WO2020186404A1 - 一种割草机器人调节控制方法、系统及装置 - Google Patents

一种割草机器人调节控制方法、系统及装置 Download PDF

Info

Publication number
WO2020186404A1
WO2020186404A1 PCT/CN2019/078355 CN2019078355W WO2020186404A1 WO 2020186404 A1 WO2020186404 A1 WO 2020186404A1 CN 2019078355 W CN2019078355 W CN 2019078355W WO 2020186404 A1 WO2020186404 A1 WO 2020186404A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
adjusting
lawn mower
mowing
adjustment
Prior art date
Application number
PCT/CN2019/078355
Other languages
English (en)
French (fr)
Inventor
伍浩文
Original Assignee
深圳拓邦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳拓邦股份有限公司 filed Critical 深圳拓邦股份有限公司
Priority to PCT/CN2019/078355 priority Critical patent/WO2020186404A1/zh
Priority to CN201980000621.0A priority patent/CN110519983A/zh
Publication of WO2020186404A1 publication Critical patent/WO2020186404A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes

Definitions

  • the invention belongs to the field of robot control, and in particular relates to a method, system and device for regulating and controlling a lawn mower robot.
  • the purpose of the embodiments of the present invention is to provide an adjustment and control method, system and device for a lawn mower robot, which aims to solve the problem of using a constant rotation speed and a constant mowing height during the use of the existing lawn mower robot adjustment and control method. And the problem of excessive motor load caused by driving speed.
  • a method for regulating and controlling a lawn mower robot includes:
  • the state adjustment operation is performed on the mowing motor, and the state adjustment operation includes any one of adjusting the rotation speed, adjusting the driving speed, and adjusting the state of the cutting blade or Any one of the combination or a combination.
  • the step of judging whether the difference value satisfies the state adjustment condition includes:
  • the step of judging whether the difference value satisfies the state adjustment condition includes:
  • the step of adjusting the state of the mowing motor according to the target parameter adjustment information includes:
  • the rotation speed of the mowing motor and the traveling speed of the robot are adjusted correspondingly according to the speed adjustment value.
  • the step of adjusting the state of the mowing motor according to the target parameter adjustment information further includes:
  • the state of the cutting knife on the robot is correspondingly adjusted according to the cutting angle and the cutting height adjustment value.
  • the method further includes:
  • the method further includes:
  • the step of optimizing the mowing path includes:
  • the mowing path is gradually deepened along the edge of the remaining area to be cut until the remaining area to be cut is completely cut.
  • Another object of the embodiments of the present invention is to provide an adjustment and control system for a lawn mower robot, the system including:
  • the status acquisition module is used to acquire status information of the mowing motor on the robot, and calculate the output power according to the status information;
  • An adjustment judgment module configured to calculate the difference between the target power and the output power, and determine whether the difference satisfies the state adjustment condition
  • the state adjustment module is configured to perform a state adjustment operation on the mowing motor when it is determined that the difference value satisfies the state adjustment condition.
  • the state adjustment operation includes adjusting the rotation speed, adjusting the driving speed, and adjusting the state of the cutting blade. Any one or a combination of any one or a combination thereof.
  • Another object of the embodiments of the present invention is to provide an adjustment and control device for a lawn mower robot, including a storage device and a processor, the storage device is used to store a computer program, and the processor runs the computer program to enable the cutting
  • the grass robot adjustment control device executes the above-mentioned grass cutting robot adjustment control method.
  • Another object of the embodiments of the present invention is to provide a storage medium, characterized in that it stores a computer program used in the above-mentioned lawn-mower robot adjustment and control device, and when the computer program is executed by a processor, the above-mentioned lawn-cutting The steps of the robot adjustment control method.
  • the current resistance state of the lawn mower robot is calculated correspondingly through the calculation design of the difference, and the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is If it is too large, and when it is judged that the current resistance is too large, by correspondingly adjusting the rotation speed, driving speed of the mowing motor and the state of use of the cutting knife, the motor load is effectively prevented from being too large and the service life of the mowing robot is increased.
  • FIG. 1 is a flowchart of a method for adjusting and controlling a lawn mower robot according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for adjusting and controlling a lawn mower robot provided by a second embodiment of the present invention
  • FIG. 3 is a flowchart of a method for adjusting and controlling a lawn mower robot provided by a third embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an adjustment and control system for a lawn mower robot provided by a fourth embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of an adjustment and control device for a lawn mower robot provided by a fifth embodiment of the present invention.
  • the present invention collects the use status information of the mowing motor to make it judge that the current resistance is large. Correspondingly adjust the rotation speed of the mowing motor, the driving speed and the use state of the cutting knife to prevent damage caused by excessive motor load.
  • Fig. 1 is a flow chart of a method for adjusting and controlling a lawn mower robot according to a first embodiment of the present invention, including steps:
  • Step S10 Obtain status information of the mowing motor on the robot, and calculate output power according to the status information;
  • the status information includes motor current, motor voltage, motor speed, and motor torque.
  • the motor current, motor voltage, and motor speed are all output values, that is, the motor current and motor voltage are calculated to obtain the
  • the target power is calculated by calculating the motor speed and the motor torque to obtain the output power, and the output power is the actual power;
  • the storage of the state information is correspondingly performed by setting a sensor, and the transmission of the state information is completed by using a wireless signal, so as to improve the data transmission efficiency;
  • Step S20 calculating the difference between the target power and the output power
  • the target power is the desired power.
  • the current resistance state of the lawn mower robot is calculated correspondingly. Due to the influence of wind resistance or mowing resistance, the target power will be greater than the output power. Therefore, in this step, Subtracting the output power from the target power by a calculation method to obtain the difference, where the difference is greater than 0;
  • Step S30 judging whether the difference value satisfies the state adjustment condition
  • the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is too large.
  • the condition parameters in the state adjustment condition can be set independently according to user needs.
  • Condition parameters can be set in a preset range or preset value;
  • step S30 When it is determined in step S30 that the difference does not meet the state condition, the step is ended;
  • step S40 is executed;
  • Step S40 Perform a state adjustment operation on the mowing motor.
  • the state adjustment operation includes any one or a combination of any one or a combination of adjusting the rotation speed, adjusting the driving speed, and adjusting the state of the cutting blade.
  • step S40 specifically further includes:
  • the difference is matched with a locally pre-stored state adjustment table to obtain target parameter adjustment information; the state of the mowing motor is adjusted according to the target parameter adjustment information.
  • the target parameter adjustment information includes any one or a combination of a rotation speed parameter, a driving speed parameter, and a cutting knife state parameter.
  • the difference is first corresponding to the state adjustment table
  • the difference range is matched to obtain the target difference range, and then the target parameter adjustment information is queried through the target difference.
  • the difference is 50 watts
  • the matched target unit is 50-60 watts
  • the rotational speed parameter stored in the target parameter adjustment information is 10 revolutions/sec
  • the driving speed is 1 m/sec.
  • the cutting knife status parameters include cutting knife model, cutting knife height, and cutting angle.
  • the target parameter adjustment information also includes a mowing strategy. Mowing strategies include mowing paths, mowing working hours, etc.;
  • the parameter adjustment of the mowing motor is correspondingly performed according to the target parameter adjustment information by adopting a control instruction.
  • the current resistance state of the lawn mower robot is calculated correspondingly through the calculation design of the difference, and the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is If it is too large, and when it is judged that the current resistance is too large, by correspondingly adjusting the rotation speed, driving speed of the mowing motor and the state of use of the cutting knife, the motor load is effectively prevented from being too large and the service life of the mowing robot is increased.
  • FIG. 2 is a flow chart of a method for adjusting and controlling a lawn mower robot according to a second embodiment of the present invention, including steps:
  • Step S11 acquiring state information of the mowing motor on the robot, and calculating output power according to the state information
  • the status information includes motor current, motor voltage, motor speed, and motor torque.
  • the motor current, motor voltage, and motor speed are all output values, that is, the motor current and motor voltage are calculated to obtain the
  • the target power is calculated by calculating the motor speed and the motor torque to obtain the output power, and the output power is the actual power;
  • the storage of the state information is correspondingly performed by setting a sensor, and the transmission of the state information is completed by using a wireless signal, so as to improve the data transmission efficiency;
  • Step S21 calculating the difference between the target power and the output power
  • the target power is the desired power.
  • the current resistance state of the lawn mower robot is calculated correspondingly. Due to the influence of wind resistance or mowing resistance, the target power will be greater than the output power. Therefore, in this step, Subtracting the output power from the target power by a calculation method to obtain the difference, where the difference is greater than 0;
  • Step S31 determining whether the difference value satisfies the state adjustment condition
  • the step of judging whether the difference value satisfies the state adjustment condition includes:
  • the step of judging whether the difference value satisfies the state adjustment condition in this step further includes:
  • step S41 When it is determined in step S31 that the difference value satisfies the state adjustment condition, step S41 is executed;
  • Step S41 when the difference satisfies the speed reduction adjustment condition or the speed increase adjustment condition, obtain the speed adjustment value corresponding to the rotation speed parameter and the driving speed parameter in the target parameter adjustment information;
  • the matched target unit is 50 to 60 watts
  • the speed parameter stored in the target parameter adjustment information is -10 revolutions per second
  • the driving speed is- 1 m/s
  • the matched target unit is 0 to 10 watts
  • the speed parameter stored in the target parameter adjustment information is +10 rpm
  • the driving The speed is +1 m/s. It is understandable that the data value stored in the state adjustment table in this embodiment can be set independently according to user needs;
  • Step S51 correspondingly adjust the rotation speed of the mowing motor and the traveling speed of the robot according to the speed adjustment value
  • the adjustment value when the adjustment value is a positive value, by increasing the rotation speed and driving speed of the mowing motor to correspondingly increase the mowing efficiency of the mowing motor, when the adjustment value is a negative value, by reducing the mowing efficiency
  • the rotation speed and driving speed of the motor can effectively prevent the mowing motor from being overloaded when the mowing resistance is large;
  • Step S61 acquiring the cutting angle and cutting height adjustment values corresponding to the cutting knife state parameters in the target parameter adjustment information
  • the cutting knife status parameter further includes the cutting knife model
  • Step S71 correspondingly adjusting the state of the cutting knife on the robot according to the cutting angle and the cutting height adjustment value
  • the current resistance state of the lawn mower robot is calculated correspondingly through the calculation design of the difference, and the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is If it is too large, and when it is judged that the current resistance is too large, by correspondingly adjusting the rotation speed, driving speed of the mowing motor and the state of use of the cutting knife, the motor load is effectively prevented from being too large and the service life of the mowing robot is increased.
  • FIG. 3 is a flowchart of a method for adjusting and controlling a lawn mower robot according to a third embodiment of the present invention, including steps:
  • Step S12 acquiring state information of the mowing motor on the robot, and calculating output power according to the state information
  • the status information includes motor current, motor voltage, motor speed, and motor torque
  • Step S22 calculating the difference between the target power and the output power
  • Step S32 judging whether the difference value satisfies the state adjustment condition
  • the step of judging whether the difference value satisfies the state adjustment condition includes:
  • the step of judging whether the difference value satisfies the state adjustment condition in this step further includes:
  • step S42 is executed;
  • Step S42 Determine whether the difference value is continuously greater than the first power threshold value or continuously smaller than the second power threshold value within the first preset time;
  • step S52 execute step S52;
  • the model of the cutting knife needs to be replaced.
  • the cutting efficiency is effectively increased.
  • the model of the cutting knife is reduced, the cutting resistance is effectively reduced.
  • the increase and decrease correspond to the increase and decrease of the cutter head;
  • Step S52 issue a cutting knife model change instruction
  • the cutting knife model change instruction is transmitted in the form of text signal, image signal, electrical signal or voice signal;
  • Step S62 obtaining the number of adjustments for the mowing motor
  • Step S72 Determine whether the number of adjustments within the second preset time is greater than a threshold of times
  • step S82 execute step S82;
  • Step S82 Obtain the mowing path of the robot, and optimize the mowing path;
  • the step of optimizing the mowing path includes:
  • the cutting path is optimized
  • the design further prevents the motor on the robot from being under heavy load for a long time, improves the service life of the lawn mower robot, and controls the robot to cut back and forth or control the robot to cut along the remaining area to be cut
  • the design of the edge gradually deepens until the remaining area to be cut is completely cut, which effectively guarantees the work efficiency of the mowing task;
  • the current resistance state of the lawn mower robot is calculated correspondingly through the calculation design of the difference, and the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is If it is too large, and when it is judged that the current resistance is too large, by correspondingly adjusting the rotation speed, driving speed of the mowing motor and the state of use of the cutting knife, the motor load is effectively prevented from being too large and the service life of the mowing robot is increased.
  • FIG. 4 is a structural diagram of a lawn mower robot adjustment control system 100 according to a fourth embodiment of the present invention, including:
  • the status acquisition module 10 is used to acquire status information of the mowing motor on the robot, and calculate output power according to the status information.
  • the status information includes motor current, motor voltage, motor speed, and motor torque.
  • the motor current, motor voltage, and motor speed are all output values, that is, the motor current and motor voltage are calculated to obtain the
  • the target power is calculated by calculating the motor speed and the motor torque to obtain the output power, and the output power is the actual power;
  • the storage of the status information is correspondingly performed by setting sensors, and the transmission of the status information is completed by using wireless signals to improve the efficiency of data transmission.
  • the calculation of the difference is designed to correspondingly calculate the current resistance state of the lawn mower robot. Due to the influence of wind resistance or mowing resistance, the target power will be greater than the output power. Therefore, in this module, the calculation The output power is subtracted from the target power to obtain the difference, and the difference is greater than zero.
  • the adjustment judgment module 11 is configured to calculate the difference between the target power and the output power, and determine whether the difference meets the state adjustment condition.
  • the target power is the desired power.
  • the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is too large.
  • the condition parameters in the state adjustment condition can be set independently according to user needs.
  • the condition parameter can be set in a preset range or a preset value.
  • the adjustment judgment module 11 may also be used to determine whether the difference is greater than a first power threshold; if so, determine that the difference meets the speed reduction adjustment condition.
  • the adjustment judgment module 11 may also be used to determine whether the difference is smaller than a second power threshold; if so, determine that the difference meets the speed increase adjustment condition.
  • the 12 state adjustment modules are used to perform state adjustment operations on the mowing motor when it is determined that the difference meets the state adjustment conditions.
  • the state adjustment operations include adjusting the rotation speed, adjusting the driving speed, and adjusting the cutting knife Any one or combination of states.
  • the difference value is first matched with the corresponding difference value range in the state adjustment table to obtain the target difference value range, and then the target difference value is used to query the corresponding target parameter adjustment Information, for example, when the difference is 50 watts, the matched target unit is 50 to 60 watts, the rotation speed parameter stored in the target parameter adjustment information is 10 revolutions per second, and the driving speed is 1 m/s.
  • the cutting knife state parameters include cutting knife model, cutting knife height, and cutting angle, etc.
  • the target parameter adjustment information further includes a mowing strategy, and the mowing strategy includes a mowing path, a mowing working time, and the like.
  • the state adjustment module 12 is further configured to: when the difference value satisfies the speed reduction adjustment condition or the speed increase adjustment condition, obtain the rotation speed in the target parameter adjustment information Parameter and a speed adjustment value corresponding to the driving speed parameter; and correspondingly adjust the rotation speed of the mowing motor and the driving speed of the robot according to the speed adjustment value.
  • the state adjustment module 12 may also be used to: obtain the cutting angle and the cutting height adjustment value corresponding to the cutting knife state parameter in the target parameter adjustment information; according to the cutting angle and the cutting The height adjustment value correspondingly adjusts the state of the cutting knife on the robot.
  • the state adjustment module 12 can also be used to: obtain the number of adjustments for the mowing motor; determine whether the number of adjustments within the second preset time is greater than the number threshold; if so, obtain the number of adjustments.
  • the mowing path of the robot is described, and the mowing path is optimized, wherein the step of optimizing the mowing path is:
  • the lawn mower robot adjustment control system 100 further includes:
  • Model replacement module 13 Determine whether the difference value is continuously greater than the first power threshold value or continuously less than the second power threshold value within the first preset time; if so, issue a cutter model replacement instruction;
  • the current resistance state of the lawn mower robot is calculated correspondingly through the calculation design of the difference, and the judgment design of the difference and the state adjustment condition is used to determine whether the current resistance of the lawn mower robot is If it is too large, and when it is judged that the current resistance is too large, by correspondingly adjusting the rotation speed, driving speed of the mowing motor and the state of use of the cutting knife, the motor load is effectively prevented from being too large and the service life of the mowing robot is increased.
  • FIG. 5 is an adjustment and control device 101 for a lawn mower robot provided by a fifth embodiment of the present invention, including a storage device and a processor.
  • the adjustment and control device 101 for the lawn mower robot is electrically connected to the lawn mower robot, and the storage device It is used to store a computer program, and the processor runs the computer program to make the lawn mower robot adjustment and control device 101 execute the aforementioned lawn mower robot adjustment and control method.
  • This embodiment also provides a storage medium on which is stored a computer program used in the above-mentioned lawn-mower robot adjustment and control device.
  • the program When executed, it includes the following steps:
  • the state adjustment operation is performed on the mowing motor, and the state adjustment operation includes any one of adjusting the rotation speed, adjusting the driving speed, and adjusting the state of the cutting blade or Any one of the combination or a combination.
  • the storage medium such as ROM/RAM, magnetic disk, optical disk, etc.
  • the above functions can be allocated to different functional units or Module completion, that is, the internal structure of the storage device is divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiments can be integrated into one processing unit, or each unit can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated units can be hardware-based Formal realization can also be realized in the form of software functional units.
  • the specific names of the functional units and modules are only used to facilitate distinguishing each other, and are not used to limit the protection scope of the present application.
  • composition structure shown in FIG. 4 does not constitute a limitation on the regulation and control system of the lawn mower robot of the present invention, and may include more or less components than shown in the figure, or combine certain components, or Different component arrangements, and the lawn mower robot adjustment and control method in Figs. 1-3 also adopts more or fewer components shown in Fig. 4, or a combination of some components, or different component arrangements.
  • the unit, module, etc. referred to in the present invention refers to a series of computer programs that can be executed by the processor (not shown in the figure) in the regulation and control system of the lawn mower robot and can perform specific functions, all of which can be stored In the storage device (not shown) of the lawn mower robot adjustment control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Harvester Elements (AREA)

Abstract

一种割草机器人调节控制方法、系统及装置,该方法包括:获取机器人上割草电机的状态信息,并根据状态信息计算输出功率;计算目标功率与输出功率之间的差值,并判断差值是否满足状态调节条件;若是,对割草电机进行状态调节操作,状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。通过对割草电机的转速、行驶速度和切割刀的使用状态进行调节,有效防止了电机负载过大,提高了割草机器人的使用寿命。

Description

一种割草机器人调节控制方法、系统及装置 技术领域
本发明属于机器人控制领域,尤其涉及一种割草机器人调节控制方法、系统及装置。
背景技术
近些年来,随着城市绿化面积和家庭庭院草地的大幅度增加,割草机的市场正逐渐变大,尤其在欧美发达国家,草坪的占地面积很大,无论在公共场合还是家庭草坪都需要大量的割草机对草坪进行维护修剪。目前市场上割草机种类很多,按其操作方式可以分为智能式割草机和非智能式割草机,传统的非智能式割草机主要分为手推式和坐骑式;智能割草机,即割草机器人,为将机器人技术应用到割草机领域的一种产品,能够自主工作。传统非智能割草机作业时费时、费力,同时还产生很大的噪声污染,而割草机器人能自主进行割草作业,从而很好地替代人工修剪。随着市场发展,割草机器人必将逐渐取代传统非智能割草机
现有的割草机器人使用过程中,均是通过采用恒定的转速、割草高度和行驶速度以对应进行割草任务,但当草坪中草植物的深度较深时,会导致对割草电机的阻力增大,当阻力增大且采用恒定的转速、割草高度和行驶速度时,会使得电机负载过大,进而容易导致电机的电流过大,降低了割草电机的使用寿命。
发明内容
本发明实施例的目的在于提供一种割草机器人调节控制方法、系统及装置,旨在解决现有的割草机器人调节控制方法使用过程中,当阻力增大且采用恒定的转速、割草高度和行驶速度所导致的电机负载过大的问题。
本发明实施例是这样实现的,一种割草机器人调节控制方法,包括:
获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
计算目标功率与所述输出功率之间的差值,并判断所述差值是否满足状态调节条件;
当判断到所述差值满足所述状态调节条件时,对所述割草电机进行状态调节操作,所述状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。
更进一步的,所述判断所述差值是否满足状态调节条件的步骤包括:
判断所述差值是否大于第一功率阈值;
若是,则判定所述差值满足降速调节条件。
更进一步的,所述判断所述差值是否满足状态调节条件的步骤包括:
判断所述差值是否小于第二功率阈值;
若是,则判定所述差值满足增速调节条件。
更进一步的,所述根据所述目标参数调节信息对所述割草电机进行状态调节的步骤包括:
当所述差值满足所述降速调节条件或所述增速调节条件时,获取所述目标参数调节信息中所述转速参数和所述行驶速度参数对应的速度调节值;
根据所述速度调节值对所述割草电机的转速和所述机器人的行驶速度进行对应调节。
更进一步的,所述根据所述目标参数调节信息对所述割草电机进行状态调节的步骤还包括:
获取所述目标参数调节信息中所述切割刀状态参数对应的切割角度和切割高度调节值;
根据所述切割角度和所述切割高度调节值对所述机器人上的切割刀状态进行对应调节。
更进一步的,所述方法还包括:
判断第一预设时间内所述差值是否持续大于所述第一功率阈值,或持续小于所述第二功率阈值;
若是,则发出切割刀型号更换指令。
更进一步的,所述根据所述目标参数调节信息对所述割草电机进行状态调节的步骤之后,所述方法还包括:
获取针对所述割草电机的调节次数;
判断第二预设时间内所述调节次数是否大于次数阈值;
若是,则获取所述机器人的割草路径,并对所述割草路径进行优化。
更进一步的,所述对所述割草路径进行优化的步骤包括:
获取剩余待切割区域的区域图像,当判断到所述区域图像小于区域阈值时,将所述割草路径朝预设方向以及所述预设方向相反方向来回切割;
当判断到所述区域图像大于所述区域阈值时,将所述割草路径沿所述剩余待切割区域的边缘逐渐深入直到所述剩余待切割区域全部割完为止。
本发明实施例的另一目的在于提供一种割草机器人调节控制系统,所述系统包括:
状态获取模块,用于获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
调节判断模块,用于计算目标功率与所述输出功率之间的差值,并判断所述差值是否满足状态调节条件;
状态调节模块,用于当判断到所述差值满足所述状态调节条件时,对所述割草电机进行状态调节操作,所述状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。
本发明实施例的另一目的在于提供一种割草机器人调节控制装置,包括存储设备以及处理器,所述存储设备用于存储计算机程序,所述处理器运行所述计算机程序以使所述割草机器人调节控制装置执行上述的割草机器人调节控制方法。
本发明实施例的另一目的在于提供一种存储介质,其特征在于,其存储有上述的割草机器人调节控制装置中所使用的计算机程序,该计算机程序被处理器执行时实现上述的割草机器人调节控制方法的步骤。
本发明实施例,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,并当判断到当前阻力过大时,通过对应进行割草电机的转速、行驶速度和切割刀的使用状态调节,有效防止了电机负载过大,提高了割草机器人的使用寿命。
附图说明
图1是本发明第一实施例提供的割草机器人调节控制方法的流程图;
图2是本发明第二实施例提供的割草机器人调节控制方法的流程图;
图3是本发明第三实施例提供的割草机器人调节控制方法的流程图;
图4是本发明第四实施例提供的割草机器人调节控制系统的结构示意图;
图5是本发明第五实施例提供的割草机器人调节控制装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
现有的割草机器人使用过程中,当草坪中草植物的深度较深时,会导致对割草电机的阻力增大,当阻力增大且采用恒定的转速、割草高度和行驶速度时,会使得电机负载过大,进而容易导致电机的电流过大,降低了割草电机的使用寿命,因此,本发明通过对割草电机使用状态信息的采集,以使判断到当前阻力较大时,对应进行割草电机的转速、行驶速度和切割刀的使用状态调节,以防止电机负载过大而导致的损坏。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明
实施例一
请参阅图1,是本发明第一实施例提供的割草机器人调节控制方法的流程图,包括步骤:
步骤S10,获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
其中,所述状态信息包括电机电流、电机电压、电机转速、电机转矩,该电机电流、电机电压和电机转速均为输出值,即通过电机电流与电机电压之间的计算,以得到所述目标功率,通过电机转速与电机转矩之间的计算,以得到所述输出功率,所述输出功率为实际功率;
具体的,本实施例中,通过设置传感器的方式以对应进行所述状态信息的存储,并通过采用无线信号的方式完成所述状态信息的传输,以提高数据的传输效率;
步骤S20,计算目标功率与所述输出功率之间的差值;
其中,所述目标功率为期望功率。
其中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,由于风阻力或割草阻力的影响,所述目标功率会大于所述输出功率,因此,该步骤中,通过采用计算的方式将所述目标功率减去所述输出功率以得到所述差值,所述差值大于0;
步骤S30,判断所述差值是否满足状态调节条件;
其中,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,优选的,所述状态调节条件中的条件参数可以根据用户需求自主进行设置,该条件参数可以为预设范围或预设值的方式进行设置;
当步骤S30判断到所述差值未满足所述状态条件时,结束步骤;
当步骤S30判断到所述差值满足所述状态调节条件时,执行步骤S40;
步骤S40,对所述割草电机进行状态调节操作,所述状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。
在本发明实施例中,步骤S40具体还包括:
将所述差值与本地预存储的状态调节表进行匹配,以得到目标参数调节信息;根据所述目标参数调节信息对所述割草电机进行状态调节。
其中,所述目标参数调节信息包括转速参数、行驶速度参数和切割刀状态参数中的任意一者或其组合,具体的,该步骤中,先将所述差值与所述状态调节表中对应的差值范围进行匹配,以得到目标差值范围,再通过所述目标差值以查询对应所述目标参数调节信息,例如,当所述差值为50瓦时,对应匹配到的目标单位为50至60瓦,所述目标参数调节信息中存储的所述转速参数为10转/秒、所述行驶速度为1米/秒,可以理解的,本实施例中所述状态调节表中存储的数据值可以根据用户需求自主进行设置,所述切割刀状态参数包括切割刀型号、切割刀高度和切割角度等,优选的,本实施例中,所述目标参数调节信息还包括割草策略,该割草策略包括割草路径、割草工作时间等;
其中,通过采用控制指令的方式以根据所述目标参数调节信息对应进行所述割草电机的参数调节。
本实施例中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,并当判断到当前阻力过大时,通过对应进行割草电机的转速、行驶速度和切割刀的使用状态调节,有效防止了电机负载过大,提高了割草机器人的使用寿命。
实施例二
请参阅图2,是本发明第二实施例提供的割草机器人调节控制方法的流程图,包括步骤:
步骤S11,获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
其中,所述状态信息包括电机电流、电机电压、电机转速、电机转矩,该电机电流、电机电压和电机转速均为输出值,即通过电机电流与电机电压之间的计算,以得到所述目标功率,通过电机转速与电机转矩之间的计算,以得到所述输出功率,所述输出功率为实际功率;
具体的,本实施例中,通过设置传感器的方式以对应进行所述状态信息的存储,并通过采用无线信号的方式完成所述状态信息的传输,以提高数据的传输效率;
步骤S21,计算目标功率与所述输出功率之间的差值;
其中,所述目标功率为期望功率。
其中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,由于风阻力或割草阻力的影响,所述目标功率会大于所述输出功率,因此,该步骤中,通过采用计算的方式将所述目标功率减去所述输出功率以得到所述差值,所述差值大于0;
步骤S31,判断所述差值是否满足状态调节条件;
具体的,该步骤中判断所述差值是否满足状态调节条件的步骤包括:
判断所述差值是否大于第一功率阈值;
若是,则判定所述差值满足降速调节条件;
其中,当判断到所述差值满足所述降速调节条件时,则判定当前机器人所处割草环境的草植物的深度较高,所带来的割草阻力较大,需要对应进行割草参数的降低,以防止由于负载过大导致的损坏;
优选的,该步骤中判断所述差值是否满足状态调节条件的步骤还包括:
判断所述差值是否小于第二功率阈值;
若是,则判定所述差值满足增速调节条件;
其中,当判断到所述差值满足所述增速调节条件时,则判定当前机器人所处割草环境的草植物的深度较矮,所带来的割草阻力较小,需要对应进行割草参数的增大,以提高割草机器人的割草效率;
当步骤S31判断到所述差值满足所述状态调节条件时,执行步骤S41;
步骤S41,当所述差值满足所述降速调节条件或所述增速调节条件时,获取所述目标参数调节信息中所述转速参数和所述行驶速度参数对应的速度调节值;
例如,当所述差值为50瓦时,对应匹配到的目标单位为50至60瓦,所述目标参数调节信息中存储的所述转速参数为-10转/秒、所述行驶速度为-1米/秒,当所述差值为7瓦时,对应匹配到的目标单位为0至10瓦,所述目标参数调节信息中存储的所述转速参数为+10转/秒、所述行驶速度为+1米/秒,可以理解的,本实施例中所述状态调节表中存储的数据值可以根据用户需求自主进行设置;
步骤S51,根据所述速度调节值对所述割草电机的转速和所述机器人的行驶速度进行对应调节;
其中,当调节值为正值时,通过增大所述割草电机的转速和行驶速度以对应加快所述割草电机的割草效率,当调节值为负值时,通过降低所述割草电机的转速和行驶速度,以有效防止割草阻力较大的情况下割草电机负载过大的情况;
步骤S61,获取所述目标参数调节信息中所述切割刀状态参数对应的切割角度和切割高度调节值;
优选的,所述切割刀状态参数还包括切割刀型号;
步骤S71,根据所述切割角度和所述切割高度调节值对所述机器人上的切割刀状态进行对应调节;
其中,该步骤中,当所述切割角度的值为正值时,则控制切割刀朝向水平位置进行角度转动,此时,切割刀的切割距离降低,有效的增大了切割效率,当所述切割角度的值为负值时,则控制切割刀背向水平位置进行角度转动,由于草植物纹路关系,此时,有效降低了切割阻力,防止了切割电机负载过大;
可以理解的,当所述切割高度调节值为正值时,增大切割刀的离地高度,当所述切割高度调节值为负值时,降低切割刀的离地高度;
本实施例中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,并当判断到当前阻力过大时,通过对应进行割草电机的转速、行驶速度和切割刀的使用状态调节,有效防止了电机负载过大,提高了割草机器人的使用寿命。
实施例三
请参阅图3,是本发明第三实施例提供的割草机器人调节控制方法的流程图,包括步骤:
步骤S12,获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
其中,所述状态信息包括电机电流、电机电压、电机转速、电机转矩;
步骤S22,计算目标功率与所述输出功率之间的差值;
步骤S32,判断所述差值是否满足状态调节条件;
具体的,该步骤中判断所述差值是否满足状态调节条件的步骤包括:
判断所述差值是否大于第一功率阈值;
若是,则判定所述差值满足降速调节条件;
优选的,该步骤中判断所述差值是否满足状态调节条件的步骤还包括:
判断所述差值是否小于第二功率阈值;
若是,则判定所述差值满足增速调节条件;
当步骤S32判断到所述差值满足所述状态调节条件时,执行步骤S42;
步骤S42,判断第一预设时间内所述差值是否持续大于所述第一功率阈值,或持续小于所述第二功率阈值;
当步骤S42的判断结果为是时,执行步骤S52;
其中,则判定需要对切割刀的型号进行更换,当进行切割刀型号的增大时,则有效增大了切割效率,当进行切割刀型号的减小时,则有效降低了切割阻力,该型号的增大和减小对应的是切割刀刀盘的增大和减小;
步骤S52,发出切割刀型号更换指令;
其中,所述切割刀型号更换指令采用文字信号、图像信号、电信号或语音信号的方式进行传输;
步骤S62,获取针对所述割草电机的调节次数;
步骤S72,判断第二预设时间内所述调节次数是否大于次数阈值;
当步骤S72的判断结果为是时,执行步骤S82;
步骤S82,获取所述机器人的割草路径,并对所述割草路径进行优化;
其中,该步骤中,所述对所述割草路径进行优化的步骤包括:
获取剩余待切割区域的区域图像,当判断到所述区域图像小于区域阈值时,将所述割草路径朝预设方向以及所述预设方向相反方向来回切割;当判断到所述区域图像大于所述区域阈值时,将所述割草路径沿所述剩余待切割区域的边缘逐渐深入直到所述剩余待切割区域全部割完为止,具体的,该步骤中通过对所述割草路径进行优化的设计,进一步防止了所述机器人上电机长时间处于大负载的现象,提高了割草机器人的使用寿命,且通过控制所述机器人进行来回切割或控制所述机器人沿所述剩余待切割区域的边缘逐渐深入直到所述剩余待切割区域全部割完为为止的设计,有效的保障了割草任务的工作效率;
本实施例中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,并当判断到当前阻力过大时,通过对应进行割草电机的转速、行驶速度和切割刀的使用状态调节,有效防止了电机负载过大,提高了割草机器人的使用寿命。
实施例 4
请参阅图4,是本发明第四实施例提供的割草机器人调节控制系统100的结构示意图,包括:
状态获取模块10,用于获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率。
其中,所述状态信息包括电机电流、电机电压、电机转速、电机转矩,该电机电流、电机电压和电机转速均为输出值,即通过电机电流与电机电压之间的计算,以得到所述目标功率,通过电机转速与电机转矩之间的计算,以得到所述输出功率,所述输出功率为实际功率;
具体的,本实施例中,通过设置传感器的方式以对应进行所述状态信息的存储,并通过采用无线信号的方式完成所述状态信息的传输,以提高数据的传输效率,该模块中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,由于风阻力或割草阻力的影响,所述目标功率会大于所述输出功率,因此,该模块中,通过采用计算的方式将所述目标功率减去所述输出功率以得到所述差值,所述差值大于0。
调节判断模块11,用于计算目标功率与所述输出功率之间的差值,并判断所述差值是否满足状态调节条件。
其中,所述目标功率为期望功率。
其中,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,优选的,所述状态调节条件中的条件参数可以根据用户需求自主进行设置,该条件参数可以为预设范围或预设值的方式进行设置。
优选的,本实施例中,所述调节判断模块11还可用于:判断所述差值是否大于第一功率阈值;若是,则判定所述差值满足降速调节条件。
此外,本实施例中,所述调节判断模块11还可用于:判断所述差值是否小于第二功率阈值;若是,则判定所述差值满足增速调节条件。
状态调节模12块,用于当判断到所述差值满足所述状态调节条件时,对所述割草电机进行状态调节操作,所述状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。
具体的,该模块中,先将所述差值与所述状态调节表中对应的差值范围进行匹配,以得到目标差值范围,再通过所述目标差值以查询对应所述目标参数调节信息,例如,当所述差值为50瓦时,对应匹配到的目标单位为50至60瓦,所述目标参数调节信息中存储的所述转速参数为10转/秒、所述行驶速度为1米/秒,可以理解的,本实施例中所述状态调节表中存储的数据值可以根据用户需求自主进行设置,所述切割刀状态参数包括切割刀型号、切割刀高度和切割角度等,优选的,本实施例中,所述目标参数调节信息还包括割草策略,该割草策略包括割草路径、割草工作时间等。
进一步地,本实施例中,所述状态调节模块12还用于:当所述差值满足所述降速调节条件或所述增速调节条件时,获取所述目标参数调节信息中所述转速参数和所述行驶速度参数对应的速度调节值;根据所述速度调节值对所述割草电机的转速和所述机器人的行驶速度进行对应调节。
此外,本实施例中,所述状态调节模块12还可用于:获取所述目标参数调节信息中所述切割刀状态参数对应的切割角度和切割高度调节值;根据所述切割角度和所述切割高度调节值对所述机器人上的切割刀状态进行对应调节。
进一步地,本实施例中,所述状态调节模块12还可用于:获取针对所述割草电机的调节次数;判断第二预设时间内所述调节次数是否大于次数阈值;若是,则获取所述机器人的割草路径,并对所述割草路径进行优化,其中,对所述割草路径进行优化的步骤为:
获取剩余待切割区域的区域图像,当判断到所述区域图像小于区域阈值时,将所述割草路径朝预设方向以及所述预设方向相反方向来回切割;当判断到所述区域图像大于所述区域阈值时,将所述割草路径沿所述剩余待切割区域的边缘逐渐深入直到所述剩余待切割区域全部割完为止。
优选的,所述割草机器人调节控制系统100还包括:
型号更换模块13:判断第一预设时间内所述差值是否持续大于所述第一功率阈值,或持续小于所述第二功率阈值;若是,则发出切割刀型号更换指令;
本实施例中,通过所述差值的计算设计,以对应计算割草机器人的当前阻值状态,通过所述差值与所述状态调节条件的判断设计,以判定割草机器人的当前阻力是否过大,并当判断到当前阻力过大时,通过对应进行割草电机的转速、行驶速度和切割刀的使用状态调节,有效防止了电机负载过大,提高了割草机器人的使用寿命。
实施例五
请参阅图5,是本发明第五实施例提供的割草机器人调节控制装置101,包括存储设备以及处理器,所述割草机器人调节控制装置101与割草机器人电性连接,所述存储设备用于存储计算机程序,所述处理器运行所述计算机程序以使所述割草机器人调节控制装置101执行上述的割草机器人调节控制方法。
本实施例还提供了一种存储介质,其上存储有上述割草机器人调节控制装置中所使用的计算机程序,该程序在执行时,包括如下步骤:
获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
计算目标功率与所述输出功率之间的差值,并判断所述差值是否满足状态调节条件;
当判断到所述差值满足所述状态调节条件时,对所述割草电机进行状态调节操作,所述状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。
所述的存储介质,如:ROM/RAM、磁碟、光盘等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元或模块完成,即将存储装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施方式中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域技术人员可以理解,图4中示出的组成结构并不构成对本发明的割草机器人调节控制系统的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,而图1-3中的割草机器人调节控制方法亦采用图4中所示的更多或更少的部件,或者组合某些部件,或者不同的部件布置来实现。本发明所称的单元、模块等是指一种能够被所述割草机器人调节控制系统中的处理器(图未示)所执行并功能够完成特定功能的一系列计算机程序,其均可存储于所述割草机器人调节控制系统的存储设备(图未示)内。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种割草机器人调节控制方法,其特征在于,包括:
    获取机器人上割草电机的状态信息(20毫秒),并根据所述状态信息计算输出功率;
    判断所述输出功率是否大于阈值功率;
    若判断结果为是时,对所述割草电机进行状态调节操作,所述状态调节操作包括行走策略、调节转速、调节行驶速度或调节切割刀状态中的任意一者或其组合。
  2. 如权利要求1所述的割草机器人调节控制方法,其特征在于,所述行走策略包括前后往复切割或围绕深草区域进行渐进环割。
  3. 如权利要求1所述的割草机器人调节控制方法,其特征在于,所述状态信息还包括电流信息,所述状态调节操作具体包括如下步骤:
    判断所述电流信息是否大于第一预设电流(3A);
    若判断结果为否时,则控制所述割草电机按照第一预设转速3000进行旋转;
    若判断结果为是时,则控制所述割草电机按照恒定功率进行旋转。
  4. 如权利要求3所述的割草机器人调节控制方法,其特征在于,所述若判断结果为否时,则控制所述割草电机按照第一预设转速进行旋转的步骤,具体还包括:
    判断所述电流信息是否小于第二预设电流(2.6A);
    若判断结果为是时,则控制所述割草电机按照上一次转速进行旋转。
  5. 如权利要求3所述的割草机器人调节控制方法,其特征在于,所述方法还包括如下步骤:
    判断所述电流信息是否小于第二预设电流(2.6A);
    若判断结果为是时,则控制所述机器人按照第一行驶速度行驶;
    若判断结果为否时,则控制所述机器人按照预设减速方案进行行驶。
  6. 如权利要求3所述的割草机器人调节控制方法,其特征在于,所述方法还包括如下步骤:
    判断所述电流信息是否大于第二预设电流(2.6A);
    若判断结果为是时,则提升所述切割刀的切割高度。
  7. 如如权利要求3所述的割草机器人调节控制方法,其特征在于,所述方法还包括如下步骤:
    判断所述电流信息是否大于第二预设电流(2.6A);
    若判断结果为是时,则调整所述切割刀的切割角度。
    获取所述目标参数调节信息中所述切割刀状态参数对应的切割角度和切割高度调节值;
    根据所述切割角度和所述切割高度调节值对所述机器人上的切割刀状态进行对应调节。
  8. 如权利要求7所述的割草机器人调节控制方法,其特征在于,所述根据所述切割角度和所述切割高度调节值对所述机器人上的切割刀状态进行对应调节的步骤之后,所述方法还包括:
    获取针对所述割草电机的调节次数;
    判断第二预设时间内所述调节次数是否大于次数阈值;
    若是,则获取所述机器人的割草路径,并对所述割草路径进行优化。
  9. 如权利要求8所述的割草机器人调节控制方法,其特征在于,所述对所述割草路径进行优化的步骤包括:
    获取剩余待切割区域的区域图像,当判断到所述区域图像小于区域阈值时,将所述割草路径朝预设方向以及所述预设方向相反方向来回切割;
    当判断到所述区域图像大于所述区域阈值时,将所述割草路径沿所述剩余待切割区域的边缘逐渐深入直到所述剩余待切割区域全部割完为止。
  10. 如权利要求1所述的割草机器人调节控制方法,其特征在于,所述行走策略包括前后往复切割或围绕深草区域进行渐进环割。
  11. 一种割草机器人调节控制系统,其特征在于,所述系统包括:
    状态获取模块,用于获取机器人上割草电机的状态信息,并根据所述状态信息计算输出功率;
    调节判断模块,用于计算目标功率与所述输出功率之间的差值,并判断所述差值是否满足状态调节条件;
    状态调节模块,当判断到所述差值满足所述状态调节条件时,对所述割草电机进行状态调节操作,所述状态调节操作包括调节转速、调节行驶速度和调节切割刀状态中的任意一者或其组合中的任意一者或其组合。
  12. 一种割草机器人调节控制装置,其特征在于,包括存储设备以及处理器,所述存储设备用于存储计算机程序,所述处理器运行所述计算机程序以使所述割草机器人调节控制装置执行根据权利要求1至10任一项所述的割草机器人调节控制方法。
  13. 一种存储介质,其特征在于,其存储有权利要求11所述的割草机器人调节控制装置中所使用的计算机程序,该计算机程序被处理器执行时实现权利要求1至10任一项所述的割草机器人调节控制方法的步骤。
PCT/CN2019/078355 2019-03-15 2019-03-15 一种割草机器人调节控制方法、系统及装置 WO2020186404A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/078355 WO2020186404A1 (zh) 2019-03-15 2019-03-15 一种割草机器人调节控制方法、系统及装置
CN201980000621.0A CN110519983A (zh) 2019-03-15 2019-03-15 一种割草机器人调节控制方法、系统及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078355 WO2020186404A1 (zh) 2019-03-15 2019-03-15 一种割草机器人调节控制方法、系统及装置

Publications (1)

Publication Number Publication Date
WO2020186404A1 true WO2020186404A1 (zh) 2020-09-24

Family

ID=68634384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078355 WO2020186404A1 (zh) 2019-03-15 2019-03-15 一种割草机器人调节控制方法、系统及装置

Country Status (2)

Country Link
CN (1) CN110519983A (zh)
WO (1) WO2020186404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655353A (zh) * 2020-12-25 2021-04-16 浙江三锋实业股份有限公司 一种智能割草机的割草控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111839331B (zh) * 2020-06-20 2022-07-08 珠海一微半导体股份有限公司 预测机器人最佳工作风机吸力的方法
CN112388640A (zh) * 2020-11-27 2021-02-23 深圳优地科技有限公司 基于负载的速度控制方法、装置、机器人及存储介质
CN112673793B (zh) * 2020-12-17 2022-06-24 深圳拓邦股份有限公司 一种割草机深草环境自适应方法及割草机
CN112715133B (zh) * 2020-12-28 2022-06-07 南京苏美达智能技术有限公司 一种智能割草机系统及割草方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447757A (zh) * 2008-12-12 2009-06-03 苏州星恒电源有限公司 电池供电割草机的控制方法
EP2095702A1 (en) * 2008-02-28 2009-09-02 Deere & Company Control system for starting electrically powered implements and vehicle
CN106856799A (zh) * 2017-04-21 2017-06-20 福建永强力加动力设备有限公司 一种割草机
EP3232291A1 (en) * 2016-03-31 2017-10-18 Honda Motor Co., Ltd. Control apparatus for utility robot
CN107290960A (zh) * 2017-06-19 2017-10-24 江西洪都航空工业集团有限责任公司 一种大型智能割草机器人的复合智能控制系统
CN208191638U (zh) * 2018-05-22 2018-12-07 福州良正机械有限公司 一种提高使用寿命的节能割草机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2622461B2 (ja) * 1992-03-17 1997-06-18 株式会社クボタ 草刈機の走行制御装置
GB2303719B (en) * 1995-07-26 2000-01-26 Black & Decker Inc An energy management system for a cordless vegetation cutter
US8966870B2 (en) * 2011-10-26 2015-03-03 Accelerated Systems Inc. Methods of controlling a lawn mower having electric drive and blade motors
US9192096B2 (en) * 2012-08-31 2015-11-24 Deere & Company Electric lawn tractor power management system and method
CN204707485U (zh) * 2015-04-08 2015-10-21 苏州宝时得电动工具有限公司 除草设备
CN106576569B (zh) * 2015-10-14 2020-01-31 南京德朔实业有限公司 电动工具及其控制方法
JP6212591B2 (ja) * 2016-03-31 2017-10-11 本田技研工業株式会社 自律走行作業車の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2095702A1 (en) * 2008-02-28 2009-09-02 Deere & Company Control system for starting electrically powered implements and vehicle
CN101447757A (zh) * 2008-12-12 2009-06-03 苏州星恒电源有限公司 电池供电割草机的控制方法
EP3232291A1 (en) * 2016-03-31 2017-10-18 Honda Motor Co., Ltd. Control apparatus for utility robot
CN106856799A (zh) * 2017-04-21 2017-06-20 福建永强力加动力设备有限公司 一种割草机
CN107290960A (zh) * 2017-06-19 2017-10-24 江西洪都航空工业集团有限责任公司 一种大型智能割草机器人的复合智能控制系统
CN208191638U (zh) * 2018-05-22 2018-12-07 福州良正机械有限公司 一种提高使用寿命的节能割草机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655353A (zh) * 2020-12-25 2021-04-16 浙江三锋实业股份有限公司 一种智能割草机的割草控制方法
EP4070638A4 (en) * 2020-12-25 2023-01-11 Zhejiang Safun Industrial Co., Ltd MOWING CONTROL METHOD FOR SMART MOWER

Also Published As

Publication number Publication date
CN110519983A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2020186404A1 (zh) 一种割草机器人调节控制方法、系统及装置
WO2021103548A1 (zh) 割草机及其控制系统
EP4070638B1 (en) Mowing control method for intelligent mower
US9179596B2 (en) End of cut speed control system
US7472684B1 (en) High low engine speed cruise control
EP4293468A3 (en) Robotic mower and control method thereof
SE1350202A1 (sv) Förbättrat robotiserat arbetsredskap
AU2019217349A1 (en) Adaptive control of a mower
US11844310B2 (en) System and method for controlling reel of combine harvester
CN102929146B (zh) 联合收割机作业速度模型参考自适应控制装置及方法
US8571753B2 (en) Power management system for a forestry machine to automatically adjust engine load
CN107960190B (zh) 智能化自走式甘薯碎蔓机
EP4215035A1 (en) Mower
US20200000026A1 (en) Electric walk behind greens mower
CN115511916A (zh) 智能作业设备控制方法、装置、设备、介质及程序产品
CN209787859U (zh) 一种双地轮侧边割草机
CN109997493A (zh) 割草机器人基于电机负载进行草况识别方法
CN114715118A (zh) 用于农用机械的节能降耗方法、系统、介质、设备及农机
CN215074030U (zh) 一种割草机发动机位置调节支架
CN219698475U (zh) 一种园林景观施工地面割草设备
WO2024045357A1 (zh) 自移动设备的控制方法、装置和自移动设备
CN115606394A (zh) 割草控制方法和自动割草机
WO2021103804A1 (zh) 自动割草机
WO2022253264A1 (zh) 智能割草机控制方法、装置、智能割草机和计算机设备
CN216982593U (zh) 一种绿化工程用草坪割草装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920398

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 21.01.2022 (EPO FORM 1205A).

122 Ep: pct application non-entry in european phase

Ref document number: 19920398

Country of ref document: EP

Kind code of ref document: A1