JP6536613B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6536613B2
JP6536613B2 JP2017068310A JP2017068310A JP6536613B2 JP 6536613 B2 JP6536613 B2 JP 6536613B2 JP 2017068310 A JP2017068310 A JP 2017068310A JP 2017068310 A JP2017068310 A JP 2017068310A JP 6536613 B2 JP6536613 B2 JP 6536613B2
Authority
JP
Japan
Prior art keywords
ignition
combustion
fuel injection
self
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017068310A
Other languages
English (en)
Other versions
JP2018168808A (ja
Inventor
山田 諒
諒 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017068310A priority Critical patent/JP6536613B2/ja
Priority to DE102018107656.8A priority patent/DE102018107656B4/de
Publication of JP2018168808A publication Critical patent/JP2018168808A/ja
Application granted granted Critical
Publication of JP6536613B2 publication Critical patent/JP6536613B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、内燃機関の制御装置に関し、より詳細には、点火アシスト自着火燃焼運転モードを有する内燃機関の制御装置に関する。
例えば、特許文献1には、予混合圧縮着火エンジンの燃焼制御装置が開示されている。この燃焼制御装置によれば、予混合気が圧縮着火されるエンジン運転状態にあり、かつ、燃焼により生じた排気の一部を内部EGRガスとして燃焼室内に残留させる内部EGRが実施されているときに、前回の燃焼サイクルにおける予混合気の燃焼状態に応じて、今回の燃焼サイクルのための燃料噴射量が補正される。より詳細には、この燃料噴射量の補正は、前回の燃焼サイクルにおける予混合気の圧縮着火燃焼時の最大熱発生時期と、前回の燃焼サイクルの図示平均有効圧力とに基づいて実行される。
特開2010−014078号公報 特開2004−028047号公報 特開平10−238374号公報
特許文献1に記載のエンジンのように予混合気の自着火燃焼を伴う燃焼が行われる場合には、予混合気の自着火に影響を及ぼす筒内環境条件パラメータ(例えば、燃料性状、または筒内ガスの温度もしくは湿度)が変化すると、自着火燃焼による燃焼時期が変化する。特許文献1に記載の技術は、前回の燃焼サイクルにおける予混合気の燃焼状態に応じて今回の燃焼サイクルのための燃料噴射量を補正するというものである。つまり、この技術は、前回の燃焼サイクルにおいて予混合気の燃焼が実際に受けた影響を考慮して、今回の燃焼サイクルの燃焼を修正しようとするものである。このような手法では、仮に燃料性状などの筒内環境条件パラメータの変化が急激なものであった場合には、燃焼変動を抑制するための対策として不十分となったり、あるいは燃焼を修正するまでに時間を要したりすることが懸念される。
本発明は、上述のような課題に鑑みてなされたものであり、予混合気の自着火に影響を及ぼす筒内環境条件パラメータが急変したとしても、点火アシスト自着火燃焼の悪化を抑制できるようにした内燃機関の制御装置を提供することを目的とする。
本発明に係る内燃機関の制御装置は、気筒内に燃料を直接噴射する燃料噴射弁と、前記気筒内の混合気に点火する点火装置とを備える予混合圧縮自着火式の内燃機関を制御する。前記制御装置は、前記内燃機関の運転モードとして、点火アシスト自着火燃焼運転モードを含む。前記点火アシスト自着火燃焼運転モードでは、吸気行程または圧縮行程においてメイン燃料噴射が実行され、かつ、前記メイン燃料噴射よりも遅角側の前記圧縮行程において着火アシスト用燃料噴射が実行されるように前記制御装置が前記燃料噴射弁を制御し、かつ、前記着火アシスト用燃料噴射による燃料と空気との着火アシスト用混合気に点火されるように前記制御装置が前記点火装置を制御することで、前記着火アシスト用混合気の着火により得られる熱量によって前記メイン燃料噴射による燃料と空気との予混合気を自着火燃焼させる点火アシスト自着火燃焼が行われる。前記制御装置は、前記点火アシスト自着火燃焼運転モードの実行中に、前記予混合気の自着火に影響を及ぼす筒内環境条件パラメータが変化する可能性が予測された場合に、前記可能性が予測されない場合と比べて、前記点火アシスト自着火燃焼の全体による熱発生量に対する前記着火アシスト用混合気の燃焼による熱発生量の割合である燃焼割合を増加させる。前記制御装置は、前記燃料の補給が実施されたときに、前記予測を行う。
前記内燃機関は、前記内燃機関の実圧縮比、吸気温度、および前記気筒内の残留既燃ガス量のうちの少なくとも1つを制御する1または複数のアクチュエータを備えていてもよい。そして、前記制御装置は、総燃料噴射量に対する前記着火アシスト用燃料噴射による燃料噴射量の割合が増加するように前記燃料噴射弁を制御し、かつ、前記実圧縮比の低下、吸気温度の低下、および前記気筒内の残留既燃ガス量の減少のうちの少なくとも1つが実行されるように前記1または複数のアクチュエータを制御することにより、前記燃焼割合を増加させてもよい。
前記制御装置は、前記燃焼割合を増加させるときに、前記着火アシスト用燃料噴射の時期を進角させる前記燃料噴射弁の制御を伴ってもよい。
本発明によれば、点火アシスト自着火燃焼運転モードの実行中に、予混合気の自着火に影響を及ぼす筒内環境条件パラメータ(例えば、燃料性状)が変化する可能性が予測された場合には、当該可能性が予測されない場合と比べて、点火アシスト自着火燃焼の全体による熱発生量に対する着火アシスト用混合気の燃焼による熱発生量の割合である燃焼割合が増やされる。着火アシスト用混合気に関する燃焼割合が増えると、点火アシスト自着火燃焼に含まれる自着火燃焼のロバスト性を高めることができる。このため、筒内環境条件パラメータが変化する可能性が予測された場合に、このように筒内環境条件パラメータの変化に対する自着火燃焼のロバスト性を事前に高めておくことで、仮に予混合気の自着火に影響を及ぼす筒内環境条件パラメータが実際に急変したとしても、点火アシスト自着火燃焼の悪化を抑制できるようになる。
本発明の実施の形態1に係るシステムの構成を説明するための図である。 SACI燃焼運転モードが使用されるSACI運転領域の一例を表した図である。 SACI燃焼運転モードの実行時に用いられる燃料噴射形態の一例を表した図である。 SACI燃焼時の燃焼波形の例を表した図である。 筒内環境の変化がSACI燃焼時の燃焼波形に与える影響が表された図である。 L−W積分値とクランク角度とSG燃焼割合との関係を説明するための図である。 着火アシスト用燃料噴射割合の増加および実圧縮比の低下がSACI燃焼に与える影響を説明するための図である。 着火アシスト用燃料噴射割合の増加および実圧縮比の低下がSACI燃焼に与える影響を説明するための図である。 SG燃焼割合を高める際に実圧縮比を低下させたことによる効果を説明するためのグラフである。 本発明の実施の形態1に係るSACI燃焼制御に関する処理のルーチンを示すフローチャートである。 着火アシスト用燃料噴射割合および着火アシスト用燃料噴射時期の進角量と、ΔSG熱発生量との関係を表した図である。 自着火時期θdの算出手法の概要を説明するための図である。 ステップS112、S114、S124およびS126の処理において吸気バルブの閉じ時期IVCの進角/遅角量を決定するために用いられる関係を表した図である。 本発明の実施の形態2に係るSACI燃焼制御に関する処理のルーチンを示すフローチャートである。 本発明の実施の形態3に係るSACI燃焼制御に関する処理のルーチンを示すフローチャートである。
以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
実施の形態1.
まず、図1〜図13を参照して、本発明の実施の形態1について説明する。
1.実施の形態1に係るシステムの構成
図1は、本発明の実施の形態1に係るシステムの構成を説明するための図である。図1に示すシステムは、予混合圧縮自着火式の内燃機関10を備えている。内燃機関10は、車両に搭載され、その動力源として使用される。
1−1.燃焼室周りの構成
内燃機関10の各気筒内には、ピストン12が設けられている。気筒内におけるピストン12の頂部側には、燃焼室14が形成されている。燃焼室14には、吸気通路16および排気通路18が連通している。
また、内燃機関10は、気筒毎に、燃焼室14内に燃料を直接噴射する燃料噴射弁20を備えている。さらに、内燃機関10は、燃料噴射弁20により噴射された燃料と空気との混合気に点火するための点火プラグ22を気筒毎に有する点火装置(点火プラグ22のみ図示)を備えている。一例として、燃料噴射弁20と点火プラグ22とは、燃焼室14の天井部の中央付近に近接して配置されている。
1−2.動弁系
吸気通路16の吸気ポートには、当該吸気ポートを開閉する吸気バルブ24が設けられており、排気通路18の排気ポートには、当該排気ポートを開閉する排気バルブ26が設けられている。内燃機関10は、各気筒の吸気バルブ24を開閉駆動する吸気可変動弁装置28(本発明に係る「アクチュエータ」の一例に相当)と、各気筒の排気バルブ26を開閉駆動する排気可変動弁装置30とを備えている。吸気可変動弁装置28は、吸気バルブ24の閉じ時期IVCを可変とするために、一例として、可変バルブタイミング機構(VVT)機構を有している。VVT機構は、クランクシャフト(図示省略)とカムシャフト(図示省略)との相対的な位相角を変更することで吸気バルブ24の開弁期間(作用角)を固定としつつ所定範囲内で開閉時期を連続的に変更するものである。排気可変動弁装置30も、一例として、このようなVVT機構を有している。
1−3.吸気系
本発明に係る内燃機関は、自然吸気エンジンであってもよいが、内燃機関10は、一例として、過給エンジンである。内燃機関10は、過給機の一例としてターボ過給機を備えている。吸気通路16には、ターボ過給機のコンプレッサ32が配置されており、排気通路18には、ターボ過給機のタービン34が配置されている。コンプレッサ32よりも下流側の吸気通路16には、コンプレッサ32により圧縮された吸気を冷却するための水冷インタークーラ36(本発明に係る「アクチュエータ」の一例に相当)が配置されている。水冷インタークーラ36は、冷却水の温度を変更することで吸気温度を制御可能に構成されている。水冷インタークーラ36よりも下流側の吸気通路16には、電子制御式のスロットルバルブ38が設けられている。
1−4.制御系
図1に示すシステムは、制御装置としてのECU40を備えている。ECU40には、内燃機関10およびこれを搭載する車両に搭載された各種センサと、内燃機関10の運転を制御するための各種アクチュエータとが電気的に接続されている。各種アクチュエータは、上述の燃料噴射弁20、点火装置、吸気可変動弁装置28、排気可変動弁装置30、水冷インタークーラ36およびスロットルバルブ38を含む。
上記の各種センサは、クランク角センサ42、エアフローセンサ44、筒内圧センサ46およびリッドセンサ48を含む。クランク角センサ42は、クランク角に応じた信号を出力する。ECU40は、クランク角センサ42を用いてエンジン回転速度を取得できる。エアフローセンサ44は、内燃機関10に吸入される空気の流量に応じた信号を出力する。筒内圧センサ46は、燃焼室14内のガスの圧力に応じた信号を出力する。リッドセンサ48は、車両のフューエルリッド(図示省略)の開放を検出するためのセンサである。さらに、ECU40には、GPS(Global Positioning System)装置50が電気的に接続されている。GPS装置50は、複数のGPS衛星から送信される信号を受信し、受信信号に基づいて車両の位置および姿勢(方位)を算出し、算出した位置姿勢情報をECU40に送るように構成されている。ECU40は、GPS装置50との通信を利用して、道路地図上での車両の位置および進行方向を特定する。
ECU40は、プロセッサ、メモリおよび入出力インターフェースを備えている。入出力インターフェースは、上述の各種センサからセンサ信号を取り込むとともに、上述の各種アクチュエータに対して操作信号を出力する。メモリには、各種アクチュエータを制御するための各種の制御プログラムおよびマップが記憶されている。プロセッサは、制御プログラムをメモリから読み出して実行する。これにより、本実施形態に係る「制御装置」の機能が実現される。
2.SACI燃焼運転モード
2−1.SACI運転領域およびSACI燃焼の概要
図2は、SACI燃焼運転モードが使用されるSACI運転領域の一例を表した図である。図2は、エンジン負荷(エンジントルク)とエンジン回転速度とで特定されるエンジン運転領域を表している。なお、図2中の曲線は、全負荷トルクの曲線を示している。
内燃機関10の運転モードには、点火アシスト自着火(SACI:Spark Assist Compression Ignition)燃焼を利用するSACI燃焼運転モードが含まれる。SACI燃焼は、燃焼ガスによって未燃予混合気を圧縮して自着火に至らしめる形態の燃焼のことである。本実施形態では、SACI燃焼運転モードは、例えば、図2に示すように、極低負荷領域と高負荷領域とを除く運転領域において使用される。
2−2.SACI燃焼のための前提構成の一例
上述のようなSACI燃焼を実施可能とするための前提として、内燃機関10は次のような構成を有している。
2−2−1.圧縮比の設定
すなわち、まず、内燃機関10は、燃料噴射弁20により噴射された燃料と空気との混合気がピストン12により圧縮されることで得られる熱量によって混合気(より詳細には、予混合気)を自着火燃焼させることが可能に構成されている。より詳細には、自着火燃焼を可能とするために、内燃機関10では、一例として、幾何学的な圧縮比(すなわち、ピストン12が下死点にある時の最大筒内容積に対する、ピストン12が上死点にある時の最小筒内容積の比)が、自着火燃焼を利用しない内燃機関のそれと比べて高められている。
2−2−2.スプレーガイド燃焼の利用
さらに、内燃機関10は、自着火燃焼をアシストするための補助的な燃焼の一例として、スプレーガイド燃焼を利用可能に構成されている。具体的には、燃料噴射弁20は、点火プラグ22の近傍にその周囲よりも燃料濃度の高い成層混合気層を形成可能な噴霧を形成するための噴孔を有している。上述のように燃焼室14の天井部の中央付近において燃料噴射弁20と点火プラグ22とが近接して配置された構成は、必須ではないけれどもスプレーガイド燃焼の実現を容易とするために好適な例である。
2−2−3.SACI燃焼運転モード時の燃料噴射形態
図3は、SACI燃焼運転モードの実行時に用いられる燃料噴射形態の一例を表した図である。図3に示すように、SACI燃焼運転モードの実行時に用いられる燃料噴射形態は、メイン燃料噴射と着火アシスト用燃料噴射とを含む。メイン燃料噴射は、自着火燃焼用の燃料を気筒内に供給するために実行される。着火アシスト用燃料噴射は、メイン燃料噴射よりも遅角側の時期において、スプレーガイド燃焼用の燃料を気筒内に供給するために実行される。なお、メイン燃料噴射による燃料噴射量と着火アシスト用燃料噴射による燃料噴射量との和である総燃料噴射量は、内燃機関10に要求されるトルクに応じて決定される。
より具体的には、図3に示す例では、メイン燃料噴射の開始時期は、50〜40°BTDCとされている。メイン燃料噴射は、自着火燃焼用の燃料を予混合化するために比較的早期に実行されるものである。このため、メイン燃料噴射は、図3に示す例よりも進角側の圧縮行程または吸気行程において実行されてもよい。
図3に示す例では、着火アシスト用燃料噴射の開始時期は、30〜20°BTDCとされており、また、着火アシスト用燃料噴射の終了直後に点火が実行されている。着火アシスト用燃料噴射は、上述のようにスプレーガイド燃焼用の燃料噴射であるため、点火時期に近い時期で実行される。図3に示す例に代え、点火は、着火アシスト用燃料噴射の実行中に行われてもよい。また、着火アシスト用燃料噴射は、メイン燃料噴射よりも遅角側で行われる限り、図3に示す例以外の圧縮行程後半の時期で実行されてもよい。
また、メイン燃料噴射および着火アシスト用燃料噴射の双方による総燃料噴射量に対する着火アシスト用燃料噴射量の割合(以下、「着火アシスト用燃料噴射割合」とも称する)は、総燃料噴射量に対するメイン燃料噴射量の割合よりも小さい。図3では、一例として、着火アシスト用燃料噴射割合は30〜40%とされており、メイン燃料噴射量の割合は60〜70%とされている。このような燃料噴射形態を利用する本実施形態のSACI燃焼では、スプレーガイド燃焼による火炎伝播を引き金にして、メイン燃料噴射による未燃予混合気を圧縮して自着火に至らしめることができる。換言すると、着火アシスト用燃料噴射に基づくスプレーガイド燃焼によって、メイン燃料噴射による予混合気の自着火をアシストすることができる。
2−2−4.SACI燃焼時の燃焼波形
図4は、SACI燃焼時の燃焼波形の例を表した図である。より詳細には、図4は、筒内圧Pの波形と熱発生率dQ/dθの波形とを例示している。まず、筒内圧Pは、図4に示すように、圧縮行程において筒内ガスがピストン12の上昇に伴って圧縮されていることで上昇する。そして、筒内圧Pは、圧縮上死点(TDC)付近で生じる燃焼の影響を受けてより高い変化率で上昇した後にピストン12の下降に伴って低下していく。
図4中に破線で示す熱発生率dQ/dθの波形の例は、比較のために表わされた波形に関するものである。この比較例では、圧縮上死点後のクランク角度θ3において、スプレーガイド燃焼と自着火燃焼とが開始されている。一方、図4中に実線で示す熱発生率dQ/dθの波形の例は、図3に示す燃料噴射形態の例が用いられた場合に得られる波形に関するものである。
実線の例では、圧縮上死点より進角側のクランク角度θ1において、まずスプレーガイド燃焼が開始されることで、熱発生率dQ/dθが増加し始めている。クランク角度θ2は、スプレーガイド燃焼により生じた火種の熱量を周囲の未燃予混合気が受け取ることで自着火が開始されたタイミングに相当する。熱発生率dQ/dθに関する破線と実線の波形を比較すると分かるように、スプレーガイド燃焼を伴わずに自着火燃焼が生じるようなタイミング(例えば、クランク角度θ3)に先立ってスプレーガイド燃焼を生じさせることにより、より高い熱発生率dQ/dθを伴う自着火燃焼が生成可能となる。なお、図4中の2つの熱発生率dQ/dθの波形中の細い破線は、自着火燃焼が生じた後のスプレーガイド燃焼による熱発生率dQ/dθの波形を仮想的に表している。
さらに付け加えると、SACI燃焼は、図4中の実線の例のように自着火燃焼に対してスプレーガイド燃焼を適切に伴わせることによって、メイン燃料噴射のみが行われる例とは異なり、自着火燃焼が開始される時期(すなわち、「自着火時期」)を能動的にコントロールできるという利点を有する。
3.SACI燃焼の課題
内燃機関の筒内環境の変化がSACI燃焼に与える影響について説明する。ここでいう筒内環境の変化とは、燃料性状、ならびに、筒内ガスの圧力、温度および湿度などの自着火燃焼に影響を及ぼす筒内環境条件パラメータの変化のことである。SACI燃焼のように自着火燃焼を伴う燃焼は、上記の筒内環境の変化の影響を受けると、燃焼状態が変化し易い。より詳細には、そのような影響を受けると、自着火燃焼を伴う燃焼の時期(クランク角度位置であり、例えば、後述の筒内圧最大クランク角度θPmax(図4に例示)によって代表される)が変化し易い。以下、図5を参照して、筒内環境の変化がSACI燃焼に与える影響についてより具体的に説明する。
図5は、筒内環境の変化がSACI燃焼時の燃焼波形に与える影響が表された図である。図5中の波形A1は、適切な時期かつ適切な熱発生率dQ/dθを伴って自着火燃焼が行われた例に相当する。自着火が生じ易くなるように筒内環境条件パラメータが変化すると、図5中に示す波形A2のように、自着火燃焼の時期が進角するとともに、熱発生率dQ/dθのピーク値が高くなる(すなわち、燃焼が急激に行われる)。そして、環境パラメータが急変すると、このような自着火燃焼の変化が大きくなる。このことは、燃焼騒音の増加、NOx排出量の増加および燃費の低下に繋がる。なお、吸気温度、吸気圧(過給圧)および吸気湿度の変化は、それぞれ、筒内ガスの温度、圧力および湿度の変化に繋がる。自着火が生じ易くなるように筒内環境条件パラメータが変化する例としては、吸気温度または過給圧が高くなったり、吸気湿度が低くなったり、あるいは自着火が生じ易い性状の燃料に交換されたりすることが該当する。
上記とは逆に、自着火が生じにくくなるように筒内環境条件パラメータが変化すると(例えば、吸気温度または過給圧が低くなったり、吸気湿度が高くなったり、あるいは自着火が生じにくい性状の燃料に交換されたりすると)、自着火燃焼の燃焼時期が遅角するとともに、熱発生率dQ/dθのピーク値が低下する(すなわち、燃焼が緩慢に行われる)。そして、筒内環境条件パラメータが急変すると、このような自着火燃焼の変化が大きくなり、やがては自着火燃焼が生じなくなる可能性がある。このことは、燃焼安定性の低下、排気エミッションの増加および燃費の低下に繋がる。
以上説明したような筒内環境の変化が生じた場合に、次のような対策をすることが考えられる。すなわち、筒内環境の変化に伴うSACI燃焼の燃焼時期の過進角または過遅角を検知し、これを修正するためのエンジン制御を実行することが考えられる。しかしながら、このような対策は、SACI燃焼が実際に悪化したことを検知した結果として実行される。このため、その検知に時間を要したり、検知後の制御の応答性が低かったりすると、SACI燃焼に対して修正が反映されるまでに一時的に燃焼が悪化することが懸念される。
4.実施の形態1に係るSACI燃焼制御の概要
本実施形態では、上述の課題に鑑み、上記筒内環境条件パラメータの変化(より詳細には急変)に起因する燃焼悪化を実際に検知してから対策を実行するのではなく、上記筒内環境条件パラメータの変化の可能性が予測された場合に、筒内環境条件パラメータの変化に対する自着火燃焼のロバスト性を向上させるための制御が実行される。より詳細には、ここでいうロバスト性向上のための制御は、筒内環境条件パラメータの変化の可能性が予測された時点(すなわち、筒内での燃焼が燃料性状の上記変化の影響を現実に受ける前の段階)で直ちに開始される。つまり、本実施形態では、このような態様で自着火燃焼のロバスト性向上のための制御が実行されることによって、その後に実際に生じる可能性のある筒内環境条件パラメータの変化が燃焼に及ぼす影響を極力抑制できるようにするための準備がなされる。
4−1.筒内状態のばらつきに対するSG燃焼割合の影響
ここでいう「SG燃焼割合」とは、スプレーガイド燃焼を伴う自着火燃焼であるSACI燃焼において、SACI燃焼の全体による熱発生量に対するスプレーガイド燃焼による熱発生量の割合のことである。
自着火時期を予測するモデルの1つとして、Livengood−Wu積分による予測式(下記の(1)式)がある。(1)式の左辺のように表される関数の積分値を「L−W積分値」と称する。この手法によれば、L−W積分値が1となる時点、すなわち、以下の(1)式に示される関係が成立する時点を自着火時期として推定することができる。
Figure 0006536613
Φ:当量比
P:筒内圧
EGR:EGR率
T:筒内温度(筒内ガス温度)
t:燃料噴射の終了時点からの経過時間
その他のパラメータ:適合定数
図6は、L−W積分値とクランク角度とSG燃焼割合との関係を説明するための図である。より詳細には、上段のグラフは、SG燃焼割合が0%である例(すなわち、スプレーガイド燃焼を伴わない自着火燃焼が実行された例)に関する。一方、下段のグラフは、SG燃焼割合が30%である例に関する。
図6には、SG燃焼割合0%の例と、SG燃焼割合30%の例とを比較対象として、筒内状態(例えば、筒内温度T、筒内圧P、当量比ΦおよびEGR率)の一例である筒内温度Tを所定幅でばらつかせた場合に得られる自着火時期の変化が表されている。図6より、SG燃焼割合30%の例では、SG燃焼割合0%の例と比べて、同じ幅の筒内温度Tのばらつきに伴う自着火時期のばらつきが小さくなることが分かる。この理由は、スプレーガイド燃焼を伴っていると、スプレーガイド燃焼の開始時期から筒内圧Pおよび筒内温度Tが上昇し、これに伴い、L−W積分値が急激に大きくなり、自着火に至る。つまり、スプレーガイド燃焼を伴っていると、スプレーガイド燃焼の開始後にL−W積分値の傾きが大きくなる。このため、筒内状態が同じようにばらついた際には、スプレーガイド燃焼を伴っている例の方が自着火時期のばらつきが小さくなる。
4−2.自着火燃焼のロバスト性向上のための制御(SG燃焼割合の増加)
図6を参照して説明した知見によれば、定性的には、SG燃焼割合が増えるにつれ、自着火燃焼のロバスト性が向上していくといえる。そこで、本実施形態では、筒内環境条件パラメータの変化の可能性が予測された場合に、自着火燃焼のロバスト性を向上させるために、SG燃焼割合を増加させる制御が実行される。
4−2−1.着火アシスト用燃料噴射割合の増加
本実施形態では、SG燃焼割合を増加する際に、着火アシスト用燃料噴射割合(図3参照)を増加させる処理が実行される。図7および図8は、着火アシスト用燃料噴射割合の増加および後述の実圧縮比の低下がSACI燃焼に与える影響を説明するための図である。なお、図7および図8に関する説明では、後述の着火アシスト用燃料噴射時期は固定されているものとする。また、図7および図8において、クランク角度θ4は、スプレーガイド燃焼による燃焼の開始時期に相当する。
図7中の波形B1〜B3は、何れもSACI燃焼時の燃焼波形を示している。波形(破線)B1は、SG燃焼割合の増加が行われていないときの波形、より詳細には、着火アシスト用燃料噴射割合が後述の制御中心値にあるときに得られる波形に相当する。クランク角度θ5は、この波形B1における自着火時期に相当する。また、あるクランク角期間の熱発生率dQ/dθを、当該クランク角期間を対象として積分することで、熱発生量Qを算出することができる。ここで、スプレーガイド燃焼による熱発生量を「SG熱発生量」とも称する。波形B1のSG熱発生量は、図7中のクランク角度θ4からクランク角度θ5までのクランク角期間を対象として熱発生率dQ/dθを積分することで算出することができ、図7中に符号C1を付して表される面積に相当する。また、図8には、波形B1〜B3のそれぞれのSG熱発生量に対応する面積C1〜C3が表されている。
図7中の波形(点線)B2は、SG燃焼割合を増加させるために、波形B1の着火アシスト用燃料噴射割合よりも大きな値が用いられたときに得られる波形に相当する。このように着火アシスト用燃料噴射割合のみを増加させると、図7に示すように、自着火時期がクランク角度θ5からθ6に進角してしまう。その結果、自着火燃焼に先立ってスプレーガイド燃焼による熱発生が進行するクランク角期間が期間θ4−θ5から期間θ4−θ6に減少する。このため、図8を参照して面積C1とC2を比較すると分かるように、波形B2のSG熱発生量は、波形B1のSG熱発生量から実質的な変化を示さなくなる。また、このように着火アシスト用燃料噴射割合のみを増加させると、図5を参照して既述したのと同様に、燃焼騒音の増加、NOx排出量の増加および燃費の低下を招いてしまう。
4−2−2.SG燃焼割合の増加のために伴わせる実圧縮比の低下
着火アシスト用燃料噴射割合の増加を利用してSG燃焼割合を増やすためには、着火アシスト用燃料噴射割合の増加による自着火時期の進角を抑制することが必要とされる。そこで、本実施形態では、SG燃焼割合の増加のために、着火アシスト用燃料噴射割合の増加とともに、自着火時期を遅角させるための対策も実行される。具体的には、本実施形態では、着火アシスト用燃料噴射割合の増加とともに、実圧縮比が下げられる。実圧縮比の低下は、筒内温度の低下に繋がるので、自着火時期を遅角させる作用を有する。なお、実圧縮比(有効圧縮比)とは、幾何学的に定まる上述の圧縮比とは異なり、吸気バルブ24が閉じた時の筒内容積に対する、ピストン12が上死点にある時の最小筒内容積の比のことである。
図7中の波形(実線)B3は、波形B1に対して、着火アシスト用燃料噴射割合の増加と実圧縮比の低下とが実行されたときに得られる波形に相当する。より詳細には、波形B3は、着火アシスト用燃料噴射割合の増加による自着火時期の進角作用と、実圧縮比の低下による自着火時期の遅角作用とが相殺し合うことで、波形B1と同様にクランク角度θ5が自着火時期となる例に相当する。このように、実圧縮比の低下を伴わせることで、波形B3のSG熱発生量は、図8中に示す面積C3のように、波形B1のSG熱発生量よりも大きくなる。そして、その結果として、SG燃焼割合を増やすことができる。また、自着火時期の進角が抑制されるので、燃焼騒音の増加、NOx排出量の増加および燃費の低下を回避することができる。
4−2−3.実圧縮比低下の効果
図9は、SG燃焼割合を高める際に実圧縮比を低下させたことによる効果を説明するためのグラフである。図9には、吸気温度の変化に対する燃焼時期指標値の変化が、3つの実圧縮比の値ε1〜ε3(ε1>ε2>ε3)で比較して表されている。なお、図9では、燃焼時期を示す燃焼時期指標値の一例として、筒内圧Pが最大値を示す時のクランク角度θの値である筒内圧最大クランク角度θPmaxが用いられている。
図9より、実圧縮比が低い方が、吸気温度のある変化幅に対する筒内圧最大クランク角度θPmaxの変化幅が小さいことが分かる。つまり、自着火燃焼のロバスト性向上を目的としたSG燃焼割合の増加のために、着火アシスト用燃料噴射割合の増加とともに実圧縮比の低下を利用することで、燃焼を安定させられる効果が得られることが分かる。
5.実施の形態1に係るSACI燃焼制御に関するECUによる処理
図10は、本発明の実施の形態1に係るSACI燃焼制御に関する処理のルーチンを示すフローチャートである。本ルーチンは、内燃機関10の運転中に繰り返し起動されて実行される。
5−1.運転領域判定処理
図10に示すルーチンでは、ECU40は、まず、現在のエンジン動作点が、SACI燃焼運転モードを利用するSACI運転領域であるか否かを判定する(ステップS100)。ECU40は、図2に示すように、エンジン負荷とエンジン回転速度とで特定されるSACI運転領域を記憶している。エンジン負荷は、例えば、エアフローセンサ44を用いて取得される吸入空気量と、クランク角センサ42に基づくエンジン回転速度とに基づいて算出することができる。ステップS100の判定は、例えば、現在のエンジン負荷およびエンジン回転速度で特定される現在のエンジン動作点がSACI運転領域に入っているか否かに基づいて行うことができる。
5−2.燃料性状の急変判定処理
ECU40は、現在のエンジン動作点がSACI運転領域にない場合には、今回のルーチン起動時の処理を速やかに終了する。一方、現在のエンジン動作点がSACI運転領域にある場合には、ECU40は、現在の時刻が燃料の補給(給油)後のx時間以内であるか否か(すなわち、給油直後であるか否か)を判定する(ステップS102)。給油が行われたか否かは、例えば、リッドセンサ48を利用して判定することができる。
給油時には、車両のユーザが油種を間違って給油を実行してしまうといった理由によって、指定された燃料と性状の異なる燃料が燃料タンク内に供給される可能性がある。例えば、このような誤給油が行われると、給油直後に気筒内に供給される燃料の性状が急変してしまう可能性がある。ただし、給油に起因する燃料性状の急変は、気筒に供給される燃料が時間の経過とともに給油後の燃料に十分に置き換わっていくことで解消される。ステップS102で用いられるx時間は、給油に起因する燃料性状の急変が生じ得る可能性がある期間として事前に決定された値である。
ECU40は、給油後のx時間を既に経過していると判定した場合、つまり、給油に起因する燃料性状の急変が生じていたとしてもそのような急変が解消されたと判断できる時期が到来した場合には、今回のルーチン起動時の処理を速やかに終了する。なお、この場合には、後述のステップS118〜S128の処理によって制御中心値に戻された着火アシスト用燃料噴射時期および着火アシスト用燃料噴射割合が使用されることになる。
5−3.SG燃焼割合を高めるための処理
一方、給油後のx時間以内にあると判定したとき、つまり、給油に起因する燃料性状の急変が生じている可能性を予測した場合には、ECU40は、SG燃焼割合を高めるための一連の処理、すなわち、ステップS104〜S112の処理を実行する。
具体的には、ECU40は、まず、ステップS104において、着火アシスト用燃料噴射時期を進角し、ステップS106において、着火アシスト用燃料噴射割合を増加する。より詳細には、着火アシスト用燃料噴射時期は、上記可能性が予測されない場合と比べて進角され、着火アシスト用燃料噴射割合は、上記可能性が予測されない場合と比べて増やされる。
また、ステップS104の処理のように、本ルーチンでは、図7〜図9を参照して行った説明に沿った着火アシスト用燃料噴射割合の増加だけでなく、着火アシスト用燃料噴射時期の進角も実行される。より詳細には、着火アシスト用燃料噴射時期の進角とは、基本的には、着火アシスト用燃料噴射の開始時期の進角を指している。ただし、着火アシスト用燃料噴射割合の増加の実現を確保できることを条件として、着火アシスト用燃料噴射の終了時期が開始時期とともに進角されてもよい。必要に応じて点火時期の調整を伴って着火アシスト用燃料噴射時期を進角させることで、スプレーガイド燃焼の開始時期に相当するクランク角度θ4(図7参照)が進角する。このため、着火アシスト用燃料噴射時期の進角は、SG熱発生量(すなわち、熱発生率dQ/dθの波形の面積)を増やすことに繋がる。
ステップS104およびS106では、一例として、着火アシスト用燃料の噴射時期の進角および噴射割合の増加は、図11に示す関係に従って実行される。図11は、着火アシスト用燃料噴射割合および着火アシスト用燃料噴射時期の進角量と、ΔSG熱発生量との関係を表した図である。ΔSG熱発生量は、目標SG熱発生量と実SG熱発生量との差である。目標SG熱発生量としては、例えば、給油に起因する燃料性状の変化として考え得る性状変化幅で燃料性状が変化したとしても自着火燃焼が可能となるように事前に決定された値が用いられる。
SG熱発生量の実際値に相当する実SG熱発生量は、例えば、筒内圧センサ46を利用して次のような手法Aで算出することができる。すなわち、手法Aでは、ECU40は、まず、筒内圧センサ46とクランク角センサ42とを用いてクランク角度θに関連付けられた筒内圧Pのデータ(所定クランク角度毎の値として算出された筒内圧Pの集合)を取得する。次いで、ECU40は、得られた筒内圧Pのデータと熱力学第1法則とを用いて、クランク角度θに関連付けられた熱発生率dQ/dθのデータを取得(算出)する。
Figure 0006536613
κ:比熱比
V:筒内容積
手法Aでは、ECU40は、次いで、日本特開2016−211420号公報に記載される手法を用いて、熱発生率dQ/dθのデータから自着火時期(クランク角度位置)θdを算出する。図12は、自着火時期θdの算出手法の概要を説明するための図である。
図12を参照する手法では、ECU40は、まず、熱発生率dQ/dθが最大値ROHR(a)を示す第1クランク角度θaを取得することで、第1クランク角度θaをX座標とし、最大値ROHR(a)をY座標とする点A(θa、ROHR(a))を特定する。ECU40には、スプレーガイド燃焼による熱発生率dQ/dθの最大値ROHR(c)が事前に決定され、記憶されている。最大値ROHR(c)は、着火アシスト用燃料噴射割合などの最大値ROHR(c)に影響を与えるパラメータに応じて変更されてもよい。次に、ECU40は、第1クランク角度θaよりも進角側のクランク角度であって、熱発生率dQ/dθのデータ上で熱発生率dQ/dθが最大値ROHR(c)に到達したときの第2クランク角度θcをX座標とする点Cの座標(θc、ROHR(c))を特定する。
そのうえで、ECU40は、第2クランク角度θcよりも遅角側かつ第1クランク角度θaよりも進角側のクランク角度θであって、熱発生率dQ/dθをクランク角度θで2回微分して得られる値d3Q/dθ3が正から負に切り替える第3クランク角度θbが特定される場合には、点Aと、第3クランク角度θbをX座標とし、第3クランク角度θbに対応する熱発生率dQ/dθの値ROHR(b)をY座標値とする点Bとを通る直線とx軸との交点DのX座標を自着火時期θdとして特定する。一方、ECU40は、熱発生率dQ/dθのデータ上で第3クランク角度θbが特定されない場合には、点Cを点Bに代えて用い、点Aと点Cとを通る直線とX軸との交点(図示せず)のX座標を自着火時期θdとして特定する。
手法Aでは、ECU40は、次いで、スプレーガイド燃焼による熱発生の開始時期(図12中のθe参照)から自着火時期θdまでのクランク角期間を対象として熱発生率dQ/dθを積分して得られる値を実SG熱発生量として算出する。
なお、実SG熱発生量は、筒内圧センサ46を利用せずに、例えば、次のような手法を用いて取得されてもよい。すなわち、実SG熱発生量に影響を与える各種パラメータ(例えば、着火アシスト用燃料噴射割合、着火アシスト用燃料噴射時期、点火時期、エンジン負荷およびエンジン回転速度)と実SG熱発生量との関係を定めたマップをECU40に記憶しておく。そして、ECU40は、このようなマップを参照して上記の各種パラメータに応じた実SG熱発生量を取得してもよい。
図11に示す関係によれば、着火アシスト用燃料噴射割合は、ΔSG熱発生量が多いほど多くなり、着火アシスト用燃料噴射時期の進角量も、ΔSG熱発生量が多いほど多くなる。ECU40は、図11に示すような関係を定めたマップを記憶しており、そのようなマップを参照して、ΔSG熱発生量から着火アシスト用燃料噴射割合および着火アシスト用燃料噴射時期の進角量を取得する。そして、ECU40は、取得した値での着火アシスト用燃料噴射割合の増加および着火アシスト用燃料噴射時期の進角が実現されるように燃料噴射弁20を制御する。
ステップS108では、ECU40は、筒内圧センサ46を用いて、筒内圧最大クランク角度θPmax(実際値に相当)を取得する。取得される筒内圧最大クランク角度θPmaxは、着火アシスト用燃料の噴射時期の進角および噴射割合の増加が反映された燃焼サイクルの値である。なお、本ステップS108において取得されるパラメータは、燃焼の状態(より詳細には、SACI燃焼に含まれる自着火燃焼の時期)を把握できるものであれば、筒内圧最大クランク角度θPmaxに代え、例えば、燃焼重心(50%燃焼点)であってもよい。あるいは、ノックセンサ(シリンダブロックの振動を検出するセンサ)を別途備えるようにし、自着火燃焼に起因するノックセンサの出力信号の変化が生じるクランク角度の値が、上記パラメータとして用いられてもよい。
ステップS110では、ECU40は、ステップS108において取得された筒内圧最大クランク角度θPmaxが、その目標値である目標θtPmaxよりも進角しているか否かを判定する。目標θtPmaxは、内燃機関10を最も燃費良く運転させられる燃焼時期に対応する値として事前に決定されている。
ステップS110において筒内圧最大クランク角度θPmaxが目標θtPmaxよりも進角していると判定した場合には、ECU40は、ステップS112において、吸気可変動弁装置28を用いて吸気バルブ24の閉じ時期IVCを遅角させる。閉じ時期IVCの遅角量の詳細な設定については、図13を参照して後述する。また、前提として、エンジン運転状態に応じた吸気バルブ24の基本閉じ時期IVCbは、吸気下死点よりも遅角側に設定されているものとする。ステップS112の処理によれば、吸気バルブ24の閉じ時期IVCが吸気下死点から離れることになるので、実圧縮比を下げることができる。このような処理によれば、図7および図8を参照して既述したように、ステップS106の処理による着火アシスト用燃料噴射割合の増加に起因して自着火時期が進角するような状況下において、目標θtPmaxに応じた適切な位置に近づくように自着火時期を遅角させることができる。
図13は、ステップS112ならびに後述のステップS114、S124およびS126の処理において吸気バルブ24の閉じ時期IVCの進角/遅角量を決定するために用いられる関係を表した図である。図13の横軸は、目標θtPmaxと筒内圧最大クランク角度θPmaxとの差である。したがって、この差は、筒内圧最大クランク角度θPmaxが目標θtPmaxよりも進角している場合(ステップS110;Yes)には正となり、逆の場合(ステップS110;No)には負となる。図13の縦軸は、閉じ時期IVCの遅角量である。この遅角量は、閉じ時期IVCが基本閉じ時期IVCbであるときはゼロとなる。図13に示す関係によれば、上記の差が正の場合(ステップS110;Yes)には、ステップS112において、この差が大きいほど、閉じ時期IVCの遅角量が増やされ、逆に、上記の差が負の場合(ステップS110;No)の場合には、後述のステップS114において、この差が負側で大きいほど、閉じ時期IVCの進角量が増やされる。
5−4.筒内圧最大クランク角度θPmaxが目標θtPmaxよりも遅角している場合の処理
一方、ステップS110において筒内圧最大クランク角度θPmaxが目標θtPmaxよりも遅角していると判定した場合には、ECU40は、ステップS114において、吸気可変動弁装置28を用いて吸気バルブ24の閉じ時期IVCを進角させる。より詳細には、閉じ時期IVCが吸気下死点に近づく範囲内で進角される。閉じ時期IVCの進角量の詳細な設定については、図13を参照して上述した通りである。ステップS114の処理によれば、吸気バルブ24の閉じ時期IVCが吸気下死点に近づくように変更されるので、実圧縮比を高めることができる。このような処理によれば、燃焼のばらつきなどの要因に起因して自着火時期が目標θtPmaxに応じた適切な位置から遅角していた場合に、自着火時期を適切な位置に近づけることができる。なお、筒内圧最大クランク角度θPmaxが目標θtPmaxと等しい場合には、処理はステップS116に進むものとする。
5−5.燃料性状の安定判定処理
次に、ECU40は、x時間以内での吸気バルブ24の閉じ時期IVCの変化量が所定の閾値β以下であるか否かを判定する(ステップS116)。この判定は、給油が実行された後に燃料性状が安定した状態にあるか否かを判断するために実行される。この閉じ時期IVCの変化量は、閉じ時期IVCの進角/遅角量の前回値に対する今回値の差の絶対値に相当する。給油に伴って燃料性状が急変したとしても、その急変は上述のように時間の経過とともに解消されていく。これに伴い、ステップS112またはS114の処理による閉じ時期IVCの進角/遅角量の変動も収まっていく。また、給油はされたが燃料性状の急変が生じていない場合には、そもそも閉じ時期IVCの進角/遅角量の変動は小さいといえる。閾値βは、燃料性状が安定した状態(換言すると、急変の影響が解消されたことを含めて燃料性状の急変が生じていない状態)にあることを判別可能な閉じ時期IVCの変化量の閾値として事前に決定された値である。
5−6.SG燃焼割合を制御中心値に戻す処理
ECU40は、ステップS116の判定が不成立となる場合、つまり、燃料性状の急変の影響が生じていると判定した場合には、ステップS108以降の処理を繰り返し実行する。一方、ECU40は、ステップS116において燃料性状が安定した状態にあると判定した場合には、SG燃焼割合を制御中心値に徐々に戻すための処理、すなわち、ステップS118〜S128の一連の処理を実行する。SG燃焼割合の制御中心値とは、予め適合されたSG燃焼割合の制御範囲内の中心値のことである。また、SG燃焼割合の増加のために変化させた実圧縮比の量が大きい場合には、SG燃焼割合を速やかに制御中心値に戻そうとすると、燃焼が悪化してしまう可能性がある。このため、本ルーチンの例では、SG燃焼割合は、燃料性状が安定した後に制御中心値に徐々に戻されるようになっている。
ECU40は、まず、ステップS118において、着火アシスト用燃料噴射時期および着火アシスト用燃料噴射割合をそれぞれの制御中心値に向けて徐々に戻す処理を実行する。例えば、ステップS118の処理が実行される毎に、着火アシスト用燃料噴射時期が所定量だけ遅角されていき、また、着火アシスト用燃料噴射割合が所定量だけ減らされていく。
ステップS120では、ECU40は、ステップS108と同様の処理によって、筒内圧センサ46を用いて筒内圧最大クランク角度θPmaxを取得する。次いで、ステップS122では、ECU40は、ステップS110と同様の処理によって、ステップS120において取得された筒内圧最大クランク角度θPmaxが目標θtPmaxよりも進角しているか否かを判定する。
ステップS124およびS126では、ステップS118の処理による着火アシスト用燃料噴射時期の遅角および着火アシスト用燃料噴射割合の減少に伴う目標θtPmaxからの筒内圧最大クランク角度θPmaxの乖離を小さくするために、ECU40は、吸気バルブ24の閉じ時期IVCをステップS122の判定結果に応じて進角または遅角させるために吸気可変動弁装置28を制御する。これにより、上記乖離が小さくなるように、実圧縮比を減少または増加させることができる。
ステップS128では、ECU40は、着火アシスト用燃料噴射時期および着火アシスト用燃料噴射割合がともに制御中心値に到達したか否かを判定する。その結果、本判定が不成立となる間は、ECU40は、ステップS118以降の処理を繰り返し実行する。一方、本判定が成立する場合には、ECU40は、今回のルーチン起動時の処理を終了する。
6.実施の形態1に係るSACI燃焼制御の効果
以上説明した図10に示すルーチンの処理によれば、予混合気の自着火に影響を及ぼす筒内環境条件パラメータの1つである燃料性状の変化(急変)の可能性が予測された場合に、このような可能性が予測されない場合と比べて、SG燃焼割合が増やされる。図7〜図9を参照して既述したように、SACI燃焼においてSG燃焼割合が増えると、SACI燃焼に含まれる自着火燃焼のロバスト性を高めることができる。より詳細には、本ルーチンの処理によれば、実際に燃料性状の変化が生じたか否かではなく、燃料性状の変化の可能性が予測された時点をもって、自着火燃焼のロバスト性がより高くなる燃焼状態が得られるように制御内容が変更される。さらに付け加えると、この処理によれば、実際に燃料性状が変化する場合であっても、SACI燃焼が実際にその変化の影響を受ける前に、当該変化の影響を受けにくい燃焼状態を準備しておく(換言すると、起こり得る燃料性状の変化に対してロバスト性の高い燃焼状態で身構えておく)ことができる。そして、このように燃料性状の変化に対して自着火燃焼のロバスト性を事前に高めておくことで、実際に燃料性状の変化(急変)が生じたとしても、燃料性状の変化に起因する燃焼の悪化(より詳細には、自着火燃焼の過度な進角または遅角)を効果的に抑制できるようになる。
実施の形態2.
次に、図14を参照して、本発明の実施の形態2について説明する。
1.実施の形態に係るシステムの構成
以下の説明では、実施の形態2に係るシステムの構成の一例として、図1に示す構成が用いられているものとする。このことは、後述の実施の形態3も同様である。
2.実施の形態2に係るSACI燃焼制御の概要
本実施形態に係るSACI燃焼制御は、次の点において、上述した実施の形態1に係るSACI燃焼制御と相違している。すなわち、実施の形態1においては、ECU40は、筒内環境条件パラメータ(燃料性状)の変化の可能性を予測した場合にSG燃焼割合を増加させるために、着火アシスト用燃料噴射割合の増加および着火アシスト用燃料噴射時期の進角とともに、実圧縮比を低下させている。この点に関し、着火アシスト用燃料噴射割合の増加および着火アシスト用燃料噴射時期の進角に起因する自着火時期の進角を打ち消す作用は、実圧縮比を下げることに代えて、吸気温度を下げることによっても得られる。そこで、本実施形態では、ECU40は、SG燃焼割合を増加させるために、実圧縮比の低下に代え、吸気温度を低下させるように構成されている。
3.実施の形態2に係るSACI燃焼制御に関するECUによる処理
図14は、本発明の実施の形態2に係るSACI燃焼制御に関する処理のルーチンを示すフローチャートである。
3−1.図10に示すルーチンとの共通点
図14に示すルーチン中のステップS100〜S110、S118〜S122およびS128の処理については、実施の形態1において既述した通りである。
3−2.図10に示すルーチンに対する相違点
図14に示すルーチンでは、ECU40は、ステップS110において筒内圧最大クランク角度θPmaxが目標θtPmaxよりも進角していると判定した場合には、水冷インタークーラ36の制御を利用して吸気温度を低下させる(ステップS200)。より詳細には、ステップS200の処理による吸気温度の低下量は、例えば、図13に示す例と同様の考え方で、目標θtPmaxと筒内圧最大クランク角度θPmaxとの差(正の値)が大きいほど大きくしてもよい。なお、吸気温度の制御手法は、水冷インタークーラ36の制御を利用する手法に限られず、例えば、吸気が通過する流路を切り替えることで吸気温度を制御可能な吸気温度調整装置を利用してもよい。
一方、ステップS110において筒内圧最大クランク角度θPmaxが目標θtPmaxよりも遅角していると判定した場合には、ECU40は、水冷インタークーラ36の制御を利用して吸気温度を上昇させる(ステップS202)。より詳細には、ステップS202の処理による吸気温度の上昇量は、例えば、図13に示す例と同様の考え方で、目標θtPmaxと筒内圧最大クランク角度θPmaxとの差(負の値)が大きいほど大きくしてもよい。
また、ECU40は、ステップS200またはS202に続くステップS204では、x時間以内での吸気温度の変化量が所定の閾値β以下であるか否かを判定する。この判定の目的は、ステップS116の処理と同様に、給油が実行された後に燃料性状が安定した状態にあるか否かを判断するためである。なお、この吸気温度の変化量は、吸気温度の上昇/低下量の前回値に対する今回値の差の絶対値に相当する。
また、ECU40は、SG燃焼割合を制御中心値に戻す処理(ステップS118〜122、S206、S208およびS128の一連の処理)の中で、ステップS122の判定結果に応じて、吸気温度の上昇(ステップS206)または低下(ステップS208)のために水冷インタークーラ36を制御する。
3.実施の形態2に係るSACI燃焼制御の効果
SG燃焼割合を増加させるために実圧縮比の低下に代えて吸気温度の低下を利用する図14に示すルーチンの処理によっても、燃料性状の変化の可能性がある状況下において、実際に燃料性状の変化(急変)が生じたとしてもそれに起因する燃焼の悪化が抑制されるように燃焼のロバストを事前に高めておくことができる。
実施の形態3.
次に、図15を参照して、本発明の実施の形態3について説明する。
1.実施の形態3に係るSACI燃焼制御の概要
本実施形態に係るSACI燃焼制御は、次の点において、上述した実施の形態1に係るSACI燃焼制御と相違している。すなわち、実施の形態1においては、ECU40は、筒内環境条件パラメータの1つである燃料性状の変化(より詳細には、急変)の可能性を予測した場合にSG燃焼割合を増加させている。これに対し、本実施形態では、ECU40は、筒内環境条件パラメータの他の例である筒内ガスの温度および湿度の変化の可能性を予測した場合にSG燃焼割合を増加させるように構成されている。
車両の走行中には、トンネルを通過することがある。気象条件次第では、トンネル内の空気の温度がトンネルの外の空気の温度と大きく異なっていたり、トンネル内の空気の湿度がトンネルの外の空気の湿度と大きく異なったりする可能性がある。その結果、トンネルの通過中と通過前後で、車両の内燃機関の吸気温度および吸気湿度の一方または双方が変化(より詳細には、急変)し、その結果として、筒内ガスの温度および湿度の一方または双方が変化(急変)する可能性がある。このため、トンネルの内と外で空気の温度または湿度が大きく異なっていると、トンネルの通過に伴って、SACI燃焼に含まれる自着火燃焼の時期が過度に進角または遅角してしまう可能性がある。
そこで、本実施形態では、ECU40は、GPS装置50を利用して、車両がトンネルに入る状況にあるか否かを判定する。その結果、車両がトンネルに入る状況にあるときには、ECU40は、筒内ガスの温度および湿度の少なくとも一方の変化(急変)の可能性を予測し、実際に車両がトンネルに入る前にSG燃焼割合を増加させる。そして、ECU40は、車両がトンネルを通過し終えるまでSG燃焼割合の増加を継続する。
2.実施の形態3に係るSACI燃焼制御に関するECUによる処理
図15は、本発明の実施の形態3に係るSACI燃焼制御に関する処理のルーチンを示すフローチャートである。
2−1.図10に示すルーチンとの共通点
図15に示すルーチン中のステップS100〜S114、およびS118〜S128の処理については、実施の形態1において既述した通りである。
2−2.図10に示すルーチンに対する相違点
図15に示すルーチンでは、ECU40は、ステップS100において現在のエンジン動作点がSACI運転領域にあると判定した場合には、GPS装置50との通信結果に基づいて、車両がトンネルに入る状況にあるか否かを判定する(ステップS300)。その結果、本判定が不成立となる場合には、ECU40は、SG燃焼割合を増加させる制御を実行せずに今回のルーチン起動時の処理を終了する。
一方、ECU40は、ステップS300において車両がトンネルに入る状況にあると判定したとき、つまり、筒内環境条件パラメータ(筒内ガスの温度および湿度の少なくとも一方)の変化(急変)の可能性を予測した場合には、SG燃焼割合を高めるための処理(ステップS104〜S112の一連の処理)を実行する。なお、ステップS300の処理によって車両がトンネルに入る状況にあると判定される時点は、車両が実際にトンネルに入る前にSG燃焼割合を増加させる制御を完了させるために要する時間を確保できるように決定されている。
また、ECU40は、ステップS112またはS114に続くステップS302では、GPS装置50との通信結果に基づいて、車両がトンネルを抜けてから所定時間が経過したか否かを判定する(ステップS302)。この判定の目的は、車両がトンネルを通過することに伴う吸気温度および吸気湿度の一方または双方の変化(急変)の可能性が解消したか否かを判断するためである。
ECU40は、上述のステップS302において車両がトンネルを抜けてから所定時間が経過したと判定した場合には、SG燃焼割合を制御中心値に戻すための処理(ステップS118〜S128の一連の処理)を実行する。
3.実施の形態3に係るSACI燃焼制御の効果
以上説明した図15に示すルーチンの処理によれば、車両がトンネルに入る状況があるときには、車両がトンネルを通過し終えるまで、SACI燃焼のロバスト性が高められる。これにより、筒内環境条件パラメータに該当する筒内ガスの温度および湿度の一方または双方がトンネルの通過に伴って実際に変化することがあっても、それに起因する燃焼の悪化を効果的に抑制できるようになる。
他の実施の形態.
(GPS装置を利用した予測を行ったときのSG燃焼割合の増加に関する他の例)
上述した実施の形態3においては、筒内ガスの温度および湿度の少なくとも一方の変化(急変)の可能性が予測された場合に、SG燃焼割合を増加させるために、実圧縮比の低下が利用される。しかしながら、実施の形態1と2の関係と同様に、このようなときに、実圧縮比の低下に代え、吸気温度が低下するように制御が構成されてもよい。
(SG燃焼割合の増加に関する他の例)
上述した実施の形態1〜3においては、筒内環境条件パラメータの変化の可能性の予測に伴ってSG燃焼割合を増加させる際に、着火アシスト用燃料噴射割合の増加および着火アシスト用燃料噴射時期の進角の双方を、実圧縮比の低下または吸気温度の低下と組み合わせている。しかしながら、SG燃焼割合の増加は、着火アシスト用燃料噴射割合の増加のみを、実圧縮比の低下または吸気温度の低下と組み合わせてもよい。
(SG燃焼割合の増加に関する実圧縮比の低下および吸気温度の低下以外の例)
上述した実施の形態1〜3においては、SG燃焼割合を増加させる際に、自着火時期の遅角作用を得るために実圧縮比の低下または吸気温度の低下が実行される。これに対し、筒内温度を低下させて自着火時期の遅角作用を得るための制御は、実圧縮比の低下または吸気温度の低下に代え、筒内残留既燃ガス量(内部EGRガス量)の減少であってもよい。具体的には、筒内残留既燃ガス量は、例えば、次のような手法で制御することができる。すなわち、例えば、排気バルブを駆動するために、筒内の排気ガスを排気通路18に排出するための通常の排気バルブの開閉動作に加え、吸気行程中に排気バルブが開閉動作を行うように構成された排気動弁装置(本発明に係る「アクチュエータ」の一例に相当)を備えるようにする。そして、このように排気バルブを2回開くように構成された排気動弁装置が吸気行程中の排気バルブの開弁期間およびリフト量を可変とする機構を有している場合には、筒内残留既燃ガス量を減少させる際に、吸気行程中の排気バルブの開弁期間およびリフト量が小さくなるように排気動弁装置を制御してもよい。あるいは、排気バルブを2回開くように構成された排気動弁装置が排気可変動弁装置30のようにVVT機構を有している場合には、筒内残留既燃ガス量を減少させる際に、筒内残留既燃ガス量が減少するように吸気行程中の排気バルブの開弁期間を進角または遅角させてもよい。
また、SG燃焼割合を高める場合には、以上説明した実圧縮比の低下、吸気温度の低下および筒内残留既燃ガス量の減少のうちの何れか2つもしくは全部が組み合わされてもよい。
(実圧縮比の低下に関する他の例)
上述した実施の形態1および3においては、実圧縮比の低下のために、吸気バルブ24の閉じ時期IVCとともに開き時期も変更されるVVT機構を備える吸気可変動弁装置28が利用されている。しかしながら、上述の実圧縮比の低下は、例えば、吸気バルブの閉じ時期IVCのみを連続的に変更可能機構を備える吸気可変動弁装置を利用して実行されてもよい。
(燃料性状の変化の可能性の予測に関する給油直後以外の例)
実施の形態1および2において上述した給油直後でなくても、例えば、内燃機関10が長期間(例えば、数か月)に渡って運転されなかった場合には、その後に内燃機関10が運転された際に気筒内に供給される燃料の性状が変化(急変)する可能性がある。したがって、内燃機関10の前回の始動がなされた日を記憶するデータロガーをECU40が備えるようにしたうえで、所定の長期間の経過後に内燃機関10が始動される時からのx’時間以内にある場合に、車両の長いソーク時間に起因する燃料性状の変化(急変)の可能性を予測するようにしてもよい。
また、以上説明した各実施の形態に記載の例および他の各変形例は、明示した組み合わせ以外にも可能な範囲内で適宜組み合わせてもよいし、また、本発明の趣旨を逸脱しない範囲で種々変形してもよい。
10 内燃機関
12 ピストン
14 燃焼室
16 吸気通路
18 排気通路
20 燃料噴射弁
22 点火プラグ
24 吸気バルブ
26 排気バルブ
28 吸気可変動弁装置
36 水冷インタークーラ
38 スロットルバルブ
40 電子制御ユニット(ECU)
42 クランク角センサ
44 エアフローセンサ
46 筒内圧センサ
48 リッドセンサ
50 GPS装置

Claims (3)

  1. 気筒内に燃料を直接噴射する燃料噴射弁と、前記気筒内の混合気に点火する点火装置とを備える予混合圧縮自着火式の内燃機関を制御する制御装置であって、
    前記制御装置は、前記内燃機関の運転モードとして、点火アシスト自着火燃焼運転モードを含み、
    前記点火アシスト自着火燃焼運転モードでは、吸気行程または圧縮行程においてメイン燃料噴射が実行され、かつ、前記メイン燃料噴射よりも遅角側の前記圧縮行程において着火アシスト用燃料噴射が実行されるように前記制御装置が前記燃料噴射弁を制御し、かつ、前記着火アシスト用燃料噴射による燃料と空気との着火アシスト用混合気に点火されるように前記制御装置が前記点火装置を制御することで、前記着火アシスト用混合気の着火により得られる熱量によって前記メイン燃料噴射による燃料と空気との予混合気を自着火燃焼させる点火アシスト自着火燃焼が行われ、
    前記制御装置は、前記点火アシスト自着火燃焼運転モードの実行中に、前記予混合気の自着火に影響を及ぼす筒内環境条件パラメータが変化する可能性が予測された場合に、前記可能性が予測されない場合と比べて、前記点火アシスト自着火燃焼の全体による熱発生量に対する前記着火アシスト用混合気の燃焼による熱発生量の割合である燃焼割合を増加させ
    前記制御装置は、前記燃料の補給が実施されたときに、前記予測を行う
    ことを特徴とする内燃機関の制御装置。
  2. 前記内燃機関は、前記内燃機関の実圧縮比、吸気温度、および前記気筒内の残留既燃ガス量のうちの少なくとも1つを制御する1または複数のアクチュエータを備え、
    前記制御装置は、総燃料噴射量に対する前記着火アシスト用燃料噴射による燃料噴射量の割合が増加するように前記燃料噴射弁を制御し、かつ、前記実圧縮比の低下、吸気温度の低下、および前記気筒内の残留既燃ガス量の減少のうちの少なくとも1つが実行されるように前記1または複数のアクチュエータを制御することにより、前記燃焼割合を増加させる
    ことを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記制御装置は、前記燃焼割合を増加させるときに、前記着火アシスト用燃料噴射の時期を進角させる前記燃料噴射弁の制御を伴う
    ことを特徴とする請求項2に記載の内燃機関の制御装置。
JP2017068310A 2017-03-30 2017-03-30 内燃機関の制御装置 Expired - Fee Related JP6536613B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017068310A JP6536613B2 (ja) 2017-03-30 2017-03-30 内燃機関の制御装置
DE102018107656.8A DE102018107656B4 (de) 2017-03-30 2018-03-29 Steuerungsvorrichtung für einen Verbrennungsmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068310A JP6536613B2 (ja) 2017-03-30 2017-03-30 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2018168808A JP2018168808A (ja) 2018-11-01
JP6536613B2 true JP6536613B2 (ja) 2019-07-03

Family

ID=63525914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068310A Expired - Fee Related JP6536613B2 (ja) 2017-03-30 2017-03-30 内燃機関の制御装置

Country Status (2)

Country Link
JP (1) JP6536613B2 (ja)
DE (1) DE102018107656B4 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294080B2 (ja) * 2019-11-15 2023-06-20 マツダ株式会社 エンジンの制御装置
JP2021088941A (ja) * 2019-12-02 2021-06-10 マツダ株式会社 エンジンの制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238374A (ja) 1997-02-21 1998-09-08 Daihatsu Motor Co Ltd 予混合着火内燃機関とその着火時期制御方法
JP3945152B2 (ja) * 2000-11-21 2007-07-18 日産自動車株式会社 内燃機関の燃焼制御装置
JP3975702B2 (ja) * 2001-08-02 2007-09-12 日産自動車株式会社 自己着火式エンジンの制御装置
JP2004028047A (ja) 2002-06-28 2004-01-29 Honda Motor Co Ltd 予混合圧縮着火内燃機関の制御方法
JP4379251B2 (ja) * 2004-08-02 2009-12-09 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP5167062B2 (ja) * 2008-03-12 2013-03-21 株式会社日本自動車部品総合研究所 エンジン制御装置
JP5239565B2 (ja) 2008-07-07 2013-07-17 日産自動車株式会社 予混合圧縮着火エンジンの燃焼制御装置
JP2016211420A (ja) 2015-05-08 2016-12-15 トヨタ自動車株式会社 内燃機関の制御装置
WO2018096586A1 (ja) 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置

Also Published As

Publication number Publication date
DE102018107656B4 (de) 2023-03-02
DE102018107656A1 (de) 2018-10-04
JP2018168808A (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
US9194313B2 (en) Spark-ignition engine and method of controlling the spark-ignition engine
US7841316B2 (en) Controller for direct injection engine
JP6848888B2 (ja) 強ノックの抑制が可能なエンジン
JP6751000B2 (ja) 内燃機関制御装置および方法
CN113015848B (zh) 控制装置
US6848435B2 (en) Control system for compression ignition internal combustion engine
JP6536613B2 (ja) 内燃機関の制御装置
JP2009041540A (ja) ガソリンエンジンの制御装置
EP3343020B1 (en) Engine control device
JP4158747B2 (ja) 内燃機関の点火時期制御装置
JP2021080847A (ja) エンジンの制御装置
JP2021080840A (ja) エンジンの制御装置
JP4290715B2 (ja) 内燃機関の制御装置
JP6594825B2 (ja) 内燃機関制御装置
JP4241511B2 (ja) エンジンのノック制御装置
JP4778879B2 (ja) 内燃機関の過給圧制御装置
JP7207548B2 (ja) 内燃エンジンの制御方法および制御装置
JP6740915B2 (ja) 内燃機関の自着火時期推定装置
JP4251069B2 (ja) エンジンのノック検出装置及びノック制御装置
JP4075862B2 (ja) エンジンの点火時期制御装置
JP5303349B2 (ja) 内燃機関のegr制御装置
JP4241510B2 (ja) エンジンのノック制御装置及びエンジンの点火時期制御装置。
JP2005226481A (ja) エンジンのデポジット量検出装置及びノック制御装置
JP7238571B2 (ja) エンジンの制御方法およびエンジンの制御装置
JP7238459B2 (ja) エンジン制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees