WO2020186958A1 - 可重构光分插复用器、光网络及光信号处理方法 - Google Patents

可重构光分插复用器、光网络及光信号处理方法 Download PDF

Info

Publication number
WO2020186958A1
WO2020186958A1 PCT/CN2020/076074 CN2020076074W WO2020186958A1 WO 2020186958 A1 WO2020186958 A1 WO 2020186958A1 CN 2020076074 W CN2020076074 W CN 2020076074W WO 2020186958 A1 WO2020186958 A1 WO 2020186958A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
wavelength
port
filter
Prior art date
Application number
PCT/CN2020/076074
Other languages
English (en)
French (fr)
Inventor
陈明刚
李方超
王宇
李翔
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to JP2021539986A priority Critical patent/JP2022517966A/ja
Priority to EP20772828.8A priority patent/EP3944529A4/en
Priority to KR1020217014158A priority patent/KR102378490B1/ko
Publication of WO2020186958A1 publication Critical patent/WO2020186958A1/zh
Priority to US17/322,695 priority patent/US11909514B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer

Definitions

  • This application relates to the field of optical communication technology, and in particular to a reconfigurable optical add-drop multiplexer (ROADM), optical network, and optical signal processing method.
  • ROADM reconfigurable optical add-drop multiplexer
  • CDC-ROADM can complete optical wavelength routing between nodes and the landing of wavelength-independent, direction-independent, and non-blocking optical signals.
  • CDC-ROADM in each node implements optical signal landing and loading through M:N devices.
  • M:N devices different M ports in M:N devices correspond to different optical signal directions, and N ports are connected to optical conversion units (Optical Transform Unit (OTU) is connected.
  • OTU optical Transform Unit
  • M ⁇ N the optical signal entering from the M port is output from any one or more of the N ports; while in the optical signal loading direction (N ⁇ M), the optical signal entering from any N port
  • the signals are combined at any M port and output.
  • a 1:N optical splitter needs to be set at the M port of the M:N device, and an additional optical amplifier array needs to be introduced To compensate for the path difference loss caused by the optical splitter, resulting in a complex structure of CDC-RDADM.
  • the embodiments of the present application provide a reconfigurable optical add/drop multiplexer, an optical network, and an optical signal processing method.
  • a reconfigurable optical add-drop multiplexer, the reconfigurable optical add-drop multiplexer includes:
  • At least two optical signal processing devices and at least one optical cross-connect (OXC) device where different optical signal processing devices correspond to different optical directions;
  • Each of the optical signal processing devices includes a wavelength-selective switch (wavelength-selective switch, wss) and a filter, and the wavelength-selective switch is used to perform wavelength allocation on the input dense wavelength division multiplexing optical signal and then input the filter
  • the filter is used to separate the optical signal output by the wavelength selective switch into a single-channel optical signal, and the filter is used to multiplex multiple single-channel optical signals output by the optical cross-connect device and input the A wavelength selective switch, the wavelength selective switch is used to combine the wavelength of the optical signal output by the filter to output; and
  • the optical cross-connect device includes N upper ports and N lower ports.
  • the optical cross-connect device is connected to the filter in each of the optical signal processing devices through the upper port, and the lower port is connected to the optical signal processing device.
  • the conversion unit is connected, and the optical cross-connect device is used for landing the single-channel optical signal output by the filter, and input the single-channel optical signal output by the optical conversion unit into the filter through the upper port Device.
  • An optical network the optical network includes: at least two optical network nodes;
  • Each of the optical network nodes is provided with a reconfigurable optical add/drop multiplexer as described in the foregoing aspect, and the optical network nodes are connected by optical fibers.
  • An optical signal processing method is executed by a reconfigurable optical add-drop multiplexer.
  • the reconfigurable optical add-drop multiplexer includes at least two optical signal processing devices and at least one optical cross-connect device.
  • the optical signal processing device corresponds to different light directions, and the method includes:
  • the wavelength selective switch in the optical signal processing device receives the input dense wavelength division multiplexing optical signal
  • the wavelength selective switch performs wavelength allocation on the dense wavelength division multiplexing optical signal, and inputs the wavelength allocated optical signal to a filter in the optical signal processing device;
  • the filter separates the optical signal after the wavelength allocation into a single-channel optical signal, and inputs the single-channel optical signal to the upper port of the optical cross-connect device;
  • the optical cross-connect device grounds the single-channel optical signal through the lower port.
  • An optical signal processing method is executed by a reconfigurable optical add-drop multiplexer.
  • the reconfigurable optical add-drop multiplexer includes at least two optical signal processing devices and at least one optical cross-connect device.
  • the optical signal processing device corresponds to different light directions, and the method includes:
  • the optical cross-connect device receives the single-channel optical signal output by the optical conversion unit through the lower port;
  • the optical cross-connect device inputs the single-channel optical signal to the filter in the optical signal processing device through the upper port;
  • the filter multiplexes more than one input single-channel optical signal, and inputs the multiplexed optical signal into the wavelength selection switch in the optical signal processing device;
  • the wavelength selective switch performs wavelength combination on the multiplexed optical signal before outputting.
  • Figure 1 shows an exemplary topological structure diagram of an optical network
  • Figure 2 is a schematic diagram of the structure of CDC-ROADM in related technologies
  • FIG. 3 shows a schematic structural diagram of a reconfigurable optical add/drop multiplexer provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a reconfigurable optical add/drop multiplexer provided by another embodiment of the present application
  • Fig. 5 is a schematic diagram of the connection between the wavelength selective switches corresponding to each light direction in Fig. 4;
  • FIG. 6 shows a schematic structural diagram of a reconfigurable optical add/drop multiplexer provided by another embodiment of the present application.
  • FIG. 7 shows a flowchart of an optical signal processing method provided by an embodiment
  • FIG. 8 shows a flowchart of an optical signal processing method provided by another embodiment
  • FIG. 9 shows a schematic structural diagram of an optical network provided by an embodiment of the present application.
  • DWDM Dense Wavelength Division Multiplexing
  • Reconfigurable optical add/drop multiplexer In DWDM system, a device used to complete dynamic wavelength (optical signal) landing and wavelength routing.
  • Single-channel optical signal When the channel is a single-wavelength channel, the single-channel optical signal is a single-wavelength optical signal; when the access is a superchannel composed of multiple wavelengths, the single-channel optical signal is a multi-wavelength optical signal.
  • FIG. 1 shows an exemplary topological structure diagram of an optical network.
  • the optical network includes five optical network nodes a, b, c, d, and e.
  • each optical network node is connected to each other through a point-to-point system.
  • optical signal routing cannot be realized between optical network nodes, and it is also impossible to realize optical signal landing in any direction and any wavelength.
  • CDC-ROADM needs to be set up in each optical network node.
  • CDC-ROADM In the CDC-ROADM shown in Figure 2, two wavelength selective switches are used in each optical direction to perform wavelength allocation for the optical signals in the ingress direction and the egress direction, and the M in CDC-ROADM
  • the :N device is used to achieve the landing function of optical signals in different light directions.
  • the working principle of the M:N device is: in the M ⁇ N direction, the DWDM optical signal entering from the M side port is output through any one or more of the N side ports; in the N ⁇ M direction, from any N side The DWDM optical signal entering the port can be combined to any M-side port and then output.
  • the wavelength group entering the M-side port of the M:N device (that is, the combination of optical signals of different wavelengths) can be controlled through the wavelength selection switch in each optical direction, and the M: The N device allocates the wavelength group received by the M-side port to the N-side port, thereby receiving single-wavelength optical signals through the coherent receiving function of the optical transformation unit (OTU) connected to the N-side port, achieving wavelength independence and direction Irrelevant, non-blocking optical signal landing.
  • OFT optical transformation unit
  • each M-side port of the M:N device needs to add a 1 ⁇ N optical splitter, (to achieve a single M-side port to each N-side port ), correspondingly, each N-side port of the M:N device selects one of the M channels as an optical signal output through an M ⁇ 1 optical switch.
  • each N-side port of the M:N device needs to be equipped with a 1 ⁇ M optical switch (used to select which M-side port the optical signal is output to ), and an N ⁇ 1 coupling device is configured at the M-side port, so that the N ⁇ 1 coupling device is used to realize the optical signal coupling of different N-side ports.
  • the path difference loss in the M ⁇ N direction is proportional to the number of ports of the splitter, that is, the more the number of ports of the splitter, the greater the path difference loss.
  • an additional optical amplifier array can be installed in the M:N device to compensate for the optical signal after the split, or multiple M:N devices can be used to achieve the optical signal landing (that is, using multiple ports Fewer splitters).
  • an additional optical amplifier array will increase the complexity of the CDC-ROADM structure, thereby increasing the failure rate of the entire system; the use of multiple M:N devices will increase the number of ports occupied by the wavelength selective switch in the optical direction, and each occupied A wavelength selective switch port will reduce an expandable light direction, which is not conducive to the expansion of subsequent systems.
  • the corresponding optical signal processing device is set for each optical direction, so that the wavelength selection switch and filter in the optical processing device are used to transfer the input Dense wavelength division multiplexing optical signals are separated into single-channel optical signals, and optical cross-connect devices are used to land single-wavelength optical signals or multi-wavelength optical signals output by optical signal processing devices to achieve wavelength-independent, direction-independent, and non-blocking Optical signal landing function; because the reconfigurable optical add/drop multiplexer in the embodiment of this application does not use a splitter, it can avoid the path difference caused by the splitter; at the same time, a single optical cross-connect device is used.
  • FIG. 3 shows a schematic structural diagram of a reconfigurable optical add/drop multiplexer provided by an embodiment of the present application.
  • the reconfigurable optical add/drop multiplexer includes: at least two optical signal processing devices 31 and at least one optical cross-connect device 32.
  • the light direction is used to indicate the path between the optical network nodes in the optical network.
  • the optical network node a corresponds to four optical directions, where the first optical direction refers to the path between the optical network node a and the optical network node b, and the second optical direction refers to the optical network node.
  • the path between a and the optical network node c, the optical direction refers to the path between the optical network node a and the optical network node d, and the optical direction refers to the path between the optical network node a and the optical network node e.
  • different optical signal processors 31 correspond to different light directions, that is, different optical signal processors 31 are used to process optical signals in different light directions.
  • the reconfigurable optical add/drop multiplexer shown in FIG. 3 is applied to the optical network node a shown in FIG. 1, and the first optical signal processing device 31 is used to process the optical network node a and the optical network node a b.
  • the second optical signal processing device 31 is used to process the optical signal between the optical network node a and the optical network node c, and the second optical signal processing device 31 is used to process the optical network node a and the optical network node c.
  • the second optical signal processing device 31 is used to process the optical signal between the optical network node a and the optical network node e.
  • the embodiment of the present application only takes the four optical directions corresponding to the optical network node as an example for schematic description, but does not constitute a limitation on this.
  • each optical direction of an optical network node may include an ingress direction and an egress direction, where the ingress direction is the incident optical signal of the optical network node.
  • the direction that is, the downstream direction of the optical signal
  • the egress direction is the output direction of the optical signal of the optical network node (that is, the upstream direction of the optical signal).
  • the first light direction of the optical network node a includes the egress direction of a ⁇ b and the ingress direction of b ⁇ a.
  • each optical signal processing device 31 includes a wavelength selection switch 311 and a filter 312.
  • the wavelength selective switch 311 is used to perform wavelength allocation on the input dense wavelength division multiplexed optical signal and then input to the filter 312, and the filter 312 is used for the output of the wavelength selective switch 311
  • the optical signal is separated into a single-channel optical signal.
  • the filter 312 is used to multiplex multiple single-channel optical signals output by the optical cross-connect device 32 and then input the wavelength selection switch 311.
  • the wavelength selection switch 311 is used to perform the optical signal output by the filter 312. Output after the wavelength is combined.
  • the optical cross-connect device includes N upper ports and N lower ports, and the upper port and the lower port can be configured to achieve one-to-one communication between any ports (the upper ports cannot be connected one-to-one, and the lower ports One-to-one communication is not possible), and the optical cross-connect device is connected to the filters in each light direction through N upper ports, and connected to the optical conversion unit through the lower ports.
  • the filters 312 in the first light direction, the second light direction, the third light direction, and the fourth light direction are all connected to the upper port of the optical cross-connect device 32, and the optical cross-connect The upper port of the device 32 is connected to the optical conversion unit 33.
  • the single-channel optical signal output by the filter is input to the upper port of the optical cross-connect device, and the optical cross-connect device outputs the signal to the connected optical conversion unit through any lower port.
  • Single-channel optical signal realizing optical signal landing.
  • any lower port can be connected to any one of the upper ports through control (for example, a configuration command is sent to the optical cross-connect device, and the optical cross-connect device connects the lower port with the designated upper port according to the configuration command ), and the upper port is connected to filters corresponding to different optical directions. Therefore, when the lower port receives the single-channel optical signal output by the optical conversion unit, the single-channel optical signal can be transmitted to any one of the upper ports, so that the single The channel optical signal enters any optical direction to achieve direction-independent optical signal landing; at the same time, since a single-channel optical signal can enter any filter channel in any direction, it can achieve wavelength-independent optical signal landing.
  • the lower port can form a 1:1 full mapping with the upper port, that is, there will be no conflicts between different channels in different directions, thereby realizing non-blocking optical The signal landed.
  • the reconfigurable optical add/drop multiplexer provided by the embodiments of the present application is provided with a corresponding optical signal processing device for each optical direction, thereby passing the wavelength selection switch and filter in the optical processing device, Separate the input DWDM optical signal into a single-channel optical signal, and use an optical cross-connect device to land the single-channel optical signal output by the optical signal processing device to achieve wavelength-independent, direction-independent, and non-blocking optical signals.
  • Signal landing function the reconfigurable optical add/drop multiplexer provided in the embodiment of the application does not need to be equipped with a splitter, and no additional optical amplifier array is required. Under the condition of ensuring path loss, the reconfigurable optical add/drop is reduced The structural complexity of the multiplexer.
  • the wavelength separation of the DWDM optical signal in each optical direction is realized, and other wavelengths that cause interference to the channel can be filtered out, making the reconfigurable optical add/drop multiplexer It can support the landing of optical signals of incoherent wavelengths.
  • each wavelength selective switch includes a first wavelength selective switch and a second wavelength selective switch. Switches are used to process optical signals in the incoming and outgoing directions respectively.
  • FIG. 4 shows a schematic structural diagram of a reconfigurable optical add/drop multiplexer provided by another embodiment of the present application.
  • each light direction includes a first wavelength selective switch 411 and a second wavelength selective switch 412.
  • the first wavelength selective switch 411 includes a first input port 411a and a plurality of first output ports 411b.
  • the first wavelength selective switch 411 is used to receive the DWDM optical signal input in the incoming direction through the first input port 411a, and follow the wavelength The DWDM optical signal is distributed to different first output ports 411b.
  • the second wavelength selective switch 412 includes a second output port 412a and a plurality of second input ports 412b.
  • the second wavelength selective switch 412 is used to combine the optical signals input from the second input ports 412b into DWDM optical signals and pass the second
  • the output port 412a outputs the DWDM optical signal in the outgoing direction, thereby transmitting the DWDM optical signal to the optical network node corresponding to the optical direction.
  • the dense wavelength division multiplexing optical signal received by the first wavelength selective switch 411 and the dense wavelength division multiplexing optical signal output by the second wavelength selective switch 412 are the same type of optical signals, and the content included in the optical signals may be different .
  • the optical signal assigned to the first output port by the first wavelength selective switch is a single-channel optical signal
  • the single-channel optical signal is a single-wavelength optical signal, or a multi-wavelength optical signal composed of multiple wavelengths (superchannel ).
  • the reconfigurable optical add/drop multiplexer corresponds to m optical directions
  • m- in the first wavelength selective switch in each optical direction One first output port is respectively connected to one of the second input ports of the second wavelength selection switch in other light directions one to one.
  • a first output port of the first wavelength selective switch in the first optical direction is One of the second input ports of the second wavelength selective switch in the direction of the light is connected; the other first output port of the first wavelength selective switch in the first light direction is connected to the second of the second wavelength selective switch in the third light direction
  • the input port is connected; another first output port of the first wavelength selective switch in the first light direction is connected to a second input port of the second wavelength selective switch in the fourth light direction, that is, the first output port in the first light direction
  • the three first output ports of the wavelength selective switch are connected to the second input ports of the second wavelength selective switch in other light directions.
  • the three first output ports 411b of the first wavelength selective switch 411 and the second input port 412b of the second wavelength selective switch 412 in the second light direction are respectively
  • the second input port 412b of the second wavelength selective switch 412 in the third light direction and the second input port 412b of the second wavelength selective switch 412 in the fourth light direction are connected.
  • the optical signal separated from the first optical direction can be routed to the second, third, and fourth optical directions, realizing wavelength routing between different optical directions.
  • the filter 42 in each optical direction includes: a downstream input port 421a, a plurality of downstream output ports 421b corresponding to the downstream input port 421a, and an upstream output port 422a, and A plurality of upstream input ports 422b corresponding to the upstream output port 422a.
  • the downstream input port 421a is connected to the first output port 411b of the first wavelength selective switch 411, and the downstream output port 421b is connected to the upper port of the optical cross-connect device 43.
  • the filter 42 separates (the first wavelength selective switch 411) the optical signal (the DWDM optical signal allocated according to the wavelength) output from the first output port 411b into multiple single-channel optical signals, And output to the upper port of the optical cross-connect device 43 through a plurality of downstream output ports 421b.
  • the upstream output port 422a is connected to the second input port 412b of the second wavelength selective switch 412, and the upstream input port 422b is connected to the upper port of the optical cross-connect device 43.
  • the filter 42 multiplexes the single-channel optical signal input from the multiple upstream input ports 422b to the same optical channel (that is, merges into the same optical fiber), and then passes the upstream output port 422b to the first optical channel.
  • the two input ports 412b output the multiplexed optical signal.
  • the second wavelength selective switch can combine the optical signals of each light direction into DWDM Output after optical signal.
  • the filter can be a fixed filter or a tunable filter.
  • a fixed filter the wavelength of each port of the filter is fixed, and when a tunable filter is used, the wavelength of each port of the filter is fixed.
  • the wavelength is configurable.
  • each upstream input port of the filter is paired with the upper port of the optical cross-connect device One connection, so as to transmit the separated single-channel optical signal to the optical cross-connect device; each downstream output port of the filter is connected to the upper port of the optical cross-connect device one-to-one, so that the receiving optical conversion unit passes through the optical cross-connect device Single-channel optical signal input from the lower port.
  • the number of ports of the optical cross-connect device selected in the reconfigurable optical add/drop multiplexer is related to the number of light directions and the number of wavelengths corresponding to each light direction.
  • the reconfigurable optical add/drop multiplexer includes an optical cross-connect device, and the optical direction is m, and each optical direction corresponds to an optical signal of n wavelengths, the optical cross-connect device The upper port and the lower port are m ⁇ n.
  • the first wavelength selective switch includes at least m first output ports
  • the second wavelength selective switch includes at least m second input ports
  • the filter includes at least n upstream input ports and at least n downstream output ports .
  • a 2560:2560 optical cross-connect device is installed in the reconfigurable optical add/drop multiplexer to realize the connection of optical signals with 64 wavelengths in each optical direction in 20 optical directions. Into.
  • the use of N:N optical cross-connect devices can significantly increase the number of landing ports and realize the use of a single device to complete multi-wavelength landing; at the same time, the use of a single optical cross-connect device can reduce the need for wavelength selective switching in each optical direction.
  • more ports of the wavelength selective switch can be used to implement routing in different optical directions, which is beneficial to improve the scalability of the system.
  • i optical cross-connect devices are provided in the reconfigurable optical add-drop multiplexer.
  • the upper port of each optical cross-connect device is connected one-to-one with the target number of upstream input ports in the filter, wherein the target number of upstream input ports account for 1/i of the total number of upstream input ports in the filter; and, the upper port of each optical cross-connect device is connected to the target number of downstream output ports in the filter one-to-one, where the target number of output ports account for the first filter 1/i of the total output port, where the target number of downstream output ports account for 1/i of the total number of downstream output ports in the filter.
  • the reconfigurable optical add/drop multiplexer when they are the first optical cross-connect device 61 and the second optical cross-connect device.
  • the first optical cross-connect device 61 At 62 o'clock, half of the upstream input ports of the filter 61 are connected to the upper port of the first optical cross-connect device 61 in each optical direction, and the other half of the upstream input ports are connected to the upper port of the second optical cross-connect device 62; in each optical direction
  • Half of the downstream output ports of the filter 61 are connected to the upper part of the first optical cross-connect device 61, and the other half of the downstream output ports are connected to the upper port of the second optical cross-connect device 62.
  • each optical cross-connect device when i optical cross-connect devices are provided in the reconfigurable optical add/drop multiplexer, and the optical direction is m, and each optical direction corresponds to an optical signal of 64 wavelengths, each optical cross-connect device Both the upper port and the lower port are m ⁇ n/i.
  • two 1280:1280 optical signals can be set in the reconfigurable optical add/drop multiplexer.
  • Cross-connect devices or, set up four 640:640 optical cross-connect devices in the reconfigurable optical add/drop multiplexer.
  • the system can complete the wavelength connection through the optical cross-connect devices without optical failure.
  • the problem of the failure of the optical cross-connect device causing the entire system to be unavailable when only a single optical cross-connect device is installed.
  • an exemplary embodiment is used to describe the processing procedure of the upstream optical signal.
  • FIG. 7 shows a flowchart of an optical signal processing method provided by an embodiment.
  • the method is used in the reconfigurable optical add/drop multiplexer provided in the foregoing embodiments.
  • the method includes the following steps.
  • Step S701 The wavelength selection switch in the optical signal processing device receives the input DWDM optical signal.
  • the reconfigurable optical add/drop multiplexers of different optical network nodes are connected by optical fibers.
  • the current optical network node grounds the optical signal transmitted by other optical network nodes (that is, the optical signal downstream process)
  • the first pass The wavelength selective switch in the optical direction receives the optical signal transmitted by the optical network node, and the optical signal may be a DWDM optical signal.
  • the wavelength selective switch includes a first wavelength selective switch for processing incoming optical signals, and the first wavelength selective switch includes a first input port and a plurality of first output ports.
  • the wavelength selective switch receives the DWDM optical signal input in the incoming direction through the first input port.
  • Step S702 The wavelength selective switch performs wavelength allocation on the dense wavelength division multiplexing optical signal, and inputs the optical signal after the wavelength allocation to the filter in the optical signal processing device.
  • the first wavelength selective switch distributes the received DWDM optical signals to different first output ports according to wavelengths, so that the optical signals are input to the filter through the first output port in.
  • the first wavelength selective switch may also transmit the wavelength-allocated optical signal to the second wavelength selective switch corresponding to other optical directions through the first output port, so as to realize optical signal routing.
  • step S703 the filter separates the optical signal after the wavelength allocation into a single-channel optical signal, and inputs the single-channel optical signal to the upper port of the optical cross-connect device.
  • the filter in the downstream direction, includes a downstream input port and a plurality of downstream output ports corresponding to the downstream input port.
  • the filter receives the wavelength-allocated light output by the wavelength selection switch through the downstream input port.
  • the signal is separated into multiple single-channel optical signals (single-wavelength optical signals or multi-wavelength optical signals), so that the single-channel optical signals of the division are input into the upper port of the optical cross-connect device through multiple downstream output ports.
  • Step S704 The optical cross-connect device grounds the single-channel optical signal through the lower port.
  • the optical cross-connect device can receive single-channel optical signals from multiple optical directions, and further control the connection between the upper port and the lower port.
  • the connection of different light directions realizes the landing of light signals.
  • FIG. 8 shows a flowchart of an optical signal processing method provided in another embodiment.
  • the method is used in the reconfigurable optical add/drop multiplexer provided in the foregoing embodiments.
  • the method includes the following steps.
  • Step S801 The optical cross-connect device receives the single-channel optical signal output by the optical conversion unit through the lower port.
  • the lower port of the optical cross-connect device is connected to the optical conversion unit of the optical network node.
  • the optical signal is input to the lower port of the optical cross-connect device through the optical conversion unit.
  • Channel optical signal is input to the lower port of the optical cross-connect device through the optical conversion unit.
  • Step S802 the optical cross-connect device inputs a single-channel optical signal to the filter in the optical signal processing device through the upper port.
  • the optical cross-connect device can communicate with any upper port through the lower port, the optical cross-connect device can input the single-channel optical signal into the filter of any optical direction, so that the single-channel optical signal can be transmitted to any Light direction.
  • Step S803 The filter multiplexes the input multiple single-channel optical signals, and inputs the multiplexed optical signals into the wavelength selection switch in the optical signal processing device.
  • the wavelength selection switch includes a second wavelength selection switch for processing the outgoing direction optical signal
  • the filter includes a plurality of uplink input ports and uplink output ports corresponding to the plurality of uplink input ports
  • the upstream input terminal is connected with the upper port of the optical cross-connect device
  • the upstream output terminal is connected with the second input port of the second wavelength selective switch.
  • the filter multiplexes single-channel optical signals input from multiple uplink input ports to the same optical channel, and outputs the multiplexed optical signal to the second input port of the second wavelength selection switch through the uplink output port.
  • step S804 the wavelength selective switch performs wavelength combination on the multiplexed optical signal and outputs it.
  • the second wavelength selective switch when the second wavelength selective switch is connected to the first wavelength selective switch in other optical directions to implement wavelength routing, the second wavelength selective switch responds to optical signals in the optical direction and other optical directions. Perform wavelength combination (received through multiple second input ports) to output the combined DWDM optical signal.
  • the combined optical signal is transmitted through the optical fiber to the optical network node in the optical direction, and the optical network node uses the reconfigurable optical add/drop multiplexer to land the optical signal using the optical processing method shown in Figure 7 .
  • FIG. 9 shows a schematic structural diagram of an optical network provided by an embodiment.
  • the optical network includes at least two optical network nodes.
  • the optical network includes a first optical network node 91, a second optical network node 92, a third optical network node 93, a fourth optical network node 94, and a fifth optical network node 95 as an example for description.
  • each optical network node in the optical network is provided with a reconfigurable optical add-drop multiplexer, and the reconfigurable optical add-drop multiplexer can adopt any of the reconfigurable optical add-drop multiplexers provided in the above embodiments. Add/drop multiplexer.
  • the optical network nodes are connected by reconfigurable optical add/drop multiplexers and optical fibers between the optical network nodes.
  • the optical signal output by the optical conversion unit in the optical network node can be transmitted to any optical network node in the optical network through the reconfigurable optical add/drop multiplexer.
  • the optical network node can be reconfigured
  • the optical add/drop multiplexer can input the optical signals from various optical directions into the optical conversion unit to finally realize the wavelength routing of different optical directions, and the landing of wavelength-independent, direction-independent, and non-blocking optical signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

一种可重构光分插复用器、光网络及光处理方法,所述可重构光分插复用器包括:至少两个光信号处理器件以及至少一个光交叉连接器件;各个光信号处理器件中包括波长选择开关和滤波器,波长选择开关用于对输入的密集波分复用光信号进行波长分配后输入滤波器,滤波器用于将波长选择开关输出的光信号分离为单通道光信号,以及滤波器用于将光交叉连接器件输出的多个单通道光信号复用后输入波长选择开关,波长选择开关用于将滤波器输出的光信号进行波长合并后输出;及光交叉连接器件包括N个上部端口和N个下部端口,光交叉连接器件用于对滤波器输出的单通道光信号进行落地,以及通过上部端口将光转换单元输出的单通道光信号输入滤波器。

Description

可重构光分插复用器、光网络及光信号处理方法
本申请要求于2019年03月20日提交中国专利局,申请号为201910214799.7、发明名称为“可重构光分插复用器、光网络及光信号处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,特别涉及一种可重构光分插复用器(Reconfigurable Optical Add-Drop Multiplexer,ROADM)、光网络及光信号处理方法。
背景技术
CDC-ROADM作为开放光网络组网中重要的节点结构,能够使节点之间完成光波长路由以及波长无关、方向无关、无阻塞的光信号落地。
相关技术中,各个节点中的CDC-ROADM通过M:N器件实现光信号落地和加载,其中,M:N器件中不同的M端口对应不同的光信号方向,N端口则与光转换单元(Optical Transform Unit,OTU)相连。光信号落地方向上(M→N),从M端口进入的光信号从N端口中的任意一个或多个输出;而在光信号加载方向上(N→M),从任意N端口进入的光信号在任意一个M端口处合并后输出。
然而,采用上述结构的CDC-RDADM时,为了实现M端口的光信号从至少一个N端口输出,需要在M:N器件的M端口处设置1:N分光器,且需要引入额外的光放阵列来补偿分光器造成的路径差损,导致CDC-RDADM的结构复杂。
发明内容
本申请实施例提供了一种可重构光分插复用器、光网络及光信号处理方法。
一种可重构光分插复用器,所述可重构光分插复用器包括:
至少两个光信号处理器件以及至少一个光交叉连接(Optical cross-Connect,OXC)器件,其中,不同光信号处理器件对应不同光方向;
各个所述光信号处理器件中包括波长选择开关(wavelength-selective switch,wss)和滤波器,所述波长选择开关用于对输入的密集波分复用光信号进行波长分配后输入所述滤波器,所述滤波器用于将所述波长选择开关输出的光信号分离为单通道光信号,以及所述滤波器用于将所述光交叉连接器件输出的多个单通道光信号复用后输入所述波长选择开关,所述波长选择开关用于将所述滤波器输出的光信号进行波长合并后输出;及
所述光交叉连接器件包括N个上部端口和N个下部端口,所述光交叉连接器件通过所述上部端口与各个所述光信号处理器件中的所述滤波器相连,所述下部端口与光转换单元相连,所述光交叉连接器件用于对所述滤波器输出的所述单通道光信号进行落地,以及通过所述上部端口将所述光转换单元输出的单通道光信号输入所述滤波器。
一种光网络,所述光网络中包括:至少两个光网络节点;
各个所述光网络节点中设置有如上述方面所述的可重构光分插复用器,且所述光网络节点之间通过光纤相连。
一种光信号处理方法,所述方法由可重构光分插复用器执行,所述可重构光分插复用器包括至少两个光信号处理器件以及至少一个光交叉连接器件,不同光信号处理器件对应不同光方向,所述方法包括:
所述光信号处理器件中的波长选择开关接收输入的密集波分复用光信号;
所述波长选择开关对所述密集波分复用光信号进行波长分配,并将波长分配后的光信号输入所述光信号处理器件中的滤波器;
所述滤波器将所述波长分配后的光信号分离为单通道光信号,并将所述单通道光信号输入所述光交叉连接器件的上部端口;及
所述光交叉连接器件通过下部端口对所述单通道光信号进行落地。
一种光信号处理方法,所述方法由可重构光分插复用器执行,所述可重构光分插复用器包括至少两个光信号处理器件以及至少一个光交叉连接器件,不同光信号处理器件对应不同光方向,所述方法包括:
所述光交叉连接器件通过下部端口接收光转换单元输出的单通道光信号;
所述光交叉连接器件通过上部端口,向所述光信号处理器件中的滤波器输入所述单通道光信号;
所述滤波器对输入的多于一个的所述单通道光信号进行复用,并将复用后的光信号输入所述光信号处理器件中的波长选择开关;及
所述波长选择开关对所述复用后的光信号进行波长合并后输出。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请中的实施例,可以参考一幅或多副附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了一个示例性的光网络的拓扑结构图;
图2是相关技术中CDC-ROADM的结构示意图;
图3示出了本申请一个实施例提供的可重构光分插复用器的结构示意图;
图4示出了本申请另一个实施例提供的可重构光分插复用器的结构示意图;
图5是图4中各个光方向对应波长选择开关之间的连接示意图;
图6示出了本申请另一个实施例提供的可重构光分插复用器的结构示意图;
图7示出了一个实施例提供的光信号处理方法的流程图;
图8示出了另一个实施例提供的光信号处理方法的流程图;
图9示出了本申请一个实施例提供的光网络的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一 些方面相一致的装置和方法的例子。可以理解,本申请实施例中所提及的“多个”在无特殊说明的情况下,均表示“多于一个”。
为了方便理解,下面对本申请实施例中涉及的名词进行说明。
密集波分复用(Dense Wavelength Division Multiplexing,DWDM):一种将多个不同波长的光信号复用到一芯光纤进行传输的技术。相应的,DWDM光信号中包括不同波长的光信号。
可重构光分插复用器:在DWDM系统中,用于完成动态波长(光信号)落地以及波长路由的装置。
单通道光信号:当通道为单波长通道时,单通道光信号为单波长光信号;当通达是由多个波长组成的超通道(superchannel)时,单通道光信号为多波长光信号。
请参考图1,其示出了一个示例性的光网络的拓扑结构图,该光网络中包括a、b、c、d、e五个光网络节点。
图1中,各个光网络节点之间通过点到点系统实现相互连接。这种连接方式下,光网络节点之间无法实现光信号路由,更加无法实现任意方向、任意波长的光信号落地。为了使光网络具备波长路由功能,即光信号能够在不同光网络节点之间路由,且能够实现任意方向、任意波长的光信号落地功能,需要在各个光网络节点中设置CDC-ROADM。
相关技术中,光网络节点中设置的CDC-ROADM如图2所示。
图2所示的CDC-ROADM中,每个光方向上都通过两个波长选择开关分别对入局(ingress)方向和出局(egress)方向上的光信号进行波长分配,而CDC-ROADM中的M:N器件则用于实现不同光方向的光信号的落地功能。
其中,M:N器件的工作原理为:M→N方向上,从M侧端口进入的DWDM光信号经由N侧端口中的任意一个或多个端口输出;N→M方向上,从任意N侧端口进入的DWDM光信号可以合并到任意M侧端口后输出。
将上述结构的CDC-ROADM应用到光网络节点后,可以通过各个光方向上的波长选择开关控制进入M:N器件M侧端口的波长组(即不同波长光信号的组合),并通过M:N器件将M侧端口接收到波长组分配到N侧端口,从 而通过与N侧端口相连的光转换单元(Optical Transform Unit,OTU)的相干接收功能进行单波长光信号接收,实现波长无关、方向无关、无阻塞的光信号落地。
为了实现M→N方向上的光信号落地,如图2所示,M:N器件的每个M侧端口处需要增加1×N的分光器,(实现单个M侧端口向各个N侧端口分光),相应的,M:N器件的每个N侧端口通过一个M×1光开关选择M条通路中一条作为光信号输出。
为了实现N→M方向上的光信号加载,如图2所示,M:N器件的每个N侧端口处需要配置1×M光开关(用于选择将光信号输出到哪一个M侧端口),并在M侧端口处配置N×1耦合器件,从而利用N×1耦合器件实现不同N侧端口的光信号耦合。
M:N器件中使用分光器后,M→N方向的路径差损与分光器的端口数成正比,即分光器的端口数越多,路径差损越大。而通常情况下,DWDM系统中每个光方向上存在80个的光信号,若使用单一的M:N器件实现光信号落地,则需要配置一个1×80分光器对M侧端口输入的光信号进行分光,进而造成极大的路径差损。
为了弥补分光器造成的路径损耗,可以通过在M:N器件中额外设置光放阵列对分光后的光信号进行补偿,或者,使用多个M:N器件实现光信号落地(即使用多个端口数较少的分光器)。
但是,额外设置光放阵列会增加CDC-ROADM结构的复杂度,进而增加整个系统的故障发生率;使用多个M:N器件则会增加光方向上波长选择开关的端口占用数,而每占用一个波长选择开关的端口就会减少一个可扩展光方向,不利于后续系统的扩展。
而本申请实施例提供的可重构光分插复用器中,通过为每个光方向上设置对应的光信号处理器件,从而通过光处理器件中的波长选择开关和滤波器,将输入的密集波分复用光信号分离成单通道光信号,并利用光交叉连接器件对光信号处理器件输出的单波长光信号或多波长光信号进行落地,实现了波长无关、方向无关、无阻塞的光信号落地功能;由于本申请实施例中的可重构光分插复用器并未使用分光器,因此能够避免因分光器造成的路径差损;同时,采用的单一的光交叉连接器件即能够实现各个光方向上各个波长的光 信号落地,能够减少对光方向上波长选择开关的端口占用数,有利于后续系统的扩展。下面将采用示意性的实施例对本申请实施例提供的可重构光分插复用器进行详细说明。
请参考图3,其示出了本申请一个实施例提供的可重构光分插复用器的结构示意图。该可重构光分插复用器包括:至少两个光信号处理器件31以及至少一个光交叉连接器件32。
在一个实施例中,光方向用于指示光网络中光网络节点之间的路径。以图1所示的光网络为例,光网络节点a对应四个光方向,其中,第一光方向指光网络节点a到光网络节点b之间的路径,第二光方向指光网络节点a到光网络节点c之间的路径,光方向指光网络节点a到光网络节点d之间的路径,光方向指光网络节点a到光网络节点e之间的路径。
本实施例中不同光信号处理器31对应不同光方向,即不同光信号处理器31用于处理不同光方向上的光信号。示意性的,将图3所示的可重构光分插复用器应用于图1所示的光网络节点a,第一个光信号处理器件31用于处理光网络节点a与光网络节点b之间的光信号,第二个光信号处理器件31用于处理光网络节点a与光网络节点c之间的光信号,第二个光信号处理器件31用于处理光网络节点a与光网络节点d之间的光信号,第二个光信号处理器件31用于处理光网络节点a与光网络节点e之间的光信号。本申请实施例仅以光网络节点对应4个光方向为例进行示意性说明,但并不对此构成限定。
在一个实施例中,在单纤单向DWDM系统中,光网络节点的每个光方向又可以包括入局(ingress)方向和出局(egress)方向,其中,ingress方向为光网络节点的光信号入射方向(即光信号的下行方向),egress方向为光网络节点的光信号出射方向(即光信号的上行方向)。示意性的,如图1所示,光网络节点a的第一光方向包括a→b的egress方向以及b→a的ingress方向。
如图3所示,各个光信号处理器件31中包括波长选择开关311以及滤波器312。
在一种可能的实施方式中,下行方向上,波长选择开关311用于对输入的密集波分复用光信号进行波长分配后输入滤波器312,而滤波器312用于波长选择开关311输出的光信号分离为单通道光信号。
而在上行方向上,滤波器312用于将光交叉连接器件32输出的多个单通道光信号复用后输入波长选择开关311,波长选择开关311则用于将滤波器312输出的光信号进行波长合并后输出。
不同于相关技术中使用了M:N器件实现光信号落地,本申请实施例中使用至少一个光交叉连接器件实现不同光方向的光信号落地。其中,光交叉连接器件包括N个上部端口和N个下部端口,且上部端口与下部端口可以通过配置实现任意端口之间一对一连通(上部端口之间无法一对一连通,下部端口之间无法一对一连通),而光交叉连接器件则通过N个上部端口与各个光方向上的滤波器相连,通过下部端口与光转换单元相连。
示意性的,如图3所示,第一光方向、第二光方向、第三光方向以及第四光方向上的滤波器312均与光交叉连接器件32的上部端口相连,而光交叉连接器件32的上部端口则与光转换单元33相连。
在一个实施例中,通过光交叉连接器件进行光信号落地时,滤波器输出的单通道光信号输入光交叉连接器件的上部端口,光交叉连接器件通过任意下部端口向相连的光转换单元输出该单通道光信号,实现光信号落地。
采用上述光交叉连接器件时,由于任意下部端口可以通过控制连通到上部端口中的任一个(比如向光交叉连接器件发送配置指令,光交叉连接器件根据配置指令将下部端口与指定的上部端口连通),且上部端口连接不同光方向对应的滤波器,因此当下部端口接收到光转换单元输出的单通道光信号时,可以向上部端口中的任一端口传输该单通道光信号,从而使单通道光信号进入任意光方向,实现方向无关的光信号落地;同时,由于单通道光信号可以进入任意方向的任意滤波器通道,因此能够实现波长无关的光信号落地。
并且,由于光交叉连接器件的上部端口与下部端口的数量相等,因此下部端口可以与上部端口形成1:1的满映射,即不同方向不同通道之间不会发生冲突,从而实现无阻塞的光信号落地。
综上所述,本申请实施例提供的可重构光分插复用器,通过为每个光方向上设置对应的光信号处理器件,从而通过光处理器件中的波长选择开关和滤波器,将将输入的密集波分复用光信号分离成单通道光信号,并利用光交叉连接器件对光信号处理器件输出的单通道光信号进行落地,实现了波长无关、方向无关、无阻塞的光信号落地功能;本申请实施例提供的可重构光分 插复用器中无需设置分光器,进而无需额外引入光放阵列,在保证路径差损的情况下,降低了可重构光分插复用器的结构复杂度。
另外,通过在每个光方向上引入滤波器,实现每个光方向上DWDM光信号的波长分离,并能够滤除对本波道造成干扰的其他波长,使得该可重构光分插复用器能够支持非相干波长的光信号落地。
在单纤单向DWDM系统中,由于每个光方向中包括出局方向和入局方向,因此,在一种可能的实施方式中,每个波长选择开关中包括第一波长选择开关和第二波长选择开关,分别用于对入局方向和出局方向的光信号进行处理。请参考图4,其示出了本申请另一个实施例提供的可重构光分插复用器的结构示意图。
如图4所示,每个光方向上均包括第一波长选择开关411和第二波长选择开关412。其中,第一波长选择开关411包括第一输入端口411a和多个第一输出端口411b,第一波长选择开关411用于通过第一输入端口411a接收入局方向输入的DWDM光信号,并按照波长将DWDM光信号分配到不同的第一输出端口411b。
第二波长选择开关412包括第二输出端口412a和多个第二输入端口412b,第二波长选择开关412用于将各个第二输入端口412b输入的光信号合并为DWDM光信号,并通过第二输出端口412a向出局方向输出DWDM光信号,从而将DWDM光信号传输到光方向对应的光网络节点。
其中,第一波长选择开关411接收的密集波分复用光信号与第二波长选择开关412输出的密集波分复用光信号是同种类型的光信号,且光信号中包括的内容可以不同。
在一个实施例中,第一波长选择开关分配到第一输出端口的光信号是单通道光信号,该单通道光信号为单波长光信号,或者,多个波长构成的多波长光信号(superchannel)。
为了实现不同光方向之间的波长路由,在一种可能的实施方式中,当可重构光分插复用器对应m个光方向时,各个光方向上第一波长选择开关中的m-1个第一输出端口分别与其他光方向上第二波长选择开关中的一个第二输入端口一对一连接。
比如,当可重构光分插复用器对应4个光方向时,以其中的第一光方向为例,第一光方向上第一波长选择开关中的一个第一输出端口与第二光方向上第二波长选择开关中的一个第二输入端口相连;第一光方向上第一波长选择开关中的另一个第一输出端口与第三光方向上第二波长选择开关中的一个第二输入端口相连;第一光方向上第一波长选择开关中的再一个第一输出端口与第四光方向上第二波长选择开关中的一个第二输入端口相连,即第一光方向上第一波长选择开关中的3个第一输出端口与其他光方向上第二波长选择开关的第二输入端口相连。
示意性的,如图5所示,第一光方向上,第一波长选择开关411的三个第一输出接口411b分别与第二光方向上第二波长选择开关412的第二输入端口412b、第三光方向上第二波长选择开关412的第二输入端口412b以及第四光方向上第二波长选择开关412的第二输入端口412b相连。采用这种连接方式后,从第一光方向分离出的光信号能够路由至第二、第三以及第四光方向,实现不同光方向之间的波长路由。
需要说明的是,当需要实现更多光方向的波长路由时,则需要占用波长选择开关的更多wss端口。
与波长选择开关对应的,如图4所示,每个光方向上的滤波器42包括:下行输入端口421a、与下行输入端口421a对应的多个下行输出端口421b,以及上行输出端口422a、与上行输出端口422a对应的多个上行输入端口422b。
下行输入端口421a与第一波长选择开关411的第一输出端口411b相连,下行输出端口421b与光交叉连接器件43的上部端口相连。在光信号入局方向(下行方向)上,滤波器42将(第一波长选择开关411)第一输出端口411b输出的光信号(按照波长分配的DWDM光信号)分离为多个单通道光信号,并通过多个下行输出端口421b输出至光交叉连接器件43的上部端口。
上行输出端口422a与第二波长选择开关412的第二输入端口412b相连,上行输入端口422b与光交叉连接器件43的上部端口相连。在光信号出局方向(上行方向)上,滤波器42将多个上行输入端口422b输入的单通道光信号复用到同一光通道(即合并到同一芯光纤),并通过上行输出端口422b向第二输入端口412b输出复用得到的光信号。
在一个实施例中,由于第二波长选择开关的输入端分别与滤波器以及其 他光方向对应的第一波长选择开关相连,因此,第二波长选择开关能够将各个光方向的光信号合并为DWDM光信号后输出。
在一个实施例中,滤波器可以为固定滤波器或可调滤波器,其中,采用固定滤波器时,滤波器每个端口的波长固定,而采用可调滤波器时,滤波器每个端口的波长可配置。
在一种可能的实施方式中,当可重构光分插复用器中设置一个光交叉连接器件时,各个光方向上,滤波器的各个上行输入端口与光交叉连接器件的上部端口一对一连接,从而向光交叉连接器件传输分离出的单通道光信号;滤波器的各个下行输出端口则与光交叉连接器件的上部端口一对一连接,从而接收光转换单元通过光交叉连接器件的下部端口输入的单通道光信号。
在一个实施例中,可重构光分插复用器中所选用光交叉连接器件的端口数与光方向数量以及每个光方向对应的波长数相关。在一种可能的实施方式中,当可重构光分插复用器中包括一个光交叉连接器件,且光方向为m,每个光方向对应n个波长的光信号时,光交叉连接器件的上部端口和下部端口均为m×n个。
在一个实施例中,第一波长选择开关包括至少m个第一输出端口,第二波长选择开关包括至少m个第二输入端口,滤波器包括至少n个上行输入端口以及至少n个下行输出端口。
在一个示意性的例子中,在可重构光分插复用器中设置一个2560:2560的光交叉连接器件即可实现对20个光方向上,每个光方向上64波长的光信号接入。
本实施例中,采用N:N的光交叉连接器件,能够显著增加落地端口的数量,实现利用单一器件完成多波长落地;同时,使用单一光交叉连接器件能够减少对各个光方向上波长选择开关的端口占用数,对于端口数有限的波长选择开关而言,能够使波长选择开关的更多端口用于实现不同光方向的路由,有利于提高系统的可扩展性。
图4所示实施例中,由于可重构光分插复用器中仅设置有一个光交叉连接器件,因此各个滤波器的所有端口均连接到该光交叉连接器件。然而,采用这种结构时,光交叉连接器件出现故障将导致所有光方向上的光信号落地 失败。
为了提高可重构光分插复用器的可靠性,在一种可能的实施方式中,可重构光分插复用器中设置i个光交叉连接器件。
在一个实施例中,当设置有i个光交叉连接器件时,每个光交叉连接器件的上部端口与滤波器中目标数量的上行输入端口一对一连接,其中,目标数量的上行输入端口占滤波器中上行输入端口总数的1/i;并且,每个光交叉连接器件的上部端口与滤波器中目标数量的下行输出端口一对一连接,其中,目标数量的输出端口占第一滤波器中总输出端口的1/i,其中,目标数量的下行输出端口占滤波器中下行输出端口总数的1/i。
在一个示意性的例子中,如图6所示,当可重构光分插复用器中设置有2个光交叉连接器件,分别为第一光交叉连接器件61和第二光交叉连接器件62时,各个光方向上滤波器61的一半上行输入端口与第一光交叉连接器件61的上部端口相连,另一半上行输入端口与第二光交叉连接器件62的上部端口相连;各个光方向上滤波器61的一半下行输出端口与第一光交叉连接器件61的上部相连,另一半下行输出端口与第二光交叉连接器件62的上部端口相连。
在一个实施例中,当可重构光分插复用器中设置i个光交叉连接器件,且光方向为m,每个光方向对应64个波长的光信号时,各个光交叉连接器件的上部端口和下部端口均为m×n/i个。
在一个示意性的例子中,为了实现对20个光方向上,每个光方向上64波长的光信号接入,可以在可重构光分插复用器中设置2个1280:1280的光交叉连接器件,或者,在可重构光分插复用器中设置4个640:640的光交叉连接器件。
本实施例中,在可重构光分插复用器中设置多个光交叉连接器件后,即便部分交叉连接器件发生故障,系统也能够通过未发生光故障的光交叉连接器件完成进行波长接入,保证系统的可用性,从而避免仅设置单个光交叉连接器件时,光交叉连接器件故障导致整个系统不可用的问题。
下面采用示意性实施例对上行光信号的处理过程进行说明。
请参考图7,其示出了一个实施例提供的光信号处理方法的流程图,该方 法用于上述各个实施例提供的可重构光分插复用器,该方法包括如下步骤。
步骤S701,光信号处理器件中的波长选择开关接收输入的密集波分复用光信号。
光网络中,不同光网络节点的可重构光分插复用器之间通过光纤相连,当前光网络节点对其他光网络节点传输的光信号进行落地时(即光信号下行过程),首先通过所在光方向上的波长选择开关接收光网络节点传输的光信号,该光信号可以为DWDM光信号。
在一种可能的实施方式中,波长选择开关包括用于对入局方向光信号进行处理的第一波长选择开关,该第一波长选择开关包括第一输入端口和多个第一输出端口,第一波长选择开关即通过第一输入端口接收入局方向输入的DWDM光信号。
步骤S702,波长选择开关对密集波分复用光信号进行波长分配,并将波长分配后的光信号输入光信号处理器件中的滤波器。
与上述步骤对应的,在一种可能的实施方式中,第一波长选择开关按照波长将接收到的DWDM光信号分配到不同的第一输出端口,从而通过第一输出端口将光信号输入滤波器中。
在一个实施例中,第一波长选择开关还可以通过第一输出端口,向其他光方向对应的第二波长选择开关传输波长分配后的光信号,实现光信号路由。
步骤S703,滤波器将波长分配后的光信号分离为单通道光信号,并将单通道光信号输入光交叉连接器件的上部端口。
在一种可能的实施方式中,下行方向上,滤波器包括下行输入端口以及与下行输入端口对应的多个下行输出端口,滤波器即通过下行输入端口接收波长选择开关输出的波长分配后的光信号,并将其分离为多路单通道光信号(单波长光信号或多波长光信号),从而通过多个下行输出端口将分理处的单通道光信号输入光交叉连接器件的上部端口。
步骤S704,光交叉连接器件通过下部端口对单通道光信号进行落地。
由于不同光方向对应的滤波器均与光交叉连接器件的上部端口相连,因此,光交叉连接器件能够接收到来自多个光方向的单通道光信号,并进一步通过控制上部端口与下部端口之间的连通,实现不同光方向光信号的落地。
与上行光信号的处理过程相对的,下行光信号的处理过程如图8所示。
请参考图8,其示出了另一个实施例提供的光信号处理方法的流程图,该方法用于上述各个实施例提供的可重构光分插复用器,该方法包括如下步骤。
步骤S801,光交叉连接器件通过下部端口接收光转换单元输出的单通道光信号。
光交叉连接器件的下部端口与光网络节点的光转换单元相连,当前光网络节点需要向其他光网络节点传输光信号时,即通过光转换单元向光交叉连接器件的下部端口输入光信号(单通道光信号)。
步骤S802,光交叉连接器件通过上部端口,向光信号处理器件中的滤波器输入单通道光信号。
在一个实施例中,由于光交叉连接器件可以通过下部端口与任意上部端口连通,因此,光交叉连接器件可以将单通道光信号输入任意光方向的滤波器,从而使单通道光信号传输至任意光方向。
步骤S803,滤波器对输入的多个单通道光信号进行复用,并将复用后的光信号输入光信号处理器件中的波长选择开关。
在一种可能的实施方式中,波长选择开关包括用于对出局方向光信号进行处理的第二波长选择开关,滤波器包括多个上行输入端以及与多个上行输入端对应的上行输出端,且上行输入端与光交叉连接器件的上部端口相连,上行输出端与第二波长选择开关的第二输入端口相连。滤波器即将多个上行输入端口输入的单通道光信号复用到同一光通道,并通过上行输出端口向第二波长选择开关的第二输入端口输出复用后的光信号。
步骤S804,波长选择开关对复用后的光信号进行波长合并后输出。
在一种可能的实施方式中,当第二波长选择开关与其他光方向上的第一波长选择开关相连,以实现波长路由时,第二波长选择开关对所在光方向以及其他光方向的光信号进行波长合并(通过多个第二输入端口接收),从而将合并后的DWDM光信号输出。
其中,合并后的光信号通过光纤传输至所在光方向上的光网络节点,该光网络节点通过可重构光分插复用器,采用与图7所示的光处理方法对光信号进行落地。
请参考图9,其示出了一个实施例提供的光网络的结构示意图,该光网络中包括至少两个光网络节点。图9中以光网络包括第一光网络节点91、第二光网络节点92、第三光网络节点93、第四光网络节点94、第五光网络节点95为例进行说明。
如图9所示,光网络中各个光网络节点中均设置有可重构光分插复用器,该可重构光分插复用器可以采用上述实施例提供的任一可重构光分插复用器。
光网络节点借助可重构光分插复用器以及光网络节点之间的光纤相连。其中,在上行方向上,光网络节点中光转换单元输出的光信号通过可重构光分插复用器能够传输至光网络中的任一光网络节点,在下行方向上,光网络节点通过可重构光分插复用器能够对来自各个光方向的光信号输入光转换单元最终实现不同光方向的波长路由,以及波长无关、方向无关、无阻塞的光信号落地。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种可重构光分插复用器,所述可重构光分插复用器包括:
    至少两个光信号处理器件以及至少一个光交叉连接器件,其中,不同光信号处理器件对应不同光方向;
    各个所述光信号处理器件中包括波长选择开关和滤波器,所述波长选择开关用于对输入的密集波分复用光信号进行波长分配后输入所述滤波器,所述滤波器用于将所述波长选择开关输出的光信号分离为单通道光信号,以及所述滤波器用于将所述光交叉连接器件输出的多个单通道光信号复用后输入所述波长选择开关,所述波长选择开关用于将所述滤波器输出的光信号进行波长合并后输出;及
    所述光交叉连接器件包括N个上部端口和N个下部端口,所述光交叉连接器件通过所述上部端口与各个所述光信号处理器件中的所述滤波器相连,所述下部端口与光转换单元相连,所述光交叉连接器件用于对所述滤波器输出的所述单通道光信号进行落地,以及通过所述上部端口将所述光转换单元输出的单通道光信号输入所述滤波器。
  2. 根据权利要求1所述的可重构光分插复用器,其特征在于,所述波长选择开关包括第一波长选择开关和第二波长选择开关;
    所述第一波长选择开关包括第一输入端口和多于一个的第一输出端口,所述第一波长选择开关用于通过所述第一输入端口接收入局方向输入的所述密集波分复用光信号,并按照波长将所述密集波分复用光信号分配到不同的所述第一输出端口;及
    所述第二波长选择开关包括第二输出端口和多于一个的第二输入端口,所述第二波长选择开关用于将各个所述第二输入端口输入的光信号合并为所述密集波分复用光信号,并通过所述第二输出端口向出局方向输出所述密集波分复用光信号;
    其中,所述入局方向和所述出局方向属于同一光方向,且所述入局方向和所述出局方向的方向相反。
  3. 根据权利要求2所述的可重构光分插复用器,其特征在于,所述可重构光分插复用器对应m个光方向,各个光方向上所述第一波长选择开关中的m-1个所述第一输出端口分别与其他光方向上所述第二波长选择开关中的一 个所述第二输入端口一对一连接。
  4. 根据权利要求2所述的可重构光分插复用器,其特征在于,所述滤波器包括下行输入端口、与所述下行输入端口对应的多于一个的下行输出端口,以及上行输出端口、与所述上行输出端口对应的多于一个的上行输入端口;
    所述下行输入端口与所述第一波长选择开关的所述第一输出端口相连,所述下行输出端口与所述光交叉连接器件的所述上部端口相连,所述滤波器用于将所述第一输出端口输出的按照波长分配的所述密集波分复用光信号分离为多个单通道光信号,并通过多于一个的所述下行输出端口输出至所述光交叉连接器件的所述上部端口;及
    所述上行输出端口与所述第二波长选择开关的所述第二输入端口相连,所述上行输入端口与所述光交叉连接器件的所述上部端口相连,所述滤波器还用于将多于一个的所述上行输入端口输入的单通道光信号复用到同一光通道,并通过所述上行输出端口向所述第二输入端口输出复用后的光信号。
  5. 根据权利要求4所述的可重构光分插复用器,其特征在于,所述可重构光分插复用器中包括一个所述光交叉连接器件;
    所述滤波器的所述上行输入端口与所述光交叉连接器件的所述上部端口一对一连接;及
    所述滤波器的所述下行输出端口与所述光交叉连接器件的所述上部端口一对一连接。
  6. 根据权利要求5所述的可重构光分插复用器,其特征在于,当所述可重构光分插复用器对应m个光方向,且每个光方向对应n个波长的光信号时,所述N=m×n。
  7. 根据权利要求4所述的可重构光分插复用器,其特征在于,所述可重构光分插复用器中包括i个所述光交叉连接器件,i为大于1的整数;
    每个所述光交叉连接器件的所述上部端口与所述滤波器中目标数量的上行输入端口一对一连接,所述目标数量的上行输入端口占所述滤波器中上行输入端口总数的1/i;及
    每个所述光交叉连接器件的所述上部端口与所述第二滤波器中目标数量的下行输出端口一对一连接,所述目标数量的下行输出端口占所述滤波器中下行输出端口总数的1/i。
  8. 根据权利要求7所述的可重构光分插复用器,其特征在于,当所述可重构光分插复用器对应m个光方向,且每个光方向对应n个波长的光信号时,所述N=m×n÷i。
  9. 一种光网络,所述光网络中包括:至少两个光网络节点;
    各个所述光网络节点中设置有权利要求1至8任一项所述的可重构光分插复用器,且所述光网络节点之间通过光纤相连。
  10. 一种光信号处理方法,由可重构光分插复用器执行,所述可重构光分插复用器包括至少两个光信号处理器件以及至少一个光交叉连接器件,不同光信号处理器件对应不同光方向,所述方法包括:
    所述光信号处理器件中的波长选择开关接收输入的密集波分复用光信号;
    所述波长选择开关对所述密集波分复用光信号进行波长分配,并将波长分配后的光信号输入所述光信号处理器件中的滤波器;
    所述滤波器将所述波长分配后的光信号分离为单通道光信号,并将所述单通道光信号输入所述光交叉连接器件的上部端口;及
    所述光交叉连接器件通过下部端口对所述单通道光信号进行落地。
  11. 根据权利要求10所述的方法,其特征在于,所述波长选择开关包括第一波长选择开关,所述第一波长选择开关包括第一输入端口和多于一个的第一输出端口,所述第一输出端口与所述滤波器相连;
    所述光信号处理器件中的波长选择开关接收输入的密集波分复用光信号,包括:
    所述第一波长选择开关通过所述第一输入端口接收入局方向输入的所述密集波分复用光信号;
    所述波长选择开关对所述密集波分复用光信号进行波长分配,并将波长分配后的光信号输入所述光信号处理器件中的滤波器,包括:
    所述第一波长选择开关按照波长将所述密集波分复用光信号分配到不同的所述第一输出端口。
  12. 根据权利要求11所述的方法,其特征在于,所述滤波器包括下行输入端口以及与所述下行输入端口对应的多于一个的下行输出端口;
    所述滤波器将所述波长分配后的光信号分离为单通道光信号,并将所述单通道光信号输入所述光交叉连接器件的上部端口,包括:
    所述滤波器通过所述下行输入端口接收所述第一输出端口输出的所述波长分配后的光信号;及
    所述滤波器将所述波长分配后的光信号分离为多于一个的单通道光信号,并通过多于一个的所述下行输出端口输出至所述光交叉连接器件的所述上部端口。
  13. 一种光信号处理方法,由可重构光分插复用器执行,所述可重构光分插复用器包括至少两个光信号处理器件以及至少一个光交叉连接器件,不同光信号处理器件对应不同光方向,所述方法包括:
    所述光交叉连接器件通过下部端口接收光转换单元输出的单通道光信号;
    所述光交叉连接器件通过上部端口,向所述光信号处理器件中的滤波器输入所述单通道光信号;
    所述滤波器对输入的多于一个的所述单通道光信号进行复用,并将复用后的光信号输入所述光信号处理器件中的波长选择开关;及
    所述波长选择开关对所述复用后的光信号进行波长合并后输出。
  14. 根据权利要求13所述的方法,其特征在于,所述波长选择开关包括第第二波长选择开关,所述第二波长选择开关包括第二输出端口和多于一个的第二输入端口,所述滤波器包括上行输出端口以及与所述上行输出端口对应的多于一个的上行输入端口;
    所述滤波器对输入的多于一个的所述单通道光信号进行复用,并将复用后的光信号输入所述光信号处理器件中的波长选择开关,包括:
    所述滤波器将多于一个的所述上行输入端口输入的单通道光信号复用到同一光通道,并通过所述上行输出端口向所述第二波长选择开关的所述第二输入端口输出所述复用后的光信号;
    所述波长选择开关对所述复用后的光信号进行波长合并后输出,包括:
    所述第二波长选择开关将各个所述第二输入端口输入的光信号合并为密集波分复用光信号,并通过所述第二输出端口向出局方向输出所述密集波分复用光信号。
PCT/CN2020/076074 2019-03-20 2020-02-20 可重构光分插复用器、光网络及光信号处理方法 WO2020186958A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021539986A JP2022517966A (ja) 2019-03-20 2020-02-20 再構成可能光アドドロップマルチプレクサ、光ネットワーク、及び光信号処理方法
EP20772828.8A EP3944529A4 (en) 2019-03-20 2020-02-20 RECONFIGURABLE OPTICAL ADD-DROP MULTIPLEXER, OPTICAL NETWORK AND OPTICAL SIGNAL PROCESSING METHOD
KR1020217014158A KR102378490B1 (ko) 2019-03-20 2020-02-20 재구성가능한 광 애드-드롭 멀티플렉서, 광 네트워크, 및 광 신호 처리 방법
US17/322,695 US11909514B2 (en) 2019-03-20 2021-05-17 Reconfigurable optical add-drop multiplexer, optical network, and optical signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910214799.7A CN109802744B (zh) 2019-03-20 2019-03-20 可重构光分插复用器、光网络及光信号处理方法
CN201910214799.7 2019-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/322,695 Continuation US11909514B2 (en) 2019-03-20 2021-05-17 Reconfigurable optical add-drop multiplexer, optical network, and optical signal processing method

Publications (1)

Publication Number Publication Date
WO2020186958A1 true WO2020186958A1 (zh) 2020-09-24

Family

ID=66563758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076074 WO2020186958A1 (zh) 2019-03-20 2020-02-20 可重构光分插复用器、光网络及光信号处理方法

Country Status (6)

Country Link
US (1) US11909514B2 (zh)
EP (1) EP3944529A4 (zh)
JP (1) JP2022517966A (zh)
KR (1) KR102378490B1 (zh)
CN (1) CN109802744B (zh)
WO (1) WO2020186958A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802744B (zh) 2019-03-20 2020-09-04 深圳市腾讯计算机系统有限公司 可重构光分插复用器、光网络及光信号处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN101420286A (zh) * 2007-10-23 2009-04-29 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN101610129A (zh) * 2009-07-09 2009-12-23 中兴通讯股份有限公司 实现完全无阻的波长无关性的可重构光分插复用装置
US20150208146A1 (en) * 2014-01-17 2015-07-23 Tellabs Operations, Inc. Methods and Apparatus for Providing Configuration Discovery Using Intra-Nodal Test Channel
CN105474565A (zh) * 2013-09-09 2016-04-06 华为技术有限公司 用于可扩展可重构光分插复用器的光子开关芯片
CN109802744A (zh) * 2019-03-20 2019-05-24 深圳市腾讯计算机系统有限公司 可重构光分插复用器、光网络及光信号处理方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523238C2 (sv) * 2001-07-13 2004-04-06 Transmode Systems Ab Optiskt system och metod i ett optiskt system
US7340175B2 (en) * 2002-01-18 2008-03-04 Nec Corporation Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US7173902B2 (en) * 2002-03-29 2007-02-06 Bay Microsystems, Inc. Expansion of telecommunications networks with automatic protection switching
US7437075B2 (en) * 2002-08-27 2008-10-14 Lucent Technologies Inc. Integrated reconfigurable optical add/drop multiplexer
US7254327B1 (en) * 2003-01-31 2007-08-07 Ciena Corporation Switching status and performance monitoring technology for wavelength selective switch and optical networks
US20040190901A1 (en) * 2003-03-29 2004-09-30 Xiaojun Fang Bi-directional optical network element and its control protocols for WDM rings
JP4530821B2 (ja) * 2004-08-16 2010-08-25 富士通株式会社 光分岐挿入装置
JP4382635B2 (ja) * 2004-11-10 2009-12-16 富士通株式会社 光伝送装置
US7983560B2 (en) * 2005-10-11 2011-07-19 Dynamic Method Enterprises Limited Modular WSS-based communications system with colorless add/drop interfaces
JP4854565B2 (ja) * 2007-03-30 2012-01-18 日本電信電話株式会社 光クロスコネクト装置
US8849115B2 (en) * 2008-03-11 2014-09-30 Ciena Corporation Directionless optical architecture and highly available network and photonic resilience methods
US8625994B2 (en) * 2008-03-11 2014-01-07 Ciena Corporation Directionless reconfigurable optical add-drop multiplexer systems and methods
EP2141842B1 (fr) * 2008-06-30 2013-07-31 Alcatel Lucent Dispositif de commutation de signaux optiques
CN101809912A (zh) * 2008-09-26 2010-08-18 动力方法企业有限公司 具有无色插入/分出接口的基于模块化wss的通信系统
US8554074B2 (en) * 2009-05-06 2013-10-08 Ciena Corporation Colorless, directionless, and gridless optical network, node, and method
US8538267B2 (en) * 2009-10-09 2013-09-17 Nec Laboratories America, Inc. ROADM transponder aggregator systems and methods of operation
WO2011133254A2 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm transponder aggregator systems and methods of operation
US20110262143A1 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm systems and methods of operation
JP5614129B2 (ja) * 2010-06-30 2014-10-29 富士通株式会社 光分岐挿入装置
JP5682256B2 (ja) * 2010-11-24 2015-03-11 富士通株式会社 光挿入装置および光分岐装置
EP2615755B1 (en) * 2012-01-12 2017-05-10 Alcatel Lucent Optical switching node for a WDM optical network
US9106983B2 (en) * 2012-04-02 2015-08-11 Nec Laboratories America, Inc. Reconfigurable branching unit for submarine optical communication networks
KR20130126808A (ko) * 2012-04-24 2013-11-21 한국전자통신연구원 수동형 광 네트워크 시스템 및 그의 광 신호 송수신 방법과 광 회선 종단 장치
JP2014022865A (ja) * 2012-07-17 2014-02-03 Nec Corp 光信号分岐装置、および光信号挿入装置
EP2757714A1 (en) * 2013-01-18 2014-07-23 Xieon Networks S.à.r.l. Photonic cross-connect with reconfigurable add-dropfunctionality
US10135560B2 (en) * 2013-06-22 2018-11-20 Mark E. Boduch Optical devices for the construction of compact optical nodes
EP2991253A1 (en) 2014-08-25 2016-03-02 Xieon Networks S.à r.l. Reconfigurable add/drop multiplexing in optical networks
WO2016060594A1 (en) * 2014-10-13 2016-04-21 Telefonaktiebolaget L M Ericsson (Publ) An optical wavelength selective switch, an optical network node, an optical network and methods therein
JP6468058B2 (ja) 2015-04-30 2019-02-13 富士通株式会社 光スイッチモジュール、これを用いた光中継装置、及び方路拡張方法
JP2017073739A (ja) * 2015-10-09 2017-04-13 富士通株式会社 伝送装置及び光ファイバの接続確認方法
JP6607057B2 (ja) 2016-01-28 2019-11-20 富士通株式会社 伝送装置、伝送システム、及び伝送方法
CN107359938B (zh) * 2016-05-09 2019-09-20 腾讯科技(深圳)有限公司 数据中心传输系统、系统中控制的实现方法和装置
US10277352B2 (en) * 2016-05-24 2019-04-30 Ciena Corporation Noise suppression and amplification systems and methods for colorless optical add/drop devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420286A (zh) * 2007-10-23 2009-04-29 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN101610129A (zh) * 2009-07-09 2009-12-23 中兴通讯股份有限公司 实现完全无阻的波长无关性的可重构光分插复用装置
CN105474565A (zh) * 2013-09-09 2016-04-06 华为技术有限公司 用于可扩展可重构光分插复用器的光子开关芯片
US20150208146A1 (en) * 2014-01-17 2015-07-23 Tellabs Operations, Inc. Methods and Apparatus for Providing Configuration Discovery Using Intra-Nodal Test Channel
CN109802744A (zh) * 2019-03-20 2019-05-24 深圳市腾讯计算机系统有限公司 可重构光分插复用器、光网络及光信号处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944529A4 *

Also Published As

Publication number Publication date
US11909514B2 (en) 2024-02-20
US20210273740A1 (en) 2021-09-02
CN109802744A (zh) 2019-05-24
JP2022517966A (ja) 2022-03-11
KR20210070370A (ko) 2021-06-14
EP3944529A1 (en) 2022-01-26
CN109802744B (zh) 2020-09-04
EP3944529A4 (en) 2022-05-11
KR102378490B1 (ko) 2022-03-25

Similar Documents

Publication Publication Date Title
US8126330B2 (en) Dynamic wavelength service over a ROADM optical network
US8965220B2 (en) Reconfigurable optical add/drop multiplexer and procedure for outputting optical signals from such multiplexer
US8903240B2 (en) Scalable reconfigurable optical add-drop multiplexer
US20150280854A1 (en) Optical transmission apparatus, optical transmission system, and optcial transmission method
US9014562B2 (en) Optical line terminal arrangement, apparatus and methods
JP5287993B2 (ja) 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム
EP2979383B1 (en) Optical switch
WO2008060007A1 (en) Multi-degree cross-connector system, operating method and optical communication network using the same
US10498479B2 (en) Reconfigurable add/drop multiplexing in optical networks
WO2020186958A1 (zh) 可重构光分插复用器、光网络及光信号处理方法
EP2434774B1 (en) Apparatus and method for colorless optical switch
US9025915B2 (en) Method and module for switching optical signals having different modes of propagation
WO2017041222A1 (zh) 一种wdm系统中的oadm节点及方法
JP2004135331A (ja) 光回線分配システム
US20180316991A1 (en) COLORLESS, DIRECTIONLESS, CONTENTIONLESS OPTICAL NETWORK USING MxN WAVELENGTH SELECTIVE SWITCHES
JP4408806B2 (ja) Wdmネットワークのためのパス保護の方法及びそれに応じたノード
JP5023021B2 (ja) 光分岐挿入多重化装置、及び光レベル調整方法
WO2023002619A1 (ja) 光ゲートウェイ装置
WO2024053016A1 (ja) 通信システム、および制御方法
EP2448159B1 (en) Multidirectional add and drop devices for an optical network element
JP2006042372A (ja) 光信号切替え装置、光通信網、および、それらの使用方法
EP2928097A1 (en) Optical switching
JP2010011486A (ja) 光通信網

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217014158

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021539986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020772828

Country of ref document: EP

Effective date: 20211020