WO2020189201A1 - Method for producing bisphenol and method for producing polycarbonate resin - Google Patents

Method for producing bisphenol and method for producing polycarbonate resin Download PDF

Info

Publication number
WO2020189201A1
WO2020189201A1 PCT/JP2020/007747 JP2020007747W WO2020189201A1 WO 2020189201 A1 WO2020189201 A1 WO 2020189201A1 JP 2020007747 W JP2020007747 W JP 2020007747W WO 2020189201 A1 WO2020189201 A1 WO 2020189201A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
organic phase
aqueous phase
mixed solution
phase
Prior art date
Application number
PCT/JP2020/007747
Other languages
French (fr)
Japanese (ja)
Inventor
馨 内山
幸恵 中嶋
岸田 真
芳恵 ▲高▼見
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021507133A priority Critical patent/JP7371682B2/en
Priority to CN202080020682.6A priority patent/CN113574041B/en
Publication of WO2020189201A1 publication Critical patent/WO2020189201A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/72Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes

Definitions

  • the present invention relates to a method for producing bisphenol and a method for producing a polycarbonate resin using the obtained bisphenol.
  • the bisphenol produced by the method of the present invention contains resin raw materials such as polycarbonate resin, epoxy resin and aromatic polyester resin, and addition of a curing agent, a color developer, a fading inhibitor, and other bactericidal agents and antibacterial and antifungal agents. It is useful as an agent.
  • Bisphenol is useful as a raw material for polymer materials such as polycarbonate resin, epoxy resin, and aromatic polyester resin.
  • polymer materials such as polycarbonate resin, epoxy resin, and aromatic polyester resin.
  • typical bisphenols for example, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and the like are known (Patent Document 1).
  • Patent Document 2 A method for producing bisphenol containing a fluorene skeleton is also known (Patent Document 2).
  • Polycarbonate resin which is a typical use of bisphenol, is required to be colorless and transparent.
  • the color tone of the polycarbonate resin is greatly affected by the color tone of the raw material. Therefore, the color tone of bisphenol, which is a raw material, is also required to be colorless. Since it is difficult to directly quantify the color of bisphenol, in the present invention, bisphenol is dissolved in methanol to quantify the color difference, and this color tone is referred to as "methanol-dissolved color".
  • the bisphenol is melted to produce the polycarbonate resin, so that the polycarbonate resin is exposed to a high temperature. Therefore, the thermal color stability of bisphenol is also required. In the present invention, this color tone is referred to as "melt color difference".
  • thermal color tone stability In the production of the polycarbonate resin, since the polymerization reaction is carried out after the bisphenol is melted, thermal color stability before the start of the polymerization is also required. In the present invention, this color tone is referred to as "thermal color tone stability”.
  • the polycarbonate resin there is a demand for a polycarbonate resin having the molecular weight as designed and having a good color tone.
  • bisphenol as a raw material is required to have excellent methanol-dissolved color, melt color difference, and thermal color tone stability, and also have excellent thermal decomposition stability.
  • the present invention provides a method for producing high-quality bisphenol and a method for producing a polycarbonate resin using the bisphenol by devising a recovery process for bisphenol produced using hydrogen chloride gas or hydrochloric acid as an acid catalyst.
  • the purpose is to provide.
  • the present inventor can produce high-quality bisphenol by adding and mixing a chelating agent to an organic phase containing bisphenol under specific conditions after the reaction for producing bisphenol, and then adding and mixing a basic aqueous solution. I found. The present inventor has also found that the produced bisphenol can be used to produce a polycarbonate resin having a good color tone.
  • the gist of the present invention lies in the following [1] to [9].
  • a method for producing bisphenol which comprises a step of obtaining 3A, wherein the solubility of the chelating agent in the aqueous phase of the mixed solution 3 is higher than the solubility of the mixed solution 3 in the organic phase.
  • the bisphenols are 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) dodecane, and 2,2-bis (4-hydroxy-3,
  • the solubility of the organic compound in the organic phase of the mixed solution 3' is higher than the solubility of the mixed solution 3'in the aqueous phase, and the solubility of the chelating agent in the aqueous phase of the mixed solution 3'is the mixing.
  • X and Y are the same or different elements, and are elements selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur.
  • the line connecting X and Y is a carbon chain.
  • the present invention it is possible to produce bisphenol having good methanol dissolution color, melt color difference, thermal color tone stability, and thermal decomposition stability. According to the present invention, the obtained bisphenol can be used to produce a polycarbonate resin having a good color tone.
  • the method for producing bisphenol of the present invention is a mixed solution of an aqueous phase and an organic phase having a pH of 6 or less by mixing an organic phase 1 of a mixed solution 1 of an aqueous phase 1 and an organic phase 1 containing bisphenol with a chelating agent.
  • a step of obtaining 2 (hereinafter, this step may be referred to as a "chelate treatment step") and a mixed solution of the obtained mixed solution 2 and a base are mixed to obtain a mixed solution of an aqueous phase and an organic phase having a pH of 8 or higher.
  • the step of obtaining 3 and the step of removing the aqueous phase having a pH of 8 or more from the obtained mixed solution 3 to obtain the organic phase 3A is the "alkali treatment step”. It is characterized in that the solubility of the chelating agent in the aqueous phase of the mixed solution 3 is higher than the solubility of the mixed solution 3 in the organic phase.
  • the feature of the method for producing bisphenol of the present invention is that a chelating agent is mixed with the organic phase 1 of the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol, and the aqueous phase and the organic phase having a pH of 6 or less are mixed.
  • a chelating agent is mixed with the organic phase 1 of the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol, and the aqueous phase and the organic phase having a pH of 6 or less are mixed.
  • the solubility of the mixed liquid 3 in the aqueous phase is the organic of the mixed liquid 3.
  • the purpose is to remove the aqueous phase having a pH of 8 or higher from the mixed solution 3 by using a chelating agent having a higher solubility in the phase, and to efficiently recover the organic phase 3A containing bisphenol.
  • the corrosive component mixed in the bisphenol is mainly composed of a metal component such as iron, which is a constituent material of the equipment.
  • a chelating agent is added and mixed under the specific pH acidic conditions, and then a basic aqueous solution is added to make the pH alkaline conditions to chelate metal components such as iron mixed in the bisphenol product. Efficiently remove. Then, the quality of bisphenol can be improved by removing the corrosive component.
  • the organic phase 1 to which the chelating agent is added is preferably the organic phase 1A obtained by removing the aqueous phase from the mixed solution 1.
  • the aqueous phase 1 contained in the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol is preferably an aqueous phase having a pH of 6 or less.
  • the following (1) and (2) Method can be mentioned.
  • the reaction of bisphenol is usually carried out according to the reaction formula (1) shown below.
  • R 1 - R 6 in the above reaction formula (1) are as described for R 1 - R 6 in the general formula described below (2) - (3).
  • the aromatic alcohol used as a raw material for bisphenol is usually a compound represented by the following general formula (2).
  • examples of R 1 to R 4 include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group and the like independently of each other. Substituents such as the alkyl group, alkoxy group and aryl group may be substituted or unsubstituted. Examples of R 1 to R 4 include hydrogen atom, fluoro group, chloro group, bromo group, iodo group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and i-butyl group.
  • n-pentyl group i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, Methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n -Heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopenty
  • R 2 and R 3 are sterically bulky, the condensation reaction is unlikely to proceed. Therefore, as the aromatic alcohol, an aromatic alcohol in which R 2 and R 3 are hydrogen atoms is preferable. Further, as the aromatic alcohol, those in which R 1 to R 4 are independently hydrogen atoms or alkyl groups are preferable, and more preferably, R 1 and R 4 are independently hydrogen atoms or alkyl groups, respectively, and R An aromatic alcohol in which 2 and R 3 are hydrogen atoms.
  • aromatic alcohol represented by the general formula (2) examples include phenol, methylphenol (cresol), dimethylphenol (xylenol), ethylphenol, propylphenol, butylphenol, methoxyphenol, ethoxyphenol, and propoxyphenol.
  • aromatic alcohol represented by the general formula (2) examples include butoxyphenol, aminophenol, benzylphenol and phenylphenol.
  • any one selected from the group consisting of phenol, cresol, and xylenol is preferable, cresol or xylenol is more preferable, and cresol is further preferable.
  • the ketone or aldehyde used as a raw material for bisphenol is usually a compound represented by the following general formula (3).
  • examples of R 5 and R 6 include a hydrogen atom, an alkyl group, an alkoxy group, and an aryl group, respectively. Substituents such as the alkyl group, alkoxy group and aryl group may be substituted or unsubstituted. Examples of R 5 and R 6 include hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, and i.
  • -Pentyl group n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, methoxy group, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n-heptyloxy group , N-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohex
  • R 5 and R 6 may be bonded or crosslinked with each other between the two groups.
  • R 5 and R 6 may be bonded together with adjacent carbon atoms to form a cycloalkylidene group that may contain heteroatoms.
  • the cycloalkylidene group is a divalent group obtained by removing two hydrogen atoms from one carbon atom of cycloalkane.
  • R 5 and R 6 are cycloalkylidene groups formed by bonding with adjacent carbons, the obtained bisphenol has a structure in which an aromatic alcohol is bonded via a cycloalkylidene group.
  • the cycloalkylidene group and R 5 and R 6 are attached form together with the adjacent carbon atoms, for example, cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, 3,3,5-trimethyl Cyclohexylidene, cycloheptylidene, cyclooctylidene, cyclononylidene, cyclodecylidene, cycloundecylidene, cyclododecylidene, fluorenylidene, xantonilidene, thioxanthonilidene and the like can be mentioned.
  • Specific examples of the compound represented by the general formula (3) include formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, pentylaldehyde, hexylaldehyde, heptylaldehyde, octylaldehyde, nonylaldehyde, decylaldehyde, undecylaldehyde, and dodecyl.
  • Ketones such as aldehydes; ketones such as acetone, butanone, pentanon, hexanone, heptanone, octanon, nonanone, decanone, undecanone, dodecanone; benzaldehyde, phenylmethylketone, phenylethylketone, phenylpropylketone, cresylmethylketone, cleres Arylalkyl Ketones such as Zyrethyl Ketone, Cresylpropyl Ketone, Xylyl Methyl Ketone, Xylyl Ethyl Ketone, Xylylpropyl Ketone, Cyclopropanone, Cyclobutanone, Cyclopentanone, Cyclohexanone, Cycloheptanone, Cyclooctanone, Cyclononanone , Cyclic alcan ketones such as cyclodecanone, cycloundecanone, cyclodo
  • bisphenol represented by the following general formula (4) is produced by condensation of a ketone or aldehyde with an aromatic alcohol according to the reaction formula (1).
  • R 1 to R 6 are synonymous with those in the general formulas (2) and (3).
  • bisphenol represented by the general formula (4) examples include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and 2,2. -Bis (4-hydroxy-3,5-dimethylphenyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 3,3-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxy-3-methylphenyl) pentane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4) -Hydroxy-3-methylphenyl) pentane, 3,3-bis (4-hydroxyphenyl) heptane, 3,3-bis (4-hydroxy-3-methylphenyl) heptane, 2,2-bis (4-hydroxyphenyl) ) Heptane, 2,2-bis (4-hydroxy-3-methylphenyl) heptane, 4,4-
  • the method for producing bisphenol of the present invention is 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) dodecane, or 2,2-bis (4). It is suitable for the production of -hydroxy-3,5-dimethylphenyl) propane, and is particularly suitable for the production of 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C).
  • Hydrochloride As the catalyst because the effect of the present invention can be obtained more remarkably.
  • hydrogen chloride include hydrogen chloride gas and hydrochloric acid. Of these, hydrogen chloride gas is preferable.
  • the lower limit of the molar ratio of hydrogen chloride to ketones or aldehydes is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, preferably 10 or less, more preferably. It is 8 or less, more preferably 5 or less.
  • the method for condensing the aromatic alcohol with the ketone or aldehyde in order to obtain the reaction solution containing bisphenol is not particularly limited, and examples thereof include the following methods.
  • Examples of the above-mentioned (i) supply of ketone or aldehyde and the above-mentioned (ii) supply of hydrogen chloride include a method of supplying all at once and a method of supplying hydrogen chloride separately. Since the reaction for producing bisphenol is an exothermic reaction, it is preferable to supply the bisphenol in divided amounts, such as by dropping it little by little. The method (i) above is preferable because the self-condensation of ketones or aldehydes can be further suppressed.
  • the molar ratio of the aromatic alcohol to the ketone or the aldehyde ((the number of moles of the aromatic alcohol / the number of moles of the ketone) or (the number of moles of the aromatic alcohol / the number of moles of the aldehyde) If the number of moles)) is small, the amount of ketones or aldehydes tends to increase. If this molar ratio is high, aromatic alcohol is lost unreacted.
  • the molar ratio of aromatic alcohol to ketone or aldehyde is preferably 1.5 or more, more preferably 1.6 or more, further preferably 1.7 or more, preferably 15 or less, more preferably 10. Below, it is more preferably 8 or less.
  • thiol may be used as a cocatalyst in the reaction of condensing a ketone or aldehyde with an aromatic alcohol.
  • thiol as a cocatalyst, for example, in the production of 2,2-bis (4-hydroxy-3-methylphenyl) propane, the production of 24 bodies is suppressed, the selectivity of 44 bodies is increased, and the polycarbonate resin is produced. It is possible to obtain the effect of increasing the polymerization activity at the time and improving the color tone of the obtained polycarbonate resin. Although the details of the reason why the effect of improving the polymerization activity during the production of the polycarbonate resin and the effect of improving the color tone of the obtained polycarbonate resin are exhibited are not clear, the use of thiol produces an inhibitor for the polymerization reaction for producing the polycarbonate resin. It is presumed that this is due to the fact that it is possible to suppress the formation of deteriorating substances as well as
  • thiol used as a co-catalyst examples include mercaptocarboxylic acids such as mercaptoacetic acid, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid and 4-mercaptobutyric acid, methyl mercaptan, ethyl mercaptan, propyl mercaptan and butyl.
  • mercaptocarboxylic acids such as mercaptoacetic acid, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid and 4-mercaptobutyric acid, methyl mercaptan, ethyl mercaptan, propyl mercaptan and butyl.
  • Mercaptan Pentyl mercaptan, Hexyl mercaptan, Heptyl mercaptan, Octyl mercaptan, Nonyl mercaptan, Decyl mercaptan (decane thiol), Undecyl mercaptan (undecanthiolu), Dodecyl mercaptan (dodecane thiol), Tridecyl mercaptan, Tetradecyl mercaptan Examples thereof include alkyl thiols such as decyl mercaptan and aryl thiols such as mercaptophenol.
  • the thiol cocatalyst is used.
  • the effect of improving the reaction selectivity of bisphenol by using it cannot be obtained. If this molar ratio is large, it may be mixed with bisphenol and the quality may deteriorate.
  • the molar ratio of the thiol cocatalyst to the ketone and the aldehyde is preferably 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more, preferably 1 or less, more preferably 0. It is 5.5 or less, more preferably 0.1 or less.
  • the thiol is preferably premixed with a ketone or aldehyde before being subjected to the reaction.
  • the method for mixing the thiol with the ketone or aldehyde may be a mixture of the thiol with the ketone or the aldehyde, or a ketone or the aldehyde with the thiol.
  • the aromatic alcohol may be mixed with the mixed solution of thiol and ketone or aldehyde, and the aromatic alcohol is mixed with thiol and ketone or aldehyde.
  • the mixed solution of the above may be mixed. It is preferable to mix a mixed solution of thiol and a ketone or aldehyde with an aromatic alcohol.
  • an organic solvent is usually used to dissolve or disperse the produced bisphenol.
  • the organic solvent is not particularly limited as long as it does not inhibit the bisphenol production reaction, but aromatic hydrocarbons are usually used.
  • aromatic hydrocarbons are usually used.
  • the aromatic alcohol as a substrate and the bisphenol as a product are removed from the organic solvent.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and mesitylene. These solvents may be used alone or in combination of two or more. After using the aromatic hydrocarbon for the production of bisphenol, it can be recovered and purified by distillation or the like and reused. When reusing aromatic hydrocarbons, those having a low boiling point are preferable. One of the preferred aromatic hydrocarbons is toluene.
  • the mass ratio of the organic solvent to the ketone or aldehyde used for condensation ((mass of ketone / mass of organic solvent) or (mass of aldehyde / mass of organic solvent)) is too large, the ketone or aldehyde and the aromatic alcohol Is difficult to react and it takes a long time to react. If this mass ratio is too small, the increase in the amount of ketones or aldehydes may be promoted, or the bisphenol produced may solidify. From these facts, the mass ratio of the organic solvent to the ketone or aldehyde at the time of preparation is preferably 0.5 or more, more preferably 1 or more, while this mass ratio is preferably 100 or less, more preferably 50 or less.
  • a large amount of the raw material aromatic alcohol may be used instead of the organic solvent instead of the organic solvent.
  • the unreacted aromatic alcohol is a loss, but the loss can be reduced by recovering, purifying and reusing it by distillation or the like.
  • the reaction time of the bisphenol production reaction is preferably 30 hours or less, more preferably 25 hours or less, still more preferably 20 hours or less because the produced bisphenol may be decomposed if it is too long.
  • the lower limit of the reaction time is usually 2 hours or more.
  • the reaction time includes the mixing time at the time of preparing the reaction solution. For example, when a mixed solution in which an aromatic alcohol and an acid catalyst are mixed is supplied with a ketone or aldehyde over 1 hour and then reacted for 1 hour, the reaction time is 2 hours.
  • the reaction temperature of the bisphenol production reaction is high, the amount of ketone or aldehyde tends to increase, and when the temperature is low, the time required for the reaction becomes long. From these facts, the reaction temperature is preferably -30 ° C or higher, more preferably -20 ° C or higher, further preferably -15 ° C or higher, preferably 80 ° C or lower, more preferably 70 ° C or lower, still more preferably 60 ° C. It is below ° C.
  • the reaction temperature means the average temperature from the start to the end of the first step.
  • the reaction solution containing bisphenol is preferably obtained as a slurry-like solution in which the produced bisphenol is not completely dissolved in the reaction solution but dispersed.
  • a slurry in which bisphenol is dispersed can be obtained.
  • the chelate treatment step in the present invention may be carried out before the crystallization step described later and after the bisphenol formation reaction step, or after the bisphenol formation reaction and after the water washing step described later, or the crystals described below. It may be performed after the analysis step.
  • the chelate treatment step is performed after the bisphenol production reaction, water is added to and mixed with the reaction solution of the bisphenol production reaction, and if the pH of the aqueous phase obtained by phase separation is 6 or less, the aqueous phase is removed.
  • a chelating agent can be added and mixed with the organic phase 1A as the organic phase 1 to obtain a mixed solution 2.
  • the chelate treatment step is performed after the bisphenol production reaction step and the water washing step described later, if the pH of the aqueous phase obtained by phase separation after washing by adding or mixing water is 6 or less, this water A chelating agent is added and mixed with the organic phase after removing the phase as the organic phase 1 to obtain a mixed solution 2.
  • an acidic aqueous solution may be added and mixed with the organic phase after removing the aqueous phase to separate the aqueous phase having a pH of 6 or less.
  • an organic solvent is added to the solid bisphenol recovered by crystallization to obtain a bisphenol solution, and an acidic aqueous solution is added to and mixed with the bisphenol solution to obtain water having a pH of 6 or less.
  • the phases may be separated from each other.
  • the above acidic aqueous solution is added and mixed, and water is added to the organic phase obtained by phase separation, and the phase is separated by mixing. If the phase-separated aqueous phase is pH 6 or less, this aqueous phase is used.
  • the organic phase obtained by phase separation may be used as the first organic phase.
  • the pH of the aqueous phase separated when obtaining the organic phase 1A exceeds 6, the corrosive components cannot be sufficiently removed by the chelating agent, and methanol dissolved color, molten color difference, thermal color stability, etc. It is not possible to obtain bisphenol with good thermal decomposition stability.
  • the pH of this aqueous phase is particularly preferably 5 or less. If the pH of the aqueous phase is excessively low, the amount of the basic aqueous solution used in the next alkali treatment step becomes excessive, so the pH of the aqueous phase is preferably -1 or more. In the present invention, the pH is a measured value at room temperature (20 to 30 ° C.).
  • hydrochloric acid sulfuric acid, phosphoric acid, an inorganic acid of nitric acid and the like can be used.
  • the concentration of acidic substances in the acidic aqueous solution is appropriately adjusted according to the acidic substances and basic substances remaining in bisphenol. If the concentration of the acidic substance in the acidic aqueous solution is too high, bisphenol is decomposed, so that it is preferably 35% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass or less. If the concentration of the acidic substance in the acidic aqueous solution is too low, it is necessary to increase the amount of the acidic aqueous solution in order to obtain an aqueous phase having a pH of 6 or less. Therefore, the lower limit of the concentration of the acidic substance in the acidic aqueous solution is preferably 0.01 mass ppm or more. , 0.1 mass ppm or more is more preferable.
  • the mass ratio of the acidic aqueous solution to the amount of the organic phase to which the acidic aqueous solution is added is preferably 2 or less, more preferably 1 or less, still more preferably 0.5 or less.
  • the mass ratio of the acidic aqueous solution to the amount of the organic phase is preferably 0.05 or more, more preferably 0.1 or more.
  • the type of chelating agent to be added to the organic phase 1 after separating the aqueous phase having a pH of 6 or less is not limited as long as it is generally used as a chelating agent, but in the present invention, the alkali treatment step described later
  • the solubility in the aqueous phase in the mixed solution 3 (hereinafter referred to as "solubility for the aqueous phase") obtained in 1) is higher than the solubility in the organic phase in the mixed solution 3 (hereinafter referred to as "solubility for the organic phase").
  • solubility for the organic phase also use a high chelating agent.
  • the solubility of the chelating agent used in the aqueous phase is less than or equal to the solubility in the organic phase, the chelating agent used remains in the organic phase and remains in bisphenol, and the purity of bisphenol decreases.
  • the chelating agent may have a higher solubility in the aqueous phase than the solubility in the organic phase, but the ratio of the solubility in the aqueous phase / the solubility in the organic phase is 1.5 times or more, preferably 2 times or more, more preferably more preferably. It is more than 10 times.
  • chelating agents include ⁇ -diketones such as acetylacetone and 3,5-heptandione; aminocarboxylic acids such as ethylenediamine tetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid and hydroxyethylethylenediaminetriacetic acid and salts thereof; pyruvate and acetoacetic acid.
  • ketoic acid such as acetonedicarboxylic acid
  • hydroxy acids such as glycolic acid, glyceric acid, xylonic acid, gluconic acid, lactic acid, tartronic acid, tartrate acid, xylal acid, galactal acid, malic acid, citric acid
  • Polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid; amino acids such as aspartic acid and glutamic acid; polyphosphoric acids such as phytic acid, hydroxyethylidene diphosphate, nitrilotrismethylene phosphate and ethylenediaminetetramethylene phosphate; dimethyl Examples thereof include dioximes such as glyoxime, benzyl diglyoxime, and 1,2-cyclohexyl diglyoxime.
  • ethylenediaminetetraacetic acid, citric acid, oxalic acid, malonic acid, and succinic acid are examples of those that satisfy the above-mentioned solubility in aqueous phase and solubility in organic phase.
  • a tetravalent carboxylic acid is preferable, and aminocarboxylic acids such as ethylenediaminetetraacetic acid and salts thereof are preferable from the viewpoint of easily chelating with various metals.
  • a chelating agent composed of only carbon, hydrogen, and oxygen atoms is preferable because it has excellent solubility in an organic solvent and easily binds to a corrosive component. Examples thereof include acetylacetone and 3,5-heptandione.
  • ⁇ -diketones such as: pyruvate, acetoacetic acid, levulinic acid, ⁇ -ketoglutaric acid, acetone dicarboxylic acid and other keto acids; glycolic acid, glyceric acid, xylonic acid, gluconic acid, lactic acid, tartronic acid, tartrate acid, xylolic acid, galactal Hydroxy acids such as acids, malic acids and citric acids; polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid.
  • the chelating agent is preferably added to the organic phase 1 as an aqueous solution of 0.1% by mass or more, particularly 0.5% by mass or more, and 15% by mass or less, particularly about 10% by mass or less. If the concentration of the chelating agent is too high, it may precipitate and the effect of the chelating agent may be reduced. If the concentration of the chelating agent is too low, there is a problem that the amount of wastewater generated after the chelating agent is supplied increases.
  • the amount of the aqueous chelating agent added to the organic phase 1 may be an amount that can sufficiently chelate and remove the corrosive components in the organic phase 1, the concentration of the chelating agent, and the organic phase 1 to be treated. It also depends on the amount of corrosive components in. If the amount of the aqueous chelating agent added to the organic phase 1 is too large, the production cost increases. If the amount of the aqueous chelating agent added to the organic phase 1 is too small, the corrosive components in the organic phase 1 cannot be sufficiently removed, and the effects of the present invention cannot be sufficiently obtained.
  • the mass ratio of the chelating agent aqueous solution to the organic phase 1 is 0.0001 or more, particularly 0.001 or more, and 10 or less, particularly 1 or less. It is preferable to have.
  • the pH of the aqueous phase of the mixed solution 2 after the addition and mixing of the aqueous chelating agent solution is also 6 or less, particularly 5 or less, preferably -1 or more.
  • a base is preferably added and mixed as a basic aqueous solution to the mixed solution 2 obtained in the above chelate treatment step to obtain a mixed solution 3 of an aqueous phase having a pH of 8 or higher and an organic phase.
  • This is a step of removing an aqueous phase having a pH of 8 or higher from the obtained mixed solution 3 to obtain an organic phase 3A.
  • the mixing ratio of the aqueous phase and the organic phase in the mixed solution 2 is preferably more than 0.001: 700 by weight, more preferably more than 0.01: 700, and 0. It is particularly preferable that there are more aqueous phases than .05: 700.
  • the mixing ratio of the aqueous phase and the organic phase in the mixed solution 2 is preferably less than 1000: 700 mass ratio by weight, more preferably less than 500: 700, and 300: 700. It is particularly preferable that there is less aqueous phase. If it is out of this range, the chelating agent dissolved in the aqueous phase is also removed, so that the effect of the present invention is not exhibited.
  • the pH of the aqueous phase to be phase-separated here may be 8 or more, and may be 10 or more or 11 or more, but usually about 8 to 9 is adopted.
  • Sodium hydrogen carbonate, sodium carbonate, etc. can be used as the basic substance of the basic aqueous solution.
  • the concentration of the basic substance in the basic aqueous solution used in this alkali treatment step is preferably as high as possible, and is preferably a saturated aqueous solution of the basic substance.
  • the mass ratio of the basic aqueous solution to the amount of the mixed solution 2 in the alkali treatment step is 0.01 or more, particularly 0.1 or more, and 100 or less. , Especially preferably 10 or less.
  • the organic phase 3A obtained in the alkali treatment step is subjected to the following washing step as necessary and then purified in the crystallization step described later to recover the purified bisphenol.
  • the method for producing bisphenol of the present invention may include a water washing step of washing the reaction solution containing bisphenol obtained in the bisphenol production reaction step and the organic phase 3A after the alkali treatment step with water. By performing such a washing step, the amount of impurities can be further reduced.
  • the mass ratio of water to the amount of the reaction solution or the organic phase 3A is preferably 0.01 or more, more preferably 0.05 or more, and preferably 2 or less. 1, 1 or less is more preferable, and 0.5 or less is further preferable.
  • This water washing step is performed by supplying water to the reaction solution or the organic phase 3A for washing, then separating the organic phase and the aqueous phase, and removing the aqueous phase.
  • the washing step may be performed a plurality of times. In this case, the above water supply, washing, phase separation, and removal of the aqueous phase are repeated.
  • the method for producing bisphenol of the present invention may include an alkali washing step of washing the obtained organic phase with a basic aqueous solution after the alkali treatment step or the washing step with water.
  • this alkaline cleaning step after the alkali treatment step or the water washing step, the separated organic phase and the basic aqueous solution are mixed, and then the organic phase and the aqueous phase having a pH of 9 or more are phase-separated to obtain the phase-separated aqueous phase. It is preferably a step of removing to obtain an organic phase.
  • the alkaline cleaning step may be performed a plurality of times.
  • the pH of the aqueous phase separated in the alkaline cleaning step may be 9 or more, and may be 10 or more or 11 or more.
  • the upper limit of this pH may be 14 or less or 13 or less.
  • sodium hydrogen carbonate, sodium carbonate or the like can be used as the basic substance of the basic aqueous solution used in the alkaline cleaning step.
  • the concentration of the basic substance in the basic aqueous solution used in the alkaline cleaning step is appropriately adjusted according to the type of the basic substance and the acid catalyst. If the concentration of the basic substance in the basic aqueous solution is too high, it will remain in the finally obtained bisphenol and deteriorate the quality. Therefore, it is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass. The following is more preferable. If the concentration of the basic substance in the basic aqueous solution is too low, it is necessary to increase the amount of the basic aqueous solution in order to obtain an aqueous phase having a pH of 9 or higher. Therefore, the concentration of the basic substance in the basic aqueous solution is 0.1% by mass. The above is preferable, and 0.5% by mass or more is more preferable.
  • the mass ratio of the basic aqueous solution to the amount of the organic phase in the alkaline washing step is preferably 2 or less, more preferably 1 or less, still more preferably 0.5 or less. , 0.05 or more, more preferably 0.1 or more.
  • the average temperature from the start to the end is preferably 50 ° C. or higher, preferably 55 ° C. or higher. Is more preferable.
  • the average temperature is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, in order to suppress the precipitation of bisphenol due to evaporation of the organic solvent.
  • the method for producing bisphenol of the present invention preferably includes a crystallization step.
  • the crystallization step is usually carried out after an alkali treatment step or an alkali treatment step, an alkali washing step and a subsequent washing step with water.
  • Crystallization can be performed according to a conventional method. For example, both a method of utilizing the difference in solubility of bisphenol due to a temperature difference and a method of precipitating a solid by supplying a poor solvent can be applied. Since the purity of the obtained bisphenol tends to decrease in the method of supplying the poor solvent, the method of utilizing the difference in the solubility of the bisphenol due to the temperature difference is preferable. When the content of aromatic alcohol in the organic phase is high, excess aromatic alcohol may be distilled off before crystallization before crystallization.
  • bisphenol is precipitated by cooling the organic phase at 60 to 90 ° C. to ⁇ 10 to 30 ° C.
  • the precipitated bisphenol can be separated into solid and liquid and recovered by drying or the like.
  • the organic phase used in this crystallization step preferably has an electrical conductivity of 10 ⁇ S / cm or less of the aqueous phase (hereinafter, may be referred to as “immediately preceding aqueous phase”) phase-separated in the immediately preceding step. ..
  • the electrical conductivity of the immediately preceding aqueous phase is 10 ⁇ S / cm or less, particularly 9 ⁇ S / cm or less, particularly 8 ⁇ S / cm or less, impurities such as by-products and residual catalyst in the product are highly removed, and the hue
  • bisphenol having high polymerization reaction efficiency and capable of producing a polycarbonate resin having an excellent hue can be obtained, which is preferable.
  • the electric conductivity of the immediately preceding aqueous phase can be measured with an electric conductivity meter, for example, for the immediately preceding aqueous phase at room temperature (20 to 30 ° C.) separated from each other.
  • the bisphenol thus obtained may be further purified by a conventional method depending on its use.
  • it can be purified by simple means such as sprinkle washing, water washing, suspension washing, crystallization and column chromatography.
  • the obtained bisphenol can be further purified by dissolving it in an organic solvent such as an aromatic hydrocarbon, cooling it, and crystallizing it.
  • the method for producing bisphenol of the present invention can be, for example, a production method having a chelate treatment step, an alkali treatment step, a washing step, and a crystallization step in this order. Further, the method for producing bisphenol of the present invention can be a production method having a water washing step, a chelate treatment step, an alkali treatment step, a water washing step, and a crystallization step in this order.
  • bisphenol of the present invention suitable physical properties of bisphenol produced by the method for producing bisphenol of the present invention
  • ⁇ Methanol-dissolved color of bisphenol The methanol-dissolved color of bisphenol is used to evaluate the color tone of bisphenol at room temperature. The lower the number of Hazen colors of the methanol-dissolved color of bisphenol, the better the color tone of bisphenol (close to white). As a cause of deteriorating the methanol-dissolved color of bisphenol, there is an inclusion of an organic coloring component or a metal.
  • the methanol-dissolved color of bisphenol is measured at room temperature (about 20 ° C) after dissolving bisphenol in methanol to make a uniform solution.
  • the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • SE6000 color difference meter
  • the mass ratio of the solvent methanol and bisphenol used here to the solvent is preferably selected as appropriate depending on the type of bisphenol.
  • the number of Hazen colors of the methanol-dissolved color of bisphenol is preferably 20 or less, more preferably 10 or less, and particularly preferably 5 or less.
  • melt color difference of bisphenol is used to evaluate the color tone of bisphenol at a temperature close to the polymerization temperature of polycarbonate.
  • the measurement temperature of the melt color difference is the melting point of bisphenol + 50 ° C.
  • the melt color difference of bisphenol indicates that the lower the number of Hazen colors, the better the color tone of bisphenol (closer to white).
  • causes of exacerbating the melt color difference of bisphenol include components that are colored by heating, in addition to organic coloring components and metal contamination.
  • the melt color difference of bisphenol is measured in advance by melting bisphenol at a temperature close to the polymerization temperature and measuring the time when the temperature is stable.
  • Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the number of Hazen colors is preferably 40 or less, more preferably 30 or less, and particularly preferably 20 or less.
  • the thermal color stability of bisphenol is used to evaluate the thermal stability of bisphenol color tone by holding it at a temperature close to the polymerization temperature of polycarbonate for a predetermined time, similar to the melt color difference of bisphenol.
  • the measurement temperature of the thermal color stability of bisphenol is the melting point of bisphenol + 50 ° C.
  • the thermal color stability of bisphenol As for the thermal color stability of bisphenol, the lower the number of Hazen colors, the better the thermal color stability of bisphenol.
  • the causes of deteriorating the thermal color stability of bisphenol include components that are colored by heating and acidic substances and basic substances having a concentration of about several ppm.
  • the thermal color stability of bisphenol is measured in advance by melting bisphenol at a temperature close to the polymerization temperature and at a time when the temperature is stable.
  • the retention time for thermal color stability of bisphenol is 4 hours.
  • Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the number of Hazen colors is preferably 50 or less, more preferably 45 or less, and particularly preferably 35 or less.
  • thermo decomposition stability of bisphenol is used to evaluate the thermal stability of bisphenol by holding it at a temperature close to the polymerization temperature of polycarbonate for a predetermined time.
  • the preferred measurement temperature for the thermal decomposition stability of bisphenol is the melting point of bisphenol + 50 ° C.
  • the thermal decomposition stability of bisphenol indicates that the smaller the amount of decomposition product produced, the more stable the bisphenol is.
  • the decomposition product in the thermal decomposition stability of bisphenol includes an aromatic alcohol which is a raw material of the bisphenol, or an addition of a ketone or an aldehyde which is a raw material of the aromatic alcohol, although it depends on the type of the bisphenol.
  • the causes of deteriorating the thermal decomposition stability of bisphenol include components that are colored by heating and acidic substances and basic substances having a concentration of about several ppm.
  • Detection and quantification of bisphenol degradation products can be performed using standard reverse phase columns for fast analysis.
  • the amount of isopropenyl cresol produced as a decomposition product of bisphenol as measured in Examples described later is preferably 200 mass ppm or less.
  • the methanol-dissolved color of bisphenol is a method for evaluating the color tone of bisphenol itself.
  • bisphenol is the final product, bisphenol with good methanol dissolution color is important. Since the polycarbonate resin inherits the color tone of the raw material, bisphenol having a good color tone is important for the polycarbonate resin that is required to be colorless and transparent.
  • the melt polymerization method which is one of the methods for producing a polycarbonate resin
  • the color tone of bisphenol at the time of melting (melt color difference of bisphenol)
  • the color tone stability of bisphenol in the molten state (of bisphenol). Thermal color stability) is important.
  • the bisphenol is kept melted at a high temperature until the start of the polymerization reaction.
  • the substance amount ratio with diphenyl carbonate deviates from a predetermined substance amount ratio, and it becomes difficult to obtain a polycarbonate resin having polymerization reaction activity and a predetermined molecular weight. Therefore, resistance to thermal decomposition (thermal decomposition stability of bisphenol) is important.
  • the methanol-dissolved color of bisphenol the melt color difference of bisphenol, the thermal color stability of bisphenol, and the thermal decomposition stability of bisphenol are important.
  • the bisphenol of the present invention is a polyether resin, polyester resin, polyarylate resin, polycarbonate resin, polyurethane resin, which is used for various purposes such as optical materials, recording materials, insulating materials, transparent materials, electronic materials, adhesive materials, and heat resistant materials.
  • Components, curing agents, additives or precursors thereof such as various thermoplastic resins such as acrylic resin, various thermocurable resins such as epoxy resin, unsaturated polyester resin, phenol resin, polybenzoxazine resin and cyanate resin. It can be used as such.
  • the bisphenol of the present invention is also useful as an additive such as a color developer such as a heat-sensitive recording material, a fading inhibitor, a bactericide, and an antibacterial and antifungal agent.
  • the bisphenol of the present invention is preferably used as a raw material (monomer) for a thermoplastic resin or a thermosetting resin, and more preferably as a raw material for a polycarbonate resin or an epoxy resin, because it can impart good mechanical properties.
  • the bisphenol of the present invention is also preferably used as a color developer, and more preferably used in combination with a leuco dye and a discoloration temperature adjuster.
  • the bisphenol of the present invention is used as a raw material for producing a polycarbonate resin.
  • the method for producing a polycarbonate resin using bisphenol of the present invention is a production in which a bisphenol produced by the above method and diphenyl carbonate or the like are subjected to a transesterification reaction in the presence of an alkali metal compound and / or an alkaline earth metal compound. The method.
  • the bisphenol of the present invention only one kind may be used, or two or more kinds may be used to produce a copolymerized polycarbonate resin.
  • Dihydroxy compounds other than the bisphenol of the present invention can also be used in combination for the reaction.
  • the transesterification reaction can be carried out by appropriately selecting a known method.
  • An example of using the bisphenol and diphenyl carbonate of the present invention as raw materials will be described below.
  • the amount of diphenyl carbonate used for bisphenol is preferably large in that the produced polycarbonate resin has few terminal hydroxyl groups and is excellent in thermal stability of the polymer.
  • the amount of diphenyl carbonate used for bisphenol is preferably small in that the transesterification reaction rate is high and a polycarbonate resin having a desired molecular weight can be easily produced. From these facts, the amount of diphenyl carbonate used with respect to 1 mol of bisphenol is usually 1.001 mol or more, preferably 1.002 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less.
  • the bisphenol and diphenyl carbonate of the present invention can be supplied in solid form, but it is preferable to supply one or both of them in a liquid state by melting them.
  • a transesterification catalyst When producing a polycarbonate resin by transesterification reaction between diphenyl carbonate and bisphenol, a transesterification catalyst is usually used.
  • a transesterification catalyst In the above method for producing a polycarbonate resin, it is preferable to use an alkali metal compound and / or an alkaline earth metal compound as the transesterification catalyst. These may be used alone or in combination of two or more in any combination and ratio. Practically, it is desirable to use an alkali metal compound.
  • the amount of the catalyst used is usually 0.05 ⁇ mol or more, preferably 0.08 ⁇ mol or more, more preferably 0.10 ⁇ mol or more, and usually 100 ⁇ mol or less, preferably 50 ⁇ mol, based on 1 mol of bisphenol or diphenyl carbonate. Below, it is more preferably 20 ⁇ mol or less.
  • the amount of the catalyst used is within the above range, the polymerization activity required for producing a polycarbonate resin having a desired molecular weight can be easily obtained, the polymer hue is excellent, and excessive polymer branching does not proceed. It is easy to obtain a polycarbonate resin with excellent fluidity during molding.
  • both of the above raw materials are continuously supplied to the raw material mixing tank, and the obtained mixture and the transesterification catalyst are continuously supplied to the polymerization tank.
  • both raw materials supplied to the raw material mixing tank are usually stirred uniformly and then supplied to a polymerization tank to which a transesterification catalyst is added to produce a polymer.
  • the polymerization reaction temperature is preferably 80 to 400 ° C, particularly 150 to 350 ° C.
  • the polymerization time is appropriately adjusted depending on the ratio of raw materials, the desired molecular weight of the polycarbonate resin, and the like. If the polymerization time is long, quality deterioration such as color tone deterioration becomes apparent. Therefore, it is preferably 10 hours or less, and more preferably 8 hours or less.
  • the lower limit of the polymerization time is usually 0.1 hours or more, or 0.3 hours or more.
  • a polycarbonate resin having excellent hue and transparency can be produced.
  • a polycarbonate resin having a viscosity average molecular weight (Mv) of 10,000 or more, preferably 15,000 or more, 100,000 or less, preferably 35,000 or less, and a pellet YI of 10 or less and excellent hue and transparency can be produced in a short time.
  • metal coordination refers to a compound that can be bonded to a metal ion by a coordination bond to form a complex, and the organic compound (I) has a partial structure (I) to form a metal ion. Functions as a ligand for.
  • X and Y are the same or different elements, and are elements selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur.
  • the line connecting X and Y is a carbon chain.
  • Each of X and Y in the formula (I) may further have a substituent containing an element selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur. ..
  • the "carbon chain” refers to a link in which carbon atoms are connected by a single bond, a double bond, or a triple bond, and is not limited to a chain such as a linear or branched bond, but includes a cyclic structure. It may be a combination of these.
  • the organic compound (I) is a metal-coordinating compound in which the partial structure (I) functions as a ligand for a metal ion. Therefore, the organic compound (I) may be present in the reaction product as a metal compound used as a catalyst in the production process or as a complex compound coordinated to the metal due to impurities mixed in the production process. There are many. In the use of the organic compound (I), the product incorporating the metal causes problems such as coloring, decomposition, and alteration due to the contained metal.
  • the metal is efficiently removed from the organic compound (I) to obtain a high-purity and high-quality organic compound ( I) can be manufactured.
  • the organic phase 1'of the mixed solution 1'of the aqueous phase 1'and the organic phase 1'containing the organic compound (I) and the chelating agent are mixed and pH 6
  • the step of removing the aqueous phase having a pH of 8 or more from the obtained mixed solution 3'to obtain the organic phase 3A', and the solubility of the mixed solution 3'of the organic compound (I) in the organic phase of the mixed solution 3 is included.
  • an amide group, a hydrazide group, an imide group, an amidin group in which X and / or Y are nitrogen elements examples thereof include those having a nitrile group, an alcohol group which is an oxygen element, a phenol group, an ether group, a thiol group which is a sulfur element, and a sulfide group.
  • the chelating agent different from the organic compound (I) is selected.
  • the organic compound (I) is the carboxylic acid
  • the ⁇ -diketones or the dioxime are selected as the chelating agent.
  • the organic compound (I) is the ⁇ -diketones
  • the carboxylic acids or the dioximes are selected as the chelating agent.
  • the organic compound (I) is the dioxime
  • the carboxylic acid or ⁇ -diketone is selected as the chelating agent.
  • organic compound (I) examples include the following, but the organic compound (I) to which the method for producing an organic compound of the present invention is applied is not limited to any of the following.
  • Organic compound (I) with the same X and Y> Dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, etc.
  • Oxamide, malonic acid diamide, succinate diamide, glutaru Diamides such as acid diamide, adiponic acid diamide, pimelliate diamide, suberic acid diamide, azelaic acid diamide, sebacic acid diamide, phthalic acid diamide, isophthalic acid diamide, and terephthalic acid diamide.
  • Biphenols such as biphenol, dimethylbiphenol, tetramethylbiphenol
  • Diamines such as ethylenediamine, propylenediamine, butenediamine, pentendiamine, hexenediamine, heptenediamine, octenediamine, nonenediamine, decenediamine, benzenediamine, etc.
  • Diamines such as pentanediamine, hexanediamine, heptanediamine, octanediamine, nonandidiimin, decanediamine
  • Dihydrazines such as ethylenedihydrazine, propylene dihydrazine, butenedihydrazine, pentendihydrazine, hexenedihydrazine, heptendihydrazine, octendihydrazine, nonanedihydrazine, decenedihydrazine, benzenedihydrazine, dimethoxymethane, dimethoxyethane, Dimethoxypropane, dimethoxybutane, dimethoxypentane, dimethoxyhexane, dimethoxyheptane, dimethoxyoctane, dimethoxynonane, dimethoxydecane, dimethoxybenzene, diethoxymethane, diethoxyethane, diethoxypropane, diethoxybutane, diethoxypentane, diethoxyhexane , Diethoxyheptane, diethoxyoct
  • Nitrile isocyanates such as methine nitrile isocyanate, ethylene nitrile isocyanate, propylene nitrile isocyanate, butene nitrile isocyanate, penten nitrile isocyanate, hexene nitrile isocyanate, heptene nitrile isocyanate, octene nitrile isocyanate, nonen nitrile isocyanate, decene nitrile isocyanate, and benzene nitrile isocyanate.
  • Nitrile isocyanates such as methine nitrile isocyanate, ethylene nitrile isocyanate, propylene nitrile isocyanate, butene nitrile isocyanate, penten nitrile isocyanate, hexene nitrile isocyanate, heptene nitrile isocyanate, octene nitrile is
  • Hydroxynitriles such as hydroxymethylnitrile, hydroxyethylnitrile, hydroxypropylnitrile, hydroxybutylnitrile, hydroxypentylnitrile, hydroxyhexylnitrile, hydroxyheptylnitrile, hydroxyoctylnitrile, hydroxynonylnitrile, hydroxydecylnitrile, and hydroxyphenylnitrile
  • Hydroxyphenylmethylnitrile hydroxyphenylethylnitrile, hydroxyphenylpropylnitrile, hydroxyphenylbutylnitrile, hydroxyphenylpentylnitrile, hydroxyphenylhexylnitrile, hydroxyphenylheptylnitrile, hydroxyphenyloctylnitrile, hydroxyphenylnonylnitrile, hydroxyphenyldecylnitrile , Hydroxyphenylnitriles such as hydroxyphenylphenylnitriles
  • Aminonitriles such as aminomethylnitrile, aminoethylnitrile, aminopropylnitrile, aminobutylnitrile, aminopentylnitrile, aminohexylnitrile, aminoheptylnitrile, aminooctylnitrile, aminononylnitrile, aminodecylnitrile, aminophenylnitrile
  • Iminonitriles such as iminomethylnitrile, iminoethylnitrile, iminopropylnitrile, iminobutylnitrile, iminopentylnitrile, iminohexylnitrile, iminoheptylnitrile, iminooctylnitrile, iminononylnitrile, iminodecylnitrile, iminophenylnitrile
  • Nitrile hydrazines such as methinenitrile hydrazine, ethylenenitrile hydrazine, propylenenitrile hydrazine, butenenitrile hydrazine, pentennitrile hydrazine, hexenenitrile hydrazine, heptenenitrile hydrazine, octenenitrile hydrazine, nonennitrile hydrazine, decenenitrile hydrazine, benzenenitrile hydrazine.
  • Nitrile sulfides such as methine nitrile sulfide, ethylene nitrile sulfide, propylene nitrile sulfide, butene nitrile sulfide, penten nitrile sulfide, hexene nitrile sulfide, heptene nitrile sulfide, octene nitrile sulfide, nonen nitrile sulfide, decene nitrile sulfide, and benzene nitrile sulfide.
  • Hydroxy isocyanates such as hydroxymethyl isocyanate, hydroxyethyl isocyanate, hydroxypropyl isocyanate, hydroxybutyl isocyanate, hydroxypentyl isocyanate, hydroxyhexyl isocyanate, hydroxyheptyl isocyanate, hydroxyoctyl isocyanate, hydroxynonyl isocyanate, hydroxydecyl isocyanate, hydroxyphenyl isocyanate, etc.
  • Hydroxyphenylmethyl isocyanate hydroxyphenylethyl isocyanate, hydroxyphenylpropyl isocyanate, hydroxyphenylbutyl isocyanate, hydroxyphenylpentyl isocyanate, hydroxyphenylhexyl isocyanate, hydroxyphenyl heptyl isocyanate, hydroxyphenyloctyl isocyanate, hydroxyphenylnonyl isocyanate, hydroxyphenyldecyl isocyanate , Hydroxyphenyl isocyanates such as hydroxyphenyl phenyl isocyanate
  • Amino isocyanates such as aminomethyl isocyanate, aminoethyl isocyanate, aminopropyl isocyanate, aminobutyl isocyanate, aminopentyl isocyanate, aminohexyl isocyanate, aminoheptyl isocyanate, aminooctyl isocyanate, aminononyl isocyanate, aminodecyl isocyanate, aminophenylisocyanate, etc.
  • Iminomethyl isocyanate iminoethyl isocyanate, iminopropyl isocyanate, iminobutyl isocyanate, iminopentyl isocyanate, iminohexyl isocyanate, iminoheptyl isocyanate, iminooctyl isocyanate, iminononyl isocyanate, iminodecyl isocyanate, iminophenyl isocyanate and other iminoisocyanates
  • Silica sulfides such as methine isocyanate sulfide, ethylene isocyanate sulfide, propylene isocyanate sulfide, butene isocyanate sulfide, penten isocyanate sulfide, hexene isocyanate sulfide, heptene isocyanate sulfide, octene isocyanate sulfide, nonene isocyanate sulfide, decene isocyanate sulfide, and benzene isocyanate sulfide.
  • Hydroxyalkylphenols such as hydroxymethylphenol, hydroxyethylphenol, hydroxypropylphenol, hydroxybutylphenol, hydroxypentylphenol, hydroxyhexylphenol, hydroxyheptylphenol, hydroxyoctylphenol, hydroxynonylphenol, hydroxydecylphenol
  • Hydroxyalkylamines such as hydroxymethylamine, hydroxyethylamine, hydroxypropylamine, hydroxybutylamine, hydroxypentylamine, hydroxyhexylamine, hydroxyheptylamine, hydroxyoctylamine, hydroxynonylamine, hydroxydecylamine, etc.
  • Hydroxyalkylimines such as hydroxymethylimine, hydroxyethylimine, hydroxypropylimine, hydroxybutylimine, hydroxypentylimine, hydroxyhexyluimine, hydroxyheptylimine, hydroxyoctylimine, hydroxynonylimine, hydroxydecylimine, etc.
  • Hydroxyalkyl hydrazines such as hydroxymethyl hydrazine, hydroxyethyl hydrazine, hydroxypropyl hydrazine, hydroxybutyl hydrazine, hydroxypentyl hydrazine, hydroxyhexyl hydrazine, hydroxyheptyl hydrazine, hydroxyoctyl hydrazine, hydroxynonyl hydrazine, hydroxydecyl hydrazine
  • Hydroxyalkyl sulfides such as hydroxymethyl sulfide, hydroxyethyl sulfide, hydroxypropyl sulfide, hydroxybutyl sulfide, hydroxypentyl sulfide, hydroxyhexyl sulfide, hydroxyheptyl sulfide, hydroxyoctyl sulfide, hydroxynonyl sulfide, and hydroxydecyl sulfide.
  • Hydroxyphenylmethylimine hydroxyphenylethylimine, hydroxyphenylpropylimine, hydroxyphenylbutylimine, hydroxyphenylpentylimine, hydroxyphenylhexyluimine, hydroxyphenylheptylimine, hydroxyphenyloctylimine, hydroxyphenylnonylimine, hydroxyphenyldecylimine, Hydroxyphenylimines such as hydroxyphenylphenylimines
  • Hydroxyphenylmethylhydrazine hydroxyphenylethylhydrazine, hydroxyphenylpropylhydrazine, hydroxyphenylbutylhydrazine, hydroxyphenylpentylhydrazine, hydroxyphenylhexylhydrazine, hydroxyphenylheptylhydrazine, hydroxyphenyloctylhydrazine, hydroxyphenylnonylhydrazine, hydroxyphenyldecylhydrazine , Hydroxyphenylhydrazines such as hydroxyphenylphenylhydrazine
  • Hydroxyphenyl methyl sulfide hydroxyphenyl ethyl sulfide, hydroxyphenyl propyl sulfide, hydroxyphenyl butyl sulfide, hydroxyphenyl pentyl sulfide, hydroxyphenyl hexyl sulfide, hydroxyphenyl heptyl sulfide, hydroxyphenyl octyl sulfide, hydroxyphenyl nonyl sulfide, hydroxyphenyl decyl sulfide.
  • Hydroxyphenyl sulfides such as hydroxyphenyl phenyl sulfide
  • ⁇ Methanol-dissolved color of bisphenol C For the methanol-dissolved color of bisphenol C, put 10 g of bisphenol C and 10 g of methanol in a test tube "P-24" (24 mm ⁇ x 200 mm) manufactured by Niommen Rika Glass Co., Ltd. to make a uniform solution, and then at room temperature (about 20 ° C), Japan. The number of Hazen colors was measured and evaluated using "SE6000" manufactured by Denshoku Kogyo Co., Ltd.
  • ⁇ Pyrolysis stability of bisphenol C For the thermal decomposition stability of bisphenol C, 20 g of bisphenol C was placed in a test tube "P-24" (24 mm ⁇ x 200 mm) manufactured by Niommen Rika Glass Co., Ltd. and melted at 190 ° C. for 2 hours to analyze the composition of the bisphenol C production reaction solution. The same procedure as above was carried out, and the amount of isopropenyl cresol produced was measured and evaluated.
  • CM-A212 for petri dish measurement was fitted into the measuring section, and the zero calibration box “CM-A124" was placed over it to perform zero calibration, and then white calibration was performed using the built-in white calibration plate. ..
  • CM-A210 white calibration plate
  • L * was 99.40 ⁇ 0.05
  • a * was 0.03 ⁇ 0.01
  • b * was -0.43 ⁇ 0.01.
  • YI was confirmed to be ⁇ 0.58 ⁇ 0.01.
  • YI was measured by packing pellets to a depth of about 40 mm in a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm. The operation of taking out the pellets from the glass container and then performing the measurement again was repeated twice, and the average value of the measured values of a total of three times was used.
  • the obtained third organic phase is cooled from 80 ° C. to 10 ° C., and after reaching 10 ° C., solid-liquid separation is performed using centrifugation (2,500 rpm for 10 minutes), and the first I got a wet cake.
  • the obtained first wet cake was transferred to a beaker, 500 g of toluene was added thereto, and suspension washing was performed.
  • the obtained slurry liquid was subjected to solid-liquid separation again using centrifugation (2,500 rpm for 10 minutes) to obtain 415 g of a second wet cake.
  • the iron concentration of bisphenol C contained in the obtained second wet cake was 4.7 mass ppm.
  • Example 1 A part of 300 g of the second wet cake of Reference Example 2 and 420 g of toluene were placed in a full-jacket type separable flask equipped with a thermometer and a stirrer, and the temperature was raised to 80 ° C. After confirming that the solution was uniform, a fourth organic phase was obtained. To 700 g of the obtained fourth organic phase, 200 g of 5% by mass hydrochloric acid was added and mixed for 30 minutes to remove the third aqueous phase of the lower phase to obtain a fifth organic phase. 200 g of desalinated water was added to the obtained fifth organic phase and mixed for 30 minutes to remove the fourth aqueous phase of the lower phase to obtain a sixth organic phase. When the pH of the fourth aqueous phase (the pH of the aqueous phase before supplying disodium ethylenediaminetetraacetate) was confirmed, it was pH 2.
  • the obtained eighth organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. Using an evaporator equipped with an oil bath, a light boiling point was distilled off at an oil bath temperature of 80 ° C. under reduced pressure to obtain 210 g of white bisphenol C.
  • the iron concentration of the obtained bisphenol C was 16 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 36.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 100 mass ppm.
  • Example 2 In Example 1, the same procedure as in Example 1 was carried out except that 10 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added instead of 1 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution.
  • the aqueous phase before supplying disodium ethylenediaminetetraacetate was pH 2
  • the aqueous phase from which disodium ethylenediaminetetraacetate was extracted was pH 9.
  • the iron concentration of the obtained bisphenol C was 20 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 34.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 95 mass ppm.
  • Example 3 In Example 1, the same procedure as in Example 1 was carried out except that 100 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added instead of 1 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution.
  • the aqueous phase before supplying disodium ethylenediaminetetraacetate was pH 2, and the aqueous phase from which disodium ethylenediaminetetraacetate was extracted was pH 9.
  • the iron concentration of the obtained bisphenol C was 18 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 33.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 91 parts by mass ppm.
  • Example 4 A part of 300 g of the second wet cake of Reference Example 2 and 420 g of toluene were placed in a full-jacket type separable flask equipped with a thermometer and a stirrer, and the temperature was raised to 80 ° C. After confirming that the solution was uniform, a fourth organic phase was obtained. To 700 g of the obtained fourth organic phase, 300 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added, mixed for 30 minutes, and the liquid property was confirmed with pH test paper, and it was confirmed that the aqueous phase was pH 5. did.
  • a saturated aqueous solution of sodium carbonate (18% by mass) was added thereto until the aqueous phase showed basicity, and the mixture was mixed for 30 minutes to extract the fourth aqueous phase to obtain a fifth organic phase.
  • the pH of the fourth aqueous phase (the pH of the aqueous phase from which disodium ethylenediaminetetraacetate was extracted) was confirmed, it was pH 9.
  • the obtained fifth organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 ⁇ S / cm or less to obtain a sixth organic phase.
  • the obtained sixth organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. 209 g of white bisphenol C was obtained by distilling off a light boiling point at an oil bath temperature of 80 ° C. under reduced pressure using an evaporator equipped with an oil bath.
  • the iron concentration of the obtained bisphenol C was 54 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 19.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 38.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 127 mass ppm.
  • the obtained fifth organic phase 10 g of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate was added and mixed for 30 minutes, and the fourth aqueous phase was extracted to obtain a sixth organic phase.
  • the fourth aqueous phase pH 9.
  • the obtained sixth organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 ⁇ S / cm or less to obtain a seventh organic phase.
  • the obtained seventh organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. Using an evaporator equipped with an oil bath, a light boiling point was distilled off at an oil bath temperature of 80 ° C. under reduced pressure to obtain 212 g of white bisphenol C.
  • the iron concentration of the obtained bisphenol C was 102 mass ppb.
  • the number of Hazen colors was 12.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 42.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 65.
  • the amount of isopropenyl cresol produced was 250 mass ppm.
  • the fourth aqueous phase (pH of the aqueous phase before supplying disodium ethylenediaminetetraacetate) was pH 2.
  • 10 g of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate was added and mixed for 30 minutes to remove the fifth aqueous phase to obtain a seventh organic phase.
  • the fifth aqueous phase had a pH of 2.
  • a saturated aqueous sodium carbonate solution was added to the obtained seventh organic phase until the aqueous phase showed basicity, and the mixture was mixed for 30 minutes to extract the sixth aqueous phase to obtain an eighth organic phase.
  • the obtained eighth organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 ⁇ S / cm or less to obtain a ninth organic phase.
  • the obtained ninth organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. 209 g of white bisphenol C was obtained by distilling off a light boiling point at an oil bath temperature of 80 ° C. under reduced pressure using an evaporator equipped with an oil bath.
  • the iron concentration of the obtained bisphenol C was 89 mass ppb.
  • the number of Hazen colors was 5.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 41.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 80.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 210 mass ppm.
  • the iron of bisphenol C obtained is obtained when the liquidity of the aqueous phase before supplying disodium ethylenediaminetetraacetic acid is acidic and the liquidity of the aqueous phase extracted from disodium ethylenediaminetetraacetic acid is basic. It can be seen that the concentration, methanol-dissolved color, melt color difference, thermal color stability, and thermal decomposition stability are improved. In Comparative Example 2, since the saturated aqueous sodium carbonate solution was added to the organic phase from which the aqueous phase had been removed after the addition of disodium ethylenediaminetetraacetate, the effect of removing iron by the chelating agent was not obtained.
  • Example 5 In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous citric acid solution was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
  • the iron concentration of the obtained bisphenol C was 22 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 32.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 99 mass ppm.
  • Example 6 In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous solution of oxalic acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
  • the iron concentration of the obtained bisphenol C was 32 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 35.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 98 mass ppm.
  • Example 7 In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5% by mass aqueous solution of malonic acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
  • the iron concentration of the obtained bisphenol C was 35 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 33.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 95 mass ppm.
  • Example 8 In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous solution of succinic acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
  • the iron concentration of the obtained bisphenol C was 23 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 32.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 90 mass ppm.
  • Example 9 In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous solution of tartaric acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate. The iron concentration of the obtained bisphenol C was 21 mass ppb.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 31.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 85 mass ppm.
  • Comparative Example 3 In Comparative Example 2, the same procedure as in Comparative Example 2 was carried out except that 10 g of a 5 mass% aqueous citric acid solution was added instead of 10 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution.
  • the iron concentration of the obtained bisphenol C was 102 mass ppb.
  • the number of Hazen colors was 10.
  • the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 39.
  • the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 77.
  • the amount of isopropenyl cresol produced was 310 mass ppm.
  • Table 2 summarizes the chelating agent used, the iron concentration of the obtained bisphenol C, the methanol-dissolved color, the melt color difference, the thermal color tone stability, and the thermal decomposition stability in Examples 5 to 9 and Comparative Example 3.
  • Example 10 100.00 g (0.39 mol) of bisphenol C, 86.49 g (0.4 mol) and 400 of diphenyl carbonate obtained in Example 2 in a glass reaction tank having an internal volume of 150 mL equipped with a stirrer and a distillate. 479 ⁇ L of a mass ppm cesium carbonate aqueous solution was added. The operation of reducing the pressure of the glass reaction vessel to about 100 Pa and then restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reaction vessel with nitrogen. Then, the reaction vessel was immersed in an oil bath at 200 ° C. to dissolve the contents.
  • the rotation speed of the stirrer is set to 100 times per minute, and the pressure in the reaction vessel is adjusted to absolute pressure over 40 minutes while distilling off the phenol produced by the oligomerization reaction of bisphenol C and diphenyl carbonate in the reaction vessel.
  • the pressure was reduced from 101.3 kPa to 13.3 kPa.
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reaction vessel at 13.3 kPa and further distilling off phenol.
  • the temperature outside the reaction vessel was raised to 250 ° C., and the pressure inside the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove the distilled phenol from the system.
  • the temperature outside the reaction vessel was raised to 280 ° C.
  • the absolute pressure in the reaction vessel was reduced to 30 Pa, and the polycondensation reaction was carried out.
  • the polycondensation reaction was terminated when the stirrer in the reaction tank became a predetermined stirring power.
  • the time from the temperature rise to 280 ° C. to the end of the polymerization was 210 minutes.
  • the reaction vessel was repressurized to 101.3 kPa with nitrogen at an absolute pressure, and then the pressure was increased to 0.2 MPa with a gauge pressure, and the polycarbonate resin was extracted from the bottom of the reaction vessel in a strand shape to obtain a strand-shaped polycarbonate resin. .. Then, the strands were pelletized using a rotary cutter to obtain a pellet-shaped polycarbonate resin.
  • the viscosity average molecular weight (Mv) of the obtained polycarbonate resin was 24700, and the pellet YI was 7.7, so that a polycarbonate resin having a good hue could be obtained.
  • Example 11 10 g of 1,1-bis (4-hydroxyphenyl) dodecane and 14 g of toluene obtained in Reference Example 3 were placed in an eggplant-shaped flask equipped with a magnetic rotor and dissolved at 80 ° C. to obtain a toluene solution. 7 g of 5% by mass hydrochloric acid was added thereto, and the mixture was stirred. After allowing the obtained mixed solution to stand for 30 minutes, the aqueous phase was removed to obtain a first organic phase. The pH of the removed aqueous phase was less than 1.
  • the obtained third organic phase was washed repeatedly with 7 g of desalinated water three times to obtain a fourth organic phase.
  • the obtained fourth organic phase was cooled to 10 ° C. to obtain a slurry liquid.
  • the obtained slurry liquid was filtered, and the obtained cake was dried at 70 ° C. under reduced pressure to obtain 7.5 g of 1,1-bis (4-hydroxyphenyl) dodecane.
  • the iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane was 100 mass ppb.
  • the obtained second organic phase was cooled to 10 ° C. to obtain a slurry liquid.
  • the obtained slurry liquid was filtered, and the obtained cake was dried at 70 ° C. under reduced pressure to obtain 7.5 g of 1,1-bis (4-hydroxyphenyl) dodecane.
  • the iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane was 400 mass ppb.
  • Table 3 shows the presence or absence of a pH change before and after the addition of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate and the iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane in Example 11 and Comparative Example 4. I summarized it in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

This method for producing bisphenol includes: a step for mixing an organic phase 1 that contains bisphenol, the organic phase 1 being in a mixed solution 1 of an aqueous phase 1 and the organic phase 1, with a chelating agent to obtain a mixed solution 2 of an aqueous phase having a pH of 6 or less and an organic phase; a step for mixing the resultant mixed solution 2 and a base to obtain a mixed solution 3 of an aqueous phase having a pH of 8 or higher and an organic phase; and a step for removing the aqueous phase having a pH of 8 or higher from the resultant mixed solution 3 to obtain an organic phase 3A, the method being such that the solubility of the chelating agent in the aqueous phase of the mixed solution 3 is higher than the solubility in the organic phase of the mixed solution 3.

Description

ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法Method for producing bisphenol and method for producing polycarbonate resin
 本発明は、ビスフェノールの製造方法と、得られたビスフェノールを用いたポリカーボネート樹脂の製造方法に関する。
 本発明の方法で製造されたビスフェノールは、ポリカーボネート樹脂、エポキシ樹脂、芳香族ポリエステル樹脂などの樹脂原料や、硬化剤、顕色剤、退色防止剤、その他殺菌剤や防菌防カビ剤等の添加剤として有用である。
The present invention relates to a method for producing bisphenol and a method for producing a polycarbonate resin using the obtained bisphenol.
The bisphenol produced by the method of the present invention contains resin raw materials such as polycarbonate resin, epoxy resin and aromatic polyester resin, and addition of a curing agent, a color developer, a fading inhibitor, and other bactericidal agents and antibacterial and antifungal agents. It is useful as an agent.
 ビスフェノールは、ポリカーボネート樹脂、エポキシ樹脂、芳香族ポリエステル樹脂などの高分子材料の原料として有用である。代表的なビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンなどが知られている(特許文献1)。また、フルオレン骨格を含有するビスフェノールの製造方法も知られている(特許文献2)。 Bisphenol is useful as a raw material for polymer materials such as polycarbonate resin, epoxy resin, and aromatic polyester resin. As typical bisphenols, for example, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and the like are known (Patent Document 1). A method for producing bisphenol containing a fluorene skeleton is also known (Patent Document 2).
特開2014-40376号公報Japanese Unexamined Patent Publication No. 2014-40376 特開2000-26349号公報Japanese Unexamined Patent Publication No. 2000-26349
 ビスフェノールの代表的な用途であるポリカーボネート樹脂は、無色であり、透明であることが求められる。ポリカーボネート樹脂の色調は、原料の色調の影響を大きく受ける。そのため、原料であるビスフェノールの色調も、無色であることが求められる。
 ビスフェノールの色を直接定量することは困難であることから、本発明では、ビスフェノールをメタノールに溶解させて色差を数値化し、この色調を「メタノール溶解色」と称する。
Polycarbonate resin, which is a typical use of bisphenol, is required to be colorless and transparent. The color tone of the polycarbonate resin is greatly affected by the color tone of the raw material. Therefore, the color tone of bisphenol, which is a raw material, is also required to be colorless.
Since it is difficult to directly quantify the color of bisphenol, in the present invention, bisphenol is dissolved in methanol to quantify the color difference, and this color tone is referred to as "methanol-dissolved color".
 ポリカーボネート樹脂の製造において、特に溶融法においては、ビスフェノールを溶融させてポリカーボネート樹脂を製造することから、高温にさらされる。そのため、ビスフェノールの熱的な色調の安定性も求められる。
 本発明では、この色調を「溶融色差」と称する。
In the production of the polycarbonate resin, particularly in the melting method, the bisphenol is melted to produce the polycarbonate resin, so that the polycarbonate resin is exposed to a high temperature. Therefore, the thermal color stability of bisphenol is also required.
In the present invention, this color tone is referred to as "melt color difference".
 ポリカーボネート樹脂の製造において、ビスフェノールを溶融した後に、重合反応を実施することから、重合開始前までの熱的な色調安定性も求められる。
 本発明では、この色調を「熱色調安定性」と称する。
In the production of the polycarbonate resin, since the polymerization reaction is carried out after the bisphenol is melted, thermal color stability before the start of the polymerization is also required.
In the present invention, this color tone is referred to as "thermal color tone stability".
 ポリカーボネート樹脂の製造において、重合開始前までにビスフェノールが熱分解してしまうと、ビスフェノールの物質量が減少し、原料である炭酸ジフェニルとの物質量比が所定の物質量比と乖離してしまい、所望の分子量のポリカーボネート樹脂を得ることができなくなることから、ビスフェノールの熱的な安定性も求められる。
 本発明では、この安定性を「熱分解安定性」と称する。
In the production of polycarbonate resin, if bisphenol is thermally decomposed before the start of polymerization, the amount of substance of bisphenol decreases, and the amount of substance ratio with diphenyl carbonate, which is a raw material, deviates from the predetermined amount of substance ratio. Since it becomes impossible to obtain a polycarbonate resin having a desired molecular weight, thermal stability of bisphenol is also required.
In the present invention, this stability is referred to as "pyrolysis stability".
 ポリカーボネート樹脂については、設計通りの分子量を有し、かつ色調が良好なポリカーボネート樹脂が求められている。このようなポリカーボネート樹脂を製造するために、原料であるビスフェノールとして、メタノール溶解色、溶融色差、及び熱色調安定性に優れ、また、熱分解安定性に優れたビスフェノールが求められている。 As for the polycarbonate resin, there is a demand for a polycarbonate resin having the molecular weight as designed and having a good color tone. In order to produce such a polycarbonate resin, bisphenol as a raw material is required to have excellent methanol-dissolved color, melt color difference, and thermal color tone stability, and also have excellent thermal decomposition stability.
 ビスフェノール生成反応の触媒として、塩化水素ガス又は塩酸を用いた場合、塩化水素が揮発して、設備を腐食し、腐食した成分がビスフェノールに混入することで、ビスフェノールの品質が悪化しやすく、その回避は容易ではない。
 そのため、品質の良いビスフェノールを得るためには、ビスフェノールを効率的に洗浄し、効率的に回収することが重要である。
When hydrogen chloride gas or hydrochloric acid is used as a catalyst for the bisphenol production reaction, hydrogen chloride volatilizes, corrodes the equipment, and the corroded components are mixed with bisphenol, which tends to deteriorate the quality of bisphenol. Is not easy.
Therefore, in order to obtain high quality bisphenol, it is important to efficiently wash and efficiently recover bisphenol.
 ビスフェノールの回収方法として、例えば、特許文献1に記載の方法のように、反応液に水を供給して酸触媒の濃度を低減することで反応を終了(停止)させた後、ビスフェノールを回収する方法が知られている。しかし、ビスフェノール生成反応後の水相の酸性が高い状態で、ビスフェノールの回収時に加熱等を行うと、ビスフェノールが分解しやすくなり、副生物が多くなるといった別の問題が生じる。
 このビスフェノールの分解を抑制するために、塩基性水溶液を用いて酸触媒を中和することにより反応液の酸性を下げて、反応を終了する方法が知られている(例えば、特許文献2)。しかし、この方法ではビスフェノール生成反応後の水相の濃度がpH4~6となり、設備腐食によって悪化したビスフェノールの品質を改善することが困難である。
As a method for recovering bisphenol, for example, as in the method described in Patent Document 1, water is supplied to the reaction solution to reduce the concentration of the acid catalyst to terminate (stop) the reaction, and then recover the bisphenol. The method is known. However, if heating or the like is performed at the time of recovery of bisphenol in a state where the aqueous phase is highly acidic after the bisphenol formation reaction, bisphenol is easily decomposed and another problem such as an increase in by-products occurs.
In order to suppress the decomposition of bisphenol, a method is known in which the acidity of the reaction solution is lowered by neutralizing the acid catalyst with a basic aqueous solution to terminate the reaction (for example, Patent Document 2). However, with this method, the concentration of the aqueous phase after the bisphenol formation reaction becomes pH 4 to 6, and it is difficult to improve the quality of bisphenol deteriorated by equipment corrosion.
 かかる状況下、塩化水素ガス又は塩酸を触媒に用いたビスフェノールの製造において、設備腐食によって悪化したビスフェノールの品質の改善方法が求められていた。 Under such circumstances, in the production of bisphenol using hydrogen chloride gas or hydrochloric acid as a catalyst, a method for improving the quality of bisphenol deteriorated due to equipment corrosion was required.
 本発明は、特に塩化水素ガス又は塩酸を酸触媒として用いて製造されたビスフェノールの回収工程を工夫することで、品質の良いビスフェノールを製造する方法と、このビスフェノールを用いたポリカーボネート樹脂の製造方法を提供することを目的とする。 The present invention provides a method for producing high-quality bisphenol and a method for producing a polycarbonate resin using the bisphenol by devising a recovery process for bisphenol produced using hydrogen chloride gas or hydrochloric acid as an acid catalyst. The purpose is to provide.
 本発明者は、ビスフェノールの生成反応後、ビスフェノールを含む特定条件の有機相にキレート剤を添加、混合した後、塩基性水溶液を添加、混合することで、品質の良いビスフェノールを製造することができることを見出した。本発明者は、また、製造されたビスフェノールを用いて、色調の良いポリカーボネート樹脂を製造することができることを見出した。
 本発明の要旨は、以下の[1]~[9]に存する。
The present inventor can produce high-quality bisphenol by adding and mixing a chelating agent to an organic phase containing bisphenol under specific conditions after the reaction for producing bisphenol, and then adding and mixing a basic aqueous solution. I found. The present inventor has also found that the produced bisphenol can be used to produce a polycarbonate resin having a good color tone.
The gist of the present invention lies in the following [1] to [9].
[1] 水相1と、ビスフェノールを含有する有機相1との混合液1の有機相1と、キレート剤とを混合してpH6以下の水相と有機相の混合液2を得る工程と、得られた混合液2と塩基とを混合して、pH8以上の水相と有機相との混合液3を得る工程と、得られた混合液3からpH8以上の水相を除去して有機相3Aを得る工程とを含み、該キレート剤の該混合液3の水相に対する溶解度が、該混合液3の有機相に対する溶解度よりも高いビスフェノールの製造方法。 [1] A step of mixing the organic phase 1 of the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol with a chelating agent to obtain a mixed solution 2 of the aqueous phase and the organic phase having a pH of 6 or less. A step of mixing the obtained mixed solution 2 with a base to obtain a mixed solution 3 of an aqueous phase having a pH of 8 or higher and an organic phase, and removing the aqueous phase having a pH of 8 or higher from the obtained mixed solution 3 to obtain an organic phase. A method for producing bisphenol, which comprises a step of obtaining 3A, wherein the solubility of the chelating agent in the aqueous phase of the mixed solution 3 is higher than the solubility of the mixed solution 3 in the organic phase.
[2] 前記有機相1が、前記混合液1から水相を除去して得られた有機相1Aである、[1]に記載のビスフェノールの製造方法。 [2] The method for producing bisphenol according to [1], wherein the organic phase 1 is the organic phase 1A obtained by removing the aqueous phase from the mixed solution 1.
[3] 前記水相除去後の水相と前記有機相1Aの混合割合が、重量比で1:700以下となるように前記混合液1から水相を除去する、[2]に記載のビスフェノールの製造方法。 [3] The bisphenol according to [2], wherein the aqueous phase is removed from the mixed solution 1 so that the mixing ratio of the aqueous phase and the organic phase 1A after removing the aqueous phase is 1: 700 or less by weight. Manufacturing method.
[4] 前記混合液2中の水相と有機相の混合割合が、重量比で0.001:100~1000:700である、[1]~[3]のいずれかに記載のビスフェノールの製造方法。 [4] Production of the bisphenol according to any one of [1] to [3], wherein the mixing ratio of the aqueous phase and the organic phase in the mixed solution 2 is 0.001: 100 to 1000: 700 by weight. Method.
[5] 前記有機相3Aと脱塩水とを混合して得られた混合液4から水相を除去して、有機相4を得る工程を含む[1]~[4]のいずれかに記載のビスフェノールの製造方法。 [5] The description according to any one of [1] to [4], which comprises a step of removing the aqueous phase from the mixed solution 4 obtained by mixing the organic phase 3A and desalted water to obtain the organic phase 4. Method for producing bisphenol.
[6] 前記ビスフェノールが、ケトン又はアルデヒドと、芳香族アルコールとを、塩化水素の存在下で縮合させて得られたビスフェノールである[1]~[5]のいずれかに記載のビスフェノールの製造方法。 [6] The method for producing bisphenol according to any one of [1] to [5], wherein the bisphenol is a bisphenol obtained by condensing a ketone or aldehyde and an aromatic alcohol in the presence of hydrogen chloride. ..
[7] 前記ビスフェノールが、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)ドデカン、及び2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタンからなる群のいずれか1つである[1]~[6]のいずれかに記載のビスフェノールの製造方法。 [7] The bisphenols are 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) dodecane, and 2,2-bis (4-hydroxy-3, The method for producing bisphenol according to any one of [1] to [6], which is one of the group consisting of 5-dimethylphenyl) methane.
[8] [1]~[7]のいずれかに記載のビスフェノールの製造方法で製造したビスフェノールを用いたポリカーボネート樹脂の製造方法。 [8] A method for producing a polycarbonate resin using bisphenol produced by the method for producing bisphenol according to any one of [1] to [7].
[9] 分子内に下記式(I)で示される部分構造を含む、金属配位性の有機化合物を製造する方法であって、水相1’と、該有機化合物を含有する有機相1’との混合液1’の有機相1’と、キレート剤とを混合して、pH6以下の水相と有機相の混合液2’を得る工程と、得られた混合液2’と塩基とを混合して、pH8以上の水相と有機相との混合液3’を得る工程と、得られた混合液3’からpH8以上の水相を除去して、有機相3A’を得る工程とを含み、該有機化合物の該混合液3’の有機相に対する溶解度が、該混合液3’の水相に対する溶解度よりも高く、該キレート剤の該混合液3’の水相に対する溶解度が、該混合液3’の有機相に対する溶解度よりも高い、有機化合物の製造方法。 [9] A method for producing a metal-coordinating organic compound containing a partial structure represented by the following formula (I) in the molecule, wherein the aqueous phase 1'and the organic phase 1'containing the organic compound are produced. The step of mixing the organic phase 1'of the mixed solution 1'with and the chelating agent to obtain a mixed solution 2'of an aqueous phase and an organic phase having a pH of 6 or less, and the obtained mixed solution 2'and a base. A step of mixing to obtain a mixed solution 3'of an aqueous phase having a pH of 8 or more and an organic phase, and a step of removing the aqueous phase having a pH of 8 or more from the obtained mixed solution 3'to obtain an organic phase 3A'. The solubility of the organic compound in the organic phase of the mixed solution 3'is higher than the solubility of the mixed solution 3'in the aqueous phase, and the solubility of the chelating agent in the aqueous phase of the mixed solution 3'is the mixing. A method for producing an organic compound, which has a higher solubility in the organic phase of the liquid 3'.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(I)中、XとYは同一又は異なる元素であり、3価の窒素、2価の酸素、3価のリン、及び2価の硫黄よりなる群から選ばれる元素である。XとYを繋ぐ線は、炭素鎖である。 In formula (I), X and Y are the same or different elements, and are elements selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur. The line connecting X and Y is a carbon chain.
 本発明によれば、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性が良好なビスフェノールを製造することができる。本発明によれば、得られたビスフェノールを用いて色調の良好なポリカーボネート樹脂を製造することができる。 According to the present invention, it is possible to produce bisphenol having good methanol dissolution color, melt color difference, thermal color tone stability, and thermal decomposition stability. According to the present invention, the obtained bisphenol can be used to produce a polycarbonate resin having a good color tone.
 以下に本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施の態様の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。
 本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
Embodiments of the present invention will be described in detail below. The description of the constituent elements described below is an example of the embodiment of the present invention, and the present invention is not limited to the following description contents as long as the gist thereof is not exceeded.
When the expression "-" is used in the present specification, it shall be used as an expression including numerical values or physical property values before and after the expression.
[ビスフェノールの製造方法]
 本発明のビスフェノールの製造方法は、水相1と、ビスフェノールを含有する有機相1との混合液1の有機相1と、キレート剤とを混合してpH6以下の水相と有機相の混合液2を得る工程(以下、この工程を「キレート処理工程」と称す場合がある。)と、得られた混合液2と塩基とを混合して、pH8以上の水相と有機相との混合液3を得る工程と、得られた混合液3からpH8以上の水相を除去して有機相3Aを得る工程(以下、塩基を混合し、有機相3Aを得るまでの工程を「アルカリ処理工程」と称す場合がある。)とを含み、該キレート剤の該混合液3の水相に対する溶解度が、該混合液3の有機相に対する溶解度よりも高いことを特徴とする。
[Manufacturing method of bisphenol]
The method for producing bisphenol of the present invention is a mixed solution of an aqueous phase and an organic phase having a pH of 6 or less by mixing an organic phase 1 of a mixed solution 1 of an aqueous phase 1 and an organic phase 1 containing bisphenol with a chelating agent. A step of obtaining 2 (hereinafter, this step may be referred to as a "chelate treatment step") and a mixed solution of the obtained mixed solution 2 and a base are mixed to obtain a mixed solution of an aqueous phase and an organic phase having a pH of 8 or higher. The step of obtaining 3 and the step of removing the aqueous phase having a pH of 8 or more from the obtained mixed solution 3 to obtain the organic phase 3A (hereinafter, the step of mixing the bases to obtain the organic phase 3A is the "alkali treatment step". It is characterized in that the solubility of the chelating agent in the aqueous phase of the mixed solution 3 is higher than the solubility of the mixed solution 3 in the organic phase.
 本発明のビスフェノールの製造方法の特徴は、水相1と、ビスフェノールを含有する有機相1との混合液1の有機相1に、キレート剤を混合してpH6以下の水相と有機相の混合液2を得、この混合液2と塩基とを混合して、pH8以上の水相と有機相との混合液3を得る際に、混合液3の水相に対する溶解度が、混合液3の有機相に対する溶解度よりも高いキレート剤を用いて、混合液3からpH8以上の水相を除去してビスフェノールを含有する有機相3Aを効率的に回収することにある。 The feature of the method for producing bisphenol of the present invention is that a chelating agent is mixed with the organic phase 1 of the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol, and the aqueous phase and the organic phase having a pH of 6 or less are mixed. When liquid 2 is obtained and the mixed liquid 2 and the base are mixed to obtain a mixed liquid 3 of an aqueous phase having a pH of 8 or higher and an organic phase, the solubility of the mixed liquid 3 in the aqueous phase is the organic of the mixed liquid 3. The purpose is to remove the aqueous phase having a pH of 8 or higher from the mixed solution 3 by using a chelating agent having a higher solubility in the phase, and to efficiently recover the organic phase 3A containing bisphenol.
 前述の通り、従来、ビスフェノール生成反応の触媒として塩化水素ガス又は塩酸を用いた場合、塩化水素が揮発して、設備を腐食させ、腐食成分がビスフェノールに混入することで、ビスフェノールの品質が悪化する問題があった。このビスフェノールに混入する腐食成分は、当該設備の構成材料の鉄等の金属成分を主成分とする。本発明では、上記特定のpH酸性条件においてキレート剤を添加、混合し、その後塩基性水溶液の添加でpHアルカリ性条件とすることで、ビスフェノール生成物中に混入した鉄等の金属成分をキレート化して効率的に除去する。そして、腐食成分の除去でビスフェノールの品質を向上させることができる。 As described above, when hydrogen chloride gas or hydrochloric acid is conventionally used as a catalyst for the bisphenol production reaction, hydrogen chloride volatilizes, corrodes the equipment, and the corrosive components are mixed with the bisphenol, so that the quality of the bisphenol deteriorates. There was a problem. The corrosive component mixed in the bisphenol is mainly composed of a metal component such as iron, which is a constituent material of the equipment. In the present invention, a chelating agent is added and mixed under the specific pH acidic conditions, and then a basic aqueous solution is added to make the pH alkaline conditions to chelate metal components such as iron mixed in the bisphenol product. Efficiently remove. Then, the quality of bisphenol can be improved by removing the corrosive component.
 本発明において、キレート剤を添加する有機相1は、混合液1から水相を除去して得られた有機相1Aであることが好ましい。そのためには、水相1とビスフェノールを含有する有機相1との混合液1に含まれる水相1はpH6以下の水相であることが好ましい。 In the present invention, the organic phase 1 to which the chelating agent is added is preferably the organic phase 1A obtained by removing the aqueous phase from the mixed solution 1. For that purpose, the aqueous phase 1 contained in the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol is preferably an aqueous phase having a pH of 6 or less.
 この場合、pH6以下の水相1と、ビスフェノールを含有する有機相1との混合液1から、水相を除去して有機相1Aを得る方法としては、例えば、以下の(1),(2)の方法が挙げられる。
(1)ビスフェノール生成反応後、反応液に酸性溶液を添加して相分離する方法
(2)ビスフェノール生成反応後、反応液を中和、洗浄、晶析した後に、ビスフェノールを取り出し、取り出したビスフェノールを溶媒に溶解させて得られたビスフェノール溶液を酸性溶液で洗浄した後相分離する方法
In this case, as a method for obtaining the organic phase 1A by removing the aqueous phase from the mixed solution 1 of the aqueous phase 1 having a pH of 6 or less and the organic phase 1 containing bisphenol, for example, the following (1) and (2) ) Method can be mentioned.
(1) After the bisphenol production reaction, a method of adding an acidic solution to the reaction solution for phase separation (2) After the bisphenol production reaction, the reaction solution is neutralized, washed and crystallized, then the bisphenol is taken out and the taken out bisphenol is used. A method in which a bisphenol solution obtained by dissolving in a solvent is washed with an acidic solution and then phase-separated.
[ビスフェノール生成反応]
 本発明が好適に適用されるビスフェノール生成反応について説明する。
[Bisphenol production reaction]
The bisphenol production reaction to which the present invention is preferably applied will be described.
 ビスフェノール生成反応では、ケトン又はアルデヒドと、芳香族アルコールとを、触媒の存在下で縮合させてビスフェノールを含む反応液を得る。 In the bisphenol production reaction, a ketone or aldehyde and an aromatic alcohol are condensed in the presence of a catalyst to obtain a reaction solution containing bisphenol.
 ビスフェノールの反応は、通常、以下に示す反応式(1)に従って行われる。 The reaction of bisphenol is usually carried out according to the reaction formula (1) shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記反応式(1)におけるR~Rについては、後述の一般式(2)~(3)におけるR~Rの説明の通りである。 For R 1 - R 6 in the above reaction formula (1) are as described for R 1 - R 6 in the general formula described below (2) - (3).
<芳香族アルコール>.
 ビスフェノールの原料として使用する芳香族アルコールは、通常、以下の一般式(2)で表される化合物である。
<Aromatic alcohol>.
The aromatic alcohol used as a raw material for bisphenol is usually a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、R~Rとしては、それぞれに独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基などが挙げられる。該アルキル基、アルコキシ基、アリール基などの置換基は、置換あるいは無置換のいずれであってもよい。R~Rとしては例えば、水素原子、フルオロ基、クロロ基、ブロモ基、ヨード基、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。 In the general formula (2), examples of R 1 to R 4 include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group and the like independently of each other. Substituents such as the alkyl group, alkoxy group and aryl group may be substituted or unsubstituted. Examples of R 1 to R 4 include hydrogen atom, fluoro group, chloro group, bromo group, iodo group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and i-butyl group. t-butyl group, n-pentyl group, i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, Methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n -Heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclo Examples thereof include a heptyl group, a cyclooctyl group, a cyclododecyl group, a benzyl group, a phenyl group, a tolyl group, and a 2,6-dimethylphenyl group.
 これらのうちRとRは立体的に嵩高いと縮合反応が進行しにくいことから、芳香族アルコールとしては、RおよびRが水素原子である芳香族アルコールが好ましい。
 また、芳香族アルコールとしては、R~Rがそれぞれ独立に水素原子またはアルキル基であるものが好ましく、より好ましくは、RおよびRがそれぞれ独立に水素原子またはアルキル基であり、RおよびRが水素原子である芳香族アルコールである。
Of these, if R 2 and R 3 are sterically bulky, the condensation reaction is unlikely to proceed. Therefore, as the aromatic alcohol, an aromatic alcohol in which R 2 and R 3 are hydrogen atoms is preferable.
Further, as the aromatic alcohol, those in which R 1 to R 4 are independently hydrogen atoms or alkyl groups are preferable, and more preferably, R 1 and R 4 are independently hydrogen atoms or alkyl groups, respectively, and R An aromatic alcohol in which 2 and R 3 are hydrogen atoms.
 一般式(2)で表される芳香族アルコールとして、具体的には、フェノール、メチルフェノール(クレゾール)、ジメチルフェノール(キシレノール)、エチルフェノール、プロピルフェノール、ブチルフェノール、メトキシフェノール、エトキシフェノール、プロポキシフェノール、ブトキシフェノール、アミノフェノール、ベンジルフェノール、フェニルフェノールなどが挙げられる。 Specific examples of the aromatic alcohol represented by the general formula (2) include phenol, methylphenol (cresol), dimethylphenol (xylenol), ethylphenol, propylphenol, butylphenol, methoxyphenol, ethoxyphenol, and propoxyphenol. Examples thereof include butoxyphenol, aminophenol, benzylphenol and phenylphenol.
 中でも、フェノール、クレゾール、およびキシレノールからなる群から選択されるいずれかであることが好ましく、クレゾールまたはキシレノールがより好ましく、クレゾールがさらに好ましい。 Among them, any one selected from the group consisting of phenol, cresol, and xylenol is preferable, cresol or xylenol is more preferable, and cresol is further preferable.
<ケトン又はアルデヒド>
 ビスフェノールの原料として使用するケトン又はアルデヒドは、通常、以下の一般式(3)で表される化合物である。
<Ketone or aldehyde>
The ketone or aldehyde used as a raw material for bisphenol is usually a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(3)においてRとRとしては、それぞれに独立に水素原子、アルキル基、アルコキシ基、アリール基などが挙げられる。該アルキル基、アルコキシ基、アリール基などの置換基は、置換あるいは無置換のいずれであってもよい。R,Rとしては、例えば、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルへキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。 In the general formula (3), examples of R 5 and R 6 include a hydrogen atom, an alkyl group, an alkoxy group, and an aryl group, respectively. Substituents such as the alkyl group, alkoxy group and aryl group may be substituted or unsubstituted. Examples of R 5 and R 6 include hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, and i. -Pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, methoxy group, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n-heptyloxy group , N-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, Cyclooctyl group, cyclododecyl group, benzyl group, phenyl group, tolyl group, 2,6-dimethylphenyl group and the like can be mentioned.
 RとRは、2つの基の間で互いに結合又は架橋していてもよい。RとRとが隣接する炭素原子と一緒に結合して、ヘテロ原子を含んでいてもよいシクロアルキリデン基を形成してもよい。シクロアルキリデン基とは、シクロアルカンの1つの炭素原子から2個の水素原子を除去した2価の基である。RとRとが隣接した炭素と結合して形成されるシクロアルキリデン基である場合、得られるビスフェノールは、シクロアルキリデン基を介して、芳香族アルコールが結合した構造となる。 R 5 and R 6 may be bonded or crosslinked with each other between the two groups. R 5 and R 6 may be bonded together with adjacent carbon atoms to form a cycloalkylidene group that may contain heteroatoms. The cycloalkylidene group is a divalent group obtained by removing two hydrogen atoms from one carbon atom of cycloalkane. When R 5 and R 6 are cycloalkylidene groups formed by bonding with adjacent carbons, the obtained bisphenol has a structure in which an aromatic alcohol is bonded via a cycloalkylidene group.
 RとRとが隣接する炭素原子と一緒に結合し形成されるシクロアルキリデン基としては、例えば、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、3,3,5-トリメチルシクロヘキシリデン、シクロヘプチリデン、シクロオクチリデン、シクロノニリデン、シクロデシリデン、シクロウンデシリデン、シクロドデシリデン、フルオレニリデン、キサントニリデン、チオキサントニリデンなどが挙げられる。 The cycloalkylidene group and R 5 and R 6 are attached form together with the adjacent carbon atoms, for example, cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, 3,3,5-trimethyl Cyclohexylidene, cycloheptylidene, cyclooctylidene, cyclononylidene, cyclodecylidene, cycloundecylidene, cyclododecylidene, fluorenylidene, xantonilidene, thioxanthonilidene and the like can be mentioned.
 一般式(3)で表される化合物として、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンチルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デシルアルデヒド、ウンデシルアルデヒド、ドデシルアルデヒドなどのアルデヒド類;アセトン、ブタノン、ペンタノン、ヘキサノン、ヘプタノン、オクタノン、ノナノン、デカノン、ウンデカノン、ドデカノンなどのケトン類;ベンズアルデヒド、フェニルメチルケトン、フェニルエチルケトン、フェニルプロピルケトン、クレジルメチルケトン、クレジルエチルケトン、クレジルプロピルケトン、キシリルメチルケトン、キシリルエチルケトン、キシリルプロピルケトンなどのアリールアルキルケトン、シクロプロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノン、シクロウンデカノン、シクロドデカノンなどの環状アルカンケトン類;等が挙げられる。中でも、アセトンが好ましい。 Specific examples of the compound represented by the general formula (3) include formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, pentylaldehyde, hexylaldehyde, heptylaldehyde, octylaldehyde, nonylaldehyde, decylaldehyde, undecylaldehyde, and dodecyl. Ketones such as aldehydes; ketones such as acetone, butanone, pentanon, hexanone, heptanone, octanon, nonanone, decanone, undecanone, dodecanone; benzaldehyde, phenylmethylketone, phenylethylketone, phenylpropylketone, cresylmethylketone, cleres Arylalkyl Ketones such as Zyrethyl Ketone, Cresylpropyl Ketone, Xylyl Methyl Ketone, Xylyl Ethyl Ketone, Xylylpropyl Ketone, Cyclopropanone, Cyclobutanone, Cyclopentanone, Cyclohexanone, Cycloheptanone, Cyclooctanone, Cyclononanone , Cyclic alcan ketones such as cyclodecanone, cycloundecanone, cyclododecanone; and the like. Of these, acetone is preferable.
<ビスフェノール>
 本発明のビスフェノールの製造方法では、前記反応式(1)に従って、ケトン又はアルデヒドと、芳香族アルコールとの縮合により、以下の一般式(4)で表されるビスフェノールが製造される。
<Bisphenol>
In the method for producing bisphenol of the present invention, bisphenol represented by the following general formula (4) is produced by condensation of a ketone or aldehyde with an aromatic alcohol according to the reaction formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(4)中、R~Rは、一般式(2)及び(3)におけるものと同義である。 In the general formula (4), R 1 to R 6 are synonymous with those in the general formulas (2) and (3).
 一般式(4)で表されるビスフェノールとして、具体的には、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシ-3-メチルフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ヘプタン、3,3-ビス(4-ヒドロキシ-3-メチルフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシ-3-メチルフェニル)ヘプタンなどが挙げられるが、何らこれらに限定されるものではない。 Specific examples of the bisphenol represented by the general formula (4) include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and 2,2. -Bis (4-hydroxy-3,5-dimethylphenyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 3,3-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxy-3-methylphenyl) pentane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4) -Hydroxy-3-methylphenyl) pentane, 3,3-bis (4-hydroxyphenyl) heptane, 3,3-bis (4-hydroxy-3-methylphenyl) heptane, 2,2-bis (4-hydroxyphenyl) ) Heptane, 2,2-bis (4-hydroxy-3-methylphenyl) heptane, 4,4-bis (4-hydroxyphenyl) heptane, 4,4-bis (4-hydroxy-3-methylphenyl) heptane, etc. However, it is not limited to these.
 この中でも、本発明のビスフェノールの製造方法は、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)ドデカン、または2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの製造に好適であり、特に2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールC)の製造に好適である。 Among these, the method for producing bisphenol of the present invention is 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) dodecane, or 2,2-bis (4). It is suitable for the production of -hydroxy-3,5-dimethylphenyl) propane, and is particularly suitable for the production of 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C).
<塩化水素>
 本発明において、触媒としては、本発明による効果をより顕著に得ることができることから、塩化水素を用いることが好ましい。塩化水素としては、塩化水素ガス、塩酸が挙げられる。この中でも塩化水素ガスが好ましい。
<Hydrogen chloride>
In the present invention, it is preferable to use hydrogen chloride as the catalyst because the effect of the present invention can be obtained more remarkably. Examples of hydrogen chloride include hydrogen chloride gas and hydrochloric acid. Of these, hydrogen chloride gas is preferable.
 反応に用いるケトン又はアルデヒドに対する塩化水素のモル比((塩化水素のモル数/ケトンのモル数)又は(塩化水素のモル数/アルデヒドのモル数))は、少ないと縮合反応時に副生する水によって塩化水素が希釈されて長い反応時間を要することになる。このモル比が多いとケトン又はアルデヒドの多量化が進行する場合がある。これらのことから、ケトン又はアルデヒドに対する塩化水素のモル比の下限は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上で、好ましくは10以下、より好ましくは8以下、更に好ましくは5以下である。 If the molar ratio of hydrogen chloride to the ketone or aldehyde used in the reaction ((number of moles of hydrogen chloride / number of moles of ketone) or (number of moles of hydrogen chloride / number of moles of aldehyde)) is small, water produced as a by-product during the condensation reaction Hydrogen chloride is diluted by this, which requires a long reaction time. If this molar ratio is large, the amount of ketones or aldehydes may increase. From these facts, the lower limit of the molar ratio of hydrogen chloride to ketones or aldehydes is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, preferably 10 or less, more preferably. It is 8 or less, more preferably 5 or less.
<縮合反応>
 ビスフェノールを含む反応液を得るために、芳香族アルコールとケトン又はアルデヒドとを縮合させる方法に特に制限はないが、例えば次のような方法が挙げられる。
(i)芳香族アルコールと塩化水素を含む混合溶液に、ケトン又はアルデヒドを供給した後、所定の時間反応させる方法
(ii)芳香族アルコールとケトン又はアルデヒドを含む混合溶液に、塩化水素を供給した後、所定の時間反応させる方法
<Condensation reaction>
The method for condensing the aromatic alcohol with the ketone or aldehyde in order to obtain the reaction solution containing bisphenol is not particularly limited, and examples thereof include the following methods.
(I) A method in which a ketone or aldehyde is supplied to a mixed solution containing an aromatic alcohol and hydrogen chloride and then reacted for a predetermined time. (Ii) Hydrogen chloride is supplied to a mixed solution containing an aromatic alcohol and a ketone or aldehyde. After that, how to react for a predetermined time
 上記(i)のケトン又はアルデヒドの供給や上記(ii)の塩化水素の供給には、一括で供給する方法と分割して供給する方法が挙げられる。ビスフェノールを生成する反応が発熱反応であることから、少しずつ滴下して供給するなど分割して供給する方法が好ましい。ケトン又はアルデヒドの自己縮合をより抑制できるため、上記(i)の方法が好ましい。 Examples of the above-mentioned (i) supply of ketone or aldehyde and the above-mentioned (ii) supply of hydrogen chloride include a method of supplying all at once and a method of supplying hydrogen chloride separately. Since the reaction for producing bisphenol is an exothermic reaction, it is preferable to supply the bisphenol in divided amounts, such as by dropping it little by little. The method (i) above is preferable because the self-condensation of ketones or aldehydes can be further suppressed.
 芳香族アルコールと、ケトン又はアルデヒドとを縮合させる反応において、ケトン又はアルデヒドに対する芳香族アルコールのモル比((芳香族アルコールのモル数/ケトンのモル数)又は(芳香族アルコールのモル数/アルデヒドのモル数))は、少ないとケトン又はアルデヒドが多量化しやすい。このモル比が多いと芳香族アルコールを未反応のまま損失する。これらのことから、ケトン又はアルデヒドに対する芳香族アルコールのモル比は、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくは1.7以上で、好ましくは15以下、より好ましくは10以下、更に好ましくは8以下である。 In the reaction of condensing an aromatic alcohol with a ketone or an aldehyde, the molar ratio of the aromatic alcohol to the ketone or the aldehyde ((the number of moles of the aromatic alcohol / the number of moles of the ketone) or (the number of moles of the aromatic alcohol / the number of moles of the aldehyde) If the number of moles)) is small, the amount of ketones or aldehydes tends to increase. If this molar ratio is high, aromatic alcohol is lost unreacted. From these facts, the molar ratio of aromatic alcohol to ketone or aldehyde is preferably 1.5 or more, more preferably 1.6 or more, further preferably 1.7 or more, preferably 15 or less, more preferably 10. Below, it is more preferably 8 or less.
<チオール>
 本発明においては、ケトン又はアルデヒドと芳香族アルコールとを縮合させる反応に、助触媒としてチオールを用いてもよい。
<Thiol>
In the present invention, thiol may be used as a cocatalyst in the reaction of condensing a ketone or aldehyde with an aromatic alcohol.
 助触媒としてチオールを用いることで、例えば2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンの製造において、24体の生成を抑え、44体の選択率を上げる効果と共に、ポリカーボネート樹脂製造時の重合活性を高め、得られるポリカーボネート樹脂の色調を良好なものとするという効果が得られる。
 ポリカーボネート樹脂製造時の重合活性の向上、得られるポリカーボネート樹脂の色調の改善効果が奏される理由の詳細は明らかではないが、チオールを用いることで、ポリカーボネート樹脂を製造する重合反応に対する阻害物の生成を抑制すると共に、色調悪化物の生成を抑制することができることによると推定される。
By using thiol as a cocatalyst, for example, in the production of 2,2-bis (4-hydroxy-3-methylphenyl) propane, the production of 24 bodies is suppressed, the selectivity of 44 bodies is increased, and the polycarbonate resin is produced. It is possible to obtain the effect of increasing the polymerization activity at the time and improving the color tone of the obtained polycarbonate resin.
Although the details of the reason why the effect of improving the polymerization activity during the production of the polycarbonate resin and the effect of improving the color tone of the obtained polycarbonate resin are exhibited are not clear, the use of thiol produces an inhibitor for the polymerization reaction for producing the polycarbonate resin. It is presumed that this is due to the fact that it is possible to suppress the formation of deteriorating substances as well as
 助触媒として用いるチオールとしては、例えば、メルカプト酢酸、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、4-メルカプト酪酸などのメルカプトカルボン酸や、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、ブチルメルカプタン、ペンチルメルカプタン、へキシルメルカプタン、へプチルメルカプタン、オクチルメルカプタン、ノニルメルカプタン、デシルメルカプタン(デカンチオール)、ウンデシルメルカプタン(ウンデカンチオール)、ドデシルメルカプタン(ドデカンチオール)、トリデシルメルカプタン、テトラデシルメルカプタン、ペンタデシルメルカプタンなどのアルキルチオールやメルカプトフェノールなどのアリールチオールなどが挙げられる。 Examples of the thiol used as a co-catalyst include mercaptocarboxylic acids such as mercaptoacetic acid, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid and 4-mercaptobutyric acid, methyl mercaptan, ethyl mercaptan, propyl mercaptan and butyl. Mercaptan, Pentyl mercaptan, Hexyl mercaptan, Heptyl mercaptan, Octyl mercaptan, Nonyl mercaptan, Decyl mercaptan (decane thiol), Undecyl mercaptan (undecanthiolu), Dodecyl mercaptan (dodecane thiol), Tridecyl mercaptan, Tetradecyl mercaptan Examples thereof include alkyl thiols such as decyl mercaptan and aryl thiols such as mercaptophenol.
 縮合に用いるケトン又はアルデヒドに対するチオール助触媒のモル比((チオール助触媒のモル数/ケトンのモル数)又は(チオール助触媒のモル数/アルデヒドのモル数))は、少ないとチオール助触媒を用いることによるビスフェノールの反応選択性改善の効果が得られない。このモル比が多いとビスフェノールに混入して品質が悪化する場合がある。これらのことから、ケトン及びアルデヒドに対するチオール助触媒のモル比は、好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.01以上で、好ましくは1以下、より好ましくは0.5以下、更に好ましくは0.1以下である。 If the molar ratio of the thiol cocatalyst to the ketone or aldehyde used for condensation ((the number of moles of the thiol cocatalyst / the number of moles of the ketone) or (the number of moles of the thiol cocatalyst / the number of moles of the aldehyde)) is small, the thiol cocatalyst is used. The effect of improving the reaction selectivity of bisphenol by using it cannot be obtained. If this molar ratio is large, it may be mixed with bisphenol and the quality may deteriorate. From these facts, the molar ratio of the thiol cocatalyst to the ketone and the aldehyde is preferably 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more, preferably 1 or less, more preferably 0. It is 5.5 or less, more preferably 0.1 or less.
 チオールは、ケトン又はアルデヒドと予め混合してから反応に供することが好ましい。チオールとケトン又はアルデヒドとの混合方法は、チオールにケトン又はアルデヒドを混合してもよく、ケトン又はアルデヒドにチオールを混合してもよい。
 チオールとケトン又はアルデヒドとの混合液と、芳香族アルコールとの混合方法は、チオールとケトン又はアルデヒドとの混合液に芳香族アルコールを混合してもよく、芳香族アルコールにチオールとケトン又はアルデヒドとの混合液を混合してもよい。芳香族アルコールにチオールとケトン又はアルデヒドとの混合液を混合する方が好ましい。
The thiol is preferably premixed with a ketone or aldehyde before being subjected to the reaction. The method for mixing the thiol with the ketone or aldehyde may be a mixture of the thiol with the ketone or the aldehyde, or a ketone or the aldehyde with the thiol.
As a method of mixing the mixed solution of thiol and ketone or aldehyde and the aromatic alcohol, the aromatic alcohol may be mixed with the mixed solution of thiol and ketone or aldehyde, and the aromatic alcohol is mixed with thiol and ketone or aldehyde. The mixed solution of the above may be mixed. It is preferable to mix a mixed solution of thiol and a ketone or aldehyde with an aromatic alcohol.
<有機溶媒>
 本発明のビスフェノールの製造方法では、生成してくるビスフェノールを溶解ないし分散させるために通常有機溶媒を使用する。
<Organic solvent>
In the method for producing bisphenol of the present invention, an organic solvent is usually used to dissolve or disperse the produced bisphenol.
 有機溶媒としては、ビスフェノールの生成反応を阻害しない範囲で特に限定されないが、通常芳香族炭化水素が用いられる。ここで、基質となる芳香族アルコール、および、生成物であるビスフェノールは、有機溶媒から除かれる。 The organic solvent is not particularly limited as long as it does not inhibit the bisphenol production reaction, but aromatic hydrocarbons are usually used. Here, the aromatic alcohol as a substrate and the bisphenol as a product are removed from the organic solvent.
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、メシチレンなどが挙げられる。これらの溶媒は単独で用いても、2種以上を併用して用いてもよい。芳香族炭化水素は、ビスフェノールの製造に使用した後、蒸留などで回収及び精製して再使用することが可能である。芳香族炭化水素を再利用する場合は、沸点が低いものが好ましい。好ましい芳香族炭化水素のひとつは、トルエンである。 Examples of aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and mesitylene. These solvents may be used alone or in combination of two or more. After using the aromatic hydrocarbon for the production of bisphenol, it can be recovered and purified by distillation or the like and reused. When reusing aromatic hydrocarbons, those having a low boiling point are preferable. One of the preferred aromatic hydrocarbons is toluene.
 縮合に用いるケトン又はアルデヒドに対する有機溶媒の質量比((ケトンの質量/有機溶媒の質量)又は(アルデヒドの質量/有機溶媒の質量))は、多すぎると、ケトン又はアルデヒドと、芳香族アルコールとが反応しにくく、反応に長時間を要する。この質量比が少なすぎると、ケトン又はアルデヒドの多量化が促進されたり、生成してくるビスフェノールが固化する場合がある。これらのことから、仕込み時のケトン又はアルデヒドに対する有機溶媒の質量比は、0.5以上が好ましく、1以上がより好ましく、一方、この質量比が100以下が好ましく、50以下がより好ましい。 If the mass ratio of the organic solvent to the ketone or aldehyde used for condensation ((mass of ketone / mass of organic solvent) or (mass of aldehyde / mass of organic solvent)) is too large, the ketone or aldehyde and the aromatic alcohol Is difficult to react and it takes a long time to react. If this mass ratio is too small, the increase in the amount of ketones or aldehydes may be promoted, or the bisphenol produced may solidify. From these facts, the mass ratio of the organic solvent to the ketone or aldehyde at the time of preparation is preferably 0.5 or more, more preferably 1 or more, while this mass ratio is preferably 100 or less, more preferably 50 or less.
 有機溶媒を使わず原料の芳香族アルコールを多量に使用して有機溶媒の代わりにしてもよい。この場合、未反応の芳香族アルコールは損失となるが、蒸留などにより回収及び精製して再使用することで損失を低減できる。 A large amount of the raw material aromatic alcohol may be used instead of the organic solvent instead of the organic solvent. In this case, the unreacted aromatic alcohol is a loss, but the loss can be reduced by recovering, purifying and reusing it by distillation or the like.
<反応条件>
 ビスフェノールの生成反応の反応時間は、長すぎると生成したビスフェノールが分解する場合があることから、好ましくは30時間以内、より好ましくは25時間以内、更に好ましくは20時間以内である。反応時間の下限は通常2時間以上である。
<Reaction conditions>
The reaction time of the bisphenol production reaction is preferably 30 hours or less, more preferably 25 hours or less, still more preferably 20 hours or less because the produced bisphenol may be decomposed if it is too long. The lower limit of the reaction time is usually 2 hours or more.
 反応時間は、反応液調製のときの混合時間も含むものである。例えば、芳香族アルコー及び酸触媒を混合した混合溶液に、ケトン又はアルデヒドを1時間かけて供給した後、1時間反応させた場合、反応時間は2時間である。 The reaction time includes the mixing time at the time of preparing the reaction solution. For example, when a mixed solution in which an aromatic alcohol and an acid catalyst are mixed is supplied with a ketone or aldehyde over 1 hour and then reacted for 1 hour, the reaction time is 2 hours.
 ビスフェノールの生成反応の反応温度は、高温の場合ケトン又はアルデヒドの多量化が進行しやすく、低温の場合は反応に要する時間が長時間化する。これらのことから、反応温度は、好ましくは-30℃以上、より好ましくは-20℃以上、更に好ましくは-15℃以上で、好ましくは80℃以下、より好ましくは70℃以下、更に好ましくは60℃以下である。反応温度とは、第1工程の開始から終了までの間の平均の温度を意味する。 When the reaction temperature of the bisphenol production reaction is high, the amount of ketone or aldehyde tends to increase, and when the temperature is low, the time required for the reaction becomes long. From these facts, the reaction temperature is preferably -30 ° C or higher, more preferably -20 ° C or higher, further preferably -15 ° C or higher, preferably 80 ° C or lower, more preferably 70 ° C or lower, still more preferably 60 ° C. It is below ° C. The reaction temperature means the average temperature from the start to the end of the first step.
 ビスフェノールを含む反応液は、生成してくるビスフェノールが反応液中に完全には溶解せず分散したスラリー状の溶液として得ることが好ましい。酸触媒の種類、有機溶媒の種類や量、反応時間等を適宜調整することで、ビスフェノールが分散したスラリーを得ることができる。 The reaction solution containing bisphenol is preferably obtained as a slurry-like solution in which the produced bisphenol is not completely dissolved in the reaction solution but dispersed. By appropriately adjusting the type of acid catalyst, the type and amount of organic solvent, the reaction time, etc., a slurry in which bisphenol is dispersed can be obtained.
[キレート処理工程]
 本発明におけるキレート処理工程は、後述の晶析工程の前に、上記ビスフェノールの生成反応工程後に行ってもよく、ビスフェノール生成反応後、後述の水洗工程を行った後に行ってもよく、後述の晶析工程後に行ってもよい。
[Chelating process]
The chelate treatment step in the present invention may be carried out before the crystallization step described later and after the bisphenol formation reaction step, or after the bisphenol formation reaction and after the water washing step described later, or the crystals described below. It may be performed after the analysis step.
 ビスフェノールの生成反応後にキレート処理工程を行う場合、ビスフェノール生成反応の反応液に水を添加混合し、相分離して得られる水相のpHが6以下であれば、この水相を除去した後の有機相1Aを有機相1としてキレート剤を添加、混合して混合液2を得ることができる。 When the chelate treatment step is performed after the bisphenol production reaction, water is added to and mixed with the reaction solution of the bisphenol production reaction, and if the pH of the aqueous phase obtained by phase separation is 6 or less, the aqueous phase is removed. A chelating agent can be added and mixed with the organic phase 1A as the organic phase 1 to obtain a mixed solution 2.
 水相の除去は、水相除去後の水相と有機相1Aの混合割合が、重量比で、水相:有機相1A=1:700以下、特に1:800以下、とりわけ1:900以下となるように行うことが好ましい。この範囲よりも水相が多いと後述のアルカリ処理工程でpH8以上にするために要する塩基性水溶液の量が多くなる。 In the removal of the aqueous phase, the mixing ratio of the aqueous phase and the organic phase 1A after the removal of the aqueous phase is a weight ratio of aqueous phase: organic phase 1A = 1: 700 or less, particularly 1: 800 or less, especially 1: 900 or less. It is preferable to do so. If the amount of the aqueous phase is larger than this range, the amount of the basic aqueous solution required to bring the pH to 8 or higher in the alkali treatment step described later increases.
 ビスフェノールの生成反応工程後、後述の水洗工程を行った後にキレート処理工程を行う場合、水の添加、混合による洗浄後、相分離して得られる水相のpHが6以下であれば、この水相を除去した後の有機相を有機相1としてキレート剤を添加、混合して混合液2を得ることができる。
 洗浄後の水相のpHが6を超える場合は、水相を除去した後の有機相に酸性水溶液を添加、混合し、pH6以下の水相を相分離するようにすればよい。
When the chelate treatment step is performed after the bisphenol production reaction step and the water washing step described later, if the pH of the aqueous phase obtained by phase separation after washing by adding or mixing water is 6 or less, this water A chelating agent is added and mixed with the organic phase after removing the phase as the organic phase 1 to obtain a mixed solution 2.
When the pH of the aqueous phase after washing exceeds 6, an acidic aqueous solution may be added and mixed with the organic phase after removing the aqueous phase to separate the aqueous phase having a pH of 6 or less.
 後述の晶析工程後にキレート処理工程を行う場合、晶析により回収された固体のビスフェノールに有機溶媒を添加してビスフェノール溶液を得、このビスフェノール溶液に酸性水溶液を添加、混合し、pH6以下の水相を相分離するようにすればよい。 When the chelating treatment step is performed after the crystallization step described later, an organic solvent is added to the solid bisphenol recovered by crystallization to obtain a bisphenol solution, and an acidic aqueous solution is added to and mixed with the bisphenol solution to obtain water having a pH of 6 or less. The phases may be separated from each other.
 上記の酸性水溶液を添加、混合し、相分離して得られた有機相に水を添加、混合して相分離し、ここで相分離された水相がpH6以下であれば、この水相を相分離して得られた有機相を第1の有機相としてもよい。 The above acidic aqueous solution is added and mixed, and water is added to the organic phase obtained by phase separation, and the phase is separated by mixing. If the phase-separated aqueous phase is pH 6 or less, this aqueous phase is used. The organic phase obtained by phase separation may be used as the first organic phase.
 いずれの場合も、有機相1Aを得る際に相分離する水相のpHが6を超えると、キレート剤による腐食成分の除去を十分に行えず、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性が良好なビスフェノールを得ることができない。この水相のpHは、特に5以下であることが好ましい。この水相のpHを過度に低くすると、次のアルカリ処理工程における塩基性水溶液使用量が過大となるため、水相のpHは-1以上であることが好ましい。
 本発明において、pHは、いずれも室温(20~30℃)における測定値である。
In either case, if the pH of the aqueous phase separated when obtaining the organic phase 1A exceeds 6, the corrosive components cannot be sufficiently removed by the chelating agent, and methanol dissolved color, molten color difference, thermal color stability, etc. It is not possible to obtain bisphenol with good thermal decomposition stability. The pH of this aqueous phase is particularly preferably 5 or less. If the pH of the aqueous phase is excessively low, the amount of the basic aqueous solution used in the next alkali treatment step becomes excessive, so the pH of the aqueous phase is preferably -1 or more.
In the present invention, the pH is a measured value at room temperature (20 to 30 ° C.).
 このようにpH6以下の水相を得るための酸性水溶液の酸性物質としては、塩酸、硫酸、リン酸、硝酸の無機酸などを用いることができる。 As the acidic substance of the acidic aqueous solution for obtaining an aqueous phase having a pH of 6 or less as described above, hydrochloric acid, sulfuric acid, phosphoric acid, an inorganic acid of nitric acid and the like can be used.
 酸性水溶液の酸性物質濃度は、ビスフェノールに残存する酸性物質や塩基性物質に応じて適宜調整される。酸性水溶液の酸性物質濃度が高すぎると、ビスフェノールが分解することから、35質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がより好ましい。酸性水溶液の酸性物質濃度が低すぎるとpH6以下の水相を得るために酸性水溶液の量を増加させる必要があることから、酸性水溶液の酸性物質濃度の下限は、0.01質量ppm以上が好ましく、0.1質量ppm以上がより好ましい。 The concentration of acidic substances in the acidic aqueous solution is appropriately adjusted according to the acidic substances and basic substances remaining in bisphenol. If the concentration of the acidic substance in the acidic aqueous solution is too high, bisphenol is decomposed, so that it is preferably 35% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass or less. If the concentration of the acidic substance in the acidic aqueous solution is too low, it is necessary to increase the amount of the acidic aqueous solution in order to obtain an aqueous phase having a pH of 6 or less. Therefore, the lower limit of the concentration of the acidic substance in the acidic aqueous solution is preferably 0.01 mass ppm or more. , 0.1 mass ppm or more is more preferable.
 用いる酸性水溶液の量が多すぎると、酸性水溶液添加後に相分離させる有機相の量に対して水相の量が多すぎてしまい、相分離が容易ではなくなる。よって、酸性水溶液を添加する有機相の量に対する酸性水溶液の質量比(酸性水溶液の質量/有機相の質量)は、2以下好ましく、1以下より好ましく、0.5以下が更に好ましい。添加する酸性水溶液の量が少なすぎても、水相の量に対して有機相の量が多すぎ、相分離が容易ではなくなる。よって、有機相の量に対する酸性水溶液の質量比は、0.05以上が好ましく、0.1以上がより好ましい。 If the amount of the acidic aqueous solution used is too large, the amount of the aqueous phase will be too large with respect to the amount of the organic phase to be phase-separated after the addition of the acidic aqueous solution, and the phase separation will not be easy. Therefore, the mass ratio of the acidic aqueous solution to the amount of the organic phase to which the acidic aqueous solution is added (mass of the acidic aqueous solution / mass of the organic phase) is preferably 2 or less, more preferably 1 or less, still more preferably 0.5 or less. If the amount of the acidic aqueous solution to be added is too small, the amount of the organic phase is too large with respect to the amount of the aqueous phase, and phase separation is not easy. Therefore, the mass ratio of the acidic aqueous solution to the amount of the organic phase is preferably 0.05 or more, more preferably 0.1 or more.
 pH6以下の水相を分離した後の有機相1に添加するキレート剤としては、一般的にキレート剤として用いられるものであれば、その種類は限定されないが、本発明では、後述のアルカリ処理工程で得られる混合液3中の水相に対する溶解度(以下、「対水相溶解度」と称す。)が、混合液3中の有機相に対する溶解度(以下、「対有機相溶解度」と称す。)よりも高いキレート剤を用いる。 The type of chelating agent to be added to the organic phase 1 after separating the aqueous phase having a pH of 6 or less is not limited as long as it is generally used as a chelating agent, but in the present invention, the alkali treatment step described later The solubility in the aqueous phase in the mixed solution 3 (hereinafter referred to as "solubility for the aqueous phase") obtained in 1) is higher than the solubility in the organic phase in the mixed solution 3 (hereinafter referred to as "solubility for the organic phase"). Also use a high chelating agent.
 用いるキレート剤の対水相溶解度が、対有機相溶解度以下であると用いるキレート剤が有機相に残り、ビスフェノールに残存し、ビスフェノールの純度が低下する。キレート剤は対水相溶解度が対有機相溶解度よりも高ければよいが、その程度としては対水相溶解度/対有機相溶解度の比率が1.5倍以上、好ましくは2倍以上、さらに好ましくは10倍以上である。 If the solubility of the chelating agent used in the aqueous phase is less than or equal to the solubility in the organic phase, the chelating agent used remains in the organic phase and remains in bisphenol, and the purity of bisphenol decreases. The chelating agent may have a higher solubility in the aqueous phase than the solubility in the organic phase, but the ratio of the solubility in the aqueous phase / the solubility in the organic phase is 1.5 times or more, preferably 2 times or more, more preferably more preferably. It is more than 10 times.
 キレート剤としては、例えばアセチルアセトン、3,5-ヘプタンジオンといったβ-ジケトン類;エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸といったアミノカルボン酸類やその塩;ピルビン酸やアセト酢酸、レブリン酸、α-ケトグルタル酸、アセトンジカルボン酸といったケト酸;グリコール酸、グリセリン酸、キシロン酸、グルコン酸、乳酸、タルトロン酸、酒石酸、キシラル酸、ガラクタル酸、リンゴ酸、クエン酸といったヒドロキシ酸;シュウ酸やマロン酸、コハク酸、グルタル酸、アジピン酸といったポリカルボン酸;アスパラギン酸やグルタミン酸といったアミノ酸;フィチン酸やヒドロキシエチリデンジリン酸、ニトリロトリスメチレンリン酸、エチレンジアミンテトラメチレンリン酸といったポリリン酸;ジメチルグリオキシムやベンジルジグリオキシム、1,2-シクロヘキシルジグリオキシムといったジオキシム等が挙げられる。 Examples of chelating agents include β-diketones such as acetylacetone and 3,5-heptandione; aminocarboxylic acids such as ethylenediamine tetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid and hydroxyethylethylenediaminetriacetic acid and salts thereof; pyruvate and acetoacetic acid. , Lebric acid, α-ketoglutaric acid, ketoic acid such as acetonedicarboxylic acid; hydroxy acids such as glycolic acid, glyceric acid, xylonic acid, gluconic acid, lactic acid, tartronic acid, tartrate acid, xylal acid, galactal acid, malic acid, citric acid; Polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid; amino acids such as aspartic acid and glutamic acid; polyphosphoric acids such as phytic acid, hydroxyethylidene diphosphate, nitrilotrismethylene phosphate and ethylenediaminetetramethylene phosphate; dimethyl Examples thereof include dioximes such as glyoxime, benzyl diglyoxime, and 1,2-cyclohexyl diglyoxime.
 これらのうち、上記対水相溶解度と対有機相溶解度を満たすものとしては、エチレンジアミン四酢酸、クエン酸、シュウ酸、マロン酸、コハク酸が挙げられる。 Among these, ethylenediaminetetraacetic acid, citric acid, oxalic acid, malonic acid, and succinic acid are examples of those that satisfy the above-mentioned solubility in aqueous phase and solubility in organic phase.
 これらの中でも特に、4価のカルボン酸であり、種々の金属とキレート化しやすい観点からエチレンジアミン四酢酸等のアミノカルボン酸類やその塩が好ましい。また、有機溶媒への溶解性に優れ、さらに腐食成分と結合しやすい点で、炭素、水素、酸素原子のみから構成されるキレート剤が好ましく、その例としては、アセチルアセトン、3,5-ヘプタンジオンといったβ-ジケトン類;ピルビン酸やアセト酢酸、レブリン酸、α-ケトグルタル酸、アセトンジカルボン酸といったケト酸;グリコール酸、グリセリン酸、キシロン酸、グルコン酸、乳酸、タルトロン酸、酒石酸、キシラル酸、ガラクタル酸、リンゴ酸、クエン酸といったヒドロキシ酸;シュウ酸やマロン酸、コハク酸、グルタル酸、アジピン酸といったポリカルボン酸といったものが挙げられる。 Among these, a tetravalent carboxylic acid is preferable, and aminocarboxylic acids such as ethylenediaminetetraacetic acid and salts thereof are preferable from the viewpoint of easily chelating with various metals. In addition, a chelating agent composed of only carbon, hydrogen, and oxygen atoms is preferable because it has excellent solubility in an organic solvent and easily binds to a corrosive component. Examples thereof include acetylacetone and 3,5-heptandione. Β-diketones such as: pyruvate, acetoacetic acid, levulinic acid, α-ketoglutaric acid, acetone dicarboxylic acid and other keto acids; glycolic acid, glyceric acid, xylonic acid, gluconic acid, lactic acid, tartronic acid, tartrate acid, xylolic acid, galactal Hydroxy acids such as acids, malic acids and citric acids; polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid.
 これらのキレート剤は1種のみを用いてもよく、2種以上を併用してもよい。 Only one of these chelating agents may be used, or two or more of these chelating agents may be used in combination.
 キレート剤は、0.1質量%以上、特に0.5質量%以上で、15質量%以下、特に10質量%以下程度の水溶液として有機相1に添加することが好ましい。このキレート剤濃度が高過ぎると析出してしまい、キレート剤の効果が低減してしまうことがある。このキレート剤濃度が低過ぎるとキレート剤を供給した後で発生する廃水量が増加してしまう問題がある。 The chelating agent is preferably added to the organic phase 1 as an aqueous solution of 0.1% by mass or more, particularly 0.5% by mass or more, and 15% by mass or less, particularly about 10% by mass or less. If the concentration of the chelating agent is too high, it may precipitate and the effect of the chelating agent may be reduced. If the concentration of the chelating agent is too low, there is a problem that the amount of wastewater generated after the chelating agent is supplied increases.
 有機相1へのキレート剤水溶液の添加量は、有機相1中の腐食成分を十分にキレート化して除去できる程度の量であればよく、そのキレート剤濃度や、処理対象とする有機相1中の腐食成分量によっても異なる。有機相1へのキレート剤水溶液の添加量が多過ぎると製造コストが増加する。有機相1へのキレート剤水溶液の添加量が少な過ぎると有機相1中の腐食成分を十分に除去し得ず、本発明の効果を十分に得ることができない。よって、有機相1に対するキレート剤水溶液の質量比(キレート剤水溶液の質量/有機相1の質量)が0.0001以上、特に0.001以上で、10以下、特に1以下となるような量であることが好ましい。 The amount of the aqueous chelating agent added to the organic phase 1 may be an amount that can sufficiently chelate and remove the corrosive components in the organic phase 1, the concentration of the chelating agent, and the organic phase 1 to be treated. It also depends on the amount of corrosive components in. If the amount of the aqueous chelating agent added to the organic phase 1 is too large, the production cost increases. If the amount of the aqueous chelating agent added to the organic phase 1 is too small, the corrosive components in the organic phase 1 cannot be sufficiently removed, and the effects of the present invention cannot be sufficiently obtained. Therefore, the mass ratio of the chelating agent aqueous solution to the organic phase 1 (mass of the chelating agent aqueous solution / mass of the organic phase 1) is 0.0001 or more, particularly 0.001 or more, and 10 or less, particularly 1 or less. It is preferable to have.
 キレート剤水溶液の添加、混合後の混合液2の水相のpHも6以下、特に5以下で、-1以上であることが好ましい。 The pH of the aqueous phase of the mixed solution 2 after the addition and mixing of the aqueous chelating agent solution is also 6 or less, particularly 5 or less, preferably -1 or more.
[アルカリ処理工程]
 本発明におけるアルカリ処理工程は、上記のキレート処理工程で得られた混合液2に、塩基を好ましくは塩基性水溶液として添加、混合して、pH8以上の水相と有機相との混合液3を得、得られた混合液3からpH8以上の水相を除去して有機相3Aを得る工程である。
 混合液2を水相と有機相とに水相除去した後、水相除去された有機相に塩基性水溶液を添加しても、キレート剤によるキレート化効果を得ることはできない。従って、完全に水相除去する前の混合液2に塩基性水溶液を添加することが重要である。即ち、混合液2中の水相と有機相の混合割合が、重量比で0.001:700より水相が多いことが好ましく、0.01:700より水相が多いことがさらに好ましく、0.05:700より水相が多いことが特に好ましい。一方、混合液2中の水相と有機相の混合割合が、重量比で1000:700質量比より水相が少ないことが好ましく、500:700より水相が少ないことがさらに好ましく、300:700より水相が少ないことが特に好ましい。この範囲を外れると、水相に溶解したキレート剤も除去されてしまうことから、本発明の効果が発揮されない。
[Alkaline treatment process]
In the alkali treatment step of the present invention, a base is preferably added and mixed as a basic aqueous solution to the mixed solution 2 obtained in the above chelate treatment step to obtain a mixed solution 3 of an aqueous phase having a pH of 8 or higher and an organic phase. This is a step of removing an aqueous phase having a pH of 8 or higher from the obtained mixed solution 3 to obtain an organic phase 3A.
Even if a basic aqueous solution is added to the organic phase from which the aqueous phase has been removed after the aqueous phase has been removed from the mixed solution 2 into the aqueous phase and the organic phase, the chelating effect of the chelating agent cannot be obtained. Therefore, it is important to add the basic aqueous solution to the mixed solution 2 before completely removing the aqueous phase. That is, the mixing ratio of the aqueous phase and the organic phase in the mixed solution 2 is preferably more than 0.001: 700 by weight, more preferably more than 0.01: 700, and 0. It is particularly preferable that there are more aqueous phases than .05: 700. On the other hand, the mixing ratio of the aqueous phase and the organic phase in the mixed solution 2 is preferably less than 1000: 700 mass ratio by weight, more preferably less than 500: 700, and 300: 700. It is particularly preferable that there is less aqueous phase. If it is out of this range, the chelating agent dissolved in the aqueous phase is also removed, so that the effect of the present invention is not exhibited.
 ここで相分離される水相のpHは8以上であればよく、10以上又は11以上であってもよいが、通常8~9程度が採用される。 The pH of the aqueous phase to be phase-separated here may be 8 or more, and may be 10 or more or 11 or more, but usually about 8 to 9 is adopted.
 塩基性水溶液の塩基性物質としては、炭酸水素ナトリウム、炭酸ナトリウムなどを用いることができる。 Sodium hydrogen carbonate, sodium carbonate, etc. can be used as the basic substance of the basic aqueous solution.
 このアルカリ処理工程で用いる塩基性水溶液の塩基性物質濃度が低過ぎると、pH8以上の水相を得るための塩基性水溶液量が多くなって、全体の液量が増大し、処理効率が悪くなる。従って、塩基性水溶液の塩基性物質濃度は、なるべく高いことが好ましく、塩基性物質の飽和水溶液であることが好ましい。 If the concentration of the basic substance in the basic aqueous solution used in this alkali treatment step is too low, the amount of the basic aqueous solution for obtaining an aqueous phase having a pH of 8 or higher increases, the total amount of the liquid increases, and the treatment efficiency deteriorates. .. Therefore, the concentration of the basic substance in the basic aqueous solution is preferably as high as possible, and is preferably a saturated aqueous solution of the basic substance.
 添加、混合する塩基性水溶液の量が多すぎると、塩基性水溶液の添加、混合後に相分離させる有機相の量に対して水相の量が多すぎてしまい、相分離が容易ではなくなる。塩基性水溶液の量が少なすぎても、水相の量に対して有機相の量が多すぎ、相分離が容易ではなくなる。これらのことから、アルカリ処理工程における混合液2の量に対する塩基性水溶液の質量比(塩基性水溶液の質量/混合液2の質量)は、0.01以上、特に0.1以上で、100以下、特に10以下が好ましい。 If the amount of the basic aqueous solution to be added or mixed is too large, the amount of the aqueous phase will be too large with respect to the amount of the organic phase to be phase-separated after the addition or mixing of the basic aqueous solution, and the phase separation will not be easy. If the amount of the basic aqueous solution is too small, the amount of the organic phase is too large with respect to the amount of the aqueous phase, and phase separation is not easy. From these facts, the mass ratio of the basic aqueous solution to the amount of the mixed solution 2 in the alkali treatment step (mass of the basic aqueous solution / mass of the mixed solution 2) is 0.01 or more, particularly 0.1 or more, and 100 or less. , Especially preferably 10 or less.
 アルカリ処理工程で得られた有機相3Aは、必要に応じて以下の水洗工程を行った後、後述の晶析工程で精製して精製ビスフェノールを回収することが好ましい。 It is preferable that the organic phase 3A obtained in the alkali treatment step is subjected to the following washing step as necessary and then purified in the crystallization step described later to recover the purified bisphenol.
[水洗工程]
 本発明のビスフェノールの製造方法では、ビスフェノール生成反応工程で得られたビスフェノールを含む反応液やアルカリ処理工程後の有機相3Aを水で洗浄する水洗工程を有してもよい。このような水洗工程を行うことで、不純物量を更に低減できる。
[Washing process]
The method for producing bisphenol of the present invention may include a water washing step of washing the reaction solution containing bisphenol obtained in the bisphenol production reaction step and the organic phase 3A after the alkali treatment step with water. By performing such a washing step, the amount of impurities can be further reduced.
 水洗工程では、例えば、反応液又は有機相3Aに脱塩水を供給し、反応液又は有機相3Aを脱塩水で洗浄する。
 ここで供給する水の量が多い場合、液量が多くなることで撹拌効率が低下し、水洗効率が低くなる傾向がある。供給する水の量が少ない場合、水相の容積が小さくなり、撹拌効率が低下し、水洗効率が低くなる傾向がある。したがって、反応液又は有機相3Aの量に対する水の質量比(水の質量/反応液又は有機相3Aの質量)は、0.01以上が好ましく、0.05以上が更に好ましく、2以下が好ましく、1以下がより好ましく、0.5以下が更に好ましい。
In the water washing step, for example, demineralized water is supplied to the reaction solution or the organic phase 3A, and the reaction solution or the organic phase 3A is washed with the demineralized water.
When the amount of water supplied here is large, the stirring efficiency tends to decrease due to the large amount of liquid, and the washing efficiency tends to decrease. When the amount of water to be supplied is small, the volume of the aqueous phase becomes small, the stirring efficiency tends to decrease, and the washing efficiency tends to decrease. Therefore, the mass ratio of water to the amount of the reaction solution or the organic phase 3A (mass of water / mass of reaction solution or organic phase 3A) is preferably 0.01 or more, more preferably 0.05 or more, and preferably 2 or less. 1, 1 or less is more preferable, and 0.5 or less is further preferable.
 この水洗工程は、反応液又は有機相3Aに水を供給して洗浄し、その後有機相と水相とに相分離させ、この水相を除去することで行われる。
 水洗工程は複数回行ってもよい。この場合は、上記の水の供給、洗浄、相分離、および水相の除去を繰り返し実施する。
This water washing step is performed by supplying water to the reaction solution or the organic phase 3A for washing, then separating the organic phase and the aqueous phase, and removing the aqueous phase.
The washing step may be performed a plurality of times. In this case, the above water supply, washing, phase separation, and removal of the aqueous phase are repeated.
[アルカリ洗浄工程]
 本発明のビスフェノールの製造方法では、アルカリ処理工程或いは水洗工程の後に、得られた有機相を塩基性水溶液で洗浄するアルカリ洗浄工程を有してもよい。
[Alkaline cleaning process]
The method for producing bisphenol of the present invention may include an alkali washing step of washing the obtained organic phase with a basic aqueous solution after the alkali treatment step or the washing step with water.
 このアルカリ洗浄工程は、アルカリ処理工程或いは水洗工程の後に、分離された有機相と塩基性水溶液とを混合した後、有機相とpH9以上の水相とに相分離させ、相分離した水相を除去して有機相を得る工程であることが好ましい。 In this alkaline cleaning step, after the alkali treatment step or the water washing step, the separated organic phase and the basic aqueous solution are mixed, and then the organic phase and the aqueous phase having a pH of 9 or more are phase-separated to obtain the phase-separated aqueous phase. It is preferably a step of removing to obtain an organic phase.
 このように塩基性水溶液で洗浄することで、塩基性条件下で溶解しやすい不純物を除去することができる。
 アルカリ洗浄工程は、複数回行ってもよい。
By washing with a basic aqueous solution in this way, impurities that are easily dissolved under basic conditions can be removed.
The alkaline cleaning step may be performed a plurality of times.
 アルカリ洗浄工程で相分離される水相のpHは9以上であればよく、10以上又は11以上であってもよい。このpHの上限は、14以下又は13以下であってもよい。 The pH of the aqueous phase separated in the alkaline cleaning step may be 9 or more, and may be 10 or more or 11 or more. The upper limit of this pH may be 14 or less or 13 or less.
 アルカリ洗浄工程で用いる塩基性水溶液の塩基性物質としては、炭酸水素ナトリウム、炭酸ナトリウムなどを用いることができる。 As the basic substance of the basic aqueous solution used in the alkaline cleaning step, sodium hydrogen carbonate, sodium carbonate or the like can be used.
 アルカリ洗浄工程で用いる塩基性水溶液の塩基性物質濃度は、塩基性物質や酸触媒の種類に応じて適宜調整される。塩基性水溶液の塩基性物質濃度が高すぎると、最終的に得られるビスフェノールに残存して品質を悪化させてしまうことから、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がより好ましい。塩基性水溶液の塩基性物濃度が低すぎるとpH9以上の水相を得るために塩基性水溶液の量を増加させる必要があることから、塩基性水溶液の塩基性物質濃度は、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。 The concentration of the basic substance in the basic aqueous solution used in the alkaline cleaning step is appropriately adjusted according to the type of the basic substance and the acid catalyst. If the concentration of the basic substance in the basic aqueous solution is too high, it will remain in the finally obtained bisphenol and deteriorate the quality. Therefore, it is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass. The following is more preferable. If the concentration of the basic substance in the basic aqueous solution is too low, it is necessary to increase the amount of the basic aqueous solution in order to obtain an aqueous phase having a pH of 9 or higher. Therefore, the concentration of the basic substance in the basic aqueous solution is 0.1% by mass. The above is preferable, and 0.5% by mass or more is more preferable.
 供給する塩基性水溶液の量が多すぎると、アルカリ洗浄後に相分離させる有機相の量に対して水相の量が多すぎてしまい、相分離が容易ではなくなる。供給する塩基性水溶液の量が少なすぎても、水相の量に対して有機相の量が多すぎ、相分離が容易ではなくなる。これらのことから、アルカリ洗浄工程における有機相の量に対する塩基性水溶液の質量比(塩基性水溶液の質量/有機相の質量)は、2以下好ましく、1以下より好ましく、0.5以下が更に好ましく、0.05以上が好ましく、0.1以上がより好ましい。 If the amount of the basic aqueous solution supplied is too large, the amount of the aqueous phase will be too large with respect to the amount of the organic phase to be phase-separated after alkaline cleaning, and phase separation will not be easy. If the amount of the basic aqueous solution supplied is too small, the amount of the organic phase is too large with respect to the amount of the aqueous phase, and phase separation is not easy. From these facts, the mass ratio of the basic aqueous solution to the amount of the organic phase in the alkaline washing step (mass of the basic aqueous solution / mass of the organic phase) is preferably 2 or less, more preferably 1 or less, still more preferably 0.5 or less. , 0.05 or more, more preferably 0.1 or more.
[キレート処理工程、アルカリ処理工程、水洗工程、アルカリ洗浄工程の温度]
 上記キレート処理工程、アルカリ処理工程、水洗工程及びアルカリ洗浄工程は、ビスフェノールの析出を抑制するために、いずれも開始から終了までの平均の温度として、50℃以上とすることが好ましく、55℃以上とすることがより好ましい。上記平均の温度は、有機溶媒の蒸発によりビスフェノールが析出することを抑制するために、120℃以下とすることが好ましく、110℃以下とすることがより好ましい。これらの工程は例えば同じ温度で行うことができる。
[Temperature of chelate treatment process, alkali treatment process, water washing process, alkali washing process]
In the chelate treatment step, the alkali treatment step, the water washing step and the alkali washing step, in order to suppress the precipitation of bisphenol, the average temperature from the start to the end is preferably 50 ° C. or higher, preferably 55 ° C. or higher. Is more preferable. The average temperature is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, in order to suppress the precipitation of bisphenol due to evaporation of the organic solvent. These steps can be performed, for example, at the same temperature.
[晶析工程]
 本発明のビスフェノールの製造方法は、晶析工程を有することが好ましい。晶析工程は通常、アルカリ処理工程、或いはアルカリ処理工程、アルカリ洗浄工程及びその後の水洗工程の後に行われる。
[Crystalization process]
The method for producing bisphenol of the present invention preferably includes a crystallization step. The crystallization step is usually carried out after an alkali treatment step or an alkali treatment step, an alkali washing step and a subsequent washing step with water.
 晶析は、常法に従って行うことができる。例えば、温度差によるビスフェノールの溶解度差を利用する方法、貧溶媒を供給することで固体を析出させる方法のいずれも適用できる。貧溶媒を供給する方法では得られるビスフェノールの純度が低下しやすいことから、温度差によるビスフェノールの溶解度差を利用する方法が好ましい。
 有機相中の芳香族アルコール含有量が多い場合には、晶析前に蒸留により余剰の芳香族アルコールを留去してから晶析してもよい。
Crystallization can be performed according to a conventional method. For example, both a method of utilizing the difference in solubility of bisphenol due to a temperature difference and a method of precipitating a solid by supplying a poor solvent can be applied. Since the purity of the obtained bisphenol tends to decrease in the method of supplying the poor solvent, the method of utilizing the difference in the solubility of the bisphenol due to the temperature difference is preferable.
When the content of aromatic alcohol in the organic phase is high, excess aromatic alcohol may be distilled off before crystallization before crystallization.
 例えば、60~90℃の有機相を、-10~30℃に冷却することでビスフェノールが析出する。析出したビスフェノールは、固液分離し、乾燥等により回収することができる。 For example, bisphenol is precipitated by cooling the organic phase at 60 to 90 ° C. to −10 to 30 ° C. The precipitated bisphenol can be separated into solid and liquid and recovered by drying or the like.
 この晶析工程に供する有機相は、その直前の工程で相分離された水相(以下、「直前水相」と称す場合がある。)の電気伝導度が10μS/cm以下であるものが好ましい。この直前水相の電気伝導度が10μS/cm以下、特に9μS/cm以下、とりわけ8μS/cm以下であると、生成物中の副生成物や残留触媒等の不純物を高度に除去して、色相が良好であり、ポリカーボネート樹脂の原料ビスフェノールとして用いた場合、重合反応効率が高く、色相に優れたポリカーボネート樹脂を製造することができるビスフェノールを得ることができ、好ましい。 The organic phase used in this crystallization step preferably has an electrical conductivity of 10 μS / cm or less of the aqueous phase (hereinafter, may be referred to as “immediately preceding aqueous phase”) phase-separated in the immediately preceding step. .. When the electrical conductivity of the immediately preceding aqueous phase is 10 μS / cm or less, particularly 9 μS / cm or less, particularly 8 μS / cm or less, impurities such as by-products and residual catalyst in the product are highly removed, and the hue When used as a raw material bisphenol for a polycarbonate resin, bisphenol having high polymerization reaction efficiency and capable of producing a polycarbonate resin having an excellent hue can be obtained, which is preferable.
 ここで、直前水相の電気伝導度は、例えば相分離させた室温(20~30℃)の直前水相について、電気伝導度計で測定することができる。 Here, the electric conductivity of the immediately preceding aqueous phase can be measured with an electric conductivity meter, for example, for the immediately preceding aqueous phase at room temperature (20 to 30 ° C.) separated from each other.
 このようにして得られたビスフェノールは、さらに、その用途に応じて、常法により精製を行ってもよい。例えば、ふりかけ洗浄、水洗、懸濁洗浄、晶析やカラムクロマトグラフィーなどの簡便な手段により精製することが可能である。具体的には、得られたビスフェノールを芳香族炭化水素等の有機溶媒に溶解させた後、冷却し晶析させることで、更に精製することができる。 The bisphenol thus obtained may be further purified by a conventional method depending on its use. For example, it can be purified by simple means such as sprinkle washing, water washing, suspension washing, crystallization and column chromatography. Specifically, the obtained bisphenol can be further purified by dissolving it in an organic solvent such as an aromatic hydrocarbon, cooling it, and crystallizing it.
[ビスフェノールの製造方法の工程構成]
 本発明のビスフェノールの製造方法は、例えば、キレート処理工程と、アルカリ処理工程と、水洗工程と、晶析工程とをこの順で有する製造方法とすることができる。また、本発明のビスフェノールの製造方法は、水洗工程と、キレート処理工程と、アルカリ処理工程と、水洗工程と、晶析工程とをこの順で有する製造方法とすることができる。
[Process configuration of bisphenol production method]
The method for producing bisphenol of the present invention can be, for example, a production method having a chelate treatment step, an alkali treatment step, a washing step, and a crystallization step in this order. Further, the method for producing bisphenol of the present invention can be a production method having a water washing step, a chelate treatment step, an alkali treatment step, a water washing step, and a crystallization step in this order.
[ビスフェノールの好適物性]
 以下に本発明のビスフェノールの製造方法で製造したビスフェノール(以下、「本発明のビスフェノール」と称す場合がある。)の好適物性について説明する。
[Preferable physical properties of bisphenol]
Hereinafter, suitable physical properties of bisphenol produced by the method for producing bisphenol of the present invention (hereinafter, may be referred to as "bisphenol of the present invention") will be described.
<ビスフェノールのメタノール溶解色>
 ビスフェノールのメタノール溶解色は、常温におけるビスフェノールの色調を評価することに用いられる。ビスフェノールのメタノール溶解色のハーゼン色数が低いほど、ビスフェノールの色調が良好(白色に近い)であることを示す。ビスフェノールのメタノール溶解色を悪化させる原因としては、有機着色成分や金属の混入が挙げられる。
<Methanol-dissolved color of bisphenol>
The methanol-dissolved color of bisphenol is used to evaluate the color tone of bisphenol at room temperature. The lower the number of Hazen colors of the methanol-dissolved color of bisphenol, the better the color tone of bisphenol (close to white). As a cause of deteriorating the methanol-dissolved color of bisphenol, there is an inclusion of an organic coloring component or a metal.
 ビスフェノールのメタノール溶解色は、ビスフェノールをメタノールに溶解させて、均一溶液とした後、室温(約20℃)で測定する。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。ここで使用する溶媒メタノール、ビスフェノールと溶媒の質量比は、ビスフェノールの種類により適宜選択することが好ましい。 The methanol-dissolved color of bisphenol is measured at room temperature (about 20 ° C) after dissolving bisphenol in methanol to make a uniform solution. Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd. The mass ratio of the solvent methanol and bisphenol used here to the solvent is preferably selected as appropriate depending on the type of bisphenol.
 ビスフェノールのメタノール溶解色のハーゼン色数は、好ましくは20以下であり、より好ましくは10以下であり、特に好ましくは5以下である。 The number of Hazen colors of the methanol-dissolved color of bisphenol is preferably 20 or less, more preferably 10 or less, and particularly preferably 5 or less.
<ビスフェノールの溶融色差>
 ビスフェノールの溶融色差は、ポリカーボネートの重合温度に近い温度でのビスフェノールの色調を評価することに用いられる。溶融色差の測定温度は、ビスフェノールの融点+50℃である。ビスフェノールの溶融色差はハーゼン色数が低いほど、ビスフェノールの色調が良好(白色に近い)であることを示す。ビスフェノールの溶融色差を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分が挙げられる。
<Melted color difference of bisphenol>
The melt color difference of bisphenol is used to evaluate the color tone of bisphenol at a temperature close to the polymerization temperature of polycarbonate. The measurement temperature of the melt color difference is the melting point of bisphenol + 50 ° C. The melt color difference of bisphenol indicates that the lower the number of Hazen colors, the better the color tone of bisphenol (closer to white). Causes of exacerbating the melt color difference of bisphenol include components that are colored by heating, in addition to organic coloring components and metal contamination.
 ビスフェノールの溶融色差は、重合温度に近い温度でビスフェノールを溶融させ、予めその温度が安定した時間で測定する。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。 The melt color difference of bisphenol is measured in advance by melting bisphenol at a temperature close to the polymerization temperature and measuring the time when the temperature is stable. Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
 このハーゼン色数は、好ましくは40以下であり、より好ましきは30以下であり、特に好ましくは20以下である。 The number of Hazen colors is preferably 40 or less, more preferably 30 or less, and particularly preferably 20 or less.
<ビスフェノールの熱色調安定性>
 ビスフェノールの熱色調安定性は、ビスフェノールの溶融色差同様、ポリカーボネートの重合温度に近い温度で所定の時間保持させ、ビスフェノールの色調の熱安定性を評価することに用いられる。ビスフェノールの熱色調安定性の測定温度は、ビスフェノールの融点+50℃である。
<Thermal color stability of bisphenol>
The thermal color stability of bisphenol is used to evaluate the thermal stability of bisphenol color tone by holding it at a temperature close to the polymerization temperature of polycarbonate for a predetermined time, similar to the melt color difference of bisphenol. The measurement temperature of the thermal color stability of bisphenol is the melting point of bisphenol + 50 ° C.
 ビスフェノールの熱色調安定性はハーゼン色数が低いほど、ビスフェノールの熱色調安定性が良好であることを示す。ビスフェノールの熱色調安定性を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分やその濃度が数ppm程度の酸性物質や塩基性物質が挙げられる。 As for the thermal color stability of bisphenol, the lower the number of Hazen colors, the better the thermal color stability of bisphenol. In addition to the mixing of organic coloring components and metals, the causes of deteriorating the thermal color stability of bisphenol include components that are colored by heating and acidic substances and basic substances having a concentration of about several ppm.
 ビスフェノールの熱色調安定性は、重合温度に近い温度でビスフェノールを溶融させ、予めその温度が安定した時間で測定する。ビスフェノールの熱色調安定性の保持時間は、4時間である。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。 The thermal color stability of bisphenol is measured in advance by melting bisphenol at a temperature close to the polymerization temperature and at a time when the temperature is stable. The retention time for thermal color stability of bisphenol is 4 hours. Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
 このハーゼン色数は、好ましくは50以下であり、より好ましくは45以下であり、特に好ましくは35以下である。 The number of Hazen colors is preferably 50 or less, more preferably 45 or less, and particularly preferably 35 or less.
<ビスフェノールの熱分解安定性>
 ビスフェノールの熱分解安定性は、ビスフェノールの熱色調安定性と同様、ポリカーボネートの重合温度に近い温度で所定の時間保持させ、ビスフェノールの熱安定性を評価することに用いられる。ビスフェノールの熱分解安定性の好ましい測定温度は、ビスフェノールの融点+50℃である。ビスフェノールの熱分解安定性は分解物の生成量が少ないほど、ビスフェノールが安定であることを示す。
<Pyrolysis stability of bisphenol>
Similar to the thermal color stability of bisphenol, the thermal decomposition stability of bisphenol is used to evaluate the thermal stability of bisphenol by holding it at a temperature close to the polymerization temperature of polycarbonate for a predetermined time. The preferred measurement temperature for the thermal decomposition stability of bisphenol is the melting point of bisphenol + 50 ° C. The thermal decomposition stability of bisphenol indicates that the smaller the amount of decomposition product produced, the more stable the bisphenol is.
 ビスフェノールの熱分解安定性における分解物は、ビスフェノールの種類にもよるが、該ビスフェノールの原料である芳香族アルコール、又は、該芳香族アルコールと原料であるケトン又はアルデヒドの付加物が挙げられる。ビスフェノールの熱分解安定性を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分やその濃度が数ppm程度の酸性物質や塩基性物質が挙げられる。 The decomposition product in the thermal decomposition stability of bisphenol includes an aromatic alcohol which is a raw material of the bisphenol, or an addition of a ketone or an aldehyde which is a raw material of the aromatic alcohol, although it depends on the type of the bisphenol. In addition to the mixing of organic coloring components and metals, the causes of deteriorating the thermal decomposition stability of bisphenol include components that are colored by heating and acidic substances and basic substances having a concentration of about several ppm.
 ビスフェノールの分解物の検出及び定量は、標準的な高速分析用逆相カラムを用いて、行うことが可能である。
 ビスフェノールの分解物として後述の実施例で測定されるイソプロペニルクレゾールの生成量は200質量ppm以下であることが好ましい。
Detection and quantification of bisphenol degradation products can be performed using standard reverse phase columns for fast analysis.
The amount of isopropenyl cresol produced as a decomposition product of bisphenol as measured in Examples described later is preferably 200 mass ppm or less.
 ビスフェノールのメタノール溶解色は、ビスフェノールそのものの色調を評価する方法である。ビスフェノールが最終製品である場合は、メタノール溶解色が良好なビスフェノールが重要である。ポリカーボネート樹脂は原料の色調を引き継ぐことから、無色透明性が求められるポリカーボネート樹脂では良好な色調のビスフェノールが重要である。 The methanol-dissolved color of bisphenol is a method for evaluating the color tone of bisphenol itself. When bisphenol is the final product, bisphenol with good methanol dissolution color is important. Since the polycarbonate resin inherits the color tone of the raw material, bisphenol having a good color tone is important for the polycarbonate resin that is required to be colorless and transparent.
 ポリカーボネート樹脂の製造方法の1つである溶融重合法においては、高温で重合反応を行うことから、溶融時のビスフェノールの色調(ビスフェノールの溶融色差)、溶融状態でのビスフェノールの色調安定性(ビスフェノールの熱色調安定性)が重要である。 In the melt polymerization method, which is one of the methods for producing a polycarbonate resin, since the polymerization reaction is carried out at a high temperature, the color tone of bisphenol at the time of melting (melt color difference of bisphenol) and the color tone stability of bisphenol in the molten state (of bisphenol). Thermal color stability) is important.
 更に、該溶融重合法において、高温でビスフェノールを溶融させた状態で重合反応開始まで保持させる。該溶融重合方法において、ビスフェノールが高温で分解する場合、炭酸ジフェニルとの物質量比が所定の物質量比から乖離し、重合反応活性や所定の分子量を持つポリカーボネート樹脂を得ることが困難となる。したがって、熱分解に対する耐性(ビスフェノールの熱分解安定性)が重要である。 Further, in the melt polymerization method, the bisphenol is kept melted at a high temperature until the start of the polymerization reaction. In the melt polymerization method, when bisphenol is decomposed at a high temperature, the substance amount ratio with diphenyl carbonate deviates from a predetermined substance amount ratio, and it becomes difficult to obtain a polycarbonate resin having polymerization reaction activity and a predetermined molecular weight. Therefore, resistance to thermal decomposition (thermal decomposition stability of bisphenol) is important.
 特に、所定の分子量を有し、色調の良いポリカーボネート樹脂を製造するためには、ビスフェノールのメタノール溶解色、ビスフェノールの溶融色差、ビスフェノールの熱色調安定性、ビスフェノールの熱分解安定性が重要となる。 In particular, in order to produce a polycarbonate resin having a predetermined molecular weight and having a good color tone, the methanol-dissolved color of bisphenol, the melt color difference of bisphenol, the thermal color stability of bisphenol, and the thermal decomposition stability of bisphenol are important.
[ビスフェノールの用途]
 本発明のビスフェノールは、光学材料、記録材料、絶縁材料、透明材料、電子材料、接着材料、耐熱材料など種々の用途に用いられるポリエーテル樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、アクリル樹脂など種々の熱可塑性樹脂や、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリベンゾオキサジン樹脂、シアネート樹脂など種々の熱硬化性樹脂などの構成成分、硬化剤、添加剤もしくはそれらの前駆体などとして用いることができる。本発明のビスフェノールは、感熱記録材料等の顕色剤や退色防止剤、殺菌剤、防菌防カビ剤等の添加剤としても有用である。
[Use of bisphenol]
The bisphenol of the present invention is a polyether resin, polyester resin, polyarylate resin, polycarbonate resin, polyurethane resin, which is used for various purposes such as optical materials, recording materials, insulating materials, transparent materials, electronic materials, adhesive materials, and heat resistant materials. Components, curing agents, additives or precursors thereof such as various thermoplastic resins such as acrylic resin, various thermocurable resins such as epoxy resin, unsaturated polyester resin, phenol resin, polybenzoxazine resin and cyanate resin. It can be used as such. The bisphenol of the present invention is also useful as an additive such as a color developer such as a heat-sensitive recording material, a fading inhibitor, a bactericide, and an antibacterial and antifungal agent.
 本発明のビスフェノールは、良好な機械物性を付与できることより、熱可塑性樹脂、熱硬化性樹脂の原料(モノマー)として用いることが好ましく、なかでもポリカーボネート樹脂、エポキシ樹脂の原料として用いることがより好ましい。本発明のビスフェノールは、顕色剤として用いることも好ましく、特にロイコ染料、変色温度調整剤と組み合わせて用いることがより好ましい。 The bisphenol of the present invention is preferably used as a raw material (monomer) for a thermoplastic resin or a thermosetting resin, and more preferably as a raw material for a polycarbonate resin or an epoxy resin, because it can impart good mechanical properties. The bisphenol of the present invention is also preferably used as a color developer, and more preferably used in combination with a leuco dye and a discoloration temperature adjuster.
[ポリカーボネート樹脂の製造方法]
 本発明のビスフェノールの用途として、ポリカーボネート樹脂の製造原料がある。
[Manufacturing method of polycarbonate resin]
The bisphenol of the present invention is used as a raw material for producing a polycarbonate resin.
 本発明のビスフェノールを用いたポリカーボネート樹脂の製造方法は、上述の方法により製造されたビスフェノールと、炭酸ジフェニル等とを、アルカリ金属化合物および/またはアルカリ土類金属化合物の存在下でエステル交換反応させる製造方法である。 The method for producing a polycarbonate resin using bisphenol of the present invention is a production in which a bisphenol produced by the above method and diphenyl carbonate or the like are subjected to a transesterification reaction in the presence of an alkali metal compound and / or an alkaline earth metal compound. The method.
 本発明のビスフェノールは、1種のみを用いてもよく、2種以上を用いて共重合ポリカーボネート樹脂を製造してもよい。本発明のビスフェノール以外のジヒドロキシ化合物を併用して反応させることもできる。 As the bisphenol of the present invention, only one kind may be used, or two or more kinds may be used to produce a copolymerized polycarbonate resin. Dihydroxy compounds other than the bisphenol of the present invention can also be used in combination for the reaction.
 上記エステル交換反応は、公知の方法を適宜選択して行うことができる。以下に本発明のビスフェノールと炭酸ジフェニルを原料とした一例を説明する。 The transesterification reaction can be carried out by appropriately selecting a known method. An example of using the bisphenol and diphenyl carbonate of the present invention as raw materials will be described below.
 上記のポリカーボネート樹脂の製造方法において、炭酸ジフェニルは、本発明のビスフェノールに対して過剰量用いることが好ましい。ビスフェノールに対して用いる炭酸ジフェニルの量は、製造されたポリカーボネート樹脂に末端水酸基が少なく、ポリマーの熱安定性に優れる点では多いことが好ましい。ビスフェノールに対して用いる炭酸ジフェニルの量は、エステル交換反応速度が速く、所望の分子量のポリカーボネート樹脂を製造し易い点では少ないことが好ましい。これらのことから、ビスフェノール1モルに対する使用する炭酸ジフェニルの量は、通常1.001モル以上、好ましくは1.002モル以上で、通常1.3モル以下、好ましくは1.2モル以下である。 In the above method for producing a polycarbonate resin, it is preferable to use an excess amount of diphenyl carbonate with respect to the bisphenol of the present invention. The amount of diphenyl carbonate used for bisphenol is preferably large in that the produced polycarbonate resin has few terminal hydroxyl groups and is excellent in thermal stability of the polymer. The amount of diphenyl carbonate used for bisphenol is preferably small in that the transesterification reaction rate is high and a polycarbonate resin having a desired molecular weight can be easily produced. From these facts, the amount of diphenyl carbonate used with respect to 1 mol of bisphenol is usually 1.001 mol or more, preferably 1.002 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less.
 原料の供給方法としては、本発明のビスフェノール及び炭酸ジフェニルを固体で供給することもできるが、一方又は両方を、溶融させて液体状態で供給することが好ましい。 As a raw material supply method, the bisphenol and diphenyl carbonate of the present invention can be supplied in solid form, but it is preferable to supply one or both of them in a liquid state by melting them.
 炭酸ジフェニルとビスフェノールとのエステル交換反応でポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。上記のポリカーボネート樹脂の製造方法においては、このエステル交換触媒として、アルカリ金属化合物及び/又はアルカリ土類金属化合物を使用するのが好ましい。これらは、1種類で使用してもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。実用的には、アルカリ金属化合物を用いることが望ましい。 When producing a polycarbonate resin by transesterification reaction between diphenyl carbonate and bisphenol, a transesterification catalyst is usually used. In the above method for producing a polycarbonate resin, it is preferable to use an alkali metal compound and / or an alkaline earth metal compound as the transesterification catalyst. These may be used alone or in combination of two or more in any combination and ratio. Practically, it is desirable to use an alkali metal compound.
 触媒の使用量は、ビスフェノールまたは炭酸ジフェニル1モルに対して、通常0.05μモル以上、好ましくは0.08μモル以上、さらに好ましくは0.10μモル以上で、通常100μモル以下、好ましくは50μモル以下、さらに好ましくは20μモル以下である。
 触媒の使用量が上記範囲内であることにより、所望の分子量のポリカーボネート樹脂を製造するのに必要な重合活性を得やすく、且つ、ポリマー色相に優れ、また過度のポリマーの分岐化が進まず、成型時の流動性に優れたポリカーボネート樹脂を得やすい。
The amount of the catalyst used is usually 0.05 μmol or more, preferably 0.08 μmol or more, more preferably 0.10 μmol or more, and usually 100 μmol or less, preferably 50 μmol, based on 1 mol of bisphenol or diphenyl carbonate. Below, it is more preferably 20 μmol or less.
When the amount of the catalyst used is within the above range, the polymerization activity required for producing a polycarbonate resin having a desired molecular weight can be easily obtained, the polymer hue is excellent, and excessive polymer branching does not proceed. It is easy to obtain a polycarbonate resin with excellent fluidity during molding.
 上記方法によりポリカーボネート樹脂を製造するには、上記の両原料を、原料混合槽に連続的に供給し、得られた混合物とエステル交換触媒を重合槽に連続的に供給することが好ましい。
 エステル交換法によるポリカーボネート樹脂の製造においては、通常、原料混合槽に供給された両原料は、均一に攪拌された後、エステル交換触媒が添加される重合槽に供給され、ポリマーが生産される。
In order to produce the polycarbonate resin by the above method, it is preferable that both of the above raw materials are continuously supplied to the raw material mixing tank, and the obtained mixture and the transesterification catalyst are continuously supplied to the polymerization tank.
In the production of the polycarbonate resin by the transesterification method, both raw materials supplied to the raw material mixing tank are usually stirred uniformly and then supplied to a polymerization tank to which a transesterification catalyst is added to produce a polymer.
 本発明のビスフェノールを用いたポリカーボネート樹脂の製造において、重合反応温度は80~400℃、特に150~350℃とすることが好ましい。重合時間は、原料の比率や、所望とするポリカーボネート樹脂の分子量等によって適宜調整される。重合時間が長いと色調悪化などの品質悪化が顕在化するため、10時間以下であることが好ましく、8時間以下であることがより好ましい。重合時間の下限は、通常0.1時間以上、或いは0.3時間以上である。 In the production of the polycarbonate resin using the bisphenol of the present invention, the polymerization reaction temperature is preferably 80 to 400 ° C, particularly 150 to 350 ° C. The polymerization time is appropriately adjusted depending on the ratio of raw materials, the desired molecular weight of the polycarbonate resin, and the like. If the polymerization time is long, quality deterioration such as color tone deterioration becomes apparent. Therefore, it is preferably 10 hours or less, and more preferably 8 hours or less. The lower limit of the polymerization time is usually 0.1 hours or more, or 0.3 hours or more.
 本発明のビスフェノールによれば、色相、透明性に優れたポリカーボネート樹脂を製造することができる。例えば、粘度平均分子量(Mv)10000以上、好ましくは15000以上で、100000以下、好ましくは35000以下で、ペレットYI10以下の色相、透明性に優れたポリカーボネート樹脂を短時間で製造することができる。 According to the bisphenol of the present invention, a polycarbonate resin having excellent hue and transparency can be produced. For example, a polycarbonate resin having a viscosity average molecular weight (Mv) of 10,000 or more, preferably 15,000 or more, 100,000 or less, preferably 35,000 or less, and a pellet YI of 10 or less and excellent hue and transparency can be produced in a short time.
[有機化合物の製造方法]
 本発明のビスフェノールの製造方法と同様に、前述のキレート処理工程及びアルカリ処理工程を経ることで、ビスフェノールだけでなく、分子内に下記式(I)で示される部分構造(以下、「部分構造(I)」と称す場合がある。)を含む、金属配位性の有機化合物(以下、「有機化合物(I)」と称す場合がある。)についても、当該有機化合物(I)中に混入している金属等の不純物を除去して高純度で高品質の有機化合物(I)を製造することができる。
[Method for producing organic compounds]
Similar to the method for producing bisphenol of the present invention, by undergoing the above-mentioned chelate treatment step and alkali treatment step, not only the bisphenol but also the partial structure represented by the following formula (I) in the molecule (hereinafter, "partial structure (hereinafter," partial structure (hereinafter, "partial structure") A metal-coordinating organic compound (hereinafter, may be referred to as “organic compound (I)”) including (may be referred to as “I)” is also mixed in the organic compound (I). It is possible to produce a high-purity and high-quality organic compound (I) by removing impurities such as metals.
 ここで、「金属配位性」とは、金属イオンに配位結合で結合して錯体を形成し得る化合物をさし、有機化合物(I)は部分構造(I)を有することで、金属イオンの配位子として機能する。 Here, "metal coordination" refers to a compound that can be bonded to a metal ion by a coordination bond to form a complex, and the organic compound (I) has a partial structure (I) to form a metal ion. Functions as a ligand for.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(I)中、XとYは同一又は異なる元素であり、3価の窒素、2価の酸素、3価のリン、及び2価の硫黄よりなる群から選ばれる元素である。XとYを繋ぐ線は、炭素鎖である。 In formula (I), X and Y are the same or different elements, and are elements selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur. The line connecting X and Y is a carbon chain.
 式(I)中のX,Yはそれぞれ更に3価の窒素、2価の酸素、3価のリン、及び2価の硫黄よりなる群から選ばれる元素を含む置換基を有していてもよい。
 「炭素鎖」とは、炭素原子同士が単結合、二重結合又は三重結合より連結される連結体をさし、直鎖状又は分岐状といった鎖状に限らず、環状構造を含むものであってもよく、これらの組み合せであってもよい。
Each of X and Y in the formula (I) may further have a substituent containing an element selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur. ..
The "carbon chain" refers to a link in which carbon atoms are connected by a single bond, a double bond, or a triple bond, and is not limited to a chain such as a linear or branched bond, but includes a cyclic structure. It may be a combination of these.
 有機化合物(I)は、部分構造(I)が金属イオンの配位子として機能する金属配位性の化合物である。このため、有機化合物(I)は、その製造工程において、触媒として用いた金属化合物や、製造過程で混入する不純物に起因して金属に配位した錯体化合物として反応生成物中に存在する場合が多い。
 金属を取り込んだ生成物は、有機化合物(I)の用途において、含有される金属に起因して着色、分解、変質等の不具合を生じる。
The organic compound (I) is a metal-coordinating compound in which the partial structure (I) functions as a ligand for a metal ion. Therefore, the organic compound (I) may be present in the reaction product as a metal compound used as a catalyst in the production process or as a complex compound coordinated to the metal due to impurities mixed in the production process. There are many.
In the use of the organic compound (I), the product incorporating the metal causes problems such as coloring, decomposition, and alteration due to the contained metal.
 前述の本発明のビスフェノールの製造方法の製造手順を、有機化合物(I)の製造に応用することで、有機化合物(I)から金属を効率的に除去して高純度で高品質な有機化合物(I)を製造することができる。 By applying the above-mentioned production procedure of the method for producing bisphenol of the present invention to the production of the organic compound (I), the metal is efficiently removed from the organic compound (I) to obtain a high-purity and high-quality organic compound ( I) can be manufactured.
 本発明の有機化合物の製造方法は、水相1’と、有機化合物(I)を含有する有機相1’との混合液1’の有機相1’と、キレート剤とを混合して、pH6以下の水相と有機相の混合液2’を得る工程と、得られた混合液2’と塩基とを混合して、pH8以上の水相と有機相との混合液3’を得る工程と、得られた混合液3’からpH8以上の水相を除去して、有機相3A’を得る工程とを含み、有機化合物(I)の混合液3’の有機相に対する溶解度が、混合液3’の水相に対する溶解度よりも高く、キレート剤の混合液3’の水相に対する溶解度が、混合液3’の有機相に対する溶解度よりも高いことを特徴とする。
 前述のビスフェノールの製造方法における「ビスフェノール」を「有機化合物(I)」に、「有機相1」を「有機相1’」に、「混合液2」を「混合液2’」に、「有機相3A」を「有機相3A’」にそれぞれ読み換えて、前述のビスフェノールの製造方法と同様に実施することができる。
In the method for producing an organic compound of the present invention, the organic phase 1'of the mixed solution 1'of the aqueous phase 1'and the organic phase 1'containing the organic compound (I) and the chelating agent are mixed and pH 6 The following steps of obtaining a mixed solution 2'of an aqueous phase and an organic phase, and a step of mixing the obtained mixed solution 2'and a base to obtain a mixed solution 3'of an aqueous phase having a pH of 8 or more and an organic phase. , The step of removing the aqueous phase having a pH of 8 or more from the obtained mixed solution 3'to obtain the organic phase 3A', and the solubility of the mixed solution 3'of the organic compound (I) in the organic phase of the mixed solution 3 is included. It is characterized in that the solubility of the chelating agent mixture 3'in the aqueous phase is higher than that of the mixture 3'in the organic phase.
In the above-mentioned method for producing bisphenol, "bisphenol" is changed to "organic compound (I)", "organic phase 1" is changed to "organic phase 1'", "mixed solution 2" is changed to "mixed solution 2'", and "organic". "Phase 3A" can be read as "organic phase 3A'", respectively, and can be carried out in the same manner as the above-mentioned method for producing bisphenol.
 本発明の有機化合物の製造方法が適用される有機化合物(I)としては、部分構造(I)として、X及び/又はYが、窒素元素であるアミド基、ヒドラジド基、イミド基、アミジン基、ニトリル基や、酸素元素であるアルコール基、フェノール基、エーテル基や、硫黄元素であるチオール基、スルフィド基を有するものが挙げられる。 As the organic compound (I) to which the method for producing an organic compound of the present invention is applied, as the partial structure (I), an amide group, a hydrazide group, an imide group, an amidin group in which X and / or Y are nitrogen elements, Examples thereof include those having a nitrile group, an alcohol group which is an oxygen element, a phenol group, an ether group, a thiol group which is a sulfur element, and a sulfide group.
 有機化合物(I)が前記キレート剤である場合は、有機化合物(I)と異なる前記キレート剤が選ばれる。例えば、以下の組み合わせが挙げられる。
 有機化合物(I)が前記カルボン酸の場合、キレート剤としては、前記β-ジケトン類又は前記ジオキシムが選ばれる。
 有機化合物(I)が前記β-ジケトン類の場合は、キレート剤としては、前記カルボン酸類又は前記ジオキシム類が選ばれる。
 有機化合物(I)が前記ジオキシムの場合、キレート剤としては、前記カルボン酸又はβ-ジケトン類が選ばれる。
When the organic compound (I) is the chelating agent, the chelating agent different from the organic compound (I) is selected. For example, the following combinations can be mentioned.
When the organic compound (I) is the carboxylic acid, the β-diketones or the dioxime are selected as the chelating agent.
When the organic compound (I) is the β-diketones, the carboxylic acids or the dioximes are selected as the chelating agent.
When the organic compound (I) is the dioxime, the carboxylic acid or β-diketone is selected as the chelating agent.
 有機化合物(I)としては、例えば以下のようなものが挙げられるが、本発明の有機化合物の製造方法が適用される有機化合物(I)は何ら以下のものに限定されるものではない。 Examples of the organic compound (I) include the following, but the organic compound (I) to which the method for producing an organic compound of the present invention is applied is not limited to any of the following.
<XとYが同一の有機化合物(I)>
 シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸などのジカルボン酸類
 オキサミド、マロン酸ジアミド、コハク酸ジアミド、グルタル酸ジアミド、アジピン酸ジアミド、ピメリン酸ジアミド、スベリン酸ジアミド、アゼライン酸ジアミド、セバシン酸ジアミド、フタル酸ジアミド、イソフタル酸ジアミド、テレフタル酸ジアミドなどのジアミド類
<Organic compound (I) with the same X and Y>
Dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, etc. Oxamide, malonic acid diamide, succinate diamide, glutaru Diamides such as acid diamide, adiponic acid diamide, pimelliate diamide, suberic acid diamide, azelaic acid diamide, sebacic acid diamide, phthalic acid diamide, isophthalic acid diamide, and terephthalic acid diamide.
 シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジドなどのジヒドラジド酸類
 ブタンジニトリル、ペンタンジニトリル、ヘキサンジニトリル、ヘプタンジニトリル、オクタンジニトリル、ノナンジニトリル、デカンジニトリルなどのジニトリル類
 ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネートなどのジイソシアン化物類
 エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、シクロプロパンジオール、シクロプロパンジメタノール、シクロブタンジオール、市シクロブタンジメタノール、シクロペンタンジオール、シクロペンタンジメタノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘプタンジオール、シクロヘプタンジメタノール、シクロオクタンジオール、シクロオクタンジメタノール、シクロノナンジオール、シクロノナンジメタノール、シクロデカンジオール、シクロデカンジメタノールなどのジアルコール類
Dihydrazide oxalate, dihydrazide malonic acid, dihydrazide succinate, dihydrazide glutarate, dihydrazide adipate, dihydrazide pimelliate, dihydrazide suberic acid, dihydrazide azelaine, dihydrazide sevacinate, dihydrazide phthalate, dihydrazide phthalate, dihydrazide phthalate Acids Dinitriles such as butanedinitrile, pentandinitrile, hexanedinitrile, heptanedinitrile, octanedinitrile, nonandinitrile, decandinitrile Dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene Diisocyanides such as diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, etc. ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclo Propanediol, cyclopropanedimethanol, cyclobutanediol, city cyclobutanedimethanol, cyclopentanediol, cyclopentanedimethanol, cyclohexanediol, cyclohexanedimethanol, cycloheptanediol, cycloheptanedimethanol, cyclooctanediol, cyclooctanedimethanol, Dialcohols such as cyclononanediol, cyclononandimethanol, cyclodecanediol, cyclodecanedimethanol
 ビフェノール、ジメチルビフェノール、テトラメチルビフェノールなどのビフェノール類
 エチレンジアミン、プロピレンジアミン、ブテンジアミン、ペンテンジアミン、ヘキセンジアミン、ヘプテンジアミン、オクテンジアミン、ノネンジアミン、デセンジアミン、ベンゼンジアミンなどのジアミン類
 エタンジイミン、プロパンジイミン、ブタンジイミン、ペンタンジイミン、ヘキサンジイミン、ヘプタンジイミン、オクタンジイミン、ノナンジイミン、デカンジイミンなどのジイミン類
Biphenols such as biphenol, dimethylbiphenol, tetramethylbiphenol Diamines such as ethylenediamine, propylenediamine, butenediamine, pentendiamine, hexenediamine, heptenediamine, octenediamine, nonenediamine, decenediamine, benzenediamine, etc. Diamines such as pentanediamine, hexanediamine, heptanediamine, octanediamine, nonandidiimin, decanediamine
 エチレンジヒドラジン、プロピレンジヒドラジン、ブテンジヒドラジン、ペンテンジヒドラジン、ヘキセンジヒドラジン、ヘプテンジヒドラジン、オクテンジヒドラジン、ノネンジヒドラジン、デセンジヒドラジン、ベンゼンジヒドラジンなどのジヒドラジン類
 ジメトキシメタン、ジメトキシエタン、ジメトキシプロパン、ジメトキシブタン、ジメトキシペンタン、ジメトキシヘキサン、ジメトキシヘプタン、ジメトキシオクタン、ジメトキシノナン、ジメトキシデカン、ジメトキシベンゼン、ジエトキシメタン、ジエトキシエタン、ジエトキシプロパン、ジエトキシブタン、ジエトキシペンタン、ジエトキシヘキサン、ジエトキシヘプタン、ジエトキシオクタン、ジエトキシノナン、ジエトキシデカン、ジエトキシベンゼン、ジプロポキシメタン、ジプロポキシエタン、ジプロポキシプロパン、ジプロポキシブタン、ジプロポキシペンタン、ジプロポキシヘキサン、ジプロポキシヘプタン、ジプロポキシオクタン、ジプロポキシノナン、ジプロポキシデカン、ジプロポキシベンゼンなどのジエーテル類
Dihydrazines such as ethylenedihydrazine, propylene dihydrazine, butenedihydrazine, pentendihydrazine, hexenedihydrazine, heptendihydrazine, octendihydrazine, nonanedihydrazine, decenedihydrazine, benzenedihydrazine, dimethoxymethane, dimethoxyethane, Dimethoxypropane, dimethoxybutane, dimethoxypentane, dimethoxyhexane, dimethoxyheptane, dimethoxyoctane, dimethoxynonane, dimethoxydecane, dimethoxybenzene, diethoxymethane, diethoxyethane, diethoxypropane, diethoxybutane, diethoxypentane, diethoxyhexane , Diethoxyheptane, diethoxyoctane, diethoxynonane, diethoxydecane, diethoxybenzene, dipropoxymethane, dipropoxyetane, dipropoxypropane, dipropoxybutane, dipropoxypentane, dipropoxyhexane, dipropoxyheptan, dipropoxyheptan Diethers such as propoxyoctane, dipropoxynonane, dipropoxydecane, dipropoxybenzene
 ジメチルチオメタン、ジメチルチオエタン、ジメチルチオプロパン、ジメチルチオブタン、ジメチルチオペンタン、ジメチルチオヘキサン、ジメチルチオヘプタン、ジメチルチオオクタン、ジメチルチオノナン、ジメチルチオデカン、ジメチルチオベンゼン、ジエチルチオメタン、ジエチルチオエタン、ジエチルチオプロパン、ジエチルチオブタン、ジエチルチオペンタン、ジエチルチオヘキサン、ジエチルチオヘプタン、ジエチルチオオクタン、ジエチルチオノナン、ジエチルチオデカン、ジエチルチオベンゼン、ジプロピルチオメタン、ジプロピルチオエタン、ジプロピルチオプロパン、ジプロピルチオブタン、ジプロピルチオペンタン、ジプロピルチオヘキサン、ジプロピルチオヘプタン、ジプロピルチオオクタン、ジプロピルチオノナン、ジプロピルチオデカン、ジプロピルチオベンゼンなどのジスルフィド類 Dimethylthiomethane, dimethylthioethane, dimethylthiopropane, dimethylthiobutane, dimethylthiopentane, dimethylthiohexane, dimethylthioheptan, dimethylthiooctane, dimethylthiononane, dimethylthiodecane, dimethylthiobenzene, diethylthiomethane, diethylthio Etan, diethylthiopropane, diethylthiobutane, diethylthiopentane, diethylthiohexane, diethylthioheptane, diethylthiooctane, diethylthiononane, diethylthiodecane, diethylthiobenzene, dipropylthiomethane, dipropylthioethane, dipropyl Disulfides such as thiopropane, dipropylthiobutane, dipropylthiopentane, dipropylthiohexane, dipropylthioheptan, dipropylthiooctane, dipropylthiononane, dipropylthiodecane, dipropylthiobenzene
<XとYが異なる有機化合物(I)>
 メチンニトリルイソシアネート、エチレンニトリルイソシアネート、プロピレンニトリルイソシアネート、ブテンニトリルイソシアネート、ペンテンニトリルイソシアネート、ヘキセンニトリルイソシアネート、ヘプテンニトリルイソシアネート、オクテンニトリルイソシアネート、ノネンニトリルイソシアネート、デセンニトリルイソシアネート、ベンゼンニトリルイソシアネートなどのニトリルイソシアネート類
<Organic compound (I) with different X and Y>
Nitrile isocyanates such as methine nitrile isocyanate, ethylene nitrile isocyanate, propylene nitrile isocyanate, butene nitrile isocyanate, penten nitrile isocyanate, hexene nitrile isocyanate, heptene nitrile isocyanate, octene nitrile isocyanate, nonen nitrile isocyanate, decene nitrile isocyanate, and benzene nitrile isocyanate.
 ヒドロキシメチルニトリル、ヒドロキシエチルニトリル、ヒドロキシプロピルニトリル、ヒドロキシブチルニトリル、ヒドロキシペンチルニトリル、ヒドロキシヘキシルニトリル、ヒドロキシへプチルニトリル、ヒドロキシオクチルニトリル、ヒドロキシノニルニトリル、ヒドロキシデシルニトリル、ヒドロキシフェニルニトリルなどのヒドロキシニトリル類 Hydroxynitriles such as hydroxymethylnitrile, hydroxyethylnitrile, hydroxypropylnitrile, hydroxybutylnitrile, hydroxypentylnitrile, hydroxyhexylnitrile, hydroxyheptylnitrile, hydroxyoctylnitrile, hydroxynonylnitrile, hydroxydecylnitrile, and hydroxyphenylnitrile
 ヒドロキシフェニルメチルニトリル、ヒドロキシフェニルエチルニトリル、ヒドロキシフェニルプロピルニトリル、ヒドロキシフェニルブチルニトリル、ヒドロキシフェニルペンチルニトリル、ヒドロキシフェニルヘキシルニトリル、ヒドロキシフェニルへプチルニトリル、ヒドロキシフェニルオクチルニトリル、ヒドロキシフェニルノニルニトリル、ヒドロキシフェニルデシルニトリル、ヒドロキシフェニルフェニルニトリルなどのヒドロキシフェニルニトリル類 Hydroxyphenylmethylnitrile, hydroxyphenylethylnitrile, hydroxyphenylpropylnitrile, hydroxyphenylbutylnitrile, hydroxyphenylpentylnitrile, hydroxyphenylhexylnitrile, hydroxyphenylheptylnitrile, hydroxyphenyloctylnitrile, hydroxyphenylnonylnitrile, hydroxyphenyldecylnitrile , Hydroxyphenylnitriles such as hydroxyphenylphenylnitriles
 アミノメチルニトリル、アミノエチルニトリル、アミノプロピルニトリル、アミノブチルニトリル、アミノペンチルニトリル、アミノヘキシルニトリル、アミノへプチルニトリル、アミノオクチルニトリル、アミノノニルニトリル、アミノデシルニトリル、アミノフェニルニトリルなどのアミノニトリル類 Aminonitriles such as aminomethylnitrile, aminoethylnitrile, aminopropylnitrile, aminobutylnitrile, aminopentylnitrile, aminohexylnitrile, aminoheptylnitrile, aminooctylnitrile, aminononylnitrile, aminodecylnitrile, aminophenylnitrile
 イミノメチルニトリル、イミノエチルニトリル、イミノプロピルニトリル、イミノブチルニトリル、イミノペンチルニトリル、イミノヘキシルニトリル、イミノへプチルニトリル、イミノオクチルニトリル、イミノノニルニトリル、イミノデシルニトリル、イミノフェニルニトリルなどのイミノニトリル類 Iminonitriles such as iminomethylnitrile, iminoethylnitrile, iminopropylnitrile, iminobutylnitrile, iminopentylnitrile, iminohexylnitrile, iminoheptylnitrile, iminooctylnitrile, iminononylnitrile, iminodecylnitrile, iminophenylnitrile
 メチンニトリルヒドラジン、エチレンニトリルヒドラジン、プロピレンニトリルヒドラジン、ブテンニトリルヒドラジン、ペンテンニトリルヒドラジン、ヘキセンニトリルヒドラジン、ヘプテンニトリルヒドラジン、オクテンニトリルヒドラジン、ノネンニトリルヒドラジン、デセンニトリルヒドラジン、ベンゼンニトリルヒドラジンなどのニトリルヒドラジン類 Nitrile hydrazines such as methinenitrile hydrazine, ethylenenitrile hydrazine, propylenenitrile hydrazine, butenenitrile hydrazine, pentennitrile hydrazine, hexenenitrile hydrazine, heptenenitrile hydrazine, octenenitrile hydrazine, nonennitrile hydrazine, decenenitrile hydrazine, benzenenitrile hydrazine.
 メトキシメチルニトリル、メトキシエチルニトリル、メトキシプロピルニトリル、メトキシブチルニトリル、メトキシペンチルニトリル、メトキシヘキシルニトリル、メトキシへプチルニトリル、メトキシオクチルニトリル、メトキシノニルニトリル、メトキシデシルニトリル、メトキシフェニルニトリル、エトキシメチルニトリル、エトキシエチルニトリル、エトキシプロピルニトリル、エトキシブチルニトリル、エトキシペンチルニトリル、エトキシヘキシルニトリル、エトキシへプチルニトリル、エトキシオクチルニトリル、エトキシノニルニトリル、エトキシデシルニトリル、エトキシフェニルニトリル、プロポキシメチルニトリル、プロポキシエチルニトリル、プロポキシプロピルニトリル、プロポキシブチルニトリル、プロポキシペンチルニトリル、プロポキシヘキシルニトリル、プロポキシへプチルニトリル、プロポキシオクチルニトリル、プロポキシノニルニトリル、プロポキシデシルニトリル、プロポキシフェニルニトリルなどのアルコキシニトリル類 Methoxymethylnitrile, methoxyethylnitrile, methoxypropylnitrile, methoxybutylnitrile, methoxypentylnitrile, methoxyhexylnitrile, methoxyheptylnitrile, methoxyoctylnitrile, methoxynonylnitrile, methoxydecylnitrile, methoxyphenylnitrile, ethoxymethylnitrile, ethoxy Ethylnitrile, ethoxypropylnitrile, ethoxybutylnitrile, ethoxypentylnitrile, ethoxyhexylnitrile, ethoxyheptylnitrile, ethoxyoctylnitrile, ethoxynonylnitrile, ethoxydecylnitrile, ethoxyphenylnitrile, propoxymethylnitrile, propoxyethylnitrile, propoxypropyl Alkoxynitriles such as nitriles, propoxybutyl nitriles, propoxypentyl nitriles, propoxyhexyl nitriles, propoxyheptyl nitriles, propoxyoctyl nitriles, propoxynonyl nitriles, propoxydecyl nitriles, propoxyphenyl nitriles.
 メチンニトリルスルフィド、エチレンニトリルスルフィド、プロピレンニトリルスルフィド、ブテンニトリルスルフィド、ペンテンニトリルスルフィド、ヘキセンニトリルスルフィド、ヘプテンニトリルスルフィド、オクテンニトリルスルフィド、ノネンニトリルスルフィド、デセンニトリルスルフィド、ベンゼンニトリルスルフィドなどのニトリルスルフィド類 Nitrile sulfides such as methine nitrile sulfide, ethylene nitrile sulfide, propylene nitrile sulfide, butene nitrile sulfide, penten nitrile sulfide, hexene nitrile sulfide, heptene nitrile sulfide, octene nitrile sulfide, nonen nitrile sulfide, decene nitrile sulfide, and benzene nitrile sulfide.
 ヒドロキシメチルイソシアネート、ヒドロキシエチルイソシアネート、ヒドロキシプロピルイソシアネート、ヒドロキシブチルイソシアネート、ヒドロキシペンチルイソシアネート、ヒドロキシヘキシルイソシアネート、ヒドロキシへプチルイソシアネート、ヒドロキシオクチルイソシアネート、ヒドロキシノニルイソシアネート、ヒドロキシデシルイソシアネート、ヒドロキシフェニルイソシアネートなどのヒドロキシイソシアネート類 Hydroxy isocyanates such as hydroxymethyl isocyanate, hydroxyethyl isocyanate, hydroxypropyl isocyanate, hydroxybutyl isocyanate, hydroxypentyl isocyanate, hydroxyhexyl isocyanate, hydroxyheptyl isocyanate, hydroxyoctyl isocyanate, hydroxynonyl isocyanate, hydroxydecyl isocyanate, hydroxyphenyl isocyanate, etc.
 ヒドロキシフェニルメチルイソシアネート、ヒドロキシフェニルエチルイソシアネート、ヒドロキシフェニルプロピルイソシアネート、ヒドロキシフェニルブチルイソシアネート、ヒドロキシフェニルペンチルイソシアネート、ヒドロキシフェニルヘキシルイソシアネート、ヒドロキシフェニルへプチルイソシアネート、ヒドロキシフェニルオクチルイソシアネート、ヒドロキシフェニルノニルイソシアネート、ヒドロキシフェニルデシルイソシアネート、ヒドロキシフェニルフェニルイソシアネートなどのヒドロキシフェニルイソシアネート類 Hydroxyphenylmethyl isocyanate, hydroxyphenylethyl isocyanate, hydroxyphenylpropyl isocyanate, hydroxyphenylbutyl isocyanate, hydroxyphenylpentyl isocyanate, hydroxyphenylhexyl isocyanate, hydroxyphenyl heptyl isocyanate, hydroxyphenyloctyl isocyanate, hydroxyphenylnonyl isocyanate, hydroxyphenyldecyl isocyanate , Hydroxyphenyl isocyanates such as hydroxyphenyl phenyl isocyanate
 アミノメチルイソシアネート、アミノエチルイソシアネート、アミノプロピルイソシアネート、アミノブチルイソシアネート、アミノペンチルイソシアネート、アミノヘキシルイソシアネート、アミノへプチルイソシアネート、アミノオクチルイソシアネート、アミノノニルイソシアネート、アミノデシルイソシアネート、アミノフェニルイソシアネートなどのアミノイソシアネート類 Amino isocyanates such as aminomethyl isocyanate, aminoethyl isocyanate, aminopropyl isocyanate, aminobutyl isocyanate, aminopentyl isocyanate, aminohexyl isocyanate, aminoheptyl isocyanate, aminooctyl isocyanate, aminononyl isocyanate, aminodecyl isocyanate, aminophenylisocyanate, etc.
 イミノメチルイソシアネート、イミノエチルイソシアネート、イミノプロピルイソシアネート、イミノブチルイソシアネート、イミノペンチルイソシアネート、イミノヘキシルイソシアネート、イミノへプチルイソシアネート、イミノオクチルイソシアネート、イミノノニルイソシアネート、イミノデシルイソシアネート、イミノフェニルイソシアネートなどのイミノイソシアネート類 Iminomethyl isocyanate, iminoethyl isocyanate, iminopropyl isocyanate, iminobutyl isocyanate, iminopentyl isocyanate, iminohexyl isocyanate, iminoheptyl isocyanate, iminooctyl isocyanate, iminononyl isocyanate, iminodecyl isocyanate, iminophenyl isocyanate and other iminoisocyanates
 メチンイソシアネートヒドラジン、エチレンイソシアネートヒドラジン、プロピレンイソシアネートヒドラジン、ブテンイソシアネートヒドラジン、ペンテンイソシアネートヒドラジン、ヘキセンイソシアネートヒドラジン、ヘプテンイソシアネートヒドラジン、オクテンイソシアネートヒドラジン、ノネンイソシアネートヒドラジン、デセンイソシアネートヒドラジン、ベンゼンイソシアネートヒドラジンなどのイソシアネートヒドラジン類 Ethine isocyanate hydrazine, ethylene isocyanate hydrazine, propylene isocyanate hydrazine, butene isocyanate hydrazine, penten isocyanate hydrazine, hexene isocyanate hydrazine, heptene isocyanate hydrazine, octene isocyanate hydrazine, nonen isocyanate hydrazine, decene isocyanate hydrazine, benzeneisocyanide hydrazine and other isocyanate hydrazines.
 メトキシメチルイソシアネート、メトキシエチルイソシアネート、メトキシプロピルイソシアネート、メトキシブチルイソシアネート、メトキシペンチルイソシアネート、メトキシヘキシルイソシアネート、メトキシへプチルイソシアネート、メトキシオクチルイソシアネート、メトキシノニルイソシアネート、メトキシデシルイソシアネート、メトキシフェニルイソシアネート、エトキシメチルイソシアネート、エトキシエチルイソシアネート、エトキシプロピルイソシアネート、エトキシブチルイソシアネート、エトキシペンチルイソシアネート、エトキシヘキシルイソシアネート、エトキシへプチルイソシアネート、エトキシオクチルイソシアネート、エトキシノニルイソシアネート、エトキシデシルイソシアネート、エトキシフェニルイソシアネート、プロポキシメチルイソシアネート、プロポキシエチルイソシアネート、プロポキシプロピルイソシアネート、プロポキシブチルイソシアネート、プロポキシペンチルイソシアネート、プロポキシヘキシルイソシアネート、プロポキシへプチルイソシアネート、プロポキシオクチルイソシアネート、プロポキシノニルイソシアネート、プロポキシデシルイソシアネート、プロポキシフェニルイソシアネートなどのアルコキシイソシアネート類 Methoxymethyl isocyanate, methoxyethyl isocyanate, methoxypropyl isocyanate, methoxybutyl isocyanate, methoxypentyl isocyanate, methoxyhexyl isocyanate, methoxyheptyl isocyanate, methoxyoctyl isocyanate, methoxynonyl isocyanate, methoxydecyl isocyanate, methoxyphenyl isocyanate, ethoxymethylisocyanate, ethoxy Ethyl isocyanate, ethoxypropyl isocyanate, ethoxybutyl isocyanate, ethoxypentyl isocyanate, ethoxyhexyl isocyanate, ethoxyheptyl isocyanate, ethoxyoctyl isocyanate, ethoxynonyl isocyanate, ethoxydecyl isocyanate, ethoxyphenyl isocyanate, propoxymethyl isocyanate, propoxyethyl isocyanate, propoxypropyl Alkoxy isocyanates such as isocyanate, propoxybutyl isocyanate, propoxypentyl isocyanate, propoxyhexyl isocyanate, propoxyheptyl isocyanate, propoxyoctyl isocyanate, propoxynonyl isocyanate, propoxydecyl isocyanate, propoxyphenyl isocyanate
 メチンイソシアネートスルフィド、エチレンイソシアネートスルフィド、プロピレンイソシアネートスルフィド、ブテンイソシアネートスルフィド、ペンテンイソシアネートスルフィド、ヘキセンイソシアネートスルフィド、ヘプテンイソシアネートスルフィド、オクテンイソシアネートスルフィド、ノネンイソシアネートスルフィド、デセンイソシアネートスルフィド、ベンゼンイソシアネートスルフィドなどのイソシアネートスルフィド類 Silica sulfides such as methine isocyanate sulfide, ethylene isocyanate sulfide, propylene isocyanate sulfide, butene isocyanate sulfide, penten isocyanate sulfide, hexene isocyanate sulfide, heptene isocyanate sulfide, octene isocyanate sulfide, nonene isocyanate sulfide, decene isocyanate sulfide, and benzene isocyanate sulfide.
 ヒドロキシメチルフェノール、ヒドロキシエチルフェノール、ヒドロキシプロピルフェノール、ヒドロキシブチルフェノール、ヒドロキシペンチルフェノール、ヒドロキシヘキシルフェノール、ヒドロキシヘプチルフェノール、ヒドロキシオクチルフェノール、ヒドロキシノニルフェノール、ヒドロキシデシルフェノールなどのヒドロキシアルキルフェノール類 Hydroxyalkylphenols such as hydroxymethylphenol, hydroxyethylphenol, hydroxypropylphenol, hydroxybutylphenol, hydroxypentylphenol, hydroxyhexylphenol, hydroxyheptylphenol, hydroxyoctylphenol, hydroxynonylphenol, hydroxydecylphenol
 ヒドロキシメチルアミン、ヒドロキシエチルアミン、ヒドロキシプロピルアミン、ヒドロキシブチルアミン、ヒドロキシペンチルアミン、ヒドロキシヘキシルアミン、ヒドロキシヘプチルアミン、ヒドロキシオクチルアミン、ヒドロキシノニルアミン、ヒドロキシデシルアミンなどのヒドロキシアルキルアミン類 Hydroxyalkylamines such as hydroxymethylamine, hydroxyethylamine, hydroxypropylamine, hydroxybutylamine, hydroxypentylamine, hydroxyhexylamine, hydroxyheptylamine, hydroxyoctylamine, hydroxynonylamine, hydroxydecylamine, etc.
 ヒドロキシメチルイミン、ヒドロキシエチルイミン、ヒドロキシプロピルイミン、ヒドロキシブチルイミン、ヒドロキシペンチルイミン、ヒドロキシヘキシルイミン、ヒドロキシヘプチルイミン、ヒドロキシオクチルイミン、ヒドロキシノニルイミン、ヒドロキシデシルイミンなどのヒドロキシアルキルイミン類 Hydroxyalkylimines such as hydroxymethylimine, hydroxyethylimine, hydroxypropylimine, hydroxybutylimine, hydroxypentylimine, hydroxyhexyluimine, hydroxyheptylimine, hydroxyoctylimine, hydroxynonylimine, hydroxydecylimine, etc.
 ヒドロキシメチルヒドラジン、ヒドロキシエチルヒドラジン、ヒドロキシプロピルヒドラジン、ヒドロキシブチルヒドラジン、ヒドロキシペンチルヒドラジン、ヒドロキシヘキシルヒドラジン、ヒドロキシヘプチルヒドラジン、ヒドロキシオクチルヒドラジン、ヒドロキシノニルヒドラジン、ヒドロキシデシルヒドラジンなどのヒドロキシアルキルヒドラジン類 Hydroxyalkyl hydrazines such as hydroxymethyl hydrazine, hydroxyethyl hydrazine, hydroxypropyl hydrazine, hydroxybutyl hydrazine, hydroxypentyl hydrazine, hydroxyhexyl hydrazine, hydroxyheptyl hydrazine, hydroxyoctyl hydrazine, hydroxynonyl hydrazine, hydroxydecyl hydrazine
 メトキシメチルアルコール、メトキシエチルアルコール、メトキシプロピルアルコール、メトキシブチルアルコール、メトキシペンチルアルコール、メトキシヘキシルアルコール、メトキシへプチルアルコール、メトキシオクチルアルコール、メトキシノニルアルコール、メトキシデシルアルコール、メトキシフェニルアルコール、エトキシメチルアルコール、エトキシエチルアルコール、エトキシプロピルアルコール、エトキシブチルアルコール、エトキシペンチルアルコール、エトキシヘキシルアルコール、エトキシへプチルアルコール、エトキシオクチルアルコール、エトキシノニルアルコール、エトキシデシルアルコール、エトキシフェニルアルコール、プロポキシメチルアルコール、プロポキシエチルアルコール、プロポキシプロピルアルコール、プロポキシブチルアルコール、プロポキシペンチルアルコール、プロポキシヘキシルアルコール、プロポキシへプチルアルコール、プロポキシオクチルアルコール、プロポキシノニルアルコール、プロポキシデシルアルコール、プロポキシフェニルアルコールなどのアルコキシアルコール類 Methoxymethyl alcohol, methoxyethyl alcohol, methoxypropyl alcohol, methoxybutyl alcohol, methoxypentyl alcohol, methoxyhexyl alcohol, methoxyheptyl alcohol, methoxyoctyl alcohol, methoxynonyl alcohol, methoxydecyl alcohol, methoxyphenyl alcohol, ethoxymethyl alcohol, ethoxy Ethyl alcohol, ethoxypropyl alcohol, ethoxybutyl alcohol, ethoxypentyl alcohol, ethoxyhexyl alcohol, ethoxyheptyl alcohol, ethoxyoctyl alcohol, ethoxynonyl alcohol, ethoxydecyl alcohol, ethoxyphenyl alcohol, propoxymethyl alcohol, propoxyethyl alcohol, propoxypropyl Alcohols such as alcohol, propoxybutyl alcohol, propoxypentyl alcohol, propoxyhexyl alcohol, propoxyheptyl alcohol, propoxyoctyl alcohol, propoxynonyl alcohol, propoxydecyl alcohol, propoxyphenyl alcohol
 ヒドロキシメチルスルフィド、ヒドロキシエチルスルフィド、ヒドロキシプロピルスルフィド、ヒドロキシブチルスルフィド、ヒドロキシペンチルスルフィド、ヒドロキシヘキシルスルフィド、ヒドロキシヘプチルスルフィド、ヒドロキシオクチルスルフィド、ヒドロキシノニルスルフィド、ヒドロキシデシルスルフィドなどのヒドロキシアルキルスルフィド類 Hydroxyalkyl sulfides such as hydroxymethyl sulfide, hydroxyethyl sulfide, hydroxypropyl sulfide, hydroxybutyl sulfide, hydroxypentyl sulfide, hydroxyhexyl sulfide, hydroxyheptyl sulfide, hydroxyoctyl sulfide, hydroxynonyl sulfide, and hydroxydecyl sulfide.
 ヒドロキシフェニルメチルアミン、ヒドロキシフェニルエチルアミン、ヒドロキシフェニルプロピルアミン、ヒドロキシフェニルブチルアミン、ヒドロキシフェニルペンチルアミン、ヒドロキシフェニルヘキシルアミン、ヒドロキシフェニルへプチルアミン、ヒドロキシフェニルオクチルアミン、ヒドロキシフェニルノニルアミン、ヒドロキシフェニルデシルアミン、ヒドロキシフェニルフェニルアミンなどのヒドロキシフェニルアミン類 Hydroxyphenylmethylamine, hydroxyphenylethylamine, hydroxyphenylpropylamine, hydroxyphenylbutylamine, hydroxyphenylpentylamine, hydroxyphenylhexylamine, hydroxyphenylheptylamine, hydroxyphenyloctylamine, hydroxyphenylnonylamine, hydroxyphenyldecylamine, hydroxyphenylphenyl Hydroxyphenylamines such as amines
 ヒドロキシフェニルメチルイミン、ヒドロキシフェニルエチルイミン、ヒドロキシフェニルプロピルイミン、ヒドロキシフェニルブチルイミン、ヒドロキシフェニルペンチルイミン、ヒドロキシフェニルヘキシルイミン、ヒドロキシフェニルへプチルイミン、ヒドロキシフェニルオクチルイミン、ヒドロキシフェニルノニルイミン、ヒドロキシフェニルデシルイミン、ヒドロキシフェニルフェニルイミンなどのヒドロキシフェニルイミン類 Hydroxyphenylmethylimine, hydroxyphenylethylimine, hydroxyphenylpropylimine, hydroxyphenylbutylimine, hydroxyphenylpentylimine, hydroxyphenylhexyluimine, hydroxyphenylheptylimine, hydroxyphenyloctylimine, hydroxyphenylnonylimine, hydroxyphenyldecylimine, Hydroxyphenylimines such as hydroxyphenylphenylimines
 ヒドロキシフェニルメチルヒドラジン、ヒドロキシフェニルエチルヒドラジン、ヒドロキシフェニルプロピルヒドラジン、ヒドロキシフェニルブチルヒドラジン、ヒドロキシフェニルペンチルヒドラジン、ヒドロキシフェニルヘキシルヒドラジン、ヒドロキシフェニルへプチルヒドラジン、ヒドロキシフェニルオクチルヒドラジン、ヒドロキシフェニルノニルヒドラジン、ヒドロキシフェニルデシルヒドラジン、ヒドロキシフェニルフェニルヒドラジンなどのヒドロキシフェニルヒドラジン類 Hydroxyphenylmethylhydrazine, hydroxyphenylethylhydrazine, hydroxyphenylpropylhydrazine, hydroxyphenylbutylhydrazine, hydroxyphenylpentylhydrazine, hydroxyphenylhexylhydrazine, hydroxyphenylheptylhydrazine, hydroxyphenyloctylhydrazine, hydroxyphenylnonylhydrazine, hydroxyphenyldecylhydrazine , Hydroxyphenylhydrazines such as hydroxyphenylphenylhydrazine
 メトキシメチルフェノール、メトキシエチルフェノール、メトキシプロピルフェノール、メトキシブチルフェノール、メトキシペンチルフェノール、メトキシヘキシルフェノール、メトキシへプチルフェノール、メトキシオクチルフェノール、メトキシノニルフェノール、メトキシデシルフェノール、メトキシフェニルフェノール、エトキシメチルフェノール、エトキシエチルフェノール、エトキシプロピルフェノール、エトキシブチルフェノール、エトキシペンチルフェノール、エトキシヘキシルフェノール、エトキシへプチルフェノール、エトキシオクチルフェノール、エトキシノニルフェノール、エトキシデシルフェノール、エトキシフェニルフェノール、プロポキシメチルフェノール、プロポキシエチルフェノール、プロポキシプロピルフェノール、プロポキシブチルフェノール、プロポキシペンチルフェノール、プロポキシヘキシルフェノール、プロポキシへプチルフェノール、プロポキシオクチルフェノール、プロポキシノニルフェノール、プロポキシデシルフェノール、プロポキシフェニルフェノールなどのアルコキシフェノール類 Methoxymethylphenol, methoxyethylphenol, methoxypropylphenol, methoxybutylphenol, methoxypentylphenol, methoxyhexylphenol, methoxyheptylphenol, methoxyoctylphenol, methoxynonylphenol, methoxydecylphenol, methoxyphenylphenol, ethoxymethylphenol, ethoxyethylphenol, Ethoxypropylphenol, ethoxybutylphenol, ethoxypentylphenol, ethoxyhexylphenol, ethoxyheptylphenol, ethoxyoctylphenol, ethoxynonylphenol, ethoxydecylphenol, ethoxyphenylphenol, propoxymethylphenol, propoxyethylphenol, propoxypropylphenol, propoxybutylphenol, propoxy Alkoxyphenols such as pentylphenol, propoxyhexylphenol, propoxyheptylphenol, propoxyoctylphenol, propoxynonylphenol, propoxydecylphenol, propoxyphenylphenol
 ヒドロキシフェニルメチルスルフィド、ヒドロキシフェニルエチルスルフィド、ヒドロキシフェニルプロピルスルフィド、ヒドロキシフェニルブチルスルフィド、ヒドロキシフェニルペンチルスルフィド、ヒドロキシフェニルヘキシルスルフィド、ヒドロキシフェニルへプチルスルフィド、ヒドロキシフェニルオクチルスルフィド、ヒドロキシフェニルノニルスルフィド、ヒドロキシフェニルデシルスルフィド、ヒドロキシフェニルフェニルスルフィドなどのヒドロキシフェニルスルフィド類 Hydroxyphenyl methyl sulfide, hydroxyphenyl ethyl sulfide, hydroxyphenyl propyl sulfide, hydroxyphenyl butyl sulfide, hydroxyphenyl pentyl sulfide, hydroxyphenyl hexyl sulfide, hydroxyphenyl heptyl sulfide, hydroxyphenyl octyl sulfide, hydroxyphenyl nonyl sulfide, hydroxyphenyl decyl sulfide. , Hydroxyphenyl sulfides such as hydroxyphenyl phenyl sulfide
 メトキシメチルアミン、メトキシエチルアミン、メトキシプロピルアミン、メトキシブチルアミン、メトキシペンチルアミン、メトキシヘキシルアミン、メトキシへプチルアミン、メトキシオクチルアミン、メトキシノニルアミン、メトキシデシルアミン、メトキシフェニルアミン、エトキシメチルアミン、エトキシエチルアミン、エトキシプロピルアミン、エトキシブチルアミン、エトキシペンチルアミン、エトキシヘキシルアミン、エトキシへプチルアミン、エトキシオクチルアミン、エトキシノニルアミン、エトキシデシルアミン、エトキシフェニルアミン、プロポキシメチルアミン、プロポキシエチルアミン、プロポキシプロピルアミン、プロポキシブチルアミン、プロポキシペンチルアミン、プロポキシヘキシルアミン、プロポキシへプチルアミン、プロポキシオクチルアミン、プロポキシノニルアミン、プロポキシデシルアミン、プロポキシフェニルアミンなどのアルコキシアミン類 Methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, methoxypentylamine, methoxyhexylamine, methoxyheptylamine, methoxyoctylamine, methoxynonylamine, methoxydecylamine, methoxyphenylamine, ethoxymethylamine, ethoxyethylamine, ethoxy Propylamine, ethoxybutylamine, ethoxypentylamine, ethoxyhexylamine, ethoxyheptylamine, ethoxyoctylamine, ethoxynonylamine, ethoxydecylamine, ethoxyphenylamine, propoxymethylamine, propoxyethylamine, propoxypropylamine, propoxybutylamine, propoxypentyl Alkoxyamines such as amines, propoxyhexylamines, propoxyheptylamines, propoxyoctylamines, propoxynonylamines, propoxydecylamines, and propoxyphenylamines.
 以下、実施例および比較例によって、本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
[原料及び試薬]
 以下の実施例および比較例において、オルトクレゾール、トルエン、水酸化ナトリウム、ドデカンチオール、アセトン、炭酸水素ナトリウム、炭酸セシウム、クエン酸、マロン酸、シュウ酸、コハク酸、酒石酸、エチレンジアミン四酢酸二ナトリウム、ドデカナール、ヘプタンは、富士フィルム和光純薬株式会社製の試薬を使用した。
 塩化水素ガスは、住友精化株式会社の製品を使用した。
 炭酸ジフェニルは、三菱ケミカル株式会社製の製品を使用した。
[Raw materials and reagents]
In the following examples and comparative examples, orthocresol, toluene, sodium hydroxide, dodecanethiol, acetone, sodium hydrogen carbonate, cesium carbonate, citric acid, malonic acid, oxalic acid, succinic acid, tartaric acid, disodium ethylenediamine tetraacetate, For dodecanal and heptane, reagents manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. were used.
As the hydrogen chloride gas, a product of Sumitomo Seika Chemical Co., Ltd. was used.
As diphenyl carbonate, a product manufactured by Mitsubishi Chemical Corporation was used.
[分析]
<ビスフェノールC生成反応液の組成>
 ビスフェノールC生成反応液の組成分析は、高速液体クロマトグラフィーにより、以下の手順と条件で行った。
・装置:島津製作所社製「LC-2010A」
  Imtakt ScherzoSM-C18 3μm 250mm×3.0mmID
・低圧グラジェント法
・分析温度:40℃
・溶離液組成:
 A液 酢酸アンモニウム:酢酸:脱塩水=3.000g:1mL:1Lの溶液
 B液 酢酸アンモニウム:酢酸:アセトニトリル:脱塩水=1.500g:1mL:900mL:150mLの溶液
・分析時間0分では、溶離液組成はA液:B液=60:40(体積比、以下同様。)
 分析時間0~41.67分はA液:B液=10:90へ徐々に変化させ、
 分析時間41.67~50分はA液:B液=10:90に維持、
 流速0.34mL/分にて分析した。
[analysis]
<Composition of bisphenol C production reaction solution>
The composition analysis of the bisphenol C production reaction solution was carried out by high performance liquid chromatography under the following procedure and conditions.
・ Equipment: "LC-2010A" manufactured by Shimadzu Corporation
Imtaket ScherzoSM-C18 3μm 250mm x 3.0mm ID
・ Low pressure gradient method ・ Analysis temperature: 40 ℃
・ Eluent composition:
Solution Ammonium acetate: Acetic acid: Demineralized water = 3.000 g: 1 mL: 1 L solution Solution B Ammonium acetate: Acetic acid: Acetonitrile: Demineralized water = 1.500 g: 1 mL: 900 mL: 150 mL solution ・ Elution at 0 minutes of analysis time The liquid composition is liquid A: liquid B = 60:40 (volume ratio, the same applies hereinafter).
The analysis time of 0 to 41.67 minutes was gradually changed to solution A: solution B = 10:90.
Analysis time 41.67 to 50 minutes is maintained at solution A: solution B = 10:90,
The analysis was performed at a flow rate of 0.34 mL / min.
<イソプロペニルクレゾールの同定>
 イソプロペニルクレゾールの同定は、ガスクロマト質量計を用いて、以下の手順と条件で行った。
・装置:アジレント・テクノロジー社製「Agilent6890」
・カラム:アジレント・テクノロジー社製「DB-1MS」(内径0.25mm×30m×0.25μm)
・キャリアーガス:ヘリウム
         流量:毎分1cm
・注入口温度:280℃
・トランスファー温度:250℃
・イオンソース温度:250℃
・カラムの昇温パターン:先ず50℃で3分間保持させた後に毎分10℃で320℃まで昇温させ、280℃で5分間保持
<Identification of isopropenyl cresol>
Identification of isopropenyl cresol was performed using a gas chromatograph by the following procedure and conditions.
-Device: "Agilent 6890" manufactured by Agilent Technologies
-Column: "DB-1MS" manufactured by Agilent Technologies (inner diameter 0.25 mm x 30 m x 0.25 μm)
・ Carrier gas: Helium Flow rate: 1 cm / min 3
-Inlet temperature: 280 ° C
・ Transfer temperature: 250 ℃
・ Ion source temperature: 250 ℃
-Column temperature rise pattern: First, hold at 50 ° C for 3 minutes, then raise the temperature to 320 ° C at 10 ° C per minute, and hold at 280 ° C for 5 minutes.
<ビスフェノールC又は1,1-ビス(4-ヒドロキシフェニル)ドデカンに含まれる鉄濃度の測定>
 ビスフェノールC又は1,1-ビス(4-ヒドロキシフェニル)ドデカン1gを灰化し、酸に溶解させて、サンプルを調製した。分析は、下記の装置を使用した。
装置:
 ICP-MS:サーモフィッシャーサイエンティフィック社製「ELEMENT2」
 ICP-OES:アジレント(VARIAN)製「ICP VISTA-PRO」
<Measurement of iron concentration in bisphenol C or 1,1-bis (4-hydroxyphenyl) dodecane>
A sample was prepared by ashing 1 g of bisphenol C or 1,1-bis (4-hydroxyphenyl) dodecane and dissolving it in an acid. The following equipment was used for the analysis.
apparatus:
ICP-MS: "ELEMENT2" manufactured by Thermo Fisher Scientific
ICP-OES: "ICP VISTA-PRO" made by Agilent (VARIAN)
<pHの測定>
 pHの測定は、株式会社堀場製作所製pH計「pH METER ES-73」を用いて、フラスコから取り出した25℃の水相に対して実施した。
<Measurement of pH>
The pH was measured using a pH meter "pH METER ES-73" manufactured by HORIBA, Ltd. for an aqueous phase at 25 ° C. taken out from the flask.
<電気伝導度>
 電気伝導度の測定は、株式会社堀場製作所製電気伝導度計「COND METER D-71」を用いて、フラスコから取り出した25℃の水相に対して実施した。
<Electrical conductivity>
The electric conductivity was measured using an electric conductivity meter "COND METER D-71" manufactured by HORIBA, Ltd. for an aqueous phase at 25 ° C. taken out from the flask.
<ビスフェノールCのメタノール溶解色>
 ビスフェノールCのメタノール溶解色は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC10g及びメタノール10gを入れて、均一溶液とした後、室温(約20℃)で、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定して評価した。
<Methanol-dissolved color of bisphenol C>
For the methanol-dissolved color of bisphenol C, put 10 g of bisphenol C and 10 g of methanol in a test tube "P-24" (24 mmφ x 200 mm) manufactured by Nichiden Rika Glass Co., Ltd. to make a uniform solution, and then at room temperature (about 20 ° C), Japan. The number of Hazen colors was measured and evaluated using "SE6000" manufactured by Denshoku Kogyo Co., Ltd.
<ビスフェノールCの溶融色差>
 ビスフェノールCの溶融色差は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールCを20g入れて、190℃で30分間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定して評価した。
<Melted color difference of bisphenol C>
For the melt color difference of bisphenol C, put 20 g of bisphenol C in a test tube "P-24" (24 mmφ x 200 mm) manufactured by Nichiden Rika Glass Co., Ltd., melt it at 190 ° C. for 30 minutes, and use "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd. The number of Hazen colors was measured and evaluated.
<ビスフェノールCの熱色調安定性>
 ビスフェノールCの熱色調安定性は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールCを20g入れ、190℃で4時間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定して評価した。
<Thermal color stability of bisphenol C>
For the thermal color stability of bisphenol C, put 20 g of bisphenol C in a test tube "P-24" (24 mmφ x 200 mm) manufactured by Nichiden Rika Glass Co., Ltd. and melt it at 190 ° C. for 4 hours to obtain "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd. Was used to measure and evaluate the number of Hazen colors.
<ビスフェノールCの熱分解安定性>
 ビスフェノールCの熱分解安定性は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールCを20g入れ、190℃で2時間溶融させ、前記ビスフェノールC生成反応液の組成分析と同様に実施し、イソプロペニルクレゾールの生成量を測定して評価した。
<Pyrolysis stability of bisphenol C>
For the thermal decomposition stability of bisphenol C, 20 g of bisphenol C was placed in a test tube "P-24" (24 mmφ x 200 mm) manufactured by Nichiden Rika Glass Co., Ltd. and melted at 190 ° C. for 2 hours to analyze the composition of the bisphenol C production reaction solution. The same procedure as above was carried out, and the amount of isopropenyl cresol produced was measured and evaluated.
<粘度平均分子量>
 ポリカーボネート樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管を用いて20℃における比粘度(ηsp)を測定し、下記の式により粘度平均分子量(Mv)を算出した。
   ηsp/C=[η](1+0.28ηsp)
   [η]=1.23×10-4Mv0.83
<Viscosity average molecular weight>
The polycarbonate resin was dissolved in methylene chloride (concentration: 6.0 g / L), the specific viscosity (ηsp) at 20 ° C. was measured using a Uberode viscosity tube, and the viscosity average molecular weight (Mv) was calculated by the following formula.
ηsp / C = [η] (1 + 0.28ηsp)
[η] = 1.23 × 10 -4 Mv 0.83
<ペレットYI>
 ペレットYI(ポリカーボネート樹脂の透明性)は、ASTM D1925に準拠して、ポリカーボネート樹脂ペレットの反射光におけるYI値(イエローネスインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計「CM-5」を用い、測定条件は測定径30mm、SCEを選択した。
 シャーレ測定用校正ガラス「CM-A212」を測定部にはめ込み、その上からゼロ校正ボックス「CM-A124」をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。次いで、白色校正板「CM-A210」を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。
 YIは、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。
<Pellet YI>
The pellet YI (transparency of the polycarbonate resin) was evaluated by measuring the YI value (yellowness index value) in the reflected light of the polycarbonate resin pellet in accordance with ASTM D1925. A spectrocolorimeter "CM-5" manufactured by Konica Minolta Co., Ltd. was used as an apparatus, and a measurement diameter of 30 mm and SCE were selected as measurement conditions.
The calibration glass "CM-A212" for petri dish measurement was fitted into the measuring section, and the zero calibration box "CM-A124" was placed over it to perform zero calibration, and then white calibration was performed using the built-in white calibration plate. .. Next, measurement was performed using the white calibration plate "CM-A210", where L * was 99.40 ± 0.05, a * was 0.03 ± 0.01, and b * was -0.43 ± 0.01. , YI was confirmed to be −0.58 ± 0.01.
YI was measured by packing pellets to a depth of about 40 mm in a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm. The operation of taking out the pellets from the glass container and then performing the measurement again was repeated twice, and the average value of the measured values of a total of three times was used.
[参考例1]
 撹拌子、温度計、蒸留装置を備えた500mLのナス型フラスコに、ビスフェノールC85gと水酸化ナトリウム4.5gを入れ、195℃に加熱したオイルバスに浸漬した。ナス型フラスコ内のビスフェノールCが溶融したことを確認した後、真空ポンプを用いて徐々にフラスコ内を減圧していき、フル真空にした。しばらくすると蒸発が始まり、留出が収まるまで、減圧蒸留を実施した。得られた留分は、質量計検出器を備えたガスクロマトグラフィーにより、ビスフェノールCが熱分解して生成したクレゾールとイソプロペニルクレゾールの混合物であることが分かった。得られた留分を用いて、ビスフェノールC生成反応液の組成分析条件におけるイソプロペニルクレゾールの保持時間を確認した。
[Reference example 1]
85 g of bisphenol C and 4.5 g of sodium hydroxide were placed in a 500 mL eggplant-shaped flask equipped with a stirrer, a thermometer, and a distillation apparatus, and immersed in an oil bath heated to 195 ° C. After confirming that the bisphenol C in the eggplant-shaped flask was melted, the inside of the flask was gradually depressurized using a vacuum pump to obtain a full vacuum. After a while, evaporation started, and vacuum distillation was carried out until the distillation subsided. The resulting fraction was found by gas chromatography equipped with a massimeter detector to be a mixture of cresol and isopropenyl cresol produced by thermal decomposition of bisphenol C. Using the obtained fraction, the retention time of isopropenyl cresol under the composition analysis conditions of the bisphenol C production reaction solution was confirmed.
[参考例2]
(1)混合液の調製
 塩化水素吹き込み管、温度計、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下でオルトクレゾール510g(4.7モル)、アセトン104g(1.8モル)、トルエン100g及びドデカンチオール10gを入れ、内温30℃にし、混合液を調製した。
[Reference example 2]
(1) Preparation of mixed solution In a separable flask equipped with a hydrogen chloride blowing tube, a thermometer, a jacket and an anchor-type stirring blade, 510 g (4.7 mol) of orthocresol and 104 g (1.8 mol) of acetone under a nitrogen atmosphere. ), 100 g of toluene and 10 g of dodecanethiol were added, and the internal temperature was adjusted to 30 ° C. to prepare a mixed solution.
(2)反応
 前記混合液に、塩化水素ガスをゆっくりバブリングさせた後、10時間反応させて反応液を得た。
(2) Reaction The mixed solution was slowly bubbled with hydrogen chloride gas and then reacted for 10 hours to obtain a reaction solution.
(3)粗精製
 得られた反応液に、トルエン720g及び脱塩水900gを加えた後、撹拌しながら、内温を80℃まで昇温した。内温が80℃に到達した後、静置し、第1の有機相と第1の水相に分離し、第1の有機相を得た。
 得られた第1の有機相に脱塩水250gを加え、内温が80℃に到達した後、静置し、第2の有機相と第2の水相とに分離し、第2の水相を抜き出すことで、第2の有機相を得た。
 得られた第2の有機相1400gに、5質量%炭酸水素ナトリウム水溶液300gを加え、混合しながら内温が80℃に到達した後、静置し、下相のpHが9以上になったことを確認した。その後、第3の有機相と炭酸水素ナトリウム水溶液とを相分離させて、下相を抜出し、第3の有機相を得た。
(3) Crude Purification After adding 720 g of toluene and 900 g of desalinated water to the obtained reaction solution, the internal temperature was raised to 80 ° C. with stirring. After the internal temperature reached 80 ° C., the mixture was allowed to stand and separated into a first organic phase and a first aqueous phase to obtain a first organic phase.
250 g of desalted water was added to the obtained first organic phase, and after the internal temperature reached 80 ° C., the mixture was allowed to stand and separated into a second organic phase and a second aqueous phase, and the second aqueous phase was separated. A second organic phase was obtained by extracting.
To 1400 g of the obtained second organic phase, 300 g of a 5 mass% sodium hydrogen carbonate aqueous solution was added, and after the internal temperature reached 80 ° C. while mixing, the mixture was allowed to stand, and the pH of the lower phase became 9 or more. It was confirmed. Then, the third organic phase and the aqueous sodium hydrogen carbonate solution were phase-separated, and the lower phase was extracted to obtain a third organic phase.
(4)精製
 得られた第3の有機相を80℃から10℃まで冷却して、10℃到達後、遠心分離(分速2500回転、10分間)を用いて固液分離を行ない、第1のウエットケーキを得た。得られた第1のウェットケーキをビーカーに移し、そこにトルエン500gを加えて、懸濁洗浄を行なった。得られたスラリー液を再び遠心分離(分速2500回転、10分間)を用いて固液分離を行ない、第2のウェットケーキ415gを得た。
 得られた第2のウェットケーキに含まれるビスフェノールCの鉄濃度は、4.7質量ppmであった。
(4) Purification The obtained third organic phase is cooled from 80 ° C. to 10 ° C., and after reaching 10 ° C., solid-liquid separation is performed using centrifugation (2,500 rpm for 10 minutes), and the first I got a wet cake. The obtained first wet cake was transferred to a beaker, 500 g of toluene was added thereto, and suspension washing was performed. The obtained slurry liquid was subjected to solid-liquid separation again using centrifugation (2,500 rpm for 10 minutes) to obtain 415 g of a second wet cake.
The iron concentration of bisphenol C contained in the obtained second wet cake was 4.7 mass ppm.
[実施例1]
 温度計及び撹拌機を備えたフルジャケット式のセパラブルフラスコに、参考例2の第2のウェットケーキの一部300gとトルエン420gを入れ、80℃に昇温した。均一溶液となったことを確認し、第4の有機相を得た。得られた第4の有機相700gに、5質量%の塩酸200gを加え、30分混合し、下相の第3の水相を除去し、第5の有機相を得た。得られた第5の有機相に脱塩水200gを加え、30分混合し、下相の第4の水相を除去し、第6の有機相を得た。
 第4の水相のpH(エチレンジアミン四酢酸二ナトリウムを供給する前の水相のpH)を確認したところ、pH2であった。
[Example 1]
A part of 300 g of the second wet cake of Reference Example 2 and 420 g of toluene were placed in a full-jacket type separable flask equipped with a thermometer and a stirrer, and the temperature was raised to 80 ° C. After confirming that the solution was uniform, a fourth organic phase was obtained. To 700 g of the obtained fourth organic phase, 200 g of 5% by mass hydrochloric acid was added and mixed for 30 minutes to remove the third aqueous phase of the lower phase to obtain a fifth organic phase. 200 g of desalinated water was added to the obtained fifth organic phase and mixed for 30 minutes to remove the fourth aqueous phase of the lower phase to obtain a sixth organic phase.
When the pH of the fourth aqueous phase (the pH of the aqueous phase before supplying disodium ethylenediaminetetraacetate) was confirmed, it was pH 2.
 得られた第6の有機相700gに、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液1gを加えて、30分混合し、pH試験紙で液性を確認し、水相がpH2であることを確認した。そこへ、飽和炭酸ナトリウム(18質量%)水溶液を水相が塩基性を示すまで加えて、30分混合し、第5の水相を抜出し、第7の有機相を得た。
 第5の水相のpH(エチレンジアミン四酢酸二ナトリウムを抜出した水相のpH)を確認したところ、pH9であった。
 得られた第7の有機相を、脱塩水を用いて、下相の水相の電気伝導度が3.0μS/cm以下になるまで繰り返し洗浄することで、第8の有機相を得た。
To 700 g of the obtained sixth organic phase, 1 g of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate was added, mixed for 30 minutes, and the liquid property was confirmed with pH test paper to confirm that the aqueous phase was pH 2. did. A saturated aqueous solution of sodium carbonate (18% by mass) was added thereto until the aqueous phase showed basicity, and the mixture was mixed for 30 minutes to extract the fifth aqueous phase to obtain a seventh organic phase.
When the pH of the fifth aqueous phase (the pH of the aqueous phase from which disodium ethylenediaminetetraacetate was extracted) was confirmed, it was pH 9.
The obtained seventh organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 μS / cm or less to obtain an eighth organic phase.
 得られた第8の有機相を、80℃から10℃まで冷却した。その後、遠心分離機(毎分3000回転で10分間)を用いて、濾過を行い、ウェットの精製ビスフェノールCを得た。オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度80℃で軽沸分を留去することで、白色のビスフェノールC210gを得た。 The obtained eighth organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. Using an evaporator equipped with an oil bath, a light boiling point was distilled off at an oil bath temperature of 80 ° C. under reduced pressure to obtain 210 g of white bisphenol C.
 得られたビスフェノールCの鉄濃度は16質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は36であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は100質量ppmであった。
The iron concentration of the obtained bisphenol C was 16 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 36. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 100 mass ppm.
[実施例2]
 実施例1において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液1gの代わりに、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gを添加した以外は、実施例1と同様に実施した。
 エチレンジアミン四酢酸二ナトリウムを供給する前の水相はpH2、エチレンジアミン四酢酸二ナトリウムを抜出した水相はpH9であった。
[Example 2]
In Example 1, the same procedure as in Example 1 was carried out except that 10 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added instead of 1 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution.
The aqueous phase before supplying disodium ethylenediaminetetraacetate was pH 2, and the aqueous phase from which disodium ethylenediaminetetraacetate was extracted was pH 9.
 得られたビスフェノールCの鉄濃度は20質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は34であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は95質量ppmであった。
The iron concentration of the obtained bisphenol C was 20 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 34. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 95 mass ppm.
[実施例3]
 実施例1において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液1gの代わりに、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液100gを添加した以外は、実施例1と同様に実施した。
 エチレンジアミン四酢酸二ナトリウムを供給する前の水相はpH2、エチレンジアミン四酢酸二ナトリウムを抜出した水相はpH9であった。
[Example 3]
In Example 1, the same procedure as in Example 1 was carried out except that 100 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added instead of 1 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution.
The aqueous phase before supplying disodium ethylenediaminetetraacetate was pH 2, and the aqueous phase from which disodium ethylenediaminetetraacetate was extracted was pH 9.
 得られたビスフェノールCの鉄濃度は18質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は33であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は91質量ppmであった。
The iron concentration of the obtained bisphenol C was 18 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 33. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 91 parts by mass ppm.
[実施例4]
 温度計及び撹拌機を備えたフルジャケット式のセパラブルフラスコに、参考例2の第2のウェットケーキの一部300gとトルエン420gを入れ、80℃に昇温した。均一溶液となったことを確認し、第4の有機相を得た。得られた第4の有機相700gに、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液300gを加えて、30分混合し、pH試験紙で液性を確認し、水相がpH5であることを確認した。
 そこへ、飽和炭酸ナトリウム(18質量%)水溶液を水相が塩基性を示すまで加えて、30分混合し、第4の水相を抜出し、第5の有機相を得た。
 第4の水相のpH(エチレンジアミン四酢酸二ナトリウムを抜出した水相のpH)を確認したところ、pH9であった。
 得られた第5の有機相を、脱塩水を用いて、下相の水相の電気伝導度が3.0μS/cm以下になるまで繰り返し洗浄することで、第6の有機相を得た。
[Example 4]
A part of 300 g of the second wet cake of Reference Example 2 and 420 g of toluene were placed in a full-jacket type separable flask equipped with a thermometer and a stirrer, and the temperature was raised to 80 ° C. After confirming that the solution was uniform, a fourth organic phase was obtained. To 700 g of the obtained fourth organic phase, 300 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added, mixed for 30 minutes, and the liquid property was confirmed with pH test paper, and it was confirmed that the aqueous phase was pH 5. did.
A saturated aqueous solution of sodium carbonate (18% by mass) was added thereto until the aqueous phase showed basicity, and the mixture was mixed for 30 minutes to extract the fourth aqueous phase to obtain a fifth organic phase.
When the pH of the fourth aqueous phase (the pH of the aqueous phase from which disodium ethylenediaminetetraacetate was extracted) was confirmed, it was pH 9.
The obtained fifth organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 μS / cm or less to obtain a sixth organic phase.
 得られた第6の有機相を、80℃から10℃まで冷却した。その後、遠心分離機(毎分3000回転で10分間)を用いて、濾過を行い、ウェットの精製ビスフェノールCを得た。オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度80℃で軽沸分を留去することで、白色のビスフェノールC209gを得た。 The obtained sixth organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. 209 g of white bisphenol C was obtained by distilling off a light boiling point at an oil bath temperature of 80 ° C. under reduced pressure using an evaporator equipped with an oil bath.
 得られたビスフェノールCの鉄濃度は、54質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は19であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は38であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は127質量ppmであった。
The iron concentration of the obtained bisphenol C was 54 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 19. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 38. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 127 mass ppm.
[比較例1]
 温度計及び撹拌機を備えたフルジャケット式のセパラブルフラスコに、参考例2の第2のウェットケーキの一部300gとトルエン420gを入れ、80℃に昇温した。均一溶液となったことを確認し、第4の有機相を得た。得られた第4の有機相に、脱塩水200gを加え、30分混合し、下相の第3の水相を除去し、第5の有機相を得た。
 pH試験紙で液性を確認したところ、第3の水相(エチレンジアミン四酢酸二ナトリウムを供給する前の水相のpH)は、pH9であった。
 得られた第5の有機相に、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gを加え、30分混合し、第4の水相を抜出し、第6の有機相を得た。
 第4の水相(エチレンジアミン四酢酸二ナトリウムを抜出した水相のpH)は、pH9であった。
 得られた第6の有機相を、脱塩水を用いて、下相の水相の電気伝導度が3.0μS/cm以下になるまで繰り返し洗浄することで、第7の有機相を得た。
[Comparative Example 1]
A part of 300 g of the second wet cake of Reference Example 2 and 420 g of toluene were placed in a full-jacket type separable flask equipped with a thermometer and a stirrer, and the temperature was raised to 80 ° C. After confirming that the solution was uniform, a fourth organic phase was obtained. 200 g of desalinated water was added to the obtained fourth organic phase and mixed for 30 minutes to remove the third aqueous phase of the lower phase to obtain a fifth organic phase.
When the liquid property was confirmed with pH test paper, the third aqueous phase (pH of the aqueous phase before supplying disodium ethylenediaminetetraacetate) was pH 9.
To the obtained fifth organic phase, 10 g of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate was added and mixed for 30 minutes, and the fourth aqueous phase was extracted to obtain a sixth organic phase.
The fourth aqueous phase (pH of the aqueous phase from which disodium ethylenediaminetetraacetate was extracted) was pH 9.
The obtained sixth organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 μS / cm or less to obtain a seventh organic phase.
 得られた第7の有機相を、80℃から10℃まで冷却した。その後、遠心分離機(毎分3000回転で10分間)を用いて、濾過を行い、ウェットの精製ビスフェノールCを得た。オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度80℃で軽沸分を留去することで、白色のビスフェノールC212gを得た。 The obtained seventh organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. Using an evaporator equipped with an oil bath, a light boiling point was distilled off at an oil bath temperature of 80 ° C. under reduced pressure to obtain 212 g of white bisphenol C.
 得られたビスフェノールCの鉄濃度は102質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は12であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は42であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は65であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は250質量ppmであった。
The iron concentration of the obtained bisphenol C was 102 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 12. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 42. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 65. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 250 mass ppm.
[比較例2]
 温度計及び撹拌機を備えたフルジャケット式のセパラブルフラスコに、参考例2の第2のウェットケーキの一部300gとトルエン420gを入れ、80℃に昇温した。均一溶液となったことを確認し、第4の有機相を得た。得られた第4の有機相に、5質量%の塩酸200gを加え、30分混合し、下相の第3の水相を除去し、第5の有機相を得た。得られた第5の有機相に脱塩水200gを加え、30分混合し、下相の第4の水相を除去し、第6の有機相を得た。
 第4の水相(エチレンジアミン四酢酸二ナトリウムを供給する前の水相のpH)は、pH2であった。
 得られた第6の有機相に、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gを加えて、30分混合し、第5の水相を除去し、第7の有機相を得た。
 第5の水相は、pH2であった。
 得られた第7の有機相に、飽和炭酸ナトリウム水溶液を、水相が塩基性を示すまで加えて、30分混合し、第6の水相を抜出し、第8の有機相を得た。得られた第8の有機相を、脱塩水を用いて、下相の水相の電気伝導度が3.0μS/cm以下になるまで繰り返し洗浄することで、第9の有機相を得た。
[Comparative Example 2]
A part of 300 g of the second wet cake of Reference Example 2 and 420 g of toluene were placed in a full-jacket type separable flask equipped with a thermometer and a stirrer, and the temperature was raised to 80 ° C. After confirming that the solution was uniform, a fourth organic phase was obtained. To the obtained fourth organic phase, 200 g of 5% by mass hydrochloric acid was added and mixed for 30 minutes to remove the third aqueous phase of the lower phase to obtain a fifth organic phase. 200 g of desalinated water was added to the obtained fifth organic phase and mixed for 30 minutes to remove the fourth aqueous phase of the lower phase to obtain a sixth organic phase.
The fourth aqueous phase (pH of the aqueous phase before supplying disodium ethylenediaminetetraacetate) was pH 2.
To the obtained sixth organic phase, 10 g of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate was added and mixed for 30 minutes to remove the fifth aqueous phase to obtain a seventh organic phase.
The fifth aqueous phase had a pH of 2.
A saturated aqueous sodium carbonate solution was added to the obtained seventh organic phase until the aqueous phase showed basicity, and the mixture was mixed for 30 minutes to extract the sixth aqueous phase to obtain an eighth organic phase. The obtained eighth organic phase was repeatedly washed with desalinated water until the electrical conductivity of the lower aqueous phase became 3.0 μS / cm or less to obtain a ninth organic phase.
 得られた第9の有機相を、80℃から10℃まで冷却した。その後、遠心分離機(毎分3000回転で10分間)を用いて、濾過を行い、ウェットの精製ビスフェノールCを得た。オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度80℃で軽沸分を留去することで、白色のビスフェノールC209gを得た。 The obtained ninth organic phase was cooled from 80 ° C. to 10 ° C. Then, filtration was performed using a centrifuge (3000 rpm for 10 minutes) to obtain wet purified bisphenol C. 209 g of white bisphenol C was obtained by distilling off a light boiling point at an oil bath temperature of 80 ° C. under reduced pressure using an evaporator equipped with an oil bath.
 得られたビスフェノールCの鉄濃度は89質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は5であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は41であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は80であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は210質量ppmであった。
The iron concentration of the obtained bisphenol C was 89 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 5. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 41. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 80. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 210 mass ppm.
 実施例1~4、比較例1及び2における、エチレンジアミン四酢酸二ナトリウムを供給する前の水相のpH、エチレンジアミン四酢酸二ナトリウムを抜出した水相のpH、得られたビスフェノールCの鉄濃度、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性を、表1にまとめた。 The pH of the aqueous phase before supplying disodium ethylenediaminetetraacetate, the pH of the aqueous phase from which disodium ethylenediaminetetraacetate was extracted, and the iron concentration of bisphenol C obtained in Examples 1 to 4 and Comparative Examples 1 and 2. Table 1 summarizes the dissolved color of methanol, the difference in molten color, the stability of thermal color tone, and the stability of thermal decomposition.
 表1より、エチレンジアミン四酢酸二ナトリウムを供給する前の水相の液性が酸性であり、エチレンジアミン四酢酸二ナトリウムを抜出した水相の液性が塩基性であると、得られるビスフェノールCの鉄濃度、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性が改善することが分かる。
 比較例2では、エチレンジアミン四酢酸二ナトリウムを添加後、水相除去した有機相に飽和炭酸ナトリウム水溶液を添加したため、キレート剤による鉄の除去効果が得られていない。
From Table 1, the iron of bisphenol C obtained is obtained when the liquidity of the aqueous phase before supplying disodium ethylenediaminetetraacetic acid is acidic and the liquidity of the aqueous phase extracted from disodium ethylenediaminetetraacetic acid is basic. It can be seen that the concentration, methanol-dissolved color, melt color difference, thermal color stability, and thermal decomposition stability are improved.
In Comparative Example 2, since the saturated aqueous sodium carbonate solution was added to the organic phase from which the aqueous phase had been removed after the addition of disodium ethylenediaminetetraacetate, the effect of removing iron by the chelating agent was not obtained.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[実施例5]
 実施例2において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gの代わりに、5質量%のクエン酸水溶液10gを添加した以外は、実施例2と同様に実施した。
[Example 5]
In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous citric acid solution was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
 得られたビスフェノールCの鉄濃度は22質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は32であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は99質量ppmであった。
The iron concentration of the obtained bisphenol C was 22 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 32. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 99 mass ppm.
[実施例6]
 実施例2において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gの代わりに、5質量%のシュウ酸水溶液10gを添加した以外は、実施例2と同様に実施した。
[Example 6]
In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous solution of oxalic acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
 得られたビスフェノールCの鉄濃度は32質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は35であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は98質量ppmであった。
The iron concentration of the obtained bisphenol C was 32 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 35. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 98 mass ppm.
[実施例7]
 実施例2において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gの代わりに、5質量%のマロン酸水溶液10gを添加した以外は、実施例2と同様に実施した。
[Example 7]
In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5% by mass aqueous solution of malonic acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
 得られたビスフェノールCの鉄濃度は35質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は33であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は95質量ppmであった。
The iron concentration of the obtained bisphenol C was 35 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 33. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 95 mass ppm.
[実施例8]
 実施例2において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gの代わりに、5質量%のコハク酸水溶液10gを添加した以外は、実施例2と同様に実施した。
[Example 8]
In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous solution of succinic acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
 得られたビスフェノールCの鉄濃度は23質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は32であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は90質量ppmであった。
The iron concentration of the obtained bisphenol C was 23 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 32. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 90 mass ppm.
[実施例9]
 実施例2において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gの代わりに、5質量%の酒石酸水溶液10gを添加した以外は、実施例2と同様に実施した。
 得られたビスフェノールCの鉄濃度は21質量ppbであった。
[Example 9]
In Example 2, the same procedure as in Example 2 was carried out except that 10 g of a 5 mass% aqueous solution of tartaric acid was added instead of 10 g of a 5 mass% aqueous solution of disodium ethylenediaminetetraacetate.
The iron concentration of the obtained bisphenol C was 21 mass ppb.
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は31であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は85質量ppmであった。 When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 0. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 31. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 85 mass ppm.
[比較例3]
 比較例2において、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液10gの代わりに、5質量%のクエン酸水溶液10gを添加した以外は、比較例2と同様に実施した。
[Comparative Example 3]
In Comparative Example 2, the same procedure as in Comparative Example 2 was carried out except that 10 g of a 5 mass% aqueous citric acid solution was added instead of 10 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution.
 得られたビスフェノールCの鉄濃度は102質量ppbであった。
 得られたビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は10であった。得られたビスフェノールCの溶融色差を測定したところ、ハーゼン色数は39であった。得られたビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は77であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は310質量ppmであった。
The iron concentration of the obtained bisphenol C was 102 mass ppb.
When the methanol-dissolved color of the obtained bisphenol C was measured, the number of Hazen colors was 10. When the melt color difference of the obtained bisphenol C was measured, the number of Hazen colors was 39. When the thermal color stability of the obtained bisphenol C was measured, the number of Hazen colors was 77. When the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 310 mass ppm.
 実施例5~9、比較例3における、用いたキレート剤、得られたビスフェノールCの鉄濃度、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性を、表2にまとめた。 Table 2 summarizes the chelating agent used, the iron concentration of the obtained bisphenol C, the methanol-dissolved color, the melt color difference, the thermal color tone stability, and the thermal decomposition stability in Examples 5 to 9 and Comparative Example 3.
 表2より、エチレンジアミン四酢酸二ナトリウムと同様に他のキレート剤を用いた場合も、得られるビスフェノールCの鉄濃度、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性が改善することが分かる。 From Table 2, when other chelating agents are used as in the case of disodium ethylenediaminetetraacetate, the iron concentration of the obtained bisphenol C, methanol dissolution color, melt color difference, thermal color stability, and thermal decomposition stability are improved. I understand.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[実施例10]
 撹拌機及び留出管を備えた内容量150mLのガラス製反応槽に、実施例2で得られたビスフェノールC100.00g(0.39モル)、炭酸ジフェニル86.49g(0.4モル)及び400質量ppmの炭酸セシウム水溶液479μLを入れた。該ガラス製反応槽を約100Paに減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応槽の内部を窒素に置換した。その後、該反応槽を200℃のオイルバスに浸漬させ、内容物を溶解した。
[Example 10]
100.00 g (0.39 mol) of bisphenol C, 86.49 g (0.4 mol) and 400 of diphenyl carbonate obtained in Example 2 in a glass reaction tank having an internal volume of 150 mL equipped with a stirrer and a distillate. 479 μL of a mass ppm cesium carbonate aqueous solution was added. The operation of reducing the pressure of the glass reaction vessel to about 100 Pa and then restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reaction vessel with nitrogen. Then, the reaction vessel was immersed in an oil bath at 200 ° C. to dissolve the contents.
 撹拌機の回転数を毎分100回とし、反応槽内のビスフェノールCと炭酸ジフェニルのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応槽内の圧力を、絶対圧力で101.3kPaから13.3kPaまで減圧した。続いて反応槽内の圧力を13.3kPaに保持し、フェノールを更に留去させながら、80分間、エステル交換反応を行った。その後、反応槽外部温度を250℃に昇温すると共に、40分間かけて反応槽内圧力を絶対圧力で13.3kPaから399Paまで減圧し、留出するフェノールを系外に除去した。 The rotation speed of the stirrer is set to 100 times per minute, and the pressure in the reaction vessel is adjusted to absolute pressure over 40 minutes while distilling off the phenol produced by the oligomerization reaction of bisphenol C and diphenyl carbonate in the reaction vessel. The pressure was reduced from 101.3 kPa to 13.3 kPa. Subsequently, the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reaction vessel at 13.3 kPa and further distilling off phenol. Then, the temperature outside the reaction vessel was raised to 250 ° C., and the pressure inside the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove the distilled phenol from the system.
 その後、反応槽外部温度を280℃に昇温、反応槽の絶対圧力を30Paまで減圧し、重縮合反応を行った。反応槽の撹拌機が予め定めた所定の撹拌動力となったときに、重縮合反応を終了した。280℃に昇温してから重合を終了するまでの時間(後段重合時間)は210分であった。 After that, the temperature outside the reaction vessel was raised to 280 ° C., the absolute pressure in the reaction vessel was reduced to 30 Pa, and the polycondensation reaction was carried out. The polycondensation reaction was terminated when the stirrer in the reaction tank became a predetermined stirring power. The time from the temperature rise to 280 ° C. to the end of the polymerization (post-stage polymerization time) was 210 minutes.
 次いで、反応槽を窒素により絶対圧力で101.3kPaに復圧した後、ゲージ圧力で0.2MPaまで昇圧し、反応槽の底からポリカーボネート樹脂をストランド状で抜出し、ストランド状のポリカーボネート樹脂を得た。
 その後、回転式カッターを使用して、該ストランドをペレット化して、ペレット状のポリカーボネート樹脂を得た。
Next, the reaction vessel was repressurized to 101.3 kPa with nitrogen at an absolute pressure, and then the pressure was increased to 0.2 MPa with a gauge pressure, and the polycarbonate resin was extracted from the bottom of the reaction vessel in a strand shape to obtain a strand-shaped polycarbonate resin. ..
Then, the strands were pelletized using a rotary cutter to obtain a pellet-shaped polycarbonate resin.
 得られたポリカーボネート樹脂の粘度平均分子量(Mv)は24700で、ペレットYIは7.7であり、色相の良好なポリカーボネート樹脂を得ることができた。 The viscosity average molecular weight (Mv) of the obtained polycarbonate resin was 24700, and the pellet YI was 7.7, so that a polycarbonate resin having a good hue could be obtained.
[参考例3]
 温度計及び撹拌機を備えたフルジャケット式のセパラブルフラスコ内でフェノール237g(2.5モル)を40℃に加温し、塩酸3.2gを加えた。そこへ、ドデカナール92.0g(0.5モル)及びトルエン55.2gの混合液を4時間かけて滴下した。滴下後、40℃で1時間撹拌した後、5質量%炭酸水素ナトリウム水溶液を加えた。その後、減圧下、トルエン及びフェノールを留去し、残渣を得た。この残渣にトルエン450gを加え溶解させ、有機相を得た。この有機相を、脱塩水230gを用いて4回洗浄した。その後、トルエンを留去し、残渣を得た。得られた残渣にトルエン330gとヘプタン330gを加え、70℃に加温して溶解させた。その後、5℃まで降温させ、固体を析出させてスラリー液を得た。得られたスラリー液を濾過し、固体を得た。得られた固体をナスフラスコに入れ、ロータリーエバポレータを用いて、70℃及び20Torr下で1時間乾燥させて、1,1-ビス(4-ヒドロキシフェニル)ドデカン45gを得た。得られた1,1-ビス(4-ヒドロキシフェニル)ドデカンの鉄濃度は、570質量ppbであった。
[Reference example 3]
237 g (2.5 mol) of phenol was heated to 40 ° C. in a full-jacket separable flask equipped with a thermometer and a stirrer, and 3.2 g of hydrochloric acid was added. A mixed solution of 92.0 g (0.5 mol) of dodecanal and 55.2 g of toluene was added dropwise thereto over 4 hours. After the dropping, the mixture was stirred at 40 ° C. for 1 hour, and then a 5 mass% aqueous sodium hydrogen carbonate solution was added. Then, under reduced pressure, toluene and phenol were distilled off to obtain a residue. 450 g of toluene was added to this residue and dissolved to obtain an organic phase. This organic phase was washed 4 times with 230 g of desalinated water. Then, toluene was distilled off to obtain a residue. 330 g of toluene and 330 g of heptane were added to the obtained residue, and the mixture was heated to 70 ° C. to dissolve it. Then, the temperature was lowered to 5 ° C. to precipitate a solid to obtain a slurry liquid. The obtained slurry liquid was filtered to obtain a solid. The obtained solid was placed in an eggplant flask and dried using a rotary evaporator at 70 ° C. and 20 Torr for 1 hour to obtain 45 g of 1,1-bis (4-hydroxyphenyl) dodecane. The iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane was 570 mass ppb.
[実施例11]
 磁気回転子を備えたナス型フラスコに、参考例3で得られた1,1-ビス(4-ヒドロキシフェニル)ドデカン10gとトルエン14gを入れて80℃で溶解させ、トルエン溶液を得た。そこへ、5質量%の塩酸7gを加え、撹拌した。得られた混合液を30分間静置後、水相を除去し、第1の有機相を得た。除去した水相のpHは1未満であった。
[Example 11]
10 g of 1,1-bis (4-hydroxyphenyl) dodecane and 14 g of toluene obtained in Reference Example 3 were placed in an eggplant-shaped flask equipped with a magnetic rotor and dissolved at 80 ° C. to obtain a toluene solution. 7 g of 5% by mass hydrochloric acid was added thereto, and the mixture was stirred. After allowing the obtained mixed solution to stand for 30 minutes, the aqueous phase was removed to obtain a first organic phase. The pH of the removed aqueous phase was less than 1.
 得られた第1の有機相に脱塩水7gを加えた後、分液ロートで10分間振とうし、その後、30分静置した後、水相を除去して第2の有機相を得た。得られた有機相に5質量%のエチレンジアミン四酢酸二ナトリウム水溶液0.3gを加え、10分間振とうし、さらに5質量%炭酸水素ナトリウム水溶液2gを加え、10分間振とうした。30分間静置後、水相を除去し、第3の有機相を得た。除去した水相のpHは9であった。 After adding 7 g of desalinated water to the obtained first organic phase, the mixture was shaken with a separating funnel for 10 minutes, allowed to stand for 30 minutes, and then the aqueous phase was removed to obtain a second organic phase. .. To the obtained organic phase, 0.3 g of a 5 mass% disodium ethylenediaminetetraacetate aqueous solution was added and shaken for 10 minutes, and further 2 g of a 5 mass% sodium hydrogen carbonate aqueous solution was added and shaken for 10 minutes. After standing for 30 minutes, the aqueous phase was removed to obtain a third organic phase. The pH of the removed aqueous phase was 9.
 得られた第3の有機相を、脱塩水7gで3回繰り返し洗浄することで、第4の有機相を得た。得られた第4の有機相を10℃まで冷却し、スラリー液を得た。得られたスラリー液を濾過し、得られたケーキを減圧下70℃で乾燥させることで、1,1-ビス(4-ヒドロキシフェニル)ドデカン7.5gを得た。得られた1,1-ビス(4-ヒドロキシフェニル)ドデカンの鉄濃度は、100質量ppbであった。 The obtained third organic phase was washed repeatedly with 7 g of desalinated water three times to obtain a fourth organic phase. The obtained fourth organic phase was cooled to 10 ° C. to obtain a slurry liquid. The obtained slurry liquid was filtered, and the obtained cake was dried at 70 ° C. under reduced pressure to obtain 7.5 g of 1,1-bis (4-hydroxyphenyl) dodecane. The iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane was 100 mass ppb.
[比較例4]
 核磁気回転子を備えたナス型フラスコに、参考例3で得られた1,1-ビス(4-ヒドロキシフェニル)ドデカン10gとトルエン14gを入れて80℃で溶解させ、トルエン溶液を得た。得られたトルエン溶液に5質量%のエチレンジアミン四酢酸二ナトリウム水溶液0.3gを加え、10分間振とうした。得られた混合液を30分間静置後、水相を除去し、第1の有機相を得た。得られた第1の有機相を、脱塩水7gで3回繰り返し洗浄することで、第2の有機相を得た。得られた第2の有機相を10℃まで冷却し、スラリー液を得た。得られたスラリー液を濾過し、得られたケーキを減圧下70℃で乾燥させることで、1,1-ビス(4-ヒドロキシフェニル)ドデカン7.5gを得た。得られた1,1-ビス(4-ヒドロキシフェニル)ドデカンの鉄濃度は、400質量ppbであった。
[Comparative Example 4]
10 g of 1,1-bis (4-hydroxyphenyl) dodecane and 14 g of toluene obtained in Reference Example 3 were placed in an eggplant-shaped flask equipped with a nuclear magnetic rotor and dissolved at 80 ° C. to obtain a toluene solution. To the obtained toluene solution, 0.3 g of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate was added, and the mixture was shaken for 10 minutes. After allowing the obtained mixed solution to stand for 30 minutes, the aqueous phase was removed to obtain a first organic phase. The obtained first organic phase was washed repeatedly with 7 g of desalinated water three times to obtain a second organic phase. The obtained second organic phase was cooled to 10 ° C. to obtain a slurry liquid. The obtained slurry liquid was filtered, and the obtained cake was dried at 70 ° C. under reduced pressure to obtain 7.5 g of 1,1-bis (4-hydroxyphenyl) dodecane. The iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane was 400 mass ppb.
 実施例11および比較例4における、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液の添加前後のpH変更の有無、得られた1,1-ビス(4-ヒドロキシフェニル)ドデカンの鉄濃度を、表3に纏めた。 Table 3 shows the presence or absence of a pH change before and after the addition of a 5% by mass aqueous solution of disodium ethylenediaminetetraacetate and the iron concentration of the obtained 1,1-bis (4-hydroxyphenyl) dodecane in Example 11 and Comparative Example 4. I summarized it in.
 表3より、5質量%のエチレンジアミン四酢酸二ナトリウム水溶液の添加前後のpH変更を実施することで、1,1-ビス(4-ヒドロキシフェニル)ドデカンの鉄濃度を低減できることが分かる。 From Table 3, it can be seen that the iron concentration of 1,1-bis (4-hydroxyphenyl) dodecane can be reduced by changing the pH before and after the addition of the 5% by mass aqueous solution of disodium ethylenediaminetetraacetate.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月18日付で出願された日本特許出願2019-049991及び2019年12月27日付で出願された日本特許出願2019-238265に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application 2019-049991 filed on March 18, 2019 and Japanese Patent Application 2019-238265 filed on December 27, 2019, which are incorporated by reference in their entirety. ..

Claims (9)

  1.  水相1と、ビスフェノールを含有する有機相1との混合液1の有機相1と、キレート剤とを混合してpH6以下の水相と有機相の混合液2を得る工程と、
     得られた混合液2と塩基とを混合して、pH8以上の水相と有機相との混合液3を得る工程と、
     得られた混合液3からpH8以上の水相を除去して有機相3Aを得る工程と
    を含み、
     該キレート剤の該混合液3の水相に対する溶解度が、該混合液3の有機相に対する溶解度よりも高いビスフェノールの製造方法。
    A step of mixing the organic phase 1 of the mixed solution 1 of the aqueous phase 1 and the organic phase 1 containing bisphenol with a chelating agent to obtain a mixed solution 2 of the aqueous phase and the organic phase having a pH of 6 or less.
    A step of mixing the obtained mixed solution 2 with a base to obtain a mixed solution 3 of an aqueous phase having a pH of 8 or higher and an organic phase, and
    Including a step of removing an aqueous phase having a pH of 8 or more from the obtained mixed solution 3 to obtain an organic phase 3A.
    A method for producing bisphenol in which the solubility of the chelating agent in the aqueous phase of the mixed solution 3 is higher than the solubility of the mixed solution 3 in the organic phase.
  2.  前記有機相1が、前記混合液1から水相を除去して得られた有機相1Aである、請求項1に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1, wherein the organic phase 1 is an organic phase 1A obtained by removing the aqueous phase from the mixed solution 1.
  3.  前記水相除去後の水相と前記有機相1Aの混合割合が、重量比で1:700以下となるように前記混合液1から水相を除去する、請求項2に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 2, wherein the aqueous phase is removed from the mixed solution 1 so that the mixing ratio of the aqueous phase and the organic phase 1A after removing the aqueous phase is 1: 700 or less by weight. ..
  4.  前記混合液2中の水相と有機相の混合割合が、重量比で0.001:100~1000:700である、請求項1~3のいずれか1項に記載のビスフェノールの製造方法。 The method for producing bisphenol according to any one of claims 1 to 3, wherein the mixing ratio of the aqueous phase and the organic phase in the mixed solution 2 is 0.001: 100 to 1000: 700 in weight ratio.
  5.  前記有機相3Aと脱塩水とを混合して得られた混合液4から水相を除去して、有機相4を得る工程を含む請求項1~4のいずれか1項に記載のビスフェノールの製造方法。 The production of bisphenol according to any one of claims 1 to 4, which comprises a step of removing the aqueous phase from the mixed solution 4 obtained by mixing the organic phase 3A and desalinated water to obtain the organic phase 4. Method.
  6.  前記ビスフェノールが、ケトン又はアルデヒドと、芳香族アルコールとを、塩化水素の存在下で縮合させて得られたビスフェノールである請求項1~5のいずれか1項に記載のビスフェノールの製造方法。 The method for producing bisphenol according to any one of claims 1 to 5, wherein the bisphenol is a bisphenol obtained by condensing a ketone or aldehyde and an aromatic alcohol in the presence of hydrogen chloride.
  7.  前記ビスフェノールが、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)ドデカン、及び2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタンからなる群のいずれか1つである請求項1~6のいずれか1項に記載のビスフェノールの製造方法。 The bisphenols are 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) dodecane, and 2,2-bis (4-hydroxy-3,5-dimethyl). The method for producing bisphenol according to any one of claims 1 to 6, which is any one of the group consisting of phenyl) methane.
  8.  請求項1~7のいずれか1項に記載のビスフェノールの製造方法で製造したビスフェノールを用いたポリカーボネート樹脂の製造方法。 A method for producing a polycarbonate resin using bisphenol produced by the method for producing bisphenol according to any one of claims 1 to 7.
  9.  分子内に下記式(I)で示される部分構造を含む、金属配位性の有機化合物を製造する方法であって、
     水相1’と、該有機化合物を含有する有機相1’との混合液1’の有機相1’と、キレート剤とを混合して、pH6以下の水相と有機相の混合液2’を得る工程と、
     得られた混合液2’と塩基とを混合して、pH8以上の水相と有機相との混合液3’を得る工程と、
     得られた混合液3’からpH8以上の水相を除去して、有機相3A’を得る工程とを含み、
     該有機化合物の該混合液3’の有機相に対する溶解度が、該混合液3’の水相に対する溶解度よりも高く、
     該キレート剤の該混合液3’の水相に対する溶解度が、該混合液3’の有機相に対する溶解度よりも高い、有機化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、XとYは同一又は異なる元素であり、3価の窒素、2価の酸素、3価のリン、及び2価の硫黄よりなる群から選ばれる元素である。XとYを繋ぐ線は、炭素鎖である。
    A method for producing a metal-coordinating organic compound containing a partial structure represented by the following formula (I) in the molecule.
    The organic phase 1'of the mixed solution 1'of the aqueous phase 1'and the organic phase 1'containing the organic compound and the chelating agent are mixed, and the mixed solution 2'of the aqueous phase and the organic phase having a pH of 6 or less is mixed. And the process of obtaining
    A step of mixing the obtained mixed solution 2'and a base to obtain a mixed solution 3'of an aqueous phase having a pH of 8 or higher and an organic phase.
    Including a step of removing an aqueous phase having a pH of 8 or higher from the obtained mixed solution 3'to obtain an organic phase 3A'.
    The solubility of the organic compound in the organic phase of the mixed solution 3'is higher than the solubility of the mixed solution 3'in the aqueous phase.
    A method for producing an organic compound, wherein the solubility of the chelating agent in the aqueous phase of the mixed solution 3'is higher than the solubility of the mixed solution 3'in the organic phase.
    Figure JPOXMLDOC01-appb-C000001
    In formula (I), X and Y are the same or different elements, and are elements selected from the group consisting of trivalent nitrogen, divalent oxygen, trivalent phosphorus, and divalent sulfur. The line connecting X and Y is a carbon chain.
PCT/JP2020/007747 2019-03-18 2020-02-26 Method for producing bisphenol and method for producing polycarbonate resin WO2020189201A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021507133A JP7371682B2 (en) 2019-03-18 2020-02-26 Method for producing bisphenol and method for producing polycarbonate resin
CN202080020682.6A CN113574041B (en) 2019-03-18 2020-02-26 Bisphenol production method and polycarbonate resin production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019049991 2019-03-18
JP2019-049991 2019-03-18
JP2019-238265 2019-12-27
JP2019238265 2019-12-27

Publications (1)

Publication Number Publication Date
WO2020189201A1 true WO2020189201A1 (en) 2020-09-24

Family

ID=72520767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007747 WO2020189201A1 (en) 2019-03-18 2020-02-26 Method for producing bisphenol and method for producing polycarbonate resin

Country Status (4)

Country Link
JP (1) JP7371682B2 (en)
CN (1) CN113574041B (en)
TW (1) TWI818160B (en)
WO (1) WO2020189201A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115733A (en) * 1980-02-20 1981-09-11 Ube Ind Ltd Decoloring method of dihydroxydiphenylmethane
JPS58177928A (en) * 1982-03-29 1983-10-18 モンサント・カンパニ− Manufacture of bis(hydroxyphenyl)methanes
JPH0967287A (en) * 1995-08-30 1997-03-11 Dainippon Ink & Chem Inc Production of bisphenol f
JP2020007233A (en) * 2018-07-03 2020-01-16 三菱ケミカル株式会社 Method for producing bisphenol and method for producing polycarbonate resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120666A1 (en) * 2007-03-30 2008-10-09 Mitsubishi Chemical Corporation Method for producing bisphenol compound and cation-exchange resin catalyst
JP7021559B2 (en) * 2017-03-06 2022-02-17 三菱ケミカル株式会社 Method for manufacturing bisphenol and method for manufacturing polycarbonate resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115733A (en) * 1980-02-20 1981-09-11 Ube Ind Ltd Decoloring method of dihydroxydiphenylmethane
JPS58177928A (en) * 1982-03-29 1983-10-18 モンサント・カンパニ− Manufacture of bis(hydroxyphenyl)methanes
JPH0967287A (en) * 1995-08-30 1997-03-11 Dainippon Ink & Chem Inc Production of bisphenol f
JP2020007233A (en) * 2018-07-03 2020-01-16 三菱ケミカル株式会社 Method for producing bisphenol and method for producing polycarbonate resin

Also Published As

Publication number Publication date
CN113574041A (en) 2021-10-29
TWI818160B (en) 2023-10-11
TW202039410A (en) 2020-11-01
JPWO2020189201A1 (en) 2020-09-24
CN113574041B (en) 2023-10-13
JP7371682B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
US20090171061A1 (en) Phenol resin and resin composition
JP2023160883A (en) Bisphenol composition containing aromatic alcohol sulfonate and method for producing the same, polycarbonate resin and method for producing the same, and bisphenol production method
CN111032607A (en) Aromatic alcohol sulfonate-containing bisphenol composition and method for producing same, polycarbonate resin and method for producing same, and method for producing bisphenol
CN101987812A (en) Method for preparing bisphenol F
JP7371682B2 (en) Method for producing bisphenol and method for producing polycarbonate resin
JP2020152650A (en) Method for producing bisphenol, and method for producing polycarbonate resin
JP7287018B2 (en) Method for producing bisphenol composition and polycarbonate resin
JP2020007233A (en) Method for producing bisphenol and method for producing polycarbonate resin
WO2020184182A1 (en) Bisphenol composition and polycarbonate resin
JP2021152001A (en) Bisphenol composition and method for producing the same and method for producing polycarbonate resin
JP2023006817A (en) Method for producing bisphenol and method for producing polycarbonate resin
JP6859936B2 (en) Method for producing bisphenol powder and method for producing polycarbonate resin
JP7087848B2 (en) Method for producing bisphenol and method for producing polycarbonate resin
JP2019099581A (en) Manufacturing method of bisphenol, and manufacturing method of polycarbonate resin
JP2023005691A (en) Method for producing bisphenol and method for producing polycarbonate resin
JP7167537B2 (en) Method for producing bisphenol and method for producing polycarbonate resin
JP2020147536A (en) Bisphenol composition and method for producing polycarbonate resin
JP2023005689A (en) Bisphenol composition and method for producing polycarbonate resin
JP7167536B2 (en) Bisphenol production method and polycarbonate resin production method
JP7172308B2 (en) Method for producing bisphenol and method for producing polycarbonate resin
JP2023006819A (en) Method for producing bisphenol and method for producing polycarbonate resin
Ahmed et al. Synthesis, Characterization of New di Schiff base Derivatives from Dapsone, Their Polymerization and Thermal study
JP2022152461A (en) Method for producing bisphenol and method for producing polycarbonate resin
JP2021123543A (en) Method for producing bisphenol and method for producing polycarbonate resin
JP2022101856A (en) Method for producing bisphenol and method for producing polycarbonate resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774201

Country of ref document: EP

Kind code of ref document: A1