WO2020186394A1 - 成像方法及装置 - Google Patents

成像方法及装置 Download PDF

Info

Publication number
WO2020186394A1
WO2020186394A1 PCT/CN2019/078311 CN2019078311W WO2020186394A1 WO 2020186394 A1 WO2020186394 A1 WO 2020186394A1 CN 2019078311 W CN2019078311 W CN 2019078311W WO 2020186394 A1 WO2020186394 A1 WO 2020186394A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light intensity
random
light field
field
Prior art date
Application number
PCT/CN2019/078311
Other languages
English (en)
French (fr)
Inventor
张罗莎
王宇
王魁波
朱精果
杨光华
赵复生
韩哲
亓岩
颜博霞
韩春蕊
郭馨
陈进新
崔惠绒
罗艳
谢婉露
周翊
吴晓斌
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to PCT/CN2019/078311 priority Critical patent/WO2020186394A1/zh
Publication of WO2020186394A1 publication Critical patent/WO2020186394A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to the technical field of optical imaging, in particular to an imaging method and device.
  • the optical system is equivalent to a low-pass filter. After the light wave carrying the target information passes through the finite aperture, the high-frequency components in the target information are filtered out, and the imaged detail information is lost, resulting in blurred image edges and reduced System resolution.
  • Associated imaging uses the total light intensity that reaches the detector after passing the imaging target to reconstruct the target image.
  • the effect of the limited aperture on the total light intensity of the system is only an attenuation factor, and the attenuation of the total light intensity is not It will cause the blur of the image edge, theoretically it can break through the diffraction limit of the classical optical system and achieve high-resolution imaging, so it has become a research hotspot at home and abroad.
  • Imaging mainly includes dual-arm related imaging and ghost imaging technology.
  • the two-arm correlation imaging imaging and image reconstruction speed are slow.
  • ghost imaging The system needs to introduce complex optical modules such as digital microlens arrays or projection systems to generate random fluctuations in the light field distribution.
  • the pixel unit of the digital microlens array is about 10 ⁇ m, and the resolution of the light field is relatively low after transmission.
  • it can only be used for remote sensing, imaging of buildings or daily macroscopic objects.
  • due to the limitation of the fineness of the surface structure of the ground glass in the imaging system when the minimum accuracy of the fluctuating light field decreases, it is easy to appear that multiple pixels exhibit the same light intensity.
  • the main purpose of the present invention is to provide an imaging method and device to at least partially solve the above technical problems.
  • a first aspect of the embodiments of the present invention provides an imaging method, including:
  • reconstructing the random fluctuation light field includes:
  • the light intensity value of the first adjacent pixel is less than the light intensity value of the plurality of pixels, and the second adjacent pixel The light intensity value of the pixel is greater than the light intensity value of the plurality of pixels;
  • the light intensity value of the first adjacent pixel is the minimum value
  • the light intensity value of the second adjacent pixel is the maximum value, replacing the light intensity values of the multiple pixels.
  • the irradiating the rotating ground glass with the laser to form a randomly fluctuating light field includes:
  • the calculating the light intensity values of all pixels in the random fluctuation light field includes:
  • the light intensity values of all pixels in the random fluctuation light field are obtained.
  • Strong intensity correlation items include:
  • I 1 (x 1 ) is the light intensity of the light wave
  • I 2 (x 2 , y 2 ) is the light intensity of the reconstructed random fluctuation light field
  • ⁇ I 1 (x 1 ) is the light wave
  • the light intensity fluctuation of ⁇ I 2 (x 2 , y 2 ) is the light intensity fluctuation of the reconstructed random fluctuation light field
  • x 1 is the horizontal coordinate of the detector for detecting the light intensity of the light wave
  • x 2 , y 2 are the position coordinates of the random fluctuation light field after reconstruction.
  • the generating the image of the imaging target according to the intensity correlation item includes:
  • the intensity function of the imaging target be t(x 0 )
  • the intensity correlation term ( ⁇ I 1 (x 1 ) ⁇ I 2 (x 2 , y 2 )) and the imaging target satisfy ( ⁇ I 1 ( x 1 ) ⁇ I 2 (x 2 ,y 2 )) ⁇
  • the surface structure of the ground glass is a micro-nano structure.
  • a second aspect of the embodiments of the present invention provides an imaging device, including:
  • the laser is used to emit laser light to the micro-nano structure on the surface of the ground glass;
  • the ground glass is used to modulate the laser light to form a random fluctuating light field, and to propagate the laser light to the imaging target;
  • the imaging target is used to enable the laser to carry its own amplitude information and phase information
  • the single-pixel detector is used to detect the laser light carrying the amplitude information and phase information.
  • the imaging device further includes a random fluctuation light field reconstruction module, which is used to calculate the light intensity values of all pixels in the random fluctuation light field.
  • a random fluctuation light field reconstruction module which is used to calculate the light intensity values of all pixels in the random fluctuation light field.
  • reconstructing the random fluctuation light field includes:
  • the light intensity value of the first adjacent pixel is less than the light intensity value of the plurality of pixels, and the second adjacent pixel The light intensity value of the pixel is greater than the light intensity value of the plurality of pixels;
  • the light intensity value of the first adjacent pixel is the minimum value
  • the light intensity value of the second adjacent pixel is the maximum value, replacing the light intensity values of the multiple pixels.
  • the imaging method and device provided by the present invention no longer use complicated optical modules such as spectroscopes and area detectors, digital microlens arrays, or projection systems in the imaging process, which simplifies the complexity of the system. It realizes single-arm intensity-related imaging and improves the imaging speed. At the same time, it solves the problem that multiple pixels have the same intensity when the minimum precision of the fluctuating light field decreases due to the limit of the fineness of the surface structure of the ground glass. .
  • FIG. 1 is a schematic flowchart of an imaging method provided by an embodiment of the present invention. The method mainly includes the following steps:
  • the preset angle is 0.365°
  • the ground glass is rotated 1000 times at 0.365° around its central axis, that is, one rotation.
  • the light intensity of the light wave can be detected by a single-pixel detector, which quickly responds to the light intensity of the light wave carrying the amplitude information and phase information of the imaging target in the detection step.
  • the surface structure of the ground glass is a micro-nano structure, which improves the clarity of the imaging result.
  • Build a ground glass model in electromagnetic field simulation software such as FDTD Solution, FEM, and CST. Specifically, it should be a model of ground glass surface structure.
  • the distribution data is used to obtain the light intensity values of all pixels in the random fluctuation light field, that is, the random fluctuation light field distribution I 2 (x 2 , y 2 ) generated by the interaction between the used laser light wave and the ground glass surface micro-nano structure, and store it.
  • the smallest unit of the random fluctuation light field can be artificially controlled by the fineness of the grid of the simulation software to realize the adjustable resolution of the random fluctuation light field and improve the imaging resolution of the entire system. The finer the minimum unit, the longer the calculation time required. Even so, the calculation time of the random fluctuation light field distribution data does not affect the image reconstruction time in the actual imaging process.
  • the random fluctuation light field is reconstructed. Specifically, first, obtain the light intensity values of a plurality of consecutive pixels with the same light intensity, and search for the first and second adjacent pixels adjacent to the multiple pixels, and the light intensity values of the first adjacent pixels Less than the light intensity value of the plurality of pixels, the light intensity value of the second adjacent pixel is greater than the light intensity value of the plurality of pixels, and then linear interpolation is used to take the light intensity value of the first adjacent pixel to the minimum , The light intensity value of the second adjacent pixel is the maximum value, replacing the light intensity value of the multiple pixels. Exemplarily, as shown in FIG. 2, taking a row of data in FIG.
  • I 1 (x 1 ) is the light intensity of the light wave
  • I 2 (x 2 , y 2 ) is the light intensity of the reconstructed random fluctuation light field
  • ⁇ I 1 (x 1 ) is the light intensity fluctuation of the light wave
  • ⁇ I 2 (x 2 , y 2 ) is the light intensity fluctuation of the reconstructed random fluctuation light field
  • x 1 is the horizontal coordinate of the detector for detecting the light intensity of the light wave
  • x 2 , y 2 are the random fluctuation light The position coordinates of the field.
  • equations (1) and (2) can reconstruct the image of the imaging target.
  • the rotating ground glass is irradiated with a laser to form a random fluctuation light field
  • the reconstructed random fluctuation light field is used to illuminate the imaging target to form a light wave carrying the amplitude and phase information of the imaging target, and to detect the light wave
  • Light intensity calculate the light intensity value of all pixels in the random fluctuation light field, when the light intensity value of multiple consecutive pixels in the random fluctuation light field is the same, reconstruct the random fluctuation light field, and compare the reconstructed random fluctuation light
  • the light intensity of the field and the light intensity of the light wave are correlated and calculated to obtain the intensity correlation term of the light intensity of the reconstructed random fluctuation light field and the light intensity of the light wave. According to the intensity correlation term, the image of the imaging target is generated, which improves Image reconstruction speed and resolution.
  • FIG. 4 is a schematic structural diagram of an imaging device provided by another embodiment of the present invention.
  • the device mainly includes:
  • Laser 1 for emitting laser light to the micro-nano structure on the surface of ground glass 2;
  • Ground glass 2 is used to modulate the laser light to form a random fluctuation light field and spread the laser light to the imaging target 3;
  • the light intensity of the random fluctuation light field is obtained by solving the interaction result between the laser and the micro-nano structure on the surface of the ground glass 2.
  • the calculation process of light intensity of random fluctuation light field is:
  • the light source parameters include the distance and relative angle between the light source model and the ground glass 2 model, the cross-sectional area of the light source model, the light source type, the wavelength and polarization of the light source And set up near-field observation detectors to ensure the accuracy of calculations.
  • the coordinate system is established, the calculation range and the calculation unit grid of the ground glass 2 model are divided, and Maxwell's equation is solved according to the divided calculation unit grid within the calculation range to obtain the light intensity of the random fluctuation light field.
  • the axis rotates at a preset angle until the model of ground glass 2 rotates one circle around its central axis, and the light intensity of n groups of random fluctuation light fields is obtained by solving, which is used for subsequent intensity correlation reconstruction image.
  • the smallest unit of the random fluctuation light field can be artificially controlled by the fineness of the grid of the simulation software to realize the adjustable resolution of the random fluctuation light field and improve the imaging resolution of the entire system.
  • the imaging target 3 is used to make the laser carry its own amplitude information and phase information
  • the single-pixel detector 4 is used for detecting laser light carrying amplitude information and phase information.
  • I 1 (x 1 ) is the light intensity of the light wave
  • I 2 (x 2 , y 2 ) is the light intensity of the reconstructed random fluctuation light field
  • ⁇ I 1 (x 1 ) is the light intensity increase of the light wave
  • ⁇ I 2 (x 2 , y 2 ) is the fluctuation of the light intensity of the reconstructed random fluctuation light field
  • x 1 is the lateral coordinate of the detector for detecting the light intensity of the light wave
  • x 2 , y 2 are the random fluctuations after reconstruction The position coordinates of the fluctuation light field.
  • the intensity function of the imaging target be t(x 0 )
  • the intensity correlation term ( ⁇ I 1 (x 1 ) ⁇ I 2 (x 2 , y 2 )) and the imaging target satisfy ( ⁇ I 1 (x 1 ) ⁇ I 2 (x 2 , y 2 )) ⁇
  • the imaging device further includes a random fluctuation light field reconstruction module, which is used to calculate the light intensity values of all pixels in the random fluctuation light field.
  • a random fluctuation light field reconstruction module which is used to calculate the light intensity values of all pixels in the random fluctuation light field.
  • the light intensity values of consecutive multiple pixels with the same light intensity are obtained, and the first adjacent pixels and the second adjacent pixels adjacent to the multiple pixels are searched, and the light intensity values of the first adjacent pixels are less than multiple
  • the light intensity value of the pixel, the light intensity value of the second adjacent pixel is greater than the light intensity value of the multiple pixels, using linear interpolation, the light intensity value of the first adjacent pixel is the minimum value, and the light intensity value of the second adjacent pixel
  • the intensity value is the maximum value, which replaces the intensity values of multiple pixels.
  • the rotating ground glass is irradiated with a laser to form a random fluctuation light field
  • the reconstructed random fluctuation light field is used to illuminate the imaging target to form a light wave carrying the amplitude and phase information of the imaging target, and to detect the light wave
  • Light intensity calculate the light intensity value of all pixels in the random fluctuation light field, when the light intensity value of multiple consecutive pixels in the random fluctuation light field is the same, reconstruct the random fluctuation light field, and compare the reconstructed random fluctuation light
  • the light intensity of the field and the light intensity of the light wave are correlated and calculated to obtain the intensity correlation term of the light intensity of the reconstructed random fluctuation light field and the light intensity of the light wave. According to the intensity correlation term, the image of the imaging target is generated, which improves Image reconstruction speed and resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种成像方法,应用于光学成像技术领域,包括:将激光照射旋转的毛玻璃形成随机涨落光场,使用该随机涨落光场照明成像目标,形成携带有成像目标振幅和相位信息的光波,并探测该光波的光强,然后,计算随机涨落光场中所有像素的光强值,当随机涨落光场中连续多个像素的光强值相同时,重建随机涨落光场,对重建后的随机涨落光场的光强和光波的光强进行关联计算,得到对重建后的随机涨落光场的光强和光波的光强的强度关联项,根据该强度关联项,生成成像目标的图像。本发明还公开了一种成像装置,提高了图像的重建速度及分辨率。

Description

成像方法及装置 技术领域
本发明涉及光学成像技术领域,尤其涉及一种成像方法及装置。
背景技术
传统的光学成像中,光学系统相当于低通滤波器,携带目标信息的光波经过有限孔径后,目标信息中的高频成分被滤除,所成像的细节信息丢失,从而导致图像边缘模糊,降低系统分辨率。关联成像由于采用经过成像目标后到达探测器的总光强进行目标图像重建,对于孔径有限的成像系统,有限的孔径对系统总光强的影响仅仅为一个衰减因子,总光强的衰减并不会导致图像边缘的模糊,理论上可以突破经典光学系统衍射极限,实现高分辨率成像,因此成为国内外研究热点。
关联成像主要包括双臂关联成像及鬼成像技术。双臂关联成像成像及图像重建速度较慢。鬼成像该系统中需要引入数字微透镜阵列或者投影系统等复杂的光学模块,用于产生随机涨落的光场分布。数字微透镜阵列的像素单元为10μm左右,光场经过传输后分辨率相对较低,目前仅能用于遥感、建筑物或日常宏观物体的成像。同时,由于成像系统中的毛玻璃的表面结构的精细程度存在极限,当涨落光场的最小精度发生下降时,容易出现多个像素表现为同一光强的情况。
发明内容
本发明的主要目的在于提供一种成像方法及装置,用于至少部分解 决上述技术问题。
为实现上述目的,本发明实施例第一方面提供一种成像方法,包括:
将激光照射旋转的毛玻璃形成随机涨落光场,并使用所述随机涨落光场照明成像目标,形成携带有所述成像目标振幅和相位信息的光波,并探测所述光波的光强;
计算所述随机涨落光场中所有像素的光强值,当所述随机涨落光场中连续多个像素的光强值相同时,重建所述随机涨落光场;
对重建后的所述随机涨落光场的光强和所述光波的光强进行关联计算,得到重建后的所述随机涨落光场的光强和所述光波的光强的强度关联项,根据所述强度关联项,生成所述成像目标的图像。
进一步地,所述当所述随机涨落光场中连续多个像素的光强相同时,重建所述随机涨落光场包括:
获取所述光强相同的连续的多个像素的光强值;
查找与所述多个像素相邻的第一相邻像素和第二相邻像素,所述第一相邻像素的光强值小于所述多个像素的光强值,所述第二相邻像素的光强值大于所述多个像素的光强值;
利用线性插值法,以所述第一相邻像素的光强值为最小值,所述第二相邻像素的光强值为最大值,替换所述多个像素的光强值。
进一步地,所述将激光照射旋转的毛玻璃形成随机涨落光场包括:
将所述毛玻璃绕其中心轴以预设角度旋转,直至所述毛玻璃绕其中心轴旋转一周,形成所述随机涨落光场。
进一步地,所述计算所述随机涨落光场中所有像素的光强值包括:
建立所述毛玻璃的模型;
每次以所述预设角度旋转后,记录所述激光照射至所述毛玻璃的模 型所形成的随机光强分布数据;
获取所述毛玻璃的模型绕其中心轴旋转一周后所有的随机光强分布数据;
根据所述所有的随机光强分布数据,得到所述随机涨落光场中所有像素的光强值。
进一步地,所述对重建后的所述随机涨落光场的光强和所述光波的光强进行关联计算,得到重建后的所述随机涨落光场的光强和所述光波的光强的强度关联项包括:
令重建后的所述随机涨落光场的光强和所述光波的光强的强度关联项为(ΔI 1(x 1)ΔI 2(x 2,y 2)),则:
(ΔI 1(x 1)ΔI 2(x 2,y 2))=(I 1(x 1)I 2(x 2,y 2))-(I 1(x 1))(I 2(x 2,y 2));
其中,I 1(x 1)为所述光波的光强,I 2(x 2,y 2)为重建后的所述随机涨落光场的光强,ΔI 1(x 1)为所述光波的光强的涨落,ΔI 2(x 2,y 2)为重建后的所述随机涨落光场的光强的涨落,x 1为探测所述光波的光强的探测器横向坐标,x 2,y 2为重建后所述随机涨落光场的位置坐标。
进一步地,所述根据所述强度关联项,生成所述成像目标的图像包括:
令所述成像目标的强度函数为t(x 0),则所述强度关联项(ΔI 1(x 1)ΔI 2(x 2,y 2))与所述成像目标之间满足(ΔI 1(x 1)ΔI 2(x 2,y 2))∝|t(x 0)| 2
进一步地,所述毛玻璃的表面结构为微纳结构。
本发明实施例第二方面提供一种成像装置,包括:
激光器、毛玻璃、成像目标和单像素探测器;
所述激光器,用于发射激光至所述毛玻璃表面的微纳结构;
所述毛玻璃,用于对所述激光进行调制形成随机涨落光场,并将所 述激光传播至所述成像目标;
所述成像目标,用于使所述激光携带自身的振幅信息和相位信息;
所述单像素探测器,用于探测携带有所述振幅信息和相位信息的激光。
进一步地,所述成像装置还包括随机涨落光场重建模块,用于计算所述随机涨落光场中所有像素的光强值,当所述随机涨落光场中连续多个像素的光强值相同时,重建所述随机涨落光场
进一步地,所述当所述随机涨落光场中连续多个像素的光强相同时,重建所述随机涨落光场包括:
获取所述光强相同的连续的多个像素的光强值;
查找与所述多个像素相邻的第一相邻像素和第二相邻像素,所述第一相邻像素的光强值小于所述多个像素的光强值,所述第二相邻像素的光强值大于所述多个像素的光强值;
利用线性插值法,以所述第一相邻像素的光强值为最小值,所述第二相邻像素的光强值为最大值,替换所述多个像素的光强值。
从上述本发明实施例可知,本发明提供的成像方法方法及装置,成像过程中不再采用分光镜与面阵探测器、数字微透镜阵列或者投影系统等复杂的光学模块,简化了系统的复杂度,实现单臂强度关联成像,并提高了成像速度,同时,解决了由于毛玻璃的表面结构的精细程度存在极限,当涨落光场的最小精度下降时出现多个像素为同一光强的情况。
附图说明
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下 面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明一实施例提供的成像方法的流程示意图,该方法主要包括以下步骤:
S101、将激光照射旋转的毛玻璃形成随机涨落光场,并使用该随机涨落光场照明成像目标,形成携带有该成像目标振幅和相位信息的光波,并探测该光波的光强;
将毛玻璃绕其中心轴以预设角度旋转,直至毛玻璃绕其中心轴旋转一周,形成随机涨落光场。示例性的,预设角度为0.365°,将毛玻璃绕其中心轴以0.365°旋转1000次,即旋转一周。
该光波的光强可采用单像素探测器探测,单像素探测器快速响应探测步携带有成像目标振幅信息和相位信息的光波的光强。
S102、计算该随机涨落光场中所有像素的光强值,当该随机涨落光场中连续多个像素的光强值相同时,重建该随机涨落光场;
检测该随机涨落光场中所有像素的光强值。首先采用面型测量仪或者原子力显微镜测量毛玻璃的表面面型,在本发明实施例中,毛玻璃表面结构为微纳结构,提升成像结果的清晰度。在电磁场仿真软件,例如FDTD Solution、FEM、CST中建立毛玻璃的模型,具体,应为建立毛玻璃表面结构的模型。每次以预设角度旋转后,记录激光照射至毛玻璃的模型所形成的随机光强分布数据,获取毛玻璃的模型绕其中心轴旋转一周后所有的随机光强分布数据,根据所有的随机光强分布数据,得到随机涨落光场中所有像素的光强值,也即所用激光光波与毛玻璃表面微纳 结构交互产生的随机涨落光场分布I 2(x 2,y 2),并存储。该过程中随机涨落光场的最小单元可以由仿真软件的网格精细程度进行人为控制,实现随机涨落光场的分辨率可调,提高整个系统的成像分辨率。最小单元越精细,所需计算时间越长。即便如此,随机涨落光场分布数据的计算时长并不影响实际成像过程中图像的重建时长。
由于毛玻璃的表面结构的精细程度存在极限,且涨落光场的最小精度容易产生下降,出现多个像素表现为同一光强的情况。在此情况下,即便计算的随机涨落光场的分辨率极高,在很多像素强度值相同的情况下,高的分辨率是无意义的。
此时,当该随机涨落光场中连续多个像素的光强值相同时,重建该随机涨落光场。具体的,首先,获取光强相同的连续的多个像素的光强值,查找与多个像素相邻的第一相邻像素和第二相邻像素,该第一相邻像素的光强值小于该多个像素的光强值,该第二相邻像素的光强值大于该多个像素的光强值,然后利用线性插值法,以该第一相邻像素的光强值为最小值,该第二相邻像素的光强值为最大值,替换该多个像素的光强值。示例性的,如图2所示,以图5中一行数据为例,当检测到该行多个连续像素强度均为5时,检索比5小且与5相邻的数,以及比5大且与5相邻的数,分别为3与8。在3与8之间,按照5出现的个数进行数学插值,分别替换掉3与8之间的5,从而得到如图3中所示的重建后的随机涨落光场的光强值示意图。
S103、对重建后的随机涨落光场的光强和光波的光强进行关联计算,得到重建后的随机涨落光场的光强和光波的光强的强度关联项,根据该强度关联项,生成该成像目标的图像。
令重建后的随机涨落光场的光强和光波的光强的强度关联项为 (ΔI 1(x 1)ΔI 2(x 2,y 2)),则:
(ΔI 1(x 1)ΔI 2(x 2,y 2))=(I 1(x 1)I 2(x 2,y 2))-(I 1(x 1))(I 2(x 2,y 2))   式(1)
其中,I 1(x 1)为光波的光强,I 2(x 2,y 2)为重建后的随机涨落光场的光强,ΔI 1(x 1)为光波的光强的涨落,ΔI 2(x 2,y 2)为重建后的随机涨落光场的光强的涨落,x 1为探测光波的光强的探测器横向坐标,x 2,y 2为随机涨落光场的位置坐标。
然后,令成像目标的强度函数为t(x 0),则强度关联项(ΔI 1(x 1)ΔI 2(x 2,y 2))与成像目标之间满足:
(ΔI 1(x 1)ΔI 2(x 2,y 2))∝|t(x 0)| 2   式(2)
然后,联立式(1)和式(2)即可重建出该成像目标的图像。
在本发明实施例中,将激光照射旋转的毛玻璃形成随机涨落光场,使用重建后的随机涨落光场照明成像目标,形成携带有成像目标振幅和相位信息的光波,并探测该光波的光强,计算随机涨落光场中所有像素的光强值,当随机涨落光场中连续多个像素的光强值相同时,重建随机涨落光场,对重建后的随机涨落光场的光强和光波的光强进行关联计算,得到对重建后的随机涨落光场的光强和光波的光强的强度关联项,根据该强度关联项,生成成像目标的图像,提高了图像的重建速度及分辨率。
请参阅图4,图4是本发明又一实施例提供的成像装置的结构示意图,该装置主要包括:
激光器1、毛玻璃2、成像目标3和单像素探测器4;
激光器1,用于发射激光至毛玻璃2表面的微纳结构;
毛玻璃2,用于对该激光进行调制形成随机涨落光场,并将该激光传播至成像目标3;
其中,随机涨落光场的光强通过求解激光与毛玻璃2表面微纳结构 的交互结果得到。随机涨落光场的光强计算过程为:
首先,采用面型测量仪或者原子力显微镜测量毛玻璃2的表面面型,并根据测量的表面面型在电磁场仿真软件中建立仿真毛玻璃2表面模型,设置该模型的尺寸、折射率、表面反射率等参数。
然后,插入光源模型,按照具体的光学结构设置该光源模型的光源参数,该光源参数包括光源模型与毛玻璃2的模型的距离及相对角度,光源模型的横截面积、光源类型、光源波长及偏振态等,并设置近场观测探测器,确保计算的准确性。
最后,建立坐标系,对毛玻璃2的模型划分计算范围及计算单元网格,在计算范围内按照划分的计算单元网格进行麦克斯韦方程求解,得到随机涨落光场的光强。计算过程中,固定毛玻璃2的模型位置,求解得到一组随机涨落光场的光强,按照预设角度绕毛玻璃2的模型的中心轴旋转毛玻璃2的模型,将毛玻璃2的模型绕其中心轴以预设角度旋转,直至毛玻璃2的模型绕其中心轴旋转一周,求解得到n组随机涨落光场的光强,用于后续强度关联重建图像。该过程中随机涨落光场的最小单元可以由仿真软件的网格精细程度进行人为控制,实现随机涨落光场的分辨率可调,提高整个系统的成像分辨率。
成像目标3,用于使该激光携带自身的振幅信息和相位信息;
单像素探测器4,用于探测携带有振幅信息和相位信息的激光。
然后,令重建后的随机涨落光场的光强和光波的光强的强度关联项为(ΔI 1(x 1)ΔI 2(x 2,y 2)),则:
(ΔI 1(x 1)ΔI 2(x 2,y 2))=(I 1(x 1)I 2(x 2,y 2))-(I 1(x 1))(I 2(x 2,y 2));
其中,I 1(x 1)为光波的光强,I 2(x 2,y 2)为重建后的随机涨落光场的光强,ΔI 1(x 1)为所光波的光强的涨落,ΔI 2(x 2,y 2)为重建后的随机涨落光场 的光强的涨落,x 1为探测光波的光强的探测器横向坐标,x 2,y 2为重建后随机涨落光场的位置坐标。
然后,令成像目标的强度函数为t(x 0),则强度关联项(ΔI 1(x 1)ΔI 2(x 2,y 2))与成像目标之间满足(ΔI 1(x 1)ΔI 2(x 2,y 2))∝|t(x 0)| 2,进而可重构该成像目标。
进一步地,该成像装置还包括随机涨落光场重建模块,用于计算随机涨落光场中所有像素的光强值,当随机涨落光场中连续多个像素的光强值相同时,重建随机涨落光场。具体的,获取光强相同的连续的多个像素的光强值,查找与多个像素相邻的第一相邻像素和第二相邻像素,第一相邻像素的光强值小于多个像素的光强值,第二相邻像素的光强值大于多个像素的光强值,利用线性插值法,以第一相邻像素的光强值为最小值,第二相邻像素的光强值为最大值,替换多个像素的光强值。
在本发明实施例中,将激光照射旋转的毛玻璃形成随机涨落光场,使用重建后的随机涨落光场照明成像目标,形成携带有成像目标振幅和相位信息的光波,并探测该光波的光强,计算随机涨落光场中所有像素的光强值,当随机涨落光场中连续多个像素的光强值相同时,重建随机涨落光场,对重建后的随机涨落光场的光强和光波的光强进行关联计算,得到对重建后的随机涨落光场的光强和光波的光强的强度关联项,根据该强度关联项,生成成像目标的图像,提高了图像的重建速度及分辨率。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的成像方法及装置的描述,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种成像方法,其特征在于,包括:
    将激光照射旋转的毛玻璃形成随机涨落光场,并使用所述随机涨落光场照明成像目标,形成携带有所述成像目标振幅和相位信息的光波,并探测所述光波的光强;
    计算所述随机涨落光场中所有像素的光强值,当所述随机涨落光场中连续多个像素的光强值相同时,重建所述随机涨落光场;
    对重建后的所述随机涨落光场的光强和所述光波的光强进行关联计算,得到重建后的所述随机涨落光场的光强和所述光波的光强的强度关联项,根据所述强度关联项,生成所述成像目标的图像。
  2. 根据权利要求1所述的成像方法,其特征在于,所述当所述随机涨落光场中连续多个像素的光强相同时,重建所述随机涨落光场包括:
    获取所述光强相同的连续的多个像素的光强值;
    查找与所述多个像素相邻的第一相邻像素和第二相邻像素,所述第一相邻像素的光强值小于所述多个像素的光强值,所述第二相邻像素的光强值大于所述多个像素的光强值;
    利用线性插值法,以所述第一相邻像素的光强值为最小值,所述第二相邻像素的光强值为最大值,替换所述多个像素的光强值。
  3. 根据权利要求1或2所述的成像方法,其特征在于,所述将激光照射旋转的毛玻璃形成随机涨落光场包括:
    将所述毛玻璃绕其中心轴以预设角度旋转,直至所述毛玻璃绕其中心轴旋转一周,形成所述随机涨落光场。
  4. 根据权利要求3所述的成像方法,其特征在于,所述计算所述 随机涨落光场中所有像素的光强值包括:
    建立所述毛玻璃的模型;
    每次以所述预设角度旋转后,记录所述激光照射至所述毛玻璃的模型所形成的随机光强分布数据;
    获取所述毛玻璃的模型绕其中心轴旋转一周后所有的随机光强分布数据;
    根据所述所有的随机光强分布数据,得到所述随机涨落光场中所有像素的光强值。
  5. 根据权利要求1或2所述的成像方法,其特征在于,所述对重建后的所述随机涨落光场的光强和所述光波的光强进行关联计算,得到重建后的所述随机涨落光场的光强和所述光波的光强的强度关联项包括:
    令重建后的所述随机涨落光场的光强和所述光波的光强的强度关联项为(ΔI 1(x 1)ΔI 2(x 2,y 2)),则:
    (ΔI 1(x 1)ΔI 2(x 2,y 2))=(I 1(x 1)I 2(x 2,y 2))-(I 1(x 1))(I 2(x 2,y 2));
    其中,I 1(x 1)为所述光波的光强,I 2(x 2,y 2)为重建后的所述随机涨落光场的光强,ΔI 1(x 1)为所述光波的光强的涨落,ΔI 2(x 2,y 2)为重建后的所述随机涨落光场的光强的涨落,x 1为探测所述光波的光强的探测器横向坐标,x 2,y 2为重建后所述随机涨落光场的位置坐标。
  6. 根据权利要求5所述的成像方法,其特征在于,所述根据所述强度关联项,生成所述成像目标的图像包括:
    令所述成像目标的强度函数为t(x 0),则所述强度关联项(ΔI 1(x 1)ΔI 2(x 2,y 2))与所述成像目标之间满足(ΔI 1(x 1)ΔI 2(x 2,y 2))∝|t(x 0)| 2
  7. 根据权利要求1或2所述的成像方法,其特征在于,所述毛玻 璃的表面结构为微纳结构。
  8. 一种成像装置,其特征在于,包括:
    激光器、毛玻璃、成像目标和单像素探测器;
    所述激光器,用于发射激光至所述毛玻璃表面的微纳结构;
    所述毛玻璃,用于对所述激光进行调制形成随机涨落光场,并将所述激光传播至所述成像目标;
    所述成像目标,用于使所述激光携带自身的振幅信息和相位信息;
    所述单像素探测器,用于探测携带有所述振幅信息和相位信息的激光。
  9. 根据权利要求8所述的成像装置,其特征在于,所述成像装置还包括随机涨落光场重建模块,用于计算所述随机涨落光场中所有像素的光强值,当所述随机涨落光场中连续多个像素的光强值相同时,重建所述随机涨落光场。
  10. 根据权利要求9所述的成像装置,其特征在于,所述当所述随机涨落光场中连续多个像素的光强相同时,重建所述随机涨落光场包括:
    获取所述光强相同的连续的多个像素的光强值;
    查找与所述多个像素相邻的第一相邻像素和第二相邻像素,所述第一相邻像素的光强值小于所述多个像素的光强值,所述第二相邻像素的光强值大于所述多个像素的光强值;
    利用线性插值法,以所述第一相邻像素的光强值为最小值,所述第二相邻像素的光强值为最大值,替换所述多个像素的光强值。
PCT/CN2019/078311 2019-03-15 2019-03-15 成像方法及装置 WO2020186394A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078311 WO2020186394A1 (zh) 2019-03-15 2019-03-15 成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078311 WO2020186394A1 (zh) 2019-03-15 2019-03-15 成像方法及装置

Publications (1)

Publication Number Publication Date
WO2020186394A1 true WO2020186394A1 (zh) 2020-09-24

Family

ID=72518892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078311 WO2020186394A1 (zh) 2019-03-15 2019-03-15 成像方法及装置

Country Status (1)

Country Link
WO (1) WO2020186394A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116626703A (zh) * 2023-07-21 2023-08-22 中国人民解放军国防科技大学 基于费马螺旋激光阵列的单像素成像方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883449A (zh) * 2015-06-05 2015-09-02 上海斐讯数据通信技术有限公司 一种基于关联成像的探测方法和系统
CN104933745A (zh) * 2015-06-26 2015-09-23 南京理工大学 基于分形插值的提高图像分辨率的关联成像方法
CN105023247A (zh) * 2015-06-24 2015-11-04 南京理工大学 抑制单臂鬼成像离焦模糊的二次成像方法
WO2016027797A1 (ja) * 2014-08-19 2016-02-25 国立大学法人徳島大学 ゴーストイメージングを利用した物質測定装置
CN105807289A (zh) * 2016-05-04 2016-07-27 西安交通大学 基于预置可调制光源的高速计算关联成像系统及成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027797A1 (ja) * 2014-08-19 2016-02-25 国立大学法人徳島大学 ゴーストイメージングを利用した物質測定装置
CN104883449A (zh) * 2015-06-05 2015-09-02 上海斐讯数据通信技术有限公司 一种基于关联成像的探测方法和系统
CN105023247A (zh) * 2015-06-24 2015-11-04 南京理工大学 抑制单臂鬼成像离焦模糊的二次成像方法
CN104933745A (zh) * 2015-06-26 2015-09-23 南京理工大学 基于分形插值的提高图像分辨率的关联成像方法
CN105807289A (zh) * 2016-05-04 2016-07-27 西安交通大学 基于预置可调制光源的高速计算关联成像系统及成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, JUNLIN: "Study on Second-order Correlated Imaging with Pseudo-thermal Light", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE (BASIC SCIENCES), no. 5, 15 May 2018 (2018-05-15), ISSN: 1674-022X, DOI: 20191209123517Y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116626703A (zh) * 2023-07-21 2023-08-22 中国人民解放军国防科技大学 基于费马螺旋激光阵列的单像素成像方法及装置
CN116626703B (zh) * 2023-07-21 2023-09-19 中国人民解放军国防科技大学 基于费马螺旋激光阵列的单像素成像方法及装置

Similar Documents

Publication Publication Date Title
Zuo et al. Transport of intensity equation: a tutorial
CN109900355B (zh) 成像方法及装置
EP2206008B1 (en) Light microscope with novel digital method to achieve super-resolution
JP4964135B2 (ja) 3次元オブジェクトを、単一視点方式の光学系を用いるシャドウグラフ法により光伝搬の光学法則を使用して測定する方法
CN109900356B (zh) 关联成像方法及装置
CN106768396A (zh) 一种基于微分相衬成像还原定量相位图像的方法及系统
US20210144278A1 (en) Compressed sensing based object imaging system and imaging method therefor
CN102151121A (zh) 基于干涉光谱相位信息的光谱标定方法及系统
CN110455834B (zh) 基于光强传输方程的x射线单次曝光成像装置及方法
CN107636447A (zh) 用于多维高分辨率地成像样品中的结构或颗粒的路径的方法和扫描荧光显微镜
CN110441983B (zh) 基于光学传递函数的x光高分辨率成像方法
Martínez et al. Superresolution method for a single wide‐field image deconvolution by superposition of point sources
Huyan et al. Target imaging in scattering media using ghost imaging optical coherence tomography
WO2020186394A1 (zh) 成像方法及装置
CN108416834A (zh) 透明目标表面三维重构方法、装置和系统
CN102539381B (zh) 基于微离轴显微干涉投影的折射率层析装置
Wang et al. Moving target tracking and imaging through scattering media via speckle-difference-combined bispectrum analysis
Lu et al. Non-invasive imaging through dynamic scattering layers via speckle correlations
Wu et al. A lensless LED matrix-based ptychographic microscopy imaging method using loss correction and adaptive step size
CN108303039B (zh) 一种高斯光鬼成像的光强补偿方法
CN114964527B (zh) 一种部分相干分数阶涡旋光束拓扑荷数测量方法及装置
CN107589542B (zh) 宽波段相位差图像重建中的中心波长的选择方法
Shi et al. Imaging consecutive targets through scattering medium and around corners beyond the optical memory effect using untrained network
Zhu et al. Three-dimensional measurement of fringe projection based on the camera response function of the polarization system
Zhang et al. Expanding the memory effect in scattering imaging by manipulating photon distributions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920609

Country of ref document: EP

Kind code of ref document: A1