WO2020186448A1 - 透明显示面板和显示装置 - Google Patents

透明显示面板和显示装置 Download PDF

Info

Publication number
WO2020186448A1
WO2020186448A1 PCT/CN2019/078672 CN2019078672W WO2020186448A1 WO 2020186448 A1 WO2020186448 A1 WO 2020186448A1 CN 2019078672 W CN2019078672 W CN 2019078672W WO 2020186448 A1 WO2020186448 A1 WO 2020186448A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
buffer layer
transparent
buffer
display panel
Prior art date
Application number
PCT/CN2019/078672
Other languages
English (en)
French (fr)
Inventor
彭蓉
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201980073000.5A priority Critical patent/CN113261101A/zh
Priority to PCT/CN2019/078672 priority patent/WO2020186448A1/zh
Publication of WO2020186448A1 publication Critical patent/WO2020186448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • This application relates to the field of display technology, and in particular to a transparent display panel and a display device.
  • OLED display panel is a kind of transparent display panel. It is a self-emissive display that uses organic light-emitting diodes for light emission to display images. It has high brightness, wide material selection range, and drive The characteristics of low voltage, full curing active light emission, high definition, wide viewing angle, and fast response speed are in line with the development trend of mobile communication and information display in the information age, and the requirements of green lighting technology. It is currently a lot of research at home and abroad. The focus of the reader.
  • the inventor found that the transparency of the transparent film layer of the current organic light emitting diode display panel is low.
  • This application aims to provide a transparent display panel and a display device to solve the technical problem of low transparency of the transparent display panel in the prior art.
  • a transparent display panel comprising: a substrate, a transparent film layer, a buffer layer, a switch array layer, and an organic light emitting display layer;
  • the transparent film layer, the buffer layer, the switch array layer, and the organic light emitting display layer are sequentially laminated on the substrate;
  • the buffer layer includes a first buffer layer and a second buffer layer, the first buffer layer and the second buffer layer are sequentially laminated on the transparent film layer, and the thickness of the first buffer layer is The thickness of the second buffer layer is
  • the thickness of the second buffer layer is When the thickness of the first buffer layer is
  • the thickness of the second buffer layer is When the thickness of the first buffer layer is
  • the thickness of the second buffer layer is When the thickness of the first buffer layer is
  • the refractive index of the first buffer layer is greater than the refractive index of the second buffer layer.
  • the refractive index of the first buffer layer is 2.0 to 2.3
  • the refractive index of the second buffer layer is 1.4 to 1.6.
  • the stress of the first buffer layer is a positive stress
  • the stress of the second buffer layer is a negative stress
  • the stress of the first buffer layer is 10 MPa to 100 MPa
  • the stress of the second buffer layer is -10 MPa to -100 MPa.
  • the first buffer layer is a silicon nitride layer
  • the second buffer layer is a silicon oxide layer.
  • the substrate is a circular polarizer
  • the transparent film layer is a polyimide film.
  • the water resistance of the substrate is lower than 5 ⁇ 10 -4 gm 2 /day.
  • a display device includes: the above-mentioned transparent display panel.
  • the transparent display panel provided by the embodiments of the present application includes a double-layer buffer layer structure composed of a first buffer layer and a second buffer layer.
  • the thickness of the first buffer layer is The thickness of the second buffer layer is At the same time, the transmittance of the transparent film layer can be significantly improved.
  • the refractive index of the first buffer layer is greater than the refractive index of the second buffer layer, which can further improve the transmittance of the transparent film layer.
  • FIG. 1 is a schematic structural diagram of a transparent display panel provided by one of the embodiments of the present application.
  • FIG. 2 is a graph of wavelength-transmittance curve of a transparent film layer of a transparent display panel provided according to some examples of the present application
  • FIG. 3 is a graph of the wavelength-transmittance curve of the transparent film layer of the transparent display panel according to other examples of the present application.
  • one embodiment of the present invention provides a transparent display panel 100 including a substrate 10, a transparent thin film layer 20, a buffer layer 30, a switch array layer 40 and an organic light emitting display layer 50.
  • the transparent film layer 20, the buffer layer 30, the switch array layer 40 and the organic light emitting display layer 50 are sequentially formed on the substrate 10.
  • the substrate 10 is a circular polarizer, the circular polarizer mainly plays a role in preventing the passage of reflected light, and the circular polarizer includes a retardation film layer and a polarizing function film layer; wherein the retardation film layer is a circular polarizer.
  • the polarizing function film layer is the light entrance side of the circular polarizer.
  • the main function of the polarizing function film layer is to convert natural light passing through the polarizing function film layer into linearly polarized light;
  • the phase difference film layer is preferably a quarter-wave retarder, and its main function is to make the linearly polarized light passing through Become circularly polarized light, or change the passed circularly polarized light into linearly polarized light.
  • the transparent film layer 20 is a polyimide film, which has high visible light transmittance, excellent thermal stability, chemical stability, dielectric properties, mechanical strength and other properties.
  • the polyimide film is made of 4,4'-(hexafluoroisopropylene) diphthalic anhydride (6FDA) and 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFDB) Synthesize a fluorine-containing colorless and transparent polyimide film.
  • 6FDA 4,4'-(hexafluoroisopropylene) diphthalic anhydride
  • TFDB 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl
  • the polyimide film uses cyclobutanetetracarboxylic dianhydride and 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFDB) to synthesize colorless and transparent
  • TFDB 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl
  • the buffer layer 30 includes a first buffer layer 32 and a second buffer layer 34.
  • the first buffer layer 32 and the second buffer layer 34 are sequentially formed on the transparent film layer 20.
  • the first buffer layer 32 is silicon nitride SiNx
  • the second buffer layer 34 is silicon oxide SiOx. Since both silicon nitride SiNx and silicon oxide SiOx are insoluble in water, do not react with oxygen, and have strong corrosion resistance , So that the first buffer layer 32 and the second buffer layer 34 have good water and oxygen barrier properties, so the transparent display panel can be better prevented from being corroded.
  • the first buffer layer 32 or the second buffer layer 34 can be selected from ZrAlxOy (zirconium aluminate), graphene, alumina Al2O3, zirconium dioxide ZrO2, zinc peroxide ZnO2, One of SiCN SiCN, and titanium dioxide TiO2, DLC (Diamond Like Carbon).
  • the switch array layer 40 includes a plurality of switching elements; the switch array layer 40 has a plurality of switching elements, the switching elements are, for example, thin film transistors, and the thin film transistors include an active layer for forming a channel and a gate insulating layer. Layer, first metal layer, interlayer insulating layer and second metal layer.
  • the organic light emitting display layer 50 includes an organic light emitting unit, wherein the organic light emitting unit is electrically connected to the switch array layer 40.
  • the buffer layer 30 not only functions to block water and oxygen, but also can be used as an anti-reflection layer of the transparent film layer 20, so that the transparent film layer 20 has a higher transmittance.
  • the double-layer buffer layer 30 structure composed of the first buffer layer 32 and the second buffer layer 34 can better control stress and improve the bending resistance of the transparent display panel 100.
  • the manufacturing process of the transparent display panel 100 will be described in detail below with reference to specific examples.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 is a circular polarizer, the water resistance of the polarizing layer 10 is less than 5 ⁇ 10 -4 gm 2 /day, and the thickness of the polarizing layer 10 is 10 ⁇ m. It uses PECVD, IJP, Slot coating Polyimide is coated on the polarizing layer 10 by processes such as spin-coating and dispenser, and then cured to form a transparent film layer 20.
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiOx silicon oxide
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50, thereby preparing the transparent display panel 100.
  • a transparent thin film layer 20 is formed on the polarizer 10.
  • the polarizing layer 10 in Example 2 is the same as the polarizing layer 10 in Example 1.
  • Polyimide is coated on the polarizing layer 10 by PECVD, IJP, Slot coating, spin-coating, and dispenser. It is cured to form a transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is measured as The refractive index of the second buffer layer 34 is 1.4.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 3 is the same as the polarizing layer 10 in Example 1.
  • Polyimide is coated on the polarizing layer 10 by PECVD, IJP, Slot coating, spin-coating, and dispenser. It is cured to form a transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is measured as The refractive index of the second buffer layer 34 is 1.4.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Comparative Example 1 is the same as the polarizing layer 10 in Example 1.
  • Polyimide is coated on the polarizing layer 10 by processes such as PECVD, IJP, Slot coating, spin-coating, and dispenser. It is then cured to form a transparent thin film layer 20.
  • a switch array layer 40 is formed on the transparent film layer 20.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 3 is the same as the polarizing layer 10 in Example 1.
  • Polyimide is coated on the polarizing layer 10 by PECVD, IJP, Slot coating, spin-coating, and dispenser. It is cured to form a transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is measured as The refractive index of the second buffer layer 34 is 2.0.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • the transparent display panel 100 prepared by the above examples 1 to 3 and the comparative example 1-2 was used to test different light wavelengths (380-780nm) —The relationship of transmittance, the test result is shown in Figure 2; the test results of different light wavelengths and transmittance are shown in Table 1 below.
  • the thickness of the second buffer layer 34 on the transparent film layer 20 is When the thickness of the first buffer layer 32 increases, the transmittance of light with a wavelength of 380 to 780 nm gradually decreases. When the thickness of the first buffer layer 32 reaches When the light transmittance is equal to that when the buffer layer 30 is not provided on the transparent film layer 20.
  • the refractive index of the first buffer layer 32 is greater than the refractive index of the second buffer layer 34
  • the refractive index of the first buffer layer 32 is set to 2.0
  • the refractive index of the second buffer layer 34 is set to 1.4
  • the light transmittance can be increased by 1.2 on the basis of the original transmittance. %.
  • the refractive index of the first buffer layer 32 is set to 1.4 and the refractive index of the second buffer layer 34 is set to 2.0, the light transmittance is reduced by 1.2% based on the original transmittance.
  • the refractive index of the first buffer layer 32 and the second buffer layer 34 can be selected according to actual needs, as long as the refractive index of the first buffer layer 32 is higher than the refractive index of the second buffer layer 34.
  • the refractive index of the first buffer layer 32 is selected in the range of 2.0 to 2.3
  • the refractive index of the second buffer layer 34 is selected in the range of 1.4 to 1.6.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 is a circular polarizer, the water resistance of the polarizing layer 10 is less than 5 ⁇ 10 -4 gm 2 /day, and the thickness of the polarizing layer 10 is 10 ⁇ m. It uses PECVD, IJP, Slot coating Polyimide is coated on the polarizing layer 10 by processes such as spin-coating and dispenser, and then cured to form a transparent film layer 20.
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 5 is the same as 10 in Example 4.
  • Polyimide is coated on the polarizing layer 10 by PECVD, IJP, Slot coating, spin-coating, and dispenser. The curing process is performed to form the transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is The refractive index of the second buffer layer 34 is 1.4.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 6 is the same as the polarizing layer 10 in Example 4.
  • Polyimide is coated on the polarizing layer 10 by processes such as PECVD, IJP, Slot coating, spin-coating, and dispenser. It is cured to form a transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is The refractive index of the second buffer layer 34 is 1.4.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • the transparent display panel 100 prepared in the foregoing Examples 4-6 and Comparative Example 1 was used to test different light wavelengths (380-780nm)-transparent The relationship of the overrate, the test results of different light wavelengths and transmittance are shown in Table 2 below.
  • the thickness of the second buffer layer 34 on the transparent film layer 20 is When the thickness of the first buffer layer 32 increases, the transmittance of light with a wavelength of 380 to 780 nm gradually decreases. When the thickness of the first buffer layer 32 reaches When the light transmittance is equal to that when the buffer layer 30 is not provided on the transparent film layer 20.
  • the double-layer buffer layer 30 structure formed by the first buffer layer 32 and the second buffer layer 34 improves the transmittance of the transparent film layer 20.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 7 is a circular polarizer, the water resistance of the polarizing layer 10 is less than 5 ⁇ 10 -4 gm 2 /day, and the thickness of the polarizing layer 10 is 10 ⁇ m. It uses PECVD, IJP, Slot coating, spin-coating, dispenser and other processes coat polyimide on the polarizing layer 10, and then cure it to form a transparent film layer 20.
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 8 is the same as the 10 in Example 7.
  • Polyimide is coated on the polarizing layer 10 by PECVD, IJP, Slotcoating, spin-coating, and dispenser. Curing treatment to form a transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is measured as The refractive index of the second buffer layer 34 is 1.4.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • a transparent thin film layer 20 is formed on the polarizing layer 10.
  • the polarizing layer 10 in Example 9 is the same as the polarizing layer 10 in Example 7.
  • Polyimide is coated on the polarizing layer 10 by processes such as PECVD, IJP, Slot coating, spin-coating, and dispenser. It is cured to form a transparent thin film layer 20.
  • a first buffer layer 32 is formed on the transparent film layer 20.
  • ALD Atomic layer deposition
  • PLD pulsed laser deposition
  • PECVD plasma enhanced chemical vapor deposition
  • SiNx silicon nitride
  • a second buffer layer 34 is formed on the transparent film layer 20.
  • a layer of silicon oxide (SiOx) material is deposited on the first buffer layer 32 by the preparation process of the first buffer layer 32 to obtain the second buffer layer 34, and the thickness of the second buffer layer 34 is measured as The refractive index of the second buffer layer 34 is 1.4.
  • a switch array layer 40 is formed on the second buffer layer 34.
  • an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer are respectively fabricated on the second buffer layer 34 in sequence to obtain the switch array layer 40.
  • An organic light emitting display layer 50 is formed on the switch array layer 40 to prepare the transparent display panel 100.
  • an anode, an organic light-emitting layer, and a cathode are sequentially fabricated on the switch array layer 40 to obtain the organic light-emitting display layer 50.
  • the transparent display panel 100 prepared in the foregoing Examples 7-9 and Comparative Example 1 is used to test different light wavelengths (380-780nm)-transparent
  • the relationship of the overrate, the test result is shown in Figure 3; the test results of different light wavelengths and transmittance are shown in Table 3 below.
  • the thickness of the second buffer layer 34 on the transparent film layer 20 is When the thickness of the first buffer layer 32 increases, the transmittance of light with a wavelength of 380 to 780 nm gradually decreases. When the thickness of the first buffer layer 32 reaches When the light transmittance is the same as when the buffer layer 30 is not provided on the polyimide film.
  • the inventor found in the course of experiments that the structure of the double-layer buffer layer 30 composed of the first buffer layer 32 and the second buffer layer 34 is higher than that of the single-layer buffer layer 30 including only the first buffer layer 32 or the second buffer layer 34.
  • the structure can better control stress and improve the bending resistance of the transparent display panel 100.
  • the stress of the first buffer layer 32 is 50 MPa
  • the stress of the buffer layer 30 can be adjusted by adjusting the stress of the second buffer layer 34 to -30 MPa.
  • the stress of the first buffer layer 32 and the second buffer layer 34 can be set according to actual needs.
  • the stress of the first buffer layer 32 ranges from 10 MPa to 100 MPa.
  • the stress range of the second buffer layer 34 is -10MPa ⁇ -100MPa.
  • an embodiment of the present application also provides a display device, which includes the transparent display panel 100 provided in the above-mentioned embodiment of the present application.
  • the display device may be a mobile phone, a tablet computer, or a television. , Monitors, laptops, digital photo frames, navigators and other products with display functions, or only displays electronic files (for example, video files, text files, etc.) on the screen.
  • the experimental results show that the double-layer buffer layer 30 structure composed of the first buffer layer 32 and the second buffer layer 34 in the transparent display panel 100 of the present application, when the first buffer layer 32 is Thickness is The thickness of the second buffer layer 34 is At this time, the transmittance of the transparent film layer 20 can be significantly improved.

Abstract

一种透明显示面板(100)和显示装置,其中透明显示面板(100)包括:基板(10)上依次形成有透明薄膜层(20)、缓冲层(30)、开关阵列层(40)以及有机发光显示层(50)。缓冲层(30)包括第一缓冲层(32)和第二缓冲层(34),第一缓冲层(32)和第二缓冲层(34)依次形成于透明薄膜层(20)上,第一缓冲层(32)的厚度为0-500埃,第二缓冲层(34)的厚度为2000-4000埃。第一缓冲层(32)和第二缓冲层(34)构成的双层缓冲层(30)结构,能够显著提高透明薄膜层(20)的透过率。

Description

透明显示面板和显示装置 技术领域
本申请涉及显示技术领域,特别是涉及一种透明显示面板和显示装置。
背景技术
有机发光二极管(Organic Light Emission Diode,简称OLED)显示面板作为透明显示面板的一种,其是利用用于发光的有机发光二极管来显示图像的自发射显示器,具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角,以及响应速度快等优势,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是目前国内外众多研究者的关注重点。
发明人在实现本申请的过程中发现,目前有机发光二极管显示面板的透明薄膜层的透明度偏低。
发明内容
本申请旨在提供一种透明显示面板和显示装置,以解决现有技术中透明显示面板透明度偏低的技术问题。
为解决上述技术问题,本申请实施例采用的一个技术方案是:
一种透明显示面板,包括:基板、透明薄膜层、缓冲层、开关阵列层以及有机发光显示层;
所述基板上依次层叠有所述透明薄膜层、所述缓冲层、所述开关阵列层以及所述有机发光显示层;
所述缓冲层包括第一缓冲层和第二缓冲层,所述第一缓冲层和所述第二缓冲层依次层叠于所述透明薄膜层上,所述第一缓冲层的厚度为
Figure PCTCN2019078672-appb-000001
所述第二缓冲层的厚度为
Figure PCTCN2019078672-appb-000002
可选地,所述第二缓冲层的厚度为
Figure PCTCN2019078672-appb-000003
时,所述第一缓冲层的厚度为
Figure PCTCN2019078672-appb-000004
可选地,所述第二缓冲层的厚度为
Figure PCTCN2019078672-appb-000005
时,所述第一缓冲层的厚度为
Figure PCTCN2019078672-appb-000006
可选地,所述第二缓冲层的厚度为
Figure PCTCN2019078672-appb-000007
时,所述第一缓冲层的厚度为
Figure PCTCN2019078672-appb-000008
可选地,所述第一缓冲层的折射率大于所述第二缓冲层的折射率。
可选地,所述第一缓冲层的折射率为2.0~2.3,所述第二缓冲层的折射率为1.4~1.6。
可选地,所述第一缓冲层的应力为正应力,所述第二缓冲层的应力为负应力。
可选地,所述第一缓冲层的应力为10MPa~100MPa,所述第二缓冲层的应力为-10MPa~-100MPa。
可选地,所述第一缓冲层为氮化硅层,所述第二缓冲层为氧化硅层。
可选地,所述基板为圆偏光片,所述透明薄膜层为聚酰亚胺薄膜。
可选地,所述基板的阻水性低于5×10 -4gm 2/day。
本申请实施例解决其技术问题还提供以下技术方案:
一种显示装置,包括:以上所述的透明显示面板。
与现有技术相比较,本申请实施例提供的透明显示面板包括由第一缓冲层和第二缓冲层构成的双层缓冲层结构,当所述第一缓冲层的厚度为
Figure PCTCN2019078672-appb-000009
所述第二缓冲层的厚度为
Figure PCTCN2019078672-appb-000010
时,能够显著提高透明薄膜层的透过率,同时发明人在实验过程中发现,双层缓冲层结构能够更好的调控应力,提高透明显示面板的抗弯折性。
另外,第一缓冲层的折射率大于第二缓冲层的折射率,能够进一步提升透明薄膜层的透过率。
附图说明
图1是本申请其中一个实施例提供的一种透明显示面板的结构示意图;
图2是根据本申请的一些示例提供的透明显示面板的透明薄膜层的波长—透过率曲线图;
图3是根据本申请另一些示例提供的透明显示面板的透明薄膜层的波长—透过率曲线图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的,并且仅表达实质上的位置关系,例如对于“垂直的”,如果某位置关系因为了实现某目的的缘故并非严格垂直,但实质上是垂直的,或者利用了垂直的特性,则属于本说明书所述“垂直的”范畴。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体地实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,本发明其中一个实施例提供一种透明显示面板100,包括基板10、透明薄膜层20、缓冲层30、开关阵列层40以及有机发光显示层50。所述基板10上依次形成有所述透明薄膜层20、所述缓冲层30、所述开关阵列层40以及所述有机发光显示层50。
所述基板10为圆偏光片,所述圆偏光片主要起防止反射光通过的作用,所述圆偏光片包括相位差膜层和偏光功能膜层;其中,相位差膜层为圆偏光片的出光侧,偏光功能膜层为圆偏光片的入光侧。
具体地,偏光功能膜层的主要作用是将通过该偏光功能膜层的自然光转变为线偏振光;相位差膜层优选为四分之一波长延迟片,其主要作用是使通过的线偏振光变为圆偏振光,或将通过的圆偏振光变为线偏振光。将偏光功能膜层和相位差膜层结合,自然光从偏光功能膜层入射,经偏光功能膜层之后变为线偏振光,然后该线偏振光经过相位差膜层之后从线偏振光变为左旋圆偏振光,之后,当该左旋圆偏振光被反射回来后变为右旋圆偏振光,再次经过相位差膜层,从右旋圆偏振光变为线偏振光,此时的线偏振光与之前的线偏振光呈垂直状态,这样反射光就不能够从该偏光功能膜层透过,从而减小环境光的影响,提高对比度。
所述透明薄膜层20为聚酰亚胺薄膜,所述聚酰亚胺薄膜具备较高的可见光透过率、优异的热稳定性、化学稳定性、介电性能以及机械强度等性能。所述聚酰亚胺薄膜是由4,4'-(六氟异丙烯)二酞酸酐(6FDA)与2,2'-双三氟甲基-4,4'-二氨基联苯(TFDB),合成含氟的无色透明聚酰亚胺薄膜,所述聚酰亚胺薄膜在450nm(膜厚20μm)处的光透过率接近92%,热膨胀系数为50ppm/℃。
在一些实施例中,所述聚酰亚胺薄膜使用环丁烷四甲酸二酐与2,2'-双三氟甲基-4,4'-二氨基联苯(TFDB),合成无色透明聚酰亚胺薄膜,所述聚酰亚胺薄膜在450nm(膜厚20μm)处的光透过率接近92%。
所述缓冲层30包括第一缓冲层32和第二缓冲层34,所述第一缓冲层32和所述第二缓冲层34依次形成于所述透明薄膜层20上,在本实施例中,所述第一缓冲层32为氮化硅SiNx,所述第二缓冲层34为氧化硅SiOx,由于氮化硅SiNx和氧化硅SiOx均不溶于水、且不与氧气发生反应、耐蚀性强,使得第一缓冲层32和第二缓冲层34具有很好的阻隔水氧的特性,因此可以更好地防止透明显示面板被腐蚀。在一些实施例中,所述第一缓冲层32或所述第二缓冲层34可根 据需要选取ZrAlxOy(锆铝酸盐)、石墨烯、氧化铝Al2O3、二氧化锆ZrO2、过氧化锌ZnO2、硅碳氮SiCN、以及二氧化钛TiO2、DLC(类金刚石)中的一种。
所述开关阵列层40包括多个开关元件;所述开关阵列层40具有多个开关元件,所述开关元件比如为薄膜晶体管,所述薄膜晶体管包括用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层。
有机发光显示层50包括有机发光单元,其中所述有机发光单元与所述开关阵列层40电性连接。
在本申请的所述透明显示面板100中,缓冲层30不仅起到阻水阻氧的作用,还可以作为透明薄膜层20的增透层,使透明薄膜层20具有较高的透过率,同时由所述第一缓冲层32和所述第二缓冲层34构成的双层缓冲层30结构,能够更好的调控应力,提高透明显示面板100的抗弯折性。
以下结合具体的示例,详细描述所述透明显示面板100的制备过程。
示例1
1、在偏光层10上形成透明薄膜层20。
具体地,所述偏光层10为圆偏光片,所述偏光层10的阻水性低于5×10 -4gm 2/day,所述偏光层10的厚度为10μm,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第二缓冲层34。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000011
第二缓冲层34的折射率为1.4。
3、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘 层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
4、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50,从而制备出所述透明显示面板100。
示例2
1、在偏光片10上形成透明薄膜层20。
具体地,示例2中的偏光层10与示例1中的偏光层10相同,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000012
第一缓冲层32的折射率为2.0。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,测得所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000013
第二缓冲层34的折射率为1.4。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以 得到有机发光显示层50。
示例3
1、在偏光层10上形成透明薄膜层20。
具体地,示例3中的偏光层10与示例1中的偏光层10相同,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000014
第一缓冲层32的折射率为2.0。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,测得所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000015
第二缓冲层34的折射率为1.4。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
对比例1
1、在偏光层10上形成透明薄膜层20。
具体地,对比例1中的偏光层10与示例1中的偏光层10相同,利用PECVD、 IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
3、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
对比例2
1、在偏光层10上形成透明薄膜层20。
具体地,示例3中的偏光层10与示例1中的偏光层10相同,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000016
第一缓冲层32的折射率为1.4。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,测得所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000017
第二缓冲层34的折射率为2.0。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘 层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
将上述示例1~3和对比例1-2制备得到的透明显示面板100,利用TFCALE光学模拟软体来模拟缓冲层30对透明薄膜层20的增透作用,即测试不同光线波长(380~780nm)—透过率的关系,其测试结果如图2所示;其测试不同光线波长和透过率结果如下表1所示。
表1
Figure PCTCN2019078672-appb-000018
由表1和图2可知,当透明薄膜层20上未设有所述缓冲层30时,光透过率为92%。
当透明薄膜层20上的第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000019
时,随着第一缓冲层32厚度的增加,波段为380~780nm的光的透过率逐渐降低,当第一缓冲层32的厚度达到
Figure PCTCN2019078672-appb-000020
时,与透明薄膜层20上未设有缓冲层30时的光透过率相等。
由上述测试结果可知,当第二缓冲层34为
Figure PCTCN2019078672-appb-000021
Figure PCTCN2019078672-appb-000022
光透过率T≥92%,因此所述第一缓冲层32和第二缓冲层34构成的双层缓冲层30结构,提高了透明薄膜层20的透过率。
由示例3和对比例2的测试结果可知,当第一缓冲层32的折射率大于第二缓冲层34的折射率时,能够提升光的透过率。在上述任一实施例中,将第一缓冲层32的折射率设为2.0,第二缓冲层34的折射率设为1.4,光的透过率都能在原有透过率的基础上提升1.2%。而与之对比的是,将第一缓冲层32的折射率设为1.4,第二缓冲层34的折射率设为2.0,光的透过率均在原有透过率的基础上降低1.2%。
在一些实施例中,第一缓冲层32和第二缓冲层34的折射率可以根据实际需要进行选取,只要保证第一缓冲层32的折射率比第二缓冲层34的折射率高即可,优选地,所述第一缓冲层32的折射率选取的范围为2.0~2.3,所述第二缓冲层34的折射率选取的范围为1.4~1.6。
示例4
1、在偏光层10上形成透明薄膜层20。
具体地,所述偏光层10为圆偏光片,所述偏光层10的阻水性低于5×10 -4gm 2/day,所述偏光层10的厚度为10μm,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第二缓冲层34。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第二缓冲层34,所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000023
第二缓冲层34的折射率为1.4。
3、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
4、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板 100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
示例5
1、在偏光层10上形成透明薄膜层20。
具体地,示例5中的偏光层10与示例4中的10相同,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000024
第一缓冲层32的折射率为2.0。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000025
第二缓冲层34的折射率为1.4。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
示例6
1、在偏光层10上形成透明薄膜层20。
具体地,示例6中的偏光层10与示例4中的偏光层10相同,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000026
第一缓冲层32的折射率为2.0。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000027
第二缓冲层34的折射率为1.4。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
将上述示例4~6和对比例1制备得到的透明显示面板100,利用TFCALE光学模拟软体来模拟缓冲层30对透明薄膜层20的增透作用,即测试不同光线波长(380~780nm)—透过率的关系,其测试不同光线波长和透过率结果如下表2所示。
表2
Figure PCTCN2019078672-appb-000028
由表2可知,当聚酰亚胺薄膜上未设有缓冲层30时,光透过率为92%。
当透明薄膜层20上的第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000029
时,随着第一缓冲层32厚度的增加,波段为380~780nm的光的透过率逐渐降低,当第一缓冲层32的厚度达到
Figure PCTCN2019078672-appb-000030
时,与透明薄膜层20上未设有缓冲层30时的光透过率相等。
由上述测试结果可知,当第二缓冲层34为
Figure PCTCN2019078672-appb-000031
Figure PCTCN2019078672-appb-000032
光透过率T≥92%,因此所述第一缓冲层32和第二缓冲层34构成的双层缓冲层30结构,提高了透明薄膜层20的透过率。
示例7
1、在偏光层10上形成透明薄膜层20。
具体地,示例7中的偏光层10为圆偏光片,所述偏光层10的阻水性低于5×10 -4gm 2/day,所述偏光层10的厚度为10μm,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第二缓冲层34。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在 透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第二缓冲层34,所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000033
第二缓冲层34的折射率为1.4。
3、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
4、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
示例8
1、在偏光层10上形成透明薄膜层20。
具体地,示例8中的偏光层10与示例7中的10相同,利用PECVD、IJP、Slotcoating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000034
第一缓冲层32的折射率为2.0。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,测得所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000035
第二缓冲层34的折射率为1.4。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘 层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以得到有机发光显示层50。
示例9
1、在偏光层10上形成透明薄膜层20。
具体地,示例9中的偏光层10与示例7中的偏光层10相同,利用PECVD、IJP、Slot coating、spin-coating和dispenser等工艺在所述偏光层10上涂布聚酰亚胺,之后对其进行固化处理,以形成透明薄膜层20。
2、在透明薄膜层20上形成第一缓冲层32。
具体地,利用原子层沉积(ALD,Atomic layer deposition)、脉冲激光沉积(PLD,Pulsed Laser Deposition)、溅射、等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)等方式中的一种在透明薄膜层20上沉积一层氮化硅(SiNx)材料,以得到第一缓冲层32,所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000036
第一缓冲层32的折射率为2.0。
3、在透明薄膜层20上形成第二缓冲层34。
具体地,利用第一缓冲层32的制备工艺在第一缓冲层32上沉积一层氧化硅(SiOx)材料,以得到第二缓冲层34,测得所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000037
第二缓冲层34的折射率为1.4。
4、在第二缓冲层34上形成开关阵列层40。
具体地,依次在第二缓冲层34上分别制作用于形成沟道的有源层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层,得到开关阵列层40。
5、在开关阵列层40上形成有机发光显示层50,制备出所述透明显示面板100。
具体地,在所述开关阵列层40上依次制作阳极、有机发光层以及阴极,以 得到有机发光显示层50。
将上述示例7~9和对比例1制备得到的透明显示面板100,利用TFCALE光学模拟软体来模拟缓冲层30对透明薄膜层20的增透作用,即测试不同光线波长(380~780nm)—透过率的关系,其测试结果如图3所示;其测试不同光线波长和透过率结果如下表3所示。
表3
Figure PCTCN2019078672-appb-000038
由表3和图3可知,当透明薄膜层20上未设有缓冲层30时,光透过率为92%。
当透明薄膜层20上的第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000039
时,随着第一缓冲层32厚度的增加,波段为380~780nm的光的透过率逐渐降低,当第一缓冲层32的厚度达到
Figure PCTCN2019078672-appb-000040
时,与聚酰亚胺薄膜上未设有缓冲层30时的光透过率相等。
由上述测试结果可知,当在透明薄膜层20上依次形成的第一缓冲层32和第二缓冲层34,且当第二缓冲层34为
Figure PCTCN2019078672-appb-000041
Figure PCTCN2019078672-appb-000042
光透过率T≥92%,因此上述第一缓冲层32和第二缓冲层34构成的双层缓冲层30结构,提高了透明薄膜层20的透过率。
同时发明人在实验过程中发现,上述第一缓冲层32和第二缓冲层34共同构成的双层缓冲层30结构比仅包括第一缓冲层32或第二缓冲层34的单层缓冲层30结构能够更好的调控应力,提高透明显示面板100的抗弯折性。例如,当 第一缓冲层32的应力为50MPa,可通过调整第二缓冲层34的应力为-30MPa,以此来调整缓冲层30的应力。在一些实施例中,所述第一缓冲层32和所述第二缓冲层34的应力可根据实际需要进行设置,优选地,所述第一缓冲层32的应力范围为10MPa~100MPa,所述第二缓冲层34的应力范围为-10MPa~-100MPa。
基于同一发明构思,本申请实施例还提供了一种显示装置,所述显示装置包括本申请上述实施例提供的透明显示面板100,具体的,所述显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品,或者仅为将电子文件(例如,视频文件、文字文件等)显示到屏幕上的显示器。
与现有技术相比较,实验结果表明,本申请所述透明显示面板100中由第一缓冲层32和第二缓冲层34构成的双层缓冲层30结构,当所述第一缓冲层32的厚度为
Figure PCTCN2019078672-appb-000043
所述第二缓冲层34的厚度为
Figure PCTCN2019078672-appb-000044
时,能够显著提高透明薄膜层20的透过率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (12)

  1. 一种透明显示面板,其特征在于,包括:基板、透明薄膜层、缓冲层、开关阵列层以及有机发光显示层;
    所述基板上依次层叠有所述透明薄膜层、所述缓冲层、所述开关阵列层以及所述有机发光显示层;
    所述缓冲层包括第一缓冲层和第二缓冲层,所述第一缓冲层和所述第二缓冲层依次层叠于所述透明薄膜层上,所述第一缓冲层的厚度为
    Figure PCTCN2019078672-appb-100001
    所述第二缓冲层的厚度为
    Figure PCTCN2019078672-appb-100002
  2. 根据权利要求1所述的透明显示面板,其特征在于,所述第二缓冲层的厚度为
    Figure PCTCN2019078672-appb-100003
    时,所述第一缓冲层的厚度为
    Figure PCTCN2019078672-appb-100004
  3. 根据权利要求1所述的透明显示面板,其特征在于,所述第二缓冲层的厚度为
    Figure PCTCN2019078672-appb-100005
    时,所述第一缓冲层的厚度为
    Figure PCTCN2019078672-appb-100006
  4. 根据权利要求1所述的透明显示面板,其特征在于,所述第二缓冲层的厚度为
    Figure PCTCN2019078672-appb-100007
    时,所述第一缓冲层的厚度为
    Figure PCTCN2019078672-appb-100008
  5. 根据权利要求1所述的透明显示面板,其特征在于,所述第一缓冲层的折射率大于所述第二缓冲层的折射率。
  6. 根据权利要求5所述的透明显示面板,其特征在于,所述第一缓冲层的折射率为2.0~2.3,所述第二缓冲层的折射率为1.4~1.6。
  7. 根据权利要求1所述的透明显示面板,其特征在于,所述第一缓冲层的应力为正应力,所述第二缓冲层的应力为负应力。
  8. 根据权利要求7所述的透明显示面板,其特征在于,所述第一缓冲层的应力为10MPa~100MPa,所述第二缓冲层的应力为-10MPa~-100MPa。
  9. 根据权利要求1所述的透明显示面板,其特征在于,所述第一缓冲层为氮化硅层,所述第二缓冲层为氧化硅层。
  10. 根据权利要求1所述的透明显示面板,其特征在于,所述基板为圆偏 光片,所述透明薄膜层为聚酰亚胺薄膜。
  11. 根据权利要求1所述的透明显示面板,其特征在于,所述基板的阻水性低于5×10 -4gm 2/day。
  12. 一种显示装置,其特征在于,包括权利要求1-11任一项所述的透明显示面板。
PCT/CN2019/078672 2019-03-19 2019-03-19 透明显示面板和显示装置 WO2020186448A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980073000.5A CN113261101A (zh) 2019-03-19 2019-03-19 透明显示面板和显示装置
PCT/CN2019/078672 WO2020186448A1 (zh) 2019-03-19 2019-03-19 透明显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078672 WO2020186448A1 (zh) 2019-03-19 2019-03-19 透明显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2020186448A1 true WO2020186448A1 (zh) 2020-09-24

Family

ID=72519462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078672 WO2020186448A1 (zh) 2019-03-19 2019-03-19 透明显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN113261101A (zh)
WO (1) WO2020186448A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022076A (zh) * 2014-05-27 2014-09-03 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN203895510U (zh) * 2014-06-20 2014-10-22 京东方科技集团股份有限公司 低温多晶硅薄膜晶体管及其阵列基板与显示装置
CN104538402A (zh) * 2014-12-30 2015-04-22 京东方科技集团股份有限公司 阵列基板及其制作方法、和显示装置
CN104637438A (zh) * 2013-11-06 2015-05-20 三星显示有限公司 柔性显示器及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248987A (ja) * 2006-03-17 2007-09-27 Toshiba Matsushita Display Technology Co Ltd 表示装置用のアレイ基板
KR101407586B1 (ko) * 2011-04-25 2014-06-27 삼성디스플레이 주식회사 모드에 따라 광반사율을 변화시키는 표시장치 및 그 구동방법
KR20140132800A (ko) * 2013-05-06 2014-11-19 한국전자통신연구원 터치 스크린 패널 및 터치 스크린 패널을 포함하는 디스플레이
KR102283456B1 (ko) * 2013-12-18 2021-07-30 삼성디스플레이 주식회사 광투과율 제어가 가능한 표시 장치
TWI559510B (zh) * 2014-06-23 2016-11-21 群創光電股份有限公司 顯示裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637438A (zh) * 2013-11-06 2015-05-20 三星显示有限公司 柔性显示器及其制造方法
CN104022076A (zh) * 2014-05-27 2014-09-03 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN203895510U (zh) * 2014-06-20 2014-10-22 京东方科技集团股份有限公司 低温多晶硅薄膜晶体管及其阵列基板与显示装置
CN104538402A (zh) * 2014-12-30 2015-04-22 京东方科技集团股份有限公司 阵列基板及其制作方法、和显示装置

Also Published As

Publication number Publication date
CN113261101A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP2012242449A (ja) 位相差素子及びその製造方法
US10684394B2 (en) Anti-reflection structure and fabrication method thereof, display device and fabrication method thereof
TWI339299B (zh)
TWI486973B (zh) 透明導電層壓薄膜、其製造方法以及包含該透明導電層壓薄膜的觸控螢幕
WO2006019184A1 (ja) 透明導電性積層体および透明タッチパネル
JP2017107177A (ja) 位相差層付偏光板および画像表示装置
JP2001249222A (ja) 反射防止フィルム及びそれを用いてなる発光表示素子
CN107621666B (zh) 超薄型广波域相位延迟膜
WO2019123948A1 (ja) 位相差板、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置
JP2015082035A (ja) 位相差素子及びその製造方法、液晶表示装置、並びに投射型画像表示装置
WO2020082478A1 (zh) Oled 显示面板
CN107703568A (zh) 光反射膜及液晶显示装置用背光单元
WO2014171149A1 (ja) 透明導電体及びその製造方法
WO2020186448A1 (zh) 透明显示面板和显示装置
JP2009115867A (ja) 反射フィルムの製造方法及び反射フィルム
TW201810641A (zh) 低反射金屬結構、顯示面板及其製作方法
WO2020258034A1 (zh) 基板及显示面板
WO2017094530A1 (ja) 位相差層付偏光板および画像表示装置
JP2018194741A (ja) 配向フィルム、並びに、それを用いた透明導電性フィルム、タッチパネル及び表示装置
CN108933196B (zh) 柔性基板及其制备方法、柔性oled器件和显示装置
JP2007310052A (ja) 波長板
WO2019123947A1 (ja) 位相差フィルム、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置
KR20190049277A (ko) 광학용 반사방지 필름 및 이의 제조방법
CN209955463U (zh) 一种量子点膜用封装膜
JP6027199B2 (ja) 位相差素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919837

Country of ref document: EP

Kind code of ref document: A1