WO2020189013A1 - 漏電監視装置 - Google Patents

漏電監視装置 Download PDF

Info

Publication number
WO2020189013A1
WO2020189013A1 PCT/JP2020/002571 JP2020002571W WO2020189013A1 WO 2020189013 A1 WO2020189013 A1 WO 2020189013A1 JP 2020002571 W JP2020002571 W JP 2020002571W WO 2020189013 A1 WO2020189013 A1 WO 2020189013A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
unit
display
display unit
monitoring device
Prior art date
Application number
PCT/JP2020/002571
Other languages
English (en)
French (fr)
Inventor
晃司 横田
智浩 山田
晋一朗 後藤
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020189013A1 publication Critical patent/WO2020189013A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/15Indicating the presence of current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current

Definitions

  • the present invention relates to an earth leakage monitoring device.
  • ELCB earth leakage breaker
  • Patent Document 1 attempts to realize this by monitoring and recording the increasing tendency of the leakage current.
  • Patent Document 1 it is possible to identify a location by measuring the leakage current for each circuit.
  • Patent Document 1 is effective only when the insulation deterioration gradually progresses and the leakage current gradually increases accordingly.
  • Leakage may occur suddenly due to mechanical damage to the equipment or water damage, and if the instantaneous value of the leakage current exceeds the threshold value, ELCB operates within 0.1 seconds.
  • the power supply is cut off. After the power supply is cut off, the leakage current disappears, so it is necessary to display an alarm at a speed higher than the operating speed of the ELCB. Further, since the power supply of the leakage monitoring device itself is lost after the power supply is cut off, the location where the leakage occurs cannot be identified unless the alarm display is maintained without the power supply.
  • Patent Document 1 In addition to the introduction of such a conventional earth leakage monitoring device, it is necessary to replace the MCCB (molded case circuit breaker) with an ELCB, which requires a large amount of cost and labor including installation work.
  • MCCB molded case circuit breaker
  • the present invention has been made to solve the above problems, and is a systematic maintenance activity when the leakage is gradually increasing without using ELCB for each individual device, and a sudden leakage. It is an object of the present invention to provide an earth leakage monitoring device capable of achieving both early recovery in the event of an occurrence.
  • One aspect of the earth leakage monitoring device in the present invention is The leakage current detector output from the zero-phase current transformer and Based on the output of the detection unit, a processing unit that calculates the instantaneous value of the leakage current at a cycle equal to or longer than the operation of the earth leakage breaker and determines an abnormality when the instantaneous value exceeds the threshold value.
  • a display unit that displays the instantaneous value and the result of the abnormality determination based on the output of the processing unit. It is equipped with a power supply circuit that can supply the output voltage for a predetermined period even if the input voltage disappears. The display unit maintains the display even after the supply of the output voltage by the power supply circuit is stopped.
  • An earth leakage monitoring device can be provided.
  • FIG. 5 (A) is a display example of the display unit when the leakage current is equal to or less than the threshold value, and FIG. 5 (B) is a display example of the display unit when the leakage current exceeds the threshold value.
  • FIG. 1 is a diagram showing a schematic configuration of an earth leakage monitoring system 100 according to the present embodiment.
  • the earth leakage monitoring system 100 is connected to the distribution board 10, the zero-phase current transformer 13 provided in the distribution board 10, the earth leakage monitoring unit 20, and the earth leakage monitoring unit 20. It is equipped with a host system 40.
  • the distribution board 10 is connected to a power source 30 such as a distribution board, and includes an earth leakage breaker 11 and a wiring breaker 12.
  • the earth leakage breaker 11 is attached as a main switch of the distribution board 10, and is configured to open the power line from the power source 30 to the distribution board 10 to cut off the power supply due to an increase in the earth leakage current. Will be done.
  • the wiring breaker 12 protects the load circuit and the electric wire from damage by opening the electric circuit when an abnormal overcurrent flows through the load and cutting off the power supply to the load.
  • the zero-phase current transformer 13 detects the leakage current of each load. Further, the output of the zero-phase current transformer 13 is used in the leakage monitoring unit 20 for detecting the leakage current. By using the split type of the zero-phase current transformer 13, it is possible to reduce the labor of construction at the time of installation.
  • the leakage monitoring unit 20 has a function of recording the leakage current of each load and performing an abnormality determination when the instantaneous value of the leakage current exceeds the threshold value.
  • the leakage monitoring unit 20 includes a display unit 203, and displays an instantaneous value of the leakage current and the result of abnormality determination. Details of the earth leakage monitoring unit 20 will be described later.
  • the host system 40 is connected to the leakage monitoring unit 20, and for the leakage monitoring unit 20, the output of the threshold value for determining an abnormality, the instantaneous value of the leakage current detected by the leakage monitoring unit 20, and the abnormality determination You can enter the result of and record it.
  • FIG. 2 is a block diagram showing the hardware configuration of the earth leakage monitoring unit 20.
  • the earth leakage monitoring unit 20 includes a push button switch 201, a storage unit 202, a display unit 203, a power supply circuit 204, a counter-time output circuit 205, a full-wave rectifier circuit 206, and an amplifier circuit. It includes a 207 and a level switching circuit 208. Further, the earth leakage monitoring unit 20 includes a processing unit 209, a communication circuit 210, and an output circuit 211.
  • the push button switch 201 is an interface for setting the display mode and the like on the display unit 203.
  • the storage unit 202 stores a threshold value for determining an abnormality of the leakage current.
  • the threshold value is output from the host system 40.
  • the display unit 203 displays the instantaneous value of the leakage current and the result of the abnormality determination. The details of the display unit 203 will be described later.
  • the power supply circuit 204 is connected to the power supply line via the earth leakage breaker 11, and generates the power supply for the earth leakage monitoring unit 20 by AC / DC conversion. Further, even if the input voltage from the power supply line disappears, the power supply circuit 204 can supply the output voltage to the leakage monitoring unit 20 for a predetermined period, for example, a period of several hundred ms by the function of the capacitor. There is.
  • the reverse time limit output circuit 205, the full-wave rectifier circuit 206, the amplifier circuit 207, and the level switching circuit 208 function as a detection unit in the earth leakage monitoring unit 20, and the leakage current output from the zero-phase current transformer 13. Is detected.
  • FIG. 3 is a circuit diagram showing an example of the reverse time limit output circuit 205, the full-wave rectifier circuit 206, the amplifier circuit 207, and the level switching circuit 208.
  • the counter-time output circuit 205 is composed of a resistor R7 and a capacitor C1, and when a large leakage current flows, the time required for abnormality determination in the processing unit 209 is determined by the counter-time operation characteristics.
  • the full-wave rectifier circuit 206 is composed of resistors R1 to R5, diodes D1, and operational amplifiers U1 and U2, and performs full-wave rectification of the output of the zero-phase current transformer 13 amplified by the amplifier circuit 207.
  • the amplifier circuit 207 is composed of resistors R6 and R9 and an operational amplifier U3, and amplifies the output of the zero-phase current transformer 13.
  • the level switching circuit 208 is composed of an analog switch IC and resistors R8, R10, R11, and R12, and is configured so that the amplification degree can be switched by setting the operation threshold value of the earth leakage breaker 11.
  • the processing unit 209 is composed of a CPU and the like, and is equal to or higher than the operation of the earth leakage breaker 11 based on the outputs of the level switching circuit 208, the amplification circuit 207, the full-wave rectifier circuit 206, and the counter-time output circuit 205 as detection units.
  • the instantaneous value of the leakage current is calculated in the cycle of. Further, the processing unit 209 makes an abnormality determination when the instantaneous value of the leakage current exceeds the threshold value.
  • the communication circuit 210 transmits the data stored in the storage unit 202 and the instantaneous value of the leakage current at an arbitrary timing or periodically requested by the host system 40. Further, the threshold value for determining the abnormality is received from the upper system 40 and transmitted to the storage unit 202.
  • the output circuit 211 outputs the result of the abnormality determination.
  • the output circuit 211 makes it possible to use the result of abnormality determination in devices other than the host system 40 and the display unit 203.
  • FIG. 4 shows a timing chart of the operation of the earth leakage monitoring unit 20.
  • the earth leakage breaker 11 opens the power supply line and cuts off the power supply to the leakage monitoring unit 20.
  • the internal power supply of the leakage monitoring unit 20 is maintained to be operable for about several hundred ms, for example, by the function of the power supply circuit 204.
  • the processing unit 209 performs an abnormality determination, outputs an alarm display to the display unit 203, and outputs an alarm to the host system 40.
  • the display unit 203 is composed of, for example, electronic paper, and the display is maintained even after the supply of the output voltage by the power supply circuit 204 is stopped. Therefore, it is possible to immediately recover the leakage. Then, the processing unit 209 also turns off the alarm display if the leakage current is equal to or less than the threshold value after the restoration work of the leakage portion.
  • FIGS. 5A and 5B show an example of display on the display unit 203.
  • FIG. 5A shows a display example when the leakage current is below the threshold value
  • FIG. 5B shows a display example when the leakage current exceeds the threshold value.
  • the first display unit 203a displays which circuit the leakage current value belongs to.
  • the selection of the circuit can be arbitrarily switched by the user. Alternatively, the circuit display may be automatically switched every few seconds.
  • the second display unit 203b numerically displays the leakage current value of the circuit. Further, the third display unit 203c displays an error message or the like such as an abnormality in the hardware of the earth leakage monitoring unit 20.
  • the display unit 203 since the display unit 203 includes the first display unit 203a, the second display unit 203b, and the third display unit 203c as described above, the user can use the leakage current as a threshold value. In the following cases, the leakage current value of each circuit can be confirmed.
  • the display unit 203 includes a fourth display unit 203d as shown in FIG. 5 (B).
  • a leakage current exceeding the threshold value flows through the fourth display unit 203d, for example, an alarm display of "OVER" is displayed.
  • the circuit in which the leakage current exceeding the threshold value flows is automatically displayed on the first display unit 203a.
  • the second display unit 203b displays the leakage current value exceeding the threshold value numerically.
  • the display unit 203 of the present embodiment is composed of, for example, electronic paper, and even after the power supply to the leakage monitoring unit 20 is cut off, an alarm display, a display of a circuit through which a leakage current has flowed, and a leakage current The display of the value can be continued.
  • the user When the earth leakage breaker 11 operates, the user must go to the site to restore it. However, according to the present embodiment, the user can confirm the alarm display of the leakage monitoring unit 20 installed in the distribution board 10, and the circuit in which the leakage has occurred can be instantly determined. Therefore, only that circuit is wired. By disconnecting with the circuit breaker 12, other circuits can be restored immediately.
  • the processing unit 209 can calculate the instantaneous value of the leakage current at a cycle equal to or higher than the operation of the earth leakage breaker 11 and detect the leakage current at a speed equal to or higher than that of the earth leakage breaker 11. Therefore, when the leakage current exceeds a preset threshold value, the leakage monitoring unit 20 itself can instantly display an alarm.
  • the storage unit 202 and the host system 40 are provided and it is possible to record the leakage current, it is possible to grasp the increasing tendency of the leakage current and perform planned maintenance activities. it can.
  • both preventive maintenance and post-maintenance can be easily realized at low cost without replacing all the wiring breakers 12 with earth leakage breakers.
  • the present invention is not limited to such an aspect, and for example, a magnetic reversal display capable of continuing an abnormal display even after a power failure may be used as the display unit 203.
  • Distribution board 11 Earth leakage breaker 12 Residual circuit breaker 13 Zero phase current transformer 20 Earth leakage monitoring unit 40 Upper system 202 Storage unit 203 Display unit 204 Power supply circuit 205 Counter-time output circuit 206 Full-wave rectifier circuit 207 Amplification circuit 208 level Switching circuit 209 Processing unit 210 Communication circuit 211 Output circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

個別の機器ごとにELCBを用いることなく、徐々に漏電が増加している場合の計画的な保全活動と、突発的な漏電発生時の早期復旧とを両立する。漏電監視ユニット20は、零相変流器13から出力される漏洩電流の検出部(205,206,207,208)と、検出部の出力に基づき、漏電遮断器11の動作と同等以上の周期で漏洩電流の瞬時値を算出し、瞬時値が閾値超えた場合に異常判定を行う処理部209と、処理部209の出力に基づき、瞬時値および異常判定の結果を表示する表示部203と、入力電圧が消失しても所定期間において出力電圧の供給が可能な電源回路204と、を備え、表示部203は、電源回路204による出力電圧の供給が停止した後においても表示を維持する。

Description

漏電監視装置
 この発明は、漏電監視装置に関する。
 製造業などでは、突発的な電断により装置等が停止すると大きな機会損失を招くことから、ELCB(漏電遮断器)で電源ラインを開放して電源供給を遮断する前に、漏電の増加傾向を捉えて計画的な保全を行うことが求められる。また、電断してしまった場合には、早急に復旧させて機会損失を最小化するため早急な普及が求められる。
 そこで、例えば、特許文献1では、漏洩電流の増加傾向を監視・記録することで、これを実現しようとしている。特許文献1では、回路毎に漏洩電流を計測することで、個所の特定も可能となる。
特開平11-133094号公報
 しかしながら、特許文献1の方法は、絶縁劣化が徐々に進行し、それに伴って漏洩電流が徐々に増加する場合にのみ有効である。
 漏電は、装置等の機械的なダメージや被水などで突発的に発生することもあり、漏電電流の瞬時値が閾値を超えている場合には、ELCBが動作して、0.1秒以内に電源供給が遮断される。電源供給の遮断後は、漏洩電流が無くなるため、ELCBの動作速度以上の速度で警報表示をする必要がある。さらに、電源供給の遮断後は、漏電監視装置自身の電源も消失するため、警報表示を電源なしの状態で維持していなければ、漏電の発生個所の特定はできない。
 従って、徐々に漏電が増加している場合の計画的な保全活動(予防保全)と、突発的な漏電発生時の早期復旧(事後保全の効率化)を両立しようとする場合、特許文献1のような従来技術の漏電監視装置の導入に加えて、MCCB(配線用遮断器)をELCBに交換することが必要になり、設置工事を含めて多額のコストと手間が必要になる。
 本発明は、上記課題を解決するためになされたものであって、個別の機器ごとにELCBを用いることなく、徐々に漏電が増加している場合の計画的な保全活動と、突発的な漏電発生時の早期復旧とを両立することが可能な漏電監視装置を提供することを目的とする。
 本発明における漏電監視装置の一態様は、
 零相変流器から出力される漏洩電流の検出部と、
 前記検出部の出力に基づき、漏電遮断器の動作と同等以上の周期で漏洩電流の瞬時値を算出し、前記瞬時値が閾値超えた場合に異常判定を行う処理部と、
 前記処理部の出力に基づき、前記瞬時値および前記異常判定の結果を表示する表示部と、
 入力電圧が消失しても所定期間において出力電圧の供給が可能な電源回路と、を備え、
 前記表示部は、前記電源回路による前記出力電圧の供給が停止した後においても表示を維持する。
 本発明によれば、個別の機器ごとにELCBを用いることなく、徐々に漏電が増加している場合の計画的な保全活動と、突発的な漏電発生時の早期復旧とを両立することが可能な漏電監視装置を提供することができる。
本発明に係る一実施形態の漏電監視システムの概略構成を示す図である。 漏電監視ユニットのハードウェア構成を示すブロック図である。 検出部の一例を示す回路図である。 漏電監視ユニットの動作のタイミングチャートである。 (A)は、漏洩電流が閾値以下の場合の表示部の表示例であり、図5(B)は、漏洩電流が閾値を超えた場合の表示部の表示例である。
 以下、この発明の一実施形態について図面を参照しながら詳細に説明する。図1は、本実施形態に係る漏電監視システム100の概略構成を示す図である。図1に示すように、漏電監視システム100は、分電盤10と、分電盤10内に設けられた零相変流器13と、漏電監視ユニット20と、漏電監視ユニット20に接続された上位システム40とを備えている。
 分電盤10は、配電盤等の電源30に接続されており、漏電遮断器11と、配線用遮断器12とを備えている。漏電遮断器11は、分電盤10の主開閉器として取り付けられており、漏電電流の増加により、電源30から分電盤10への電源ラインを開放して、電源供給を遮断するように構成される。また、配線用遮断器12は、負荷に異常な過電流が流れたときに電路を開放し、負荷への電源供給を遮断することにより負荷回路や電線を損傷から保護する。
 零相変流器13は、各負荷の漏電電流を検出する。また、零相変流器13の出力は、漏電監視ユニット20において、漏洩電流の検出のために用いられる。零相変流器13は、分割型を使用することで、設置の際に工事の手間を減らすことができる。
 漏電監視ユニット20は、各負荷の漏電電流の記録と、漏電電流の瞬時値が閾値超えた場合に異常判定を行う機能を有する。漏電監視ユニット20は、表示部203を備えており、漏電電流の瞬時値と、異常判定の結果を表示する。漏電監視ユニット20の詳細については後述する。
 上位システム40は、漏電監視ユニット20と接続されており、漏電監視ユニット20に対して、異常判定のための閾値の出力と、漏電監視ユニット20により検出される漏電電流の瞬時値と、異常判定の結果とを入力して、記録をとることができる。
 図2は、漏電監視ユニット20のハードウェア構成を示すブロック図である。図2に示すように、漏電監視ユニット20は、押しボタンスイッチ201と、記憶部202と、表示部203と、電源回路204と、反限時出力回路205と、全波整流回路206と、増幅回路207と、レベル切替回路208とを備えている。また、漏電監視ユニット20は、処理部209と、通信回路210と、出力回路211とを備えている。
 押しボタンスイッチ201は、表示部203における表示モード等の設定用のインターフェースである。記憶部202は、漏洩電流の異常判定を行うための閾値を記憶する。閾値は、上位システム40から出力される。表示部203は、漏洩電流の瞬時値および異常判定の結果を表示する。表示部203の詳細については後述する。
 電源回路204は、漏電遮断器11を介して電源ラインに接続されており、AC/DC変換で漏電監視ユニット20の電源を生成する。また、電源回路204は、電源ラインからの入力電圧が消失しても、コンデンサの機能により、所定期間、例えば数百msの期間において漏電監視ユニット20に対して出力電圧の供給が可能となっている。
 反限時出力回路205と、全波整流回路206と、増幅回路207と、レベル切替回路208とは、漏電監視ユニット20における検出部として機能し、零相変流器13から出力にされる漏洩電流を検出する。図3は、反限時出力回路205と、全波整流回路206と、増幅回路207と、レベル切替回路208の一例を示す回路図である。
 図3に示すように、反限時出力回路205は、抵抗R7とコンデンサC1とから構成され、大きな漏洩電流が流れた際に、反限時動作特性により、処理部209における異常判定に必要な時間を確保する。全波整流回路206は、抵抗R1~R5、ダイオードD1、およびオペアンプU1,U2から構成され、増幅回路207によって増幅された零相変流器13の出力の全波整流を行う。増幅回路207は、抵抗R6,R9とオペアンプU3とから構成され、零相変流器13の出力を増幅する。レベル切替回路208は、アナログスイッチICと抵抗R8,R10,R11,R12とから構成され、漏電遮断器11の動作閾値の設定によって増幅度を切り替え可能に構成されている。
 処理部209は、CPU等から構成され、検出部としてのレベル切替回路208、増幅回路207、全波整流回路206、および反限時出力回路205の出力に基づき、漏電遮断器11の動作と同等以上の周期で漏洩電流の瞬時値を算出する。また、処理部209は、漏洩電流の瞬時値が閾値を超えた場合に異常判定を行う。
 通信回路210は、記憶部202に記憶されたデータや漏洩電流の瞬時値を、上位システム40から要望された任意のタイミングもしくは周期的に伝達する。また、異常判定の閾値を上位システム40から受けとり、記憶部202へ伝達する。
 出力回路211は、異常判定の結果を出力する。出力回路211により、上位システム40および表示部203以外の機器において、異常判定の結果を利用することができる。
 図4に、漏電監視ユニット20の動作のタイミングチャートを示す。図4に示すように、負荷の漏洩電流が判定閾値を超えると、漏洩遮断器11は、電源ラインを開放し、漏電監視ユニット20に対する電源供給を遮断する。しかし、電源供給の遮断後においても、電源回路204の機能により、例えば数百ms程度は漏電監視ユニット20の内部電源は動作可能に維持される。処理部209は、この間に、異常判定を行い、表示部203への警報表示出力と、上位システム40に対する警報出力を行う。本実施形態においては、表示部203は、例えば、電子ペーパーから構成されており、電源回路204による出力電圧の供給が停止した後においても表示が維持される。したがって、直ちに漏電の復旧作業が可能になっている。そして、処理部209は、漏電箇所の復旧作業後において、漏電電流が閾値以下ならば、警報表示もオフする。
 図5(A),(B)に、表示部203における表示例を示す。図5(A)は、漏洩電流が閾値以下の場合の表示例であり、図5(B)は、漏洩電流が閾値を超えた場合の表示例示す。
 図5(A),(B)に示すように、第1表示部203aは、漏洩電流値がどの回路のものであるかを表示する。回路の選択は、ユーザが任意に切り替え可能である。あるいは、回路の表示を、数秒後ごとに自動で切り替えるようにしてもよい。
 第2表示部203bは、回路の漏洩電流値を数値で表示する。また、第3表示部203cは、漏電監視ユニット20のハードウェアの異常など、エラーメッセージ等を表示する。
 図5(A)に示すように、表示部203は、以上のような第1表示部203a、第2表示部203b、および第3表示部203cを備えているので、ユーザは、漏洩電流が閾値以下の場合に、各回路の漏洩電流値を確認することができる。
 また、表示部203は、図5(B)に示すように、第4表示部203dを備えている。第4表示部203dには、閾値を超える漏電電流が流れた際に、例えば、“OVER”という警報表示を行う。また、閾値を超える漏電電流が流れた際には、第1表示部203aには、閾値を超える漏電電流が流れた回路を自動で表示する。また、第2表示部203bには、閾値を超える漏電電流値を数値で表示する。
 本実施形態の表示部203は、例えば、電子ペーパーで構成されており、漏電監視ユニット20への電源供給が遮断された後においても、警報表示、漏電電流が流れた回路の表示、および漏電電流値の表示を継続することができる。
 漏電遮断器11が動作した場合、復帰させるには、ユーザがその現場へ必ず出向かなければならない。しかし、本実施形態によれば、分電盤10内に取り付けられた漏電監視ユニット20の警報表示をユーザが確認することができ、漏電が発生した回路を瞬時に判断できるため、その回路のみ配線用遮断器12で切り離すことにより、その他の回路を早急に復旧させることができる。
 また、本実施形態によれば、処理部209は、漏電遮断器11の動作と同等以上の周期で漏洩電流の瞬時値を算出し、漏電遮断器11以上の速度で漏洩電流を検出できる。したがって、漏洩電流が予め設定された閾値を超えた場合、瞬時に漏電監視ユニット20自身が警報表示を行うことができる。
 さらに、本実施形態によれば、記憶部202および上位システム40を備えており、漏洩電流の記録をとることが可能なので、漏洩電流の増加傾向を把握して計画的な保全活動を行うことができる。
 以上のように、本実施形態によれば、配線用遮断器12を全て漏電遮断器に交換することなく、予防保全と事後保全の両立を、容易に低コストで実現することができる。
(変形例)
 以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。
 上述した実施形態では、表示部203の例として、電子ペーパーを用いた態様について説明した。しかしながら、本発明はこのような態様に限定される訳ではなく、例えば、表示部203として、電断後も異常表示を継続できる磁気反転表示器を用いてもよい。
 本明細書では、本発明の実施形態に係る漏電監視装置について説明したが、本発明は、これに限定されるものではなく、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
  10  分電盤
  11  漏電遮断器
  12  配線用遮断器
  13  零相変流器
  20  漏電監視ユニット
  40  上位システム
  202 記憶部
  203 表示部
  204 電源回路
  205 反限時出力回路
  206 全波整流回路
  207 増幅回路
  208 レベル切替回路
  209 処理部
  210 通信回路
  211 出力回路

Claims (5)

  1.  零相変流器から出力される漏洩電流の検出部と、
     前記検出部の出力に基づき、漏電遮断器の動作と同等以上の周期で漏洩電流の瞬時値を算出し、前記瞬時値が閾値を超えた場合に異常判定を行う処理部と、
     前記処理部の出力に基づき、前記瞬時値および前記異常判定の結果を表示する表示部と、
     入力電圧が消失しても所定期間において出力電圧の供給が可能な電源回路と、を備え、
     前記表示部は、前記電源回路による前記出力電圧の供給が停止した後においても表示を維持する、
    ことを特徴とする漏電監視装置。
  2.  前記表示部は、電子ペーパーである、
    ことを特徴とする請求項1に記載の漏電監視装置。
  3.  前記表示部は、磁気反転表示器である、
    ことを特徴とする請求項1に記載の漏電監視装置。
  4.  前記漏洩電流の異常判定を行うための閾値を記憶する記憶部を備える、
    ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の漏電監視装置。
  5.  上位システムと通信可能な通信部を備え、
     前記記憶部は、前記通信部を介して前記上位システムから受け取った前記閾値を記憶する、
    ことを特徴とする請求項4に記載の漏電監視装置。
PCT/JP2020/002571 2019-03-15 2020-01-24 漏電監視装置 WO2020189013A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048911A JP2020148737A (ja) 2019-03-15 2019-03-15 漏電監視装置
JP2019-048911 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189013A1 true WO2020189013A1 (ja) 2020-09-24

Family

ID=72429529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002571 WO2020189013A1 (ja) 2019-03-15 2020-01-24 漏電監視装置

Country Status (2)

Country Link
JP (1) JP2020148737A (ja)
WO (1) WO2020189013A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305458A (zh) * 2020-12-30 2021-02-02 南京斯泰恩智慧能源技术有限公司 一种录波型台区剩余电流检测终端及预警系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716176U (ja) * 1993-08-27 1995-03-17 河村電器産業株式会社 漏電テスター
JPH0794069A (ja) * 1993-09-22 1995-04-07 Fuji Electric Co Ltd 回路遮断器
JPH11133094A (ja) * 1997-10-31 1999-05-21 Daihen Corp 漏電監視装置
JP2004362510A (ja) * 2003-06-09 2004-12-24 Meidensha Corp 自家用電気設備の監視装置
JP2007198877A (ja) * 2006-01-26 2007-08-09 Kawamura Electric Inc 漏電チェッカ
JP2010262858A (ja) * 2009-05-08 2010-11-18 Kawamura Electric Inc 低圧電力契約用遮断器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305764A (ja) * 2007-06-11 2008-12-18 Kawamura Electric Inc 電線の接続不良検出回路及び回路遮断器
JP5155687B2 (ja) * 2008-02-19 2013-03-06 パナソニック株式会社 配線器具
JP5319949B2 (ja) * 2008-03-31 2013-10-16 パナソニック株式会社 配線器具
JP5622486B2 (ja) * 2010-08-23 2014-11-12 中国電力株式会社 絶縁監視装置
JP2014196920A (ja) * 2013-03-29 2014-10-16 パナソニック株式会社 漏電検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716176U (ja) * 1993-08-27 1995-03-17 河村電器産業株式会社 漏電テスター
JPH0794069A (ja) * 1993-09-22 1995-04-07 Fuji Electric Co Ltd 回路遮断器
JPH11133094A (ja) * 1997-10-31 1999-05-21 Daihen Corp 漏電監視装置
JP2004362510A (ja) * 2003-06-09 2004-12-24 Meidensha Corp 自家用電気設備の監視装置
JP2007198877A (ja) * 2006-01-26 2007-08-09 Kawamura Electric Inc 漏電チェッカ
JP2010262858A (ja) * 2009-05-08 2010-11-18 Kawamura Electric Inc 低圧電力契約用遮断器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305458A (zh) * 2020-12-30 2021-02-02 南京斯泰恩智慧能源技术有限公司 一种录波型台区剩余电流检测终端及预警系统
CN112305458B (zh) * 2020-12-30 2021-04-16 南京斯泰恩智慧能源技术有限公司 一种录波型台区剩余电流检测终端及预警系统

Also Published As

Publication number Publication date
JP2020148737A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6196293B2 (ja) アークの場所を突き止めて消滅させるための方法および装置
US9000611B2 (en) Protection techniques for an electric power system
JP2015524240A5 (ja)
KR20200018514A (ko) 배전계통 전원선로 고장시 실시간 탐지/복구시스템 및 그 공사방법
JP2020515228A (ja) 配電系統電源線路故障時のリアルタイム探知/復旧システム及びその工事方法
KR20190067564A (ko) 배전계통 전원선로 고장시 실시간 탐지/복구시스템 및 그 공사방법
WO2020189013A1 (ja) 漏電監視装置
KR101316544B1 (ko) 전력 계통 고장 판단 방법
KR20140121593A (ko) 전력품질 복구계전기
KR100951445B1 (ko) 전원 자동절체 시스템 및 절체 제어방법
JP2010121810A (ja) 空気調和機の通信制御装置
KR100868892B1 (ko) 배전계통의 원격감시제어 및 자료취득 시스템
US20110178649A1 (en) Method for preventing electric shock by contact with connected-to-ground electric appliances and installations, and apparatus therefor
JP5312546B2 (ja) 遮断器の接触子消耗量管理システム
KR20150130182A (ko) 한류기
JP2016220265A (ja) 分電盤
CN108281331B (zh) 三相欠压跳闸装置以及具有三相欠压跳闸装置的塑壳断路器
KR101246036B1 (ko) 순간전압보상장치의 바이패스장치
JPH0917313A (ja) 負荷回路保護装置
KR100955806B1 (ko) 부하의 전원상태를 감지하면서 부하로 상용전원과 태양광발전전원을 선택접속하기 위한 자동전원절환장치
KR101030925B1 (ko) 감시 및 중성선 대체기능이 구비된 태양광 발전시스템
KR20170042070A (ko) 전력계통에서의 단락 발생시 재해 방지장치 및 방법
KR102080809B1 (ko) 결상사고 감지장치 및 IoT 기반의 결상사고 원격 알람 시스템
KR101358592B1 (ko) 소방전원 보존형 전력제어 시스템 배전반과 보조 제어장치 및 그 운용방법
KR20130063771A (ko) 자동복구형 누전차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773340

Country of ref document: EP

Kind code of ref document: A1