公知の一方向性繊維強化樹脂シート及びチョップドシートを使用できる。
 一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)は、加熱成形(プレス成形など)による一体化の容易性の点から熱可塑性樹脂を含むことが好ましく、ポリプロピレン系樹脂及びポリアミド系樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂を含むことがより好ましい。
 一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)は、一体化後に剥離しにくい等の安定性の点から、同じ種類の樹脂を含むことが好ましい。この樹脂は、通常、マトリックス樹脂として含まれる樹脂である。したがって、例えば、一方向性繊維強化樹脂シート(UDS)がマトリックス樹脂としてポリプロピレン系樹脂を含む場合はチョップドシート(CS)もマトリックス樹脂としてポリプロピレン系樹脂を含むことが好ましく、また、一方向性繊維強化樹脂シート(UDS)がマトリックス樹脂としてポリアミド系樹脂を含む場合はチョップドシート(CS)もマトリックス樹脂としてポリアミド系樹脂を含むことが好ましい。
 一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)は、炭素繊維及びガラス繊維からなる群より選択される少なくとも一種の繊維を含むことが好ましい。特に大理石調の外観を得る為には、炭素繊維を含むことがより好ましい。
 <繊維強化樹脂物品の製造方法>
 以上説明した本発明の繊維強化樹脂物品は、その製造方法について特に制限されない。ただし、本発明の繊維強化樹脂物品の製造方法は、一方向性繊維強化樹脂シート(UDS)の少なくとも一方の面に、この一方向性繊維強化樹脂シート(UDS)と同一又は異なる一方向性繊維強化樹脂シートのチョップドシート(CS)を複数配置する工程と、この配置する工程で得られた配置後の物品を加熱及び加圧する工程とを有する繊維強化樹脂物品の製造方法である。
 チョップドシート(CS)を複数配置する工程においては、各々のチョップドシート(CS)が互いに重なり合わないように配置することが好ましい。ただし本発明はこれに限定されない。先に説明したとおり、多数のチョップドシート(CS)のうちの幾つかが互いに重なり合っていても構わない。チョップドシート(CS)の重なり合いの有無やその積層数は、例えば、繊維強化樹脂物品の目的とする厚みに応じて適宜決定すれば良い。例えば、複数配置する工程と同時にまたは複数配置する工程の後に、チョップドシート(CS)の重なりを少なくするために、チョップドシート(CS)を再配置する工程を有していてもよい。
 チョップドシート(CS)を複数配置する工程においては、先に述べたように、複数のチョップドシート(CS)を、その繊維方向が互いにランダムな方向になるよう配置することが好ましい。その配置のランダム性が高くなるほど大理石調の独特な外観が特に得られる傾向にあり、かつ一方向性繊維強化樹脂シート(UDS)の0°方向以外の方向の強度向上の度合いが均一になる傾向にある。
 加熱及び加圧する工程において、その加熱温度は一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)に用いられるマトリックス樹脂の融点以上であることが好ましい。その加熱温度は、通常165℃以上250℃以下である。また圧力は、通常0.5MPa以上5.0MPa以下である。
 繊維強化樹脂物品の製造方法は、加熱及び加圧工程を経て得られた繊維強化樹脂物品に対して、必要に応じて、先に説明した樹脂シートを設ける工程(例えば熱ラミネート工程や貼着する工程)をさらに有していても良い。
 <繊維強化樹脂組成物>
 本発明に用いる一方向性繊維強化樹脂シート(UDS)及びチョップドシート(CS)を構成する繊維強化樹脂組成物の種類は特に限定されない。その具体例を以下に説明する。
 繊維強化樹脂組成物は、通常、強化繊維(好ましくは強化繊維束)とマトリックス樹脂を含む組成物である。強化繊維束は、例えば、強化繊維をサイジング剤で処理することにより得られる。そして、この強化繊維束を引き揃えて、例えば溶融したマトリックス樹脂と接触させることにより繊維強化樹脂組成物が得られる。
 強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維等の高強度、高弾性率繊維を使用できる。これらは2種以上を併用してもよい。強化繊維は、特に、炭素繊維及びガラス繊維からなる群より選択される少なくとも一種の繊維を含むことが好ましい。単糸の平均直径は特に限定されないが、機械特性及び表面外観の点から、好ましくは1~20μm、より好ましくは4~10μmである。炭素繊維束の単糸数も特に限定されないが、生産性及び特性の点から、好ましくは100~100,000本、より好ましくは1,000~50,000本である。
 強化繊維束に用いるサイジング剤としては、例えば変性ポリオレフィンが挙げられる。この変性ポリオレフィンは、重合体鎖に結合するカルボン酸金属塩を少なくとも含む変性ポリオレフィンであることが好ましい。変性ポリオレフィンの原料(未変性ポリオレフィン)としては、例えば、エチレン起因の骨格含量が50モル%を超えるエチレン系重合体、プロピレン起因の骨格含量が50モル%を超えるプロピレン系重合体が挙げられる。エチレン系重合体の具体例としては、エチレン単独重合体、エチレンと炭素原子数3~10のα-オレフィンの共重合体が挙げられる。プロピレン系重合体の具体例としては、プロピレン単独重合体、プロピレンとエチレン及び/又は炭素数4~10のα-オレフィンの共重合体が挙げられる。より具体的には、ホモポリプロピレン、ホモポリエチレン、エチレン・プロピレン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体が挙げられる。
 変性ポリオレフィンは、例えば、未変性ポリオレフィンの重合体鎖に、カルボン酸基、カルボン酸無水物基又はカルボン酸エステル基をグラフト導入し、且つその基をカチオンとの塩の状態に変換することにより得られる。
 例えば、強化繊維をサイジング剤(及び必要に応じてアミン化合物等の添加剤)を含むエマルションに浸漬し、その後乾燥することにより、サイジング剤で処理された強化繊維束が得られる。エマルション中のサイジング剤の含有量は、好ましくは0.001質量%以上10質量%以下である。強化繊維束に対するサイジング剤の付着量は、好ましくは0.1質量%以上5.0質量%以下である。
 以上説明した強化繊維束を引き揃えて、例えば溶融したマトリックス樹脂と接触させることにより繊維強化樹脂組成物が得られる。マトリックス樹脂の種類は限定されないが、熱可塑性樹脂が好ましい。熱可塑性樹脂の具体例としては、ポリオレフィン系樹脂(例えばポリプロピレン系樹脂、ポリエチレン系樹脂)、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリスルホン樹脂等の熱可塑性樹脂が挙げられる。特にマトリックス樹脂は、ポリプロピレン系樹脂及びポリアミド系樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂を含むことがより好ましい。また、マトリックス樹脂は変性ポリオレフィンを含んでいても良い。
 <積層体>
 以上説明した本発明の繊維強化樹脂物品は、他の物品に積層して積層体として使用することも好ましい。積層体の種類は特に限定されず、具体的には、先に述べたような発泡シート又はハニカム板の片面、あるいは両面に本発明の繊維強化樹脂物品を積層したサンドウィッチパネルであっても良いし、またそれ以外の種類の積層体であっても良い。
 本発明の積層体は、本発明の繊維強化樹脂物品と発泡体層とを含む積層体である。この積層体において、繊維強化樹脂物品と発泡体層とは、直接接していても良いし、他の層(中間層など)を介して積層されていても良い。好ましい態様は、繊維強化樹脂物品と発泡体層とが接する箇所を有する積層構造である。さらに、積層体の少なくとも一つの表面がチョップドシート(CS)を複数含む面である(すなわち大理石調の外観を有する面である)ことが好ましい。
 本発明の積層体の好ましい態様の一つとして、発泡体層の一方の面上に繊維強化樹脂物品が位置し、繊維強化樹脂物品の発泡体層側の面とは対向する面がチョップドシート(CS)を複数含む積層体が挙げられる。この態様は、代表的には、繊維強化樹脂物品(CS/UDS)/発泡体層の順で積層された構成を有する積層体である。この態様においては、発泡体層の一方の面が繊維強化樹脂物品により補強され、かつ積層体の補強された側の表面が大理石調の外観を有する。
 本発明の積層体の好ましい態様の一つとして、発泡体層の一方の面上に前記繊維強化樹脂物品が位置し、前記発泡体層の他方の面上に一方向性繊維強化樹脂シート(UDS)が位置し、前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む積層体が挙げられる。この態様は、代表的には、繊維強化樹脂物品(CS/UDS)/発泡体層/一方向性繊維強化樹脂シート(UDS)の順で積層された構成を有する積層体である。この態様においては、発泡体層の両方の面が繊維強化樹脂物品又は一方向性繊維強化樹脂シートにより補強され、かつ積層体のチョップドシート(CS)を有する側の表面が大理石調の外観を有する。
 本発明の積層体の好ましい態様の他の一つとして、発泡体層の両方の面上に繊維強化樹脂物品が各々位置し、各々の繊維強化樹脂物品の発泡体層側の面とは対向する面がチョップドシート(CS)を複数含む積層体が挙げられる。この態様は、代表的には、繊維強化樹脂物品(CS/UDS)/発泡体層/繊維強化樹脂物品(UDS/CS)の順で積層された構成を有する積層体(サンドウィッチパネル)である。この態様においては、発泡体層の両面が繊維強化樹脂物品により補強され、かつ積層体の補強された両方の表面が大理石調の外観を有する。
 本発明の積層体において、発泡体層に含まれる樹脂(以下、「発泡体樹脂」と称す]は特に限定されず、公知の各種樹脂を使用できる。発泡体樹脂は、架橋樹脂でも良いし、無架橋体でも良い。発泡体樹脂の具体例としては、ポリエチレン系樹脂発泡体、ポリプロピレン系樹脂発泡体、ポリスチレン系樹脂発泡体、ポリプロピレン系樹脂発泡体を外層に有するポリスチレン系樹脂発泡体等の熱可塑性樹脂発泡体が挙げられる。特に発泡体樹脂は、繊維強化樹脂物品に含まれるマトリックス樹脂と同じ種類の熱可塑性樹脂で構成されることが好ましく、どちらもプロピレン系樹脂であることが好ましい。このような構成とすることで、接着強度がより向上される傾向にある。なお、「同じ種類の熱可塑性樹脂」とは、マトリックス樹脂と発泡体層のいずれもが、例えばポリオレフィン系樹脂を含むことを指す。例えば、マトリックス樹脂がポリプロピレン系樹脂を含み、発泡体層がポリブテン系樹脂を含んでいても、どちらもポリオレフィン系樹脂を含むので、マトリックス樹脂と発泡体層は「同じ種類の熱可塑性樹脂」を含んでいる。ポリオレフィン系樹脂の他にも、例えば、ポリカーボネート樹脂、スチレン系樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂(PPS樹脂)、変性ポリフェニレンエーテル樹脂(変性PPE樹脂)、ポリアセタール樹脂(POM樹脂)、液晶ポリエステル、ポリアリーレート、ポリメチルメタクリレート樹脂(PMMA)等のアクリル樹脂、塩化ビニル、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン(PEEK)、変性ポリオレフィン、フェノール樹脂、フェノキシ樹脂、ポリアミド樹脂についても同様である。また、「どちらもプロピレン系樹脂である」とは、マトリックス樹脂と発泡体層のいずれもが、プロピレンを構成単位として50質量%以上含む重合体を含むことを意味する。
 発泡体層の密度は、好ましくは0.2~0.7g/cc、より好ましくは0.25~0.4g/ccである。発泡体樹脂中の気泡は、独立気泡でも良いし、連通気泡でも良い。一般に、独立気泡の発泡体樹脂は強度が高い傾向にある。
 発泡体層の発泡倍率は、好ましくは1.3~5倍、より好ましくは2~4倍である。
 発泡体層は、リブ構造を含んでいても良く、より具体的には、発泡体層の一部に非発泡リブ構造を含んでいても良い。リブ構造は、例えば、発泡体の収縮や変形を抑制する作用を奏する。リブ構造の形態は特に制限されず、例えば格子状、ストライプ状、円柱状、リング状等の形態をとることができる。これらの形状は相互に重なった形態をとっても良い。リブ構造は、発泡体層の表面及び裏面の全面に格子状等の形状の断面方向のリブを形成した態様であっても良いし、表面又は裏面のどちらか一方の全面又は一部の面に格子状等の形状の断面方向のリブを形成した態様であっても良い。また、表面の構造と裏面の構造がつながっていてもかまわない。発泡体層の一部に非発泡リブ構造を形成する方法としては、例えば、発泡体層の一部に熱したナイフを接触させて、所望の位置を熱溶融させる方法がある。また、熱した棒状の金属を発泡体層に押し当てて、円柱状の形状を形成する方法や、熱したパイプ状の金属を発泡体層に押し当てて、リング状の形状を形成する方法を挙げることが出来る。
 本発明の積層体の厚み(繊維強化樹脂物品及び発泡体層を含む全体の厚み)は、好ましくは2~16mm、より好ましくは2~10mmである。
 本発明の積層体の製造方法は特に限定されない。例えば、各層を順番に積層して、そのまま積層体として用いても良いし、接着剤を用いて各層の界面の一部又は全部を接着しても良いし、プレス機やアイロン等の機器を用いて加圧及び加熱して各層の界面の一部又は全部を融着しても良い。また、粘着テープを用いて各層の端部を固定しても良いし、樹脂製のピンを用いて各層の任意の部分に刺し込んで位置がずれないようにしても良い。特に、加圧及び加熱して各層の界面の一部又は全部を融着する方法が好ましい。
 本発明の積層体は、三次元形状が付与された積層体であっても良い。三次元形状の具体的な形態は特に制限されず、その表面に平面形状以外の形状が付与された場合はこれに該当する。三次元形状を付与する方法の具体例としては、熱プレス法(例えばヒートアンドクール法、スタンピング法)、真空成型法が挙げられる。本発明の積層体は、発泡体シートを一方向性繊維強化樹脂シートのみで補強した従来の積層体と比較して、熱プレス等の加工法によって三次元形状を付与する際に割れ等の外観上の不具合が生じにくい。
 本発明の繊維強化樹脂物品及びこれを含む積層体は、様々な分野で好適に利用できる。特に、電気部品、PC筐体、携帯カバー、自動車部品、家具、パーティション、スクリーンウォール、ドア、引き戸等の軽量でかつ比較的強度が要求される物品の用途において非常に有用である。さらに、建築材の壁紙、床材、化粧ボード等の意匠性が要求される物品の用途においても非常に有用である。
 以下、実施例により本発明をさらに詳しく説明する。ただし、本発明はこれらに限定されない。実施例において用いた評価方法は以下の通りである。
 <引張試験>
 島津製作所製引張試験機AG-X 100kNを使用し、引張速度0.45mm/分、23℃にて測定を行った。試験片の厚み以外はJIS K7164に準拠した条件で引張試験を行ない、ヤング率と引張強度を測定した。
 <シート厚み>
 ミツトヨ社製デジマチック標準外側マイクロメータMDE-MXを使用し、サンプルの1辺あたり3点、合計8点(隣合う2辺では1点を共有)測定し、平均値を厚みとした。
 <繊維体積分率Vf>
 サンプルのシートを50mm×50mmの正方形に切り出し、質量Wc(g)を測定した。この切り出したサンプルを480℃で1時間加熱し、樹脂を熱劣化させ取り除き、炭素繊維のみの質量Wf(g)を測定し、次の式によって繊維堆積分率Vfを求めた。
 繊維体積分率Vf=(Wf/Wc)×ρc/ρf
 ここで、ρcはサンプルの密度(g/cm)、ρfはサンプルに用いられている炭素繊維の密度(g/cm)である。
 <実施例1>
 (一方向性繊維強化樹脂シート(UDS)の作製)
 国際公開第2016/114352号の実施例6に記載された方法で一方向性繊維強化樹脂シート(但し、厚みは162.4μm、繊維体積分率Vfは0.53)を作製し、これを切り出すことによって、200mm×200mmの一方向性繊維強化樹脂シート(UDS)を得た。この一方向性繊維強化樹脂シート(UDS)の質量は8.98gであった。
 (チョップドシート(CS)の作製)
 以上のようにして作製した一方向性繊維強化樹脂シート(UDS)と同じものである一方向性繊維強化樹脂シートを、12.5mm幅でスリットしてテープ状とし、これをさらに約15mmの長さで切断して多数のチョップドシート(CS)を得た。
 (繊維強化樹脂物品の作製)
 以上の様にして作製した多数のチョップドシート(CS)4.49gを、一方向性繊維強化樹脂シート(UDS)の上に、できるだけ重ならないようにランダムに配置した(一方向性繊維強化樹脂シート(UDS)100質量部に対するチョップドシート(CS)の割合=50質量部、チョップドシート(CS)の単位面積当たりの個数=約3200個/m)。次いで、この一方向性繊維強化樹脂シート(UDS)の上に多数のチョップドシート(CS)が配置された物品を、2枚のステンレス板の間に挟み、185℃に加熱したプレス装置(東洋精機製作所製、ミニテストプレスMP-WCH)を用いて2MPaの圧力を3分間かけた。その後、15℃に調節したプレス装置に移動させて30秒間2MPa、さらに30秒間4MPaの圧力をかけて冷却を行った。このようなプレス成形により、厚み255μmの平滑な繊維強化樹脂物品を得た。繊維強化樹脂物品の総質量は13.47gであり、一方向性繊維強化樹脂シート(UDS)の質量に対する繊維強化樹脂物品の総質量の比率(以下「質量比」と称す)は1.5であった。
 この繊維強化樹脂物品に対して0°方向、45°方向及び90°方向の引張試験を行ない、ヤング率と引張強度を測定した。ここで、0°方向とは一方向性繊維強化樹脂シート(UDS)の繊維方向に対し平行な方向であり、45°方向とはその繊維方向に対し45°の方向であり、90°方向とはその繊維方向に対し直角な方向である。各々の試験片のサイズは、25mm×150mmとした。その結果、繊維強化樹脂物品の0°方向のヤング率は61.53GPa、引張強度は587MPa、45°方向のヤング率は5.44GPa、引張強度は10.9MPa、90°方向のヤング率は4.05GPa、引張強度は9.0MPaであった。繊維強化樹脂物品のチョップドシート(CS)側の外観は大理石調であった。図2は、その外観の一部を斜め方向から撮影した写真である。
 <実施例2>
 一方向性繊維強化樹脂シート(UDS)の上に配置するチョップドシート(CS)の質量を5.39gに変更したことと以外は、実施例1と同様にして平滑な繊維強化樹脂物品を作製し、引張試験を行なった(一方向性繊維強化樹脂シート(UDS)100質量部に対するチョップドシート(CS)の割合=60質量部、チョップドシート(CS)の単位面積当たりの個数=約3840個/m)。繊維強化樹脂物品の厚みは251μm、総質量は14.37gであり、質量比は1.6であった。繊維強化樹脂物品の0°方向のヤング率は69.64GPa、引張強度は609MPa、45°方向のヤング率は6.53GPa、引張強度は13.1MPa、90°方向のヤング率は5.42GPa、引張強度は7.9MPaであった。また、繊維強化樹脂物品のチョップドシート(CS)側の外観は大理石調であった。
 <実施例3>
 一方向性繊維強化樹脂シート(UDS)の上に配置するチョップドシート(CS)の質量を8.08gに変更したこと以外は、実施例1と同様にして平滑な繊維強化樹脂物品を作製し、引張試験を行なった(一方向性繊維強化樹脂シート(UDS)100質量部に対するチョップドシート(CS)の割合=90質量部、チョップドシート(CS)の単位面積当たりの個数=約5760個/m)。繊維強化樹脂物品の厚みは313μm、総質量は17.06gであり、質量比は1.9であった。繊維強化樹脂物品の0°方向のヤング率は64.94GPa、引張強度は588MPa、45°方向のヤング率は22.7GPa、引張強度は24.3MPa、90°方向のヤング率は4.72GPa、引張強度は11.3MPaであった。また、繊維強化樹脂物品のチョップドシート(CS)側の外観は大理石調であった。
 <比較例1>
 実施例1で作製したものと同じ一方向性繊維強化樹脂シート(UDS)2枚を0°方向に積層し、実施例1と同じ条件でプレス成形を行ない、厚み323μmの平滑な繊維強化樹脂物品を得た。繊維強化樹脂物品の総質量は17.96gであり、質量比は2.0であった。なお、比較例1における質量比は、下地となる一方向性繊維強化樹脂シート(UDS)の質量に対する繊維強化樹脂物品の総質量の比率である。実施例1と同じ引張試験を行なったところ、0°方向のヤング率は105.42GPa、引張強度は1499MPa、45°方向のヤング率は5.03GPa、引張強度は9.3MPa、90°方向のヤング率は3.43GPa、引張強度は5.6MPaであり、実施例1の繊維強化樹脂物品と比較して45°方向及び90°方向の強度が低かった。また、この比較例1のような一方向性の繊維強化樹脂物品は、プレス成形により3次元形状を付与する場合は割れが発生する可能性が高い。
 <比較例2>
 実施例1で作製したものと同じ一方向性繊維強化樹脂シート(UDS)1枚を0°方向、他の1枚を90°方向にして積層し、実施例1と同じ条件でプレス成形を行なって、厚み314μmの繊維強化樹脂物品を得た。繊維強化樹脂物品の総質量は17.96g、質量比は2.0であった。なお、比較例2における質量比は、下地となる一方向性繊維強化樹脂シート(UDS)の質量に対する繊維強化樹脂物品の総質量の比率である。得られた繊維強化樹脂物品は、0°方向と90°方向の収縮率の違いによって大きくカールしてしまった。実施例1と同じ引張試験を行なったところ、0°方向(下側の一方向性繊維強化樹脂シート(UDS)の繊維方向に対し平行な方向)のヤング率は57.84GPa、引張強度は699MPa、45°方向のヤング率は4.92GPa、引張強度は36.5MPa、90°方向(下側の一方向性繊維強化樹脂シート(UDS)の繊維方向に対し直角な方向)のヤング率は50.0GPa、引張強度は604MPaであった。また、この比較例2のような二方向性(0°及びと90°方向)の繊維強化樹脂物品は形状追従性が劣り、プレス成形により3次元形状を付与する場合は割れやしわが発生する可能性がある。
 <比較例3>
 一方向性繊維強化樹脂シート(UDS)の上に配置するチョップドシート(CS)の質量を2.70gに変更したこと以外は、実施例1と同様にして繊維強化樹脂物品を作製し、引張試験を行なった(一方向性繊維強化樹脂シート(UDS)100質量部に対するチョップドシート(CS)の割合=30質量部、チョップドシート(CS)の単位面積当たりの個数=約1920個/m)。繊維強化樹脂物品の厚みは210μm、総質量は11.67gであり、質量比は1.3であった。繊維強化樹脂物品の0°方向のヤング率は58.50GPa、引張強度は516MPa、45°方向のヤング率は4.70GPa、引張強度は8.2MPa、90°方向のヤング率は2.78GPa、引張強度は4.5MPaであり、実施例に比べて劣っていた。また、繊維強化樹脂物品のチョップドシート(CS)側の外観は隙間が大きく、まだら状態で大理石調とは言えないものであった。図3は、その外観の一部を斜め方向から撮影した写真である。
 <比較例4>
 実施例1で作製したものと同じ多数のチョップドシート(CS)17.96gを、ステンレス板の上に、200mm×200mmのサイズで、できるだけ2層を超える重なりができないようにランダムに配置し、実施例1と同じ条件でプレス成形を行なって、厚み321μmの繊維強化樹脂物品(ランダムシート)を得た。しかし、繊維強化樹脂物品のところどころに穴が生じ、均一なシートは得られなかった。図4は、その外観の一部を斜め方向から撮影した写真である。
 以上の実施例1~3及び比較例1~4の各結果を表1にまとめて記載する。
Figure JPOXMLDOC01-appb-T000001
 <実施例4>
 (繊維強化樹脂物品の作製)
 実施例1と同じ厚み255μmの繊維強化樹脂物品を2枚作製した。
 (積層体の作製)
 厚み5mmのポリプロピレン製発泡シート(三井化学東セロ株式会社製、商品名パロニア、密度=0.3g/cc、発泡倍率=3倍)を、200mm×200mmの形状に切り出した。そして、繊維強化樹脂物品/発泡シート/繊維強化樹脂物品の順で積層した。この積層工程においては、各々の繊維強化樹脂物品の発泡体シートに接する面(内側面)は一方向性繊維強化樹脂シート(UDS)の面とし、その面とは対向する面(外側面)はチョップドシート(CS)側の面とした。また、各々の繊維強化樹脂物品の一方向性繊維強化樹脂シート(UDS)の繊維方向は、同じ方向(0°方向)にした。
 そして、各々の繊維強化樹脂物品の外側面に離型フィルムを配置し、これを200℃に加熱したプレス装置(株式会社東洋精機製作所社製、装置名ミニテストプレスMP-WCL)に入れ、圧力0.8MPaで1分間加圧した。次いで、これを40℃の冷却水で冷却したプレス装置(株式会社東洋精機製作所社製、装置名ミニテストプレスMP-WC)に移し、圧力0.2MPaで10分間冷却した。その後これを取り出し、離型フィルムを剥がし、繊維強化樹脂物品(CS/UDS)/発泡体層/繊維強化樹脂物品(UDS/CS)の積層構成を有する厚み5mmの積層体(サンドウィッチパネル)を得た。この積層体の両外側面は繊維強化樹脂物品のチョップドシート(CS)側の面であり、その外観は大理石調であった。
 本発明の繊維強化樹脂物品は、様々な分野で好適に利用できる。特に、電気部品、PC筐体、携帯カバー、自動車部品、家具、パーティション、スクリーンウォール、ドア、引き戸等の軽量でかつ比較的強度が要求される物品の用途において非常に有用である。さらに、建築材の壁紙、床材、化粧ボード等の意匠性が要求される物品の用途においても非常に有用である。
 1 一方向性繊維強化樹脂シート(UDS)
 2 チョップドシート(CS)

Claims (14)

  1.  一方向性繊維強化樹脂シート(UDS)の少なくとも一方の面に、この一方向性繊維強化樹脂シート(UDS)と同一又は異なる一方向性繊維強化樹脂シートのチョップドシート(CS)を複数含み、
     前記一方向性繊維強化樹脂シート(UDS)100質量部に対する前記チョップドシート(CS)の割合が、40質量部以上100質量部以下である繊維強化樹脂物品。
  2.  前記一方向性繊維強化樹脂シート(UDS)及び前記チョップドシート(CS)が、熱可塑性樹脂を含む請求項1に記載の繊維強化樹脂物品。
  3.  前記熱可塑性樹脂が、ポリプロピレン系樹脂及びポリアミド系樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂である請求項2に記載の繊維強化樹脂物品。
  4.  前記一方向性繊維強化樹脂シート(UDS)と前記チョップドシート(CS)が、同じ種類の樹脂を含む請求項1に記載の繊維強化樹脂物品。
  5.  厚みが0.1mm以上1.0mm以下である請求項1に記載の繊維強化樹脂物品。
  6.  前記一方向性繊維強化樹脂シート(UDS)及び前記チョップドシート(CS)が、炭素繊維及びガラス繊維からなる群より選択される少なくとも一種の繊維を含む請求項1に記載の繊維強化樹脂物品。
  7.  前記チョップドシート(CS)を含む側の表面に、強化繊維を含まない樹脂シートを有する請求項1に記載の繊維強化樹脂物品。
  8.  前記チョップドシート(CS)の単位面積当たりの個数が500~7000個/mである請求項1に記載の繊維強化樹脂物品。
  9.  一方向性繊維強化樹脂シート(UDS)の少なくとも一方の面に、この一方向性繊維強化樹脂シート(UDS)と同一又は異なる一方向性繊維強化樹脂シートのチョップドシート(CS)を複数配置する工程と、
     前記配置する工程で得られた配置後の物品を加熱及び加圧する工程とを有する繊維強化樹脂物品の製造方法。
  10.  請求項1に記載の繊維強化樹脂物品と、発泡体層とを含む積層体。
  11.  前記発泡体層の密度が0.2~0.7g/ccである請求項10に記載の積層体。
  12.  前記発泡体層の一方の面上に、前記繊維強化樹脂物品が位置し、
     前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む請求項10に記載の積層体。
  13.  前記発泡体層の一方の面上に、前記繊維強化樹脂物品が位置し、
     前記発泡体層の他方の面上に、一方向性繊維強化樹脂シート(UDS)が位置し、
     前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む請求項10に記載の積層体。
  14.  前記発泡体層の両方の面上に、前記繊維強化樹脂物品が各々位置し、
     各々の前記繊維強化樹脂物品の前記発泡体層側の面とは対向する面が前記チョップドシート(CS)を複数含む請求項10に記載の積層体。
PCT/JP2020/009052 2019-03-19 2020-03-04 繊維強化樹脂物品、その製造方法、及びそれを含む積層体 WO2020189268A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080021468.2A CN113573864A (zh) 2019-03-19 2020-03-04 纤维增强树脂物品、其制造方法、及包含其的层叠体
JP2021507167A JP7161604B2 (ja) 2019-03-19 2020-03-04 繊維強化樹脂物品の製造方法
EP20773646.3A EP3943267B1 (en) 2019-03-19 2020-03-04 Fiber-reinforced resin article, method for manufacturing same, and laminate including same
US17/440,016 US11951724B2 (en) 2019-03-19 2020-03-04 Fiber-reinforced resin article, method for manufacturing same, and laminate including same
JP2022146228A JP7425844B2 (ja) 2019-03-19 2022-09-14 繊維強化樹脂物品、及びそれを含む積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019050909 2019-03-19
JP2019-050909 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189268A1 true WO2020189268A1 (ja) 2020-09-24

Family

ID=72520247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009052 WO2020189268A1 (ja) 2019-03-19 2020-03-04 繊維強化樹脂物品、その製造方法、及びそれを含む積層体

Country Status (5)

Country Link
US (1) US11951724B2 (ja)
EP (1) EP3943267B1 (ja)
JP (2) JP7161604B2 (ja)
CN (1) CN113573864A (ja)
WO (1) WO2020189268A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102427A1 (ja) * 2020-11-16 2022-05-19 株式会社micro-AMS 樹脂成形体の製造方法
JP7390279B2 (ja) 2020-12-24 2023-12-01 フクビ化学工業株式会社 繊維強化樹脂チョップ材、繊維強化樹脂複合材及び樹脂成形品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028107A1 (ja) * 2004-09-07 2006-03-16 Toray Industries, Inc. サンドイッチ構造体およびそれを用いた一体化成形体
JP2009191186A (ja) * 2008-02-15 2009-08-27 Toray Ind Inc 一体化構造体
WO2009142291A1 (ja) * 2008-05-22 2009-11-26 東洋紡績株式会社 繊維強化熱可塑性樹脂成形体
JP2012125948A (ja) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形品とその製造方法
JP2013035246A (ja) * 2011-08-10 2013-02-21 Toyota Motor Corp 繊維強化樹脂成形体及びそれを用いた車両用内装材
JP2013208725A (ja) 2012-03-30 2013-10-10 Mitsubishi Rayon Co Ltd 炭素繊維強化熱可塑性樹脂積層体及びその製造法
WO2016114352A1 (ja) 2015-01-16 2016-07-21 三井化学株式会社 強化繊維束及びそれを用いた炭素繊維強化熱可塑性樹脂成形体、並びに強化繊維束の製造方法
JP2017217895A (ja) * 2016-06-10 2017-12-14 学校法人金沢工業大学 繊維シート積層装置及び繊維シートの積層方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988229B2 (ja) * 2006-03-25 2012-08-01 帝人テクノプロダクツ株式会社 表面平滑性に優れたハイブリッド複合材料とその成形方法。
JP4404269B2 (ja) * 2007-02-20 2010-01-27 フドー株式会社 サンドイッチパネル、及びその製造方法
JP2013221040A (ja) * 2012-04-13 2013-10-28 Mitsubishi Rayon Co Ltd チョップドストランドプリプレグ、繊維強化熱可塑性樹脂シート及びシートを用いた成型板、ならびに繊維強化熱可塑性樹脂シートの製造方法
US10239289B2 (en) * 2013-04-12 2019-03-26 Hexcel Corporation Multi-component composite structures
US20150355111A1 (en) 2014-06-09 2015-12-10 Hexcel Corporation Tracers for use in compression molding of unidirectional discontinuous fiber composite molding compound
JP7054499B2 (ja) * 2017-06-06 2022-04-14 サンコロナ小田株式会社 繊維強化熱可塑性樹脂シートの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028107A1 (ja) * 2004-09-07 2006-03-16 Toray Industries, Inc. サンドイッチ構造体およびそれを用いた一体化成形体
JP2009191186A (ja) * 2008-02-15 2009-08-27 Toray Ind Inc 一体化構造体
WO2009142291A1 (ja) * 2008-05-22 2009-11-26 東洋紡績株式会社 繊維強化熱可塑性樹脂成形体
JP2012125948A (ja) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形品とその製造方法
JP2013035246A (ja) * 2011-08-10 2013-02-21 Toyota Motor Corp 繊維強化樹脂成形体及びそれを用いた車両用内装材
JP2013208725A (ja) 2012-03-30 2013-10-10 Mitsubishi Rayon Co Ltd 炭素繊維強化熱可塑性樹脂積層体及びその製造法
WO2016114352A1 (ja) 2015-01-16 2016-07-21 三井化学株式会社 強化繊維束及びそれを用いた炭素繊維強化熱可塑性樹脂成形体、並びに強化繊維束の製造方法
JP2017217895A (ja) * 2016-06-10 2017-12-14 学校法人金沢工業大学 繊維シート積層装置及び繊維シートの積層方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102427A1 (ja) * 2020-11-16 2022-05-19 株式会社micro-AMS 樹脂成形体の製造方法
JP7390279B2 (ja) 2020-12-24 2023-12-01 フクビ化学工業株式会社 繊維強化樹脂チョップ材、繊維強化樹脂複合材及び樹脂成形品

Also Published As

Publication number Publication date
US20220168989A1 (en) 2022-06-02
CN113573864A (zh) 2021-10-29
JPWO2020189268A1 (ja) 2021-12-23
EP3943267B1 (en) 2024-05-01
EP3943267A1 (en) 2022-01-26
EP3943267A4 (en) 2022-11-16
JP2022173292A (ja) 2022-11-18
JP7425844B2 (ja) 2024-01-31
JP7161604B2 (ja) 2022-10-26
US11951724B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP7425844B2 (ja) 繊維強化樹脂物品、及びそれを含む積層体
US11752728B2 (en) Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
US5316834A (en) Fiber-reinforced thermoplastic sheet
US9969146B2 (en) Layered substrate and method for manufacturing same
JP5926947B2 (ja) 繊維強化樹脂成形体及びそれを用いた車両用内装材
CN107257820B (zh) 纤维增强的各向异性泡沫体
JP6163971B2 (ja) 加飾成形品及び加飾成形品の製造方法
JP6267468B2 (ja) ポリオレフィン系積層シート及びその製造方法
KR20140103137A (ko) 모놀리쓰형 다층 물품
US11890793B2 (en) Assembling fiber-reinforced foams
KR101938847B1 (ko) 고강도 경량 복합소재 및 이의 제조방법
CA3026630A1 (en) Incised prepreg and method for producing incised prepreg
JP2016180037A (ja) 炭素繊維強化熱可塑性樹脂複合材料、及びそれを用いた成型体
JP2014208419A (ja) 繊維強化複合体の製造方法及び繊維強化複合体
JP5864324B2 (ja) 繊維強化複合体の製造方法
JP2016150561A (ja) 繊維強化複合体、及び、繊維強化複合体の製造方法
JP5777972B2 (ja) 繊維強化樹脂成形体及びそれを用いた車両用内装材
JP2017094505A (ja) 強化繊維複合積層体
JP2021049692A (ja) 繊維強化複合パネル
JP6449953B1 (ja) 繊維強化複合体製造用の発泡粒子及び発泡成形体、繊維強化複合体及び自動車用部品
JP2020138482A (ja) 樹脂複合体
KR20200134793A (ko) 샌드위치 보드
JP6627407B2 (ja) 強化繊維複合積層体
KR20210143158A (ko) 섬유 강화 수지 복합체 및 섬유 강화 수지 복합체의 제조 방법
KR20220007847A (ko) 이성분 섬유를 포함하는 경량의 강화된 열가소성 복합 물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773646

Country of ref document: EP

Effective date: 20211019