WO2020188689A1 - 運転者状態監視装置及び運転者状態監視方法 - Google Patents

運転者状態監視装置及び運転者状態監視方法 Download PDF

Info

Publication number
WO2020188689A1
WO2020188689A1 PCT/JP2019/011119 JP2019011119W WO2020188689A1 WO 2020188689 A1 WO2020188689 A1 WO 2020188689A1 JP 2019011119 W JP2019011119 W JP 2019011119W WO 2020188689 A1 WO2020188689 A1 WO 2020188689A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
light
image
determination unit
infrared
Prior art date
Application number
PCT/JP2019/011119
Other languages
English (en)
French (fr)
Inventor
衣里 小寺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/011119 priority Critical patent/WO2020188689A1/ja
Priority to JP2021506843A priority patent/JP7158561B2/ja
Publication of WO2020188689A1 publication Critical patent/WO2020188689A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a driver condition monitoring device and a driver condition monitoring method for monitoring the driver's condition based on an image captured by the imaging device.
  • the present invention has been made to solve the above-mentioned problems, and provides a driver condition monitoring device capable of acquiring information on external light while clearly capturing the driver's face with a near-infrared camera.
  • the purpose is to do.
  • the driver state monitoring device controls a near-infrared light emitting element that irradiates near infrared rays toward the driver's face of a vehicle and a near infrared camera that images the driver's face, and controls the near infrared light emitting element.
  • An imaging control unit that synchronizes the emission period and extinguishing period of the near-infrared light emitting element with the imaging timing of the near-infrared camera, and the emission image captured by the near-infrared camera during the emission period and the near-infrared camera during the extinguishing period.
  • An image acquisition unit that acquires the captured extinguished image, a driver state determination unit that detects the driver's face information from the emitted image and determines the driver's condition based on the face information, and a driver's eye from the extinguished image. It is provided with an external light state determination unit that detects the brightness of the surroundings and determines that the driver's eyes are irradiated with external light when the brightness is equal to or higher than the brightness threshold.
  • the driver condition monitoring device of the present invention can acquire information on external light while clearly capturing the driver's face with a near-infrared camera.
  • FIG. 5A and 5B are diagrams showing a hardware configuration example of the driver condition monitoring device 2 according to the first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a driver condition monitoring device 2 according to the first embodiment.
  • the vehicle is equipped with an image pickup device 1, a driver status monitoring device 2, a control device 3, an alarm device 4, a shading control device 5, an automatic braking device 6, a head-up display device 7, and a car navigation device 8.
  • the person state monitoring device 2 is electrically connected to the image pickup device 1 and the control device 3.
  • the control device 3 is electrically connected to the alarm device 4, the light shielding device 5, the automatic braking device 6, the head-up display device 7, and the car navigation device 8.
  • the driver condition monitoring device 2 and the control device 3 are separate devices, but the driver condition monitoring device 2 may include the control device 3.
  • the image pickup device 1 includes a near-infrared camera 11 that captures near-infrared light and a near-infrared light emitting element 12 that emits near-infrared light, and includes an imaging range of the near-infrared camera 11 and an irradiation range of the near-infrared light emitting element 12. It is installed inside the vehicle at a position and angle so that the driver's face of the vehicle is present in the vehicle.
  • the near-infrared camera 11 and the near-infrared light emitting element 12 may be one module or may be separated.
  • the imaging device 1 can acquire an image of a subject with vivid contrast without being affected by external light such as sunlight by imaging the subject illuminated by the near-infrared light emitting element 12. ..
  • the driver condition monitoring device 2 includes an image pickup control unit 21, an image acquisition unit 22, a driver condition determination unit 23, and an external light condition determination unit 24.
  • the image pickup control unit 21 sets the pulse light emission timing of the near infrared light emitting element 12, and causes the near infrared light emitting element 12 to emit pulse light.
  • the light emission timing may be a fixed value or may be arbitrarily changed.
  • the image pickup control unit 21 synchronizes the image pickup timing of the near infrared camera 11 with the light emission timing, and controls the near infrared element 12 to take an image during the light emission period and the quenching period. Specifically, it will be described with reference to FIG.
  • FIG. 2 is a timing chart illustrating the imaging timing of the near-infrared camera 11 and the emission timing of the near-infrared light emitting element 12 according to the first embodiment.
  • T1 is a period during which the near-infrared camera 11 captures an optical signal (imaging period)
  • T2 is a period during which the near-infrared camera 11 does not capture an optical signal (blanking period).
  • the near-infrared light emitting element 12 repeats light emission and quenching, the light emission of the near infrared light emitting element 12 rises during the blanking period, and the light emission of the near infrared light emitting element 12 falls during the blanking period.
  • the image pickup control unit 21 controls the light emitting image when the near infrared light emitting element 12 is emitting light and when the near infrared element 12 is extinguished. It is possible to alternately capture the extinguished image of.
  • the driver's face illuminated by the near infrared light emitting element 12 is imaged, so that the driver's face is clearly reflected without being affected by the outside light. Can be imaged.
  • the quenching image captures the driver's face illuminated by the external light, the driver's face becomes less clear than the luminescent image, but the information on the external light can be obtained from the brightness of the pixels. That is, as described above, the external light is detected by alternately capturing the light emitting image when the near infrared light emitting element 12 is emitting light and the extinguished image when the near infrared light emitting element 12 is extinguished. With one near-infrared camera, it is possible to capture both a clear image of the driver's face and an image including information on external light without adding an illuminometer or the like.
  • the image pickup control unit 21 sequentially transmits the image pickup timing of the near infrared camera 11 and the light emission timing of the near infrared light emitting element 12 to the image acquisition unit 22.
  • the imaging timing of the near-infrared camera 11 is synchronized with the emission timing of the near-infrared light emitting element 12, but the emission timing of the near-infrared emitting element 12 is synchronized with the imaging timing of the near-infrared camera 11. You may try to synchronize.
  • the image acquisition unit 22 acquires an image captured by the near-infrared camera 11, and determines whether the acquired image is a light emitting image or a quenching image based on the imaging timing and the light emitting timing received from the imaging control unit 21. Then, when the acquired image is a light emitting image, the image is transmitted to the driver state determination unit 23, and when the acquired image is a quenching image, the image is transmitted to the external light state determination unit 24.
  • the driver state determination unit 23 acquires a light emitting image from the image acquisition unit 22, the driver's face is detected from the light emitting image, and face information such as the degree of opening of the driver's eyes and the face orientation is detected. Then, based on the detected face information, it is determined whether or not the driver is in a state unsuitable for driving the vehicle.
  • the state unsuitable for driving is, for example, a dozing state, an inattentive state, an inoperable state (dead man state), or the like.
  • the driver status determination unit 23 notifies the control device 3 that the driver is not suitable for driving.
  • the external light state determination unit 24 detects the brightness around the driver's eye from the quenching image. For example, the external light state determination unit 24 detects the average brightness of pixels included in a predetermined range based on the position of the eye. If the driver's eye can be detected from the extinguished image, the brightness around the eye is detected based on the position of the eye detected from the extinguished image, and if the driver's eye cannot be detected from the extinguished image, the outside.
  • the light state determination unit 24 acquires the eye position detected by the driver state determination unit 23 from the light emission image, and detects the brightness around the eye based on the eye position detected from the light emission image. Specifically, it will be described with reference to FIG.
  • FIG. 3 is a flowchart showing an operation of detecting the brightness around the eyes of the operation condition monitoring device 2 according to the first embodiment.
  • the external light information acquisition unit 24 acquires the extinguished image, it determines whether the driver's eye can be detected from the extinguished image (step S001), and if the driver's eye can be detected from the extinguished image (step S001: YES). , The brightness around the eyes is detected based on the position of the driver's eyes detected from the extinguished image (step S002), and the process is terminated.
  • the external light state determination unit 24 determines the position of the eye detected by the driver state determination unit 23 from the light emission image. It is acquired from the unit 23 (S003), and the brightness around the eye is detected based on the position of the eye detected from the acquired luminescent image (S004). Then, the process ends.
  • the external light state determination unit 24 detects the brightness around the eye based on the position of the eye detected from the emitted image, for example, the strong sun. Based on the position of the driver's eyes detected from the luminescent image that is not affected by external light, even when the light hits the driver's face and the driver's face reflected in the extinguished image is overexposed. It is possible to detect the brightness around the driver's eyes. In the above, when the driver's eye cannot be detected from the extinguished image, the brightness around the eye is detected based on the position of the eye detected from the emitted image, but the external light state determination unit 24 always operates. The person state determination unit 23 may detect the brightness around the driver's eye based on the position of the eye detected from the luminescent image.
  • the external light state determination unit 24 determines that the driver's eyes are irradiated with external light
  • the external light state determination unit 24 indicates that the driver's eyes are irradiated with external light to the control device 3. Notify. Further, the external light state determination unit 24 detects from which direction the driver's face is irradiated with external light when it is determined that the driver's eyes are irradiated with external light. You may.
  • FIG. 4 is a diagram for explaining a method of determining the direction of external light from the shadow pattern formed on the driver's face according to the first embodiment.
  • FIG. 4A shows a pattern formed on the driver's face when the sun is present in the upper left of the front of the vehicle
  • FIG. 4B shows a pattern of shadows formed on the driver's face when the sun is present in the upper right of the front of the vehicle. Is. As can be seen from FIGS.
  • a shadow is formed on the protruding part of the driver's face, especially near the nose, in the direction opposite to the irradiation direction of the external light. Therefore, by storing in advance the shadow pattern formed on the driver's face with respect to the irradiation direction of the external light, the irradiation direction of the external light can be determined from the shadow pattern formed on the driver's face obtained from the quenching image. Is possible.
  • the irradiation direction of the external light is output to the control device 3.
  • the control device 3 includes an alarm control unit 31, a light-shielding control unit 32, a vehicle control unit 33, and a display control unit 34.
  • the alarm control unit 31 controls the alarm device 4 and sounds an alarm to the driver.
  • the light-shielding control unit 32 controls the light-shielding device 5 provided in the vehicle to control the driver's eyes. It blocks the external light shining on the eyes.
  • the shading device 5 is, for example, a sun visor or a windshield having a variable transmittance.
  • the light-shielding control unit 32 controls the light-shielding device 5 based on the irradiation direction of the external light to more efficiently emit the external light. It is possible to block light.
  • the vehicle control unit 33 is in a state where the driver status determination unit 23 notifies that the driver is not suitable for the driver, or the external light condition determination unit 24 irradiates the driver's eyes with external light. When notified to that effect, the automatic braking device 6 is controlled so that the automatic braking operates earlier than usual.
  • the display control unit 34 When the display control unit 34 is notified by the external light state determination unit 24 that the driver's eyes are being irradiated with external light, the display control unit 34 brightens the display brightness of the head-up display device 7 and the car navigation device 8. However, the head-up display device 7 and the car navigation device 8 are made easy to see even when the driver feels dazzling. In addition to increasing the brightness, the display color may be changed to a color that is easy to see.
  • FIG. 5A and 5B are diagrams showing a hardware configuration example of the driver condition monitoring device 2.
  • Each function of the image pickup control unit 21, the image acquisition unit 22, the driver state determination unit 23, and the external light state determination unit 24 in the driver condition monitoring device 2 is realized by a processing circuit. That is, the driver condition monitoring device 2 includes a processing circuit for realizing each of the above functions.
  • the processing circuit may be a processing circuit 100a which is dedicated hardware as shown in FIG. 5A, or may be a processor 100b which executes a program stored in the memory 200c as shown in FIG. 5B. Good.
  • the processing circuit 100a is, for example, a single circuit. It corresponds to a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-programmable Gate Array), or a combination thereof.
  • the functions of the image pickup control unit 21, the image acquisition unit 22, the driver state determination unit 23, and the external light state determination unit 24 may be realized by processing circuits, or the functions of each unit may be combined into one processing circuit. It may be realized.
  • the functions of each unit are software, firmware, or software and firmware. It is realized by the combination with.
  • the software or firmware is described as a program and stored in the memory 100c.
  • the processor 100b realizes each function of the image pickup control unit 21, the image acquisition unit 22, the driver state determination unit 23, and the external light state determination unit 24 by reading and executing the program stored in the memory 100c. That is, when the image pickup control unit 21, the image acquisition unit 22, the driver state determination unit 23, and the external light state determination unit 24 are executed by the processor 100b, each step shown in FIG. 3 and FIGS. Will eventually be executed. Further, it can be said that these programs cause the computer to execute the procedure or method of the image pickup control unit 21, the image acquisition unit 22, the driver state determination unit 23, and the external light state determination unit 24.
  • the processor 100b is, for example, a CPU (Central Processing Unit), a processing device, a computing device, a processor, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 100c may be, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), or an EEPROM (Electrical EPROM).
  • it may be a magnetic disk such as a hard disk or a flexible disk, or an optical disk such as a mini disk, a CD (Compact Disc), or a DVD (Digital Versaille Disc).
  • FIG. 6 is a flowchart showing the operation of the driver condition monitoring device 2 according to the first embodiment.
  • the image pickup control unit 21 determines the pulse emission timing of the near infrared light emitting element 12, and causes the near infrared light emitting element 12 to emit pulse light (step S101). Then, the image pickup control unit 21 synchronizes the imaging timing of the near-infrared camera 11 with the emission timing of the near-infrared light emitting element 12 so that the near-infrared camera 11 captures an image during the emission period and the extinguishing period of the near-infrared light emitting element 12.
  • Step S102 and the imaging timing and light emission timing are output to the image acquisition unit 22 (step S103).
  • the image acquisition unit 22 acquires an image captured by the near-infrared camera (step S104), and determines whether the acquired image is a light emitting image or a quenching image based on the imaging timing and the light emitting timing received from the imaging control unit 21 (step S104). S105).
  • step S105 When the image acquired by the image acquisition unit 22 is a light emitting image (step S105: YES), the light emitting image is transmitted to the driver state determination unit 23, and the driver state determination unit 23 is based on the transmitted light emission image. It is determined whether or not the driver is in a state unsuitable for driving (step S106).
  • step S106 determines whether or not the driver's eyes are irradiated with external light.
  • step S108 determines whether or not the driver's eyes are irradiated with external light.
  • the near-infrared light emitting element that irradiates the driver's face of the vehicle with near-infrared rays and the near-infrared camera that captures the driver's face are controlled to emit near-infrared rays.
  • An image acquisition unit that acquires the extinguished image captured by the camera, a driver state determination unit that detects the driver's face information from the emitted image and determines the driver's condition based on the face information, and a driver from the extinguished image.
  • a near-infrared camera because it is configured to include an external light state determination unit that detects the brightness around the eyes and determines that the driver's eyes are irradiated with external light when the brightness is equal to or higher than the brightness threshold. It is possible to acquire information on external light while clearly capturing the driver's face.
  • FIG. 7 is a block diagram showing a configuration of the driver condition monitoring device 2B according to the second embodiment.
  • the driver condition monitoring device 2B according to the second embodiment when the driver is squinting more than usual, the driver may be sleepy and squinting, or the outside light is dazzling and the eyes are squinted. I tried to determine if it was there.
  • FIG. 8 is a flowchart showing the operation of the driver condition determination unit 23B in the driver condition monitoring device 2B according to the second embodiment.
  • the driver state determination unit 23B acquires a light emission image from the image acquisition unit 22
  • the driver state determination unit 23B sequentially detects the degree of eye opening of the driver's eyes from the acquired light emission image (step S201). Then, it is determined whether or not the state in which the eye opening degree is below the threshold value has continued for a predetermined time (step S202), and it is determined that the state in which the eye opening degree is below the eye opening degree threshold has continued for a predetermined time (step S202).
  • Step S202 the external light state determination unit 24B detects the brightness around the driver's eye from the extinguished image (step S203).
  • step S203 the state in which the eye opening degree is equal to or less than the eye opening degree threshold value does not continue for a predetermined time
  • step S204 the luminance threshold value
  • step S204 it is determined that the driver is in a dozing state (step S205).
  • step S204: NO it is determined that the driver feels that the outside light is dazzling
  • the driver state determination unit 23B of the second embodiment detects the area around the driver's eye that is detected by the external light state determination unit 24B when the state in which the eye opening degree is equal to or less than the threshold value continues for a predetermined time. If the brightness around the driver's eye is less than or equal to the brightness threshold, it is determined that the driver is in a dozing state, and if the brightness around the driver's eye is higher than the brightness threshold. It is determined that the driver feels that the outside light is dazzling. As a result, when the driver is squinting more than usual, it is possible to determine whether the driver is sleepy and squinting, or the outside light is dazzling and squinting.
  • Imaging device 1 Imaging device, 2, 2A Driver status monitoring device, 3 Control device, 4 Alarm device, 5 Shading device, 6 Automatic braking device, 7 Head-up display device, 8 Car navigation device, 11 Near infrared camera, 12 Near infrared emission Element, 21 imaging control unit, 22 image acquisition unit, 23, 23B driver status determination unit, 24, 24B external light condition determination unit, 31 alarm control unit, 32 shading control unit, 33 vehicle control unit, 34 display control unit, 100a processing circuit, 100b processor, 100c memory

Abstract

運転者状態監視装置は、車両の運転者の顔に向けて近赤外線を照射する近赤外発光素子(12)および運転者の顔を撮像する近赤外線カメラ(11)を制御し、近赤外線発光素子(12)をパルス発光させるとともに、近赤外線発光素子(12)の発光期間および消光期間と近赤外線カメラ(11)の撮像タイミングとを同期させる撮像制御部(21)と、発光期間に近赤外線カメラ(11)が撮像した発光画像および消光期間に近赤外線カメラ(11)が撮像した消光画像を取得する画像取得部(22)と、発光画像から運転者の顔情報を検出し、顔情報に基づいて運転者の状態を判定する運転者状態判定部(23)と、消光画像から運転者の眼周辺の輝度を検出し、輝度が輝度閾値以上の場合、運転者の眼に外光が照射されている状態と判定する外光状態判定部(24)と、を備える。

Description

運転者状態監視装置及び運転者状態監視方法
 この発明は撮像装置の撮像した画像に基づいて運転者の状態を監視する運転者状態監視装置及び運転者状態監視方法に関するものである。
 従来、投光器から近赤外光を運転者の顔に向けて照射し、運転者の顔で反射した近赤外光を近赤外線カメラで撮像することで、外光に大きく影響されることなく、運転者の顔を鮮明に撮像するドライバモニタリング装置が提案されている(下記特許文献1)。
特開2010-097379号公報
 上記特許文献1のように、外光に大きく影響されることなく、運転者の顔を鮮明に撮像するには、外光よりも強い近赤外線を投光器から運転者の顔に投光する必要がある。しかし、そのような場合、運転者の顔に外光が当たっている等の外光情報が失われてしまう。外光情報が失われてしまう場合、例えば、運転者が眼を細めているときに、外光が眩しくて眼を細めているのか、眠くて眼を細めているかが区別できなくなってしまう。
 一方、外光情報を取得するために、投光器から投光する近赤外光の強度を外光よりも弱くした場合、運転者の顔を鮮明に撮像することは困難になる。
 また、近赤外線カメラに加え照度計を設けることで、外光の情報を取得することは可能となるが、照度計を追加する分コストが増加してしまう。
 この発明は上記した問題点を解決するためになされたものであり、近赤外線カメラで運転者の顔を鮮明に撮像しつつ、外光の情報を取得することができる運転者状態監視装置を提供することを目的とする。
 この発明に係る運転者状態監視装置は、車両の運転者の顔に向けて近赤外線を照射する近赤外発光素子および運転者の顔を撮像する近赤外線カメラを制御し、近赤外線発光素子をパルス発光させるとともに、近赤外線発光素子の発光期間および消光期間と近赤外線カメラの撮像タイミングとを同期させる撮像制御部と、発光期間に近赤外線カメラが撮像した発光画像および消光期間に近赤外線カメラが撮像した消光画像を取得する画像取得部と、発光画像から運転者の顔情報を検出し、顔情報に基づいて運転者の状態を判定する運転者状態判定部と、消光画像から運転者の眼周辺の輝度を検出し、輝度が輝度閾値以上の場合、運転者の眼に外光が照射されている状態と判定する外光状態判定部と、を備える。
 この発明の運転者状態監視装置は、近赤外線カメラで運転者の顔を鮮明に撮像しつつ、外光の情報を取得することができる。
本実施の形態1に係る運転者状態監視装置2の構成を示すブロック図である。 本実施の形態1に係る近赤外線発光素子11の撮像タイミング及び近赤外線発光素子12の発光タイミングを説明するタイミングチャートである。 本実施の形態1に係る運転状態監視装置2の眼周辺の輝度を検出する動作を示すフローチャートである。 本実施の形態1に係る運転者の顔にできる影のパターンから外光の方向を判定する方法を説明するための図である。 図5A及び図5Bは、本実施の形態1に係る運転者状態監視装置2のハードウェア構成例を示す図である。 本実施の形態1に係る運転者状態監視装置2の動作を示すフローチャートである。 本実施の形態2に係る運転者状態監視装置2Bの構成を示すブロック図である。 本実施の形態2に係る運転者状態監視装置2Bにおける運転者状態判定部23Bの動作を示すフローチャートである。
 以下、この発明を実施するための形態について、図を参照して説明する。なお、各図中の同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
実施の形態1
 図1は本実施の形態1に係る運転者状態監視装置2の構成を示すブロック図である。
 車両には、撮像装置1、運転者状態監視装置2、制御装置3、警報装置4、遮光制御装置5、自動ブレーキ装置6、ヘッドアップディスプレイ装置7及びカーナビゲーション装置8が搭載されており、運転者状態監視装置2は撮像装置1及び制御装置3に電気的に接続される。また、制御装置3は警報装置4、遮光装置5、自動ブレーキ装置6、ヘッドアップディスプレイ装置7及びカーナビゲーション装置8に電気的に接続される。
 なお、本実施の形態1においては、運転者状態監視装置2と制御装置3を別の装置としているが、運転者状態監視装置2の中に制御装置3が含まれるような構成としてもよい。
 撮像装置1は、近赤外線の光を撮像する近赤外線カメラ11及び近赤外線の光を発光する近赤外線発光素子12を備えており、近赤外線カメラ11の撮像範囲および近赤外線発光素子12の照射範囲に車両の運転者の顔が存在するような位置および角度で車両内部に設置されている。なお、近赤外線カメラ11及び近赤外線発光素子12は一つのモジュールとなっていてもよいし、分離されていてもよい。
 上記のように撮像装置1は、近赤外線発光素子12によって照らされた被写体を撮像することで、太陽光等の外光の影響を受けることなく、コントラスト鮮やかな被写体の画像を取得することができる。
 運転者状態監視装置2は、撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24を備えている。
 撮像制御部21は、近赤外線発光素子12のパルス発光タイミングを設定し、近赤外線発光素子12をパルス発光させる。発光タイミングは固定値としてもよいし、任意に変更可能としてもよい。
更に、撮像制御部21は、近赤外線カメラ11の撮像タイミングを当該発光タイミングに同期させ、近赤外線素子12が発光期間と消光期間に画像を撮像するように制御する。具体的には、図2を用いて説明する。
 図2は、本実施の形態1に近赤外線カメラ11の撮像タイミング及び近赤外線発光素子12の発光タイミングを説明するタイミングチャートである。
 図2においてT1は近赤外線カメラ11が光信号を取り込む期間(撮像期間)であり、T2は近赤外線カメラ11が光信号を取り込まない期間(ブランキング期間)である。
 図2に示すように近赤外線発光素子12は発光と消光を繰り返しており、ブランキング期間に近赤外線発光素子12の発光が立ち上がり、ブランキング期間に近赤外線発光素子12の発光が立ち下がる。このように撮像制御部21が近赤外線カメラ11および近赤外線発光素子12を制御することで、近赤外線発光素子12が発光している時の発光画像と、近赤外線素子12が消光している時の消光画像とを交互に撮像することができる。
近赤外線発光素子12が発光期間に撮像する場合、近赤外線発光素子12によって照らされた運転者の顔を撮像するため、外光の影響を受けずに、運転者の顔が鮮明に映った画像を撮像することができる。一方、消光画像は、外光によって照らされた運転者の顔を撮像するため、運転者の顔は発光画像よりも不鮮明になるものの、画素の輝度から外光の情報を取得することができる。つまり、上述したように、近赤外線発光素子12が発光している時の発光画像と、近赤外線発光素子12が消光している時の消光画像とを交互に撮像することによって、外光を検出するための照度計などを追加せずに、1台の近赤外線カメラによって、鮮明な運転者の顔の画像と外光の情報を含んだ画像を両方撮像することが可能となる。
 また、撮像制御部21は近赤外線カメラ11の撮像タイミング及び近赤外線発光素子12の発光タイミングを画像取得部22に逐次送信する。
 なお、上記では近赤外線発光素子12の発光タイミングに対して、近赤外線カメラ11の撮像タイミングを同期させるようにしたが、近赤外線カメラ11の撮像タイミングに対して近赤外線発光素子12の発光タイミングを同期させるようにしてもよい。
 画像取得部22は、近赤外線カメラ11が撮像した画像を取得し、撮像制御部21から受信した撮像タイミング及び発光タイミングに基づいて、取得した画像が発光画像か消光画像かを判別する。そして、取得した画像が発光画像の場合は運転者状態判定部23に画像を送信し、取得した画像が消光画像の場合は外光状態判定部24に画像を送信する。
 運転者状態判定部23は、画像取得部22から発光画像を取得した場合、発光画像から運転者の顔を検出し、運転者の眼の開眼度や顔向きといった顔情報を検出する。そして、検出した顔情報に基づいて、運転者が車両の運転に適さない状態か否かを判定する。ここで、運転に適さない状態とは、例えば、居眠り状態や脇見状態、運転不能状態(デッドマン状態)等である。
 運転者状態判定部23は、運転者が運転に適さない状態と判定した場合、制御装置3に対し、運転者が運転に適さない状態である旨の通知を行う。
 外光状態判定部24は、画像取得部22から消光画像を取得した場合、消光画像から運転者の眼周辺の輝度を検出する。例えば、外光状態判定部24は、眼の位置を基準にした予め定められた範囲に含まれる画素の平均輝度を検出する。なお、消光画像から運転者の眼を検出可能な場合は、消光画像から検出した眼の位置に基づいて眼周辺の輝度を検出し、消光画像から運転者の眼を検出不可能な場合、外光状態判定部24は、運転者状態判定部23が発光画像から検出した眼の位置を取得し、発光画像から検出した眼の位置に基づいて眼周辺の輝度を検出する。具体的には、図3を用いて説明する。
図3は、本実施の形態1に係る運転状態監視装置2の眼周辺の輝度を検出する動作を示すフローチャートである。
外光情報取得部24は、消光画像を取得すると、消光画像から運転者の眼を検出可能か判定し(ステップS001)、消光画像から運転者の眼を検出可能な場合(ステップS001:YES)、消光画像から検出した運転者の眼の位置に基づいて眼周辺の輝度を検出し(ステップS002)、処理を終了する。一方、消光画像から運転者の眼を検出できない場合(ステップS001:NO)、外光状態判定部24は、運転者状態判定部23が、発光画像から検出した眼の位置を、運転者状態判定部23から取得し(S003)、取得した発光画像から検出した眼の位置に基づいて眼周辺の輝度を検出する(S004)。そして、処理を終了する。
このように、消光画像から運転者の眼を検出できない場合に、外光状態判定部24は、発光画像から検出した眼の位置に基づいて眼周辺の輝度を検出することで、例えば、強い太陽光が運転者の顔にあたっており、消光画像に映る運転者の顔が白とびしてしまっている状況においても、外光の影響を受けない発光画像から検出される運転者の眼の位置に基づいて運転者の眼周辺の輝度を検出することができる。
なお、上記では消光画像から運転者の眼を検出できない場合に、発光画像から検出した眼の位置に基づいて眼周辺の輝度を検出することとしたが、外光状態判定部24は、常に運転者状態判定部23が、発光画像から検出した眼の位置に基づいて運転者の眼周辺の輝度を検出するようにしてもよい。
そして、運転者の眼周辺の輝度が輝度閾値以上であるかを判定し、運転者の眼周辺の輝度が輝度閾値以上の場合、運転者の眼に外光が照射されている状態であると判定する。
 外光状態判定部24は、運転者の眼に外光が照射されている状態であると判定した場合、制御装置3に対し、運転者の眼に外光が照射されている状態である旨の通知を行う。
 また、外光状態判定部24は、運転者の眼に外光が照射されている状態と判定した場合に、どちらの方向から運転者の顔に外光が照射されているかを検知するようにしてもよい。
運転者の顔にできる影のパターンから外光の照射方向を判定する方法について図4を用いて説明する。
 図4は、本実施の形態1に係る運転者の顔にできる影のパターンから外光の方向を判定する方法を説明するための図である。
 図4Aは、車両前方左上に太陽が存在するときの運転者の顔にできるパターンを表しており、一方図4Bは、車両前方右上に太陽が存在するときの運転者の顔にできる影のパターンである。図4A、4Bからわかるように、運転者の顔の出っ張っている部位、特に鼻付近には外光の照射方向とは反対の方向に影ができる。したがって、外光の照射方向に対する運転者の顔にできる影のパターンを予め記憶させておくことで、消光画像から得られる運転者の顔にできる影のパターンから外光の照射方向を判定することが可能となる。
 なお、外光状態取得部24が外光の照射方向を判定した場合、外光の照射方向を制御装置3に対して出力する。
 制御装置3は、警報制御部31と遮光制御部32と車両制御部33と表示制御部34とを備えている。
 警報制御部31は、運転者状態判定部23から運転者が運転に適さない状態の旨が通知された場合、警報装置4を制御し、運転者に対して警報を鳴らす。
 遮光制御部32は、外光状態判定部24から運転者の眼に外光が照射されている状態である旨が通知された場合、車両に設けられた遮光装置5を制御し、運転者の眼に照射されている外光を遮光する。なお、遮光装置5は例えば、サンバイザーや透過率可変のフロントガラスである。
 また、遮光制御部32は、外光状態取得部から外光の照射方向を取得した場合は、当該外光の照射方向に基づいて遮光装置5を制御することで、より効率的に外光を遮光することが可能となる。
 車両制御部33は、運転者状態判定部23から運転者が運転者に適さない状態の旨が通知された場合または外光状態判定部24から運転者の眼に外光が照射されている状態の旨が通知された場合、自動ブレーキ装置6を制御し、自動ブレーキが通常よりも早めに作動するようにする。
 表示制御部34は、外光状態判定部24から運転者の眼に外光が照射されている状態の旨が通知された場合、ヘッドアップディスプレイ装置7やカーナビゲーション装置8の表示の輝度を明るくし、運転者が眩しいと感じている状態においてもヘッドアップディスプレイ装置7やカーナビゲーション装置8が視認しやすいようにする。なお、輝度を明るくする以外にも、表示の色を視認しやすい色に変更してもよい。
 次に、運転者状態監視装置2のハードウェア構成例を説明する。
 図5A及び図5Bは、運転者状態監視装置2のハードウェア構成例を示す図である。
 運転者状態監視装置2における撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24の各機能は、処理回路によって実現される。即ち、運転者状態監視装置2は上記各機能を実現するための処理回路を備える。当該処理回路は、図5Aに示すように専用のハードウェアである処理回路100aであってもよいし、図5Bに示すようにメモリ200cに格納されているプログラムを実行するプロセッサ100bであってもよい。
 図5Aに示すように、撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24が専用のハードウェアである場合、処理回路100aは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-programmable Gate Array)、またはこれらを組み合わせたものが該当する。撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24の各部の機能をそれぞれ処理回路で実現してもよいし、各部の機能をまとめて1つの処理回路で実現してもよい。
 図5Bに示すように、撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24がプロセッサ100bである場合、各部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ100cに格納される。プロセッサ100bは、メモリ100cに記憶されたプログラムを読み出して実行することにより、撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24の各機能を実現する。即ち、撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24は、プロセッサ100bにより実行されるときに、図3及び後述する図6、図8に示す各ステップが結果的に実行されることになる。また、これらのプログラムは、撮像制御部21、画像取得部22、運転者状態判定部23及び外光状態判定部24の手順または方法をコンピュータに実行させるものであるともいえる。
 ここで、プロセッサ100bとは、例えば、CPU(Central Processing Unit)、処理装置、演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などのことである。メモリ100cは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の不揮発性または揮発性の半導体メモリであってもよいし、ハードディスク、フレキシブルディスク等の磁気ディスクであってもよいし、ミニディスク、CD(Compact Disc)、DVD(Digital Versatile Disc)等の光ディスクであってもよい。
 次に、運転者状態監視装置2の動作について、図6を用いて説明する。
 図6は、実施の形態1に係る運転者状態監視装置2の動作を示すフローチャートである。
 運転者状態監視装置2の電源がONになった場合、撮像制御部21は、近赤外線発光素子12のパルス発光タイミングを決定し、近赤外線発光素子12をパルス発光させる(ステップS101)。そして、撮像制御部21は、近赤外線発光素子12の発光期間および消光期間に近赤外線カメラ11が画像を撮像するように、近赤外線発光素子12の発光タイミングに近赤外線カメラ11の撮像タイミングを同期させ(ステップS102)、撮像タイミング及び発光タイミングを画像取得部22に出力する(ステップS103)。画像取得部22は近赤外線カメラが撮像した画像を取得し(ステップS104)、撮像制御部21から受信した撮像タイミング及び発光タイミングに基づいて取得した画像が発光画像か消光画像かを判定する(ステップS105)。画像取得部22が取得した画像が発光画像であった場合(ステップS105:YES)、発光画像を運転者状態判定部23に送信し、運転者状態判定部23は送信された発光画像に基づいて運転者が運転に適さない状態か否かを判定する(ステップS106)。そして、ステップS106での判定結果を制御装置3に出力し(S107)、ステップS104の処理に戻る。一方、画像取得部22が取得した画像が消光画像であった場合(ステップS105:NO)、消光画像を外光状態判定部24に送信し、外光状態判定部24は送信された消光画像に基づいて運転者の眼に外光が照射されている状態か否かを判定する(ステップS108)。そして、ステップS106での判定結果を制御装置3に出力し(S107)、ステップS104の処理に戻る。
 以上のように、実施の形態1によれば、車両の運転者の顔に向けて近赤外線を照射する近赤外発光素子および運転者の顔を撮像する近赤外線カメラを制御し、近赤外線発光素子をパルス発光させるとともに、近赤外線発光素子の発光期間および消光期間と近赤外線カメラの撮像タイミングとを同期させる撮像制御部と、発光期間に近赤外線カメラが撮像した発光画像および消光期間に近赤外線カメラが撮像した消光画像を取得する画像取得部と、発光画像から運転者の顔情報を検出し、顔情報に基づいて運転者の状態を判定する運転者状態判定部と、消光画像から運転者の眼周辺の輝度を検出し、輝度が輝度閾値以上の場合、運転者の眼に外光が照射されている状態と判定する外光状態判定部と、を備える構成としたので、近赤外線カメラで運転者の顔を鮮明に撮像しつつ、外光の情報を取得することができる。
実施の形態2
 図7は、本実施の形態2に係る運転者状態監視装置2Bの構成を示すブロック図である。
 本実施の形態2に係る運転者状態監視装置2Bは、運転者が通常よりも眼を細めているときに、運転者が眠たくて眼を細めているのか、外光が眩しくて眼を細めているのかを判別するようにした。
 図8は、本実施の形態2に係る運転者状態監視装置2Bにおける運転者状態判定部23Bの動作を示すフローチャートである。
 運転者状態判定部23Bは、画像取得部22から発光画像を取得した場合、取得した発光画像から逐次運転者の眼の開眼度を検出する(ステップS201)。そして、開眼度が閾値以下の状態が予め定められた時間継続したか否かを判定し(ステップS202)、開眼度が開眼度閾値以下の状態が予め定められた時間継続したと判定した場合(ステップS202:YES)、外光状態判定部24Bは、消光画像から運転者の眼周辺の輝度を検出する(ステップS203)。一方、開眼度が開眼度閾値以下の状態が予め定められた時間継続しなかった場合(ステップ202:NO)、ステップ201の処理に戻る。外光状態判定部24Bは、ステップS203で検出した運転者の眼周辺の輝度が輝度閾値以下か否かを判定し(ステップS204)、運転者の眼周辺の輝度が輝度閾値以下の場合(ステップS204:YES)、運転者が居眠り状態であると判定する(ステップS205)。一方、運転者の眼周辺の輝度が輝度閾値より高い場合(ステップS204:NO)、運転者が外光を眩しいと感じている状態であると判定する(ステップS206)。そして、処理を終了する。
 以上のように、実施の形態2の運転者状態判定部23Bは、開眼度が閾値以下の状態が予め定められた時間継続した場合に、外光状態判定部24Bが検出する運転者の眼周辺の輝度が輝度閾値以下か否かを判定し、運転者の眼周辺の輝度が輝度閾値以下の場合は運転者が居眠り状態と判定し、運転者の眼周辺の輝度が輝度閾値より高い場合は運転者が外光を眩しいと感じている状態であると判定する。これによって、運転者が通常よりも眼を細めているときに、運転者が眠たくて眼を細めているのか、外光が眩しくて眼を細めているのかを判別するようにした。
1 撮像装置、2、2A 運転者状態監視装置 、3 制御装置、4 警報装置、5 遮光装置、6 自動ブレーキ装置、7 ヘッドアップディスプレイ装置、8 カーナビゲーション装置、11 近赤外線カメラ、12 近赤外線発光素子、21 撮像制御部、22 画像取得部、23、23B 運転者状態判定部、24、24B 外光状態判定部、31 警報制御部、32 遮光制御部、33 車両制御部、34 表示制御部、100a 処理回路、100b プロセッサ、100c メモリ 

Claims (7)

  1.  車両の運転者の顔に向けて近赤外線を照射する近赤外発光素子および前記運転者の顔を撮像する近赤外線カメラを制御し、前記近赤外線発光素子をパルス発光させるとともに、前記近赤外線発光素子の発光期間および消光期間と前記近赤外線カメラの撮像タイミングとを同期させる撮像制御部と、
     前記発光期間に前記近赤外線カメラが撮像した発光画像および前記消光期間に前記近赤外線カメラが撮像した消光画像を取得する画像取得部と、
     前記発光画像から前記運転者の顔情報を検出し、前記顔情報に基づいて前記運転者の状態を判定する運転者状態判定部と、
    前記消光画像から前記運転者の眼周辺の輝度を検出し、前記輝度が輝度閾値以上の場合、前記運転者の眼に外光が照射されている状態と判定する外光状態判定部と、
    を備える運転者状態監視装置。
  2.  前記運転者状態判定部は、前記発光画像から検出された前記運転者の眼の開眼度が開眼度閾値以下の状態が、予め定められた時間以上継続した場合、前記外光状態判定部が検出した前記運転者の眼周辺の輝度が輝度閾値以下であれば前記運転者が居眠り状態と判定する請求項1記載の運転者状態監視装置。
  3.  前記運転者状態判定部は、前記発光画像から前記運転者の眼の位置を検出し、
     前記外光状態判定部は、前記運転者状態判定部が検出した前記運転者の眼の位置に基づいて前記運転者の眼周辺の輝度を検出する請求項1記載の運転者状態監視装置。
  4.  前記外光状態判定部は、前記消光画像から前記運転者の眼の位置を検出できる場合は、前記消光画像から検出された眼の位置に基づいて記運転者の眼周辺の輝度を検出し、前記消光画像から前記運転者の眼の位置を検出できない場合、前記運転者状態判定部が検出した前記運転者の眼の位置に基づいて前記運転者の眼周辺の輝度を検出する請求項3記載の運転者状態監視装置。
  5.  前記外光状態判定部は、前記消光画像から前記運転者の顔の輝度を検出し、前記運転者の顔の輝度に基づいて外光の照射方向を判定する請求項1記載の運転者状態監視装置。
  6.  前記運転者の眼に外光が照射されている状態と判定した場合、外光を遮光するように前記車両に備えられた遮光装置を制御する遮光制御部を更に備え、前記遮光制御部は、前記外光状態判定部が判定した外光の照射方向に応じて遮光装置を制御する請求項5記載の運転者状態監視装置。
  7.  車両の運転者の顔に向けて近赤外線を照射する近赤外発光素子および前記運転者の顔を撮像する近赤外線カメラを制御し、前記近赤外線発光素子をパルス発光させるとともに、前記近赤外線発光素子の発光期間および消光期間に同期して前記近赤外線カメラを撮像させるステップと、
     前記発光期間に前記近赤外線カメラが撮像した発光画像および前記消光期間に前記近赤外線カメラが撮像した消光画像を取得するステップと、
     前記発光画像から前記運転者の顔情報を検出し、前記顔情報に基づいて前記運転者の状態を判定するステップと、
    前記消光画像から前記運転者の眼周辺の輝度を検出し、前記輝度が輝度閾値以上の場合、前記運転者の眼に外光が照射されている状態と判定するステップと、
    を備える運転者状態監視方法。
PCT/JP2019/011119 2019-03-18 2019-03-18 運転者状態監視装置及び運転者状態監視方法 WO2020188689A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/011119 WO2020188689A1 (ja) 2019-03-18 2019-03-18 運転者状態監視装置及び運転者状態監視方法
JP2021506843A JP7158561B2 (ja) 2019-03-18 2019-03-18 運転者状態監視装置及び運転者状態監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011119 WO2020188689A1 (ja) 2019-03-18 2019-03-18 運転者状態監視装置及び運転者状態監視方法

Publications (1)

Publication Number Publication Date
WO2020188689A1 true WO2020188689A1 (ja) 2020-09-24

Family

ID=72520598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011119 WO2020188689A1 (ja) 2019-03-18 2019-03-18 運転者状態監視装置及び運転者状態監視方法

Country Status (2)

Country Link
JP (1) JP7158561B2 (ja)
WO (1) WO2020188689A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251926A (ja) * 2005-03-08 2006-09-21 Nissan Motor Co Ltd 直射光検出装置
JP2017143889A (ja) * 2016-02-15 2017-08-24 ルネサスエレクトロニクス株式会社 開眼度検出システム、居眠り検知システム、自動シャッタシステム、開眼度検出方法及び開眼度検出プログラム
JP2017161965A (ja) * 2016-03-07 2017-09-14 オムロンオートモーティブエレクトロニクス株式会社 顔画像処理装置
JP2017219885A (ja) * 2016-06-02 2017-12-14 株式会社Subaru 乗員状態監視装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251926A (ja) * 2005-03-08 2006-09-21 Nissan Motor Co Ltd 直射光検出装置
JP2017143889A (ja) * 2016-02-15 2017-08-24 ルネサスエレクトロニクス株式会社 開眼度検出システム、居眠り検知システム、自動シャッタシステム、開眼度検出方法及び開眼度検出プログラム
JP2017161965A (ja) * 2016-03-07 2017-09-14 オムロンオートモーティブエレクトロニクス株式会社 顔画像処理装置
JP2017219885A (ja) * 2016-06-02 2017-12-14 株式会社Subaru 乗員状態監視装置

Also Published As

Publication number Publication date
JP7158561B2 (ja) 2022-10-21
JPWO2020188689A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
JP4853389B2 (ja) 顔画像撮像装置
JP5212927B2 (ja) 顔撮影システム
JP6168870B2 (ja) 撮像装置、カメラシステム及び制御方法
JP2008276328A (ja) 顔画像撮像装置
JP2007174566A (ja) 複眼撮像装置
TWI801637B (zh) 用於相機之紅外光預閃光
JP4311435B2 (ja) 撮像装置、および撮像装置制御方法、並びにコンピュータ・プログラム
JP4927647B2 (ja) 車両周辺監視装置
JP2014155033A (ja) 露出設定装置、発光強度設定装置、制御方法、プログラム、及び記憶媒体
JPWO2007102195A1 (ja) 撮影装置、及び撮影方法
CN111398975B (zh) 主动传感器、物体识别系统、车辆、车辆用灯具
WO2019215879A1 (ja) 乗員監視装置及び乗員監視方法
WO2020188689A1 (ja) 運転者状態監視装置及び運転者状態監視方法
CN109561817B (zh) 电子内窥镜系统
US10829042B2 (en) Imaging apparatus with image sensor for detecting light in an atmospheric peak and vehicle having same
JP2006252363A (ja) 車両周囲物体検出装置、および車両周囲物体検出方法
CN213518287U (zh) 识别装置、电子设备、智能门锁及智能门
JP3114103B2 (ja) 電子カメラ
JP5206190B2 (ja) ドライバー監視装置
JP2008193504A (ja) 暗視装置
JP6541510B2 (ja) 撮像装置、その制御方法およびプログラム
JP2014082585A (ja) 状態監視装置及び状態監視プログラム
JP2015148565A (ja) 情報取得装置および物体検出装置
JP5670509B2 (ja) 開閉部用の検出装置
JP6123137B2 (ja) カメラ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920124

Country of ref document: EP

Kind code of ref document: A1