WO2020189096A1 - 制御装置、制御方法、及びプログラム - Google Patents

制御装置、制御方法、及びプログラム Download PDF

Info

Publication number
WO2020189096A1
WO2020189096A1 PCT/JP2020/005212 JP2020005212W WO2020189096A1 WO 2020189096 A1 WO2020189096 A1 WO 2020189096A1 JP 2020005212 W JP2020005212 W JP 2020005212W WO 2020189096 A1 WO2020189096 A1 WO 2020189096A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
engine
amount
flow rate
ecu
Prior art date
Application number
PCT/JP2020/005212
Other languages
English (en)
French (fr)
Inventor
恵尚 真田
大貴 森田
賢 平野
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2021506237A priority Critical patent/JP7261863B2/ja
Publication of WO2020189096A1 publication Critical patent/WO2020189096A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a control device, a control method, and a program.
  • a control device that calculates the intake amount of an engine based on the flow rate detected by a flow rate sensor and controls the operation of the engine based on this intake amount.
  • the ECU (Engine Control Unit) described in Patent Document 1 calculates the amount of intake air to the engine based on the detection result of the flow rate by the air flow sensor which is a flow rate sensor.
  • This ECU calculates the intake pulsation frequency based on the engine speed, and corrects the intake amount based on the flow rate detection value by the air flow sensor and the intake pulsation frequency. Further, this ECU adjusts the fuel supply amount to the engine based on the corrected intake amount.
  • the ECU having such a configuration can reduce the calculation error of the intake air amount due to the pulsation of the intake air.
  • the control unit (101) that acquires the intake air amount of the engine (1) based on the flow rate of the intake air and controls the operation of the engine (1) based on the intake air amount is provided.
  • the intake amount of the engine (1) is acquired based on the intake pressure, and the superiority or inferiority of the intake amount acquired based on the flow rate and the intake amount acquired based on the intake pressure is determined by the engine (1).
  • a control device (100) for determining based on the operating state information of the above is provided.
  • step (S1) of acquiring the intake air amount of the engine (1) based on the flow rate of the intake air there is a step (S1) of acquiring the intake air amount of the engine (1) based on the flow rate of the intake air, and a step (S1) of acquiring the intake air amount of the engine (1) based on the intake air pressure.
  • a control method is provided to execute and.
  • a program used in a computer that causes the computer to execute each step of the control method.
  • the ECU which is an embodiment of the control device of the present invention
  • the configurations, operations, etc. described below are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to the configurations, operations, etc. described below.
  • the same or similar description will be simplified or omitted as appropriate.
  • the same or similar members or parts are omitted from being given a reference numeral or are given the same reference numerals.
  • the illustration will be simplified or omitted as appropriate.
  • FIG. 1 is a schematic configuration diagram showing an engine to be controlled by the ECU according to the embodiment and its surroundings.
  • the engine 1 is a multi-cylinder engine including a plurality of cylinders 2 and pistons 3. In FIG. 1, for convenience, only one cylinder 2 and one piston 3 are shown.
  • the piston 3 moves in the cylinder of the cylinder 2 in the axial direction of the cylinder. Along with this movement, the connecting rod 5 connected to the piston 3 rotates the crankshaft 6.
  • the combustion chamber 4 is arranged above the piston 3.
  • the combustion chamber 4 is provided with a spark plug 14 for igniting the fuel.
  • An intake valve 12 is provided at the intake port of the engine 1.
  • An exhaust valve 13 is provided at the exhaust port of the engine 1. Both the intake valve 12 and the exhaust valve 13 are valves that are opened and closed by a variable valve timing (VVT) mechanism.
  • VVT variable valve timing
  • the intake manifold 7, the collector 8, the throttle valve 9, and the intake pipe 10 are connected to the intake port of the engine 1 in this order.
  • the intake manifold 7, the collector 8, the throttle valve 9, and the intake pipe 10 form an intake passage.
  • An air flow sensor 11 is arranged as a flow rate sensor in the intake pipe 10.
  • the gas generated by the combustion of fuel in the combustion chamber 4 is discharged to the outside as exhaust gas from the exhaust port of the engine 1 through the exhaust valve 13 and the exhaust pipe 16.
  • the engine 1 employs an EGR (Exhaust Gas Recirculation) system that returns a part of the exhaust gas in the exhaust pipe 16 to the combustion chamber 4. Exhaust gas is returned to the combustion chamber 4 by performing valve overlap that simultaneously opens the intake valve 12 and the exhaust valve 13 at a predetermined timing in the engine cycle.
  • EGR exhaust Gas Recirculation
  • a pressure sensor 17 is arranged in the collector 8.
  • the ECU according to this embodiment calculates the total amount of gas (air amount + EGR gas amount) sucked into the engine based on the detection result of the intake pressure by the pressure sensor 17.
  • the intake air amount calculated based on the detection result of the air flow rate by the air flow sensor 11 (hereinafter referred to as the intake air amount based on the flow rate) is caused by the pulsation of the intake air generated by intermittently inhaling air by the engine cycle.
  • the measurement error to be performed is included.
  • the throttle opening degree As the rotation speed of the engine 1 decreases and the opening degree of the throttle valve 9 (hereinafter referred to as the throttle opening degree) increases, the above-mentioned pulsation increases. Therefore, as the rotation speed of the engine 1 decreases and the throttle opening degree increases, the calculation error of the intake amount due to the pulsation increases.
  • the intake amount based on the intake pressure it is also possible to calculate the intake amount (hereinafter referred to as the intake amount based on the intake pressure) based on the detection result of the intake pressure by the pressure sensor 17.
  • the intake amount based on the intake pressure cannot distinguish between the air amount, the EGR gas amount, and the exhaust gas return amount due to the valve overlap, a large error occurs when the valve overlap amount is large.
  • the present inventors have found the following by experiments. That is, the magnitude relationship between the error of the intake amount based on the flow rate and the error of the intake amount based on the intake pressure is reversed according to the operating state of the engine.
  • the error of the intake amount based on the intake pressure becomes larger than the error of the intake amount based on the flow rate.
  • the amplitude of the pulsation becomes large to some extent when the valve overlap does not occur, the error of the intake amount based on the flow rate becomes larger than the error of the intake amount based on the intake pressure.
  • FIG. 2 is an electric block diagram showing an ECU according to an embodiment and each device mounted on a vehicle and electrically connected to the ECU.
  • the ECU 100 which is a control device, includes a CPU (Central Processing Unit) 101, which is a control unit, a RAM (Random Access Memory) 102, a ROM (Read Only Memory) 103, and the like.
  • An airflow sensor 11, a throttle position sensor 20, an engine rotation speed sensor 21, an intake valve position sensor 22, an exhaust valve position sensor 23, an injector 15, and the like are electrically connected to the ECU 100.
  • the throttle position sensor 20 is a sensor that detects the position of the throttle valve 9.
  • the engine speed sensor 21 is a sensor that detects the rotation speed of the engine 1.
  • the intake valve position sensor 22 is a sensor that detects the position of the intake valve 12.
  • the exhaust valve position sensor 23 is a sensor that detects the position of the exhaust valve 13.
  • the ECU 100 calculates the intake amount to the combustion chamber 4 based on the program recorded in the ROM 103, and drives the injector 15 based on the calculation result to adjust the fuel supply amount to the combustion chamber. To execute.
  • FIG. 3 is a flowchart showing a processing flow of fuel adjustment control executed by the ECU 100.
  • the ECU 100 first executes a step (S1) of calculating the intake amount based on the flow rate and a step (S2) of calculating the intake amount based on the intake pressure.
  • a virtual three-dimensional model constructed by an experiment in advance is recorded in the ROM 103 of the ECU 100.
  • the x-axis in this virtual three-dimensional model indicates the throttle opening.
  • the y-axis in the virtual three-dimensional model indicates the engine speed.
  • the z-axis in the virtual three-dimensional model indicates the valve overlap amount calculated based on the position of the intake valve 12 and the position of the exhaust valve 13.
  • Each coordinate in the virtual 3D model is associated with selection information. This selection information is information indicating which of the intake amount based on the flow rate and the intake amount based on the intake pressure should be selected.
  • the coordinates that make the error of the intake amount based on the flow rate larger than the error of the intake amount based on the intake pressure are associated with selection information indicating that the intake amount based on the intake pressure is selected.
  • the coordinates that make the error of the intake amount based on the intake pressure larger than the error of the intake amount based on the flow rate are associated with selection information indicating that the intake amount based on the flow rate is selected.
  • the ECU 100 calculates the intake amount based on the intake pressure in step S2, and then executes the step (S3) of calculating the throttle opening degree, which is the operating state information of the engine 1, based on the detection result by the throttle position sensor 20. After that, the ECU 100 executes a step (S4) of calculating the valve overlap amount, which is the operating state information of the engine 1, based on the detection result by the intake valve position sensor 22 and the detection result by the exhaust valve position sensor 23. Further, the ECU 100 executes a step (S5) of calculating the engine rotation speed, which is the operating state information of the engine 1, based on the detection result by the engine rotation speed sensor 21.
  • the ECU 100 that has completed step S5 then performs a step (S6) of specifying the coordinates in the virtual three-dimensional model in the combination of the three based on the throttle opening, the valve overlap amount, and the engine rotation speed. Execute. After that, the ECU 100 executes a step (S7) of determining whether or not the selection information associated with the specified coordinates is information for selecting the intake amount based on the flow rate.
  • the ECU 100 controls the drive of the injector 15 according to the intake amount based on the flow rate calculated in the step of S1. (S8) is executed. By this execution, the amount of fuel supplied to the combustion chamber 4 is adjusted to an amount according to the amount of intake air.
  • step S7 the ECU 100 controls the drive of the injector 15 according to the intake amount based on the intake pressure calculated in the step of S2.
  • Step (S9) is executed. By this execution, the amount of fuel supplied to the combustion chamber 4 is adjusted to an amount according to the amount of intake air.
  • the ECU 100 that has executed step S8 or step S9 re-executes the processing flow from step S1.
  • step S7 determining whether or not the selection information associated with the coordinates is information for selecting the intake amount based on the flow rate is determined by determining the intake amount based on the flow rate and the intake amount based on the intake pressure. Of these, it corresponds to determining which error is smaller. Therefore, in step S7, determining whether or not the selection information associated with the coordinates is information for selecting the intake amount based on the flow rate is the intake amount based on the flow rate and the intake amount based on the intake pressure. It corresponds to judging the superiority or inferiority of.
  • the intake amount based on the flow rate and the intake amount based on the intake pressure are collectively referred to as two intake amounts.
  • the relationship between the operating state of the engine 1 and the superiority or inferiority of the two intake volumes (which error is smaller) in that operating state is generally investigated by a preliminary experiment. Based on the experimental findings, individual operating conditions (eg, each coordinate of the virtual 3D model described above) and information indicating which of the two intake volumes to use (eg, selection information associated with the coordinates). The data associated with is constructed. Therefore, if a control device such as the ECU 100 has the following configuration, it can be said that the control device determines the superiority or inferiority of the intake air amount based on the flow rate and the intake air amount based on the intake air pressure.
  • the step of selecting either the intake amount based on the flow rate or the intake amount based on the intake pressure, and the step of controlling the operation of the engine based on the selected intake amount are executed.
  • the step of selecting either the intake amount based on the flow rate or the intake amount based on the intake pressure is a step of determining the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure. Applicable.
  • an index value indicating an operating state such as pulsation amplitude is calculated, and which of the two intake amounts is used is determined based on the comparison between the calculation result and the threshold value.
  • comparing the calculation result with the threshold value corresponds to determining superiority or inferiority.
  • the operating state referred to for determining the superiority or inferiority of the two intake amounts may be a numerical value indicating some characteristic of the engine 1 during operation.
  • the method of causing the ECU 100 to acquire the detection results is not limited to the above example.
  • the ECU 100 may acquire the result from the device.
  • the intake amount based on the intake pressure may be calculated first. Further, the throttle opening, the valve overlap amount, and the engine rotation speed may be calculated in any order. Further, an example of calculating the intake amount based on the flow rate and the intake amount based on the intake pressure and then determining the superiority or inferiority of the two intake amounts (S6 and S7) has been described. After the determination, only the superior intake amount may be calculated.
  • the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure based on a three-dimensional model has been described, but the superiority or inferiority is determined based on a model of four dimensions or more or a model of two dimensions or less. You may. For example, when the valve overlap amount is larger than zero, the intake amount based on the flow rate may be selected, while when the valve overlap amount is zero, the intake amount based on the intake pressure may be selected.
  • the intake amount used for adjusting the fuel supply amount is determined by reflecting the more accurate one of the intake amount based on the flow rate and the intake amount based on the intake pressure.
  • the more accurate of the intake amount based on the flow rate and the intake amount based on the intake pressure is determined as the intake amount used for adjusting the fuel supply amount to the combustion chamber 4.
  • the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure is determined based on the valve overlap amount strongly related to the error of the intake amount based on the intake pressure.
  • the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure is determined based on the engine rotation speed and the throttle opening in addition to the valve overlap amount.
  • the intake amount used for adjusting the fuel supply amount is determined by more accurately reflecting the more accurate one of the intake amount based on the flow rate and the intake amount based on the intake pressure. Therefore, the calculation error of the intake air amount due to the pulsation can be reduced as compared with the conventional case.
  • the more accurate of the intake amount based on the flow rate and the intake amount based on the intake pressure is determined as the intake amount used for adjusting the fuel supply amount to the combustion chamber 4. Therefore, the error of the intake amount can be reduced as compared with the case where the other is also reflected in the determination of the intake amount.
  • the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure is accurately determined based on the valve overlap amount strongly related to the error of the intake amount based on the intake pressure. can do.
  • the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure is more accurate by referring to the engine rotation speed and the throttle opening in addition to the valve overlap amount. Can be determined.
  • a program that causes a computer to execute fuel adjustment control can be stored in a machine-readable recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and a computer such as a CPU can read the program from the recording medium and execute the program.
  • a machine-readable recording medium such as a semiconductor memory, a magnetic disk, or an optical disk
  • a computer such as a CPU can read the program from the recording medium and execute the program.
  • a part or all of the ECU 100 may be composed of, for example, a microcomputer, a microprocessor unit, or an updatable one such as firmware, or is executed by a command from a CPU or the like. It may be a program module or the like.
  • FIG. 4 is a flowchart showing a processing flow of fuel adjustment control executed by the ECU 100 according to the first modification.
  • the ECU 100 first executes a step (S11) of calculating the intake amount based on the flow rate and a step (S12) of calculating the intake amount based on the intake pressure.
  • the ECU 100 executes a step (S13) of determining the presence or absence of air pulsation in the intake pipe 10 based on the time-dependent change of the detection result by the air flow sensor 11.
  • the ECU 100 executes a step (S14) of determining whether or not the pulsation amplitude exceeds a predetermined threshold value.
  • the ECU 100 executes the step (S15) of controlling the drive of the injector 15 according to the intake amount based on the intake pressure calculated in step S12.
  • step (S16) of controlling the drive of the injector 15 according to the intake amount based on the flow rate calculated in step S1. .. Further, even when the pulsation is detected and the pulsation amplitude does not exceed the threshold value (S14: N), the ECU 100 controls the drive of the injector 15 according to the intake amount based on the flow rate calculated in step S1. Step (S16) is executed. The ECU 100 that has executed step S15 or step S16 re-executes the processing flow from step S11.
  • the injector 15 is controlled according to the intake amount based on the intake pressure when the pulsation amplitude exceeds the threshold value.
  • the ECU 100 may be configured to control the drive.
  • the amplitude of the pulsation which is the operating state information of the engine 1, is used to determine the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure.
  • the second modification will be described later so as to determine the superiority or inferiority of the intake amount based on the flow rate and the intake amount based on the intake pressure based on the amplitude of the pulsation.
  • the ECU 100 may be configured.
  • FIG. 5 is a flowchart showing a processing flow of fuel adjustment control executed by the ECU 100 according to the second modification. Since steps S21 to S25 in this processing flow are the same as steps S1 to S5 in the processing flow of fuel adjustment control executed by the ECU 100 according to the embodiment, the description thereof will be omitted.
  • a virtual three-dimensional model is recorded in the ROM 103 of the ECU 100.
  • the x-axis in this virtual three-dimensional model indicates the throttle opening.
  • the y-axis in the virtual three-dimensional model indicates the engine speed.
  • the z-axis in the virtual 3D model indicates the amount of valve overlap.
  • Each coordinate in the virtual three-dimensional model is associated with a first coefficient and a second coefficient.
  • the first coefficient is a numerical value multiplied by the intake amount based on the flow rate.
  • the second coefficient is a numerical value that is multiplied by the amount of intake air based on the intake air pressure.
  • the first coefficient and the second coefficient associated with each coordinate are numerical values determined based on prior experiments.
  • the first coefficient associated with the coordinates where the error of the intake amount based on the flow rate is larger than the error of the intake amount based on the intake pressure is a numerical value smaller than the second coefficient associated with the same coordinates.
  • the second coefficient associated with the coordinates where the error of the intake amount based on the intake pressure is larger than the error of the intake amount based on the flow rate is a numerical value smaller than the first coefficient associated with the same coordinates.
  • the added value of the first coefficient and the second coefficient is 1.
  • the ECU 100 that has completed step S25 then performs a step (S26) of specifying the coordinates in the virtual three-dimensional model in the combination of the three based on the throttle opening, the valve overlap amount, and the engine rotation speed.
  • a step (S26) of specifying the coordinates in the virtual three-dimensional model in the combination of the three based on the throttle opening, the valve overlap amount, and the engine rotation speed.
  • the ECU 100 newly calculates the intake amount based on the first coefficient and the second coefficient associated with the specified coordinates, the intake amount based on the flow rate, and the intake amount based on the intake pressure (S27). ) Is executed.
  • the intake amount is newly obtained by adding the result of multiplying the intake amount based on the flow rate by the first coefficient and the result of multiplying the intake amount based on the intake pressure by the second coefficient.
  • the ECU 100 which has newly calculated the intake amount in step S27, executes the step (S28) of controlling the drive of the injector 15 based on the intake amount. By this execution, the amount of fuel supplied to the combustion chamber 4 is adjusted to an amount according to the amount of intake air.
  • the ECU 100 that has executed step S28 re-executes the processing flow from step S21.
  • Multiplying the intake amount calculated based on the flow rate by the first coefficient in step S27 corresponds to weighting the intake amount calculated based on the flow rate based on the operating state information of the engine 1. Further, in step S27, multiplying the intake amount calculated based on the intake pressure by the second coefficient means that the intake amount calculated based on the intake pressure is weighted based on the operating state information of the engine 1. Corresponds to. Adding the result of multiplying the intake amount calculated based on the flow rate by the first coefficient and the result of multiplying the intake amount calculated based on the intake pressure by the second coefficient weights the two intake amounts. Corresponds to averaging.
  • ⁇ Action> In the ECU 100 according to the second modification, a larger weight is given to the more accurate of the intake amount based on the flow rate and the intake amount based on the intake pressure according to the operating state of the engine 1.
  • the more accurate one of the intake amount based on the flow rate and the intake amount based on the intake pressure is weighted to be more accurate. Is larger than the other, and can be reflected in the calculation result of the intake air amount.
  • the present invention can be used in an ECU or the like mounted on a vehicle such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

吸気の脈動に起因する吸気量の算出誤差を従来よりも低減することができる制御装置100を提供する。 流量センサ11によって検出される流量に基づいてエンジン1の吸気量を算出し、圧力センサ17によって検出される吸気圧に基づいてエンジン1の吸気量を算出し、エンジン1の運転状態情報に基づいて、流量に基づいて算出される吸気量と、吸気圧に基づいて算出される吸気量との優劣を判定する。

Description

制御装置、制御方法、及びプログラム
 本発明は、制御装置、制御方法、及びプログラムに関する。
 従来の制御装置として、流量センサによって検出される流量に基づいてエンジンの吸気量を算出し、この吸気量に基づいてエンジンの運転を制御する制御装置が知られている。
 例えば、特許文献1に記載のECU(Engine Control Unit)は、流量センサたるエアフローセンサによる流量の検出結果に基づいて、エンジンへの吸気量を算出する。このECUは、エンジン回転数をもとに吸気脈動周波数を算出し、エアフローセンサによる流量検出値と、吸気脈動周波数とに基づいて吸気量を補正する。更に、このECUは、補正後の吸気量に基づいてエンジンへの燃料の供給量を調整する。
 特許文献1によれば、かかる構成のECUは、吸気の脈動に起因する吸気量の算出誤差を低減することができるとされる。
特開2014-20212号公報
 しかしながら、このECUにおいては、吸気の脈動が大きくなるほど、吸気量の算出誤差が大きくなってしまうという課題がある。
 本発明の一態様によれば、吸気の流量に基づいてエンジン(1)の吸気量を取得し、前記吸気量に基づいて前記エンジン(1)の運転を制御する制御部(101)を備え、吸気圧に基づいて前記エンジン(1)の吸気量を取得し、前記流量に基づいて取得される吸気量と、前記吸気圧に基づいて取得される吸気量との優劣を、前記エンジン(1)の運転状態情報に基づいて判定する制御装置(100)が提供される。
 本発明の一態様によれば、吸気の流量に基づいて前記エンジン(1)の吸気量を取得するステップ(S1)と、吸気圧に基づいて前記エンジン(1)の吸気量を取得するステップ(S2)と、前記流量に基づいて取得される吸気量と、前記吸気圧に基づいて取得される吸気量との優劣を、前記エンジン(1)の運転状態情報に基づいて判定するステップ(S7)とを実行する、制御方法が提供される。
 本発明の一態様によれば、コンピュータに用いられるプログラムであって、前記制御方法の各ステップをコンピュータに実行させるプログラムが提供される。
 本発明によれば、脈動に起因する吸気量の取得誤差を従来よりも低減することができるという優れた効果がある。
実施形態に係るECUの制御対象となるエンジン及びこれの周囲を示す概略構成図である。 同ECUと、車両に搭載されて同ECUに電気接続される各機器とを示す電気ブロック図である。 同ECUによって実行される燃料調整制御の処理フローを示すフローチャートである。 第1変形例に係るECUによって実行される燃料調整制御の処理フローを示すフローチャートである。 第2変形例に係るECUによって実行される燃料調整制御の処理フローを示すフローチャートである。
 以下、本発明の制御装置の一実施形態であるECUについて、図面を参照して説明する。なお、以下に説明する構成、動作等は、本発明の実施形態としての一例(代表例)であり、本発明は以下に説明する構成、動作等に限定されない。また、以下では、同一の又は類似する説明を、適宜簡略化又は省略する。また、各図において、同一の又は類似する部材又は部分については、符号を付すことを省略するか、又は、同一の符号を付す。また、細かい構造については、適宜図示を簡略化又は省略する。
 図1は、実施形態に係るECUの制御対象となるエンジン及びこれの周囲を示す概略構成図である。エンジン1は、複数のシリンダ2及びピストン3を備える多気筒のエンジンである。図1では、便宜上、シリンダ2及びピストン3が1つずつのみ示される。ピストン3は、シリンダ2の気筒内で気筒の軸線方向に移動する。この移動に伴って、ピストン3に連結されたコンロッド5がクランク軸6を回転させる。シリンダ2内において、ピストン3の上方には、燃焼室4が配置される。燃焼室4には、燃料に点火するための点火プラグ14が設けられる。
 エンジン1の吸気口には、吸気バルブ12が設けられる。エンジン1の排気口には、排気バルブ13が設けられる。吸気バルブ12、排気バルブ13は何れも、可変バルブタイミング(VVT)機構によって開閉されるバルブである。
 エンジン1の吸気口には、吸気マニホールド7、コレクタ8、スロットルバルブ9、及び吸気管10が順に連結する。吸気マニホールド7、コレクタ8、スロットルバルブ9、及び吸気管10は、吸気路を構成する。吸気管10内には、流量センサとしてエアフローセンサ11が配置される。吸気バルブ12が開き、且つスロットルバルブ9が開くと、外気が吸気管10、スロットルバルブ9、コレクタ8、吸気マニホールド7、及び吸気バルブ12を順に経由して、燃焼室4内に吸気される。燃焼室4内に吸気される直前の空気は、吸気マニホールド7内において、インジェクタ15から噴射される燃料と混合される。空気とともに燃焼室4内に入った燃料は、点火プラグ14によって点火される。この点火によって燃焼した燃料は、気化によって体積を増大させて、ピストン3を点火プラグ14から遠ざかる方向に移動させる。
 燃焼室4において燃料の燃焼によって生じたガスは、エンジン1の排気口から、排気バルブ13、及び排気管16を介して、排気ガスとして外部に排出される。
 エンジン1には、排気管16内の排気ガスの一部を、燃焼室4内に戻すEGR(Exhaust Gas Recirculation)システムが採用されている。エンジンサイクルにおける所定のタイミングで、吸気バルブ12と排気バルブ13とを同時に開くバルブオーバーラップが行われることで、燃焼室4内に排気ガスが戻される。
 コレクタ8内には、圧力センサ17が配置される。本実施形態に係るECUは、圧力センサ17による吸気圧の検出結果に基づいて、エンジンに吸入される全ガス量(空気量+EGRガス量)を算出する。
 エアフローセンサ11によるエアー流量の検出結果に基づいて算出される吸気量(以下、流量に基づく吸気量という)には、エンジンのサイクルによって空気が間欠的に吸入されることで生ずる吸気の脈動に起因する計測誤差が含まれる。エンジン1の回転速度が低くなり、且つスロットルバルブ9の開度(以下、スロットル開度という)が大きくなるほど、前述の脈動が大きくなる。このため、エンジン1の回転速度が低くなり、且つスロットル開度が大きくなるほど、脈動による吸気量の算出誤差が大きくなる。また、アトキンソンサイクル(ミラーサイクル)動作を狙った吸気弁の遅閉じ動作を行う構成においては、シリンダに吸入された空気の一部が吸気側に押し出されて非常に大きな振幅の吸気の脈動を発生させる。このため、前述の構成においては、エアフロ―センサ11による吸気量の算出誤差が従来手法では補正できないレベルにまで大きくなる場合がある。
 一方、圧力センサ17による吸気圧の検出結果に基づいて吸気量(以下、吸気圧に基づく吸気量という)を算出することも可能である。しかしながら、吸気圧に基づく吸気量は、空気量と、EGRガス量と、バルブオーバーラップによる排気ガス戻り量とを区別できないため、バルブオーバーラップ量が大きい時に大きな誤差を生じる。本発明者らは、実験により、次のようなことを見出した。即ち、流量に基づく吸気量の誤差と、吸気圧に基づく吸気量の誤差との大小関係が、エンジンの運転状態に応じて逆転するのである。
 具体的には、バルブオーバーラップ量が大きい時には、吸気圧に基づく吸気量の誤差が、流量に基づく吸気量の誤差よりも大きくなる。これに対し、バルブオーバーラップが発生していないときに、脈動の振幅がある程度大きくなると、流量に基づく吸気量の誤差が、吸気圧に基づく吸気量の誤差よりも大きくなる。
<ECU100の構成>
 図2は、実施形態に係るECUと、車両に搭載されてECUに電気接続される各機器とを示す電気ブロック図である。制御装置たるECU100は、制御部たるCPU(Central Processing Unit)101、RAM(Random Access Memory)102、ROM(Read Only Memory)103等を備える。ECU100には、エアフローセンサ11、スロットルポジションセンサ20、エンジン回転数センサ21、吸気バルブ位置センサ22、排気バルブ位置センサ23、インジェクタ15等が電気接続される。
 スロットルポジションセンサ20は、スロットルバルブ9の位置を検出するセンサである。エンジン回転数センサ21は、エンジン1の回転速度を検出するセンサである。吸気バルブ位置センサ22は、吸気バルブ12の位置を検出するセンサである。排気バルブ位置センサ23は、排気バルブ13の位置を検出するセンサである。
 ECU100は、ROM103に記録されているプログラムに基づいて、燃焼室4への吸気量を算出し、算出結果に基づいてインジェクタ15を駆動して燃焼室への燃料の供給量を調整する燃料調整制御を実行する。
 図3は、ECU100によって実行される燃料調整制御の処理フローを示すフローチャートである。この処理フローにおいて、ECU100は、まず、流量に基づく吸気量を算出するステップ(S1)と、吸気圧に基づく吸気量を算出するステップ(S2)とを実行する。
 ECU100のROM103内には、予めの実験によって構築された仮想3次元モデルが記録されている。この仮想3次元モデルにおけるx軸は、スロットル開度を示す。仮想3次元モデルにおけるy軸は、エンジン回転速度を示す。仮想3次元モデルにおけるz軸は、吸気バルブ12の位置と、排気バルブ13の位置とに基づいて算出されるバルブオーバーラップ量を示す。仮想3次元モデルにおける各座標は、選択情報に関連付けられている。この選択情報は、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、何れを選択すべきかを示す情報である。予めの実験により、各座量のそれぞれについて、流量に基づく吸気量の誤差と、吸気圧に基づく吸気量の誤差とのうち、何れが大きくなるのかが調査されている。流量に基づく吸気量の誤差を、吸気圧に基づく吸気量の誤差よりも大きくする座標には、吸気圧に基づく吸気量を選択することを示す選択情報が関連付けられる。吸気圧に基づく吸気量の誤差を、流量に基づく吸気量の誤差よりも大きくする座標には、流量に基づく吸気量を選択することを示す選択情報が関連付けられる。
 ECU100は、ステップS2で吸気圧に基づく吸気量を算出すると、次に、スロットルポジションセンサ20による検出結果に基づいてエンジン1の運転状態情報たるスロットル開度を算出するステップ(S3)を実行する。その後、ECU100は、吸気バルブ位置センサ22による検出結果と、排気バルブ位置センサ23による検出結果とに基づいて、エンジン1の運転状態情報たるバルブオーバーラップ量を算出するステップ(S4)を実行する。更に、ECU100は、エンジン回転数センサ21による検出結果に基づいて、エンジン1の運転状態情報たるエンジン回転速度を算出するステップ(S5)を実行する。
 ステップS5を終えたECU100は、次に、スロットル開度と、バルブオーバーラップ量と、エンジン回転速度とに基づいて、それら3つの組み合わせにおける仮想3次元モデルでの座標を特定するステップ(S6)を実行する。その後、ECU100は、特定した座標に関連付けられた選択情報について、流量に基づく吸気量を選択するという情報であるか否かを判定するステップ(S7)を実行する。このS7のステップにおいて、Yesという判定結果になった場合(S7:Y)には、ECU100は、S1のステップで算出しておいた、流量に基づく吸気量、に従ってインジェクタ15の駆動を制御するステップ(S8)を実行する。この実行により、燃焼室4への燃料の供給量が吸気量に応じた量に調整される。一方、S7のステップにおいて、Noという判定結果になった場合(S7:N)には、ECU100は、S2のステップで算出しておいた、吸気圧に基づく吸気量、に従ってインジェクタ15の駆動を制御するステップ(S9)を実行する。この実行により、燃焼室4への燃料の供給量が吸気量に応じた量に調整される。ステップS8、又はステップS9を実行したECU100は、ステップS1からの処理フローを再び実行する。
 なお、ステップS7において、座標に関連付けられた選択情報について、流量に基づく吸気量を選択するという情報であるか否かを判定することは、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、何れの誤差が小さいのかを判定することに該当する。このため、ステップS7において、座標に関連付けられた選択情報について、流量に基づく吸気量を選択するという情報であるか否かを判定することは、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定することに該当する。以下、流量に基づく吸気量と、吸気圧に基づく吸気量とを、まとめて2つの吸気量と言う。
 エンジン1の運転状態と、その運転状態における2つの吸気量の優劣(どちらの誤差がより小さいのか)との関係については、予めの実験によって調査されるのが一般的である。実験による調査結果に基づいて、個々の運転状態(例えば上述した仮想3次元モデルの各座標)と、2つの吸気量のうち何れを用いるのかを示す情報(例えば座標に関連付けられた選択情報)とを関連付けたデータが構築される。よって、ECU100などの制御装置が次のような構成を備えていれば、その制御装置は、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定していると言える。即ち、流量に基づく吸気量と、吸気圧に基づく吸気量との何れか一方を選択するステップと、選択した方の吸気量に基づいてエンジンの運転を制御するステップとを実行する構成である。かかる構成においては、流量に基づく吸気量と、吸気圧に基づく吸気量との何れか一方を選択するステップが、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定するステップに該当する。
 また、後述する第1変形例のように、脈動の振幅などの運転状態を示す指標値を算出し、算出結果と閾値との比較に基づいて2つの吸気量のうちの何れを用いるのかを決定する構成の場合には、算出結果と閾値を比較することが優劣を判定することに該当する。
 また、後述する第2変形例のように、運転状態に基づいて選択した第1係数、第2係数の乗算によって2つの吸気量のそれぞれを補正、及び合算する構成の場合には、前記データに基づいて第1係数、第2係数を選択することが、優劣を判定することに該当する。
 エンジン1の運転状態として、スロットル開度、バルブオーバーラップ量、及びエンジン回転速度を取得する例について説明したが、他の運転状態を取得した結果に基づいて、2つの吸気量のうちの何れを用いるのかを決定してもよい。例えば、後述する第1変形例のように、脈動の振幅を運転状態として用いてもよい。2つの吸気量の優劣の判定のために参照される運転状態は、運転中のエンジン1における何らかの特性を示す数値であればよい。
 エアフローセンサ11による流量の検知結果と、圧力センサによる吸気圧の検知結果とをECU100に入力する例について説明したが、それらの検知結果をECU100に取得させる方法は前記例に限られない。例えば、エアフローセンサ11による流量の検知結果と、圧力センサによる吸気圧の検知結果とをECU100とは異なる装置に入力した後、その装置からECU100に取得させてもよい。
 流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、流量に基づく吸気量を先に算出する例について説明したが、吸気圧に基づく吸気量を先に算出してもよい。また、スロットル開度、バルブオーバーラップ量、及びエンジン回転速度については、どのような順番でそれぞれを算出してもよい。また、流量に基づく吸気量と、吸気圧に基づく吸気量とを算出してから、それら二つの吸気量の優劣を判定(S6及びS7)する例について説明したが、二つの吸気量の優劣を判定してから、優れている方の吸気量だけを算出してもよい。
 エンジン1の吸気量の算出結果に基づいて、燃焼室4への燃料の供給量を調整する例について説明したが、燃料の供給量とは異なるパラメータを調整してエンジン1の運転を制御する構成にも、本発明の適用が可能である。
 流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を3次元モデルに基づいて判定する例について説明したが、4次元以上のモデル、又は2次元以下のモデルに基づいて優劣を判定してもよい。例えば、バルブオーバーラップ量がゼロよりも大きい場合に、流量に基づく吸気量を選択する一方で、バルブオーバーラップ量がゼロである場合に、吸気圧に基づく吸気量を選択してもよい。
<作用>
 実施形態に係るECU100においては、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、より正確な方をより大きく反映させて、燃料の供給量の調整に用いる吸気量を決定する。
 実施形態に係るECU100においては、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、より正確な方を、燃焼室4への燃料の供給量の調整に用いる吸気量として決定する。
 実施形態に係るECU100においては、吸気圧に基づく吸気量の誤差との関連の強いバルブオーバーラップ量に基づいて、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定する。
 実施形態に係るECU100においては、バルブオーバーラップ量に加えて、エンジン回転速度、及びスロットル開度にも基づいて、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定する。
<効果>
 実施形態に係るECU100によれば、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、より正確な方をより大きく反映させて、燃料の供給量の調整に用いる吸気量を決定するので、脈動に起因する吸気量の算出誤差を従来よりも低減することができる。
 実施形態に係るECU100によれば、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、より正確な方を、燃焼室4への燃料の供給量の調整に用いる吸気量として決定するので、他方も吸気量の決定に反映させる場合に比べて、吸気量の誤差を低減することができる。
 実施形態に係るECU100によれば、吸気圧に基づく吸気量の誤差との関連の強いバルブオーバーラップ量に基づいて、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を正確に判定することができる。
 実施形態に係るECU100によれば、バルブオーバーラップ量に加えて、エンジン回転速度、及びスロットル開度も参照することで、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣をより正確に判定することができる。
 燃料調整制御をコンピュータに実行させるプログラムを、半導体メモリ、磁気ディスク、光ディスク等の機械読み取り可能な記録媒体に記憶させ、CPU等のコンピュータにその記録媒体からプログラムを読み取らせて実行させることができる。
 ECU100の一部又は全ては、例えば、マイコン、マイクロプロセッサユニット当で構成されていてもよく、又はファームウェア等の更新可能なもので構成されていてもよく、又はCPU等からの指令によって実行されるプログラムモジュール等であってもよい。 
 以下、実施形態に係るECU100の構成の一部を他の構成に変形した各変形例に係るECU100について説明する。なお、以下に特筆しない限り、各変形例に係るECU100の構成は、実施形態と同様である。
〔第1変形例〕
<構成>
 図4は第1変形例に係るECU100によって実行される燃料調整制御の処理フローを示すフローチャートである。この処理フローにおいて、ECU100は、まず、流量に基づく吸気量を算出するステップ(S11)と、吸気圧に基づく吸気量を算出するステップ(S12)とを実行する。次に、ECU100は、エアフローセンサ11による検知結果の経時変化に基づいて、吸気管10内における空気の脈動の有無を判定するステップ(S13)を実行する。脈動が検出された場合(S13:Y)、ECU100は、脈動の振幅について、所定の閾値を超えるか否かを判定するステップ(S14)を実行する。脈動の振幅が閾値を超える場合(S14でY)、ECU100は、ステップS12で算出しておいた、吸気圧に基づく吸気量、に従ってインジェクタ15の駆動を制御するステップ(S15)を実行する。
 一方、S13のステップで脈動が検出されない場合(S13:N)、ECU100は、ステップS1で算出しておいた、流量に基づく吸気量、に従ってインジェクタ15の駆動を制御するステップ(S16)を実行する。また、脈動が検出され、且つ脈動の振幅が閾値を超えない場合(S14:N)にも、ECU100は、ステップS1で算出しておいた、流量に基づく吸気量、に従ってインジェクタ15の駆動を制御するステップ(S16)を実行する。ステップS15、又はステップS16を実行したECU100は、ステップS11からの処理フローを再び実行する。
 なお、脈動の振幅が閾値を超えた場合に吸気圧に基づく吸気量に従ってインジェクタ15の駆動を制御する代わりに、脈動の振幅が閾値以上になった場合に吸気圧に基づく吸気量に従ってインジェクタ15の駆動を制御するようにECU100を構成してもよい。
<作用>
 第1変形例に係るECU100においては、エンジン1の運転状態情報たる脈動の振幅を、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣の判定に利用する。
<効果>
 第1変形例に係るECU100によれば、脈動の振幅に基づいて、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定することができる。
 なお、第1変形例に係るECU100と同様に、脈動の振幅に基づいて、流量に基づく吸気量と、吸気圧に基づく吸気量との優劣を判定するように、後述の第2変形例に係るECU100を構成してもよい。
〔第2変形例〕
<構成>
 図5は、第2変形例に係るECU100によって実行される燃料調整制御の処理フローを示すフローチャートである。この処理フローにおけるステップS21~ステップS25は、実施形態に係るECU100によって実行される燃料調整制御の処理フローにおけるステップS1~ステップS5と同様であるので、説明を省略する。
 ECU100のROM103内には、仮想3次元モデルが記録されている。この仮想3次元モデルにおけるx軸は、スロットル開度を示す。仮想3次元モデルにおけるy軸は、エンジン回転速度を示す。仮想3次元モデルにおけるz軸は、バルブオーバーラップ量を示す。仮想3次元モデルにおける各座標は、第1係数、及び第2係数に関連付けられている。第1係数は、流量に基づく吸気量に乗じられる数値である。第2係数は、吸気圧に基づく吸気量に乗じられる数値である。各座標に関連付けられた第1係数、及び第2係数は、予めの実験に基づいて決定された数値である。流量に基づく吸気量の誤差が、吸気圧に基づく吸気量の誤差よりも大きくなる座標に関連付けられる第1係数は、同じ座標に関連付けられる第2係数よりも小さい数値である。吸気圧に基づく吸気量の誤差が、流量に基づく吸気量の誤差よりも大きくなる座標に関連付けられる第2係数は、同じ座標に関連づけられる第1係数よりも小さい数値である。同じ座標において、第1係数と第2係数との加算値は、1である。
 ステップS25を終えたECU100は、次に、スロットル開度と、バルブオーバーラップ量と、エンジン回転速度とに基づいて、それら3つの組み合わせにおける仮想3次元モデルでの座標を特定するステップ(S26)を実行する。その後、ECU100は、特定した座標に関連付けられた第1係数、及び第2係数と、流量に基づく吸気量と、吸気圧に基づく吸気量とに基づいて、新たに吸気量を算出するステップ(S27)を実行する。このステップにおいては、流量に基づく吸気量に第1係数を乗算した結果と、吸気圧に基づく吸気量に第2係数を乗算した結果との加算によって吸気量が新たに求められる。
 ステップS27で新たに吸気量を算出したECU100は、その吸気量に基づいてインジェクタ15の駆動を制御するステップ(S28)を実行する。この実行により、燃焼室4への燃料の供給量が吸気量に応じた量に調整される。ステップS28を実行したECU100は、ステップS21からの処理フローを再び実行する。
 ステップS27において、流量に基づいて算出される吸気量に第1係数を乗算することは、流量に基づいて算出される吸気量に、エンジン1の運転状態情報に基づく重み付けをすることに該当する。また、ステップS27において、吸気圧に基づいて算出される吸気量に第2係数を乗算することは、吸気圧に基づいて算出される吸気量に、エンジン1の運転状態情報に基づく重み付けをすることに該当する。流量に基づいて算出される吸気量に第1係数を乗算した結果と、吸気圧に基づいて算出される吸気量に第2係数を乗算した結果とを合算することは、2つの吸気量を重み付け平均することに該当する。
<作用>
 第2変形例に係るECU100においては、エンジン1の運転状態に応じて、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、より正確な方により大きな重み付けをする。
<効果>
 第2変形例に係るECU100によれば、流量に基づく吸気量と、吸気圧に基づく吸気量とのうち、より正確な方により大きな重み付けをすることで、それら吸気量のうち、より正確な方を他方よりも大きく、吸気量の算出結果に反映させることができる。
 以上、本発明の好ましい実施形態及び各変形例について説明したが、本発明は、これらの実施形態及び各変形例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
 本発明は、自動車などの車両に搭載されるECUなどに利用が可能である。
 1・・・エンジン、2・・・シリンダ、3・・・ピストン、4・・・燃焼室、5・・・コンロッド、6・・・クランク軸、7・・・吸気マニホールド、8・・・コレクタ、9・・・スロットルバルブ、10・・・吸気管、11・・・エアフローセンサ、12・・・吸気バルブ、13・・・排気バルブ、14・・・点火プラグ、15・・・インジェクタ、16・・・排気管、17・・・圧力センサ、20・・・スロットルポジションセンサ、21・・・エンジン回転数センサ、22・・・吸気バルブ位置センサ、23・・・排気バルブ位置センサ、100・・・ECU、101・・・CPU、102・・・RAM、103・・・ROM

 

Claims (8)

  1.  吸気の流量に基づいてエンジン(1)の吸気量を取得し、前記吸気量に基づいて前記エンジン(1)の運転を制御する制御部(101)を備え、
     吸気圧に基づいて前記エンジン(1)の吸気量を取得し、前記流量に基づいて取得される吸気量と、前記吸気圧に基づいて取得される吸気量との優劣を、前記エンジン(1)の運転状態情報に基づいて判定する、
    制御装置(100)
  2.  前記制御部(101)は、前記優劣の判定結果に基づいて、前記流量に基づいて取得される吸気量と、前記吸気圧に基づいて取得される吸気量とのうち、何れか一方を、前記エンジンの運転の制御に用いる吸気量として決定する、
    請求項1に記載の制御装置(100)。
  3.  前記制御部(101)は、前記流量に基づいて取得される吸気量と、前記吸気圧に基づいて取得される吸気量とのそれぞれを、前記優劣の判定結果に基づいて重み付け平均した結果を、前記エンジンの運転の制御に用いる吸気量として決定する、
    請求項1に記載の制御装置(100)。
  4.  前記運転状態情報として、吸気バルブと、排気バルブとのバルブオーバーラップ量を用いる、
    請求項1乃至3の何れか一項に記載の制御装置(100)。
  5.  前記運転状態情報として、更に、エンジン回転速度、及びスロットル開度を用いる、
    請求項4に記載の制御装置(100)。
  6.  前記流量に基づいて吸気の脈動を検出し、前記脈動の振幅を前記運転状態情報として用いる、
    請求項1乃至3の何れか一項に記載の制御装置(100)。
  7.  吸気の流量に基づいてエンジン(1)の吸気量を取得するステップ(S1)と、
     吸気圧に基づいて前記エンジン(1)の吸気量を取得するステップ(S2)と、
     前記流量に基づいて取得される吸気量と、前記吸気圧に基づいて取得される吸気量との優劣を、前記エンジン(1)の運転状態情報に基づいて判定するステップ(S7)とを実行する、
    制御方法。
  8.  コンピュータに用いられるプログラムであって、
    請求項7に記載の制御方法の各ステップをコンピュータに実行させるプログラム。

     
PCT/JP2020/005212 2019-03-19 2020-02-11 制御装置、制御方法、及びプログラム WO2020189096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021506237A JP7261863B2 (ja) 2019-03-19 2020-02-11 制御装置、制御方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-051364 2019-03-19
JP2019051364 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189096A1 true WO2020189096A1 (ja) 2020-09-24

Family

ID=72519862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005212 WO2020189096A1 (ja) 2019-03-19 2020-02-11 制御装置、制御方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP7261863B2 (ja)
WO (1) WO2020189096A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223519A (ja) * 2007-03-09 2008-09-25 Toyota Motor Corp 内燃機関の制御装置
JP2009019611A (ja) * 2007-07-13 2009-01-29 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2009167897A (ja) * 2008-01-16 2009-07-30 Denso Corp 内燃機関の吸入空気量検出装置
JP2011252785A (ja) * 2010-06-02 2011-12-15 Daihatsu Motor Co Ltd 内燃機関の吸入空気量補正方法
JP2018115555A (ja) * 2017-01-16 2018-07-26 本田技研工業株式会社 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100642A (ja) 2002-09-12 2004-04-02 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2010106661A (ja) 2008-10-28 2010-05-13 Denso Corp 内燃機関の異常診断装置、及びクランク軸の逆転有無判定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223519A (ja) * 2007-03-09 2008-09-25 Toyota Motor Corp 内燃機関の制御装置
JP2009019611A (ja) * 2007-07-13 2009-01-29 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2009167897A (ja) * 2008-01-16 2009-07-30 Denso Corp 内燃機関の吸入空気量検出装置
JP2011252785A (ja) * 2010-06-02 2011-12-15 Daihatsu Motor Co Ltd 内燃機関の吸入空気量補正方法
JP2018115555A (ja) * 2017-01-16 2018-07-26 本田技研工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP7261863B2 (ja) 2023-04-20
JPWO2020189096A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US7004148B2 (en) Control apparatus for internal combustion engine
US9797331B2 (en) Control apparatus for internal combustion engine
JP6071370B2 (ja) 内燃機関の制御装置
JP5348242B2 (ja) 内燃機関の制御システム
JP4969546B2 (ja) 内燃機関の制御装置および方法
US10794237B2 (en) Control device for internal combustion engine
CN106257045B (zh) 用于发动机控制的方法和系统
JP5331613B2 (ja) 内燃機関の筒内ガス量推定装置
KR102323282B1 (ko) 비점화 모드에서의 연소 기관의 실린더 급기량을 결정하기 위한 방법
US5445127A (en) Method and system for reducing engine spark knock during a rapid transient
US10294875B2 (en) Control device for adjusting first and second fuel ratios
WO2020189096A1 (ja) 制御装置、制御方法、及びプログラム
JP5994465B2 (ja) エンジンの制御装置
JP4859731B2 (ja) 内燃機関の制御装置
JP6536613B2 (ja) 内燃機関の制御装置
JP5776530B2 (ja) エンジンの制御装置
JP2011157852A (ja) 内燃機関の制御装置
JP7207548B2 (ja) 内燃エンジンの制御方法および制御装置
GB2491110A (en) Method of operating an internal combustion engine having crankshaft position sensor correction means
JP2005009477A (ja) 多気筒内燃機関の制御装置
JP4155036B2 (ja) 内燃機関の内部egr量推定装置
JP2006105099A (ja) 内燃機関の制御装置
JP5472165B2 (ja) エンジンの制御装置
JP2016014354A (ja) 内燃機関の制御装置
JP2018145801A (ja) 湿度センサの故障判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774523

Country of ref document: EP

Kind code of ref document: A1