WO2023002619A1 - 光ゲートウェイ装置 - Google Patents

光ゲートウェイ装置 Download PDF

Info

Publication number
WO2023002619A1
WO2023002619A1 PCT/JP2021/027377 JP2021027377W WO2023002619A1 WO 2023002619 A1 WO2023002619 A1 WO 2023002619A1 JP 2021027377 W JP2021027377 W JP 2021027377W WO 2023002619 A1 WO2023002619 A1 WO 2023002619A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
port
optical
multiplexer
demultiplexer
Prior art date
Application number
PCT/JP2021/027377
Other languages
English (en)
French (fr)
Inventor
學 吉野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/027377 priority Critical patent/WO2023002619A1/ja
Priority to JP2023536306A priority patent/JPWO2023002619A1/ja
Publication of WO2023002619A1 publication Critical patent/WO2023002619A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical gateway device.
  • Non-Patent Document 1 describes an optical gateway (Photonic Gateway) that constitutes an all-photonics network.
  • An optical gateway is provided between a core network and a plurality of service devices. Examples of service devices include CPE (Customer Premises Equipment).
  • CPE Customer Premises Equipment
  • the optical gateway sets the wavelength of the optical signal transmitted by the service equipment and the route between the core network and the service equipment.
  • the optical gateway includes an optical switch, a multiplexer/demultiplexer, and the like.
  • the optical switch connects the service equipment and the core network.
  • a service device such as a CPE is connected to the downstream side of the optical gateway device. If uplink and downlink communications are performed via the same transmission line, bidirectionally on one core, and with signals of the same wavelength, the reception of signals from the opposite device deteriorates due to the reflection of the own transmission signal. Therefore, when uplink and downlink communications are performed via the same transmission line in a single-core bidirectional manner in a service device or core network, it is preferable to perform uplink and downlink communications using optical signals of different wavelengths. Therefore, when bidirectional transmission is performed on a single fiber in at least a part of the communication path, the optical gateway device allocates different wavelengths to the service device as the wavelengths of the upstream and downstream optical signals.
  • a first wavelength is assigned to an uplink signal of a first service device
  • a second wavelength is assigned to a downlink signal
  • a second wavelength is assigned to an uplink signal of a second service device
  • a first wavelength is assigned to a downlink signal.
  • the multiplexer/demultiplexer that constitutes the optical gateway normally uses AWGs (Arrayed Waveguide Gratings) in which the combinations of input/output wavelengths and ports on the separation side are fixed. Therefore, in the optical gateway device, it is difficult to connect a transmission line for transmitting both uplink and downlink in one core bi-directionally using different wavelengths to the port on the separation side of the AWG as it is to make it conductive.
  • AWGs Arrayed Waveguide Gratings
  • One aspect of the present invention includes a first multiplexer/demultiplexer, a second multiplexer/demultiplexer, and an optical switch.
  • the first multiplexer/demultiplexer has a first port and a plurality of second ports, separates an optical signal input from the first port, outputs the optical signal from the plurality of second ports, and outputs the optical signal from the plurality of second ports.
  • Optical signals input from the ports are multiplexed and output from the first port.
  • the second multiplexer/demultiplexer has a third port and a plurality of fourth ports, separates an optical signal input from the third port, outputs the optical signal from the plurality of fourth ports, and outputs the optical signal from the plurality of fourth ports.
  • the optical signals input from the ports are multiplexed and output from the third port.
  • the optical switch includes a plurality of fifth ports and a plurality of sixth ports, the plurality of fifth ports are connected to the second port and the fourth port, and the plurality of fifth ports and the plurality of fourth ports are connected to the plurality of fifth ports. 6 ports for optical signal switching.
  • the direction in which the wavelength component of the first wavelength of the optical signal passing through the first port travels and the direction of the wavelength component of the first wavelength of the optical signal passing through the third port are opposite to each other. be.
  • FIG. 1 is a schematic diagram showing the configuration of an optical network according to a first embodiment
  • FIG. 1 is a schematic block diagram showing the configuration of an optical gateway device according to a first embodiment
  • FIG. 3 is a diagram showing signal flow in the optical gateway device according to the first embodiment
  • FIG. 5 is a diagram showing the configuration of an optical gateway device according to a first modified example of the first embodiment
  • FIG. 10 is a diagram showing the configuration of an optical gateway device according to a second modification of the first embodiment
  • FIG. 10 is a diagram showing a configuration for connecting to a core network of single-fiber one-way transmission by an optical gateway device of a second modification according to the first embodiment
  • FIG. 12 is a diagram showing the configuration of an optical gateway device according to a third modified example of the first embodiment
  • FIG. 4 is a schematic block diagram showing the configuration of an optical gateway device according to a second embodiment
  • FIG. 10 is a diagram showing the configuration of an optical gateway device according to a first modified example of the second embodiment
  • FIG. 10 is a diagram showing the configuration of an optical gateway device according to a second modified example of the second embodiment
  • FIG. 12 is a diagram showing the configuration of an optical gateway device according to a third modified example of the second embodiment
  • FIG. 12 is a diagram showing the configuration of an optical gateway device according to a fourth modified example of the second embodiment
  • FIG. 11 is a diagram showing the relationship between a multiplexer/demultiplexer according to a fourth modification of the second embodiment and wavelengths
  • FIG. 11 is a diagram showing the relationship between a multiplexer/demultiplexer according to a fifth modification of the second embodiment and wavelengths
  • FIG. 14 is a diagram showing the configuration of an optical gateway device according to a sixth modification of the second embodiment;
  • FIG. 1 is a schematic diagram showing the configuration of an optical network 1 according to the first embodiment.
  • the optical network 1 includes a plurality of optical gateway devices 30 connected to the core network 10.
  • FIG. Core network 10 is a ring network.
  • the core network 10 is assumed to be a ring network consisting of one transmission path for transmitting signals in the counterclockwise direction.
  • the core network 10 may be a network having a left-handed transmission line and a right-handed transmission line, or may be a multi-ring network in which a plurality of ring networks are coupled. good.
  • the core network 10 may be a full mesh network instead of a ring network.
  • the optical network 1 uses optical signals of N wavelengths.
  • a signal obtained by multiplexing optical signals of a plurality of wavelengths is called a multiplexed signal.
  • the core network 10 performs one-core one-way transmission.
  • the term "single-core, one-direction" refers to a system that allows transmission of only optical signals traveling in the same direction through one transmission line.
  • the transmission line may be a single-core fiber or a multi-core fiber.
  • one core is not limited to one core wire of a single-core fiber, but also includes one core of a multi-core fiber.
  • the optical gateway device 30 is provided between the core network 10 and the service device 50 and relays communication between the service devices 50 .
  • the side of the optical gateway device 30 connected to the core network 10 will be referred to as the "upstream side”
  • the side connected to the service device 50 will be referred to as the "downstream side”.
  • the optical gateway device 30 according to another embodiment may be connected to another optical gateway device 30 without going through the core network 10 .
  • the side connected to the other optical gateway device 30 is called "upstream side”.
  • the service device 50 and the optical gateway device 30 according to the first embodiment are connected via a third fiber 51 .
  • the third fiber 51 passes optical signals going upstream and optical signals going downstream. That is, the third fiber 51 performs single-core bidirectional transmission.
  • single-core bidirectional refers to a system that enables transmission of optical signals traveling in opposite directions through one transmission line.
  • the transmission line is a multi-core fiber
  • a transmission method for transmitting optical signals traveling in directions facing each other within one core in the core wire is called single-core bidirectional transmission. Note that the wavelength of the optical signal in the upstream direction and the wavelength of the optical signal in the downstream direction are different from each other.
  • FIG. 2 is a schematic block diagram showing the configuration of the optical gateway device 30 according to the first embodiment.
  • the optical gateway device 30 according to the first embodiment includes a first multiplexer/demultiplexer 31 , a second multiplexer/demultiplexer 32 , an optical switch 33 , and L upper and lower splitters 34 .
  • One service device 50 can be connected to one upper/lower separator 34 . That is, the optical gateway device 30 is connected to a maximum of L service devices 50 .
  • the first multiplexer/demultiplexer 31 has one upstream port 31U and N downstream ports 31D.
  • the upstream port 31U is connected to the first fiber 11 extending from the upstream optical gateway device 30 in the core network 10 (the left adjacent optical gateway device 30).
  • the N downstream ports 31D are connected to corresponding upstream ports 33U of the optical switch 33 .
  • the first multiplexer/demultiplexer 31 demultiplexes the multiplexed signal input to the upstream port 31U into N optical signals with different wavelengths, and outputs the optical signals from the downstream port 31D corresponding to each wavelength.
  • an AWG can be used as the first multiplexer/demultiplexer 31 .
  • the second multiplexer/demultiplexer 32 has one upstream port 32U and N downstream ports 32D.
  • the upstream port 32U is connected to the second fiber 12 extending from the downstream optical gateway device 30 in the core network 10 (the adjacent optical gateway device 30 on the right).
  • the N downstream ports 32D are connected to corresponding upstream ports 33U of the optical switch 33 .
  • the second multiplexer/demultiplexer 32 multiplexes the optical signals input to the N downstream ports 32D and outputs the multiplexed signals from the upstream port 32U.
  • an AWG can be used as the first multiplexer/demultiplexer 31 .
  • the optical switch 33 includes 2N upstream ports 33U, 2L downstream ports 33D, and a controller 33C.
  • the optical switch 33 transmits the optical signal input to the upstream port 33U to the downstream port 33D assigned by the controller 33C among the 2L downstream ports 33D.
  • the optical switch 33 also transmits the optical signal input to the downstream port 33D to the upstream port 33U assigned by the controller 33C among the 2N upstream ports 33U. That is, the optical switch 33 switches optical signals between the upstream port 33U and the downstream port 33D.
  • the connection relationship between the upstream port 33U and the downstream port 33D in the optical switch 33 is determined according to a control signal from the controller 33C.
  • the optical switch 33 may be, for example, an FXC (Fiber Cross Connect) or other many-to-many optical switch.
  • the controller 33C may use a processor.
  • the control device 33C may be a computer that includes a processor, a memory, an auxiliary storage device, etc. that are connected via a bus, and executes predetermined processing by executing a program.
  • processors include CPUs (Central Processing Units), GPUs (Graphic Processing Units), microprocessors, and the like.
  • Examples of processors include custom LSIs (Large Scale Integrated Circuits) such as ASICs (Application Specific Integrated Circuits) and PLDs (Programmable Logic Devices).
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the control device 33C sets the wavelength and path so as to satisfy all of the following three conditions.
  • the first condition is to allocate different wavelengths to the uplink signal and the downlink signal of one service device 50 .
  • the second condition is that the wavelength of the upstream signal passing through the same transmission line in the core network 10 differs for each service device 50 .
  • the third condition is that the wavelength of the downstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the controller 33C of the optical switch 33 assigns wavelengths, but other embodiments are not limited to this.
  • the optical gateway device 30 may include a host controller separate from the controller 33C of the optical switch 33, and the host controller may allocate wavelengths. In this case, the host controller outputs an instruction to switch paths and connections to the controller 33C based on the result of wavelength allocation.
  • a device controlling the entire network may allocate wavelengths.
  • the upper and lower separator 34 has an upstream input port 34UI, an upstream output port 34UO, and a downstream port 34D.
  • the upstream input port 34UI and upstream output port 34UO are connected to the downstream port 33D of the optical switch 33 .
  • Downstream port 34D is connected to third fiber 51 .
  • the upper/lower separator 34 outputs the optical signal input to the upstream input port 34UI from the downstream port 34D.
  • the upper/lower separator 34 outputs the optical signal input to the downstream port 34D from the upstream output port 34UO.
  • the upper and lower separators 34 may be composed of, for example, optical circulators.
  • the upper/lower separator 34 may be configured by, for example, a multiplexing/demultiplexing module such as an AWG.
  • FIG. 3 is a diagram showing signal flow in the optical gateway device 30 according to the first embodiment.
  • the first multiplexer/demultiplexer 31 processes downstream optical signals related to N wavelengths
  • the second multiplexer/demultiplexer 32 Upstream optical signals for N wavelengths are processed. That is, in the optical gateway device 30, the direction in which the wavelength component of the first wavelength in the optical signal passing through the upstream port 31U of the first multiplexer/demultiplexer 31 travels and the direction in which the wavelength component passes through the upstream port 32U of the second multiplexer/demultiplexer 32 The direction in which the wavelength component of the first wavelength in the optical signal travels is opposite to each other.
  • the optical gateway device 30 prevents interference due to reflection between upstream and downstream signals by differentiating the wavelength of the optical signal transmitted bidirectionally on a single core in the service device 50 between the upstream direction and the downstream direction. be able to.
  • the optical gateway device 30 uses the same wavelength for both upstream and downstream signals in each transmission line of the core network 10 for single-core, one-way transmission of optical signals, without dedicating the same wavelength exclusively for upstream or downstream signals. , the wavelength utilization efficiency can be improved. That is, the optical gateway device 30 sets the same wavelength for the upstream signal of a certain service device 50 and the downstream signal of a different service device 50 .
  • the optical gateway device 30 assigns the second wavelength to the upstream signal of the service device 50B.
  • a wavelength can be assigned and a first wavelength can be assigned to the downstream signal.
  • the optical gateway device 30 allocates the third wavelength to the upstream signal of the service device 50C, the fourth wavelength to the downstream signal, and the fourth wavelength to the upstream signal of the service device 50D, and the third wavelength to the downstream signal. be able to.
  • the optical gateway device 30 does not have to pair two wavelengths and set the paired wavelengths for the upstream and downstream signals of the two service devices 50 to be opposite to each other.
  • the optical gateway device 30 sets one of the paired wavelengths to the uplink signal of one of the two service devices 50, sets the other of the paired wavelengths to the downlink signal, and sets the other of the paired wavelengths to the downlink signal. It is also possible to set one of the paired wavelengths for the downstream signal and not set the other of the paired wavelengths for the upstream signal.
  • optical signals in the same direction are multiplexed and transmitted on the same transmission line between the service devices 50, and the wavelengths of the upstream signals are shifted. It may be assigned as a signal.
  • the optical gateway device 30 assigns a first wavelength to the upstream signal of service device A, a second wavelength to the upstream signal of service device B, a third wavelength to the upstream signal of service device C, and a fourth wavelength to the upstream signal of service device D.
  • the upstream signal of service equipment A is the second wavelength
  • the upstream signal of service equipment B is the third wavelength
  • the upstream signal of service equipment C is the fourth wavelength
  • the upstream signal of service equipment D is the first wavelength.
  • the upper/lower separator 34 may be configured according to the wavelength setting. For example, among the signals of N wavelengths, the optical signals related to the first to [N/2]th wavelengths (the first wavelength group, that is, the short wavelength side) are directed downstream, and from the [N/2+1]th Assume that the optical signals of the second [N/2] wavelengths (the second wavelength group, ie, the long wavelength side) are directed upstream.
  • [•] is a Gaussian symbol representing the maximum integer value that does not exceed the inner value. That is, 2[N/2] is N if N is even, and 2[N/2] is (N-1) if N is odd. If N is an odd number, the optical signal associated with the Nth wavelength may not be used.
  • each of the upper and lower separators 34 can be configured by a wavelength filter that separates the optical signal into components of the first wavelength group and components of the second wavelength group. Also, in this case, the control device 33C controls so that each upper/lower separator 34 is connected to only one of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 .
  • the controller 33C controls the downstream port 33D of the optical switch 33 connected to the upstream input port 34UI of the vertical separator 34, and the downstream port 33D of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 on the first wavelength group side.
  • the optical switch 33 is controlled so as to connect the upstream port 33U connected to the port.
  • the controller 33C controls the downstream port 33D of the optical switch 33 connected to the upstream output port 34UO of the vertical separator 34 and the second wavelength group side of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32.
  • the optical switch 33 is controlled so as to connect the upstream port 33U connected to the downstream port.
  • the controller 33C converts the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream input port 34UI of the vertical splitter 34 via the optical switch 33 to the upstream input port 34UI of the vertical splitter 34. Assigned to the downstream signal of the service device 50 connected to the separator 34 .
  • the controller 33C selects the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream output port 34UO of the vertical splitter 34 via the optical switch 33. Assigned to the upstream signal of the service device 50 connected to the separator 34 .
  • the first to [N/2]th wavelengths may be on the long wavelength side, and the [N/2+1]th to second [N/2]th wavelengths may be on the short wavelength side.
  • the control device 33C allocates the upstream signal wavelength and the downstream signal wavelength to be opposite to each other between the opposing service devices 50 .
  • a periodic filter such as an MZ (Mach-Zehnder) filter may be used as the upper and lower separator 34 .
  • MZ Machine-Zehnder
  • one of the two downstream ports is non-reflectively terminated.
  • the controller 33C allocates wavelengths corresponding to the passing wavelengths of the two upstream ports of the upstream/downstream separator 34 connected to the service device 50 as the wavelengths of the upstream and downstream signals of each service device 50 .
  • the control device 33C is connected to the upstream port 33D of the optical switch 33 connected to the upstream input port 34UI of the vertical separator 34 and the downstream port 31D of the first multiplexer/demultiplexer 31 to the vertical separator 34.
  • Control is performed so that the upstream port 33U of the optical switch 33 connected to the downstream port 31D corresponding to the wavelength assigned to the downstream signal of the service device 50 is connected.
  • the controller 33C also controls the downstream port 33D of the optical switch 33 connected to the upstream output port 34UO of the upper/lower separator 34 and the service port 32D of the second multiplexer/demultiplexer 32 connected to the upper/lower separator 34.
  • the optical switch 33 is controlled so as to connect the upstream port 33U of the optical switch 33 connected to the downstream port 32D corresponding to the wavelength assigned to the upstream signal of the device 50 .
  • a circulator may be used as the upper and lower separator 34 .
  • the control device 33C may allocate arbitrary different wavelengths as the wavelengths of the uplink signal and the downlink signal of each service device 50 .
  • the control device 33C controls the downstream port 33D of the optical switch 33 connected to the upstream input port 34UI of the vertical separator 34 and the downstream port 33D of the service device 50 connected to the vertical separator 34 of the first multiplexer/demultiplexer 31. It controls to connect the upstream port 33U of the optical switch 33 connected to the downstream port 31D corresponding to the wavelength assigned to the signal.
  • the controller 33C controls the downstream port 33D of the optical switch 33 connected to the upstream output port 34UO of the upper/lower separator 34 and the upstream port 33D of the service device 50 of the second multiplexer/demultiplexer 32 connected to the upper/lower separator 34.
  • the optical switch 33 is controlled to connect the upstream port 33U of the optical switch 33 connected to the downstream port 32D corresponding to the wavelength assigned to the signal. This also applies to modified examples and embodiments described later.
  • the optical gateway device 30 according to the first embodiment has the vertical separator 34 provided downstream of the optical switch 33, but is not limited to this.
  • the optical gateway device 30 according to another embodiment may have the upper/lower separator 34 on the upstream side of the optical switch 33 .
  • FIG. 4 is a diagram showing the configuration of an optical gateway device 30 according to the first modified example of the first embodiment.
  • the upstream input port 34UI of the upper/lower separator 34 of the optical gateway device 30 according to the first modification is connected to the downstream port 31D of the first multiplexer/demultiplexer 31 .
  • the upstream output port 34UO of the upper/lower separator 34 is connected to the downstream port 32D of the second multiplexer/demultiplexer 32 .
  • a downstream port 34D of the vertical separator 34 is connected to an upstream port 33U of the optical switch 33 .
  • a downstream port 33D of the optical switch 33 is directly connected to the third fiber 51 . Since the number of upper and lower separators 34 is L, the optical switch 33 according to the first modified example only needs to have L upstream ports 33U and L downstream ports 33D.
  • the control device 33C sets the wavelength and path so as to satisfy all of the following five conditions.
  • the first condition is to allocate different wavelengths to the uplink signal and the downlink signal of one service device 50 .
  • the second condition is that the wavelength of the upstream signal passing through the same transmission line in the core network 10 differs for each service device 50 .
  • the third condition is that the wavelength of the downstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the fourth condition assigns the wavelength corresponding to the port of the second multiplexer/demultiplexer 32 connected to the upstream output port 34UO of the upstream/downstream separator 34 connected to the service equipment 50 to the upstream signal of the service equipment 50. That is.
  • the fifth condition assigns the wavelength corresponding to the port of the first multiplexer/demultiplexer 31 connected to the upstream input port 34UI of the upstream/downstream separator 34 connected to the service device 50 to the downstream signal of the service device 50. That is.
  • a wavelength filter may be used after setting the same connection and wavelength as the optical gateway device 30 according to the first embodiment shown in FIG. For example, among the signals of N wavelengths, the optical signals related to the first to [N/2]th wavelengths (the first wavelength group, that is, the short wavelength side) are directed downstream, and from the [N/2+1]th Assume that the optical signals of the second [N/2] wavelengths (the second wavelength group, ie, the long wavelength side) are directed upstream.
  • each of the upper and lower separators 34 can be configured by a wavelength filter that separates the optical signal into components of the first wavelength group and components of the second wavelength group.
  • the controller 33C controls the optical switch 33 so as to connect the upstream port 33U of the optical switch 33 connected to the downstream port 34D of the vertical separator 34 and the downstream port 33D of the optical switch 33 .
  • the controller 33C causes the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream input port 34UI of the vertical separator 34 to be connected to the vertical separator 34. assigned to the downlink signal of the service device 50.
  • the controller 33C causes the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream output port 34UO of the vertical separator 34 to be connected to the vertical separator 34. assigned to the upstream signal of the service device 50.
  • the first to [N/2]th wavelengths may be on the long wavelength side, and the [N/2+1]th to second [N/2]th wavelengths may be on the short wavelength side.
  • the control device 33C allocates the upstream signal wavelength and the downstream signal wavelength to be opposite to each other between the opposing service devices 50 .
  • a periodic filter such as an MZ filter may be used.
  • the upstream input port 34UI of the upper/lower separator 34 is connected to the downstream port 31D of the first multiplexer/demultiplexer 31 for the wavelength corresponding to the wavelength passed through the upstream input port 34UI.
  • the upstream output port 34UO of the upper/lower separator 34 is connected to the downstream port 32D of the second multiplexer/demultiplexer 32 having a wavelength corresponding to the passing wavelength of the upstream output port 34UO.
  • control device 33C corresponds to the downstream port 31D of the first multiplexer/demultiplexer 31 connected to the upstream input port 34UI of one of the upper and lower separators 34 as the wavelength of the upstream signal and the downstream signal of each service device 50. and a wavelength corresponding to the downstream port 32D of the second multiplexer/demultiplexer 32 connected to the upstream output port 34UO. Then, the control device 33C connects the downstream port 33D of the optical switch 33 connected to the service device 50 and the upstream port 33U of the optical switch connected to the vertical splitter 34 corresponding to the wavelength assigned to the service device 50. The optical switch 33 is controlled to connect.
  • a circulator may also be used as the upper and lower separator 34 .
  • the upstream input port 34UI of the vertical separator 34 is connected to the downstream port 31D of the first multiplexer/demultiplexer 31 .
  • the upstream output port 34UO of the upper/lower separator 34 is connected to the downstream port 32D of the second multiplexer/demultiplexer 32 corresponding to a wavelength different from the wavelength input to the upstream input port 34UI.
  • the control device 33C corresponds to the downstream port 31D of the first multiplexer/demultiplexer 31 connected to the upstream input port 34UI of one of the upper and lower separators 34 as the wavelength of the upstream signal and the downstream signal of each service device 50.
  • the controller 33C connects the downstream port 33D of the optical switch 33 connected to the service device 50 and the upstream port 33U of the optical switch connected to the upper/lower splitter 34 corresponding to the wavelength assigned to the service device 50.
  • the optical switch 33 is controlled as follows.
  • the upstream port 33U and the downstream port 33D of the optical switch 33 receive bidirectional signals and output bidirectional signals.
  • the optical gateway device 30 according to the first modification also has different wavelengths of optical signals transmitted bidirectionally on one core in the service device 50 between upstream and downstream directions. Interference due to reflection between upstream and downstream signals can be prevented.
  • the optical gateway device 30 according to the first modification does not dedicate the same wavelength component to the upstream signal or the downstream signal, but to By using both signals, wavelength utilization efficiency can be improved. That is, the optical gateway device 30 sets the same wavelength for the upstream signal of a certain service device 50 and the downstream signal of a different service device 50 .
  • FIG. 5 is a diagram showing the configuration of an optical gateway device 30 according to the second modification of the first embodiment.
  • the first fiber 11 and the second fiber 12 according to the second modification perform single-core bidirectional transmission. For example, among the signals of N wavelengths passing through the first fiber 11, the optical signals of the 1st to [N/2]th wavelengths (the first wavelength group, i.e., the short wavelength side) travel in the downstream direction. Optical signals of [N/2+1] to second [N/2] wavelengths (second wavelength group, ie, longer wavelength side) go upstream.
  • each of the upper and lower separators 34 can be configured by a wavelength filter that separates the optical signal into components of the first wavelength group and components of the second wavelength group. Further, in this case, the control device 33C controls so that each upper/lower separator 34 is connected to only one of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 .
  • the controller 33C controls the downstream port 33D of the optical switch 33 connected to the upstream input port 34UI of the vertical separator 34, and the downstream port 33D of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 on the first wavelength group side.
  • the optical switch 33 is controlled so as to connect the upstream port 33U connected to the port.
  • the controller 33C controls the downstream port 33D of the optical switch 33 connected to the upstream output port 34UO of the vertical separator 34 and the second wavelength group side of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32.
  • the optical switch 33 is controlled so as to connect the upstream port 33U connected to the downstream port.
  • the controller 33C converts the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream input port 34UI of the vertical splitter 34 via the optical switch 33 to the upstream input port 34UI of the vertical splitter 34. Assigned to the downstream signal of the service device 50 connected to the separator 34 .
  • the controller 33C selects the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream output port 34UO of the vertical splitter 34 via the optical switch 33. Assigned to the upstream signal of the service device 50 connected to the separator 34 .
  • the first to [N/2]th wavelengths may be on the long wavelength side, and the [N/2+1]th to the second [N/2]th wavelengths may be on the short wavelength side.
  • the control device 33C allocates the upstream signal wavelength and the downstream signal wavelength to be opposite to each other between the opposing service devices 50 .
  • a periodic filter such as an MZ filter may be used as the upper and lower separators 34 .
  • MZ filter When using a 2 ⁇ 2 port MZ filter, one of the two downstream ports is non-reflectively terminated.
  • the control device 33C allocates wavelengths to each service device 50 so that upstream wavelengths and downstream wavelengths correspond to each period of passing wavelengths in the MZ filter.
  • the control device 33C controls the downstream port 33D of the optical switch 33 connected to the upstream input port 34UI of the vertical separator 34 and the vertical separator 34 of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 upstream port 33U of the optical switch 33 connected to the downstream port corresponding to the wavelength assigned to the downlink signal of the service device 50 connected to .
  • the controller 33C also controls the downstream port 33D of the optical switch 33 connected to the upstream output port 34UO of the upper/lower separator 34 and the service port 32D of the second multiplexer/demultiplexer 32 connected to the upper/lower separator 34.
  • the optical switch 33 is controlled so as to connect the upstream port 33U of the optical switch 33 connected to the downstream port 32D corresponding to the wavelength assigned to the upstream signal of the device 50 . That is, the control device 33C controls the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 31 that flows from the upstream input port 34UI of the upper/lower separator 34 to the downstream port 34D and that is connected to the upstream input port 34UI via the optical switch 33.
  • the wavelength of the downstream port of wave generator 32 is set to the wavelength of the downstream signal of service device 50 .
  • control device 33C controls the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer that flows from the downstream port 34D of the vertical separator 34 to the upstream output port 34UO and connects with the upstream output port 34UO via the optical switch 33.
  • 32 is set to the upstream signal wavelength of the service device 50 .
  • the wavelength in the upstream direction and the wavelength in the downstream direction may be determined without dividing them into the long wavelength side and the short wavelength side. That is, the wavelength corresponding to any half of the ports of the first multiplexer/demultiplexer 31 may be set as the upstream wavelength, and the wavelength corresponding to the other half of the ports may be selected as the downstream wavelength.
  • the upstream and downstream optical signals may be multiplexed/demultiplexed by the same multiplexer/demultiplexer, or may be multiplexed/demultiplexed by different multiplexers/demultiplexers.
  • control device 33C allocates the upstream signal wavelength and the downstream signal wavelength to be opposite to each other between the service devices 50 facing each other.
  • the controller 33C controls the downstream port 33D of the optical switch 33 connected to the upstream input port 34UI of the vertical separator 34 and the vertical separator 34 of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32.
  • the optical switch 33 is controlled so as to connect the upstream port 33U of the optical switch 33 connected to the downstream port corresponding to the wavelength assigned to the downstream signal of the connected service device 50 .
  • the control device 33C controls the upstream output port 34UO of the vertical separator 34 and the upstream port of the service device 50 connected to the vertical separator 34 among the downstream ports of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 . Control is performed so that the port corresponding to the wavelength assigned to the signal is connected via 33U and 33D.
  • the optical gateway device 30 according to the second modification also has different wavelengths of optical signals transmitted bidirectionally on a single core in the service device 50 in the upstream direction and the downstream direction. Interference due to reflection between upstream and downstream signals can be prevented. Also, the optical gateway device 30 according to the second modification can improve the wavelength utilization efficiency by using the same wavelength component in each transmission line of the core network 10 .
  • the control device 33C sets the wavelength and path so as to satisfy all of the following four conditions.
  • the first condition is to allocate different wavelengths to the uplink signal and the downlink signal of one service device 50 .
  • the second condition is that the wavelength of the upstream signal passing through the same transmission line in the core network 10 differs for each service device 50 .
  • the third condition is that the wavelength of the downstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the fourth condition is to allocate the wavelengths of the first wavelength group to one of the uplink signal and the downlink signal of one service device 50 and to allocate the wavelengths of the second wavelength group to the other.
  • the wavelengths used for uplink and downlink may be matched between the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 .
  • the optical gateway device 30 may be configured as follows. In both the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32, upstream signals are input to half of the ports on the short wavelength side of the ports on the separation side, and downstream signals are output from half of the ports on the long wavelength side. be done.
  • Each of the upper and lower separators 34 has an upstream port on the short wavelength side as an upstream output port 34UO and an upstream port on the long wavelength side as an upstream input port 34UI.
  • each upper/lower separator 34 may be connected to the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 .
  • the controller 33C controls the two service devices 50 to which the same wavelength is assigned such that one is connected to the first multiplexer/demultiplexer 31 and the other is connected to the second multiplexer/demultiplexer 32. control the route. Note that when the first fiber 11 and the second fiber 12 are used for single-core bidirectional transmission as in the modification, the transmission line between the optical gateway devices 30 does not become a unidirectional transmission line. Therefore, the configuration of the modification is suitable for communication in which the optical gateway devices 30 face each other on the same transmission line.
  • FIG. 6 is a diagram showing a configuration for connecting to the core network 10 of one-fiber one-way transmission by the optical gateway device 30 of the second modification according to the first embodiment. Specifically, it is as follows.
  • a circulator 71 connected to the upstream port 31U of the first multiplexer/demultiplexer 31 separates the signal passing through the upstream port 31U into an upstream signal and a downstream signal.
  • a circulator 72 connected to the upstream port 32U of the second multiplexer/demultiplexer 32 separates the signal passing through the upstream port 32U into an upstream signal and a downstream signal.
  • a splitter 73 connected to the first fiber 11 splits the downstream signal transmitted from the first fiber into two wavelength groups and distributes them to the circulator 71 and the circulator 72 .
  • a coupler 74 connected to the second fiber 12 couples upstream signals of the service devices 50 transmitted from the circulators 71 and 72 and transmits the signals to the second fiber 12 .
  • the circulators 71 and 72, the splitter 73, and the coupler 74 may be provided as components of the optical gateway device 30. From the viewpoint of loss, a low-loss filter that divides the first wavelength group and the second wavelength group into two may be used as the coupler instead of using an AWG or MZ filter. Further, instead of the circulators 71 and 72, an MZ filter with a ring resonator having sharper switching between transmission and cutoff characteristics, or a WDM (Wavelength Division Multiplexing) filter that divides the wavelength to be used into two may be used.
  • WDM Widelength Division Multiplexing
  • the control device 33C of the optical gateway device 30 allows one service device 50 to use multiple routes in the same direction and use the same wavelength in each route. For example, the control device 33C may allocate the first and second wavelengths to the upstream signal of one service device 50, and allocate the third and fourth wavelengths to the downstream signal. Further, the control device 33C permits allocating signals of the same wavelength to different service devices 50 when an AWG is added. As a result, the optical gateway device 30 can implement on-demand expansion of AWGs.
  • multiplexers/demultiplexers of the same type as the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 are added as the number of service devices 50 to be connected increases.
  • the upstream port of the added multiplexer/demultiplexer and the upstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 are combined to connect the added multiplexer/demultiplexer to the core network 10.
  • the positions of the upper and lower separators 34 may be changed as in the first modified example. That is, the optical gateway device 30 may have the following configuration. Half of the plurality of upper and lower separators 34 have upstream input ports 34UI connected to ports corresponding to the first wavelength group among the downstream ports 31D of the first multiplexer/demultiplexer 31, and upstream output ports 34UO to the first multiplexer/demultiplexer. connected to the port corresponding to the second wavelength group among the downstream ports 31D of the device 31.
  • the remaining half of the plurality of upper and lower separators 34 have upstream input ports 34UI connected to ports corresponding to the second wavelength group among the downstream ports 32D of the second multiplexer/demultiplexer 32, and upstream output ports 34UO to the second multiplexer/demultiplexer. It is connected to the port corresponding to the first wavelength group among the downstream ports 32D of the wave generator 32 .
  • a wavelength filter corresponding to the wavelength setting may be used as the upper/lower separator 34 .
  • the optical signals related to the first to [N/2]th wavelengths are directed downstream, and from the [N/2+1]th Assume that the optical signals of the second [N/2] wavelengths (the second wavelength group, ie, the long wavelength side) are directed upstream.
  • each of the upper and lower separators 34 can be configured by a wavelength filter that separates the optical signal into components of the first wavelength group and components of the second wavelength group.
  • the controller 33C controls the optical switch 33 so as to connect the upstream port 33U of the optical switch 33 connected to the downstream port 34D of the vertical separator 34 and the downstream port 33D of the optical switch 33 .
  • the controller 33C causes the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream input port 34UI of the vertical separator 34 to be connected to the vertical separator 34. assigned to the downlink signal of the service device 50.
  • the controller 33C causes the wavelength corresponding to the downstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 connected to the upstream output port 34UO of the vertical separator 34 to be connected to the vertical separator 34. assigned to the upstream signal of the service device 50.
  • the first to [N/2]th wavelengths may be on the long wavelength side, and the [N/2+1]th to second [N/2]th wavelengths may be on the short wavelength side.
  • the control device 33C allocates the upstream signal wavelength and the downstream signal wavelength to be opposite to each other between the opposing service devices 50 .
  • a periodic filter such as an MZ filter may be used as the upper and lower separator 34.
  • the upstream input port 34UI of the upper/lower separator 34 is connected to the downstream port of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 corresponding to the wavelength passed by the upstream input port 34UI.
  • the upstream output port 34UO of the upper/lower separator 34 is connected to the downstream port of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 corresponding to the wavelength passed by the upstream output port 34UO.
  • the control device 33C uses the wavelengths corresponding to the downstream ports of the multiplexer/demultiplexer connected to the upstream input port 34UI of one of the up/down separators 34 as the wavelengths of the upstream and downstream signals of each service device 50; A wavelength corresponding to the downstream port of the multiplexer/demultiplexer connected to the upstream output port 34UO is assigned. Then, the control device 33C connects the downstream port 33D of the optical switch 33 connected to the service device 50 and the upstream port 33U of the optical switch connected to the vertical splitter 34 corresponding to the wavelength assigned to the service device 50. The optical switch 33 is controlled to connect.
  • a circulator may also be used as the upper and lower separator 34 .
  • upstream input port 34UI and upstream output port 34UO of upper/lower separator 34 are connected to different downstream ports 32D of first multiplexer/demultiplexer 31 or second multiplexer/demultiplexer 32 .
  • the control device 33C uses the wavelengths corresponding to the downstream ports of the multiplexer/demultiplexer connected to the upstream input port 34UI of one of the up/down separators 34 as the wavelengths of the upstream and downstream signals of each service device 50; A wavelength corresponding to the downstream port of the multiplexer/demultiplexer connected to the upstream output port 34UO is assigned.
  • the controller 33C connects the downstream port 33D of the optical switch 33 connected to the service device 50 and the upstream port 33U of the optical switch connected to the upper/lower splitter 34 corresponding to the wavelength assigned to the service device 50.
  • the optical switch 33 is controlled as follows.
  • the control device 33C sets the wavelength and path so as to satisfy all of the following six conditions.
  • the first condition is to allocate different wavelengths to the uplink signal and the downlink signal of one service device 50 .
  • the second condition is that the wavelength of the upstream signal passing through the same transmission line in the core network 10 differs for each service device 50 .
  • the third condition is that the wavelength of the downstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the fourth condition is to allocate a combination of wavelengths of optical signals passing through one multiplexer/demultiplexer 31 and 32 to an upstream signal and a downstream signal of one service device 50 .
  • the fifth condition assigns the upstream signal of the service device 50 a wavelength corresponding to the port of the multiplexer/demultiplexer 31, 32 connected to the upstream output port 34UO of the upper/lower separator 34 connected to the service device 50. That is.
  • the sixth condition assigns the wavelength corresponding to the ports of the multiplexers/demultiplexers 31 and 32 connected to the upstream input port 34UI of the upstream/downstream separator 34 connected to the service equipment 50 to the downstream signal of the service equipment 50. That is.
  • the optical gateway device 30 in which the position of the upper and lower separators 34 is the same as in the first modification is also provided with two circulators 71 and 72, a splitter 73 and a coupler 74 as shown in FIG. , it is possible to connect to the core network 10 that performs single-fiber one-way transmission.
  • the circulator 71 is connected to the upstream port 31U of the first multiplexer/demultiplexer 31 .
  • Circulator 72 is connected to upstream port 32 U of second multiplexer/demultiplexer 32 .
  • a splitter 73 is provided between the first fiber 11 and the two circulators 71,72.
  • a coupler 74 is provided between the second fiber 12 and the two circulators 71 and 72 .
  • FIG. 7 is a diagram showing the configuration of an optical gateway device 30 according to the third modification of the first embodiment.
  • the optical gateway device 30 according to the third modification of the first embodiment does not need to include the vertical separator 34 .
  • the optical gateway device 30 according to the third modification also prevents interference between upstream signals and downstream signals of the same wavelength due to wavelength reflection, while all N wavelengths are used as signals in the upstream direction. can be assigned to downstream signals.
  • the control device 33C sets the wavelength and path so as to satisfy all of the following three conditions.
  • the first condition is to allocate different wavelengths to the uplink signal and the downlink signal of one service device 50 .
  • the second condition is that the wavelength of the upstream signal passing through the same transmission line in the core network 10 differs for each service device 50 .
  • the third condition is that the wavelength of the downstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 according to the first embodiment are configured by AWG. Some AWGs have wavelength cyclicity.
  • the optical gateway device 30 according to the second embodiment has a simpler configuration than the first embodiment by using AWGs having wavelength periodicity as the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32. , realizes transmission that demultiplexes signals that are bi-directionally transmitted on a single core with different wavelengths.
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 in place of the AWG having wavelength periodicity, an optical multiplexer/demultiplexer or the like and a ring having a sufficiently wide transmission band and sharp switching between transmission and cutoff characteristics are used.
  • a combination with an MZ filter with a resonator or a WDM filter may also be used.
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 include a plurality of MZ filters whose phases are shifted so that the connections of upstream wavelengths and downstream wavelengths are reversed, and upstream ports of each MZ filter. and an optical multiplexer/brancher connected to.
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 include a plurality of WDM filters with shifted reflection wavelength ranges, and an optical multiplexer/demultiplexer connected to the upstream port of each WDM filter. can be anything.
  • FIG. 8 is a schematic block diagram showing the configuration of the optical gateway device 30 according to the second embodiment.
  • the optical gateway device 30 according to the second embodiment includes a first multiplexer/demultiplexer 31, a second multiplexer/demultiplexer 32, an optical switch 33, a first coupler 35, a second coupler 36, a first circulator 37, a second A circulator 38 is provided.
  • the first coupler 35 and the second coupler 36 are configured by AWG or WDM filters, and perform wavelength-selective multiplexing/demultiplexing.
  • the first coupler 35 has one first port and two second ports. A first port is connected to the first fiber 11 and a second port is connected to the first circulator 37 and the second circulator 38 .
  • the first coupler 35 separates the multiplexed signal input from the first fiber 11 into signals of the first wavelength group and signals of the second wavelength group.
  • the first coupler 35 outputs signals of the first wavelength group to the first circulator 37 and outputs signals of the second wavelength group to the second circulator 38 .
  • the second coupler 36 has one first port and two second ports. A first port is connected to the second fiber 12 and a second port is connected to the first circulator 37 and the second circulator 38 .
  • the second coupler 36 multiplexes the signal of the second wavelength group input from the first circulator 37 and the signal of the first wavelength group input from the second circulator 38 .
  • a second coupler 36 outputs the combined signal to the second fiber 12 .
  • the first circulator 37 is connected to the upstream port 31U of the first multiplexer/demultiplexer 31, the first coupler 35, and the second coupler 36.
  • the first circulator 37 outputs the signal input from the first coupler 35 to the upstream port 31U of the first multiplexer/demultiplexer 31 .
  • the first circulator 37 outputs the signal input from the upstream port 31U of the first multiplexer/demultiplexer 31 to the second coupler 36 .
  • the second circulator 38 is connected to the upstream port 32U of the second multiplexer/demultiplexer 32, the first coupler 35, and the second coupler 36.
  • the second circulator 38 outputs the signal input from the first coupler 35 to the upstream port 32U of the second multiplexer/demultiplexer 32 .
  • the second circulator 38 outputs the signal input from the upstream port 32U of the second multiplexer/demultiplexer 32 to the second coupler 36 .
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 according to the second embodiment are configured by an AWG having a wavelength periodicity of M cycles.
  • the number of cycles M that enables bidirectional transmission using the same wavelength is 2 or more and [N/2] or less. It is assumed that the number of cycles M of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 according to the second embodiment is two. In this case, the number of wavelengths per period is [N/2].
  • the first multiplexer/demultiplexer 31 has one upstream port 31U and M downstream ports 31D.
  • the upstream port 31U is connected to the first circulator 37 .
  • the M downstream ports 31D are connected to corresponding upstream ports 33U of the optical switch 33 .
  • the first multiplexer/demultiplexer 31 demultiplexes the multiplexed signal input to the upstream port 31U into M optical signal groups, and outputs the M optical signal groups from the corresponding downstream port 31D.
  • the second multiplexer/demultiplexer 32 has one upstream port 32U and [N/M] downstream ports 32D.
  • the upstream port 32U is connected to the second circulator 38 .
  • the M downstream ports 32D are connected to corresponding upstream ports 33U of the optical switch 33 .
  • the second multiplexer/demultiplexer 32 multiplexes the optical signal groups input to the [N/M] downstream ports 32D and outputs the multiplexed signals from the upstream port 32U.
  • the first wavelength group to the [N/2]th wavelength group from the shortest wavelength side is the first wavelength group
  • the second wavelength group is the [N/2+1]th to the 2nd [N/2]th wavelength group.
  • a wavelength group a plurality of wavelengths in a cyclic relationship at all of the downstream ports 31D of the first multiplexer/demultiplexer 31 and the downstream ports 32D of the second multiplexer/demultiplexer 32 belong to the first wavelength group. wavelengths and wavelengths belonging to the second wavelength group.
  • the optical switch 33 includes at least 2 [N/M] upstream ports 33U, a plurality of downstream ports 33D, and a controller 33C.
  • Downstream port 33D is connected to third fiber 51 .
  • the optical switch 33 transmits an optical signal input to the upstream port 33U to any one of a plurality of downstream ports 33D.
  • the optical switch 33 also transmits the optical signal input to the downstream port 33D to the upstream port 33U corresponding to the wavelength.
  • a correspondence relationship between the upstream port 33U and the downstream port 33D in the optical switch 33 is determined according to a control signal from the controller 33C.
  • the control device 33C assigns the wavelengths of the first wavelength group and the wavelengths of the second wavelength group, which are in a cyclic relationship, to the upstream signal and the downstream signal of the third fiber 51 .
  • one downstream port 31D of the first multiplexer/demultiplexer 31 receives the downstream signal of the first wavelength, which is the wavelength of the first wavelength group, and the upstream signal of the second wavelength, which is in a cyclic relationship with the first wavelength. will pass.
  • the upstream signal of the first wavelength and the downstream signal of the second wavelength pass through one downstream port 32 D of the second multiplexer/demultiplexer 32 .
  • the controller 33C sets the wavelength and path so as to satisfy all of the following four conditions.
  • the first condition is to allocate different wavelengths in a cyclic relationship to the uplink signal and the downlink signal of one service device 50 .
  • the second condition is that one wavelength of the upstream signal and the downstream signal belongs to the first wavelength group and the other wavelength belongs to the second wavelength group.
  • the third condition is that the wavelength of the upstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the fourth condition is that the wavelength of the downstream signal passing through the same transmission line in the core network 10 is different for each service device 50 .
  • the first multiplexer/demultiplexer 31 processes the downstream signal of the first wavelength group and the upstream signal of the second wavelength group, and processes the second multiplexer/demultiplexer.
  • the receiver 32 processes downstream signals of the second wavelength group and upstream signals of the first wavelength group. That is, in the optical gateway device 30, the direction in which the wavelength component of the first wavelength in the optical signal passing through the upstream port 31U of the first multiplexer/demultiplexer 31 travels and the direction in which the wavelength component passes through the upstream port 32U of the second multiplexer/demultiplexer 32 The direction in which the wavelength component of the first wavelength in the optical signal travels is opposite to each other.
  • the first wavelength group and the second wavelength group are in a cyclic relationship with each other in the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 .
  • the optical gateway device 30 prevents interference due to reflection between upstream and downstream signals by differentiating the wavelength of the optical signal transmitted bidirectionally on a single core in the service device 50 between the upstream direction and the downstream direction. be able to.
  • the optical gateway device 30 can improve wavelength utilization efficiency by using the same wavelength component in each transmission line of the core network 10 .
  • the optical gateway device 30 according to the second embodiment can reduce the number of ports of the first multiplexer/demultiplexer 31 , the second multiplexer/demultiplexer 32 and the optical switch 33 .
  • the number of cycles M of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 is 2 has been described. If it is [N/2] or less, it does not have to be 2.
  • the degree of freedom and expandability of the optical gateway device 30 can be improved by setting the number of cycles M to 4 or more, that is, 4 or more cycles in one port. For example, if the number of wavelengths N is 80 and the number of cycles M is 4, 40 wavelengths are used at the stage of introduction of the optical gateway device 30, and the remaining 40 wavelengths are added when the optical gateway device 30 is expanded.
  • the same one as the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 can be used as the multiplexer/demultiplexer.
  • the first coupler 35 and the second coupler 36 are replaced with an AWG or a filter that divides the wavelength into four.
  • an optical coupler may be installed between the first coupler 35 and the second coupler 36 and each circulator, and the upstream and downstream may be branched and connected to the circulators.
  • a coupling/branching part may be installed between the circulator and the multiplexer/demultiplexer.
  • the control device 33C permits the use of multiple routes in the same direction for one service device 50, the use of the same wavelength in each route, and the assignment of signals of the same wavelength to different service devices 50. It is possible to implement demanded AWG expansion.
  • the control device 33C of the optical gateway device 30 allows one service device 50 to use multiple routes in the same direction and use the same wavelength in each route. For example, the control device 33C may allocate the first and second wavelengths to the upstream signal of one service device 50, and allocate the third and fourth wavelengths to the downstream signal. Further, the control device 33C permits allocating signals of the same wavelength to different service devices 50 when an AWG is added. As a result, the optical gateway device 30 can implement on-demand expansion of AWGs.
  • multiplexers/demultiplexers of the same type as the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 are added as the number of service devices 50 to be connected increases.
  • the upstream port of the added multiplexer/demultiplexer and the upstream port of the first multiplexer/demultiplexer 31 or the second multiplexer/demultiplexer 32 are combined to connect the added multiplexer/demultiplexer to the core network 10. Let Expansion in this manner is possible up to the number of AWGs [N/(2m)].
  • FIG. 9 is a diagram showing the configuration of an optical gateway device 30 according to the first modified example of the second embodiment.
  • optical signals of the first wavelength group go downstream, and optical signals of the second wavelength group go upstream.
  • optical signals related to the first wavelength group go upstream, and optical signals related to the second wavelength group go downstream.
  • the optical gateway device 30 does not have to include the first coupler 35 , the second coupler 36 , the first circulator 37 and the second circulator 38 . That is, by connecting the upstream port 31U of the first multiplexer/demultiplexer 31 to the first fiber 11 and connecting the upstream port 32U of the second multiplexer/demultiplexer 32 to the second fiber 12, single-core bidirectional transmission is performed. It is possible to correspond to the core network 10 according to
  • FIG. 10 is a diagram showing the configuration of an optical gateway device 30 according to a second modification of the second embodiment.
  • the optical gateway device 30 according to the second modification of the second embodiment includes N vertical separators 39 downstream of the optical switch 33 . Prepare.
  • the upper/lower separator 39 has an upstream port 39U, a downstream input port 39DI, and a downstream output port 39DO.
  • the upstream port 39U is connected to the optical switch 33.
  • FIG. Downstream input port 39DI and downstream output port 39DO are connected to service device 50 .
  • the upper/lower separator 39 outputs the optical signal input to the downstream input port 39DI from the upstream port 39U.
  • the upper/lower separator 39 outputs the optical signal input to the upstream port 39U from the downstream output port 39DO.
  • the upper/lower separator 39 may be configured by, for example, an optical circulator. Also, the upper/lower separator 39 may be configured by, for example, a wavelength multiplexing/demultiplexing module.
  • the optical gateway device 30 according to the second embodiment includes a first circulator 37 and a second circulator 38 connected to the first coupler 35 and the second coupler 36, but is not limited to this.
  • the optical gateway device 30 according to another embodiment may include a third coupler 40 and a fourth coupler 41 instead of the first circulator 37 and the second circulator 38 .
  • FIG. 11 is a diagram showing the configuration of an optical gateway device 30 according to a third modified example of the second embodiment.
  • a third coupler 40 according to the third modification of the second embodiment transmits signals of the first wavelength group input from the first coupler 35 to the upstream port 32U of the second multiplexer/demultiplexer 32 . Also, the third coupler 40 transmits to the second coupler 36 the signal of the second wavelength group among the signals input from the upstream port 32 U of the second multiplexer/demultiplexer 32 .
  • a fourth coupler 41 transmits signals of the second wavelength group input from the first coupler 35 to the upstream port 32U of the second multiplexer/demultiplexer 32 .
  • the fourth coupler 41 also transmits to the second coupler 36 the signals of the first wavelength group among the signals input from the upstream port 32 U of the second multiplexer/demultiplexer 32 .
  • the optical gateway device 30 according to the second embodiment includes two multiplexers/demultiplexers 31 and 32 with a cycle number M of [N/2]. is not limited to this, and may be less than [N/2].
  • FIG. 12 is a diagram showing the configuration of an optical gateway device 30 according to the fourth modified example of the second embodiment.
  • An optical gateway device 30 according to a fourth modification of the second embodiment includes four multiplexers/demultiplexers 31A, 31B, 32A, and 32B with a periodicity M of [N/4], and two couplers 31C and 32C. Prepare.
  • the upstream port of the multiplexer/demultiplexer 31A and the upstream port of the multiplexer/demultiplexer 31B are connected to the downstream port of the coupler 31C.
  • the multiplexers/demultiplexers 31A, 31B, 32A, and 32B all have wavelength periodicity.
  • a first circulator 37 is connected to the upstream port of the coupler 31C.
  • the upstream port of the multiplexer/demultiplexer 32A and the upstream port of the multiplexer/demultiplexer 32B are connected to the downstream port of the coupler 32C.
  • a second circulator 38 is connected to the upstream port of the coupler 32C.
  • FIG. 13 is a diagram showing the relationship between the multiplexer/demultiplexer according to the fourth modification of the second embodiment and wavelengths.
  • N the number of wavelengths
  • M of each multiplexer/demultiplexer is 4.
  • the 16 wavelengths are called the 1st wavelength, .
  • the first, fifth, ninth, and thirteenth wavelengths have periodicity with each other.
  • the second, sixth, tenth, and fourteenth wavelengths have periodicity with each other.
  • the third downstream port of each multiplexer/demultiplexer the third, seventh, eleventh, and fifteenth wavelengths have periodicity with each other.
  • the fourth downstream port of each multiplexer/demultiplexer the 4th, 8th, 12th and 16th wavelengths are cyclic with each other.
  • the controller 33C allocates wavelengths to the multiplexer/demultiplexer 31A and the multiplexer/demultiplexer 31B so as not to overlap. Specifically, the controller 33C assigns the first wavelength to the [N/4]th wavelength to the downstream signal of the multiplexer/demultiplexer 31A, and assigns the [1+N/4]th wavelength to the downstream signal of the multiplexer/demultiplexer 31B. to the [N/2]th wavelength.
  • the controller 33C allocates wavelengths to the multiplexer/demultiplexer 32A and the multiplexer/demultiplexer 32B so as not to overlap each other. Specifically, the controller 33C assigns the [1+N/2]th to [3N/4]th wavelengths to the downstream signal of the multiplexer/demultiplexer 32A, and assigns the [1+3Nth] wavelength to the downstream signal of the multiplexer/demultiplexer 32B. /4] wavelength to the Nth wavelength.
  • couplers 31C and 32C switch input/output ports every [N/4] cycles.
  • couplers 31C and 32C according to the fourth modification of the second embodiment are configured by MZ filters, MZ filters with ring resonators, or the like.
  • the optical gateway device 30 makes the wavelength of the optical signal transmitted bidirectionally on one core different between the upstream direction and the downstream direction in the service device 50, and The same wavelength component can be used in each transmission line of network 10 .
  • the optical gateway device 30 according to the fifth modification of the second embodiment has a configuration similar to that of the fourth modification, but different wavelengths are assigned to the ports of the multiplexers/demultiplexers.
  • the controller 33C assigns the first wavelength to the [N/4]th wavelength to the downstream signal of the multiplexer/demultiplexer 31A, and assigns the [1+N/2]th wavelength to the downstream signal of the multiplexer/demultiplexer 31B. to the [3N/4]th wavelength.
  • the controller 33C allocates wavelengths to the multiplexer/demultiplexer 32A and the multiplexer/demultiplexer 32B so as not to overlap each other.
  • the controller 33C assigns the [1+N/4]th to [N/2]th wavelengths to the downstream signal of the multiplexer/demultiplexer 32A, and the [1+3Nth] wavelength to the downstream signal of the multiplexer/demultiplexer 32B. /4] wavelength to the Nth wavelength.
  • the couplers 31C and 32C switch input/output ports between a wavelength group of [N/2] wavelengths or more and a wavelength group of less than [N/2] wavelengths.
  • the couplers 31C and 32C according to the fifth modified example of the second embodiment are configured by WDM filters.
  • first coupler 35 and the second coupler 36 switch input/output ports every [N/4] cycles.
  • first coupler 35 and the second coupler 36 according to the fifth modification of the second embodiment are configured by MZ filters, MZ filters with ring resonators, or the like.
  • FIG. 15 is a diagram showing the configuration of an optical gateway device according to the sixth modification of the second embodiment.
  • the service device 50 is connected to the downstream port 33D of the optical switch 33 without going through the upper/lower separator 39.
  • FIG. 15 the optical gateway device 30 according to the sixth modification of the second embodiment does not need to include the upper/lower separator 39 .
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 according to the above-described embodiment are configured by AWG, but are not limited to this.
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 according to other embodiments may be implemented by MZ filters, or may use WSS (Wavelength Selective Switch).
  • WSS is usually used for multiplexing or branching in one-core one-way transmission, and cannot be transmitted as it is in one-core two-way transmission, and is handled after being divided into upper and lower one-way optical signals.
  • WSS does not have wavelength selectivity, so there is a possibility that unintended wavelengths may enter the port. Therefore, if one WSS is used instead of the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32, even if the upstream signal contains an unintended wavelength, there is a possibility that it will be conducted as it is. There is a possibility that a signal destined for another service device 50 will be mixed in the downlink signal. In some configurations only one wavelength is selected.
  • the WSS module includes a wavelength multiplexer/demultiplexer 1 provided corresponding to a port for inputting/outputting wavelength-multiplexed optical signals, and a plurality of wavelength multiplexers/demultiplexers 2 provided corresponding to each port on the demultiplexing side. , and an optical switch for connecting each wavelength port on the demultiplexing side of the wavelength multiplexer/demultiplexer 1 to any one of the plurality of wavelength multiplexers/demultiplexers 2 . Therefore, it is impossible to transmit different wavelengths on the upper and lower sides.
  • the optical switch 33 may be implemented using a multicast switch that implements a transponder aggregator, or may be implemented using a WSS module.
  • the optical switch 33 comprises, for example, L couplers corresponding to upstream ports 33U and N switches corresponding to downstream ports 33D.
  • the coupler has one first port and N second ports.
  • the switch has one first port and L second ports.
  • the second port of each coupler and the second port of each switch are fully coupled together. That is, the optical switch 33 has L ⁇ N ports.
  • optical signals are combined and branched by a coupler, so there is a possibility that an unintended wavelength may pass for an upstream signal, and an unintended wavelength for a downstream signal is cut off by a filter. Therefore, if the optical switch 33 is configured on the upstream side, there is a possibility that unintended wavelengths will be conducted.
  • the downstream configuration is adopted, only the wavelength set in advance by the filter can pass. Therefore, in order to make a multicast switch compatible with one-core bidirectional, a new multicast switch equipped with a filter that can select and transmit multiple wavelengths for the upstream and downstream directions with a cyclic AWG etc. is created. Regarding downstream wavelengths, it is necessary to allocate them in the same manner as in the configuration using the cyclic AWG or the like of the present application.
  • the optical switch 33 has been shown as an example configured by an optical switch such as FXC, it is not limited to this. An optical switch having another configuration may be used.
  • the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 according to the above-described embodiment handle signals in the same wavelength band, the present invention is not limited to this.
  • the first multiplexer/demultiplexer 31 handles signals with wavelengths from ⁇ 1 to ⁇ 10
  • the second multiplexer/demultiplexer 32 handles signals with wavelengths from ⁇ 6 to ⁇ 15.
  • the wavelength components from wavelength ⁇ 6 to wavelength ⁇ 10 travel in opposite directions in the first multiplexer/demultiplexer 31 and the second multiplexer/demultiplexer 32 . Even with such a configuration, the same wavelength can be used for at least some of the wavelengths, and it is possible to achieve the effect that both the uplink and the downlink can be conducted.
  • Optical network 10 Core network 11... First fiber 12... Second fiber 30... Optical gateway device 31... First multiplexer/demultiplexer 32... Second multiplexer/demultiplexer 33... Optical switch 33C... Control device 34... Upper and lower Separator 35... First coupler 36... Second coupler 37... First circulator 38... Second circulator 39... Upper and lower separator 50... Service device 51... Third fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

第1合分波器は、第1ポートから入力される光信号を分離して複数の第2ポートから出力し、複数の第2ポートから入力された光信号を多重して第1ポートから出力する。第2合分波器は、第3ポートから入力される光信号を分離して複数の第4ポートから出力し、複数の第4ポートから入力された光信号を多重して第3ポートから出力する。第1合分波器の第1ポートを通る光信号のうち第1の波長の波長成分が進む方向と、第2合分波器の第3ポートを通る光信号のうち第1の波長の波長成分が進む方向とは、互いに逆方向である。光スイッチは、複数の第5ポートと複数の第6ポートとを備える。光スイッチの複数の第5ポートには、第1合分波器の第2ポートおよび第2合分波器の第4ポートが接続される。

Description

光ゲートウェイ装置
 本発明は、光ゲートウェイ装置に関する。
 非特許文献1には、オールフォトニクスネットワークを構成する光ゲートウェイ(Photonic Gateway)が記載されている。光ゲートウェイは、コアネットワークと複数のサービス装置との間に設けられる。サービス装置の例としては、CPE(Customer Premises Equipment)などが挙げられる。非特許文献1に示されるように、光ゲートウェイは、サービス装置が伝送する光信号の波長と、コアネットワークとサービス装置との間の経路とを設定する。光ゲートウェイは、光スイッチと合分波器等を備える。光スイッチは、サービス装置とコアネットワークとを接続する。合分波器は、波長の異なる複数の光信号を波長分割多重する。
吉田智暁、APNを支えるPhotonic Gatewayと光アクセス技術、「月刊ビジネスコミュニケーション」、株式会社ビジネスコミュニケーション社、2020年、vol.57、no.10、16-17ページ
 光ゲートウェイ装置の下流側にはCPEのようなサービス装置が接続される。上りと下りの通信を同じ伝送路を介し、一芯双方向で、同じ波長の信号で行うと、自らの送信信号の反射により対向装置からの信号の受信に劣化が生じる。そのため、サービス装置またはコアネットワークにおいて一芯双方向で上りと下りの通信を同じ伝送路を介して通信する場合、異なる波長の光信号で上りと下りの通信を行うことが好ましい。そのため、通信経路の少なくとも一部において一心双方向での伝送が行われる場合、光ゲートウェイ装置は、上りと下りの光信号の波長として、異なる波長をサービス装置に割り当てる。
 一方、光信号の波長資源を効率よく利用するためには、各伝送路で、利用可能な波長を全て利用することが望ましい。異なる波長の上りと下りの通信を同じ伝送路を介し、一芯双方向で伝送する場合に、利用可能な波長から、ある波長は上り専用、ある波長は下り専用のように、例えば一対一の割合で固定的に上りと下りの波長を割当する場合を想定する。その場合、一芯双方向の上りと下りを分離し、それぞれ上りだけ、下りだけを多重し、それぞれ送信側、受信側として片方向二芯で伝送する場合、それぞれの伝送路で、利用可能な波長の半分しか利用しないことになる。そのため、同一の波長を上り専用、下り専用とせずに、あるサービス装置で、上りに割り当てた波長を、別のサービス装置で下りに割り当て、上りと下りの双方向に用いることが好ましい。例えば、第1のサービス装置の上り信号に第1の波長を、下り信号に第2の波長を割り当て、第2のサービス装置の上り信号に第2の波長を、下り信号に第1の波長を割り当て、それらの上り信号と下り信号をそれぞれ多重することで、一芯双方向で伝送する信号を片方向二芯に多重分離して光信号を伝送する伝送路でも波長を有効活用することができる。
 ところで、光ゲートウェイを構成する合分波器は、通常、入出力する波長と分離側のポートの組合せが固定されているAWG(Arrayed Waveguide Gratings)を用いる。そのため、光ゲートウェイ装置において、異なる波長を用いて一芯双方向で上りと下りの双方を伝送する伝送路を、そのままAWGの分離側のポートに接続し、導通させることは困難である。
 本発明の目的は、サービス装置に上り信号と下り信号とで異なる波長を割り当て、かつコアネットワークで同一の波長を上り信号と下り信号とに用いることができる光ゲートウェイ装置を提供することにある。
 本発明の一態様は、第1合分波器と、第2合分波器と、光スイッチとを備える。第1合分波器は、第1ポートと複数の第2ポートとを備え、前記第1ポートから入力される光信号を分離して前記複数の第2ポートから出力し、前記複数の第2ポートから入力された光信号を多重して前記第1ポートから出力する。第2合分波器は、第3ポートと複数の第4ポートとを備え、前記第3ポートから入力される光信号を分離して前記複数の第4ポートから出力し、前記複数の第4ポートから入力された光信号を多重して前記第3ポートから出力する。光スイッチは、複数の第5ポートと複数の第6ポートとを備え、前記複数の第5ポートに前記第2ポートおよび前記第4ポートが接続され、前記複数の第5ポートと前記複数の第6ポートとの間で光信号のスイッチングを行う。前記第1ポートを通る光信号のうち第1の波長の波長成分が進む方向と、前記第3ポートを通る光信号のうち前記第1の波長の波長成分が進む方向とが、互いに逆方向である。
 上記態様によれば、サービス装置に上り信号と下り信号とで異なる波長を割り当て、かつコアネットワークで同一の波長を上り信号と下り信号とに用いることができる。
第1の実施形態に係る光ネットワークの構成を示す概略図である。 第1の実施形態に係る光ゲートウェイ装置の構成を示す概略ブロック図である。 第1の実施形態に係る光ゲートウェイ装置における信号の流れを示す図である。 第1の実施形態の第1変形例に係る光ゲートウェイ装置の構成を示す図である。 第1の実施形態の第2変形例に係る光ゲートウェイ装置の構成を示す図である。 第1の実施形態に係る第2変形例の光ゲートウェイ装置によって一心片方向伝送のコアネットワークに接続するための構成を示す図である。 第1の実施形態の第3変形例に係る光ゲートウェイ装置の構成を示す図である。 第2の実施形態に係る光ゲートウェイ装置の構成を示す概略ブロック図である。 第2の実施形態の第1変形例に係る光ゲートウェイ装置の構成を示す図である。 第2の実施形態の第2変形例に係る光ゲートウェイ装置の構成を示す図である。 第2の実施形態の第3変形例に係る光ゲートウェイ装置の構成を示す図である。 第2の実施形態の第4変形例に係る光ゲートウェイ装置の構成を示す図である。 第2の実施形態の第4変形例に係る合分波器と波長の関係を示す図である。 第2の実施形態の第5変形例に係る合分波器と波長の関係を示す図である。 第2の実施形態の第6変形例に係る光ゲートウェイ装置の構成を示す図である。
〈第1の実施形態〉
《光ネットワークの構成》
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第1の実施形態に係る光ネットワーク1の構成を示す概略図である。
 光ネットワーク1は、コアネットワーク10に接続された複数の光ゲートウェイ装置30を備える。コアネットワーク10は、リングネットワークである。ここでは、説明を簡潔にするため、コアネットワーク10は左回り方向に信号を伝送する1つの伝送経路からなるリングネットワークとする。なお、他の実施形態においては、コアネットワーク10は左回りの伝送路と右回りの伝送路とをそれぞれ有するネットワークであってもよいし、複数のリングネットワークが結合したマルチリングネットワークであってもよい。また、他の実施形態においては、コアネットワーク10はリングネットワークでなくフルメッシュネットワークであってもよい。光ネットワーク1では、N波長の光信号を用いる。複数の波長の光信号を多重した信号を多重信号とよぶ。コアネットワーク10は一芯片方向伝送を行う。本明細書において「一芯片方向」とは、1つの伝送路で同一方向へ進む光信号のみを伝送可能とする方式である。なお、伝送路はシングルコアファイバであってもよいし、マルチコアファイバであってもよい。伝送路がマルチコアファイバである場合、心線中の1つのコア内において同一方向へ進む光信号のみ(片方向)が伝送され、コア間で光信号が進む方向が異なる伝送方式も、一芯片方向伝送である。つまり、「一芯」は、シングルコアファイバの1つの心線に限られず、マルチコアファイバにおける1つのコアも含む。
 光ゲートウェイ装置30は、コアネットワーク10とサービス装置50との間に設けられ、サービス装置50同士の通信を中継する。以下、光ゲートウェイ装置30のうちコアネットワーク10に接続される側を「上流側」とよび、サービス装置50に接続される側を「下流側」とよぶ。なお、他の実施形態に係る光ゲートウェイ装置30は、コアネットワーク10を介さずに他の光ゲートウェイ装置30と接続するものであってもよい。この場合、他の光ゲートウェイ装置30に接続される側を「上流側」とよぶ。第1の実施形態に係るサービス装置50と光ゲートウェイ装置30とは第3ファイバ51を介して接続される。第3ファイバ51は、上流方向と向かう光信号と、下流方向へ向かう光信号とを通す。つまり、第3ファイバ51は、一芯双方向伝送を行う。本明細書において「一芯双方向」とは、1つの伝送路で互いに向き合う方向へ進む光信号を伝送可能とする方式である。伝送路がマルチコアファイバである場合、芯線中の1つのコア内において互いに向き合う方向へ進む光信号を伝送する伝送方式を、一芯双方向伝送とよぶ。なお、上流方向の光信号の波長と下流方向の光信号の波長とは、互いに異なる。
《光ゲートウェイ装置30の構成》
 図2は、第1の実施形態に係る光ゲートウェイ装置30の構成を示す概略ブロック図である。第1の実施形態に係る光ゲートウェイ装置30は、第1合分波器31、第2合分波器32、光スイッチ33、L個の上下分離器34を備える。1つの上下分離器34には1つのサービス装置50が接続可能である。つまり、光ゲートウェイ装置30は、最大でL個のサービス装置50が接続される。
 第1合分波器31は、1個の上流ポート31UとN個の下流ポート31Dを備える。上流ポート31Uは、コアネットワーク10における上流側の光ゲートウェイ装置30(左隣の光ゲートウェイ装置30)から伸びる第1ファイバ11に接続される。N個の下流ポート31Dは、光スイッチ33の対応する上流ポート33Uに接続される。第1合分波器31は、上流ポート31Uに入力される多重信号を波長の異なるN個の光信号に分離し、各波長に対応する下流ポート31Dから出力する。第1合分波器31としては、例えばAWGを用いることができる。
 第2合分波器32は、1個の上流ポート32UとN個の下流ポート32Dを備える。上流ポート32Uは、コアネットワーク10における下流側の光ゲートウェイ装置30(右隣の光ゲートウェイ装置30)から伸びる第2ファイバ12に接続される。N個の下流ポート32Dは、光スイッチ33の対応する上流ポート33Uに接続される。第2合分波器32は、N個の下流ポート32Dに入力される光信号を多重し、多重した多重信号を上流ポート32Uから出力する。第1合分波器31としては、例えばAWGを用いることができる。
 光スイッチ33は、2N個の上流ポート33Uと、2L個の下流ポート33Dと、制御装置33Cを備える。光スイッチ33は、上流ポート33Uに入力された光信号を、2L個の下流ポート33Dのうち制御装置33Cによって割り当てられた下流ポート33Dに伝送する。また光スイッチ33は、下流ポート33Dに入力された光信号を、2N個の上流ポート33Uのうち制御装置33Cによって割り当てられた上流ポート33Uに伝送する。つまり、光スイッチ33は、上流ポート33Uと下流ポート33Dとの間における光信号のスイッチングを行う。光スイッチ33における上流ポート33Uと下流ポート33Dの接続関係は、制御装置33Cによる制御信号に従って決定される。光スイッチ33は、例えばFXC(Fiber Cross Connect)またはその他の多対多の光スイッチであってよい。
 制御装置33Cは、プロセッサを用いてもよい。制御装置33Cは、バスで接続されたプロセッサ、メモリ、補助記憶装置などを備え、プログラムを実行することによって所定の処理を実行するコンピュータであってもよい。プロセッサの例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。プロセッサの例としては、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)等のカスタムLSI(Large Scale Integrated Circuit)が挙げられる。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。
 制御装置33Cは、以下の3つの条件をすべて満たすように波長と経路とを設定する。第1の条件は、1つのサービス装置50の上り信号と下り信号とに異なる波長を割り当てることである。第2の条件は、コアネットワーク10における同一の伝送路を通る上り信号の波長がサービス装置50ごとに異なることである。第3の条件は、コアネットワーク10における同一の伝送路を通る下り信号の波長がサービス装置50ごとに異なることである。なお、本実施形態に係る光ゲートウェイ装置30は、光スイッチ33の制御装置33Cが波長の割り当てを行うものとしているが、他の実施形態ではこれに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30は、光スイッチ33の制御装置33Cと別個に上位制御装置を備え、当該上位制御装置が波長の割り当てを行ってもよい。この場合、上位制御装置は波長の割り当て結果に基づいて制御装置33Cに経路や結線の切替指示を出力する。また他の実施形態では、ネットワーク全体を制御する装置が波長の割り当てを行ってもよい。
 上下分離器34は、上流入力ポート34UI、上流出力ポート34UO、下流ポート34Dを備える。上流入力ポート34UIおよび上流出力ポート34UOは、光スイッチ33の下流ポート33Dに接続される。下流ポート34Dは、第3ファイバ51に接続される。上下分離器34は、上流入力ポート34UIに入力された光信号を下流ポート34Dから出力する。上下分離器34は、下流ポート34Dに入力された光信号を上流出力ポート34UOから出力する。上下分離器34は、例えば光サーキュレータによって構成されてよい。また上下分離器34は、例えばAWGなどの合分波モジュールによって構成されてよい。
《作用・効果》
 図3は、第1の実施形態に係る光ゲートウェイ装置30における信号の流れを示す図である。このように、第1の実施形態に係る光ゲートウェイ装置30において、第1合分波器31は、N個の波長に係る下流方向の光信号を処理し、第2合分波器32は、N個の波長に係る上流方向の光信号を処理する。つまり、光ゲートウェイ装置30において、第1合分波器31の上流ポート31Uを通る光信号のうち第1の波長の波長成分が進む方向と、第2合分波器32の上流ポート32Uを通る光信号のうち第1の波長の波長成分が進む方向とは、互いに逆方向である。これにより、光ゲートウェイ装置30は、サービス装置50において一芯双方向で伝送される光信号の波長を上流方向と下流方向とで異ならせることで、上り信号と下り信号との反射による干渉を防ぐことができる。さらに、光ゲートウェイ装置30は、光信号を一芯片方向伝送するコアネットワーク10の各伝送路において、同一の波長を上り信号専用または下り信号専用とせずに上り信号と下り信号の両方で利用することで、波長利用効率を向上させることができる。つまり光ゲートウェイ装置30は、あるサービス装置50の上り信号とそれとは異なるサービス装置50の下り信号とに同一の波長を設定する。
 例えば、図3に示すように、サービス装置50Aの上り信号に第1波長が割り当てられ、下り信号に第2波長が割り当てられる場合に、光ゲートウェイ装置30は、サービス装置50Bの上り信号に第2波長を割り当て、下り信号に第1波長を割り当てることができる。同様に、光ゲートウェイ装置30は、サービス装置50Cの上り信号に第3波長を、下り信号に第4波長が割り当て、サービス装置50Dの上り信号に第4波長を、下り信号に第3波長を割り当てることができる。
 なお、光ゲートウェイ装置30は、2つの波長をペアとして、2つのサービス装置50の上り信号と下り信号とでペアの波長を互いに逆になるように設定しなくてもよい。つまり、光ゲートウェイ装置30は、2つのサービス装置50の一方の上り信号にペアの波長の一方を設定し、下り信号にペアの波長のもう一方を設定し、2つのサービス装置50のもう一方の下り信号にペアの波長の一方を設定し、上り信号にペアの波長のもう一方を設定しなくてもよい。例えば、方向多重した信号を各方向に分離した光信号の内、同じ方向の光信号を多重し同一の伝送路で伝送するサービス装置50同士で上り信号の波長との関係をずらしたものを下り信号として割り当ててもよい。例えば、光ゲートウェイ装置30は、サービス装置Aの上り信号に第1波長、サービス装置Bの上り信号に第2波長、サービス装置Cの上り信号に第3波長、サービス装置Dの上り信号に第4波長を割り当てた場合に、サービス装置Aの上り信号に第2波長、サービス装置Bの上り信号に第3波長、サービス装置Cの上り信号に第4波長、サービス装置Dの上り信号に第1波長を割り当ててもよい。第1の実施形態に係る光ネットワーク1は、サービス装置50が利用可能な波長が増加するため、サービス装置50の故障耐性を向上させることができる。
 なお、上下分離器34は、波長設定に応じて構成してもよい。
 例えば、N個の波長の信号のうち、第1から第[N/2]の波長(第1波長群、すなわち短波長側)に係る光信号が下流方向へ向かい、第[N/2+1]から第2[N/2]の波長(第2波長群、すなわち長波長側)に係る光信号が上流方向へ向かうとする。なお、[・]はガウス記号であって、内側の値を超えない最大の整数値を表す。つまりNが偶数である場合、2[N/2]はNであり、Nが奇数である場合、2[N/2]は(N-1)である。Nが奇数である場合に、第N波長に係る光信号は使用しなくともよい。
 この場合、各上下分離器34はいずれも、光信号を、第1波長群の成分と第2波長群の成分とに分離する波長フィルタによって構成することができる。また、この場合、制御装置33Cは、各上下分離器34が第1合分波器31および第2合分波器32の何れか一方とのみ接続するように制御する。
 制御装置33Cは、上下分離器34の上流入力ポート34UIに接続される光スイッチ33の下流ポート33Dと、第1合分波器31または第2合分波器32の第1波長群側の下流ポートに接続される上流ポート33Uとを接続するように、光スイッチ33を制御する。また制御装置33Cは、上下分離器34の上流出力ポート34UOに接続される光スイッチ33の下流ポート33Dと、第1合分波器31または第2合分波器32の第2波長群側の下流ポートに接続される上流ポート33Uとを接続するように、光スイッチ33を制御する。制御装置33Cは、上下分離器34の上流入力ポート34UIに光スイッチ33を介して接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の下り信号に割り当てる。制御装置33Cは、上下分離器34の上流出力ポート34UOに光スイッチ33を介して接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の上り信号に割り当てる。
 第1から第[N/2]の波長を長い波長側とし、第[N/2+1]から第2[N/2]の波長を短波長側としてもよい。このとき、制御装置33Cは、対向するサービス装置50同士で、上り信号の波長と下り信号の波長とが互いに逆となるように割り振る。
 上下分離器34としては、MZ(Mach-Zehnder)フィルタ等の周期フィルタを用いてもよい。2×2ポートのMZフィルタを用いる場合、下流側の2つポートの一方は無反射終端される。この場合、制御装置33Cは、各サービス装置50の上り信号および下り信号の波長として、当該サービス装置50に接続される上下分離器34の2つの上流ポートの通過波長に対応する波長を割り当てる。そして、制御装置33Cは、上下分離器34の上流入力ポート34UIに接続された光スイッチ33の下流ポート33Dと、第1合分波器31の下流ポート31Dのうち上下分離器34に接続されるサービス装置50の下り信号に割り当てた波長に対応する下流ポート31Dに接続された光スイッチ33の上流ポート33Uとを接続するように制御する。また制御装置33Cは、上下分離器34の上流出力ポート34UOに接続された光スイッチ33の下流ポート33Dと、第2合分波器32の下流ポート32Dのうち上下分離器34に接続されるサービス装置50の上り信号に割り当てた波長に対応する下流ポート32Dに接続された光スイッチ33の上流ポート33Uとを接続するように光スイッチ33を制御する。
 また、上下分離器34としては、サーキュレータを用いてもよい。この場合、制御装置33Cは、各サービス装置50の上り信号および下り信号の波長として、互いに異なる任意の波長を割り当ててよい。制御装置33Cは、上下分離器34の上流入力ポート34UIに接続された光スイッチ33の下流ポート33Dと、第1合分波器31のうち当該上下分離器34に接続されたサービス装置50の下り信号に割り当てた波長に対応する下流ポート31Dに接続された光スイッチ33の上流ポート33Uとを接続するように制御する。制御装置33Cは、上下分離器34の上流出力ポート34UOに接続された光スイッチ33の下流ポート33Dと、第2合分波器32のうち当該上下分離器34に接続されたサービス装置50の上り信号に割り当てた波長に対応する下流ポート32Dに接続された光スイッチ33の上流ポート33Uとを接続するように光スイッチ33を制御する。
 これは、後述の変形例及び実施形態においても同様である。
《第1変形例》
 第1の実施形態に係る光ゲートウェイ装置30は、上下分離器34を光スイッチ33の下流側に設けるが、これに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30は、上下分離器34を光スイッチ33の上流側に設けてもよい。図4は、第1の実施形態の第1変形例に係る光ゲートウェイ装置30の構成を示す図である。
 第1変形例に係る光ゲートウェイ装置30の上下分離器34の上流入力ポート34UIは第1合分波器31の下流ポート31Dに接続される。また上下分離器34の上流出力ポート34UOは第2合分波器32の下流ポート32Dに接続される。上下分離器34の下流ポート34Dは、光スイッチ33の上流ポート33Uに接続される。光スイッチ33の下流ポート33Dは、直接第3ファイバ51に接続される。上下分離器34の数はL個であるから、第1変形例に係る光スイッチ33はL個の上流ポート33U、L個の下流ポート33Dを備えていればよい。
 この場合、制御装置33Cは、以下の5つの条件をすべて満たすように波長と経路とを設定する。第1の条件は、1つのサービス装置50の上り信号と下り信号とに異なる波長を割り当てることである。第2の条件は、コアネットワーク10における同一の伝送路を通る上り信号の波長がサービス装置50ごとに異なることである。第3の条件は、コアネットワーク10における同一の伝送路を通る下り信号の波長がサービス装置50ごとに異なることである。第4の条件は、サービス装置50の上り信号に、当該サービス装置50に接続される上下分離器34の上流出力ポート34UOに接続される第2合分波器32のポートに対応する波長を割り当てることである。第5の条件は、サービス装置50の下り信号に、当該サービス装置50に接続される上下分離器34の上流入力ポート34UIに接続される第1合分波器31のポートに対応する波長を割り当てることである。
 なお、上下分離器34としては、図2に示す第1の実施形態に係る光ゲートウェイ装置30同様の接続と波長を設定の上、波長フィルタを用いてもよい。例えば、N個の波長の信号のうち、第1から第[N/2]の波長(第1波長群、すなわち短波長側)に係る光信号が下流方向へ向かい、第[N/2+1]から第2[N/2]の波長(第2波長群、すなわち長波長側)に係る光信号が上流方向へ向かうとする。
 この場合、各上下分離器34はいずれも、光信号を、第1波長群の成分と第2波長群の成分とに分離する波長フィルタによって構成することができる。制御装置33Cは、上下分離器34の下流ポート34Dに接続される光スイッチ33の上流ポート33Uと、光スイッチ33の下流ポート33Dとを接続するように、光スイッチ33を制御する。制御装置33Cは、上下分離器34の上流入力ポート34UIに接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の下り信号に割り当てる。制御装置33Cは、上下分離器34の上流出力ポート34UOに接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の上り信号に割り当てる。
 第1から第[N/2]の波長を長い波長側とし、第[N/2+1]から第2[N/2]の波長を短波長側としてもよい。このとき、制御装置33Cは、対向するサービス装置50同士で、上り信号の波長と下り信号の波長とが互いに逆となるように割り振る。
 MZフィルタ等の周期フィルタを用いてもよい。上下分離器34の上流入力ポート34UIは、上流入力ポート34UIの通過波長に対応する波長の第1合分波器31の下流ポート31Dに接続される。また上下分離器34の上流出力ポート34UOは、上流出力ポート34UOの通過波長に対応する波長の第2合分波器32下流ポート32Dに接続される。この場合、制御装置33Cは、各サービス装置50の上り信号および下り信号の波長として、一の上下分離器34の上流入力ポート34UIに接続された第1合分波器31の下流ポート31Dに対応する波長と、上流出力ポート34UOに接続された第2合分波器32の下流ポート32Dに対応する波長とを割り当てる。そして、制御装置33Cは、サービス装置50に接続された光スイッチ33の下流ポート33Dと、当該サービス装置50に割り当てた波長に対応する上下分離器34に接続された光スイッチの上流ポート33Uとを接続するように光スイッチ33を制御する。
 また、上下分離器34としては、サーキュレータを用いてもよい。この場合、上下分離器34の上流入力ポート34UIは、第1合分波器31のある下流ポート31Dに接続される。また上下分離器34の上流出力ポート34UOは、第2合分波器32のうち、上流入力ポート34UIに入力される波長と異なる波長に対応する下流ポート32Dに接続される。この場合、制御装置33Cは、各サービス装置50の上り信号および下り信号の波長として、一の上下分離器34の上流入力ポート34UIに接続された第1合分波器31の下流ポート31Dに対応する波長と、上流出力ポート34UOに接続された第2合分波器32の下流ポート32Dに対応する波長とを割り当てる。制御装置33Cは、サービス装置50に接続された光スイッチ33の下流ポート33Dと、当該サービス装置50に割り当てた波長に対応する上下分離器34に接続された光スイッチの上流ポート33Uとを接続するように光スイッチ33を制御する。
 第1の実施形態の第1変形例によれば、光スイッチ33の上流ポート33Uおよび下流ポート33Dには、双方向の信号が入力され、また双方向の信号を出力する。第1変形例に係る光ゲートウェイ装置30も、第1の実施形態と同様に、サービス装置50において一芯双方向で伝送される光信号の波長を上流方向と下流方向とで異ならせることで、上り信号と下り信号との反射による干渉を防ぐことができる。また、第1変形例に係る光ゲートウェイ装置30は、光信号を一芯片方向伝送するコアネットワーク10の各伝送路において、同一の波長成分を上り信号専用または下り信号専用とせずに上り信号と下り信号の両方で利用することで、波長利用効率を向上させることができる。つまり光ゲートウェイ装置30は、あるサービス装置50の上り信号とそれとは異なるサービス装置50の下り信号とに同一の波長を設定する。
《第2変形例》
 第1の実施形態に係る光ゲートウェイ装置30は、上流側に接続される光ファイバが一芯片方向伝送を行うが、これに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30の上流側に接続される光ファイバは、一芯双方向伝送を行ってもよい。図5は、第1の実施形態の第2変形例に係る光ゲートウェイ装置30の構成を示す図である。
 第2変形例に係る第1ファイバ11および第2ファイバ12は、一芯双方向伝送を行う。例えば、第1ファイバ11を通るN個の波長の信号のうち、第1から第[N/2]の波長(第1波長群、すなわち短波長側)に係る光信号が下流方向へ向かい、第[N/2+1]から第2[N/2]の波長(第2波長群、すなわち長波長側)に係る光信号が上流方向へ向かう。
 つまり第2変形例に係る第1合分波器31は、第1波長群に係る光信号が下流方向へ向かい、第2波長群に係る光信号が上流方向へ向かう。他方、第2ファイバ12を通るN個の波長の信号のうち、第1から第[N/2]の波長に係る光信号が上流方向へ向かい、第[N/2+1]から第2[N/2]の波長に係る光信号が下流方向へ向かう。つまり第2変形例に係る第2合分波器32は、第1波長群に係る光信号が上流方向へ向かい、第2波長群に係る光信号が下流方向へ向かう。この場合、各上下分離器34はいずれも、光信号を、第1波長群の成分と第2波長群の成分とに分離する波長フィルタによって構成することができる。またこの場合、制御装置33Cは、各上下分離器34が第1合分波器31および第2合分波器32の何れか一方とのみ接続するように制御する。
 制御装置33Cは、上下分離器34の上流入力ポート34UIに接続される光スイッチ33の下流ポート33Dと、第1合分波器31または第2合分波器32の第1波長群側の下流ポートに接続される上流ポート33Uとを接続するように、光スイッチ33を制御する。また制御装置33Cは、上下分離器34の上流出力ポート34UOに接続される光スイッチ33の下流ポート33Dと、第1合分波器31または第2合分波器32の第2波長群側の下流ポートに接続される上流ポート33Uとを接続するように、光スイッチ33を制御する。制御装置33Cは、上下分離器34の上流入力ポート34UIに光スイッチ33を介して接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の下り信号に割り当てる。制御装置33Cは、上下分離器34の上流出力ポート34UOに光スイッチ33を介して接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の上り信号に割り当てる。
 他の変形例においては第1から第[N/2]の波長を長い波長側とし、第[N/2+1]から第2[N/2]の波長を短波長側としてもよい。このとき、制御装置33Cは、対向するサービス装置50同士で、上り信号の波長と下り信号の波長とが互いに逆となるように割り振る。
 他の変形例では、上下分離器34としてMZフィルタ等の周期フィルタを用いてもよい。2×2ポートのMZフィルタを用いる場合、下流側の2つポートの一方は無反射終端される。この場合、制御装置33Cは、各サービス装置50に、MZフィルタにおける通過波長の周期ごとの上流方向の波長と下流方向の波長とが対応するように波長を割り当てる。そして、制御装置33Cは、上下分離器34の上流入力ポート34UIに接続された光スイッチ33の下流ポート33Dと、第1合分波器31および第2合分波器32のうち上下分離器34に接続されるサービス装置50の下り信号に割り当てた波長に対応する下流ポートに接続された光スイッチ33の上流ポート33Uとを接続するように制御する。また制御装置33Cは、上下分離器34の上流出力ポート34UOに接続された光スイッチ33の下流ポート33Dと、第2合分波器32の下流ポート32Dのうち上下分離器34に接続されるサービス装置50の上り信号に割り当てた波長に対応する下流ポート32Dに接続された光スイッチ33の上流ポート33Uとを接続するように光スイッチ33を制御する。すなわち、制御装置33Cは、上下分離器34の上流入力ポート34UIから下流ポート34Dへ流れ、かつ、上流入力ポート34UIと光スイッチ33を介して接続する第1合分波器31または第2合分波器32の下流ポートの波長を、サービス装置50の下り信号の波長に設定する。また制御装置33Cは、上下分離器34の下流ポート34Dから上流出力ポート34UOへ流れ、かつ上流出力ポート34UOと光スイッチ33を介して接続する第1合分波器31または第2合分波器32の下流ポートの波長を、サービス装置50の上り信号の波長に設定する。
 なお、他の変形例において上下分離器34としてサーキュレータを用いる場合、上流方向の波長と下流方向の波長とを長波長側と短波長側とに分けずに決定してもよい。即ち、第1合分波器31の任意の半分のポートと対応する波長を上りの波長とし、残りの半分のポートと対応する波長を下りの波長として選択してもよい。この場合、上りと下りの光信号を、同一の合分波器で合分波してもよいし、異なる合分波器で合分波してもよい。また、制御装置33Cは、この場合も対向するサービス装置50同士で、上り信号の波長と下り信号の波長とが互いに逆となるように割り振る。制御装置33Cは、上下分離器34の上流入力ポート34UIに接続された光スイッチ33の下流ポート33Dと、第1合分波器31および第2合分波器32のうち当該上下分離器34に接続されたサービス装置50の下り信号に割り当てた波長に応じた下流ポートに接続された光スイッチ33の上流ポート33Uとを接続するように光スイッチ33を制御する。制御装置33Cは、上下分離器34の上流出力ポート34UOと、第1合分波器31または第2合分波器32の下流ポートのうち当該上下分離器34に接続されたサービス装置50の上り信号に割り当てた波長に応じたポートとを33Uと33Dを介して接続するように制御する。
 第2変形例に係る光ゲートウェイ装置30も、第1の実施形態と同様に、サービス装置50において一芯双方向で伝送される光信号の波長を上流方向と下流方向とで異ならせることで、上り信号と下り信号との反射による干渉を防ぐことができる。また、第2変形例に係る光ゲートウェイ装置30は、コアネットワーク10の各伝送路において同一の波長成分を利用することで、波長利用効率を向上させることができる。
 なお、この場合、制御装置33Cは、以下の4つの条件をすべて満たすように波長と経路とを設定する。第1の条件は、1つのサービス装置50の上り信号と下り信号とに異なる波長を割り当てることである。第2の条件は、コアネットワーク10における同一の伝送路を通る上り信号の波長がサービス装置50ごとに異なることである。第3の条件は、コアネットワーク10における同一の伝送路を通る下り信号の波長がサービス装置50ごとに異なることである。第4の条件は、1つのサービス装置50の上り信号および下り信号の一方に第1波長群の波長を割り当て、もう一方に第2波長群の波長を割り当てることである。
 他の変形例として、第1合分波器31と第2合分波器32とで上りと下りで使用する波長を一致させてもよい。例えば、光ゲートウェイ装置30は、以下のように構成されてもよい。第1合分波器31と第2合分波器32はいずれも、分離側のポートの短波長側の半数のポートに上り信号が入力され、長波長側の半数のポートから下り信号が出力される。上下分離器34は、いずれも短波長側の上流ポートを上流出力ポート34UOとし、長波長側の上流ポートを上流入力ポート34UIとする。この場合、各上下分離器34は、第1合分波器31に接続されてもよいし、第2合分波器32に接続されてもよい。この場合、制御装置33Cは、同一の波長が割り当てられた2つのサービス装置50に一方が第1合分波器31に接続され、もう一方が第2合分波器32に接続されるように経路を制御する。なお、当該変形例のように第1ファイバ11および第2ファイバ12が一芯双方向伝送に用いられる場合、光ゲートウェイ装置30間の伝送路が一方向の伝送路とならない。そのため、当該変形例の構成は光ゲートウェイ装置30同士が同一の伝送路で対向させる通信において好適である。
 なお、第2変形例において、光ゲートウェイ装置30の出力が一芯双方向伝送でありつつ、コアネットワーク10が一芯片方向伝送を行う場合、光ゲートウェイ装置30の上流側の端に2つのサーキュレータ71、72とスプリッタ73およびカプラ74を設けることで、光ゲートウェイ装置30と一心片方向伝送を行うコアネットワーク10とを接続することができる。図6は、第1の実施形態に係る第2変形例の光ゲートウェイ装置30によって一心片方向伝送のコアネットワーク10に接続するための構成を示す図である。具体的には、以下の通りである。第1合分波器31の上流ポート31Uに接続されたサーキュレータ71は、上流ポート31Uを通る信号を上り信号と下り信号とに分離する。第2合分波器32の上流ポート32Uに接続されたサーキュレータ72は、上流ポート32Uを通る信号を上り信号と下り信号とに分離する。第1ファイバ11に接続されたスプリッタ73は、第1ファイバから伝送される下り信号を2つの波長群に分離して、サーキュレータ71とサーキュレータ72とに分配する。第2ファイバ12に接続されたカプラ74は、サーキュレータ71およびサーキュレータ72から伝送される各サービス装置50の上り信号を結合して第2ファイバ12に伝送する。
 なお、サーキュレータ71および72、スプリッタ73、並びにカプラ74は、光ゲートウェイ装置30の構成として備えられてもよい。なお、損失の観点から、カプラとして、AWGやMZフィルタを用いず、第1波長群と第2波長群とで2分する低損失のフィルタを用いてよい。また、サーキュレータ71、72に代えて、透過と遮断特性の切り替わりがより急峻なリング共振器付きMZフィルタや、利用する波長を二分割するWDM(Wavelength Division Multiplexing)フィルタを用いてもよい。例えば、光ゲートウェイ装置30において第1波長群と第2波長群とが第[N/2]の波長で二分される場合、サーキュレータ71、72に代えて、[N/2]波長と[N/2+1]との間で透過と反射が切り替わるWDMフィルタを用いることができる。また例えば、光ゲートウェイ装置30において第1波長群と第2波長群とが所定数の波長ごとに入れ違いとなる場合、サーキュレータ71、72に代えてMZフィルタを用いることができる。
 第2の実施例によれば、オンデマンドにAWGを増設することができ、またAWG種別の単一化が可能であるという効果を奏することができる。オンデマンドにAWGを増設する場合、光ゲートウェイ装置30の制御装置33Cは、1つのサービス装置50に対して、同一方向の複数経路の利用、および各経路での同一波長の利用を許容する。例えば、制御装置33Cは、1つのサービス装置50の上り信号に第1波長および第2波長を割り当て、下り信号に第3波長および第4波長を割り当ててよい。また、制御装置33Cは、AWGが増設されたときに、同一波長の信号を異なるサービス装置50に割り当てることを許容する。これにより、光ゲートウェイ装置30はオンデマンドなAWGの増設を実現することができる。具体的には、接続すべきサービス装置50の増加に応じて、第1合分波器31および第2合分波器32と同じ種別の合分波器を増設する。そして、増設した合分波器の上流ポートと第1合分波器31または第2合分波器32の上流ポートとを合分岐させることで、増設した合分波器をコアネットワーク10に接続させる。
 なお、第2の変形例の構成において、第1の変形例と同様に上下分離器34の位置を異ならせてもよい。すなわち、光ゲートウェイ装置30は以下に示す構成を有するものであってよい。複数の上下分離器34の半数は、上流入力ポート34UIが第1合分波器31の下流ポート31Dのうち第1波長群に対応するポートに接続され、上流出力ポート34UOが第1合分波器31の下流ポート31Dのうち第2波長群に対応するポートに接続される。複数の上下分離器34の残り半数は、上流入力ポート34UIが第2合分波器32の下流ポート32Dのうち第2波長群に対応するポートに接続され、上流出力ポート34UOが第2合分波器32の下流ポート32Dのうち第1波長群に対応するポートに接続される。
 上下分離器34としては、波長設定に応じた波長フィルタを用いてもよい。例えば、N個の波長の信号のうち、第1から第[N/2]の波長(第1波長群、すなわち短波長側)に係る光信号が下流方向へ向かい、第[N/2+1]から第2[N/2]の波長(第2波長群、すなわち長波長側)に係る光信号が上流方向へ向かうとする。
 この場合、各上下分離器34はいずれも、光信号を、第1波長群の成分と第2波長群の成分とに分離する波長フィルタによって構成することができる。制御装置33Cは、上下分離器34の下流ポート34Dに接続される光スイッチ33の上流ポート33Uと、光スイッチ33の下流ポート33Dとを接続するように、光スイッチ33を制御する。制御装置33Cは、上下分離器34の上流入力ポート34UIに接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の下り信号に割り当てる。制御装置33Cは、上下分離器34の上流出力ポート34UOに接続された第1合分波器31または第2合分波器32の下流ポートに対応する波長を、当該上下分離器34に接続されたサービス装置50の上り信号に割り当てる。
 第1から第[N/2]の波長を長い波長側とし、第[N/2+1]から第2[N/2]の波長を短波長側としてもよい。このとき、制御装置33Cは、対向するサービス装置50同士で、上り信号の波長と下り信号の波長とが互いに逆となるように割り振る。
 また、上下分離器34としては、MZフィルタ等の周期フィルタを用いてもよい。上下分離器34の上流入力ポート34UIは、第1合分波器31および第2合分波器32のうち、上流入力ポート34UIの通過波長に対応する波長の下流ポートに接続される。また上下分離器34の上流出力ポート34UOは、第1合分波器31および第2合分波器32のうち、上流出力ポート34UOの通過波長に対応する波長の下流ポートに接続される。この場合、制御装置33Cは、各サービス装置50の上り信号および下り信号の波長として、一の上下分離器34の上流入力ポート34UIに接続された合分波器の下流ポートに対応する波長と、上流出力ポート34UOに接続された合分波器の下流ポートに対応する波長とを割り当てる。そして、制御装置33Cは、サービス装置50に接続された光スイッチ33の下流ポート33Dと、当該サービス装置50に割り当てた波長に対応する上下分離器34に接続された光スイッチの上流ポート33Uとを接続するように光スイッチ33を制御する。
 また、上下分離器34としては、サーキュレータを用いてもよい。この場合、上下分離器34の上流入力ポート34UIおよび上流出力ポート34UOは、第1合分波器31または第2合分波器32の異なる下流ポート32Dに接続される。この場合、制御装置33Cは、各サービス装置50の上り信号および下り信号の波長として、一の上下分離器34の上流入力ポート34UIに接続された合分波器の下流ポートに対応する波長と、上流出力ポート34UOに接続された合分波器の下流ポートに対応する波長とを割り当てる。制御装置33Cは、サービス装置50に接続された光スイッチ33の下流ポート33Dと、当該サービス装置50に割り当てた波長に対応する上下分離器34に接続された光スイッチの上流ポート33Uとを接続するように光スイッチ33を制御する。
 この場合、制御装置33Cは、以下の6つの条件をすべて満たすように波長と経路とを設定する。第1の条件は、1つのサービス装置50の上り信号と下り信号とに異なる波長を割り当てることである。第2の条件は、コアネットワーク10における同一の伝送路を通る上り信号の波長がサービス装置50ごとに異なることである。第3の条件は、コアネットワーク10における同一の伝送路を通る下り信号の波長がサービス装置50ごとに異なることである。第4の条件は、1つのサービス装置50の上り信号と下り信号とに、1つの合分波器31、32を経由する光信号の波長の組み合わせを割り当てることである。第5の条件は、サービス装置50の上り信号に、当該サービス装置50に接続される上下分離器34の上流出力ポート34UOに接続される合分波器31、32のポートに対応する波長を割り当てることである。第6の条件は、サービス装置50の下り信号に、当該サービス装置50に接続される上下分離器34の上流入力ポート34UIに接続される合分波器31、32のポートに対応する波長を割り当てることである。
 なお、第2変形例において、上下分離器34の位置を第1変形例と同様とした光ゲートウェイ装置30も、図6に示すように2つのサーキュレータ71、72とスプリッタ73およびカプラ74を設けることで、一心片方向伝送を行うコアネットワーク10と接続することができる。サーキュレータ71は、第1合分波器31の上流ポート31Uに接続される。サーキュレータ72は、第2合分波器32の上流ポート32Uに接続される。スプリッタ73は、第1ファイバ11と2つのサーキュレータ71、72との間に設けられる。カプラ74は、第2ファイバ12と2つのサーキュレータ71、サーキュレータ72との間に設けられる。
《第3変形例》
 第1の実施形態に係る光ゲートウェイ装置30は、下流側に接続される光ファイバが一芯双方向伝送を行うが、これに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30は、サービス装置50と、上り信号用の光ファイバおよび下り信号用の光ファイバを用いた一芯片方向伝送を行ってもよい。図7は、第1の実施形態の第3変形例に係る光ゲートウェイ装置30の構成を示す図である。
 下流側に接続される光ファイバが一芯片方向伝送を行う場合、第1の実施形態の第3変形例に係る光ゲートウェイ装置30は、上下分離器34を備えなくてよい。第3変形例に係る光ゲートウェイ装置30も、第1の実施形態と同様に、波長の反射による同一波長の上り信号と下り信号の干渉を防ぎつつ、N個の波長すべてを上流方向の信号と下流方向の信号とに割り当てることができる。
 制御装置33Cは、以下の3つの条件をすべて満たすように波長と経路とを設定する。第1の条件は、1つのサービス装置50の上り信号と下り信号とに異なる波長を割り当てることである。第2の条件は、コアネットワーク10における同一の伝送路を通る上り信号の波長がサービス装置50ごとに異なることである。第3の条件は、コアネットワーク10における同一の伝送路を通る下り信号の波長がサービス装置50ごとに異なることである。
〈第2の実施形態〉
 第1の実施形態に係る第1合分波器31および第2合分波器32はAWGによって構成される。AWGは、波長周回性を有するものがある。第2の実施形態に係る光ゲートウェイ装置30は、第1合分波器31および第2合分波器32として波長周回性を有するAWGを用いることで、第1の実施形態より簡易な構成で、異なる波長で一芯双方向伝送される信号を多重分離する伝送を実現する。なお、第1合分波器31および第2合分波器32として、波長周回性を有するAWGに代えて、光合分岐器等と透過帯域が十分に広く透過と遮断特性の切り替わりが急峻なリング共振器付きMZフィルタやWDMフィルタとの組み合わせを用いてもよい。例えば、第1合分波器31および第2合分波器32は、互いに上り波長と下り波長の接続が反転するように位相がずれた複数のMZフィルタと、各MZフィルタの上流側のポートに接続された光合分岐器とを備えるものであってもよい。また例えば、第1合分波器31および第2合分波器32は、反射波長範囲がずれた複数のWDMフィルタと、各WDMフィルタの上流側のポートに接続された光合分岐器とを備えるものであってもよい。
 図8は、第2の実施形態に係る光ゲートウェイ装置30の構成を示す概略ブロック図である。第2の実施形態に係る光ゲートウェイ装置30は、第1合分波器31、第2合分波器32、光スイッチ33、第1カプラ35、第2カプラ36、第1サーキュレータ37、第2サーキュレータ38を備える。第1カプラ35および第2カプラ36は、AWGやWDMフィルタによって構成され、波長選択性の合分波を行う。
 第1カプラ35は、1つの第1ポートと2つの第2ポートとを備える。第1ポートが第1ファイバ11に接続され、第2ポ―トが第1サーキュレータ37と第2サーキュレータ38とに接続される。第1カプラ35は、第1ファイバ11から入力される多重信号を第1波長群の信号と第2波長群の信号とに分離する。第1カプラ35は、第1波長群の信号を第1サーキュレータ37へ出力し、第2波長群の信号を第2サーキュレータ38へ出力する。
 第2カプラ36は、1つの第1ポートと2つの第2ポートとを備える。第1ポートが第2ファイバ12に接続され、第2ポートが第1サーキュレータ37と第2サーキュレータ38とに接続される。第2カプラ36は、第1サーキュレータ37から入力される第2波長群の信号と、第2サーキュレータ38から入力される第1波長群の信号とを合波する。第2カプラ36は、合波された信号を第2ファイバ12へ出力する。
 第1サーキュレータ37は、第1合分波器31の上流ポート31Uと第1カプラ35と第2カプラ36とに接続される。第1サーキュレータ37は、第1カプラ35から入力された信号を第1合分波器31の上流ポート31Uに出力する。第1サーキュレータ37は、第1合分波器31の上流ポート31Uから入力された信号を第2カプラ36に出力する。
 第2サーキュレータ38は、第2合分波器32の上流ポート32Uと第1カプラ35と第2カプラ36とに接続される。第2サーキュレータ38は、第1カプラ35から入力された信号を第2合分波器32の上流ポート32Uに出力する。第2サーキュレータ38は、第2合分波器32の上流ポート32Uから入力された信号を第2カプラ36に出力する。
 第2の実施形態に係る第1合分波器31および第2合分波器32は、周期数Mの波長周回性を有するAWGによって構成される。同一の波長を用いた双方向の伝送を実現可能な周期数Mは、2以上[N/2]以下である。第2の実施形態に係る第1合分波器31および第2合分波器32の周期数Mは2とする。この場合、1周期あたりの波長数は[N/2]である。
 第1合分波器31は、1個の上流ポート31UとM個の下流ポート31Dを備える。上流ポート31Uは、第1サーキュレータ37に接続される。M個の下流ポート31Dは、光スイッチ33の対応する上流ポート33Uに接続される。第1合分波器31は、上流ポート31Uに入力される多重信号をM個の光信号群に分離し、M個の光信号群を対応する下流ポート31Dから出力する。
 第2合分波器32は、1個の上流ポート32Uと[N/M]個の下流ポート32Dを備える。上流ポート32Uは、第2サーキュレータ38に接続される。M個の下流ポート32Dは、光スイッチ33の対応する上流ポート33Uに接続される。第2合分波器32は、[N/M]個の下流ポート32Dに入力される光信号群を多重し、多重信号を上流ポート32Uから出力する。
 ここで、N波長のうち、波長の短い側から1番目から[N/2]番目までの波長群を第1波長群、[N/2+1]番目から2[N/2]番目までを第2波長群とおいた場合に、第1合分波器31の各下流ポート31D、第2合分波器32の各下流ポート32Dのすべてにおいて、周回関係にある複数の波長が第1波長群に属する波長と、第2波長群に属する波長を含む。
 光スイッチ33は、少なくとも2[N/M]個の上流ポート33Uと、複数の下流ポート33Dと、制御装置33Cとを備える。下流ポート33Dは、第3ファイバ51に接続される。光スイッチ33は、上流ポート33Uに入力された光信号を、複数の下流ポート33Dの何れかに伝送する。また光スイッチ33は、下流ポート33Dに入力された光信号を、波長に対応する上流ポート33Uに伝送する。光スイッチ33における上流ポート33Uと下流ポート33Dの対応関係は、制御装置33Cによる制御信号に従って決定される。制御装置33Cは、第3ファイバ51の上り信号と下り信号とに、周回関係にある第1波長群の波長と第2波長群の波長とを割り当てる。これにより、第1合分波器31の1つの下流ポート31Dを、第1波長群の波長である第1波長の下り信号と、第1波長と周回関係にある第2波長の上り信号とが通ることとなる。同様に、第2合分波器32の1つの下流ポート32Dを、第1波長の上り信号と第2波長の下り信号とが通ることとなる。
 制御装置33Cは、以下の4つの条件をすべて満たすように波長と経路とを設定する。第1の条件は、1つのサービス装置50の上り信号と下り信号とに、周回関係にある異なる波長を割り当てることである。第2の条件は、上り信号及び下り信号の一方の波長が第1波長群に属し、他方の波長が第2波長群に属することである。第3の条件は、コアネットワーク10における同一の伝送路を通る上り信号の波長がサービス装置50ごとに異なることである。第4の条件は、コアネットワーク10における同一の伝送路を通る下り信号の波長がサービス装置50ごとに異なることである。
《作用・効果》
 このように、第2の実施形態に係る光ゲートウェイ装置30において、第1合分波器31は、第1波長群の下り信号と第2波長群の上り信号を処理し、第2合分波器32は、第2波長群の下り信号と第1波長群の上り信号を処理する。つまり、光ゲートウェイ装置30において、第1合分波器31の上流ポート31Uを通る光信号のうち第1の波長の波長成分が進む方向と、第2合分波器32の上流ポート32Uを通る光信号のうち第1の波長の波長成分が進む方向とは、互いに逆方向である。また第1波長群と第2波長群とは第1合分波器31および第2合分波器32において互いに周回関係にある。これにより、光ゲートウェイ装置30は、サービス装置50において一芯双方向で伝送される光信号の波長を上流方向と下流方向とで異ならせることで、上り信号と下り信号との反射による干渉を防ぐことができる。さらに、光ゲートウェイ装置30は、コアネットワーク10の各伝送路において同一の波長成分を利用することで、波長利用効率を向上させることができる。さらに第2実施形態に係る光ゲートウェイ装置30は、第1合分波器31、第2合分波器32および光スイッチ33のポート数を低減することができる。
 なお、第2の実施形態では第1合分波器31および第2合分波器32の周期数Mが2である例について説明したが、他の実施形態においては周期数Mは、2以上[N/2]以下であれば、2でなくてもよい。
 例えば、周期数Mを4以上、すなわち1つのポートにおいて4巡以上することで、光ゲートウェイ装置30の自由度および増設性を向上することができる。例えば、波長数Nが80で周期数Mが4であるならば、光ゲートウェイ装置30の導入段階で40波長を使い、増設時に残りの40波長を加えて、80波長を使う場合に、増設する合分波器として第1合分波器31および第2合分波器32と同じものを用いることができる。増設の際には、第1カプラ35と第2カプラ36を波長を4つに分けるAWGやフィルタに置き換える。また、第1カプラ35および第2カプラ36と各サーキュレータとの間に光カプラを設置し、上りと下りを分岐してそれぞれをサーキュレータに接続するようにしてもよい。また、サーキュレータと合分波器との間に、合分岐する部品を設置してもよい。なお、制御装置33Cは、1つのサービス装置50に対する同一方向の複数経路の利用および各経路での同一波長の利用、並びに同一波長の信号を異なるサービス装置50に割り当てることを許容することで、オンデマンドなAWGの増設を実現することができる。
 またAWG種別の単一化が可能であるという効果も奏する。オンデマンドにAWGを増設する場合、光ゲートウェイ装置30の制御装置33Cは、1つのサービス装置50に対して、同一方向の複数経路の利用、および各経路での同一波長の利用を許容する。例えば、制御装置33Cは、1つのサービス装置50の上り信号に第1波長および第2波長を割り当て、下り信号に第3波長および第4波長を割り当ててよい。また、制御装置33Cは、AWGが増設されたときに、同一波長の信号を異なるサービス装置50に割り当てることを許容する。これにより、光ゲートウェイ装置30はオンデマンドなAWGの増設を実現することができる。具体的には、接続すべきサービス装置50の増加に応じて、第1合分波器31および第2合分波器32と同じ種別の合分波器を増設する。そして、増設した合分波器の上流ポートと第1合分波器31または第2合分波器32の上流ポートとを合分岐させることで、増設した合分波器をコアネットワーク10に接続させる。このよう形での増設は、AWGの数が[N/(2m)]に至るまで可能である。
《第1変形例》
 第2の実施形態に係る光ゲートウェイ装置30は、上流側に接続される光ファイバが一芯片方向伝送を行うが、これに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30の上流側に接続される光ファイバは、一芯双方向伝送を行ってもよい。図9は、第2の実施形態の第1変形例に係る光ゲートウェイ装置30の構成を示す図である。第2の実施形態の第1変形例に係るコアネットワーク10の第1ファイバ11は、第1波長群に係る光信号が下流方向へ向かい、第2波長群に係る光信号が上流方向へ向かう。また第2の実施形態の第1変形例に係るコアネットワーク10の第2ファイバ12は、第1波長群に係る光信号が上流方向へ向かい、第2波長群に係る光信号が下流方向へ向かう。この場合、光ゲートウェイ装置30は、第1カプラ35、第2カプラ36、第1サーキュレータ37、第2サーキュレータ38を備えなくてよい。すなわち、第1合分波器31の上流ポート31Uが第1ファイバ11に接続され、第2合分波器32の上流ポート32Uが第2ファイバ12に接続されることで、一芯双方向伝送に係るコアネットワーク10に対応することができる。
《第2変形例》
 第2の実施形態に係る光ゲートウェイ装置30は、下流側に接続される光ファイバが一芯双方向伝送を行うが、これに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30の下流側に接続される光ファイバは、一芯片方向伝送を行ってもよい。図10は、第2の実施形態の第2変形例に係る光ゲートウェイ装置30の構成を示す図である。
 下流側に接続される光ファイバが一芯片方向伝送を行う場合、第2の実施形態の第2変形例に係る光ゲートウェイ装置30は、光スイッチ33の下流側にN個の上下分離器39を備える。上下分離器39は、上流ポート39U、下流入力ポート39DI、下流出力ポート39DOを備える。上流ポート39Uは、光スイッチ33に接続される。下流入力ポート39DIおよび下流出力ポート39DOは、サービス装置50に接続される。上下分離器39は、下流入力ポート39DIに入力された光信号を上流ポート39Uから出力する。上下分離器39は、上流ポート39Uに入力された光信号を下流出力ポート39DOから出力する。上下分離器39は、例えば光サーキュレータによって構成されてよい。また上下分離器39は、例えば波長合分波モジュールによって構成されてよい。
《第3変形例》
 第2の実施形態に係る光ゲートウェイ装置30は、第1カプラ35と第2カプラ36とに接続される第1サーキュレータ37と第2サーキュレータ38とを備えるが、これに限られない。例えば、他の実施形態に係る光ゲートウェイ装置30は、第1サーキュレータ37と第2サーキュレータ38とに代えて、第3カプラ40と第4カプラ41とを備えてもよい。図11は、第2の実施形態の第3変形例に係る光ゲートウェイ装置30の構成を示す図である。
 第2の実施形態の第3の変形例に係る第3カプラ40は、第1カプラ35から入力された第1波長群の信号を第2合分波器32の上流ポート32Uに伝送する。また、第3カプラ40は、第2合分波器32の上流ポート32Uから入力された信号のうち第2波長群の信号を第2カプラ36に伝送する。
 第2の実施形態の第3の変形例に係る第4カプラ41は、第1カプラ35から入力された第2波長群の信号を第2合分波器32の上流ポート32Uに伝送する。また、第4カプラ41は、第2合分波器32の上流ポート32Uから入力された信号のうち第1波長群の信号を第2カプラ36に伝送する。
《第4変形例》
 第2の実施形態に係る光ゲートウェイ装置30は、周期数Mが[N/2]の2つの合分波器31、32を備えるが、他の実施形態に係る合分波器の周期数Mはこれに限られず、[N/2]未満であってもよい。
 図12は、第2の実施形態の第4変形例に係る光ゲートウェイ装置30の構成を示す図である。第2の実施形態の第4の変形例に係る光ゲートウェイ装置30は、周期数Mが[N/4]の4つの合分波器31A、31B、32A、32Bと、2つのカプラ31C、32Cを備える。カプラ31Cの下流ポートには、合分波器31Aの上流ポートと、合分波器31Bの上流ポートとが接続される。なお、合分波器31A、31B、32A、32Bはいずれも波長周回性を有する。カプラ31Cの上流ポートには第1サーキュレータ37が接続される。カプラ32Cの下流ポートには、合分波器32Aの上流ポートと、合分波器32Bの上流ポートとが接続される。カプラ32Cの上流ポートには第2サーキュレータ38が接続される。
 図13は、第2の実施形態の第4変形例に係る合分波器と波長の関係を示す図である。
 例えば、波長数Nが16である場合、各合分波器の周期数Mは4である。16個の波長を短い方から順に第1波長・・・第16波長とよぶ場合、以下の周回性が成立する。各合分波器の第1下流ポートにおいて、第1波長、第5波長、第9波長、第13波長が互いに周回性を有する。各合分波器の第2下流ポートにおいて、第2波長、第6波長、第10波長、第14波長が互いに周回性を有する。各合分波器の第3下流ポートにおいて、第3波長、第7波長、第11波長、第15波長が互いに周回性を有する。各合分波器の第4下流ポートにおいて、第4波長、第8波長、第12波長、第16波長が互いに周回性を有する。
 制御装置33Cは、図13に示すように、各合分波器の各下流ポートに、互いに2M(=[N/2])だけずれた波長を、上り信号と下り信号とに割り当てる。制御装置33Cは、合分波器31Aと合分波器31Bとで波長が重複しないように割り当てる。具体的には、制御装置33Cは、合分波器31Aの下り信号に第1波長から第[N/4]波長までを割り当て、合分波器31Bの下り信号に第[1+N/4]波長から第[N/2]波長までを割り当てる。また、制御装置33Cは、合分波器32Aと合分波器32Bとで波長が重複しないように割り当てる。具体的には、制御装置33Cは、合分波器32Aの下り信号に第[1+N/2]波長から第[3N/4]波長までを割り当て、合分波器32Bの下り信号に第[1+3N/4]波長から第N波長までを割り当てる。
 この場合、カプラ31C、32Cは、[N/4]周期おきに入出力ポートを切り替える。例えば、第2の実施形態の第4変形例に係るカプラ31C、32Cは、MZフィルタや、リング共振器付きMZフィルタ等によって構成される。
 これにより、第2の実施形態の第4変形例に係る光ゲートウェイ装置30は、サービス装置50において一芯双方向で伝送される光信号の波長を上流方向と下流方向とで異ならせ、かつコアネットワーク10の各伝送路において同一の波長成分を利用することができる。
《第5変形例》
 第2の実施形態の第5の変形例に係る光ゲートウェイ装置30は、第4変形例と同様の構成において、各合分波器のポートに割り当てる波長が異なる。図14は、第2の実施形態の第5変形例に係る合分波器と波長の関係を示す図である。
 制御装置33Cは、図14に示すように、各合分波器の各下流ポートに、互いにM(=[N/4])だけずれた波長を、上り信号と下り信号とに割り当てる。制御装置33Cは、合分波器31Aと合分波器31Bとで波長が重複しないように割り当てる。具体的には、制御装置33Cは、合分波器31Aの下り信号に第1波長から第[N/4]波長までを割り当て、合分波器31Bの下り信号に第[1+N/2]波長から第[3N/4]波長までを割り当てる。また、制御装置33Cは、合分波器32Aと合分波器32Bとで波長が重複しないように割り当てる。具体的には、制御装置33Cは、合分波器32Aの下り信号に第[1+N/4]波長から第[N/2]波長までを割り当て、合分波器32Bの下り信号に第[1+3N/4]波長から第N波長までを割り当てる。
 この場合、カプラ31C、32Cは、[N/2]波長以上の波長群と[N/2]波長未満の波長群とで入出力ポートを切り替える。例えば、第2の実施形態の第5変形例に係るカプラ31C、32Cは、WDMフィルタによって構成される。
 他方、第1カプラ35および第2カプラ36は、[N/4]周期おきに入出力ポートを切り替える。例えば、第2の実施形態の第5変形例に係る第1カプラ35および第2カプラ36は、MZフィルタや、リング共振器付きMZフィルタ等によって構成される。
《第6変形例》
 第2の実施形態の第4、第5の変形例に係る光ゲートウェイ装置30は、サービス装置50と一芯片方向による光信号の伝送を行う。これに対し、第6変形例に係る光ゲートウェイ装置30は、サービス装置50と一芯双方向による光信号の伝送を行う。図15は、第2の実施形態の第6変形例に係る光ゲートウェイ装置の構成を示す図である。第6変形例に係る光ゲートウェイ装置30において、サービス装置50は上下分離器39を介さずに光スイッチ33の下流ポート33Dに接続される。つまり、第2の実施形態の第6変形例に係る光ゲートウェイ装置30は、上下分離器39を備えなくてよい。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 上述した実施形態に係る第1合分波器31および第2合分波器32は、AWGによって構成されるが、これに限られない。例えば、他の実施形態に係る第1合分波器31および第2合分波器32は、MZフィルタによって実現されてもよいし、WSS(Wavelength. Selective. Switch)を用いてもよい。
 なお、WSSは通常、一芯片方向伝送における多重または分岐に用いられるものであり、一芯双方向伝送をそのまま伝送できず、上下片方向に分離した光信号にしてから扱う。これは、ある種のWSSでは、波長選択性を有しないためにポートに目的外の波長が混入する可能性があるためである。そのため、第1合分波器31および第2合分波器32に代えて1つのWSSを用いると、上り信号に目的外の波長が含まれていてもそのまま導通される可能性があり、また下り信号に他のサービス装置50宛の信号が混入する可能性がある。ある種の構成では、1波長のみを選択する。例えば、WSSモジュールは、波長多重した光信号を入出力するポートに対応して設けられる波長合分波器1と、分離側の各ポートに対応して設けられる複数の波長合分波器2と、波長合分波器1の分波側の各波長のポートを、複数の波長合分波器2のどれかと接続する光スイッチとを備える。このため、上下で別波長を伝送することができない。そのため、この種のWSSを用いる場合には、波長合分波器として周回性AWGを採用した、一般的なWSSと異なる新たなWSSを作成し、かつ光スイッチ33において適切な波長と経路をサービス装置50に割り当てる必要がある。
 また、他の実施形態において、光スイッチ33は、トランスポンダアグリゲータを実現するマルチキャストスイッチを用いて実現されてもよいし、WSSモジュールを用いて実現されてもよい。トランスポンダアグリゲータを実現するマルチキャストスイッチでは光スイッチ33は、例えば上流ポート33Uに対応するL個のカプラと下流ポート33Dに対応するN個のスイッチとを備える。カプラは1個の第1ポートとN個の第2ポートとを備える。スイッチは、1個の第1ポートとL個の第2ポートとを備える。各カプラの第2ポートと各スイッチの第2ポートは互いに全結合される。つまり、光スイッチ33はL×Nのポートを有する。ただし、この構成は、カプラで光信号を合分岐するため、上り信号については、目的外の波長が導通する可能性があり、下り信号については、フィルタで目的外の波長が遮断される。このため、光スイッチ33を上流側の構成をとると、目的外の波長が導通する可能性がある。他方、下流側の構成をとると、予めフィルタで設定した波長しか通せなくなる。そのため、マルチキャストスイッチを一芯双方向に対応させるためには、周回性AWGなどで上り方向と下り方向用の複数波長を選択して透過可能なフィルタを備えるマルチキャストスイッチを新規に作成し、上りと下りの波長に関し、本願の周回性AWG等を用いる構成と同様の割当をする必要がある。
 また、上述した実施形態に係る光スイッチ33は、FXC等の光スイッチによって構成される例で示したが、これに限られない。他の構成の光スイッチで構成してもよい。
 上述した実施形態に係る第1合分波器31および第2合分波器32は同じ波長域の信号を扱うが、これに限られない。例えば、他の実施形態では、第1合分波器31が波長λ1から波長λ10までの波長の信号を扱い、第2合分波器32が波長λ6から波長λ15までの波長の信号を扱うものであってもよい。この場合、少なくとも波長λ6から波長λ10に係る波長成分は、第1合分波器31と第2合分波器32とで進行方向が互いに逆方向となる。このような構成であっても、少なくとも一部の波長について同一の波長を用いて上りと下りの双方を導通させることができるという効果を奏することができる。
 1…光ネットワーク 10…コアネットワーク 11…第1ファイバ 12…第2ファイバ 30…光ゲートウェイ装置 31…第1合分波器 32…第2合分波器 33…光スイッチ 33C…制御装置 34…上下分離器 35…第1カプラ 36…第2カプラ 37…第1サーキュレータ 38…第2サーキュレータ 39…上下分離器 50…サービス装置 51…第3ファイバ 

Claims (6)

  1.  第1ポートと複数の第2ポートとを備え、前記第1ポートから入力される光信号を分離して前記複数の第2ポートから出力し、前記複数の第2ポートから入力された光信号を多重して前記第1ポートから出力する第1合分波器と、
     第3ポートと複数の第4ポートとを備え、前記第3ポートから入力される光信号を分離して前記複数の第4ポートから出力し、前記複数の第4ポートから入力された光信号を多重して前記第3ポートから出力する第2合分波器と、
     複数の第5ポートと複数の第6ポートとを備え、前記複数の第5ポートに前記第2ポートおよび前記第4ポートが接続され、前記複数の第5ポートと前記複数の第6ポートとの間で光信号のスイッチングを行う光スイッチと、
     を備え、
     前記第1ポートを通る光信号のうち第1の波長の波長成分が進む方向と、前記第3ポートを通る光信号のうち前記第1の波長の波長成分が進む方向とは、互いに逆方向である
     光ゲートウェイ装置。
  2.  前記第1ポートを通る光信号のうち前記第1の波長を含む第1波長群に係る波長成分は第1方向へ進み、残りの第2波長群に係る波長成分は前記第1方向と逆方向である第2方向へ進み、
     前記第3ポートを通る光信号のうち前記第1波長群に係る波長成分は前記第2方向へ進み、前記第2波長群に係る波長成分は前記第1方向へ進む
     請求項1に記載の光ゲートウェイ装置。
  3.  前記第1ポートを通る光信号のすべての波長成分は第1方向へ進み、
     前記第3ポートを通る光信号のすべての波長成分は前記第1方向と逆方向である第2方向へ進む
     請求項1に記載の光ゲートウェイ装置。
  4.  前記第1合分波器および前記第2合分波器は波長周回性を有し、
     前記第1ポートを通る光信号のうち前記第1の波長と周回関係にある第2の波長の波長成分が進む方向は、前記第1の波長の波長成分が進む方向と逆方向であり、
     前記第3ポートを通る光信号のうち前記第2の波長の波長成分が進む方向は、前記第1の波長の波長成分が進む方向と逆方向である
     請求項1から請求項3の何れか1項に記載の光ゲートウェイ装置。
  5.  第7ポートと第8ポートと第9ポートを備え、前記第7ポートから入力される光信号のうち第1方向へ進む光信号を第8ポートから出力し、前記第9ポートから入力される光信号のうち第2方向へ進む光信号を第7ポートから出力する複数の上下分離器を備え、
     前記第1合分波器および前記第2合分波器は波長周回性を有さず、
     前記複数の上下分離器それぞれの前記第7ポートは、前記複数の第6ポートのそれぞれ、または前記複数の第2ポートおよび前記複数の第4ポートのそれぞれに接続される
     請求項1から請求項3の何れか1項に記載の光ゲートウェイ装置。
  6.  前記光ゲートウェイ装置に接続されるサービス装置に光信号に用いる波長を割り当てる制御装置を備え、
     前記制御装置は、
     前記サービス装置の上り信号と下り信号とに異なる波長を割り当てる
     請求項1から請求項5の何れか1項に記載の光ゲートウェイ装置。
PCT/JP2021/027377 2021-07-21 2021-07-21 光ゲートウェイ装置 WO2023002619A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/027377 WO2023002619A1 (ja) 2021-07-21 2021-07-21 光ゲートウェイ装置
JP2023536306A JPWO2023002619A1 (ja) 2021-07-21 2021-07-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027377 WO2023002619A1 (ja) 2021-07-21 2021-07-21 光ゲートウェイ装置

Publications (1)

Publication Number Publication Date
WO2023002619A1 true WO2023002619A1 (ja) 2023-01-26

Family

ID=84979030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027377 WO2023002619A1 (ja) 2021-07-21 2021-07-21 光ゲートウェイ装置

Country Status (2)

Country Link
JP (1) JPWO2023002619A1 (ja)
WO (1) WO2023002619A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114128A (ja) * 1987-10-27 1989-05-02 Fujitsu Ltd 波長多重光通信装置
JP2003078930A (ja) * 2001-08-30 2003-03-14 Fujitsu Ltd 光アド・ドロップ多重化装置
WO2006035520A1 (ja) * 2004-09-29 2006-04-06 Fujitsu Limited 光挿入分岐装置及び光ネットワークシステム
JP2006270677A (ja) * 2005-03-25 2006-10-05 Oki Electric Ind Co Ltd 最適パス配置検索装置および最適パス配置検索方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114128A (ja) * 1987-10-27 1989-05-02 Fujitsu Ltd 波長多重光通信装置
JP2003078930A (ja) * 2001-08-30 2003-03-14 Fujitsu Ltd 光アド・ドロップ多重化装置
WO2006035520A1 (ja) * 2004-09-29 2006-04-06 Fujitsu Limited 光挿入分岐装置及び光ネットワークシステム
JP2006270677A (ja) * 2005-03-25 2006-10-05 Oki Electric Ind Co Ltd 最適パス配置検索装置および最適パス配置検索方法

Also Published As

Publication number Publication date
JPWO2023002619A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
US9077474B2 (en) Make before break optical mesh network element
US9106983B2 (en) Reconfigurable branching unit for submarine optical communication networks
JP6060648B2 (ja) 光ドロップ装置、光アド装置および光アド/ドロップ装置
US20160269809A1 (en) Optical network switching device
EP2979383B1 (en) Optical switch
KR20110030649A (ko) 광학 신호들을 스위칭하기 위한 디바이스
EP2946505B1 (en) Reconfigurable optical switch apparatus
EP2982066B1 (en) Optical switch
JP2010074565A (ja) 光分岐挿入多重化装置
CN104734799A (zh) 光交换架构
KR20100040532A (ko) 파장 분할 다중화 시스템에서 광 회선 분배 장치 및 방법
EP2434774B1 (en) Apparatus and method for colorless optical switch
KR100442663B1 (ko) 광 회선분배 시스템
JP6434861B2 (ja) 光クロスコネクト装置及び光モジュール
WO2023002619A1 (ja) 光ゲートウェイ装置
JP2009033543A (ja) 波長選択スイッチ及び光クロスコネクトスイッチ機能部及び光クロスコネクト装置
JP5312553B2 (ja) 光分岐挿入多重化装置
WO2020186958A1 (zh) 可重构光分插复用器、光网络及光信号处理方法
JP5437344B2 (ja) 光分岐挿入多重化装置
JP2007240778A (ja) 光波長合分波装置および光信号伝送システム
WO2024033995A1 (ja) 光通信装置及び光通信方法
WO2023062914A1 (ja) 光通信装置、光通信システム及び転送方法
JP5427870B2 (ja) 光分岐挿入多重化装置
EP2928097A1 (en) Optical switching
EP3494658A1 (en) Optical switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536306

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE