JP2022163447A - expansion valve - Google Patents

expansion valve Download PDF

Info

Publication number
JP2022163447A
JP2022163447A JP2021068381A JP2021068381A JP2022163447A JP 2022163447 A JP2022163447 A JP 2022163447A JP 2021068381 A JP2021068381 A JP 2021068381A JP 2021068381 A JP2021068381 A JP 2021068381A JP 2022163447 A JP2022163447 A JP 2022163447A
Authority
JP
Japan
Prior art keywords
valve
valve body
flow path
expansion valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021068381A
Other languages
Japanese (ja)
Inventor
潤哉 早川
Junya Hayakawa
亮 松田
Ryo Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2021068381A priority Critical patent/JP2022163447A/en
Publication of JP2022163447A publication Critical patent/JP2022163447A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an expansion valve capable of connecting double piping and suppressing vibration of a valve body unit.SOLUTION: An expansion valve can be connected with double piping in which a low-pressure refrigerant passes the inside of inner piping and a high-pressure refrigerant passes an intermediate flow path as a space between the inner piping and outer piping disposed around the inner piping. The expansion valve includes: a valve body including a valve chamber having a valve seat and a high-pressure flow path in which a high-pressure refrigerant flows while being connected from the intermediate flow path to the valve chamber; and a valve body unit including a valve body that can be seated in the valve seat. The high-pressure flow path is formed while being tilted relative to an axis of the valve body unit such that a high-pressure refrigerant flowing through the high-pressure flow path from the intermediate flow path to the valve chamber hits against the valve body unit.SELECTED DRAWING: Figure 2

Description

本発明は、膨張弁に関する。 The present invention relates to expansion valves.

従来、自動車に搭載される空調装置等に用いる冷凍サイクルにおいては、冷媒の通過量を温度に応じて調整する感温式の膨張弁が使用されている。 2. Description of the Related Art Conventionally, in a refrigerating cycle used in an air conditioner or the like mounted on an automobile, a temperature-sensitive expansion valve that adjusts the amount of refrigerant that passes through according to the temperature is used.

一般的な膨張弁に対しては、冷凍サイクルのコンデンサから冷媒が送出される高圧配管と、エバポレータから冷媒が送出される低圧配管とが、それぞれ別個に接続されている。これに対し、特許文献1に開示された膨張弁においては、低圧配管を内側配管とし、高圧配管を外側とした二重配管を、膨張弁に接続するシステムが開示されている。かかるシステムによれば、配管の取り回しの簡素化が図れる。 A general expansion valve is separately connected to a high-pressure pipe through which refrigerant is delivered from a condenser of a refrigeration cycle and a low-pressure pipe through which refrigerant is delivered from an evaporator. On the other hand, in the expansion valve disclosed in Patent Document 1, a system is disclosed in which a double pipe with a low-pressure pipe on the inside and a high-pressure pipe on the outside is connected to the expansion valve. According to such a system, it is possible to simplify the routing of piping.

特開2020-94793号公報JP 2020-94793 A

ところで、膨張弁には、不活性ガス等を封止した感温部を備えたパワーエレメントが配設されている。パワーエレメントは、感温部の内外間にて伝達される熱によりガスの体積が変化することを利用して、作動棒を介して弁体を開閉させるようになっている。しかしながら、感温部の時定数が小さい場合、弁体が振動して開弁と閉弁とを繰り返す、いわゆるハンチング現象が生じるおそれがある。しかしながら、特許文献1にはハンチング現象を抑制する具体的構造が開示されていない。 By the way, the expansion valve is provided with a power element having a temperature sensing portion sealed with an inert gas or the like. The power element opens and closes the valve via an operating rod by utilizing the fact that the volume of gas changes due to the heat transferred between the inside and outside of the temperature sensing part. However, when the time constant of the temperature sensing part is small, there is a possibility that the valve element vibrates and causes a so-called hunting phenomenon in which the valve is repeatedly opened and closed. However, Patent Document 1 does not disclose a specific structure for suppressing the hunting phenomenon.

そこで本発明は、二重配管を連結可能であり、弁体ユニットの振動を抑制できる膨張弁を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an expansion valve capable of connecting double pipes and suppressing vibration of a valve body unit.

上記目的を達成するために、本発明による膨張弁は、
内側配管内を低圧冷媒が通過し、前記内側配管の周囲に配置された外側配管と前記内側配管との間の空間となる中間流路を高圧冷媒が通過する二重配管を接続可能な膨張弁であって、
弁座を備えた弁室と、前記中間流路から前記弁室に接続され高圧冷媒が流れる高圧流路と、を備えた弁本体と、
前記弁座に着座可能な弁体を含む弁体ユニットと、を有し、
前記中間流路から前記弁室に向かって前記高圧流路を流れた高圧冷媒が前記弁体ユニットに当たるように、前記高圧流路が前記弁体ユニットの軸線に対して傾いて形成される、ことを特徴とする。
In order to achieve the above object, the expansion valve according to the present invention
An expansion valve capable of connecting a double pipe in which a low-pressure refrigerant passes through an inner pipe, and a high-pressure refrigerant passes through an intermediate passage that is a space between an outer pipe arranged around the inner pipe and the inner pipe. and
a valve body including a valve chamber having a valve seat; and a high-pressure passage connected to the valve chamber from the intermediate passage through which a high-pressure refrigerant flows;
a valve body unit including a valve body that can be seated on the valve seat;
The high-pressure flow path is inclined with respect to the axis of the valve body unit so that the high-pressure refrigerant flowing through the high-pressure flow path from the intermediate flow path toward the valve chamber hits the valve body unit. characterized by

本発明により、二重配管を連結可能であり、弁体ユニットの振動を抑制できる膨張弁を提供することができる。 ADVANTAGE OF THE INVENTION By this invention, the expansion valve which can connect double piping and can suppress the vibration of a valve body unit can be provided.

図1は、本実施形態における膨張弁を、冷媒循環システムに適用した例を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve of this embodiment is applied to a refrigerant circulation system. 図2は、本実施形態の弁本体周辺を拡大して示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing an enlarged periphery of the valve body of the present embodiment. 図3は、本実施形態の変形例を示す図2と同様な縦断面図である。FIG. 3 is a longitudinal sectional view similar to FIG. 2 showing a modification of this embodiment. 図4は、本変形例にかかるカバー部材を示す斜視図である。FIG. 4 is a perspective view showing a cover member according to this modification. 図5は、第2実施形態にかかる膨張弁の縦断面図である。FIG. 5 is a longitudinal sectional view of an expansion valve according to a second embodiment;

以下、図面を参照して、本発明にかかる実施形態について説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

(方向の定義)
本明細書において、弁体3から作動棒5に向かう方向を「上方向」と定義し、作動棒5から弁体3に向かう方向を「下方向」と定義する。よって、本明細書では、膨張弁1の姿勢に関わらず、弁体3から作動棒5に向かう方向を「上方向」と呼ぶ。
(definition of direction)
In this specification, the direction from the valve body 3 to the operating rod 5 is defined as "upward direction", and the direction from the operating rod 5 to the valve body 3 is defined as "downward direction". Therefore, in this specification, the direction from the valve body 3 toward the operating rod 5 is referred to as the "upward direction" regardless of the orientation of the expansion valve 1 .

(第1実施形態)
図1、2を参照して、本実施形態における膨張弁1の概要について説明する。図1は、本実施形態における膨張弁1を、冷媒循環システム100に適用した例を模式的に示す概略断面図である。図2は、本実施形態の弁本体周辺を拡大して示す縦断面図である。
(First embodiment)
An outline of an expansion valve 1 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve 1 of this embodiment is applied to a refrigerant circulation system 100. As shown in FIG. FIG. 2 is a vertical cross-sectional view showing an enlarged periphery of the valve body of the present embodiment.

本実施形態では、膨張弁1は、コンプレッサ101と、コンデンサ102と、エバポレータ104とに流体接続されている。膨張弁1の軸線をLとする。 In this embodiment, expansion valve 1 is fluidly connected to compressor 101 , condenser 102 and evaporator 104 . Let L be the axis of the expansion valve 1 .

図1において、膨張弁1は、弁室VSを備える弁本体2と、弁体3と、付勢装置4と、作動棒5と、パワーエレメント8を具備する。 In FIG. 1, an expansion valve 1 includes a valve body 2 having a valve chamber VS, a valve body 3, an urging device 4, an operating rod 5, and a power element 8.

弁本体2は、弁室VSに加え、第1流路(高圧流路ともいう)21と、第2流路22と、中間室221と、戻り流路23とを備える。第1流路21は供給側流路であり、弁室VSには、供給側流路を介して冷媒(流体ともいう)が供給される。第2流路22は排出側流路(出口側流路ともいう)であり、弁室VS内の流体は、弁通孔27、中間室221及び排出側流路を介して膨張弁外に排出される。第2流路22には、エバポレータ104の入口側に接続される配管(不図示)が連結される。 The valve body 2 includes, in addition to the valve chamber VS, a first channel (also referred to as a high-pressure channel) 21 , a second channel 22 , an intermediate chamber 221 and a return channel 23 . The first flow path 21 is a supply-side flow path, and refrigerant (also referred to as fluid) is supplied to the valve chamber VS via the supply-side flow path. The second flow path 22 is a discharge side flow path (also referred to as an outlet side flow path), and the fluid in the valve chamber VS is discharged out of the expansion valve through the valve communication hole 27, the intermediate chamber 221 and the discharge side flow path. be done. A pipe (not shown) connected to the inlet side of the evaporator 104 is connected to the second flow path 22 .

戻り流路23は、軸線Lに直交して弁本体2を貫通して延在する。戻り流路23の軸線をOとする。戻り流路23は、エバポレータ104の出口側に接続される配管(不図示)が連結される入口路23aと、中間路(低圧流路ともいう)23bと、中間路23bより大径の第1拡径孔23cと、第1拡径孔23cより大径の第2拡径孔23dと、第2拡径孔23dより大径である第3拡径孔23eとを同軸に連設してなる。詳細は後述するが、中間路23bは、縦穴2aを介してパワーエレメント8の下部空間LSに連通している。 The return channel 23 extends perpendicularly to the axis L through the valve body 2 . Let O be the axis of the return channel 23 . The return channel 23 includes an inlet channel 23a to which a pipe (not shown) connected to the outlet side of the evaporator 104 is connected, an intermediate channel (also referred to as a low-pressure channel) 23b, and a first channel having a larger diameter than the intermediate channel 23b. An enlarged diameter hole 23c, a second enlarged diameter hole 23d larger in diameter than the first enlarged diameter hole 23c, and a third enlarged diameter hole 23e larger in diameter than the second enlarged diameter hole 23d are coaxially connected. . Although the details will be described later, the intermediate passage 23b communicates with the lower space LS of the power element 8 via the vertical hole 2a.

戻り流路23には、二重配管50が連結される。二重配管50は、中間路23bに端部が嵌合する内側配管51と、内側配管51を内包し第2拡径孔23dに端部が嵌合する外側配管52とを有する。内側配管51は、管の一部を膨径させて軸線方向に押しつぶすことで形成されたフランジ部51aを端部近傍に有している。内側配管51の端部とフランジ部51aとの間には、フランジ部51aにより保持されたO-リングOR1が配置され、これにより第1拡径孔23cと内側配管51の外周との間を封止して、冷媒漏れを阻止している。 A double pipe 50 is connected to the return flow path 23 . The double pipe 50 has an inner pipe 51 whose end is fitted to the intermediate passage 23b, and an outer pipe 52 which encloses the inner pipe 51 and whose end is fitted to the second enlarged diameter hole 23d. The inner pipe 51 has a flange portion 51a near the end thereof, which is formed by expanding a portion of the pipe and crushing it in the axial direction. An O-ring OR1 held by the flange portion 51a is arranged between the end portion of the inner pipe 51 and the flange portion 51a, thereby sealing the space between the first enlarged diameter hole 23c and the outer circumference of the inner pipe 51. stop to prevent refrigerant leakage.

また、外側配管52も、管の一部を膨径させて軸線方向に押しつぶすことで形成されたフランジ部52aを端部近傍に有している。外側配管52の端部は、第2拡径孔23dの段部に底付きしておらず、フランジ部52aは、弁本体2の側面に当接している。外側配管52の端部とフランジ部52aとの間には、フランジ部52aにより保持されたO-リングOR2が配置され、これにより第3拡径孔23eと外側配管52の外周との間を封止して、冷媒漏れを阻止している。 The outer pipe 52 also has a flange portion 52a in the vicinity of the end thereof, which is formed by expanding a part of the pipe and crushing it in the axial direction. The end of the outer pipe 52 does not touch the stepped portion of the second enlarged diameter hole 23 d , and the flange portion 52 a abuts the side surface of the valve body 2 . An O-ring OR2 held by the flange portion 52a is arranged between the end portion of the outer pipe 52 and the flange portion 52a, thereby sealing the space between the third enlarged diameter hole 23e and the outer circumference of the outer pipe 52. stop to prevent refrigerant leakage.

内側配管51は、コンプレッサ101の入口に連結され、外側配管52と内側配管51の間の環状空間(中間流路という)は、コンデンサ102の出口に連結されている。 The inner pipe 51 is connected to the inlet of the compressor 101 , and the annular space (referred to as an intermediate flow path) between the outer pipe 52 and the inner pipe 51 is connected to the outlet of the condenser 102 .

第1流路21は、軸線L及び軸線Oを含む面内に軸線(中心軸線)X1(図2)を持ち、且つ軸線L及び軸線Oに対して傾斜しており、その上端は第2拡径孔23dの内周にて開放している。一方、第1流路21は、その下端に、第1流路21より小径である小径路21aを同軸に備えている。この小径路21aは、弁座20の下方における弁室VSの内周にて連結されている。すなわち、第2拡径孔23dの内部と弁室VSとは、第1流路21を介して連通している。図2を参照して、第1流路21の軸線X1に沿って小径路21aを弁室VS側に投影したときに、その投影像は弁体3及び弁体サポート42に重なる。 The first flow path 21 has an axis (central axis) X1 (FIG. 2) in a plane containing the axis L and the axis O, and is inclined with respect to the axis L and the axis O. The inner circumference of the diameter hole 23d is open. On the other hand, the first flow path 21 is coaxially provided with a small path 21a having a diameter smaller than that of the first flow path 21 at its lower end. This small path 21a is connected to the inner circumference of the valve chamber VS below the valve seat 20. As shown in FIG. That is, the inside of the second enlarged diameter hole 23 d and the valve chamber VS communicate with each other via the first flow path 21 . Referring to FIG. 2, when the small path 21a is projected along the axis X1 of the first flow path 21 toward the valve chamber VS, the projection image overlaps the valve body 3 and the valve body support .

弁室VSと中間室221とは、弁座20及び弁通孔27を介して連通している。中間室221の上方に形成された作動棒挿通孔28は、作動棒5をガイドする機能を有し、作動棒挿通孔28の上方に形成された環状凹部29は、リングばね6を収容する機能を有する。リングばね6は、作動棒5の外周に複数のばね片を当接させて、所定の付勢力を付与するものである。 The valve chamber VS and the intermediate chamber 221 communicate with each other via the valve seat 20 and the valve communication hole 27 . The actuating rod insertion hole 28 formed above the intermediate chamber 221 has the function of guiding the actuating rod 5, and the annular recess 29 formed above the actuating rod insertion hole 28 has the function of accommodating the ring spring 6. have The ring spring 6 has a plurality of spring pieces contacting the outer circumference of the operating rod 5 to apply a predetermined biasing force.

弁体3は弁室VS内に配置される。弁体3が弁本体2の弁座20に着座しているとき、弁通孔27の冷媒の流れが制限される。この状態を非連通状態という。ただし、弁体3が弁座20に着座した場合でも、制限された量の冷媒を流すこともある。一方、弁体3が弁座20から離間しているとき、弁通孔27を通過する冷媒の流れが増大する。この状態を連通状態という。 The valve body 3 is arranged in the valve chamber VS. When the valve body 3 is seated on the valve seat 20 of the valve body 2, the refrigerant flow through the valve passage hole 27 is restricted. This state is called a non-communication state. However, even when the valve body 3 is seated on the valve seat 20, a limited amount of refrigerant may flow. On the other hand, when the valve body 3 is separated from the valve seat 20, the flow of refrigerant passing through the valve hole 27 increases. This state is called a communication state.

作動棒5は、弁通孔27に所定の隙間を持って挿通されている。作動棒5の下端は、弁体3の上面に接触している。作動棒5の上端は、ストッパ部材84の下端の嵌合孔に嵌合している。 The operating rod 5 is inserted through the valve passage hole 27 with a predetermined gap. A lower end of the operating rod 5 is in contact with the upper surface of the valve body 3 . The upper end of the operating rod 5 is fitted into the fitting hole at the lower end of the stopper member 84 .

作動棒5は、付勢装置4による付勢力に抗して、弁体3を軸線Lに沿って開弁方向に押圧することができる。作動棒5が下方向に移動するとき、弁体3は弁座20から離間し、膨張弁1が開状態となる。 The operating rod 5 can press the valve body 3 along the axis L in the valve opening direction against the biasing force of the biasing device 4 . When the operating rod 5 moves downward, the valve body 3 is separated from the valve seat 20 and the expansion valve 1 is opened.

付勢装置4は、断面円形の線材を螺旋状に巻いたコイルばね41と、弁体サポート42と、ばね受け部材43とを有する。 The urging device 4 has a coil spring 41 formed by spirally winding a wire having a circular cross section, a valve body support 42 , and a spring receiving member 43 .

弁体サポート42は、コイルばね41の上端に取り付けられており、その上面には球状の弁体3が溶接され、両者は一体となっている。弁体3と弁体サポート42により、弁体ユニットを構成する。ただし、弁体3のみにより弁体ユニットを構成してもよい。その場合には、第1流路21の軸線X1に沿って小径路21aを弁室VS側に投影したときに、その投影像は弁体3のみに重なることとなる。弁体ユニットの軸線とは、開弁動作に応じて弁体ユニットの重心が移動する軌跡を含む直線をいい、ここでは膨張弁1の軸線Lに一致する。 The valve body support 42 is attached to the upper end of the coil spring 41, and the spherical valve body 3 is welded to the upper surface thereof, and both are integrated. The valve body 3 and the valve body support 42 constitute a valve body unit. However, the valve body unit may be composed of only the valve body 3 . In that case, when the small path 21a is projected onto the valve chamber VS side along the axis X1 of the first flow path 21, the projection image overlaps only the valve body 3. As shown in FIG. The axis of the valve body unit means a straight line including the trajectory along which the center of gravity of the valve body unit moves according to the valve opening operation, and coincides with the axis L of the expansion valve 1 here.

コイルばね41の下端を支持するばね受け部材43は、弁本体2に対して螺合可能となっていて、弁室VSを密封する機能と、コイルばね41の付勢力を調整する機能とを有する。 A spring receiving member 43 that supports the lower end of the coil spring 41 can be screwed into the valve body 2 and has a function of sealing the valve chamber VS and a function of adjusting the biasing force of the coil spring 41. .

パワーエレメント8は、栓81と、上蓋部材82と、ダイアフラム83と、受け部材86と、ストッパ部材84とを有する。 The power element 8 has a plug 81 , an upper lid member 82 , a diaphragm 83 , a receiving member 86 and a stopper member 84 .

略円錐形状の上蓋部材82の頂部の開口は、栓81により封止可能となっている。 The top opening of the substantially conical upper lid member 82 can be sealed with a plug 81 .

ダイアフラム83は、同心円の凹凸形状を複数個形成した薄い金属(たとえばSUS)製の板材からなり、上蓋部材82及び受け部材86の外径とほぼ同じ外径を有する。 The diaphragm 83 is made of a thin metal (for example, SUS) plate material having a plurality of concentric concave and convex shapes, and has an outer diameter substantially the same as the outer diameters of the upper cover member 82 and the receiving member 86 .

受け部材86は、例えば金属製の板材をプレス成形することによって形成され、フランジ部と中空円筒部とを連結してなる。 The receiving member 86 is formed by press-molding a metal plate, for example, and connects a flange portion and a hollow cylindrical portion.

ストッパ部材84は、上蓋部材82と受け部材86との間に配置され、その上面がダイアフラム83の下面中央と接している。 The stopper member 84 is arranged between the upper lid member 82 and the receiving member 86 , and its upper surface is in contact with the center of the lower surface of the diaphragm 83 .

パワーエレメント8の組み立てにおいて、ダイアフラム83と受け部材86との間にストッパ部材84を配置しつつ、上蓋部材82と、ダイアフラム83と、受け部材86のそれぞれ外周部を重ね合わせ、当該外周部を例えばTIG溶接やレーザ溶接、プラズマ溶接等により周溶接して一体化する。 In the assembly of the power element 8, while the stopper member 84 is arranged between the diaphragm 83 and the receiving member 86, the outer peripheral portions of the upper lid member 82, the diaphragm 83, and the receiving member 86 are overlapped, and the outer peripheral portions are, for example, Circumferential welding is performed by TIG welding, laser welding, plasma welding, or the like.

続いて、上蓋部材82に形成された開口から、上蓋部材82とダイアフラム83とで囲われる空間(圧力作動室POという)内に作動ガスを封入した後、開口を栓81で封止し、更にプロジェクション溶接等を用いて、栓81を上蓋部材82に固定する。 Subsequently, after the working gas is sealed from the opening formed in the upper lid member 82 into the space (referred to as pressure actuation chamber PO) surrounded by the upper lid member 82 and the diaphragm 83, the opening is sealed with the plug 81, and further The plug 81 is fixed to the upper cover member 82 using projection welding or the like.

以上のようにアッセンブリ化したパワーエレメント8を、弁本体2に組み付けるときは、受け部材86の中空円筒部の下端外周の雄ねじ86aを、弁本体2の戻り流路23に連通する縦穴2aの内周に形成した雌ねじ2bに螺合させる。受け部材86の雄ねじ86aを雌ねじ2bに対して螺進させてゆくと、受け部材86のフランジ部下面が弁本体2の上端面に当接する。これによりパワーエレメント8を弁本体2に固定できる。 When the power element 8 assembled as described above is assembled to the valve main body 2, the external thread 86a on the outer periphery of the lower end of the hollow cylindrical portion of the receiving member 86 is inserted into the vertical hole 2a communicating with the return passage 23 of the valve main body 2. It is screwed into the internal thread 2b formed on the circumference. As the male screw 86a of the receiving member 86 is screwed with respect to the female screw 2b, the lower surface of the flange portion of the receiving member 86 comes into contact with the upper end surface of the valve body 2. As shown in FIG. Thereby, the power element 8 can be fixed to the valve body 2 .

このとき、パワーエレメント8と弁本体2との間には、パッキンPKが介装され、弁本体2にパワーエレメント8を取り付けた際の冷媒のリークを防止する。かかる状態で、パワーエレメント8の下部空間LSは、縦穴2aを介して戻り流路23と連通する。 At this time, a packing PK is interposed between the power element 8 and the valve body 2 to prevent refrigerant leakage when the power element 8 is attached to the valve body 2 . In this state, the lower space LS of the power element 8 communicates with the return channel 23 through the vertical hole 2a.

(膨張弁の動作)
図1を参照して、膨張弁1の動作例について説明する。コンプレッサ101で加圧された高圧冷媒は、コンデンサ102で液化され、膨張弁1に送られる。また、膨張弁1で断熱膨張された冷媒はエバポレータ104に送り出され、エバポレータ104で、エバポレータの周囲を流れる空気と熱交換される。エバポレータ104から戻る冷媒は、膨張弁1の戻り流路23内に進入し、さらに二重配管50の内側配管51を通って、コンプレッサ101側へ戻される。このとき、冷媒がエバポレータ104を通過することで、戻り流路23の流体圧は、第2流路22内の流体圧より低くなる。エバポレータ104を通過した冷媒を、低圧冷媒という。
(Operation of expansion valve)
An operation example of the expansion valve 1 will be described with reference to FIG. A high-pressure refrigerant pressurized by the compressor 101 is liquefied by the condenser 102 and sent to the expansion valve 1 . Further, the refrigerant adiabatically expanded by the expansion valve 1 is delivered to the evaporator 104, where it exchanges heat with the air flowing around the evaporator. Refrigerant returning from the evaporator 104 enters the return passage 23 of the expansion valve 1, passes through the inner pipe 51 of the double pipe 50, and is returned to the compressor 101 side. At this time, as the refrigerant passes through the evaporator 104 , the fluid pressure in the return channel 23 becomes lower than the fluid pressure in the second channel 22 . The refrigerant that has passed through the evaporator 104 is called low-pressure refrigerant.

膨張弁1からコンプレッサ101に低圧冷媒が送出されるとともに、コンデンサ102から膨張弁1に高圧冷媒が送出される。より具体的には、コンデンサ102からの高圧冷媒は、二重配管50の外側配管52と内側配管51との間の中間流路、及び第1流路21を介して弁室VSに供給される。 A low-pressure refrigerant is sent from the expansion valve 1 to the compressor 101 and a high-pressure refrigerant is sent to the expansion valve 1 from the condenser 102 . More specifically, the high-pressure refrigerant from the condenser 102 is supplied to the valve chamber VS via the intermediate flow passage between the outer pipe 52 and the inner pipe 51 of the double pipe 50 and the first flow passage 21. .

弁体3が、弁座20に着座しているとき(非連通状態のとき)には、弁室VSから弁通孔27、中間室221及び第2流路22を通ってエバポレータ104へ送り出される冷媒の流量が制限される。他方、弁体3が、弁座20から離間しているとき(連通状態のとき)には、弁室VSから弁通孔27、中間室221及び第2流路22を通って、エバポレータ104へ送り出される冷媒の流量が増大する。膨張弁1の閉状態と開状態との間の切り換えは、ストッパ部材84を介してパワーエレメント8に接続された作動棒5によって行われる。 When the valve body 3 is seated on the valve seat 20 (in a non-communication state), the valve body 3 is delivered from the valve chamber VS to the evaporator 104 through the valve communication hole 27, the intermediate chamber 221 and the second flow path 22. Refrigerant flow is restricted. On the other hand, when the valve body 3 is separated from the valve seat 20 (when in a communicating state), the gas flows from the valve chamber VS to the evaporator 104 through the valve communication hole 27, the intermediate chamber 221 and the second flow path 22. The flow rate of the pumped refrigerant increases. The switching between the closed state and the open state of the expansion valve 1 is performed by the operating rod 5 connected to the power element 8 via the stopper member 84 .

図1において、パワーエレメント8の内部には、ダイアフラム83により仕切られた圧力作動室POと下部空間LSとが設けられている。このため、圧力作動室PO内の作動ガスが液化されると、ダイアフラム83とストッパ部材84が上昇するため、コイルばね41の付勢力に応じて作動棒5は上方向に移動する。一方、液化された作動ガスが気化されると、ダイアフラム83とストッパ部材84が下方に押圧されるため、作動棒5は下方向に移動する。こうして、膨張弁1の開状態と閉状態との間の切り換えが行われる。 In FIG. 1, inside the power element 8, a pressure actuation chamber PO and a lower space LS, which are partitioned by a diaphragm 83, are provided. Therefore, when the working gas in the pressure working chamber PO is liquefied, the diaphragm 83 and the stopper member 84 rise, so that the working rod 5 moves upward according to the biasing force of the coil spring 41 . On the other hand, when the liquefied working gas is vaporized, the diaphragm 83 and the stopper member 84 are pressed downward, so that the working rod 5 moves downward. Thus, the expansion valve 1 is switched between the open state and the closed state.

更に、パワーエレメント8の下部空間LSは、縦穴2aを介して戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度・圧力に応じて、圧力作動室PO内の作動ガスの体積が変化し、作動棒5が駆動される。換言すれば、図1に記載の膨張弁1では、エバポレータ104から膨張弁1に戻る冷媒の温度・圧力に応じて、膨張弁1からエバポレータ104に向けて供給される冷媒の量が自動的に調整される。 Further, the lower space LS of the power element 8 communicates with the return channel 23 through the vertical hole 2a. Therefore, the volume of the working gas in the pressure working chamber PO changes according to the temperature and pressure of the refrigerant flowing through the return passage 23, and the working rod 5 is driven. In other words, in the expansion valve 1 shown in FIG. 1, the amount of refrigerant supplied from the expansion valve 1 toward the evaporator 104 is automatically adjusted according to the temperature and pressure of the refrigerant returning from the evaporator 104 to the expansion valve 1. adjusted.

ところで、パワーエレメント8の時定数が比較的小さいと、ハンチング現象が生じやすく、それにより弁体3の振動を招くおそれがある。これに対し本実施形態によれば、第1流路21の軸線X1が直線であって、軸線X1の延長線上に弁体3または弁体サポート42が配置され、あるいは第1流路21の軸線X1に沿って小径路21aを弁室VS側に投影したときに、その投影像は弁体3または弁体サポート42に重なる構成を備える。このため、開弁時に小径路21aから弁室VSへと流れ出る冷媒が、図2に矢印で示すように、弁体3または弁体サポート42に斜め方向(すなわち軸線Lに対して傾いた方向)から当たり、弁体3に流体による抵抗を付与して振動を抑制することができる。特に、弁体3が縦に振動する場合、冷媒が斜めに当たることで、弁体3が上方に移動する際の抵抗を付与することができ、高い制振効果を発揮できる。 By the way, if the time constant of the power element 8 is relatively small, a hunting phenomenon is likely to occur, which may cause the valve body 3 to vibrate. In contrast, according to the present embodiment, the axis X1 of the first flow path 21 is a straight line, and the valve body 3 or the valve body support 42 is arranged on an extension line of the axis X1, or the axis of the first flow path 21 When the small path 21a is projected along the line X1 toward the valve chamber VS, the projection image overlaps the valve body 3 or the valve body support . Therefore, when the valve is opened, the refrigerant flowing out from the small path 21a into the valve chamber VS is directed toward the valve body 3 or the valve body support 42 in an oblique direction (that is, in a direction inclined with respect to the axis L), as indicated by the arrow in FIG. Vibration can be suppressed by applying fluid resistance to the valve body 3 due to the loose contact. In particular, when the valve body 3 vibrates vertically, the refrigerant strikes the valve body 3 obliquely, so that resistance can be applied when the valve body 3 moves upward, and a high damping effect can be exhibited.

加えて、第1流路21の冷媒の出口に、小径路21a以外の第1流路21より小径の小径路21aを配設しているため、小径路21aによる絞り効果によって冷媒の流出速度が高まり、さらに効果的に弁体3の振動を抑制することができる。 In addition, since the small path 21a having a diameter smaller than that of the first flow path 21 other than the small path 21a is arranged at the outlet of the first flow path 21, the outflow speed of the refrigerant is reduced by the throttling effect of the small path 21a. Vibration of the valve body 3 can be suppressed more effectively.

(変形例)
図3は、本実施形態の変形例を示す図2と同様な縦断面図である。図4は、本変形例にかかるカバー部材60を示す斜視図である。それ以外の構成は、上述した実施の形態と同様であるため、同じ符号を付して重複説明を省略する。
(Modification)
FIG. 3 is a longitudinal sectional view similar to FIG. 2 showing a modification of this embodiment. FIG. 4 is a perspective view showing a cover member 60 according to this modification. Since other configurations are the same as those of the above-described embodiment, the same reference numerals are given and redundant explanations are omitted.

本変形例においては、弁体サポート42とコイルばね41との間に、カバー部材60を配置している。カバー部材60は、図4に示すように、周壁61と頂壁62とを連設した有頂円筒形状を有し、頂壁62の中央には、円形開口63が形成されている。カバー部材60は、金属製の板材をプレス成形することによって形成できる。 In this modified example, a cover member 60 is arranged between the valve body support 42 and the coil spring 41 . As shown in FIG. 4, the cover member 60 has a topped cylindrical shape in which a peripheral wall 61 and a top wall 62 are connected, and a circular opening 63 is formed in the center of the top wall 62 . The cover member 60 can be formed by press-molding a metal plate.

弁体サポート42は、円筒状の本体42aと、本体42aから径方向外方に延在するフランジ部42bとを有する。組み付け時には、コイルばね41の上部にカバー部材60を被せるようにして設置すると、頂壁62の下面がコイルばね41の上端に当接し、コイルばね41の上部周囲は周壁61によって囲われる。さらにカバー部材60の上方より弁体サポート42を接近させ、円形開口63及びコイルばね41の上端内周に本体42aを嵌合させることで、組み付けが行われる。カバー部材60の頂壁62は、コイルばね41の上端と、弁体サポート42のフランジ部42bとにより挟持されて保持される。 The valve body support 42 has a cylindrical main body 42a and a flange portion 42b extending radially outward from the main body 42a. When the cover member 60 is installed to cover the upper portion of the coil spring 41 at the time of assembly, the lower surface of the top wall 62 abuts the upper end of the coil spring 41 , and the periphery of the upper portion of the coil spring 41 is surrounded by the peripheral wall 61 . Further, the valve body support 42 is approached from above the cover member 60, and the body 42a is fitted to the circular opening 63 and the inner circumference of the upper end of the coil spring 41, whereby assembly is performed. The top wall 62 of the cover member 60 is sandwiched and held between the upper end of the coil spring 41 and the flange portion 42b of the valve body support 42 .

本変形例によれば、図3に示すように、コイルばね41の上部がカバー部材60によって覆われるため、小径路21aから弁室VSに向かう冷媒が、カバー部材60の滑らかな表面に沿って流れることとなり、それにより乱流の生成が抑制され、弁体3の制振効果を高めるとともに、異音の発生などを抑制することができる。 According to this modification, as shown in FIG. 3, since the upper portion of the coil spring 41 is covered with the cover member 60, the refrigerant flowing from the small path 21a to the valve chamber VS flows along the smooth surface of the cover member 60. As a result, the generation of turbulent flow is suppressed, the vibration damping effect of the valve body 3 is enhanced, and the generation of abnormal noise can be suppressed.

(第2実施形態)
図3は、第2実施形態にかかる膨張弁1Aの縦断面図である。本実施形態は、第1実施形態に対して弁本体2Aの第1流路21Aの形状のみが異なる。それ以外の構成は、上述した実施の形態と同様であるため、同じ符号を付して重複説明を省略する。なお、本実施形態では、小径路21Aa以外の第1流路21Aが、第1通路を構成し、小径路21Aaが、第2通路を構成する。
(Second embodiment)
FIG. 3 is a longitudinal sectional view of an expansion valve 1A according to the second embodiment. This embodiment differs from the first embodiment only in the shape of the first flow path 21A of the valve body 2A. Since other configurations are the same as those of the above-described embodiment, the same reference numerals are given and redundant explanations are omitted. In addition, in this embodiment, 1st flow path 21A other than small path 21Aa comprises a 1st channel|path, and small path 21Aa comprises a 2nd channel|path.

本実施形態の第1流路21Aにおいては、小径路21Aaの軸線X2が、小径路21Aa以外の第1流路21Aの軸線X1と交差している。より具体的には、小径路21Aaの軸線X2と軸線Lとの交差角θ2は、小径路21Aa以外の第1流路21Aの軸線X1と軸線Lとの交差角θ1よりも小さくなっている。本実施形態によれば、軸線X2に沿って小径路21Aaを弁室VS側に投影したときに、その投影像は弁体サポート42に重なる。なお、交差角θ1と交差角θ2とは、膨張弁1Aの仕様に応じて任意に変更できる。したがって、交差角θ1が交差角θ2より小さくてもよい。 In the first flow path 21A of the present embodiment, the axis X2 of the small path 21Aa intersects the axis X1 of the first flow path 21A other than the small path 21Aa. More specifically, the intersection angle θ2 between the axis X2 of the small path 21Aa and the axis L is smaller than the intersection angle θ1 between the axis X1 and the axis L of the first flow path 21A other than the small path 21Aa. According to the present embodiment, when the small path 21Aa is projected along the axis X2 toward the valve chamber VS, the projected image overlaps the valve body support 42 . Note that the intersection angle θ1 and the intersection angle θ2 can be arbitrarily changed according to the specifications of the expansion valve 1A. Therefore, the intersection angle θ1 may be smaller than the intersection angle θ2.

小径路21Aa以外の第1流路21Aの軸線X1は、戻り流路23の内周と交差しておらず、小径路21Aaの軸線X2は弁室VSの内周と交差していない。したがって、第3拡径孔23eの外側から戻り流路23内に、ドリル等の工具を軸線Oに対して斜めに、すなわち軸線X1に沿って挿入することで、小径路21Aa以外の第1流路21Aを切削加工することができる。一方、弁室VSを形成する開口部の下方から、ドリル等の工具を軸線Lに対して斜めに、すなわち軸線X2に沿って挿入することで、第1流路21Aにつながるように小径路21Aaを切削加工することができる。 The axis X1 of the first flow path 21A other than the small path 21Aa does not intersect the inner periphery of the return flow path 23, and the axis X2 of the small path 21Aa does not intersect the inner periphery of the valve chamber VS. Therefore, by inserting a tool such as a drill into the return channel 23 from the outside of the third enlarged diameter hole 23e obliquely to the axis O, that is, along the axis X1, the first flow other than the small channel 21Aa is inserted. The path 21A can be machined. On the other hand, by inserting a tool such as a drill obliquely with respect to the axis L, that is, along the axis X2 from below the opening forming the valve chamber VS, the small path 21Aa is formed so as to be connected to the first flow path 21A. can be machined.

本実施形態によれば、開弁時に小径路21Aaから弁室VSへと流れ出る冷媒が、弁体サポート42に斜め方向から当たり、それにより弁体3の振動を抑制することができる。弁体3の振動を抑制する場合、弁体3に冷媒を当てることなく、弁体サポート42に当てた方が制振効果がより高くなる場合もある。したがって、第1流路21Aの小径路21Aaを任意に角度付けすることで、最適な位置に冷媒を向けることが可能になる。 According to this embodiment, when the valve is opened, the refrigerant flowing out from the small path 21Aa into the valve chamber VS strikes the valve body support 42 from an oblique direction, thereby suppressing the vibration of the valve body 3 . When suppressing the vibration of the valve body 3, there are cases in which the damping effect is higher if the refrigerant is brought into contact with the valve body support 42 without contacting the valve body 3 with the refrigerant. Therefore, by arbitrarily angling the small path 21Aa of the first flow path 21A, it becomes possible to direct the coolant to the optimum position.

なお、本発明は、上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。 It should be noted that the present invention is not limited to the above-described embodiments. Variations of any of the components of the above-described embodiments are possible within the scope of the invention. Also, arbitrary components can be added or omitted in the above-described embodiments.

1、1A :膨張弁
2、2A :弁本体
3 :弁体
4 :付勢装置
5 :作動棒
6 :リングばね
8 :パワーエレメント
20 :弁座
21、21A:第1流路
22 :第2流路
23 :戻り流路
27 :弁通孔
41 :コイルばね
42 :弁体サポート
43 :ばね受け部材
50 :二重配管
60 :カバー部材
100 :冷媒循環システム
101 :コンプレッサ
102 :コンデンサ
104 :エバポレータ
VS :弁室

Reference Signs List 1, 1A: Expansion valves 2, 2A: Valve body 3: Valve body 4: Biasing device 5: Operating rod 6: Ring spring 8: Power element 20: Valve seats 21, 21A: First flow path 22: Second flow Path 23: Return flow path 27: Valve passage hole 41: Coil spring 42: Valve body support 43: Spring receiving member 50: Double pipe 60: Cover member 100: Refrigerant circulation system 101: Compressor 102: Condenser 104: Evaporator VS: valve chamber

Claims (7)

内側配管内を低圧冷媒が通過し、前記内側配管の周囲に配置された外側配管と前記内側配管との間の空間となる中間流路を高圧冷媒が通過する二重配管を接続可能な膨張弁であって、
弁座を備えた弁室と、前記中間流路から前記弁室に接続され高圧冷媒が流れる高圧流路と、を備えた弁本体と、
前記弁座に着座可能な弁体を含む弁体ユニットと、を有し、
前記中間流路から前記弁室に向かって前記高圧流路を流れた高圧冷媒が前記弁体ユニットに当たるように、前記高圧流路が前記弁体ユニットの軸線に対して傾いて形成される、
ことを特徴とする膨張弁。
An expansion valve capable of connecting a double pipe in which a low-pressure refrigerant passes through an inner pipe, and a high-pressure refrigerant passes through an intermediate passage that is a space between an outer pipe arranged around the inner pipe and the inner pipe. and
a valve body including a valve chamber having a valve seat; and a high-pressure channel connected to the valve chamber from the intermediate channel and through which a high-pressure refrigerant flows;
a valve body unit including a valve body that can be seated on the valve seat;
The high-pressure flow path is inclined with respect to the axis of the valve body unit so that the high-pressure refrigerant flowing through the high-pressure flow path from the intermediate flow path toward the valve chamber hits the valve body unit.
An expansion valve characterized by:
前記高圧流路の中心を通る中心軸線が直線となり、
前記中心軸線の延長線上に前記弁体ユニットが配置される、
ことを特徴とする請求項1に記載の膨張弁。
A central axis passing through the center of the high-pressure flow path becomes a straight line,
The valve body unit is arranged on an extension line of the central axis,
The expansion valve according to claim 1, characterized in that:
前記弁体ユニットは、前記弁体と、前記弁体を支持する弁体サポートとを有する、
ことを特徴とする請求項1または2に記載の膨張弁。
The valve body unit has the valve body and a valve body support that supports the valve body,
The expansion valve according to claim 1 or 2, characterized in that:
前記弁体サポートを介して、前記弁体を前記弁座に向かって付勢するコイルばねと、
前記弁体サポートと前記コイルばねとの間に配置される頂壁と、前記コイルばねの周囲の少なくとも一部を囲う周壁とを備えたカバー部材と、を有する
ことを特徴とする請求項3に記載の膨張弁。
a coil spring that biases the valve body toward the valve seat via the valve body support;
4. The cover member according to claim 3, further comprising a top wall arranged between the valve body support and the coil spring, and a peripheral wall surrounding at least a part of the periphery of the coil spring. Expansion valve as described.
前記高圧流路は、前記外側配管側の第1通路と、前記弁室側の第2通路とを有し、前記第1通路の内径は、前記第2通路の内径よりも大きい、
ことを特徴とする請求項1~4のいずれか一項に記載の膨張弁。
The high-pressure flow path has a first passage on the side of the outer pipe and a second passage on the side of the valve chamber, and the inner diameter of the first passage is larger than the inner diameter of the second passage.
The expansion valve according to any one of claims 1 to 4, characterized in that:
前記第1通路の軸線と前記第2通路の軸線とは交差する、
ことを特徴とする請求項5に記載の膨張弁。
the axis of the first passage and the axis of the second passage intersect;
The expansion valve according to claim 5, characterized in that:
前記高圧流路の軸線に沿って前記高圧流路を前記弁室側に投影したときに、その投影像は前記弁体ユニットと重なる、
ことを特徴とする請求項1~6のいずれか一項に記載の膨張弁。

When the high-pressure flow path is projected onto the valve chamber side along the axis of the high-pressure flow path, the projected image overlaps the valve body unit.
The expansion valve according to any one of claims 1 to 6, characterized in that:

JP2021068381A 2021-04-14 2021-04-14 expansion valve Pending JP2022163447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021068381A JP2022163447A (en) 2021-04-14 2021-04-14 expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021068381A JP2022163447A (en) 2021-04-14 2021-04-14 expansion valve

Publications (1)

Publication Number Publication Date
JP2022163447A true JP2022163447A (en) 2022-10-26

Family

ID=83742197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021068381A Pending JP2022163447A (en) 2021-04-14 2021-04-14 expansion valve

Country Status (1)

Country Link
JP (1) JP2022163447A (en)

Similar Documents

Publication Publication Date Title
JP2022163447A (en) expansion valve
WO2020189092A1 (en) Expansion valve
JP7217504B2 (en) expansion valve
JP7403148B2 (en) expansion valve
JP7153912B2 (en) expansion valve
JP7403168B2 (en) expansion valve
JP2022184379A (en) expansion valve
JP7300705B2 (en) expansion valve
JP7366401B2 (en) Power element and expansion valve using it
JP7074322B2 (en) Expansion valve
JP7357338B2 (en) Power element and expansion valve using it
WO2021106933A1 (en) Power element and expansion valve using same
JP7325083B2 (en) Expansion valve and its manufacturing method
JP7373857B2 (en) Power element and expansion valve using it
JP7153911B2 (en) expansion valve
JP7349706B2 (en) Power element and expansion valve using it
JP2022150662A (en) Piping joint
JP7418015B2 (en) Manufacturing method of power element, power element and expansion valve using the same
JP2022021827A (en) Expansion valve
JP2019060357A (en) Expansion valve
JP7266283B2 (en) valve device
JP7317191B2 (en) Electric valve and refrigeration cycle system
JP7074321B2 (en) Expansion valve
JP2022190898A (en) expansion valve
JP2024026258A (en) Power element and expansion valve using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231011