WO2020189092A1 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
WO2020189092A1
WO2020189092A1 PCT/JP2020/005113 JP2020005113W WO2020189092A1 WO 2020189092 A1 WO2020189092 A1 WO 2020189092A1 JP 2020005113 W JP2020005113 W JP 2020005113W WO 2020189092 A1 WO2020189092 A1 WO 2020189092A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
wall
valve body
valve seat
expansion valve
Prior art date
Application number
PCT/JP2020/005113
Other languages
French (fr)
Japanese (ja)
Inventor
真弘 冨塚
横田 浩
卓宏 矢野
Original Assignee
株式会社不二工機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二工機 filed Critical 株式会社不二工機
Priority to EP20773642.2A priority Critical patent/EP3940279B1/en
Priority to CN202080020698.7A priority patent/CN113574303B/en
Priority to US17/435,965 priority patent/US20220146160A1/en
Publication of WO2020189092A1 publication Critical patent/WO2020189092A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/03Cavitations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the present invention relates to an expansion valve.
  • a temperature-sensitive expansion valve that adjusts the amount of refrigerant passing through according to the temperature is used in order to omit installation space and piping. ..
  • the spherical valve body arranged in the valve chamber is arranged facing the valve seat opened in the valve chamber.
  • the valve body is supported by a valve body support arranged in the valve chamber, and is urged toward the valve seat by a coil spring installed between the spring receiving member attached to the valve body and the valve body support. Then, the valve body is pushed by the operating rod driven by the power element, and is separated from the valve seat to allow the passage of the refrigerant.
  • the refrigerant that has passed through the throttle flow path between the valve seat and the valve body is sent from the outlet port to the evaporator side.
  • Patent Document 1 the refrigerant inlet to the valve chamber is balanced so as to reduce the friction noise of the refrigerant when the refrigeration cycle system is started and to secure the required flow rate of the refrigerant passing through the throttle flow path. And an expansion valve that defines the gap between the valve body support and the valve chamber is disclosed.
  • the expansion valve may generate noise other than the friction noise of the refrigerant.
  • the bubbles in the refrigerant reach the valve seat without being crushed, and when the refrigerant passes through the valve seat, the bubbles burst all at once and are grasped as noise. There is.
  • an object of the present invention is to provide an improved expansion valve capable of reducing noise while having a simple configuration.
  • the expansion valve according to the present invention is A valve body with a valve chamber and a valve seat, A valve body that blocks the passage of fluid by sitting on the valve seat and allows the passage of the fluid by separating from the valve seat.
  • a coil spring that urges the valve body toward the valve seat, It has an operating rod that presses the valve body in a direction away from the valve seat against the urging force of the coil spring.
  • the valve chamber has a tubular inner wall that connects to the valve seat.
  • the valve body has a contact portion that sits on the valve seat and a tubular body portion that faces the inner wall.
  • the fluid is generated between the inner wall and the body by making the shape of the inner circumference of the inner wall different from the shape of the outer circumference of the body.
  • a space through which the passage is formed is formed, and the inner circumference of the inner wall and the outer circumference of the body portion are partially slidably in contact with each other.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve according to the first embodiment is applied to a refrigerant cycle system.
  • FIG. 2 is a top view of the cross section taken along the line AA of FIG.
  • FIG. 3 is a perspective view of the valve body of the present embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve of the second embodiment.
  • FIG. 5 is a top view of the cross section taken along the line BB of FIG.
  • FIG. 6 is a perspective view of the valve body of the present embodiment.
  • FIG. 7 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve of the third embodiment.
  • FIG. 8 is a top view of the cross section taken along the line CC of FIG. 7.
  • FIG. 9 is a perspective view of the valve body of the present embodiment.
  • FIG. 10 is a cross-sectional view of the body portion of the modified example.
  • the direction from the valve body 3 toward the operating rod 5 is defined as “upward”, and the direction from the operating rod 5 toward the valve body 3 is defined as “downward”. Therefore, in the present specification, the direction from the valve body 3 toward the operating rod 5 is referred to as “upward” regardless of the posture of the expansion valve 10.
  • the "polygonal cylinder shape” means a cylinder shape having an outer circumference surrounded by four or more planes around the axis. However, when there is a connecting surface connecting the planes, the connecting surface is not included in the plane. Further, “the shape of the inner circumference and the shape of the outer circumference in the cross section are different" means that the shape of the inner circumference and the shape of the outer circumference are neither the same nor similar.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve 10 in the present embodiment is applied to the refrigerant cycle system 100.
  • the expansion valve 10 is connected to the compressor 101, the condenser 102, and the evaporator 104, and the refrigerant cycle system 100 is configured by these.
  • the expansion valve 10 includes a valve body 2 having a cylindrical valve chamber VS, a valve body 3, an urging device 4, an operating rod 5, and a ring spring 6.
  • the valve body 2 includes a first flow path 21 and a second flow path 22 in addition to the valve chamber VS.
  • the first flow path 21 is, for example, a supply-side flow path, and a refrigerant (also referred to as a fluid) is supplied to the valve chamber VS via the supply-side flow path.
  • the second flow path 22 is, for example, a discharge side flow path, and the fluid in the valve chamber VS is discharged to the outside of the expansion valve via the orifice portion 27 and the second flow path 22.
  • the first flow path 21 and the valve chamber VS are connected by a connection path 21a having a diameter smaller than that of the first flow path 21.
  • the valve chamber VS includes a valve seat 20 which is the inner circumference of the lower edge of the orifice portion 27 having a cylindrical shape, and a cylindrical inner wall 24 which is connected to the valve seat 20 and has a diameter larger than that of the valve seat 20.
  • FIG. 2 is a top view of the cross section taken along the line AA of FIG. 1, and shows the cross section of the valve body 3 in the direction orthogonal to the axis.
  • FIG. 3 is a perspective view of the valve body 3.
  • the valve body 3 is formed by connecting a conical contact portion 31, a hexagonal tubular body portion 32, a disk-shaped flange portion 33, and a cylindrical end portion 34 in series.
  • the tapered surface 31b of the contact portion 31 comes into contact with the valve seat 20.
  • the upper surface 31a of the contact portion 31 is a plane orthogonal to the axis L.
  • the outer circumference of the body portion 32 is formed of six planes 32a and a connecting surface 32b formed between adjacent planes 32a.
  • the connecting surface 32b may be a flat surface or a curved surface, but its peripheral length is preferably 1/4 or less of the peripheral length of the flat surface 32a.
  • the axial length of the body portion 32 is preferably equal to or more than the diameter of the inner wall 24 of the valve chamber VS (or the maximum diagonal length of the body portion 32).
  • the valve body 3 is arranged in the valve chamber VS.
  • the inner peripheral shape of the inner wall 24 of the valve chamber VS and the outer peripheral shape of the body portion 32 are different, and the inner wall of the valve chamber VS is different according to the eccentricity between the valve chamber VS and the valve body 3. 24 and any of the connecting surfaces 32b come into contact with each other and slide.
  • the inner wall 24 of the valve chamber VS and the flat surface 32a do not come into contact with each other. Therefore, the refrigerant passes through the space between the inner wall 24 and the flat surface 32a.
  • the lower end of the actuating rod 5 inserted through the actuating rod insertion hole 28 of the valve body 2 and inserted through the orifice portion 27 with a gap is relative to the upper surface 31a of the valve body 3 in the direction intersecting the axis L. Displaceable contact. Further, the operating rod 5 can press the valve body 3 in the valve opening direction against the urging force of the urging device 4. When the operating rod 5 moves downward, the valve body 3 is separated from the valve seat 20 and the expansion valve 10 is opened.
  • the power element 8 that drives the operating rod 5 will be described.
  • the power element 8 is attached to a recess 2a provided at the top of the valve body 2.
  • the recess 2a communicates with the return passage 23 in the valve body 2 through which the refrigerant from the evaporator 104 passes through the communication passage 2b.
  • the operating rod 5 passes through the communication passage 2b.
  • a female screw is formed on the inner circumference of the recess 2a.
  • the power element 8 has a stopper 81, an upper lid member 82, a diaphragm 83, a stopper member 84, and a receiving member 86.
  • the upper lid member 82 has a central conical portion 82a and an annular flange portion 82b extending from the lower end of the conical portion 82a to the outer periphery.
  • An opening 82c is formed at the top of the conical portion 82a and can be sealed by a stopper 81.
  • the diaphragm 83 is made of a thin plate material in which a plurality of concentric uneven shapes are formed, and has an outer diameter substantially the same as the outer diameter of the flange portion 82b.
  • the stopper member 84 has a fitting hole 84a at the center of the lower end.
  • the receiving member 86 includes a flange portion 86a having an outer diameter substantially the same as the outer diameter of the flange portion 82b of the upper lid member 82, a stepped portion 86c having an annular support surface 86b substantially orthogonal to the axis L, and a hollow cylindrical portion 86d. have.
  • a male screw is formed on the outer circumference of the hollow cylindrical portion 86d.
  • the procedure for assembling the power element 8 will be explained.
  • the upper lid member 82, the diaphragm 83, the stopper member 84, and the receiving member 86 are arranged so as to have a positional relationship as shown in FIG.
  • the outer peripheral portion is peripherally welded by, for example, TIG welding, laser welding, plasma welding, or the like. And integrate.
  • the working gas is sealed in the space (pressure working chamber PO) surrounded by the upper lid member 82 and the diaphragm 83 from the opening 82c formed in the upper lid member 82, and then the opening 82c is sealed with the stopper 81. Further, the stopper 81 is fixed to the upper lid member 82 by projection welding or the like.
  • the diaphragm 83 receives pressure in a form of projecting toward the receiving member 86 due to the working gas sealed in the pressure operating chamber PO, the space (pressure detection chamber PD) surrounded by the diaphragm 83 and the receiving member 86 is filled. It is supported in contact with the upper surface of the arranged stopper member 84.
  • the valve body that communicates the male screw of the hollow cylindrical portion 86d of the receiving member 86 with the return flow path 23 with the upper end of the operating rod 5 fitted in the fitting hole 84a of the stopper member 84.
  • the power element 8 is fixed to the valve body 2 by being screwed into the female screw of the recess 2a of 2.
  • a packing PK is interposed between the power element 8 and the valve body 2 to prevent the refrigerant from leaking from the recess 2a when the power element 8 is attached to the valve body 2.
  • the pressure detection chamber PD of the power element 8 communicates with the return flow path 23.
  • the ring spring 6 is a vibration isolator that suppresses the vibration of the operating rod 5.
  • the ring spring 6 is arranged in an annular portion 26 adjacent to the operating rod insertion hole 28 of the valve body 2, and a predetermined elastic force is applied to the outer peripheral surface of the operating rod 5 by a claw portion protruding toward the inner circumference side. It has become like.
  • the urging device 4 has a coil spring 41 in which a circular wire rod is spirally wound, and a spring receiving member 43.
  • the spring receiving member 43 has a function of sealing the opening of the valve chamber VS of the valve body 2 and a function of supporting the lower end of the coil spring 41.
  • An O-ring 44 is arranged between the spring receiving member 43 and the inner wall of the valve chamber VS to prevent refrigerant leakage.
  • valve body 3 shown in FIG. 3 is held by bringing the upper end of the coil spring 41 into contact with the lower surface of the flange portion 33 and fitting the end portion 34 inside the upper end of the coil spring 41.
  • expansion valve 10 An operation example of the expansion valve 10 will be described with reference to FIG.
  • the refrigerant pressurized by the compressor 101 is liquefied by the condenser 102 and sent to the expansion valve 10. Further, the refrigerant adiabatically expanded by the expansion valve 10 is sent to the evaporator 104, and the evaporator 104 exchanges heat with the air flowing around the evaporator.
  • the refrigerant returning from the evaporator 104 is returned to the compressor 101 side through the expansion valve 10 (more specifically, the return flow path 23).
  • High-pressure refrigerant is supplied to the expansion valve 10 from the condenser 102. More specifically, the high-pressure refrigerant from the condenser 102 is supplied to the valve chamber VS via the first flow path 21.
  • the contact portion 31 of the valve body 3 When the contact portion 31 of the valve body 3 is seated on the valve seat 20 (in other words, when the expansion valve 10 is in the closed state), the first flow path 21 and the valve on the upstream side of the valve chamber VS The second flow path 22 on the downstream side of the chamber VS is in a non-communication state.
  • the contact portion 31 of the valve body 3 is separated from the valve seat 20 (in other words, when the expansion valve 10 is in the open state)
  • the refrigerant supplied to the valve chamber VS is the orifice portion. It is sent out to the evaporator 104 through 27 and the second flow path 22.
  • the refrigerant containing air bubbles in the valve chamber VS is transferred to the flat surface 32a of the body portion 32 of the valve body 3.
  • the air bubbles are gradually crushed while passing through the relatively narrow gap between the inner wall 24 and the body portion 32 over the axial length of the body portion 32. Therefore, when the refrigerant passes through the valve seat 20, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing sound can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 32a over the axial length of the body portion 32.
  • a pressure operating chamber PO and a pressure detecting chamber PD partitioned by a diaphragm 83 are provided inside the power element 8. Therefore, when the working gas in the pressure working chamber PO is liquefied, the working rod 5 moves upward, and when the liquefied working gas is vaporized, the working rod 5 moves downward. In this way, the expansion valve 10 is switched between the valve open state and the valve closed state.
  • the pressure detection chamber PD of the power element 8 communicates with the return flow path 23. Therefore, the pressure of the refrigerant flowing through the return flow path 23 is transmitted to the working gas in the pressure working chamber PO via the stopper member 84 and the diaphragm 83. As a result, the volume of the working gas in the pressure working chamber PO changes, and the working rod 5 is driven. In other words, in the expansion valve 10 shown in FIG. 1, the amount of the refrigerant supplied from the expansion valve 10 toward the evaporator 104 is automatically adjusted according to the pressure of the refrigerant returning from the evaporator 104 to the expansion valve 10. To.
  • FIG. 4 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve 10A.
  • FIG. 5 is a top view of the cross section taken along the line BB of FIG.
  • FIG. 6 is a perspective view of the valve body 3A.
  • valve body 3A is formed by connecting a conical contact portion 31A, a hexagonal tubular body portion 32A, and a cylindrical end portion 34A in succession.
  • the tapered surface 31Ab of the contact portion 31A abuts on the valve seat 20. Further, the upper surface 31Aa of the contact portion 31A is a plane orthogonal to the axis L.
  • the outer circumference of the body portion 32A is formed of six planes 32Aa and a connecting surface 32Ab formed between adjacent planes 32Aa.
  • the connecting surface 32Ab may be a flat surface or a curved surface.
  • the length of the body portion 32A is preferably equal to or more than the diameter of the inner wall 24A of the valve chamber VS (or the maximum diagonal length of the body portion 32A).
  • the connecting surface 32Ab constitutes the sliding contact portion, and the flat surface 32Aa constitutes the flow path portion.
  • the inner wall 24A of the valve chamber VS is larger than the outer diameter of the coil spring 41. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and duplicate description will be omitted.
  • the refrigerant containing air bubbles in the valve chamber VS is transferred to the flat surface 32Aa of the body portion 32A of the valve body 3A.
  • the air bubbles are gradually crushed while passing through the relatively narrow gap between the inner wall 24A and the body portion 32A over the axial length. Therefore, when the refrigerant passes through the valve seat 20, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing sound can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 32Aa over the axial length of the body portion 32A.
  • the connecting surface 32Ab of the body portion 32A that abuts on the inner wall 24A when the valve is opened and closed has a long span corresponding to the axial length of the body portion 32A.
  • the tilt that occurs can be suppressed. Therefore, the upper surface 31Aa can be displaced relative to the operating rod 5, and the smooth operation of the valve body 3A can be ensured.
  • FIG. 7 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve 10B.
  • FIG. 8 is a top view of the cross section taken along the line CC of FIG. 7.
  • FIG. 9 is a perspective view of the valve body 3B.
  • valve body 3B is formed by connecting a conical contact portion 31B, a cylindrical body portion 32B, a disk-shaped flange portion 33B, and a cylindrical end portion 34B.
  • the tapered surface 31Bb of the contact portion 31B comes into contact with the valve seat 20. Further, the upper surface 31Ba of the contact portion 31B is a plane orthogonal to the axis L.
  • the length of the body portion 32B is preferably equal to or more than the maximum diagonal length (or the diameter of the body portion 32B) of the inner wall 24B of the valve chamber VS.
  • the inner wall 24B of the valve chamber VS has a hexagonal cylinder shape formed from six flat surfaces 24Bb.
  • the outer circumference of the body portion 32B of the valve body 3B is in contact with the flat surface 24Bb at any of the six contact points CP shown in FIG. Therefore, the contact CP on the outer peripheral surface of the body portion 32B constitutes the sliding contact portion, and the outer peripheral surface between the adjacent contact CPs constitutes the flow path portion. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and duplicate description will be omitted.
  • the refrigerant containing air bubbles in the valve chamber VS is transferred to the outer peripheral surface of the body portion 32B of the valve body 3B. While passing through a relatively narrow gap with the inner wall 24B over the axial length of the body portion 32B, the air bubbles are gradually crushed. Therefore, when the refrigerant passes through the valve seat 20, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing sound can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 24Bb over the axial length of the body portion 32B.
  • the flat surface 24Bb that contacts the body portion 32B has a long span in the axial direction of the valve body 3B when the valve is opened and closed, it is possible to suppress the inclination that occurs when the contact portion 31B of the valve body 3B separates from the valve seat 20. .. Therefore, the upper surface 31Ba can be displaced relative to the operating rod 5, and the smooth operation of the valve body 3B can be ensured.
  • FIG. 10 is a view similar to FIG. 2 showing a cross section of the valve body and the inner wall of the valve chamber according to the modified example.
  • the inner wall 24D of the valve chamber in the valve body 2D has a cylindrical surface
  • the body portion 32D of the valve body has a non-circular cross section.
  • the body portion 32D is formed of a partially cylindrical surface 32Da and a flat surface 32Db.
  • the width of the plane 32Db is shorter than the diameter of the partially cylindrical surface 32Da.
  • the cross-sectional shape of the body portion 32D is the same over the entire length of the body portion 32D.
  • the partially cylindrical surface 32Da constitutes the sliding contact portion
  • the flat surface 32Db constitutes the flow path portion. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and duplicate description will be omitted.
  • the refrigerant containing air bubbles in the valve body has a relatively narrow gap between the flat surface 32Db of the body 32D of the valve body and the inner wall 24D.
  • the air bubbles are gradually crushed while passing through the axial length of the body portion 32D. Therefore, when the refrigerant passes through the valve seat, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing noise can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 32Db over the axis length of the body portion 32D.
  • the present invention is not limited to the above-described embodiment.
  • any component of the above-described embodiment can be modified. Further, in the above-described embodiment, any component can be added or omitted.
  • the flow path portion is not limited to a flat surface, and may be a convex curved surface or a concave curved surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)

Abstract

Provided is an improved expansion valve which has a simple configuration and with which undesired noise can be reduced. An expansion valve (10) comprising: a valve main body (2) which comprises a valve chamber (VS) and a valve seat (20); a valve body (3) which blocks passage of a fluid by being seated on the valve seat, and allows passage of the fluid by separating from the valve seat; a coil spring (41) which biases the valve body toward the valve seat; and an actuation rod (5) which resists bias force from the coil spring and presses the valve body in a direction separating the same from the valve seat, wherein the valve chamber (VS) has a cylindrical inner wall (24) which connects to the valve seat, the valve body (3) has a contact part (31) which is seated on the valve seat and a cylindrical trunk part (32) which faces the inner wall, and the trunk part comprises a connection surface (32b) which can slide against the inner wall and a flat surface (32a) which has a gap provided between said flat surface and the inner wall.

Description

膨張弁Expansion valve
 本発明は、膨張弁に関する。 The present invention relates to an expansion valve.
 従来、自動車に搭載される空調装置等に用いる冷凍サイクルシステムにおいては、設置スペースや配管を省略するために、冷媒の通過量を温度に応じて調整する感温式の膨張弁が使用されている。 Conventionally, in a refrigeration cycle system used for an air conditioner mounted on an automobile, a temperature-sensitive expansion valve that adjusts the amount of refrigerant passing through according to the temperature is used in order to omit installation space and piping. ..
 一般的な膨張弁において、弁室内に配設される球状の弁体は、弁室に開口した弁座に対向し配置される。弁体は、弁室内に配置された弁体サポートに支持され、弁本体に取り付けられたばね受け部材と弁体サポートとの間に設置されたコイルバネにより弁座方向へ付勢される。そして、弁体は、パワーエレメントにより駆動される作動棒により押されて、弁座から離間して冷媒の通過を可能にする。弁座と弁体の間の絞り流路を通った冷媒は、出口ポートから蒸発器側へ送られる。 In a general expansion valve, the spherical valve body arranged in the valve chamber is arranged facing the valve seat opened in the valve chamber. The valve body is supported by a valve body support arranged in the valve chamber, and is urged toward the valve seat by a coil spring installed between the spring receiving member attached to the valve body and the valve body support. Then, the valve body is pushed by the operating rod driven by the power element, and is separated from the valve seat to allow the passage of the refrigerant. The refrigerant that has passed through the throttle flow path between the valve seat and the valve body is sent from the outlet port to the evaporator side.
 ところで、冷凍サイクルシステムの起動当初には、弁座と弁体の間の絞り流路を通過する冷媒の液密度が低く、流動抵抗が小さくなるほど冷媒の流速が大きくなる。このため起動当初には弁部における摩擦音が大きくなりがちであり、その対策として冷媒の流量制限が必要になる。一方、冷凍サイクルの起動時から時間が経過した安定期では、冷凍サイクルの起動時に比べて液密度が高くなっているから摩擦音は小さくなる。そのため安定期では過度な流量制限の必要がなく、むしろ十分な冷媒流量を確保したいという相反する要求がある。 By the way, at the beginning of the refrigeration cycle system, the liquid density of the refrigerant passing through the throttle flow path between the valve seat and the valve body is low, and the flow resistance of the refrigerant increases as the flow resistance decreases. For this reason, the friction noise in the valve portion tends to be loud at the beginning of startup, and it is necessary to limit the flow rate of the refrigerant as a countermeasure. On the other hand, in the stable period in which time has passed since the start of the refrigeration cycle, the liquid density is higher than that at the start of the refrigeration cycle, so that the friction noise becomes smaller. Therefore, there is no need to excessively limit the flow rate during the stable period, but rather there is a conflicting demand for ensuring a sufficient refrigerant flow rate.
 これに対し特許文献1には、冷凍サイクルシステムの起動時における冷媒の摩擦音の低減と、絞り流路を通過する冷媒の必要流量を確保とをバランスよく両立するように、弁室への冷媒入り口と、弁体サポートと弁室との隙間を規定した膨張弁が開示されている。 On the other hand, in Patent Document 1, the refrigerant inlet to the valve chamber is balanced so as to reduce the friction noise of the refrigerant when the refrigeration cycle system is started and to secure the required flow rate of the refrigerant passing through the throttle flow path. And an expansion valve that defines the gap between the valve body support and the valve chamber is disclosed.
特許第5369259号公報Japanese Patent No. 5369259
 一方、膨張弁においては、冷媒の摩擦音以外の騒音も生じうる。例えば特許文献1に開示された膨張弁では、冷媒内の気泡がつぶれないまま弁座まで到達し、該弁座を冷媒が通過する際に気泡が一斉に破裂することにより騒音として把握されることがある。 On the other hand, the expansion valve may generate noise other than the friction noise of the refrigerant. For example, in the expansion valve disclosed in Patent Document 1, the bubbles in the refrigerant reach the valve seat without being crushed, and when the refrigerant passes through the valve seat, the bubbles burst all at once and are grasped as noise. There is.
 そこで本発明は、簡素な構成を有しながらも、騒音を減少可能な、改良された膨張弁を提供することを目的とする。 Therefore, an object of the present invention is to provide an improved expansion valve capable of reducing noise while having a simple configuration.
 上記目的を達成するために、本発明による膨張弁は、
 弁室と弁座を備えた弁本体と、
 前記弁座に着座することにより流体の通過を阻止し、前記弁座から離間することにより前記流体の通過を許容する弁体と、
 前記弁体を前記弁座に向かって付勢するコイルばねと、
 前記コイルばねによる付勢力に抗して、前記弁体を前記弁座から離間する方向に押圧する作動棒と、を有し、
 前記弁室は、前記弁座につながる筒状の内壁を有し、
 前記弁体は、前記弁座に着座する当接部と、前記内壁に対向する筒状の胴部とを有し、
 前記弁体の軸線直交方向に断面をとったとき、前記内壁の内周の形状と、前記胴部の外周の形状とを異ならせることにより、前記内壁と前記胴部との間に前記流体が通過する空間が形成され、前記内壁の内周と前記胴部の外周とが部分的に摺動可能に接触している、ことを特徴とする。
In order to achieve the above object, the expansion valve according to the present invention is
A valve body with a valve chamber and a valve seat,
A valve body that blocks the passage of fluid by sitting on the valve seat and allows the passage of the fluid by separating from the valve seat.
A coil spring that urges the valve body toward the valve seat,
It has an operating rod that presses the valve body in a direction away from the valve seat against the urging force of the coil spring.
The valve chamber has a tubular inner wall that connects to the valve seat.
The valve body has a contact portion that sits on the valve seat and a tubular body portion that faces the inner wall.
When the cross section is taken in the direction orthogonal to the axis of the valve body, the fluid is generated between the inner wall and the body by making the shape of the inner circumference of the inner wall different from the shape of the outer circumference of the body. A space through which the passage is formed is formed, and the inner circumference of the inner wall and the outer circumference of the body portion are partially slidably in contact with each other.
 本発明により、簡素な構成を有しながらも、騒音を減少可能な、改良された膨張弁を提供することができる。 According to the present invention, it is possible to provide an improved expansion valve capable of reducing noise while having a simple configuration.
図1は、第1実施形態における膨張弁を、冷媒サイクルシステムに適用した例を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve according to the first embodiment is applied to a refrigerant cycle system. 図2は、図1のA-A線における断面を上面視した図である。FIG. 2 is a top view of the cross section taken along the line AA of FIG. 図3は、本実施形態の弁体の斜視図である。FIG. 3 is a perspective view of the valve body of the present embodiment. 図4は、第2実施形態の膨張弁の弁体付近を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve of the second embodiment. 図5は、図4のB-B線における断面を上面視した図である。FIG. 5 is a top view of the cross section taken along the line BB of FIG. 図6は、本実施形態の弁体の斜視図である。FIG. 6 is a perspective view of the valve body of the present embodiment. 図7は、第3実施形態の膨張弁の弁体付近を拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve of the third embodiment. 図8は、図7のC-C線における断面を上面視した図である。FIG. 8 is a top view of the cross section taken along the line CC of FIG. 7. 図9は、本実施形態の弁体の斜視図である。FIG. 9 is a perspective view of the valve body of the present embodiment. 図10は、変形例の胴部の断面図である。FIG. 10 is a cross-sectional view of the body portion of the modified example.
(定義)
 本明細書において、弁体3から作動棒5に向かう方向を「上方向」と定義し、作動棒5から弁体3に向かう方向を「下方向」と定義する。よって、本明細書では、膨張弁10の姿勢に関わらず、弁体3から作動棒5に向かう方向を「上方向」と呼ぶ。
 本明細書で、「多角筒形状」とは、軸線の周囲を4面以上の平面で囲った外周を持つ筒形状をいう。ただし、該平面同士をつなぐつなぎ面を有するときは、該つなぎ面は平面に含まれないものとする。また、「断面における内周の形状と外周の形状とが異なる」とは、該内周の形状と該外周の形状とが同一でもなく相似でもないことをいう。
(Definition)
In the present specification, the direction from the valve body 3 toward the operating rod 5 is defined as "upward", and the direction from the operating rod 5 toward the valve body 3 is defined as "downward". Therefore, in the present specification, the direction from the valve body 3 toward the operating rod 5 is referred to as "upward" regardless of the posture of the expansion valve 10.
In the present specification, the "polygonal cylinder shape" means a cylinder shape having an outer circumference surrounded by four or more planes around the axis. However, when there is a connecting surface connecting the planes, the connecting surface is not included in the plane. Further, "the shape of the inner circumference and the shape of the outer circumference in the cross section are different" means that the shape of the inner circumference and the shape of the outer circumference are neither the same nor similar.
(第1実施形態)
 図1を参照して、第1実施形態における膨張弁10の概要について説明する。図1は、本実施形態における膨張弁10を、冷媒サイクルシステム100に適用した例を模式的に示す概略断面図である。本実施形態では、膨張弁10は、コンプレッサ101と、コンデンサ102と、エバポレータ104とに接続されており、これらにより冷媒サイクルシステム100が構成される。
(First Embodiment)
The outline of the expansion valve 10 in the first embodiment will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve 10 in the present embodiment is applied to the refrigerant cycle system 100. In the present embodiment, the expansion valve 10 is connected to the compressor 101, the condenser 102, and the evaporator 104, and the refrigerant cycle system 100 is configured by these.
 膨張弁10は、円筒状の弁室VSを備える弁本体2と、弁体3と、付勢装置4と、作動棒5と、リングばね6とを具備する。 The expansion valve 10 includes a valve body 2 having a cylindrical valve chamber VS, a valve body 3, an urging device 4, an operating rod 5, and a ring spring 6.
 弁本体2は、弁室VSに加え、第1流路21および第2流路22を備える。第1流路21は、例えば供給側流路であり、弁室VSには、供給側流路を介して冷媒(流体ともいう)が供給される。第2流路22は、例えば排出側流路であり、弁室VS内の流体は、オリフィス部27及び第2流路22を介して膨張弁外に排出される。第1流路21と弁室VSとの間は、第1流路21より小径の接続路21aにより接続されている。 The valve body 2 includes a first flow path 21 and a second flow path 22 in addition to the valve chamber VS. The first flow path 21 is, for example, a supply-side flow path, and a refrigerant (also referred to as a fluid) is supplied to the valve chamber VS via the supply-side flow path. The second flow path 22 is, for example, a discharge side flow path, and the fluid in the valve chamber VS is discharged to the outside of the expansion valve via the orifice portion 27 and the second flow path 22. The first flow path 21 and the valve chamber VS are connected by a connection path 21a having a diameter smaller than that of the first flow path 21.
 弁室VSは、円筒形状を有するオリフィス部27の下縁内周である弁座20と、弁座20につながり且つ弁座20より大径の円筒状の内壁24とを備える。 The valve chamber VS includes a valve seat 20 which is the inner circumference of the lower edge of the orifice portion 27 having a cylindrical shape, and a cylindrical inner wall 24 which is connected to the valve seat 20 and has a diameter larger than that of the valve seat 20.
 図2は、図1のA-A線における断面を上面視した図であり、弁体3の軸線直交方向断面を示す。図3は、弁体3の斜視図である。図3において、弁体3は、円錐状の当接部31と、六角筒状の胴部32と、円板状の鍔部33と、円筒状の端部34とを連設してなる。 FIG. 2 is a top view of the cross section taken along the line AA of FIG. 1, and shows the cross section of the valve body 3 in the direction orthogonal to the axis. FIG. 3 is a perspective view of the valve body 3. In FIG. 3, the valve body 3 is formed by connecting a conical contact portion 31, a hexagonal tubular body portion 32, a disk-shaped flange portion 33, and a cylindrical end portion 34 in series.
 当接部31のテーパ面31bが弁座20に当接する。また、当接部31の上面31aは、軸線Lに対して直交する平面である。胴部32の外周は、6つの平面32aと、隣接する平面32a同士の間に形成されたつなぎ面32bとから形成されている。つなぎ面32bは平面でもよいし曲面でもよいが、その周長は平面32aの周長の1/4以下であると好ましい。また、胴部32の軸線方向長さは、弁室VSの内壁24の直径(又は胴部32の対角線最大長)の等倍以上あると好ましい。 The tapered surface 31b of the contact portion 31 comes into contact with the valve seat 20. Further, the upper surface 31a of the contact portion 31 is a plane orthogonal to the axis L. The outer circumference of the body portion 32 is formed of six planes 32a and a connecting surface 32b formed between adjacent planes 32a. The connecting surface 32b may be a flat surface or a curved surface, but its peripheral length is preferably 1/4 or less of the peripheral length of the flat surface 32a. Further, the axial length of the body portion 32 is preferably equal to or more than the diameter of the inner wall 24 of the valve chamber VS (or the maximum diagonal length of the body portion 32).
 弁体3は、弁室VS内に配置される。図2の断面において、弁室VSの内壁24の内周形状と、胴部32の外周形状とは異なっており、また弁室VSと弁体3との偏心に応じて、弁室VSの内壁24と、つなぎ面32bのいずれかが当接し摺動する。一方、弁室VSと弁体3との偏心によらず、弁室VSの内壁24と、平面32aは当接しない。そのため、内壁24と平面32aとの間の空間を、冷媒が通過することになる。 The valve body 3 is arranged in the valve chamber VS. In the cross section of FIG. 2, the inner peripheral shape of the inner wall 24 of the valve chamber VS and the outer peripheral shape of the body portion 32 are different, and the inner wall of the valve chamber VS is different according to the eccentricity between the valve chamber VS and the valve body 3. 24 and any of the connecting surfaces 32b come into contact with each other and slide. On the other hand, regardless of the eccentricity between the valve chamber VS and the valve body 3, the inner wall 24 of the valve chamber VS and the flat surface 32a do not come into contact with each other. Therefore, the refrigerant passes through the space between the inner wall 24 and the flat surface 32a.
 図1において、弁体3が弁本体2の環状の弁座20に着座しているとき、第1流路21と第2流路22とは非連通状態となる。一方、弁体3が弁座20から離間しているとき、第1流路21と第2流路22とは連通状態となる。ただし、弁体3が弁座20に着座しているときも、制限された量の冷媒を通過させる場合もある。 In FIG. 1, when the valve body 3 is seated on the annular valve seat 20 of the valve body 2, the first flow path 21 and the second flow path 22 are in a non-communication state. On the other hand, when the valve body 3 is separated from the valve seat 20, the first flow path 21 and the second flow path 22 are in a communicating state. However, even when the valve body 3 is seated on the valve seat 20, a limited amount of refrigerant may be passed through.
 弁本体2の作動棒挿通孔28に挿通され、またオリフィス部27に隙間を持って挿通された作動棒5の下端は、弁体3の上面31aに対して、軸線Lに交差する方向に相対変位可能に接触している。また、作動棒5は、付勢装置4による付勢力に抗して弁体3を開弁方向に押圧することができる。作動棒5が下方向に移動するとき、弁体3は、弁座20から離間し、膨張弁10が開状態となる。 The lower end of the actuating rod 5 inserted through the actuating rod insertion hole 28 of the valve body 2 and inserted through the orifice portion 27 with a gap is relative to the upper surface 31a of the valve body 3 in the direction intersecting the axis L. Displaceable contact. Further, the operating rod 5 can press the valve body 3 in the valve opening direction against the urging force of the urging device 4. When the operating rod 5 moves downward, the valve body 3 is separated from the valve seat 20 and the expansion valve 10 is opened.
 次に、作動棒5を駆動するパワーエレメント8について説明する。図1において、パワーエレメント8は、弁本体2の頂部に設けられた凹部2aに取り付けられている。凹部2aは連通路2bを介して、エバポレータ104からの冷媒が通過する、弁本体2内の戻り流路23と連通している。連通路2b内を作動棒5が通過している。凹部2aの内周に雌ねじが形成されている。 Next, the power element 8 that drives the operating rod 5 will be described. In FIG. 1, the power element 8 is attached to a recess 2a provided at the top of the valve body 2. The recess 2a communicates with the return passage 23 in the valve body 2 through which the refrigerant from the evaporator 104 passes through the communication passage 2b. The operating rod 5 passes through the communication passage 2b. A female screw is formed on the inner circumference of the recess 2a.
 パワーエレメント8は、栓81と、上蓋部材82と、ダイアフラム83と、ストッパ部材84と、受け部材86とを有する。 The power element 8 has a stopper 81, an upper lid member 82, a diaphragm 83, a stopper member 84, and a receiving member 86.
 上蓋部材82は、中央の円錐部82aと、円錐部82aの下端から外周に広がる環状のフランジ部82bとを有する。円錐部82aの頂部には開口82cが形成され、栓81により封止可能となっている。 The upper lid member 82 has a central conical portion 82a and an annular flange portion 82b extending from the lower end of the conical portion 82a to the outer periphery. An opening 82c is formed at the top of the conical portion 82a and can be sealed by a stopper 81.
 ダイアフラム83は、同心円の凹凸形状を複数個形成した薄い板材からなり、フランジ部82bの外径とほぼ同じ外径を有する。 The diaphragm 83 is made of a thin plate material in which a plurality of concentric uneven shapes are formed, and has an outer diameter substantially the same as the outer diameter of the flange portion 82b.
 ストッパ部材84は、下端中央に嵌合孔84aを有する。 The stopper member 84 has a fitting hole 84a at the center of the lower end.
 受け部材86は、上蓋部材82のフランジ部82bの外径とほぼ同じ外径を持つフランジ部86aと、軸線Lと略直交する環状の支持面86bを持つ段差部86cと、中空円筒部86dとを有している。中空円筒部86dの外周には雄ねじが形成されている。 The receiving member 86 includes a flange portion 86a having an outer diameter substantially the same as the outer diameter of the flange portion 82b of the upper lid member 82, a stepped portion 86c having an annular support surface 86b substantially orthogonal to the axis L, and a hollow cylindrical portion 86d. have. A male screw is formed on the outer circumference of the hollow cylindrical portion 86d.
 パワーエレメント8の組み立て手順を説明する。図1に示すような位置関係となるように、上蓋部材82、ダイアフラム83、ストッパ部材84、及び受け部材86を配置する。 The procedure for assembling the power element 8 will be explained. The upper lid member 82, the diaphragm 83, the stopper member 84, and the receiving member 86 are arranged so as to have a positional relationship as shown in FIG.
 更に、上蓋部材82のフランジ部82bと、ダイアフラム83と、受け部材86のフランジ部86aのそれぞれ外周部を重ね合わせた状態で、当該外周部を例えばTIG溶接やレーザ溶接、プラズマ溶接等により周溶接して一体化する。 Further, in a state where the flange portion 82b of the upper lid member 82, the diaphragm 83, and the flange portion 86a of the receiving member 86 are overlapped with each other, the outer peripheral portion is peripherally welded by, for example, TIG welding, laser welding, plasma welding, or the like. And integrate.
 続いて、上蓋部材82に形成された開口82cから、上蓋部材82とダイアフラム83とで囲われる空間(圧力作動室PO)内に作動ガスを封入した後、開口82cを栓81で封止し、更にプロジェクション溶接等を用いて、栓81を上蓋部材82に固定する。 Subsequently, the working gas is sealed in the space (pressure working chamber PO) surrounded by the upper lid member 82 and the diaphragm 83 from the opening 82c formed in the upper lid member 82, and then the opening 82c is sealed with the stopper 81. Further, the stopper 81 is fixed to the upper lid member 82 by projection welding or the like.
 このとき、圧力作動室POに封入された作動ガスにより、ダイアフラム83は受け部材86側に張り出す形で圧力を受けるため、ダイアフラム83と受け部材86とで囲われる空間(圧力検出室PD)に配置されたストッパ部材84の上面と当接して支持される。 At this time, since the diaphragm 83 receives pressure in a form of projecting toward the receiving member 86 due to the working gas sealed in the pressure operating chamber PO, the space (pressure detection chamber PD) surrounded by the diaphragm 83 and the receiving member 86 is filled. It is supported in contact with the upper surface of the arranged stopper member 84.
 パワーエレメント8の組み付け時には、ストッパ部材84の嵌合孔84aに作動棒5の上端を嵌合させた状態で、受け部材86の中空円筒部86dの雄ねじを、戻り流路23と連通する弁本体2の凹部2aの雌ねじに螺合させて、パワーエレメント8を弁本体2に固定する。
 このとき、パワーエレメント8と弁本体2との間には、パッキンPKが介装され、弁本体2にパワーエレメント8を取り付けた際の凹部2aからの冷媒のリークを防止する。かかる状態で、パワーエレメント8の圧力検出室PDは戻り流路23と連通する。
When assembling the power element 8, the valve body that communicates the male screw of the hollow cylindrical portion 86d of the receiving member 86 with the return flow path 23 with the upper end of the operating rod 5 fitted in the fitting hole 84a of the stopper member 84. The power element 8 is fixed to the valve body 2 by being screwed into the female screw of the recess 2a of 2.
At this time, a packing PK is interposed between the power element 8 and the valve body 2 to prevent the refrigerant from leaking from the recess 2a when the power element 8 is attached to the valve body 2. In this state, the pressure detection chamber PD of the power element 8 communicates with the return flow path 23.
 リングばね6は、作動棒5の振動を抑制する防振部材である。このリングばね6は、弁本体2の作動棒挿通孔28に隣接する環状部26に配置されて、内周側に突出した爪部により、作動棒5の外周面に所定の弾性力を付与するようになっている。 The ring spring 6 is a vibration isolator that suppresses the vibration of the operating rod 5. The ring spring 6 is arranged in an annular portion 26 adjacent to the operating rod insertion hole 28 of the valve body 2, and a predetermined elastic force is applied to the outer peripheral surface of the operating rod 5 by a claw portion protruding toward the inner circumference side. It has become like.
 付勢装置4は、円形の線材を螺旋状に巻いたコイルばね41と、ばね受け部材43とを有する。ばね受け部材43は、弁本体2の弁室VSの開口を封止する機能と、コイルばね41の下端を支持する機能とを有する。ばね受け部材43と、弁室VSの内壁との間には、O-リング44が配置されており、冷媒漏れを防止している。 The urging device 4 has a coil spring 41 in which a circular wire rod is spirally wound, and a spring receiving member 43. The spring receiving member 43 has a function of sealing the opening of the valve chamber VS of the valve body 2 and a function of supporting the lower end of the coil spring 41. An O-ring 44 is arranged between the spring receiving member 43 and the inner wall of the valve chamber VS to prevent refrigerant leakage.
 図3に示す弁体3は、コイルばね41の上端を鍔部33の下面に当接させ、また、コイルばね41の上端内側に端部34を嵌合させることにより保持されている。 The valve body 3 shown in FIG. 3 is held by bringing the upper end of the coil spring 41 into contact with the lower surface of the flange portion 33 and fitting the end portion 34 inside the upper end of the coil spring 41.
(膨張弁の動作)
 図1を参照して、膨張弁10の動作例について説明する。コンプレッサ101で加圧された冷媒は、コンデンサ102で液化され、膨張弁10に送られる。また、膨張弁10で断熱膨張された冷媒はエバポレータ104に送り出され、エバポレータ104で、エバポレータの周囲を流れる空気と熱交換される。エバポレータ104から戻る冷媒は、膨張弁10(より具体的には、戻り流路23)を通ってコンプレッサ101側へ戻される。
(Operation of expansion valve)
An operation example of the expansion valve 10 will be described with reference to FIG. The refrigerant pressurized by the compressor 101 is liquefied by the condenser 102 and sent to the expansion valve 10. Further, the refrigerant adiabatically expanded by the expansion valve 10 is sent to the evaporator 104, and the evaporator 104 exchanges heat with the air flowing around the evaporator. The refrigerant returning from the evaporator 104 is returned to the compressor 101 side through the expansion valve 10 (more specifically, the return flow path 23).
 膨張弁10には、コンデンサ102から高圧冷媒が供給される。より具体的には、コンデンサ102からの高圧冷媒は、第1流路21を介して弁室VSに供給される。 High-pressure refrigerant is supplied to the expansion valve 10 from the condenser 102. More specifically, the high-pressure refrigerant from the condenser 102 is supplied to the valve chamber VS via the first flow path 21.
 弁体3の当接部31が、弁座20に着座しているとき(換言すれば、膨張弁10が閉状態のとき)には、弁室VSの上流側の第1流路21と弁室VSの下流側の第2流路22とは、非連通状態である。他方、弁体3の当接部31が、弁座20から離間しているとき(換言すれば、膨張弁10が開状態のとき)には、弁室VSに供給された冷媒は、オリフィス部27及び第2流路22を通って、エバポレータ104へ送り出される。 When the contact portion 31 of the valve body 3 is seated on the valve seat 20 (in other words, when the expansion valve 10 is in the closed state), the first flow path 21 and the valve on the upstream side of the valve chamber VS The second flow path 22 on the downstream side of the chamber VS is in a non-communication state. On the other hand, when the contact portion 31 of the valve body 3 is separated from the valve seat 20 (in other words, when the expansion valve 10 is in the open state), the refrigerant supplied to the valve chamber VS is the orifice portion. It is sent out to the evaporator 104 through 27 and the second flow path 22.
 本実施形態によれば、弁体3の当接部31が弁座20から離間しているとき、弁室VS内の気泡を含んだ冷媒が、弁体3の胴部32の平面32aと、内壁24との間の比較的狭い隙間を、胴部32の軸線長にわたって通過する間に、気泡が徐々につぶれてゆく。このため、弁座20を冷媒が通過する際に気泡が一斉につぶれることがなく、気泡破裂時のエネルギーを低減させて、通過音を減少させることができる。また、胴部32の軸線長にわたる平面32aに沿って冷媒を流すことで、冷媒の整流効果が得られる。 According to the present embodiment, when the contact portion 31 of the valve body 3 is separated from the valve seat 20, the refrigerant containing air bubbles in the valve chamber VS is transferred to the flat surface 32a of the body portion 32 of the valve body 3. The air bubbles are gradually crushed while passing through the relatively narrow gap between the inner wall 24 and the body portion 32 over the axial length of the body portion 32. Therefore, when the refrigerant passes through the valve seat 20, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing sound can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 32a over the axial length of the body portion 32.
 膨張弁10の閉状態と開状態との間の切り換えは、パワーエレメント8に接続された作動棒5によって行われる。このとき、内壁24に摺接する胴部32のつなぎ面32bが、胴部32の軸線長に応じた長いスパンを持つため、弁体3の当接部31が弁座20から離間する際に生じる傾きを抑えることができる。そのため、上面31aが作動棒5と相対変位可能であることも相まって、弁体3のスムーズな動作を確保することができる。 Switching between the closed state and the open state of the expansion valve 10 is performed by the operating rod 5 connected to the power element 8. At this time, since the connecting surface 32b of the body portion 32 that is in sliding contact with the inner wall 24 has a long span corresponding to the axis length of the body portion 32, the contact portion 31 of the valve body 3 is separated from the valve seat 20. Tilt can be suppressed. Therefore, the upper surface 31a can be displaced relative to the operating rod 5, and the smooth operation of the valve body 3 can be ensured.
 図1において、パワーエレメント8の内部には、ダイアフラム83により仕切られた圧力作動室POと圧力検出室PDとが設けられている。このため、圧力作動室PO内の作動ガスが液化されると、作動棒5は上方向に移動し、液化された作動ガスが気化されると、作動棒5は下方向に移動する。こうして、膨張弁10の開弁状態と閉弁状態との間の切り換えが行われる。 In FIG. 1, a pressure operating chamber PO and a pressure detecting chamber PD partitioned by a diaphragm 83 are provided inside the power element 8. Therefore, when the working gas in the pressure working chamber PO is liquefied, the working rod 5 moves upward, and when the liquefied working gas is vaporized, the working rod 5 moves downward. In this way, the expansion valve 10 is switched between the valve open state and the valve closed state.
 更に、パワーエレメント8の圧力検出室PDは、戻り流路23と連通している。このため、戻り流路23を流れる冷媒の圧力が、ストッパ部材84及びダイアフラム83を介して圧力作動室PO内の作動ガスに伝達される。それにより、圧力作動室PO内の作動ガスの体積が変化し、作動棒5が駆動される。換言すれば、図1に記載の膨張弁10では、エバポレータ104から膨張弁10に戻る冷媒の圧力に応じて、膨張弁10からエバポレータ104に向けて供給される冷媒の量が自動的に調整される。 Further, the pressure detection chamber PD of the power element 8 communicates with the return flow path 23. Therefore, the pressure of the refrigerant flowing through the return flow path 23 is transmitted to the working gas in the pressure working chamber PO via the stopper member 84 and the diaphragm 83. As a result, the volume of the working gas in the pressure working chamber PO changes, and the working rod 5 is driven. In other words, in the expansion valve 10 shown in FIG. 1, the amount of the refrigerant supplied from the expansion valve 10 toward the evaporator 104 is automatically adjusted according to the pressure of the refrigerant returning from the evaporator 104 to the expansion valve 10. To.
(第2実施形態)
 次に、第2実施形態にかかる膨張弁について説明する。図4は、膨張弁10Aの弁体付近を拡大して示す断面図である。図5は、図4のB-B線における断面を上面視した図である。図6は、弁体3Aの斜視図である。
(Second Embodiment)
Next, the expansion valve according to the second embodiment will be described. FIG. 4 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve 10A. FIG. 5 is a top view of the cross section taken along the line BB of FIG. FIG. 6 is a perspective view of the valve body 3A.
 図6において、弁体3Aは、円錐状の当接部31Aと、六角筒状の胴部32Aと、円筒状の端部34Aとを連設してなる。 In FIG. 6, the valve body 3A is formed by connecting a conical contact portion 31A, a hexagonal tubular body portion 32A, and a cylindrical end portion 34A in succession.
 当接部31Aのテーパ面31Abが弁座20に当接する。また、当接部31Aの上面31Aaは、軸線Lに対して直交する平面である。胴部32Aの外周は、6つの平面32Aaと、隣接する平面32Aa同士の間に形成されたつなぎ面32Abとから形成されている。つなぎ面32Abは平面でもよいし曲面でもよい。胴部32Aの長さは、弁室VSの内壁24Aの直径(又は胴部32Aの対角線最大長)の等倍以上あると好ましい。つなぎ面32Abが摺接部を構成し、平面32Aaが流路部を構成する。 The tapered surface 31Ab of the contact portion 31A abuts on the valve seat 20. Further, the upper surface 31Aa of the contact portion 31A is a plane orthogonal to the axis L. The outer circumference of the body portion 32A is formed of six planes 32Aa and a connecting surface 32Ab formed between adjacent planes 32Aa. The connecting surface 32Ab may be a flat surface or a curved surface. The length of the body portion 32A is preferably equal to or more than the diameter of the inner wall 24A of the valve chamber VS (or the maximum diagonal length of the body portion 32A). The connecting surface 32Ab constitutes the sliding contact portion, and the flat surface 32Aa constitutes the flow path portion.
 弁室VSの内壁24Aは、コイルばね41の外径より大きくなっている。それ以外の構成は、上述した実施形態と同様であるため、同じ符号を付して重複説明を省略する。 The inner wall 24A of the valve chamber VS is larger than the outer diameter of the coil spring 41. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and duplicate description will be omitted.
 本実施形態によれば、弁体3Aの当接部31Aが弁座20から離間しているとき、弁室VS内の気泡を含んだ冷媒が、弁体3Aの胴部32Aの平面32Aaと、内壁24Aとの間の比較的狭い隙間を、胴部32Aの軸線長にわたって通過する間に、気泡が徐々につぶれてゆく。このため、弁座20を冷媒が通過する際に気泡が一斉につぶれることがなく、気泡破裂時のエネルギーを低減させて、通過音を減少させることができる。また、胴部32Aの軸線長にわたる平面32Aaに沿って冷媒を流すことで、冷媒の整流効果が得られる。 According to the present embodiment, when the contact portion 31A of the valve body 3A is separated from the valve seat 20, the refrigerant containing air bubbles in the valve chamber VS is transferred to the flat surface 32Aa of the body portion 32A of the valve body 3A. The air bubbles are gradually crushed while passing through the relatively narrow gap between the inner wall 24A and the body portion 32A over the axial length. Therefore, when the refrigerant passes through the valve seat 20, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing sound can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 32Aa over the axial length of the body portion 32A.
 弁開閉時に、内壁24Aに当接する胴部32Aのつなぎ面32Abが、胴部32Aの軸線長に応じた長いスパンを持つため、弁体3Aの当接部31Aが弁座20から離間する際に生じる傾きを抑えることができる。そのため、上面31Aaが作動棒5と相対変位可能であることも相まって、弁体3Aのスムーズな動作を確保することができる。 When the abutting portion 31A of the valve body 3A separates from the valve seat 20, the connecting surface 32Ab of the body portion 32A that abuts on the inner wall 24A when the valve is opened and closed has a long span corresponding to the axial length of the body portion 32A. The tilt that occurs can be suppressed. Therefore, the upper surface 31Aa can be displaced relative to the operating rod 5, and the smooth operation of the valve body 3A can be ensured.
 特に、つなぎ面32Abと内壁24Aとの当接位置が、軸線Lから比較的離れているため、弁体3Aの傾きを効果的に抑制できる。 In particular, since the contact position between the connecting surface 32Ab and the inner wall 24A is relatively far from the axis L, the inclination of the valve body 3A can be effectively suppressed.
(第3実施形態)
 次に、第3実施形態にかかる膨張弁について説明する。図7は、膨張弁10Bの弁体付近を拡大して示す断面図である。図8は、図7のC-C線における断面を上面視した図である。図9は、弁体3Bの斜視図である。
(Third Embodiment)
Next, the expansion valve according to the third embodiment will be described. FIG. 7 is an enlarged cross-sectional view showing the vicinity of the valve body of the expansion valve 10B. FIG. 8 is a top view of the cross section taken along the line CC of FIG. 7. FIG. 9 is a perspective view of the valve body 3B.
 図9において、弁体3Bは、円錐状の当接部31Bと、円筒状の胴部32Bと、円板状の鍔部33Bと、円筒状の端部34Bとを連設してなる。 In FIG. 9, the valve body 3B is formed by connecting a conical contact portion 31B, a cylindrical body portion 32B, a disk-shaped flange portion 33B, and a cylindrical end portion 34B.
 当接部31Bのテーパ面31Bbが弁座20に当接する。また、当接部31Bの上面31Baは、軸線Lに対して直交する平面である。胴部32Bの長さは、弁室VSの内壁24Bの対角線最大長(又は胴部32Bの直径)の等倍以上あると好ましい。 The tapered surface 31Bb of the contact portion 31B comes into contact with the valve seat 20. Further, the upper surface 31Ba of the contact portion 31B is a plane orthogonal to the axis L. The length of the body portion 32B is preferably equal to or more than the maximum diagonal length (or the diameter of the body portion 32B) of the inner wall 24B of the valve chamber VS.
 図8に示すように、弁室VSの内壁24Bは、6つの平面24Bbから形成された六角筒形状となっている。弁体3Bの胴部32Bの外周は、図8に示す6つの接点CPのいずれかで、平面24Bbと接する。したがって、胴部32Bの外周面における接点CPが、摺接部を構成し、また隣接する接点CP同士の間の外周面が、流路部を構成する。それ以外の構成は、上述した実施形態と同様であるため、同じ符号を付して重複説明を省略する。 As shown in FIG. 8, the inner wall 24B of the valve chamber VS has a hexagonal cylinder shape formed from six flat surfaces 24Bb. The outer circumference of the body portion 32B of the valve body 3B is in contact with the flat surface 24Bb at any of the six contact points CP shown in FIG. Therefore, the contact CP on the outer peripheral surface of the body portion 32B constitutes the sliding contact portion, and the outer peripheral surface between the adjacent contact CPs constitutes the flow path portion. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and duplicate description will be omitted.
 本実施形態によれば、弁体3Bの当接部31Bが弁座20から離間しているとき、弁室VS内の気泡を含んだ冷媒が、弁体3Bの胴部32Bの外周面と、内壁24Bとの間の比較的狭い隙間を、胴部32Bの軸線長にわたって通過する間に、気泡が徐々につぶれてゆく。このため、弁座20を冷媒が通過する際に気泡が一斉につぶれることがなく、気泡破裂時のエネルギーを低減させて、通過音を減少させることができる。また、胴部32Bの軸線長にわたる平面24Bbに沿って冷媒を流すことで、冷媒の整流効果が得られる。 According to the present embodiment, when the contact portion 31B of the valve body 3B is separated from the valve seat 20, the refrigerant containing air bubbles in the valve chamber VS is transferred to the outer peripheral surface of the body portion 32B of the valve body 3B. While passing through a relatively narrow gap with the inner wall 24B over the axial length of the body portion 32B, the air bubbles are gradually crushed. Therefore, when the refrigerant passes through the valve seat 20, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing sound can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 24Bb over the axial length of the body portion 32B.
 弁開閉時に、胴部32Bに当接する平面24Bbが弁体3Bの軸線方向に長いスパンを持つため、弁体3Bの当接部31Bが弁座20から離間する際に生じる傾きを抑えることができる。そのため、上面31Baが作動棒5と相対変位可能であることも相まって、弁体3Bのスムーズな動作を確保することができる。 Since the flat surface 24Bb that contacts the body portion 32B has a long span in the axial direction of the valve body 3B when the valve is opened and closed, it is possible to suppress the inclination that occurs when the contact portion 31B of the valve body 3B separates from the valve seat 20. .. Therefore, the upper surface 31Ba can be displaced relative to the operating rod 5, and the smooth operation of the valve body 3B can be ensured.
(変形例)
 図10は、変形例にかかる弁体と弁室の内壁との断面を示す、図2と同様な図である。本変形例においては、弁本体2Dにおける弁室の内壁24Dが円筒面であるのに対し、弁体の胴部32Dが非円形断面を有する。具体的には、胴部32Dは、部分円筒形状面32Daと、平面32Dbとから形成される。平面32Dbの幅は、部分円筒形状面32Daの直径より短い。胴部32Dの断面形状は、胴部32Dの全長にわたって同一である。部分円筒形状面32Daが摺接部を構成し、平面32Dbが流路部を構成する。それ以外の構成は、上述した実施の形態と同様であるため、同じ符号を付して重複説明を省略する。
(Modification example)
FIG. 10 is a view similar to FIG. 2 showing a cross section of the valve body and the inner wall of the valve chamber according to the modified example. In this modification, the inner wall 24D of the valve chamber in the valve body 2D has a cylindrical surface, whereas the body portion 32D of the valve body has a non-circular cross section. Specifically, the body portion 32D is formed of a partially cylindrical surface 32Da and a flat surface 32Db. The width of the plane 32Db is shorter than the diameter of the partially cylindrical surface 32Da. The cross-sectional shape of the body portion 32D is the same over the entire length of the body portion 32D. The partially cylindrical surface 32Da constitutes the sliding contact portion, and the flat surface 32Db constitutes the flow path portion. Since the other configurations are the same as those in the above-described embodiment, the same reference numerals are given and duplicate description will be omitted.
 本変形例によれば、弁体が弁座から離間しているとき、弁室内の気泡を含んだ冷媒は、弁体の胴部32Dの平面32Dbと、内壁24Dとの間の比較的狭い隙間を、胴部32Dの軸線長にわたって通過する間に、気泡が徐々につぶれてゆく。このため、弁座を冷媒が通過する際に気泡が一斉につぶれることがなく、気泡破裂時のエネルギーを低減させて、通過音を減少させることができる。また、胴部32Dの軸線長にわたる平面32Dbに沿って冷媒を流すことで、冷媒の整流効果が得られる。 According to this modification, when the valve body is separated from the valve seat, the refrigerant containing air bubbles in the valve body has a relatively narrow gap between the flat surface 32Db of the body 32D of the valve body and the inner wall 24D. The air bubbles are gradually crushed while passing through the axial length of the body portion 32D. Therefore, when the refrigerant passes through the valve seat, the bubbles are not crushed all at once, the energy at the time of bubble burst can be reduced, and the passing noise can be reduced. Further, the rectifying effect of the refrigerant can be obtained by flowing the refrigerant along the plane 32Db over the axis length of the body portion 32D.
 なお、本発明は、上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。例えば、流路部は平面に限らず、凸曲面又は凹曲面であってよい。 The present invention is not limited to the above-described embodiment. Within the scope of the present invention, any component of the above-described embodiment can be modified. Further, in the above-described embodiment, any component can be added or omitted. For example, the flow path portion is not limited to a flat surface, and may be a convex curved surface or a concave curved surface.
10、10A、10B    :膨張弁
2、2A、2B、2D    :弁本体
3、3A、3B    :弁体
4    :付勢装置
5    :作動棒
6    :リングばね
8    :パワーエレメント
20   :弁座
21   :第1流路
22   :第2流路
23   :戻り流路
26   :環状部
27   :オリフィス部
41   :コイルばね
42   :弁体サポート
43   :ばね受け部材
100  :冷媒サイクルシステム
101  :コンプレッサ
102  :コンデンサ
104  :エバポレータ
VS   :弁室

 
10, 10A, 10B: Expansion valve 2, 2A, 2B, 2D: Valve body 3, 3A, 3B: Valve body 4: Evaporator 5: Actuating rod 6: Ring spring 8: Power element 20: Valve seat 21: No. 1 flow path 22: 2nd flow path 23: return flow path 26: annular portion 27: orifice portion 41: coil spring 42: valve body support 43: spring receiving member 100: refrigerant cycle system 101: compressor 102: condenser 104: evaporator VS: Valve chamber

Claims (5)

  1.  弁室と弁座を備えた弁本体と、
     前記弁座に着座することにより流体の通過を制限し、前記弁座から離間することにより前記流体の通過を許容する弁体と、
     前記弁体を前記弁座に向かって付勢するコイルばねと、
     前記コイルばねによる付勢力に抗して、前記弁体を前記弁座から離間する方向に押圧する作動棒と、を有し、
     前記弁室は、前記弁座につながる筒状の内壁を有し、
     前記弁体は、前記弁座に着座する当接部と、前記内壁に対向する筒状の胴部とを有し、
     前記弁体の軸線直交方向に断面をとったとき、前記内壁の内周の形状と、前記胴部の外周の形状とを異ならせることにより、前記内壁と前記胴部との間に前記流体が通過する空間が形成され、前記内壁の内周と前記胴部の外周とが部分的に摺動可能に接触している、
    ことを特徴とする膨張弁。
    A valve body with a valve chamber and a valve seat,
    A valve body that restricts the passage of fluid by sitting on the valve seat and allows the passage of the fluid by separating from the valve seat.
    A coil spring that urges the valve body toward the valve seat,
    It has an operating rod that presses the valve body in a direction away from the valve seat against the urging force of the coil spring.
    The valve chamber has a tubular inner wall that connects to the valve seat.
    The valve body has a contact portion that sits on the valve seat and a tubular body portion that faces the inner wall.
    When the cross section is taken in the direction orthogonal to the axis of the valve body, the fluid is generated between the inner wall and the body by making the shape of the inner circumference of the inner wall different from the shape of the outer circumference of the body. A space for passage is formed, and the inner circumference of the inner wall and the outer circumference of the body are partially slidably in contact with each other.
    An expansion valve characterized by that.
  2.  前記内壁は円筒形状を有し、前記胴部は多角筒形状を有している、
    ことを特徴とする請求項1に記載の膨張弁。
    The inner wall has a cylindrical shape, and the body has a polygonal tubular shape.
    The expansion valve according to claim 1, wherein the expansion valve is characterized in that.
  3.  前記内壁は多角筒形状を有し、前記胴部は円筒形状を有している、
    ことを特徴とする請求項1に記載の膨張弁。
    The inner wall has a polygonal tubular shape, and the body has a cylindrical shape.
    The expansion valve according to claim 1, wherein the expansion valve is characterized in that.
  4.  前記内壁は円筒形状を有し、前記胴部は非円形状断面を有している、
    ことを特徴とする請求項1に記載の膨張弁。
    The inner wall has a cylindrical shape, and the body has a non-circular cross section.
    The expansion valve according to claim 1, wherein the expansion valve is characterized in that.
  5.  前記作動棒と前記弁体とは、相対変位可能に当接している、
    ことを特徴とする請求項1~4のいずれか1項に記載の膨張弁。

     
    The operating rod and the valve body are in contact with each other so as to be relatively displaceable.
    The expansion valve according to any one of claims 1 to 4, wherein the expansion valve is characterized in that.

PCT/JP2020/005113 2019-03-15 2020-02-10 Expansion valve WO2020189092A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20773642.2A EP3940279B1 (en) 2019-03-15 2020-02-10 Expansion valve
CN202080020698.7A CN113574303B (en) 2019-03-15 2020-02-10 Expansion valve
US17/435,965 US20220146160A1 (en) 2019-03-15 2020-02-10 Expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048420A JP7089769B2 (en) 2019-03-15 2019-03-15 Expansion valve
JP2019-048420 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189092A1 true WO2020189092A1 (en) 2020-09-24

Family

ID=72430443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005113 WO2020189092A1 (en) 2019-03-15 2020-02-10 Expansion valve

Country Status (5)

Country Link
US (1) US20220146160A1 (en)
EP (1) EP3940279B1 (en)
JP (1) JP7089769B2 (en)
CN (1) CN113574303B (en)
WO (1) WO2020189092A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023114585A (en) * 2022-02-07 2023-08-18 株式会社不二工機 expansion valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922047Y1 (en) * 1972-07-31 1974-06-13
JPS60121172U (en) * 1984-01-23 1985-08-15 太平洋工業株式会社 Temperature automatic expansion valve
JP2012052693A (en) * 2010-08-31 2012-03-15 Fuji Koki Corp Solenoid valve-integrated expansion valve
JP2012255471A (en) * 2011-06-08 2012-12-27 Fuji Koki Corp Check valve
JP2013145041A (en) * 2011-09-30 2013-07-25 Tgk Co Ltd Control valve
JP5369259B2 (en) 2008-08-25 2013-12-18 株式会社テージーケー Expansion valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571357Y2 (en) * 1991-05-24 1998-05-18 株式会社鷺宮製作所 Injection valve for refrigeration cycle
JP3782896B2 (en) * 1998-08-05 2006-06-07 株式会社テージーケー Supercooling control type expansion valve
JP4255892B2 (en) * 2003-11-06 2009-04-15 株式会社不二工機 Expansion valve
JP2005351605A (en) * 2004-06-14 2005-12-22 Daikin Ind Ltd Expansion valve and refrigeration device
CN100504253C (en) * 2005-02-28 2009-06-24 大金工业株式会社 Expansion valve and refrigeration device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922047Y1 (en) * 1972-07-31 1974-06-13
JPS60121172U (en) * 1984-01-23 1985-08-15 太平洋工業株式会社 Temperature automatic expansion valve
JP5369259B2 (en) 2008-08-25 2013-12-18 株式会社テージーケー Expansion valve
JP2012052693A (en) * 2010-08-31 2012-03-15 Fuji Koki Corp Solenoid valve-integrated expansion valve
JP2012255471A (en) * 2011-06-08 2012-12-27 Fuji Koki Corp Check valve
JP2013145041A (en) * 2011-09-30 2013-07-25 Tgk Co Ltd Control valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940279A4

Also Published As

Publication number Publication date
EP3940279A4 (en) 2022-12-07
CN113574303A (en) 2021-10-29
JP7089769B2 (en) 2022-06-23
EP3940279A1 (en) 2022-01-19
CN113574303B (en) 2024-01-23
JP2020148305A (en) 2020-09-17
EP3940279B1 (en) 2024-08-14
US20220146160A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2020189092A1 (en) Expansion valve
JP2024026258A (en) Power element and expansion valve using the same
WO2021106933A1 (en) Power element and expansion valve using same
WO2021106932A1 (en) Power element and expansion valve using same
JP7217504B2 (en) expansion valve
JP7074322B2 (en) Expansion valve
JP7373857B2 (en) Power element and expansion valve using it
WO2024135731A1 (en) Solenoid valve and expansion valve with solenoid valve
JP7153912B2 (en) expansion valve
JP7357338B2 (en) Power element and expansion valve using it
JP7266283B2 (en) valve device
JP7153911B2 (en) expansion valve
JP7403168B2 (en) expansion valve
JP7246075B2 (en) expansion valve
JP7165972B2 (en) expansion valve
JP7016155B2 (en) Expansion valve
JP7074321B2 (en) Expansion valve
JP2022163447A (en) expansion valve
JP2024068727A (en) Expansion valve
WO2019181377A1 (en) Expansion valve
JP2022184379A (en) expansion valve
JP2020193651A (en) Valve device
JP2020139689A (en) Expansion valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020773642

Country of ref document: EP