JP3782896B2 - Supercooling control type expansion valve - Google Patents

Supercooling control type expansion valve Download PDF

Info

Publication number
JP3782896B2
JP3782896B2 JP22120198A JP22120198A JP3782896B2 JP 3782896 B2 JP3782896 B2 JP 3782896B2 JP 22120198 A JP22120198 A JP 22120198A JP 22120198 A JP22120198 A JP 22120198A JP 3782896 B2 JP3782896 B2 JP 3782896B2
Authority
JP
Japan
Prior art keywords
valve body
refrigerant
expansion valve
control type
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22120198A
Other languages
Japanese (ja)
Other versions
JP2000055512A (en
Inventor
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP22120198A priority Critical patent/JP3782896B2/en
Publication of JP2000055512A publication Critical patent/JP2000055512A/en
Application granted granted Critical
Publication of JP3782896B2 publication Critical patent/JP3782896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍サイクル中に用いられる過冷却度制御式膨張弁に関する。
【0002】
【従来の技術】
冷凍サイクルに用いられる膨張弁として、蒸発器から出た低圧冷媒の温度と圧力に対応して、蒸発器に入る冷媒の流量を制御するいわゆる温度式膨張弁が広く用いられている。
【0003】
それに対して、蒸発器に送り込まれる前の高圧冷媒の過冷却度を検知して蒸発器に入る冷媒の流量を制御する過冷却度制御式膨張弁は、蒸発器の入口側だけで全てを処理することができるので、装置を非常にコンパクトに構成することができるメリットがある。
【0004】
図6は、そのような従来の過冷却度制御式膨張弁を示しており、蒸発器に送り込まれる冷媒が通る冷媒流路2,3の途中を細く絞って本体ブロック1に形成された絞り部4に対向して、その上流側から進退自在に弁体5が配置されている。
【0005】
そして、絞り部4より上流側の冷媒の過冷却度を検知して変位するダイアフラム11により弁体5の位置を制御し、過冷却度が一定になる状態で高圧冷媒を断熱膨張させて蒸発器に向けて送り出すようにしている。
【0006】
ダイアフラム11は、凝縮性ガスが封入されたパワーエレメント10の壁面を構成しており、パワーエレメント10の外壁面は外気と熱的に遮断されるように断熱材20によって囲まれている。
【0007】
弁体5の頭部には、ダイアフラム11の裏面に当接するダイアフラム受け盤6が配置されていて、弁体5は、それと反対側から、細径ロッド9を介して圧縮コイルスプリング8によって付勢されている。
【0008】
【発明が解決しようとする課題】
弁体5は、絞り部4より上流側の冷媒流路2内の高圧冷媒の温度によって変動するパワーエレメント10内の圧力と、冷媒流路2内の冷媒圧と、圧縮コイルスプリング8の付勢力とが釣り合う位置で静止するが、冷媒流によって振動しないように、本体ブロック1に形成された弁体受け7にガタつきなく嵌合させる必要がある。
【0009】
そのため、弁体5と弁体受け7との狭い嵌合部を通過する高圧冷媒は極めて僅かであり、冷媒流路2内の冷媒温度は、主に弁体5を媒体とする熱伝導によってダイアフラム11に伝達される。その結果、高圧冷媒の温度変化に対して弁体5の変位に遅れが発生する欠点があった。
【0010】
そこで本発明は、高圧冷媒の温度変化に対する応答性のよい過冷却度制御式膨張弁を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明の過冷却度制御式膨張弁は、蒸発器に送り込まれる冷媒が通る高圧冷媒流路の途中を細く絞って形成された絞り部に対向してその上流側に進退自在に弁体を配置し、上記絞り部より上流側の冷媒の過冷却度を検知して変位するダイアフラムにより上記弁体の位置を制御して、上記高圧冷媒を過冷却度が一定になる状態で断熱膨張させて上記蒸発器に向けて送り出すようにした過冷却度制御式膨張弁において、上記弁体が上記進退方向にガタつきなく嵌合する弁体受けを形成して、上記弁体の上記弁体受けとの嵌合外周面に冷媒通過路を形成し、上記絞り部より上流側の高圧冷媒が上記ダイアフラム面近傍に導かれるようにしたことを特徴とする。
【0012】
なお、上記弁体受けが上記絞り部に隣接して設けられており、上記ダイアフラム面近傍を通過した高圧冷媒が、上記冷媒通過路を通って上記絞り部に導かれるようにしてもよい。
【0013】
また、上記弁体の上記弁体受けから上流側に出た部分の外周が、細く括れた形状に形成されていてもよい。
【0014】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明する。
図1は、本発明の第1の実施の形態の過冷却度制御式膨張弁を示しており、図示されていない蒸発器に送り込まれる冷媒を通すように本体ブロック1に形成された冷媒流路2,3の途中を細く絞って絞り部4が形成されている。2は、絞り部4より上流側の管路、3は下流側の管路である。
【0015】
絞り部4に上流側から対向して、絞り部4の軸線と同方向に進退自在に弁体5が配置されている。弁体5は、絞り部4の上流側に隣接して本体ブロック1に形成された弁体受け7にガタつきのないように嵌合しており、絞り部4に対向する先端部分はテーパ面に形成されている。
【0016】
ただし、A−A断面を示す図2に示されるように、弁体5の弁体受け7との嵌合外周面には、溝状に凹んだ断面形状の複数の冷媒通過路5aが軸線と平行方向に形成されており、絞り部4より上流側の高圧冷媒が冷媒通過路5aを通って絞り部4に導かれる。
【0017】
図1に戻って、弁体5の他端側が当接するダイアフラム受け盤6は熱伝導性のよい金属材料によって盆状に薄く広く形成されており、そのダイアフラム受け盤6の反対側の面がパワーエレメント10のダイアフラム11の裏面に当接している。
【0018】
パワーエレメント10は、ダイアフラム受け盤6に当接する壁面が可撓性薄膜からなるダイアフラム11によって形成され、それ以外の部分は、金属製のハウジング12によって密閉状態に囲まれている。
【0019】
そして、パワーエレメント10の圧力室13内には、冷媒流路2,3内を流れる冷媒と似た特性の凝縮性ガスと不活性の窒素ガスとが封止されており、ハウジング12の外面は、外気と熱的に遮断されるように断熱材20によって囲まれている。
【0020】
弁体5は、絞り部4より下流側に配置された圧縮コイルスプリング8によって、絞り部4内に通された細径ロッド9を介してダイアフラム11側に向けて付勢されており、ダイアフラム11から受ける圧力室13内の圧力と、絞り部4より上流側の冷媒流路2内の冷媒圧と、圧縮コイルスプリング8から受ける付勢力とが釣り合う位置で静止する。
【0021】
圧縮コイルスプリング8の付勢力は、圧縮コイルスプリング8の他端側を受ける状態で本体ブロック1に螺合して設けられたねじ込み検体19の締め込み量を変えることにより調整することができる。
【0022】
本体ブロック1に対するパワーエレメント10のハウジング12の取り付け螺合部は、弁体5の外周面との間に十分な隙間ができる太さに形成されている。その結果、絞り部4より上流側の冷媒流路2内の高圧冷媒の一部は、相当量がダイアフラム受け盤6に直接触れてから冷媒通過路5aを通過して絞り部4に達する。
【0023】
したがって、ダイアフラム11の裏面部分の空間の圧力は冷媒流路2内の高圧冷媒の圧力と常時同じになっている。また冷媒流路2内の冷媒の温度が薄いダイアフラム受け盤6を介して非常に短い時間でダイアフラム11の裏面に伝わり、圧力室13内の圧力がそれに対応して変化する。その結果、ダイアフラム11が絞り部4より上流側の冷媒の過冷却度に対応して変位し、それによって弁体5の位置が制御される。
【0024】
このようにして、冷媒流路2に送り込まれてくる高圧冷媒の温度変化に対して反応が遅れることなく冷媒の流量が敏速に制御され、絞り部4より上流側の冷媒流路2内の高圧冷媒の過冷却度が一定に保たれた状態で、絞り部4より下流側において冷媒が断熱膨張しながら蒸発器に送り出される。
【0025】
なお、本発明は上記実施の形態に限定されるものではなく、例えば冷媒通過路5aは、A−A断面を示す図3に示されるように、弁体5を多角形状の断面形状等にすることによっても形成することができる。
【0026】
また、図4に示されるように、弁体5の中間部分(弁体受け7から上流側に出た冷媒流路2内にある部分)の外周を、細く括れた形状に形成すれば、冷媒流路2内において冷媒通過路5aへ向かう冷媒の流れ及びダイアフラム受け盤6側に向かう冷媒の流れをより滑らかにすることができる。
【0027】
また、図5に示されるように、弁体受け7が従来と同様に冷媒流路2とパワーエレメント10との間に形成されている場合であっても、弁体5の外周嵌合面に冷媒通過路5aを形成することにより、冷媒流路2内の高圧冷媒がダイアフラム受け盤6の裏面に直接触れるので、弁動作の反応遅れをある程度解消することができる。
【0028】
【発明の効果】
本発明によれば、弁体がガタつきなく嵌合する弁体受けと弁体との嵌合面に冷媒通過路を形成し、絞り部より上流側の高圧冷媒がダイアフラム面の近傍に導かれるようにしたことにより、ダイアフラムが高圧冷媒の温度変化に敏速に反応して変位し、高圧冷媒の過冷却度を一定にした状態の流量制御を速い応答性で行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の過冷却度制御式膨張弁の縦断面図である。
【図2】本発明の第1の実施の形態のA−A断面図である。
【図3】本発明の第2の実施の形態のA−A断面図である。
【図4】本発明の第3の実施の形態の過冷却度制御式膨張弁の縦断面図である。
【図5】本発明の第4の実施の形態の過冷却度制御式膨張弁の縦断面図である。
【図6】従来の過冷却度制御式膨張弁の縦断面図である。
【符号の説明】
2,3 冷媒流路
4 絞り部
5 弁体
5a 冷媒通過路
6 ダイアフラム受け盤
7 弁体受け
10 パワーエレメント
11 ダイアフラム
13 圧力室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a supercooling degree control type expansion valve used during a refrigeration cycle.
[0002]
[Prior art]
As an expansion valve used in the refrigeration cycle, a so-called temperature-type expansion valve that controls the flow rate of the refrigerant entering the evaporator in accordance with the temperature and pressure of the low-pressure refrigerant discharged from the evaporator is widely used.
[0003]
On the other hand, the supercooling degree control type expansion valve that detects the degree of supercooling of the high-pressure refrigerant before it is sent to the evaporator and controls the flow rate of the refrigerant entering the evaporator, handles all at the inlet side of the evaporator. Therefore, there is an advantage that the apparatus can be configured very compactly.
[0004]
FIG. 6 shows such a conventional supercooling degree control type expansion valve, and a throttle portion formed in the main body block 1 by narrowing the middle of the refrigerant flow paths 2 and 3 through which the refrigerant sent to the evaporator passes. The valve body 5 is arranged so as to be capable of moving forward and backward from the upstream side.
[0005]
Then, the position of the valve body 5 is controlled by a diaphragm 11 that detects and displaces the degree of supercooling of the refrigerant upstream from the throttle unit 4, and the high-pressure refrigerant is adiabatically expanded in a state where the degree of supercooling is constant, thereby evaporating the evaporator. It sends out toward the.
[0006]
The diaphragm 11 constitutes a wall surface of the power element 10 in which condensable gas is sealed, and the outer wall surface of the power element 10 is surrounded by a heat insulating material 20 so as to be thermally shielded from outside air.
[0007]
At the head of the valve body 5, there is disposed a diaphragm receiving plate 6 that abuts against the back surface of the diaphragm 11, and the valve body 5 is biased by a compression coil spring 8 through a small diameter rod 9 from the opposite side. Has been.
[0008]
[Problems to be solved by the invention]
The valve body 5 includes a pressure in the power element 10 that fluctuates depending on the temperature of the high-pressure refrigerant in the refrigerant flow path 2 upstream from the throttle portion 4, a refrigerant pressure in the refrigerant flow path 2, and a biasing force of the compression coil spring 8. However, it is necessary to fit the valve body receiver 7 formed in the main body block 1 without backlash so as not to vibrate due to the refrigerant flow.
[0009]
Therefore, the amount of high-pressure refrigerant passing through the narrow fitting portion between the valve body 5 and the valve body receiver 7 is extremely small, and the refrigerant temperature in the refrigerant flow path 2 is mainly reduced by the heat conduction through the valve body 5 as a diaphragm. 11 is transmitted. As a result, there has been a drawback that the displacement of the valve body 5 is delayed with respect to the temperature change of the high-pressure refrigerant.
[0010]
Accordingly, an object of the present invention is to provide a supercooling degree control type expansion valve that has good responsiveness to temperature changes of a high-pressure refrigerant.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the supercooling degree control type expansion valve of the present invention is opposed to the throttle portion formed by narrowing the middle of the high-pressure refrigerant flow path through which the refrigerant sent to the evaporator passes, and on the upstream side thereof. The valve body is disposed so as to be freely movable back and forth, and the position of the valve body is controlled by a diaphragm that detects and displaces the supercooling degree of the refrigerant on the upstream side of the throttling portion, so that the supercooling degree of the high-pressure refrigerant is kept constant. In the supercooling degree control type expansion valve which is adiabatically expanded in a state to be sent out toward the evaporator, the valve body is formed with a backlash fitting in which the valve body fits in the forward / backward direction, and the valve A refrigerant passage is formed in the fitting outer peripheral surface of the body with the valve body receiver so that the high-pressure refrigerant on the upstream side of the throttle portion is guided to the vicinity of the diaphragm surface.
[0012]
In addition, the said valve body receptacle may be provided adjacent to the said throttle part, and the high pressure refrigerant | coolant which passed the said diaphragm surface vicinity may be guide | induced to the said throttle part through the said refrigerant passage.
[0013]
Moreover, the outer periphery of the part which protruded from the said valve body receptacle of the said valve body to the upstream may be formed in the shape narrowly bound.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a supercooling degree control type expansion valve according to a first embodiment of the present invention, and a refrigerant flow path formed in a main body block 1 so as to pass a refrigerant fed into an evaporator (not shown). A narrowed portion 4 is formed by narrowing the middle of 2 and 3. Reference numeral 2 is a pipe line on the upstream side of the throttle portion 4, and 3 is a pipe line on the downstream side.
[0015]
A valve body 5 is disposed so as to face the throttle portion 4 from the upstream side and to be movable back and forth in the same direction as the axis of the throttle portion 4. The valve body 5 is fitted to a valve body receiver 7 formed in the main body block 1 adjacent to the upstream side of the throttle portion 4 so that there is no backlash, and the tip portion facing the throttle portion 4 has a tapered surface. Is formed.
[0016]
However, as shown in FIG. 2 showing an AA cross section, a plurality of refrigerant passages 5a having a cross-sectional shape recessed in a groove shape are formed on the fitting outer peripheral surface of the valve body 5 with the valve body receiver 7. The high-pressure refrigerant that is formed in the parallel direction and upstream from the throttle unit 4 is guided to the throttle unit 4 through the refrigerant passage 5a.
[0017]
Returning to FIG. 1, the diaphragm receiving plate 6 with which the other end of the valve body 5 abuts is formed in a thin and wide shape with a metal material having good thermal conductivity, and the opposite surface of the diaphragm receiving plate 6 is the power. It is in contact with the back surface of the diaphragm 11 of the element 10.
[0018]
The power element 10 is formed by a diaphragm 11 having a wall surface in contact with the diaphragm receiving plate 6 made of a flexible thin film, and other portions are surrounded by a metal housing 12 in a sealed state.
[0019]
In the pressure chamber 13 of the power element 10, a condensable gas and inert nitrogen gas having characteristics similar to those of the refrigerant flowing in the refrigerant flow paths 2 and 3 are sealed, and the outer surface of the housing 12 is It is surrounded by a heat insulating material 20 so as to be thermally shielded from outside air.
[0020]
The valve body 5 is urged toward the diaphragm 11 side by a compression coil spring 8 disposed on the downstream side of the throttle portion 4 via a small diameter rod 9 passed through the throttle portion 4. At a position where the pressure in the pressure chamber 13 received from the refrigerant, the refrigerant pressure in the refrigerant flow path 2 upstream of the throttle portion 4, and the biasing force received from the compression coil spring 8 are balanced.
[0021]
The urging force of the compression coil spring 8 can be adjusted by changing the tightening amount of the screwed specimen 19 provided by being screwed to the main body block 1 while receiving the other end side of the compression coil spring 8.
[0022]
The attachment screwing portion of the housing 12 of the power element 10 to the main body block 1 is formed to have a thickness that allows a sufficient gap between the outer peripheral surface of the valve body 5. As a result, a part of the high-pressure refrigerant in the refrigerant flow path 2 on the upstream side of the throttle unit 4 reaches the throttle unit 4 after directly contacting the diaphragm receiving plate 6 and passing through the refrigerant passage 5a.
[0023]
Therefore, the pressure in the space on the back surface of the diaphragm 11 is always the same as the pressure of the high-pressure refrigerant in the refrigerant flow path 2. Further, the temperature of the refrigerant in the refrigerant flow path 2 is transmitted to the back surface of the diaphragm 11 through the diaphragm receiving plate 6 in a very short time, and the pressure in the pressure chamber 13 changes correspondingly. As a result, the diaphragm 11 is displaced corresponding to the degree of supercooling of the refrigerant upstream of the throttle 4, thereby controlling the position of the valve body 5.
[0024]
In this way, the flow rate of the refrigerant is controlled promptly without delaying the reaction with respect to the temperature change of the high-pressure refrigerant sent into the refrigerant flow path 2, and the high-pressure in the refrigerant flow path 2 upstream from the throttle portion 4. In a state where the degree of supercooling of the refrigerant is kept constant, the refrigerant is sent to the evaporator while adiabatically expanding on the downstream side of the throttle unit 4.
[0025]
In addition, this invention is not limited to the said embodiment, For example, as FIG. 3 which shows the AA cross section, the refrigerant | coolant passage 5a makes the valve body 5 polygonal cross-sectional shape etc. Can also be formed.
[0026]
In addition, as shown in FIG. 4, if the outer periphery of the intermediate portion of the valve body 5 (the portion in the refrigerant flow path 2 protruding upstream from the valve body receiver 7) is formed in a narrow and narrow shape, the refrigerant The flow of the refrigerant toward the refrigerant passage 5a and the flow of the refrigerant toward the diaphragm receiving plate 6 in the flow path 2 can be made smoother.
[0027]
Further, as shown in FIG. 5, even when the valve body receiver 7 is formed between the refrigerant flow path 2 and the power element 10 as in the conventional case, the outer peripheral fitting surface of the valve body 5 is formed. By forming the refrigerant passage 5a, the high-pressure refrigerant in the refrigerant flow path 2 directly touches the back surface of the diaphragm receiving plate 6, so that the reaction delay of the valve operation can be eliminated to some extent.
[0028]
【The invention's effect】
According to the present invention, the refrigerant passage is formed in the fitting surface between the valve body receiver and the valve body in which the valve body is fitted without looseness, and the high-pressure refrigerant upstream from the throttle portion is guided to the vicinity of the diaphragm surface. By doing so, the diaphragm can be quickly displaced in response to the temperature change of the high-pressure refrigerant, and the flow rate control in a state where the degree of supercooling of the high-pressure refrigerant is made constant can be performed with quick responsiveness.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a supercooling degree control type expansion valve according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA of the first embodiment of the present invention.
FIG. 3 is an AA sectional view of a second embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a supercooling degree control type expansion valve according to a third embodiment of the present invention.
FIG. 5 is a longitudinal sectional view of a supercooling degree control type expansion valve according to a fourth embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a conventional supercooling degree control type expansion valve.
[Explanation of symbols]
2, 3 Refrigerant flow path 4 Throttle part 5 Valve body 5a Refrigerant passage 6 Diaphragm receiving plate 7 Valve body receiver 10 Power element 11 Diaphragm 13 Pressure chamber

Claims (3)

蒸発器に送り込まれる冷媒が通る高圧冷媒流路の途中を細く絞って形成された絞り部に対向してその上流側に進退自在に弁体を配置し、上記絞り部より上流側の冷媒の過冷却度を検知して変位するダイアフラムにより上記弁体の位置を制御して、上記高圧冷媒を過冷却度が一定になる状態で断熱膨張させて上記蒸発器に向けて送り出すようにした過冷却度制御式膨張弁において、
上記弁体が上記進退方向にガタつきなく嵌合する弁体受けを形成して、上記弁体の上記弁体受けとの嵌合外周面に冷媒通過路を形成し、上記絞り部より上流側の高圧冷媒が上記ダイアフラム面近傍に導かれるようにしたことを特徴とする過冷却度制御式膨張弁。
A valve element is arranged on the upstream side of the throttle portion formed by narrowing the middle of the high-pressure refrigerant flow path through which the refrigerant sent to the evaporator passes, and the upstream side of the throttle portion. A supercooling degree in which the position of the valve body is controlled by a diaphragm that detects and displaces the cooling degree, and the high-pressure refrigerant is adiabatically expanded in a state where the supercooling degree is constant and is sent out toward the evaporator. In the control type expansion valve,
The valve body forms a valve body receiver that fits in the forward / backward direction without backlash, forms a refrigerant passage on the outer peripheral surface of the valve body and the valve body receiver, and is upstream of the throttle portion. The supercooling degree control type expansion valve, wherein the high-pressure refrigerant is guided to the vicinity of the diaphragm surface.
上記弁体受けが上記絞り部に隣接して設けられており、上記ダイアフラム面近傍を通過した高圧冷媒が、上記冷媒通過路を通って上記絞り部に導かれる請求項1記載の過冷却度制御式膨張弁。2. The supercooling degree control according to claim 1, wherein the valve body receiver is provided adjacent to the throttle portion, and the high-pressure refrigerant that has passed near the diaphragm surface is guided to the throttle portion through the refrigerant passage. Expansion valve. 上記弁体の上記弁体受けから上流側に出た部分の外周が、細く括れた形状に形成されている請求項2記載の過冷却度制御式膨張弁。The supercooling degree control type expansion valve according to claim 2, wherein an outer periphery of a portion of the valve body that protrudes upstream from the valve body receiver is formed in a narrowed shape.
JP22120198A 1998-08-05 1998-08-05 Supercooling control type expansion valve Expired - Fee Related JP3782896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22120198A JP3782896B2 (en) 1998-08-05 1998-08-05 Supercooling control type expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22120198A JP3782896B2 (en) 1998-08-05 1998-08-05 Supercooling control type expansion valve

Publications (2)

Publication Number Publication Date
JP2000055512A JP2000055512A (en) 2000-02-25
JP3782896B2 true JP3782896B2 (en) 2006-06-07

Family

ID=16763063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22120198A Expired - Fee Related JP3782896B2 (en) 1998-08-05 1998-08-05 Supercooling control type expansion valve

Country Status (1)

Country Link
JP (1) JP3782896B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942848B2 (en) * 2001-07-19 2007-07-11 株式会社テージーケー Expansion valve unit
WO2006090826A1 (en) * 2005-02-24 2006-08-31 Fujikoki Corporation Pressure control valve
JP2006322689A (en) * 2005-05-20 2006-11-30 Tgk Co Ltd Thermal expansion valve
JP5619531B2 (en) * 2010-08-31 2014-11-05 株式会社不二工機 Expansion valve with integrated solenoid valve
JP6566715B2 (en) * 2014-09-09 2019-08-28 株式会社不二工機 Expansion valve
JP6523746B2 (en) * 2015-03-31 2019-06-05 株式会社不二工機 Expansion valve
JP7089769B2 (en) * 2019-03-15 2022-06-23 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP2000055512A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
JPH08145505A (en) Expansion valve
JP3782896B2 (en) Supercooling control type expansion valve
JP6327401B2 (en) Pressure reducing valve
JP3576886B2 (en) Expansion valve
JP3452719B2 (en) Expansion valve
JP3481036B2 (en) Expansion valve
JP3507616B2 (en) Expansion valve
JP5369259B2 (en) Expansion valve
JP2001153498A (en) Supercooling degree control type expansion valve
JP2000220917A (en) Supercooling degree control type expansion valve
JPH0545026A (en) Expansion valve
JP3780127B2 (en) Expansion valve
JPH10238903A (en) Expansion valve
JP3897974B2 (en) Expansion valve
JP3743733B2 (en) Solenoid proportional control valve
JPH09273833A (en) Expansion valve
JP2001091106A (en) Expansion valve
JP3485748B2 (en) Expansion valve
JP3924119B2 (en) Expansion valve
JP2001091109A (en) Expansion valve
JPH09113072A (en) Expansion valve
JP2001091108A (en) Expansion valve
JP2005265385A (en) Decompression device
JPH06294563A (en) Expansion valve
JP2001091107A (en) Expansion valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees