WO2020184628A1 - 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 - Google Patents
液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 Download PDFInfo
- Publication number
- WO2020184628A1 WO2020184628A1 PCT/JP2020/010624 JP2020010624W WO2020184628A1 WO 2020184628 A1 WO2020184628 A1 WO 2020184628A1 JP 2020010624 W JP2020010624 W JP 2020010624W WO 2020184628 A1 WO2020184628 A1 WO 2020184628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- liquid crystal
- repeating unit
- crystal alignment
- polymer
- Prior art date
Links
- VEEUFWDGCHUMFT-UHFFFAOYSA-N CNC(N(CCO)CCO)=O Chemical compound CNC(N(CCO)CCO)=O VEEUFWDGCHUMFT-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Cc1ccc(C)cc1 Chemical compound Cc1ccc(C)cc1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- TWCJOKBCDFTJBO-UHFFFAOYSA-N OCC(CO)(CO)NC(c1ccc(-c(cc2)ncc2C(NC(CO)(CO)CO)=O)nc1)=O Chemical compound OCC(CO)(CO)NC(c1ccc(-c(cc2)ncc2C(NC(CO)(CO)CO)=O)nc1)=O TWCJOKBCDFTJBO-UHFFFAOYSA-N 0.000 description 2
- 0 C*C(N(CCO)CCO)=O Chemical compound C*C(N(CCO)CCO)=O 0.000 description 1
- WZRCFAVSYASOIJ-UHFFFAOYSA-N CC(C)C(Nc(cc1)ccc1N(C)c(cc1)ccc1NC(C(C)(C)C)=O)O Chemical compound CC(C)C(Nc(cc1)ccc1N(C)c(cc1)ccc1NC(C(C)(C)C)=O)O WZRCFAVSYASOIJ-UHFFFAOYSA-N 0.000 description 1
- XKAOFPXLKIIAHU-UHFFFAOYSA-N CC(CNC(Nc1cncc(NC(NCC(CO)O)=O)c1)=O)CO Chemical compound CC(CNC(Nc1cncc(NC(NCC(CO)O)=O)c1)=O)CO XKAOFPXLKIIAHU-UHFFFAOYSA-N 0.000 description 1
- CSSWCWIUAZSBHV-UHFFFAOYSA-N CC(N(CCO)CCO)=O Chemical compound CC(N(CCO)CCO)=O CSSWCWIUAZSBHV-UHFFFAOYSA-N 0.000 description 1
- SNVMKZNKCNLQRS-UHFFFAOYSA-N CCOCC(CO)(CO)NC(Nc(nc1)ccc1NC(NC(CO)(CO)CO)=O)=O Chemical compound CCOCC(CO)(CO)NC(Nc(nc1)ccc1NC(NC(CO)(CO)CO)=O)=O SNVMKZNKCNLQRS-UHFFFAOYSA-N 0.000 description 1
- QOXVPZORLJMYFA-UHFFFAOYSA-N CNC(c(cc1)cnc1C(NC)=O)=O Chemical compound CNC(c(cc1)cnc1C(NC)=O)=O QOXVPZORLJMYFA-UHFFFAOYSA-N 0.000 description 1
- YRRXRAVJDSZUAG-UHFFFAOYSA-N OCC(CNC(Nc1ccc(NC(NCC(CO)O)=O)nc1)=O)O Chemical compound OCC(CNC(Nc1ccc(NC(NCC(CO)O)=O)nc1)=O)O YRRXRAVJDSZUAG-UHFFFAOYSA-N 0.000 description 1
- RUMWWESMCQYMGH-UHFFFAOYSA-N OCC(CO)(CO)NC(Nc1cncc(NC(NC(CO)(CO)CO)=O)c1)=O Chemical compound OCC(CO)(CO)NC(Nc1cncc(NC(NC(CO)(CO)CO)=O)c1)=O RUMWWESMCQYMGH-UHFFFAOYSA-N 0.000 description 1
- BRFSEQBNFNIDOJ-UHFFFAOYSA-N OCC(CO)(CO)NC(Nc1ncc(NC(NC(CO)(CO)CO)=O)nc1)=O Chemical compound OCC(CO)(CO)NC(Nc1ncc(NC(NC(CO)(CO)CO)=O)nc1)=O BRFSEQBNFNIDOJ-UHFFFAOYSA-N 0.000 description 1
- ZIGPVZMPIABGDC-UHFFFAOYSA-N OCC(CO)NC(Nc1ccc(NC(NC(CO)CO)=O)nc1)=O Chemical compound OCC(CO)NC(Nc1ccc(NC(NC(CO)CO)=O)nc1)=O ZIGPVZMPIABGDC-UHFFFAOYSA-N 0.000 description 1
- QHBGUJXGTWMKBC-UHFFFAOYSA-N OCC(CO)NC(Nc1cncc(NC(NC(CO)CO)=O)c1)=O Chemical compound OCC(CO)NC(Nc1cncc(NC(NC(CO)CO)=O)c1)=O QHBGUJXGTWMKBC-UHFFFAOYSA-N 0.000 description 1
- QDRKCKVMFFQLPD-UHFFFAOYSA-N OCC(CO)NC(c1ccc(-c(cc2)ncc2C(NC(CO)CO)=O)nc1)=O Chemical compound OCC(CO)NC(c1ccc(-c(cc2)ncc2C(NC(CO)CO)=O)nc1)=O QDRKCKVMFFQLPD-UHFFFAOYSA-N 0.000 description 1
- CYZPRQXAAWGPEH-UHFFFAOYSA-N OCCN(CCO)C(Nc1ccc(NC(N(CCO)CCO)=O)nc1)=O Chemical compound OCCN(CCO)C(Nc1ccc(NC(N(CCO)CCO)=O)nc1)=O CYZPRQXAAWGPEH-UHFFFAOYSA-N 0.000 description 1
- ZPVSNHMODBCNJQ-UHFFFAOYSA-N OCCN(CCO)C(Nc1cncc(NC(N(CCO)CCO)=O)c1)=O Chemical compound OCCN(CCO)C(Nc1cncc(NC(N(CCO)CCO)=O)c1)=O ZPVSNHMODBCNJQ-UHFFFAOYSA-N 0.000 description 1
- UXJNETWMFRHXKV-UHFFFAOYSA-N OCCN(CCO)C(c(cc1)cnc1-c(cc1)ncc1C(N(CCO)CCO)=O)=O Chemical compound OCCN(CCO)C(c(cc1)cnc1-c(cc1)ncc1C(N(CCO)CCO)=O)=O UXJNETWMFRHXKV-UHFFFAOYSA-N 0.000 description 1
- BCZDTVCWKJLUIO-UHFFFAOYSA-N OCCN(CCO)C(c1ccc(NC(Nc(cc2)ncc2C(N(CCO)CCO)=O)=O)nc1)=O Chemical compound OCCN(CCO)C(c1ccc(NC(Nc(cc2)ncc2C(N(CCO)CCO)=O)=O)nc1)=O BCZDTVCWKJLUIO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
Definitions
- the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element using the same.
- liquid crystal display elements which differ in electrode structure, physical properties of liquid crystal molecules used, manufacturing process, etc.
- TN twisted nematic
- STN super-twisted nematic
- VA Vertical element type
- MVA multi-domine vertical indicator
- IPS in-plane switching
- FFS far-field switching
- PSA polymer-suite
- Patent Document 1 discloses a liquid crystal alignment agent containing a specific compound.
- the composition of the liquid crystal alignment agent proposed in the past could not always achieve all of the above problems.
- the present invention has been made based on the above circumstances, and an object of the present invention is to maintain a high voltage holding ratio, have a small accumulated charge, and even when physical friction such as rubbing with a spacer occurs. It is to provide a liquid crystal display element which can minimize the bright spot.
- Another object of the present invention is to provide a liquid crystal alignment film suitable for such a liquid crystal display element and a liquid crystal alignment agent thereof.
- the present inventor has found that the above problems can be solved by using a liquid crystal alignment agent containing a specific component, and has completed the present invention. Specifically, the following is the gist.
- X 1 is a tetravalent organic group and Y 1 is a divalent organic group.
- R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
- Z 11 and Z 12 are an alkyl group having 1 to 10 carbon atoms and a substituent which may independently have a hydrogen atom and a substituent, respectively.
- B 1 and B 2 each independently represent a structure selected from the following formulas (b-1) to (b-5), and Ra and R b each independently represent a hydrogen atom or a methyl group.
- L 11 and L 12 are independently single-bonded, -CH 2- , -O-, -CO-, -CH (CH 3 )-, -C (CH 3 ) 2 -,-(CH 2 ) n- (N is an integer of 2 to 20), a phenylene group or any CH 2 of-(CH 2 ) n- above is -O-, -CO-, -CH (CH 3 )-, -C (CH 3 ). 2 -, or a divalent organic group which is replaced by a phenylene group.
- M represents a group selected from the following formulas (M-1) to (M-8).
- m 1 and m 2 independently represent 0 or 1, respectively.
- n represents an integer of 1 to 3.
- B 2 is represented by the following formula (b-3), the group "- ⁇ (NR a) m1 -L 11 ⁇ y1 - [M- ⁇ L 12 - (NR b) m2 ⁇ y2 ] n- "represents"-(CH 2 ) 2- NH-M-NH- (CH 2 ) 2- ", and M is the following formula (M-1) in which R 1 is a methyl group. Or, the case where R 2 represents a methyl group (M-2) is excluded.
- * represents a bond and R represents a hydrogen atom or a methyl group.
- R d represents a hydrogen atom or a methyl group.
- R 1 to R 4 are hydrogen atom, methyl group, phenyl group, group "-Ph-[(NR) s1- L m1 ] s2- B m1 " (Ph represents a phenylene group, R represents a hydrogen atom or a methyl group.
- B m1 represents a structure selected from the above formulas (b-1) to (b-5)).
- L m1 is synonymous with L 11 above, s1 represents 0 or 1, and s2 represents an integer of 1 to 3. * Represents a bond.
- liquid crystal aligning agent of the present invention a liquid crystal display element capable of minimizing a bright spot even when physical friction such as rubbing with a spacer occurs while maintaining a high voltage holding ratio and having a small accumulated charge.
- a liquid crystal alignment film is obtained.
- the liquid crystal alignment agent of the present invention is a polymer (A) having at least one repeating unit selected from the group consisting of the repeating unit represented by the above formula (1) and the repeating unit represented by the above formula (2). Contains.
- R 1 is preferably a hydrogen atom or a methyl group.
- alkyl groups having 1 to 10 carbon atoms of Z 11 and Z 12 in the above formula (2) include a hexyl group, in addition to the specific examples of the alkyl groups having 1 to 5 carbon atoms exemplified in R 1 .
- examples thereof include a heptyl group, an octyl group, a nonyl group and a decyl group.
- Specific examples of the alkenyl group having 2 to 10 carbon atoms of Z 11 and Z 12 include a vinyl group, a propenyl group, a butynyl group and the like, and these may be linear or branched.
- alkynyl group having 2 to 10 carbon atoms of Z 11 and Z 12 include an ethynyl group, a 1-propynyl group, a 2-propynyl group and the like.
- the Z 11 and Z 12 may have a substituent, and examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), a hydroxyl group, a cyano group, an alkoxy group, and the like. Can be mentioned.
- a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
- a hydroxyl group a cyano group, an alkoxy group, and the like.
- Z 11 and Z 12 are independent hydrogen atoms or methyl groups, respectively.
- X 1 and Y 1 are as defined above.
- the X 1 of the formula (1) is at least one selected from the group consisting of tetracarboxylic dianhydride, tetracarboxylic dianester and tetracarboxylic acid diester dihalide (hereinafter, these are collectively referred to as “tetracarboxylic acid derivative””.
- tetracarboxylic acid derivative A tetravalent organic group derived from (also referred to as) can be mentioned.
- aromatic tetracarboxylic dianhydrides examples include aromatic tetracarboxylic dianhydrides, aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, or tetracarboxylic dianesters thereof, or tetracarboxylic dianester dihalides.
- Examples include the derived tetravalent organic group.
- Y 1 of the formula (1) is a divalent organic group derived from diamine.
- the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to the aromatic ring.
- the aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by dehydrating the four carboxyl groups bonded to the chain hydrocarbon structure in the molecule. However, it does not have to be composed of only a chain hydrocarbon structure, and a part thereof may have an alicyclic structure or an aromatic ring structure.
- the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxyl groups including at least one carboxyl group bonded to the alicyclic structure. However, none of these four carboxyl groups are bonded to the aromatic ring. Further, it is not necessary to have only an alicyclic structure, and a chain hydrocarbon structure or an aromatic ring structure may be partially provided.
- X 1 is composed of the following formulas (4a) to (4n), the following formulas (5a), and the following formula (6a). It is preferably a tetravalent organic group of choice.
- x and y are single bonds, ethers, carbonyls, esters, alkanediyl groups having 1 to 5 carbon atoms, 1,4-phenylene, sulfonyl or amide groups.
- Z 1 to Z 6 represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring.
- j and k are 0 or 1.
- m is an integer from 1 to 5. * Represents a bond.
- alkanediyl group having 1 to 5 carbon atoms in the above formulas (5a) and (6a) examples include methylene, ethylene, 1,3-propanediyl, 1,4-butandyl, 1,5-pentandyl and the like.
- X 1 of the above formula (1) is represented by the above formulas (4a) to (4h), (4j), (4l), It may be a tetravalent organic group selected from (4 m) to (4n).
- X 1 is selected from the group consisting of the above formulas (4a) to (4n), (5a) and the above formula (6a) from the viewpoint that a high voltage holding ratio can be obtained and a bright spot generated by physical friction can be suppressed.
- the content of one or more of the repeating units (t)) is 5 mol% or more, 10 mol% or more, or 20 mol in total with respect to all the repeating units of the polymer (A). It may be% or more.
- Examples of Y 1 of the formula (1) include a divalent organic group derived from a diamine, and examples thereof include a divalent organic group derived from an aliphatic diamine, an alicyclic diamine, or an aromatic diamine. Specific examples include, for example, metaxylylenediamine, ethylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine and the like as aliphatic diamines; and for example, 1,4-cyclohexanediamine as alicyclic diamines. 4,4'-Methylenebis (cyclohexylamine), etc.;
- aromatic diamine examples include p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenyl ether, 4,4'-diaminoazobenzene, 1- (4-aminophenyl).
- R 3 is a structure represented by -NRCO-, -COO-, -NRCONR-,-(CH 2 ) n- (where n is an integer of 2 to 20), and any -CH 2- is-. It may be replaced by O-, -COO-, -ND-, -NRCO-, -NRCONR-, -NRCOO-, -OCOO-.
- D represents a thermally desorbing group and R represents a hydrogen atom or a monovalent organic group.
- R 4 is a single bond or a benzene ring, and any hydrogen atom on the benzene ring may be replaced with a monovalent organic group.
- X 1 is -CO-, -O-, -COO-, -L 1 -RL 2- (L 1 , L 2 are independently single bonds, oxygen atoms, -COO-, and R.
- n represents an integer of 1 to 2. Any hydrogen atom on the benzene ring may be replaced with a monovalent organic group.
- L 1 and L 2 are independently single-bonded, -O-, or -COO-, and R is -CH 2- or-(CH 2 ) n- (n is 2 to 2 to integer of 12), or the - represent any CH 2 is replaced with an oxygen atom group - (CH 2) n. Any hydrogen atom on the benzene ring may be replaced with a monovalent organic group.
- X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , -SO 2- , -O - (CH 2) m -O - , - O-C (CH 3) 2 -, - CO- (CH 2) m -, - NH- (CH 2) m -, - SO 2 - (CH 2) m -, -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO-, or -COO- (CH 2 ) m- OCO-.
- X 1 and X 2 are independently single-bonded,-(CH 2 ) a- (a is an integer from 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-,- It represents NH-, -O-, -COO-, -OCO- or-((CH 2 ) a1- A 1 ) m1- .
- the plurality of a1 each independently represent an integer of 1 to 15, each independently plurality of A 1 represents an oxygen atom or -COO-, m 1 is 1 or 2.
- X 3 represents a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -COO- or -OCO-.
- X 4 represents -CONH-, -NHCO-, -O-, -COO- or -OCO-.
- G 1 and G 2 are independently divalent aromatic groups having 6 to 12 carbon atoms such as phenylene, biphenylene and naphthalene, or divalent alicyclics having 3 to 8 carbon atoms such as cyclopropylene and cyclohexylene. Represents a divalent cyclic group selected from the formula groups.
- Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
- k represents 0 or 1
- m and n are independently integers of 0 to 3, and the sum of m and n is 1 to 4.
- R 1 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms.
- R 1 may be substituted with fluorine.
- R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen forming R 2 may be substituted with fluorine.
- R 3 represents a structure having a steroid skeleton.
- n an integer of 2 to 10.
- nitrogen-containing heterocycle examples include pyrrole, imidazole, pyridine, pyrimidine, pyridazine, pyrazine, carbazole, benzimidazole, piperidine, piperazine, pyrrolidine, hexamethyleneimine and the like
- diphenylamine structures include diphenylamine and N. Structures such as -methyldiphenylamine or N-tert-butoxycarbonyldiphenylamine can be mentioned.
- nitrogen-containing diamine examples include 2,6-diaminopyridine, 3,4-diaminopyridine, 3,5-diamino-N- (pyridine-3-ylmethyl) benzamide, 2,4-diaminopyrimidine, 3,6.
- the hydrogen atom on the benzene ring is an alkyl group having 1 to 5 carbon atoms such as a methyl group and an ethyl group, and an alkoxy group having 1 to 5 carbon atoms such as a methoxy group.
- Halogen atom such as fluorine atom, alkyl halide group having 1 to 5 carbon atoms such as trifluoromethyl group, -NR 1 R 2 (R 1 , R 2 are hydrogen atom, methyl group or tert-butoxycarbonyl group, respectively. It may be replaced with a monovalent organic group such as a cyano group or a hydroxy group.
- R represents a hydrogen atom, a methyl group or a tert-butoxycarbonyl group.
- Boc represents the tert-butoxycarbonyl group.
- R represents a hydrogen atom, a methyl group or a tert-butoxycarbonyl group.
- Boc represents the tert-butoxycarbonyl group.
- the diamines represented by the above formula (H3) may be used.
- diamines represented by the following formulas (V2-1) to (V2-13) may be used among the diamines (V-1) to (V-3).
- X v1 to X v4 and X p1 to X p8 are independent of- (CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-,-.
- CON (CH 3) -, - NH -, - O -, - CH 2 O -, - CH 2 OCO -, - COO-, or -OCO- indicates
- X v5 is -O -, - CH 2 O- , -CH 2 OCO-, -COO-, or -OCO-
- X V6 to X V7 and X s1 to X s4 independently indicate -O-, -COO- or -OCO-.
- X a to X f indicate a single bond, -O-, -NH-, -O- (CH 2 ) m- O-, and R v1 to R v4 and R 1a to R 1h are independently carbon.
- An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms is shown.
- m represents an integer from 1 to 8.
- the polymer (A) When applied to a liquid crystal alignment agent for a TN type, STN type or vertically oriented type liquid crystal display element, the polymer (A) is an organic group in which X 1 is tetravalent from the viewpoint of enhancing the liquid crystal orientation.
- the content of the repeating unit (a) is 1 mol% or more, 3 mol% or more, or 5 mol% or more in total with respect to all the repeating units of the polymer (A). It may be.
- the polymer (A) When applied to a liquid crystal alignment agent for a PSA type liquid crystal display element, from the viewpoint of enhancing the liquid crystal orientation, the polymer (A) has X 1 as a tetravalent organic group and Y 1 as the radical initiation function. It is a repeating unit represented by the above formula (1) and a repeating unit represented by the above formula (2), which is a divalent organic group derived from a diamine selected from the group consisting of a diamine having the above and a diamine having the above photopolymerizable group at the end.
- One or more repeating units (hereinafter, also referred to as repeating units (b)) selected from the group consisting of repeating units to be formed may be included.
- the content of the repeating unit (b) is 1 mol% or more, 3 mol% or more, or 5 mol% or more in total with respect to all the repeating units of the polymer (A). It may be.
- the polymer (A) may use one or more repeating units (a) in combination.
- the upper limit of the content of the repeating unit (a) and the repeating unit (b) may be 99 mol% or less, 97 mol% or less, or 95 mol% or less, respectively, with respect to all the repeating units of the polymer (A). Good.
- other repeating units other than the repeating unit (a) and the repeating unit (b) may be included depending on the purpose.
- X 1 is a tetravalent organic group and Y 1 is p from the viewpoint of enhancing the liquid crystal orientation.
- repeating units (c) selected from the group consisting of repeating units represented by the above formula (2) may be contained.
- the content of the repeating unit (c) may be 5 mol% or more or 10 mol% or more in total with respect to all the repeating units of the polymer (A).
- X 1 is a tetravalent organic group
- Y 1 is the photo-orientation structure.
- the above formula (1) which is a divalent organic group derived from a diamine selected from the group consisting of a diamine having the above, a diamine having the carbon-carbon unsaturated bond, the diamine having the azobenzene skeleton, and the diamine having the photoreactivity.
- the repeating unit selected from the group consisting of the repeating unit represented by the above formula (2) hereinafter, also referred to as the repeating unit (d)
- the content of the repeating unit (d) may be 20 mol% or more or 30 mol% or more in total with respect to all the repeating units of the polymer (A). ..
- the liquid crystal alignment capability imparted by photo-alignment method from the viewpoint of maintaining a high voltage holding ratio, the polymer (A), X 1 is the formula (4a) ⁇ (4c), (4f) ⁇ (4g ), And a repeating unit selected from the group consisting of a repeating unit represented by the above formula (1) and a repeating unit represented by the above formula (2) in which Y 1 is a divalent organic group (hereinafter, a repeating unit).
- (E) may also be included in one or more types.
- the total content of the repeating unit (e) may be 5 mol% or more, or 10 mol% or more, based on all the repeating units of the polymer (A).
- the polymer (A) is represented by the above formula (1) in which X 1 is a tetravalent organic group and Y 1 is a divalent organic group derived from a nitrogen-containing diamine.
- One or more repeating units (hereinafter, also referred to as repeating units (n)) selected from the group consisting of the repeating unit and the repeating unit represented by the above formula (2) may be included.
- the total content of the repeating unit (n) may be 5 mol% or more, or 10 mol% or more, based on all the repeating units of the polymer (A).
- the liquid crystal alignment agent of the present invention may contain one kind of polymer (A) or two or more kinds of polymers (A).
- Specific examples of the case where two or more types of the polymer (A) are contained are the repeating units (t) and (a) to (a) from the viewpoint of reducing the accumulated charge and suppressing the bright spots generated by physical friction. Examples thereof include an embodiment containing at least one kind of polymer having any one of the repeating units of e). Further, from the viewpoint of low accumulated charge, an embodiment containing at least one polymer having a repeating unit (n) can be mentioned.
- the polymer (A) is composed of two types, the blending ratio of the first polymer and the second polymer ((first polymer) / (second polymer)) is liquid crystal orientation. 5/95 to 95/5, or 10/90 to 90/10, or 20/80 to 80/20 in terms of mass ratio, from the viewpoint of increasing the amount of accumulated charge, reducing the accumulated charge, and suppressing the bright spots generated by physical friction. It may
- the liquid crystal alignment agent of the present invention contains the above compound (B). Since the compound (B) has a nitrogen-containing heterocycle or an amine structure in the molecule, the imidization rate of the polymer (A) at the time of firing is increased, and the obtained liquid crystal alignment film has a high voltage retention rate. Further, since it has a hydroxyalkyl group at the molecular terminal, a cross-linking reaction occurs between the polymer (A) and the compound (B), or between the compounds (B), so that the liquid crystal alignment film obtained can be obtained. The film strength can be increased. Therefore, the liquid crystal display element provided with the liquid crystal alignment film of the present invention can minimize the bright spot even when physical friction such as rubbing with a spacer occurs.
- the compound (B) since the compound (B) has an effect of increasing the crosslink density of the liquid crystal alignment film, it has an excellent ability to capture impurity components derived from the substrate. Therefore, the obtained liquid crystal alignment film is a liquid crystal exhibiting a high voltage retention rate. A display element is obtained. Further, since the compound (B) has a conjugated structure in the molecule, charge transfer in the liquid crystal alignment film is promoted, and a liquid crystal alignment film having a small accumulated charge can be obtained.
- the group "- ⁇ (NR a ) m1- L 11 ⁇ y1- [M- ⁇ L 12" -(NR b ) m2 ⁇ y2 ] n- may have a structure selected from the following formulas (L-b-1) to (L-b-20).
- L-b-9 m and n are 2
- Ra and R b are hydrogen atoms
- M 9 is R 1 is a methyl group.
- R 2 represents the above formula (M-2) in which a methyl group is represented is excluded.
- R a, R b is R a, the same meaning as R b in the formula (3). * Represents a bond.
- the compounds represented by the above formula (B) suppress bright spots even when physical friction occurs, and from the viewpoint of easy synthesis, the following formulas (B-u-1) to (B-u-50) ), (Bm-1) to (Bm-83) may be used.
- the content of the compound represented by the above formula (B) is 0.1 to 40 parts by mass, 0.5 to 35 parts by mass, or 0.5 to 30 parts by mass per 100 parts by mass of the component (A). There may be.
- Polymer (A) in the present invention for example, a tetracarboxylic acid derivative having the structure of the X 1, a diamine having a structure of the above-mentioned Y 1, known methods such as described in International Publication WO2013 / 157586 It can be obtained by reacting with.
- a terminal-modified polymer may be synthesized using an appropriate end-capping agent together with the tetracarboxylic acid derivative and diamine as described above.
- terminal modifier examples include maleic anhydride, nagic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic anhydride, trimetic anhydride, and the following formulas (m-1) to Compound represented by (m-6), 3- (3-trimethoxysilyl) propyl) -3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1 , 3-Dione, 4-Ethynylphthalic anhydride and other acid anhydrides; Di-carbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-Aminosalicylic acid
- the ratio of the terminal modifier used is preferably 40 mol parts or less, more preferably 30 mol parts or less, based on 100 mol parts of the total diamine used.
- the liquid crystal alignment agent of the present invention may contain other polymers in addition to the polymer (A).
- examples of other types of polymers include polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivatives, polyacetal, polystyrene or derivatives thereof, poly (styrene-phenylmaleimide) derivatives, poly (meth) acrylates, and the like.
- the polyorganosiloxane preferably has at least one of an oxetanyl group and an oxylanyl group from the viewpoint of easy synthesis.
- the liquid crystal alignment agent is used for producing a liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
- the liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent.
- the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
- the organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved.
- Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-Dimethyl-2-imidazolidinone, methylethylketone, cyclohexanone, cyclopentanone, N, N-dimethyllactoamide, 3-methoxy-N, N-dimethylpropaneamide, 3-butoxy-N, N-dimethylpropane Amides (collectively referred to as "good solvents”) and the like can be mentioned.
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide , N, N-dimethyllactoamide or ⁇ -butyrolactone may be used.
- the good solvent in the liquid crystal alignment agent of the present invention is 20 to 99% by mass, 20 to 90% by mass, or 30 to 80% by mass of the total solvent contained in the liquid crystal alignment agent. May be good.
- a solvent also referred to as a poor solvent for improving the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film is used in combination. It is preferable to use the mixed solvent. Specific examples of the organic solvent used in combination are given below, but the present invention is not limited to these examples.
- diisopropyl ether diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol)
- ethylene glycol dimethyl ether ethylene glycol diethyl ether
- ethylene glycol dibutyl ether 1,2-butoxyethane
- diethylene glycol dimethyl ether diethylene glycol diethyl ether.
- the poor solvents are diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl.
- -2-Pentanone, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diisobutyl ketone may be used.
- the combinations of the solvent of the good solvent and the poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether.
- N-Methyl-2-pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and 4-hydroxy-4-methyl -2-Pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol Monobutyl ether and diisopropyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol Monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone, ⁇ -butyrolact
- These poor solvents may be 1 to 80% by mass, 10 to 80% by mass, or 20 to 70% by mass of the total solvent contained in the liquid crystal alignment agent.
- the type and content of such a solvent are appropriately selected according to the coating apparatus for the liquid crystal alignment agent, coating conditions, coating environment, and the like.
- the liquid crystal alignment agent of the present invention may additionally contain a component other than the polymer component, the component (B) and the organic solvent.
- additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material, and a compound for increasing the strength of the liquid crystal alignment film (hereinafter, cross-linking). It is also called a sex compound), and examples thereof include a dielectric and a conductive material for adjusting the dielectric constant and the electric resistance of the liquid crystal alignment film.
- crosslinkable compound a group containing an oxylanyl group, an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, and a group containing a meldric acid structure from the viewpoint of less generation of afterimages and a high effect of improving film strength.
- a selected compound hereinafter, these are also collectively referred to as compound (C) may be used.
- R 1 is a hydrogen atom and an alkyl group having 1 to 3 carbon atoms or "* -CH 2- OH”
- R 2 and R 3 are independently hydrogen atoms and alkyl groups having 1 to 3 carbon atoms, respectively.
- the compound having an oxylanyl group include, for example, the compound described in paragraph [0037] of JP-A-10-338880 and the compound having a triazine ring as a skeleton described in International Publication WO2017 / 170483. Examples thereof include compounds having two or more oxylanyl groups.
- a compound containing a nitrogen atom such as the compound to be used may be used.
- the compound having an oxetanyl group include compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of International Publication No. 2011/132751.
- the compound having a protected isocyanate group include, for example, the compounds having two or more protected isocyanate groups described in paragraphs [0046] to [0047] of JP-A-2014-224978, International Publication No. 2015/141598. Examples thereof include the compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of No. Of these, compounds represented by the following formulas (bi-1) to (bi-3) may be used from the viewpoint of high cross-linking effect.
- Specific examples of the compound having a protected isothiocyanate group include the compounds having two or more protected isothiocyanate groups described in JP-A-2016-209488.
- Specific examples of the compound having a group containing an oxazoline ring structure include compounds containing two or more oxazoline structures described in paragraph [0115] of JP-A-2007-286597.
- Specific examples of the compound having a group containing a Meldrum's acid structure include the compound having two or more Meldrum's acid structures described in International Publication No. WO2012 / 091088.
- Specific examples of the compound having a cyclocarbonate group include the compound described in International Publication No. WO2011 / 1555777.
- Examples of the alkyl group having 1 to 3 carbon atoms of the groups R 1 , R 2 and R 3 represented by the above formula (d) include a methyl group, an ethyl group and a propyl group.
- the above compound is an example of a crosslinkable compound, and is not limited thereto.
- the crosslinkable compound contained in the liquid crystal alignment agent of the present invention may be one kind or a combination of two or more kinds.
- the content of the crosslinkable compound in the liquid crystal alignment agent of the present invention is 100 parts by mass of the polymer component contained in the liquid crystal alignment agent from the viewpoint of promoting the crosslinking reaction to exhibit the desired effect and enhancing the liquid crystal orientation. On the other hand, it may be 0.5 to 20 parts by mass or 1 to 15 parts by mass.
- adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N.
- -Styryltrimethoxysilane 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxy Silane cups such as silane, tris- (trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanoxidetriethoxysilane, etc. Ring agent can be mentioned.
- these silane coupling agents are used, from the viewpoint of enhancing the liquid crystal orientation, 0.1 to 30 parts by mass or 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. May be.
- a liquid crystal alignment film can be produced by using the liquid crystal alignment agent.
- the liquid crystal display element according to the present invention includes a liquid crystal alignment film formed by using the liquid crystal alignment agent.
- the operation mode of the liquid crystal display element according to the present invention is not particularly limited, and is, for example, TN (Twisted Nematic) type, STN type, vertically oriented type (including VA-MVA type, VA-PVA type, etc.), and in-plane switching type. It can be applied to various operation modes such as (IPS type), FFS (Fringe Field Switching) type, and optical compensation bend type (OCB type).
- the liquid crystal display element according to the present invention can be manufactured, for example, by a process including the following steps (1-1) to (1-3).
- the substrate used differs depending on the desired operation mode.
- Steps (1-2) and steps (1-3) are common to each operation mode.
- Step (1-1): Formation of coating film First, the liquid crystal alignment agent of the present invention is applied onto the substrate, and then the coated surface is heated to form a coating film on the substrate.
- liquid crystal aligning agent prepared in the above is preferably applied by an offset printing method, a spin coating method, a roll coater method or an inkjet printing method, respectively.
- the substrate for example, glass such as float glass and soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, and poly (aliphatic olefin) can be used.
- NESA film As the transparent conductive film provided on one surface of a substrate, NESA film (US PPG registered trademark) made of tin oxide (SnO 2), indium oxide - such as an ITO film made of tin oxide (In 2 O 3 -SnO 2) the Can be used.
- a patterned transparent conductive film for example, a method of forming a patternless transparent conductive film and then forming a pattern by photo-etching; a method of using a mask having a desired pattern when forming the transparent conductive film; And so on.
- a functional silane compound and a functional titanium compound are applied to the surface of the substrate on which the coating film is formed in order to further improve the adhesiveness between the substrate surface and the transparent conductive film and the coating film. You may perform pretreatment to apply such as in advance.
- preheating is preferably performed for the purpose of preventing the applied liquid crystal alignment agent from dripping.
- the prebake temperature is preferably 30 to 200 ° C, more preferably 40 to 150 ° C, and particularly preferably 40 to 100 ° C.
- the prebake time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes.
- a firing (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermally imidizing the amic acid structure present in the polymer.
- the firing temperature (post-baking temperature) at this time is preferably 80 to 300 ° C, more preferably 120 to 250 ° C.
- the post-baking time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
- the film thickness of the film thus formed is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m.
- a liquid crystal alignment agent is applied to one surface thereof, and then each coated surface is heated to form a coating film.
- the materials of the substrate and the transparent conductive film used at this time, the coating method, the heating conditions after coating, the patterning method of the transparent conductive film or the metal film, the pretreatment of the substrate, and the preferable film thickness of the coating film to be formed are described above. It is the same as (1-1A).
- the metal film a film made of a metal such as chromium can be used.
- a liquid crystal alignment film or a coating film to be a liquid crystal alignment film is formed by applying a liquid crystal alignment agent on the substrate and then removing the organic solvent. To. At this time, by further heating after forming the coating film, the dehydration ring closure reaction of the polyamic acid, the polyamic acid ester and the polyimide blended in the liquid crystal alignment agent according to the present invention may proceed to obtain a more imidized coating film. ..
- a process of imparting a liquid crystal alignment ability to the coating film formed in the above step (1-1) is performed.
- the alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which polarized or non-polarized radiation is applied to the coating film. Processing etc. can be mentioned.
- the coating film formed in the above step (1-1) can be used as it is as a liquid crystal alignment film, but the coating film is subjected to an alignment ability imparting treatment. You may.
- the radiation to be applied to the coating film is For example, ultraviolet rays and visible light including light having a wavelength of 150 to 800 nm can be used.
- the radiation When the radiation is polarized, it may be linearly polarized or partially polarized.
- the irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof.
- the direction of irradiation is diagonal.
- a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
- Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
- the irradiation amount of radiation is preferably 10 to 5,000 mJ / cm 2 , and more preferably 30 to 2,000 mJ / cm 2 .
- the light irradiation on the coating film may be performed while heating the coating film in order to enhance the reactivity.
- the temperature at the time of heating is usually 30 to 250 ° C, preferably 40 to 200 ° C, and more preferably 50 to 150 ° C.
- the light irradiation film obtained in the above step can be used as it is as a liquid crystal alignment film, but the light irradiation film is fired, water or the like. Cleaning with an organic solvent or a combination thereof may be carried out.
- the firing temperature at this time is preferably 80 to 300 ° C, more preferably 80 to 250 ° C.
- the firing time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
- the number of firings may be one or two or more.
- the photo-alignment treatment here corresponds to the treatment of light irradiation in a state where it is not in contact with the liquid crystal layer.
- the organic solvent used for the above washing is not particularly limited, but specific examples thereof include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-.
- Examples thereof include 2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
- the liquid crystal alignment film after the rubbing treatment is further subjected to a process of changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays, or one of the surfaces of the liquid crystal alignment film.
- a resist film may be formed on the portion, a rubbing treatment may be performed in a direction different from the previous rubbing treatment, and then a treatment for removing the resist film may be performed so that the liquid crystal alignment film has a different liquid crystal alignment ability for each region. .. In this case, it is possible to improve the visibility characteristics of the obtained liquid crystal display element.
- a liquid crystal alignment film suitable for a VA type liquid crystal display element can also be suitably used for a PSA (Polymer sustained alignment) type liquid crystal display element.
- Step (1-3): Construction of liquid crystal cell (1-3A) A liquid crystal cell is manufactured by preparing two substrates on which the liquid crystal alignment film is formed as described above and arranging the liquid crystal between the two substrates arranged opposite to each other. For example, the following two methods can be mentioned for manufacturing a liquid crystal cell.
- the first method is a conventionally known method. First, two substrates are arranged facing each other through a gap (cell gap) so that the respective liquid crystal alignment films face each other, the peripheral portions of the two substrates are bonded with a sealant, and the substrate surface and the sealant are used to partition the two substrates.
- a liquid crystal cell is manufactured by injecting and filling the formed cell gap with a liquid crystal and then sealing the injection hole.
- the second method is a method called the ODF (One Drop Fill) method.
- ODF One Drop Fill
- an ultraviolet light-curable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is further dropped on a predetermined number of places on the liquid crystal alignment film surface.
- the other substrate is attached so that the liquid crystal alignment films face each other, the liquid crystal is spread over the entire surface of the substrate, and then the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant to produce a liquid crystal cell. ..
- the liquid crystal cell produced as described above is further heated to a temperature at which the liquid crystal used is isotropic, and then slowly cooled to room temperature to obtain a flow orientation during liquid crystal filling. It is desirable to remove it.
- sealing agent for example, an epoxy resin containing an aluminum oxide sphere as a curing agent and a spacer can be used.
- liquid crystal examples include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable, and for example, shift-based liquid crystal, azoxy-based liquid crystal, biphenyl-based liquid crystal, phenylcyclohexane-based liquid crystal, ester-based liquid crystal, terphenyl-based liquid crystal, and biphenyl.
- a cyclohexane-based liquid crystal, a pyrimidine-based liquid crystal, a dioxane-based liquid crystal, a bicyclooctane-based liquid crystal, a Cuban-based liquid crystal, or the like can be used.
- liquid crystals for example, cholesteric liquid crystals such as cholesteryl chloride, cholesteryl nonaate, and cholesteryl carbonate; chiral agents such as those sold under the trade names "C-15" and "CB-15” (manufactured by Merck).
- a ferroelectric liquid crystal such as p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate may be added and used.
- the liquid crystal can also contain additional anisotropic dyes.
- the term “dye” can mean a substance capable of intensively absorbing or transforming light in the visible light region, eg, in the wavelength range of 400 nm to 700 nm, at least in part or in whole, and the term “differentiate”.
- the "square dye” can mean a substance capable of anisotropically absorbing light in at least a part or the whole range of the visible light region.
- the color feeling of the liquid crystal cell can be adjusted through the use of the dye as described above.
- the type of the anisotropic dye is not particularly limited, and for example, a black dye (black day) or a color dye (color day) can be used.
- the ratio of the anisotropic dye to the liquid crystal is appropriately selected within a range that does not impair the desired physical properties.
- the anisotropic dye is contained in a ratio of 0.01 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal compound. However, the above ratio can be changed to an appropriate range if necessary.
- a PSA type liquid crystal display element When a PSA type liquid crystal display element is manufactured, it is the same as the above (1-3A) except that a photopolymerizable compound of the following formulas (w-1) to (w-5) is injected or dropped together with the liquid crystal. To build a liquid crystal cell. After that, the liquid crystal cells are irradiated with light while a voltage is applied between the conductive films of the pair of substrates.
- the voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V.
- ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
- the light source of the irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
- the ultraviolet rays in the preferred wavelength region can be obtained by means of using a light source in combination with, for example, a filter diffraction grating.
- the irradiation dose of light preferably less than 100 mJ / cm 2 or more 30,000mJ / cm 2, more preferably 100 ⁇ 20,000mJ / cm 2.
- a liquid crystal cell is constructed in the same manner as in (1-3A) above, and then a liquid crystal cell is constructed.
- a method of manufacturing a liquid crystal display element may be adopted by undergoing a step of irradiating a liquid crystal cell with light in a state where a voltage is applied between the conductive films of the pair of substrates. According to this method, the merit of the PSA mode can be realized with a small amount of light irradiation.
- Examples of the additive having a photopolymerizable group include the structures exemplified by the above formulas (w-1) to (w-5), and the blending amount thereof is the solid content of the entire polymer contained in the liquid crystal alignment agent. It may be 1 to 30% by mass, 1 to 20% by mass, or 1 to 15% by mass.
- the light irradiation to the liquid crystal cell may be performed in a state where the liquid crystal is driven by applying a voltage, or may be performed in a state where a voltage low enough not to drive the liquid crystal is applied.
- the applied voltage can be, for example, a direct current or an alternating current of 0.1 to 30 V.
- the above description (1-3B) can be applied to the conditions of the light to be irradiated.
- the light irradiation process here corresponds to the light irradiation process in a state of being in contact with the liquid crystal layer.
- the liquid crystal display element according to the present invention can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
- a polarizing plate attached to the outer surface of the liquid crystal cell a polarizing plate called "H film” in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between cellulose acetate protective films or the H film itself.
- a polarizing plate made of the above can be mentioned.
- the liquid crystal display element according to the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone.
- a clock for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone.
- Can be used for various display devices such as various monitors, LCD TVs, and information displays.
- liquid crystal alignment agent of the present invention a liquid crystal alignment film capable of minimizing afterimages and minimizing bright spots even when physical friction such as rubbing with a spacer is provided.
- a liquid crystal display element can be obtained. Moreover, the obtained liquid crystal display element has high reliability.
- the present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.
- the abbreviations of the compounds and the method for measuring each property in the following are as follows.
- the compound (c-1) was synthesized according to the method described in Synthesis Example 3 of JP-A-2008-052260.
- Boc represents the tert-butoxycarbonyl group.
- Fmoc represents a 9-fluorenylmethyloxycarbonyl group.
- [viscosity] The viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25 ° C.
- [Molecular weight] The molecular weight was measured by a GPC (normal temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
- GPC device manufactured by Shodex (GPC-101), column: manufactured by Shodex (in series of KD803 and KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate) Japanese product (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 mL / L), flow velocity: 1.0 mL / min Standard samples for use: TSK standard polyethylene oxide manufactured by Tosoh (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp)).
- Mw weight average molecular weight
- Mp peak top molecular weight
- NMP is added to this polyamic acid solution (40 g) to dilute it to 6.5% by mass, acetic anhydride (7.06 g) and pyridine (2.19 g) are added as imidization catalysts, and the reaction is carried out at 80 ° C. for 4 hours. I let you.
- This reaction solution was put into methanol (463 g), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder.
- the imidization ratio of this polyimide was 74%, the number average molecular weight was 12,500, and the weight average molecular weight was 38,500.
- NMP (18.0 g) was added to the obtained polyimide powder (2.0 g), M-1 was added so as to be 1% by mass with respect to the polyimide solid content, and the mixture was dissolved by stirring at 70 ° C. for 12 hours.
- a solution of polyimide (PI-V-1) having a solid content concentration of 10% was obtained.
- the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder.
- the imidization ratio of this polyimide was 74%, the number average molecular weight was 13,000, and the weight average molecular weight was 39,000.
- NMP was added to the obtained polyimide powder so that the solid content concentration was 10% by mass, M-1 was added so as to be 1% by mass based on the polyimide solid content, and the mixture was stirred at 70 ° C. for 12 hours. It was dissolved to obtain a solution of polyimide (PI-V-2).
- a polyamic acid solution (a polyamic acid solution (76.4 mmol). Viscosity: 549 mPa ⁇ s) was obtained.
- the molecular weight of the polyamic acid the number average molecular weight was 12,400 and the weight average molecular weight was 33,000.
- NMP is added to this polyamic acid solution (225 g) to dilute it to 9.0% by mass, acetic anhydride (17.1 g) and pyridine (3.54 g) are added as imidization catalysts, and the temperature is 55 ° C. for 3 hours. It was reacted. This reaction solution was put into methanol (1111 g), and the obtained precipitate was filtered off.
- the precipitate was washed with methanol and dried at 60 ° C. for 12 hours to obtain a polyimide powder.
- the imidization ratio of this polyimide powder was 66%, the number average molecular weight was 11,000, and the weight average molecular weight was 28,000.
- NMP was added to the obtained polyimide powder so that the solid content concentration became 15% by mass, and the mixture was stirred and dissolved at 70 ° C. for 24 hours to obtain a polyimide (PI-I-3) solution.
- the obtained solution of polyamic acid ester was poured into 1230 g of water with stirring, the precipitated white precipitate was collected by filtration, and then washed 5 times with 1230 g of isopropyl alcohol (IPA) and dried to make it white. 10.2 g of polyamic acid ester resin powder was obtained. The yield was 83.0%. The molecular weight of this polyamic acid ester was 20,786 with a number average molecular weight and 40,973 with a weight average molecular weight. GBL was added to the obtained polyamic acid ester so that the solid content concentration became 10% by mass, and the mixture was stirred and dissolved at room temperature for 24 hours to obtain a solution of the polyamic acid ester (PAE-I-5).
- the numerical values in parentheses represent the compounding ratio (molar part) of each compound with respect to 100 mol parts of the total amount of the tetracarboxylic acid derivative used for the synthesis for the tetracarboxylic acid component, and for the diamine acid component, The compounding ratio (molar part) of each compound with respect to 100 mol part of the total amount of diamine used for synthesis is shown.
- the terminal modifier the blending ratio (molar part) with respect to 100 mol parts of the total amount of diamine used in the synthesis is shown.
- the organic solvent the compounding ratio (parts by mass) of each organic solvent to 100 parts by mass of the total amount of the organic solvents used in the synthesis is represented.
- Liquid crystal MLC-3023 (manufactured by Merck & Co., Inc.) is depressurized in empty cells using liquid crystal alignment agents (V1) to (V2), (V5) to (V11), (V38) to (V43) and (R-V1). A liquid crystal cell was prepared by injecting by an injection method.
- a DC voltage of 15 V was applied to the obtained liquid crystal cell, and in a state where all the pixel areas were driven, the band pass filter having a wavelength of 365 nm was passed through using an ultraviolet irradiation device using a high-voltage mercury lamp as a light source.
- a liquid crystal display element for evaluation was obtained by irradiating with ultraviolet rays at 10 J / cm 2 .
- a UV-35 receiver was connected to the UV-M03A manufactured by ORC.
- Liquid crystal MLC-6608 (manufactured by Merck & Co., Inc.) was injected into an empty cell using the liquid crystal alignment agents (V3) to (V4) and (R-V2) by a reduced pressure injection method to obtain a liquid crystal display element for evaluation.
- the obtained liquid crystal display elements were observed with a polarizing microscope, it was confirmed that the liquid crystals were uniformly oriented in each case.
- FVL was selected for the UMT-2 sensor, and a 1.6 mm sapphire ball was attached to the tip of the scratch portion.
- a range of 0.5 mm in width and 2.0 mm in length was scratched.
- the moving direction of the tip of the scratch portion was a lateral reciprocation, and the moving speed was 5.0 mm / sec.
- the scratch area was moved in the vertical direction by moving the substrate with the liquid crystal alignment film in the vertical direction at 20 ⁇ m / sec. After the scratch test, the liquid crystal (MLC-3019) was dropped onto the clutch-tested liquid crystal alignment film surface.
- a substrate with electrodes was prepared.
- the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
- a SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer.
- the thickness of the SiN film of the second layer is 500 nm, and it functions as an interlayer insulating film.
- a comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged on the SiN film of the second layer to form two pixels, a first pixel and a second pixel. ing.
- the size of each pixel is 10 mm in length and about 5 mm in width.
- the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
- the pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "V-shaped" electrode elements whose central portion is bent at an internal angle of 160 °.
- the width of each electrode element in the lateral direction is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrodes forming each pixel are formed by arranging a plurality of bent "dogleg" -shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is centered like the electrode elements. It has a shape similar to a bold "dogleg” that bends at a part.
- Each pixel is divided into upper and lower parts with a bent portion in the center as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
- the liquid crystal aligning agents (I12-P) to (I29-P), (I44-P) to (I47-P) and (R-I3-P) are filtered through a filter having a pore size of 1.0 ⁇ m, and then the above. It was applied by spin coating to a substrate with electrodes and a glass substrate having a columnar spacer having a height of 4 ⁇ m in which an ITO film was formed on the back surface.
- the coating films obtained from the liquid crystal aligning agents (I12-P) to (I29-P) and (R-I3-P) were dried on a hot plate at 80 ° C. for 5 minutes and then at 230 ° C.
- Baking was carried out in a hot air circulation oven for 20 minutes to obtain a polyimide film having a film thickness of 100 nm. Then, the coating film surface is irradiated with ultraviolet rays having a wavelength of 254 nm, which is linearly polarized with an extinction ratio of 26: 1 via a polarizing plate, at 500 mJ / cm 2 , and then fired in a hot air circulation oven at 230 ° C. for 30 minutes to have a film thickness of 100 nm. A substrate with a liquid crystal alignment film was obtained. The coating films obtained from the liquid crystal aligning agents (I44-P) to (I47-P) are dried on a hot plate at 80 ° C.
- a sealant was printed on one of the above set of glass substrates with a liquid crystal alignment film, the other substrate was bonded so that the liquid crystal alignment film surfaces faced each other, and the sealant was cured to prepare an empty cell.
- a liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal display element. Then, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and then the afterimage characteristics were evaluated. When the obtained liquid crystal display elements were observed with a polarizing microscope, it was confirmed that the liquid crystals were uniformly oriented in each case.
- the VT characteristic voltage-transmittance characteristic
- an AC voltage having a relative transmittance of 23% is obtained.
- a rectangular wave having a relative transmittance of 23% at a temperature of 23 ° C. was applied for 5 minutes, and then a DC voltage of + 1.0 V was superposed and driven for 30 minutes. After that, the DC voltage was turned off, and only a rectangular wave having a relative transmittance of 23% and a frequency of 30 Hz was applied for 30 minutes.
- a bead spacer having a diameter of 4 ⁇ m (manufactured by JGC Catalysts and Chemicals Co., Ltd., Shinkokyu, SW-D1) was applied to the liquid crystal alignment film surface of one of the substrates.
- the periphery was coated with a sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.).
- the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after laminating with the previous substrate, the sealing material was cured to create an empty cell.
- a liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal display element.
- this liquid crystal display element was allowed to stand in an oven at 80 ° C. under irradiation with an LED lamp for 200 hours, and then allowed to stand at room temperature to be naturally cooled to room temperature. After that, the evaluation was performed in the same procedure as in 1-2 (ii).
- (Iii) Evaluation of scratch resistance Using the same liquid crystal alignment film as in 2-1 above, the procedure was the same as in (iii) of 1-2 above, except that the liquid crystal was MLC-3019.
- inkjet coating device HIS-200, manufactured by Hitachi Plant Technologies, Ltd.
- VA type liquid crystal display element Fabrication of VA type liquid crystal display element by photo-alignment
- two glass substrates similar to 1-1 above, spin-coat liquid crystal alignment agent (V48-P) or (V49-P) on each substrate, and hot.
- Heat treatment was performed on a plate at 80 ° C. for 90 seconds and in a heat circulation type clean oven at 200 ° C. for 40 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.
- the substrate was exposed to linearly polarized UV light at an incident angle of 40 ° with respect to the perpendicularity of the substrate surface. The added exposure amount was 20 mJ / cm 2 .
- liquid crystal MLC-7066 manufactured by Merck & Co., Inc.
- the obtained liquid crystal display elements were observed with a polarizing microscope, it was confirmed that the liquid crystals were uniformly oriented in each case.
- the liquid crystal alignment agent of the present invention is useful for forming a liquid crystal alignment film in various liquid crystal display elements such as a vertical alignment type and an FFS drive system.
- various liquid crystal display elements such as a vertical alignment type and an FFS drive system.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Liquid Crystal (AREA)
Abstract
Description
これらの液晶表示素子は、液晶分子を配向するために液晶配向膜を具備している。液晶配向膜の材料は、耐熱性、機械的強度、液晶との親和性等の各種の特性が良好である点から、一般に、ポリアミック酸、ポリイミド、ポリシロキサン等の重合体からなる被膜が使用されている。
(A)成分:下記式(1)で表される繰り返し単位及び下記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)。
(B)成分:下記式(3)で表される化合物(B)。
Mは、下記式(M-1)~(M-8)から選ばれる基を表す。m1、m2は、それぞれ独立して0又は1を表す。nは1~3の整数を表す。y1、y2は、それぞれ独立して1~6の整数を表す。
但し、B1、B2が下記式(b-3)で表される構造で、基「-{(NRa)m1-L11}y1-[M-{L12-(NRb)m2}y2]n-」が「-(CH2)2-NH-M-NH-(CH2)2-」を表し、且つ、Mが、R1がメチル基である下記式(M-1)、又はR2がメチル基である(M-2)を表す場合は除く。
<重合体(A)>
本発明の液晶配向剤は、上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)を含有する。
X1及びX2はそれぞれ独立して、単結合、-(CH2)a-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH3)-、-NH-、-O-、-COO-、-OCO-又は-((CH2)a1-A1)m1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のA1はそれぞれ独立して酸素原子又は-COO-を表し、m1は1~2である。X3は単結合、-CONH-、-NHCO-、-CON(CH3)-、-NH-、-O-、-CH2O-、-COO-又は-OCO-を表す。X4は-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。
G1及びG2は、それぞれ独立して、フェニレン、ビフェニレン、ナフタレンなどの炭素数6~12の2価の芳香族基又はシクロプロピレン、シクロヘキシレンなどの炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。kは0または1を表し、m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
R1は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。R1を形成する任意の水素はフッ素で置換されていてもよい。
R2は炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、R2を形成する任意の水素はフッ素で置換されていてもよい。R3はステロイド骨格を有する構造を表す。
本発明の液晶配向剤は、上記化合物(B)を含有する。上記化合物(B)は分子内に窒素含有複素環、又はアミン構造を有するため、焼成時における重合体(A)のイミド化率を高め、得られる液晶配向膜は高い電圧保持率を有する。また、ヒドロキシアルキル基を分子末端に有するため、重合体(A)と上記化合物(B)との間、若しくは上記化合物(B)同士のいずれかにおいて架橋反応が生じるため、得られる液晶配向膜の膜強度を高めることができる。よって本発明の液晶配向膜を具備する液晶表示素子は、スペーサーによるこすり付けなど物理的摩擦が発生した際でも輝点を最小にできる。また、上記化合物(B)は、液晶配向膜の架橋密度を高める効果が得られることから、基板由来の不純物成分を捕捉する能力に優れるため、得られる液晶配向膜は高い電圧保持率を示す液晶表示素子が得られる。また、上記化合物(B)は共役構造を分子内に有するため、液晶配向膜内での電荷移動が促進され、蓄積電荷の少ない液晶配向膜を得ることができる。
本発明における重合体(A)は、例えば上記X1の構造を有するテトラカルボン酸誘導体と、上記Y1の構造を有するジアミンとを、国際公開公報WO2013/157586に記載されるような公知の方法で反応させることにより得ることができる。
本発明における重合体(A)を合成するに際して、上記の如きテトラカルボン酸誘導体及びジアミンとともに、適当な末端封止剤を用いて末端修飾型の重合体を合成することとしてもよい。
本発明の液晶配向剤は、重合体(A)に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。尚、ポリオルガノシロキサンとしては、合成が容易である観点から、オキセタニル基及びオキシラニル基の少なくともいずれかを有することが好ましい。
例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。
本発明の液晶配向剤における、架橋性化合物の含有量は、架橋反応が進行し目的の効果を発現し、かつ液晶配向性を高める観点から、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部、又は1~15質量部としてもよい。
上記液晶配向剤を用いることにより、液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN(Twisted Nematic)型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型)、FFS(Fringe Field Switching)型、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
先ず、基板上に本発明の液晶配向剤を塗布し、次いで塗布面を加熱することにより基板上に塗膜を形成する。
例えばTN型、STN型又はVA型の液晶表示素子を製造する場合、まず、パターニングされた透明導電膜が設けられている基板二枚を一対として、その各透明性導電膜形成面上に、上記で調製した液晶配向剤を、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法によりそれぞれ塗布する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO2)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In2O3-SnO2)からなるITO膜などを用いることができる。パターニングされた透明導電膜を得るには、例えばパターンなし透明導電膜を形成した後、フォト・エッチングによりパターンを形成する方法;透明導電膜を形成する際に所望のパターンを有するマスクを用いる方法;などによることができる。液晶配向剤の塗布に際しては、基板表面及び透明導電膜と塗膜との接着性をさらに良好にするために、基板表面のうち塗膜を形成する面に、官能性シラン化合物、官能性チタン化合物などを予め塗布する前処理を施しておいてもよい。
IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。このとき使用される基板及び透明導電膜の材質、塗布方法、塗布後の加熱条件、透明導電膜又は金属膜のパターニング方法、基板の前処理、並びに形成される塗膜の好ましい膜厚については上記(1-1A)と同様である。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。
TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程(1-1)で形成した塗膜に液晶配向能を付与する処理を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向能付与処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。一方、VA型液晶表示素子を製造する場合には、上記工程(1-1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。
例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射の方向は斜め方向とする。
(1-3A)
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤で貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより液晶セルを製造する。第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより液晶セルを製造する。いずれの方法による場合でも、上記のようにして製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
PSA型液晶表示素子を製造する場合には、液晶と共に例えば下記式(w-1)~(w-5)などの光重合性化合物を注入又は滴下する点以外は上記(1-3A)と同様にして液晶セルを構築する。
光重合性基を有する化合物(重合体又は添加剤)を含む液晶配向剤を用いて基板上に塗膜を形成した場合、上記(1-3A)と同様にして液晶セルを構築し、その後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する工程を経ることにより液晶表示素子を製造する方法を採用してもよい。この方法によれば、PSAモードのメリットを少ない光照射量で実現可能である。光重合性基を有する添加剤としては、上記式(w-1)~(w-5)で例示した構造を挙げることができ、その配合量は液晶配向剤に含まれる重合体全体の固形分に対して1~30質量%であってもよく、1~20質量%であってもよく、1~15質量%であってもよい。液晶セルに対する光照射は、電圧印加により液晶を駆動させた状態で行ってもよく、あるいは液晶を駆動させない程度に低い電圧を印加した状態で行ってもよい。印加する電圧は、例えば0.1~30Vの直流又は交流とすることができる。照射する光の条件については、上記(1-3B)の説明を適用することができる。ここでの光照射処理が、液晶層と接触した状態での光照射の処理に相当する。
(ジアミン)
DA-1~DA-27:下記式(DA-1)~(DA-27)で表される化合物
(テトラカルボン酸二無水物)
CA-1~CA-8:下記式(CA-1)~(CA-8)で表される化合物
(テトラカルボン酸ジエステルジハロゲン化物)
CE-1:下記式(CE-1)で表される化合物
(モノカルボン酸塩化物)
E-1: アクリロイルクロリド
(添加剤)
b-1~b-12:下記式(b-1)~(b-12)で表される化合物
(その他の添加剤)
c-1:下記式(c-1)で表される化合物
c-2:下記式(c-2)で表される化合物
F-1:N-α-(9-フルオレニルメチルオキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン(下記式(F-1)で表される化合物)
s-1:3-グリシドキシプロピルトリエトキシシラン(下記式(s-1)で表される化合物)
s-2:3-グリシドキシプロピルメチルジエトキシシラン(下記式(s-2)で表される化合物)
M-1:3-ピコリルアミン
(有機溶媒)
NMP:N-メチル-2-ピロリドン、GBL:γ-ブチロラクトン、
BCS:ブチルセロソルブ、DIBK:ジイソブチルケトン、
NEP:N-エチル-2-ピロリドン、DAA:ジアセトンアルコール
PC:プロピレンカーボネート、DME:ジプロピレングリコールジメチルエーテル、
DPM:ジプロピレングリコールモノメチルエーテル、
PB:プロピレングリコールモノブチルエーテル、
PGDAC:プロピレングリコールジアセテート、
DEDE:ジエチレングリコールジエチルエーテル、
GVL:γ-バレロラクトン、DML:N,N-ジメチルラクトアミド
EEP:3-エトキシプロピオン酸エチル
[粘度]
溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<合成例(b-1)>
下記に示す経路に従って化合物(b-1)を合成した。
化合物(b-1-1)の代わりに2,5-ジイソシアネートピリジン(CAS No.80905-31-3)を、ジエタノールアミンの代わりにトリスヒドロキシメチルアミノメタンを用いた以外は、合成例(b-1)と同様の手順で化合物(b-8)を得た。
下記に示す経路に従って化合物(b-9)を得た。
ナスフラスコに、化合物(b-9-1)(3.77g、18.0mmol)、ジエタノールアミン(3.96g、37.7mmol)及び1,4-ジオキサン(100g)を加えて、混合物を室温で撹拌した。次に、N-エチルモルホリン(4.34g、37.7mmol)及び4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(10.43g、37.7mmol)を加えて、室温で一晩撹拌した。反応溶液に水(600g)を加えて、固体を析出させ、得られた固体をメタノールで洗浄した。次に、溶媒を減圧留去して化合物(b-9)を4.23g得た。
下記に示す経路に従って化合物(b-11)を得た。
4つ口フラスコに化合物(b-11-1)(2.97g、9.00mmol)とジエタノールアミン(1.00g、9.50mmol)及びトルエン50mLを加え、窒素雰囲気下60℃で加熱した。LC/MSにて原料が消失したのを確認し、溶媒を減圧除去し、残渣を強陽イオン交換樹脂により精製して、メタノールで溶離し、化合物(b-11-2)を得た。
4つ口フラスコに、ジクロロメタン(100mL)と化合物(b-11-2)(2.20g、6.00mmol)を加え、塩化水素-メタノール試薬で処理し、反応混合物を窒素雰囲気下、一晩撹拌を行った。溶媒を減圧除去し、化合物(b-11-3)を得た。
4つ口フラスコに、2,5-ピリジンジカルボン酸(0.34g、2.00mmol)、化合物(b-11-3)(1.12g、4.19mmol)及びN,N-ジメチルホルムアミド(DMF)(11g)を加えて、混合物を室温で撹拌した。次に、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(1.16g、4.19mmol)を加えて、室温で一晩撹拌した。反応溶液に水40gを加えて、固体を析出させ、得られた固体をメタノールで洗浄した。次に、溶媒を減圧留去して化合物(b-11)を得た。
下記に示す経路に従って化合物(b-12)を得た。
次に、4つ口ナスフラスコに化合物(b-12-1)(2.70g、7.82mmol)、ジエタノールアミン(1.64g、15.6mmol)及びジメチルスルホキシド10mLを加えた。次に無水炭酸カリウム(2.16g、15.6mmol)を加え30時間撹拌した。不溶物を濾過し、溶媒を減圧除去した。残留物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=10:1)で精製し、目的物(b-12)を得た。
<合成例1>
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、CA-2(2.25g、8.99mmol)、DA-6(2.97g、8.99mmol)、及びDA-7(3.43g、9.01mmol)とNMP(34.6g)を加えて溶解させ、60℃で4時間反応させた。その後、CA-3(1.75g、8.92mmol)とNMP(6.99g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(7.06g)、及びピリジン(2.19g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(463g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は74%であり、数平均分子量は12,500、重量平均分子量は38,500であった。
得られたポリイミド粉末(2.0g)にNMP(18.0g)を加え、M-1をポリイミド固形分に対して1質量%となるように添加し、70℃にて12時間撹拌して溶解させ、固形分濃度が10%のポリイミド(PI-V-1)の溶液を得た。
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、CA-2(1.20g、4.80mmol)、DA-8(1.46g、9.59mmol)、DA-9(1.74g、7.18mmol)、及びDA-7(2.74g、7.20mmol)とNMP(28.58g)を加えて溶解させ、60℃で2時間反応させた。その後、CA-5(1.05g、4.81mmol)とNMP(4.19g)を加え、室温で4時間反応させ、さらにCA-3(2.78g、14.18mmol)とNMP(11.1g)を加え、室温で4時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(40g)にNMPを加えて6.5質量%に希釈した後、イミド化触媒として無水酢酸(8.90g)、及びピリジン(2.76g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(472g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し、ポリイミド粉末を得た。このポリイミドのイミド化率は74%であり、数平均分子量は13,000、重量平均分子量は39,000であった。
得られたポリイミド粉末に固形分濃度が10質量%になるようにNMPを加え、M-1をポリイミド固形分に対して1質量%となるように添加し、70℃にて12時間撹拌して溶解させ、ポリイミド(PI-V-2)の溶液を得た。
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-2を5.86g(24.0mmol)、DA-10を5.46g(16.0mmol)、DA-4を1.73g(16.0mmol)、DA-1を7.69g(24.0mmol)、及びNMPを194g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を17.1g(76.4mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加え、40℃で24時間撹拌してポリアミック酸溶液(粘度:549mPa・s)を得た。ポリアミック酸の分子量は、数平均分子量は12,400、重量平均分子量33,000であった。
このポリアミック酸溶液(225g)にNMPを加えて9.0質量%に希釈した後、イミド化触媒として無水酢酸(17.1g)、及びピリジン(3.54g)を加えて、55℃で3時間反応させた。この反応液をメタノール(1111g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で12時間乾燥し、ポリイミド粉末を得た。このポリイミド粉末のイミド化率は66%であり、数平均分子量は11,000、重量平均分子量は28,000であった。
得られたポリイミド粉末に固形分濃度が15質量%になるようにNMPを加え、70℃で24時間撹拌し溶解させてポリイミド(PI-I-3)の溶液を得た。
撹拌装置及び窒素導入管付きの5Lの四つ口フラスコに、DA-5を5.73g(20.0mmol)量り取り、NMPを11.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を2.94g(15.0mmol)添加し、NMPを19.1g加え、窒素雰囲気下23℃で1時間撹拌した。その後、DA-3を11.9g(40.0mmol)、DA-11を6.01g(40.0mmol)量り取り、NMPを172g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を15.9g(81.0mmol)添加し、固形分濃度が15質量%になるようにNMPを加え、s-1をポリアミック酸固形分に対して1質量%となるように添加し、窒素雰囲気下23℃で6時間撹拌してポリアミック酸(PAA-I-4)の溶液を得た。ポリアミック酸の分子量は、数平均分子量は12,000、重量平均分子量は30,000であった。
撹拌装置付きの500mLの四つ口フラスコを窒素雰囲気とし、DA-4を2.80g(25.9mmol)、DA-12を1.45g(6.11mmol)、NMPを111g、及び塩基としてピリジン6.18g(78.1mmol)を加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらCE-1を9.89g(30.4mmol)添加し、15℃で一晩反応させた。一晩撹拌後、E-1を0.38g(4.21mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1230gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1230gのイソプロピルアルコール(IPA)で5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末10.2gを得た。収率は、83.0%であった。また、このポリアミック酸エステルの分子量は、数平均分子量は20,786、重量平均分子量は40,973であった。
得られたポリアミック酸エステルに固形分濃度が10質量%になるようにGBLを加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル(PAE-I-5)の溶液を得た。
撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-8を0.46g(3.00mmol)、DA-13を3.00g(15.0mmol)、DA-14を2.56g(12.0mmol)、NMPを11.0g、及びGBLを8.10g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-6を4.76g(24.0mmol)添加し、GBLを10.9g加えて、室温で2時間撹拌した。次に、GBLを10.8g加えて撹拌した後、CA-5を1.31g(6.01mmol)添加し、GBLを14.3g加えて、室温で24時間撹拌した。得られたポリアミック酸溶液の25℃における粘度は2,041mPa・sであった。また、ポリアミック酸の分子量は、数平均分子量は14,200、重量平均分子量は30,110であった。その後、s-2をポリアミック酸固形分に対して1質量%となるように添加し、NMPとGBLの混合比率が、質量比でNMP:GBL=20:80となり、固形分濃度が15質量%になるように、NMP及びGBLを添加して、ポリアミック酸(PAA-I-6)の溶液を得た。
下記表1に示す、ジアミン、テトラカルボン酸誘導体及び有機溶媒を使用し、それぞれ、上記合成例と同様の手順で実施することにより、下記表1に示すポリイミド(PI-V-V-8)~(PI-V-9)、(PI-I-11)及び(PI-V-19)、ポリアミック酸(PAA-I-7)、(PAA-I-10)、(PAA-V-14)~(PAA-V-16)、(PAA-I-17)~(PAA-I-18)の溶液を得た。表1中、括弧内の数値は、テトラカルボン酸成分については、合成に使用したテトラカルボン酸誘導体の合計量100モル部に対する各化合物の配合割合(モル部)を表し、ジアミン酸成分については、合成に使用したジアミンの合計量100モル部に対する各化合物の配合割合(モル部)を表す。末端修飾剤については、合成に使用したジアミンの合計量100モル部に対する配合割合(モル部)を表す。有機溶媒については、合成に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。
<合成例12>
特開2018-054761号の段落[0091]に記載の方法に従って、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)を用いて反応性ポリオルガノシロキサン重合体を得た。次に、特開2018-054761号の段落[0093]に記載の方法に従って、下記式(P-S1)で表されるポリオルガノシロキサンの重合体を得た。尚、数値は合成に用いた各シラン化合物の合計に対する各化合物の使用割合を示す。
特開2018-054761号の段落[0091]に記載の方法に従って、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)を用いて反応性ポリオルガノシロキサン重合体を得た。次に、特開2018-054761号の段落[0093]に記載の方法に従って、下記式(P-S2)で表されるポリオルガノシロキサンの重合体を得た。尚、数値は合成に用いた各シラン化合物の合計に対する各化合物の使用割合を示す。
[液晶配向剤の調製]
合成例1で得られたポリイミド(PI-V-1)の溶液及び合成例2で得られたポリイミド(PI-V-2)の溶液を用いて、NMP及びBCSにより希釈し、更に化合物(b-1)を全ての重合体100質量部に対して10質量部となるように添加し室温で撹拌した。次いで、この得られた溶液を孔径0.5μmのフィルターでろ過することにより、重合体の成分比率が(PI-V-1):(PI-V-2)=30:70(固形分換算質量比)、溶媒組成比がNMP:BCS=60:40(質量比)、重合体固形分濃度が4.5%、重合体成分の合計100質量部に対して化合物(b-1)の配合割合が10質量部となる液晶配向剤(V1)を得た(下記の表2)。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<実施例2~50、比較例1~4>
下記表2~表6の重合体及び添加剤を使用した以外は、実施例1と同様に実施することにより、液晶配向剤(V2)~(V11)、(I12-P)~(I29-P)、(I30-U)~(I37-U)、(V38)~(V43)、(I44-P)~(I47-P)、(V48-P)~(V49-P)、(I50-U)、(R-V1)~(R-V2)、(R-I3-P)、(R-I4-U)を得た。表2~表6中、括弧内の数値は、重合体及び添加剤についてはそれぞれ液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体成分又は添加剤の配合割合(質量部)を表す。有機溶媒については、液晶配向剤の調製に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。
1-1.垂直配向型液晶表示素子の作製
40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)を2枚準備し、純水及びイソプロピルアルコールで洗浄した。次に、各ITO面上に孔径1.0μmのフィルターで濾過した液晶配向剤(V1)~(V11)、(V38)~(V43)及び(R-V1)~(R-V2)をそれぞれスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの膜付きのITO基板を得た。
次に、シール剤(三井化学社製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作製した。液晶配向剤(V1)~(V2)、(V5)~(V11)、(V38)~(V43)及び(R-V1)を用いた空セルには液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。
その後、得られた液晶セルに15Vの直流電圧を印加し、全ての画素エリアが駆動した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を10J/cm2照射して、評価用の液晶表示素子を得た。紫外線照射量の測定にはORC社製UV-M03AにUV-35の受光器を接続し用いた。
液晶配向剤(V3)~(V4)及び(R-V2)を用いた空セルには液晶MLC-6608(メルク社製)を減圧注入法によって注入し、評価用の液晶表示素子を得た。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
(i)蓄積電荷の評価
上記1-1.で作製した液晶表示素子に、直流2Vを重畳した30Hz、7.8Vp-pの矩形波を23℃で72時間印加し、直流電圧を切って1時間後の液晶セル内に残留した電圧(残留DC電圧)をフリッカー消去法により求めた。この値が50mV以下である時を「良好」、50mVより大きい値である時を「不良」と判断した。評価結果を表3に示す。
(ii)電圧保持率評価
上記1-1.で作製した液晶表示素子をLEDランプ照射下の80℃オーブン中で200時間静置した後、室温中に静置して室温まで自然冷却した。その後、60℃において1Vの電圧を60マイクロ秒の印加時間、1667ミリ秒のスパンで印加した後、印加解除から1,000ミリ秒後の電圧保持率を測定した。測定装置としては、東陽テクニカ社製を使用した。
(iii)スクラッチ耐性評価
一対のガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)上に上記1-1と同様の手順で液晶配向膜を作製した。各液晶配向膜面に対して、UMT-2(ブルカー・エイエックスエス社製)を用いてスクラッチ試験を行った。
UMT-2のセンサーにはFVLを選択し、スクラッチ部先端には1.6mmのサファイア球を取り付けた。
スクラッチ部先端を液晶配向膜表面に荷重40mNで接触させた状態で、横0.5mm、縦2.0mmの範囲を、スクラッチした。この時スクラッチ部先端の移動方向は横への往復とし、移動速度は5.0mm/秒で行った。スクラッチエリアの縦方向への移動は、液晶配向膜付きの基板を縦方向に20μm/秒で移動させ行った。
スクラッチ試験後、液晶(MLC-3019)をクラッチ試験済の液晶配向膜面へ滴下した。そこへもう1枚の液晶配向膜付き基板に4μmのスペーサーを散布したものを、互いの液晶配向膜面が向かい合うように重ね合わせ、滴下した液晶を挟み込んだ。
偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)の上下の偏光板の偏光軸が90°(クロスニコル)となるようにした状態で、スクラッチ試験を行った箇所を観察し、光が透過するかを観察した。スクラッチ試験を行った箇所について、輝点や光抜けが全く見られない状態を良好、スクラッチした箇所全体が光抜けとなった状態を不良として表7に示す。
始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
液晶配向剤(I12-P)~(I29-P)及び(R-I3-P)から得られた塗膜に対しては、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmのポリイミド膜を得た。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を500mJ/cm2照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
液晶配向剤(I44-P)~(I47-P)から得られた塗膜に対しては、80℃のホットプレート上で5分間乾燥させた後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を500mJ/cm2照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
次に、上記一組の液晶配向膜付きガラス基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶表示素子を得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから残像特性の評価を実施した。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
(i)蓄積電荷の評価
上記2-1で作製した液晶セルを用い、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV-T特性(電圧-透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。次に、23℃の温度下において相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加した。直流電圧重畳30分後の相対透過率が29%未満まで低下した場合には「良好」、相対透過率が29%以上だった場合には「不良」と定義して評価を行った。
(ii)電圧保持率評価
40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)を2枚準備し、上記2-1と同様の手順でITO面上に膜厚が100nmの液晶配向膜を作製した。一方の基板の液晶配向膜面に、直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布した。
次に、シール剤(三井化学社製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC-3019(メルク社製)を減圧注入法によって注入し、液晶表示素子を作成した。次に、この液晶表示素子をLEDランプ照射下の80℃オーブン中で200時間静置した後、室温中に静置して室温まで自然冷却した。その後、1-2の(ii)と同様の手順で評価を行った。
(iii)スクラッチ耐性評価
上記2-1と同様の液晶配向膜を用いて、液晶をMLC-3019とした以外は、上記1-2の(iii)と同様の手順で行った。
先ず、上記2-1と同様の一対のガラス基板の各表面に、孔径1.0μmのフィルターで濾過した液晶配向剤(I30-U)~(I37-U)、(I50-U)、(R-I4-U)をインクジェット塗布装置(HIS-200、日立プラントテクノロジー社製)を用いて塗布した。塗布は、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から乾燥までに60秒間引き置きする条件で行った。次に、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶表示素子を得た。その後、得られた液晶表示素子を120℃で1時間加熱し、23℃で一晩放置してから残像評価の評価に使用した。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
(i)蓄積電荷の評価
上記3-1で作製した液晶表示素子を用いて、液晶をMLC-7026-100とした以外は、上記2-2の(i)と同様の手順で評価を行った。
(ii)電圧保持率評価
上記3-1と同様の液晶配向膜を用いて、液晶をMLC-7026-100とした以外は、上記2-2の(ii)と同様の手順で評価を行った。
(iii)スクラッチ耐性評価
上記3-1と同様の液晶配向膜を用いて、液晶をMLC-7026-100とした以外は、上記2-2の(iii)と同様の手順で評価を行った。
上記1-1と同様のガラス基板を2枚準備し、それぞれの基板上に液晶配向剤(V48-P)又は(V49-P)をスピンコートし、ホットプレート上にて80℃で90秒間、熱循環型クリーンオーブンにて200℃で40分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
次に上記基板を直線偏光UV光に、基板表面の垂直に対して入射角40°で露光させた。加えられた露光量は、20mJ/cm2とした。露光後、2枚の基板を有するセルを、露光された配向層がセルの内側に向くように組み立て、配向方向が互いに平行になるように、基板を調整した。次に、液晶MLC-7067(メルク社製)を注入した。その後、約90℃で10分間アニーリングし、室温まで冷ましてから残像評価の評価に使用した。得られた液晶表示素子を偏光顕微鏡で観察したところ、いずれも液晶は均一に配向していることが確認された。
(i)蓄積電荷の評価
上記4-1で作製した液晶表示素子を用いて、上記1-2の(i)と同様の手順で評価を行った。評価結果を表7~表9に示す。
(ii)電圧保持率評価
上記4-1と同様の液晶配向膜を用いて、液晶をMLC-7067とした以外は、上記1-2の(ii)と同様の手順で評価を行った。評価結果を表7~表9に示す。
(iii)スクラッチ耐性評価
上記4-1と同様の液晶配向膜を用いて、液晶をMLC-7067とした以外は、上記1-2の(iii)と同様の手順で評価を行った。評価結果を表7~表9に示す。
なお、2019年3月12日に出願された日本特許出願2019-044855号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (13)
- 下記の(A)成分と(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表される繰り返し単位及び下記式(2)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位を有する重合体(A)。
(B)成分:下記式(3)で表される化合物(B)。
Mは、下記式(M-1)~(M-8)から選ばれる基を表す。m1、m2は、それぞれ独立して0又は1を表す。nは1~3の整数を表す。y1、y2は、それぞれ独立して1~6の整数を表す。
但し、B1、B2が下記式(b-3)で表される構造で、基「-{(NRa)m1-L11}y1-[M-{L12-(NRb)m2}y2]n-」が「-(CH2)2-NH-M-NH-(CH2)2-」を表し、且つ、Mが、R1がメチル基である下記式(M-1)、又はR2がメチル基である(M-2)を表す場合は除く。
- 上記重合体(A)が、上記X1が上記式(4a)~(4n)、(5a)及び上記式(6a)からなる群から選ばれる4価の有機基であり、Y1が2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(t))を1種以上含み、繰り返し単位(t)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項2に記載の液晶配向剤。
- 上記重合体(A)が、X1が4価の有機基であり、Y1が窒素含有複素環、ジフェニルアミン構造及びトリフェニルアミン構造からなる群から選ばれる少なくとも一種を有するジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位を1種以上含み、前記1種以上の繰り返し単位の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項1~3のいずれか一項に記載の液晶配向剤。
- 上記重合体(A)が、X1が4価の有機基であり、Y1が下記式(V1)~(V3)で表されるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(a))を1種以上含み、繰り返し単位(a)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上である、請求項1~4のいずれか一項に記載の液晶配向剤。
X1及びX2はそれぞれ独立して、単結合、-(CH2)a-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH3)-、-NH-、-O-、-COO-、-OCO-又は-((CH2)a1-A1)m1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のA1はそれぞれ独立して酸素原子又は-COO-を表し、m1は1~2である。X3は単結合、-CONH-、-NHCO-、-CON(CH3)-、-NH-、-O-、-CH2O-、-COO-又は-OCO-を表す。X4は-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。
G1及びG2は、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。kは0または1を表し、m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
R1は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。R1を形成する任意の水素はフッ素で置換されていてもよい。
R2は炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、R2を形成する任意の水素はフッ素で置換されていてもよい。R3はステロイド骨格を有する構造を表す。 - 上記重合体(A)が、X1が4価の有機基であり、Y1がp-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノアゾベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、下記式(H)で表されるジアミン及び下記式(H2)~(H3)で表されるジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(c))を1種以上含み、繰り返し単位(c)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、5モル%以上である、請求項1~5のいずれか一項に記載の液晶配向剤。
- 上記重合体(A)が、X1が4価の有機基であり、Y1がラジカル開始機能を有するジアミン及び光重合性基を末端に有するジアミンからなる群から選ばれるジアミンに由来する2価の有機基である上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位からなる群から選ばれる繰り返し単位(繰り返し単位(b))を1種以上含み、繰り返し単位(b)の含有量が、合計で、重合体(A)の全繰り返し単位に対して、1モル%以上である、請求項1~6のいずれか一項に記載の液晶配向剤。
- 上記重合体(A)が、請求項5に定義される繰り返し単位(a)および請求項7に定義される繰り返し単位(b)を含み、繰り返し単位(a)及び繰り返し単位(b)の含有量の上限値がそれぞれ、重合体(A)の全繰り返し単位に対して、99モル%以下である、請求項5または7に記載の液晶配向剤。
- 上記液晶配向剤がさらにポリオルガノシロキサンを含み、上記ポリオルガノシロキサンがオキセタニル基及びオキシラニル基の少なくともいずれかを有する、請求項1~8のいずれか一項に記載の液晶配向剤。
- 上記(A)成分が、2種類以上の重合体(A)からなる、請求項1~9のいずれか一項に記載の液晶配向剤。
- 上記式(B)で表される化合物の含有量が、(A)成分100質量部あたり、0.1~40質量部である、請求項1~10のいずれか一項に記載の液晶配向剤。
- 請求項1~11のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
- 請求項12に記載の液晶配向膜を具備する液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217031815A KR20210137494A (ko) | 2019-03-12 | 2020-03-11 | 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자 |
JP2021505113A JP7417205B2 (ja) | 2019-03-12 | 2020-03-11 | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 |
CN202080019629.4A CN113557471B (zh) | 2019-03-12 | 2020-03-11 | 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019044855 | 2019-03-12 | ||
JP2019-044855 | 2019-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184628A1 true WO2020184628A1 (ja) | 2020-09-17 |
Family
ID=72426647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010624 WO2020184628A1 (ja) | 2019-03-12 | 2020-03-11 | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7417205B2 (ja) |
KR (1) | KR20210137494A (ja) |
CN (1) | CN113557471B (ja) |
TW (1) | TWI842852B (ja) |
WO (1) | WO2020184628A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102281A1 (ja) * | 2020-11-13 | 2022-05-19 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
WO2023068085A1 (ja) * | 2021-10-18 | 2023-04-27 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 |
WO2023120726A1 (ja) * | 2021-12-24 | 2023-06-29 | 日産化学株式会社 | 弱アンカリング液晶配向剤、及び液晶表示素子 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015072554A1 (ja) * | 2013-11-15 | 2015-05-21 | 日産化学工業株式会社 | 液晶配向剤及びそれを用いた液晶表示素子 |
WO2015156314A1 (ja) * | 2014-04-09 | 2015-10-15 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2016118753A (ja) * | 2014-12-22 | 2016-06-30 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5057052B2 (ja) | 2006-07-28 | 2012-10-24 | Jsr株式会社 | 液晶配向剤、液晶配向膜および液晶表示素子 |
CN108604027A (zh) * | 2015-11-25 | 2018-09-28 | 日产化学工业株式会社 | 液晶取向剂、液晶取向膜和液晶表示元件 |
-
2020
- 2020-03-11 CN CN202080019629.4A patent/CN113557471B/zh active Active
- 2020-03-11 KR KR1020217031815A patent/KR20210137494A/ko unknown
- 2020-03-11 JP JP2021505113A patent/JP7417205B2/ja active Active
- 2020-03-11 WO PCT/JP2020/010624 patent/WO2020184628A1/ja active Application Filing
- 2020-03-12 TW TW109108104A patent/TWI842852B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015072554A1 (ja) * | 2013-11-15 | 2015-05-21 | 日産化学工業株式会社 | 液晶配向剤及びそれを用いた液晶表示素子 |
WO2015156314A1 (ja) * | 2014-04-09 | 2015-10-15 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2016118753A (ja) * | 2014-12-22 | 2016-06-30 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102281A1 (ja) * | 2020-11-13 | 2022-05-19 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
JPWO2022102281A1 (ja) * | 2020-11-13 | 2022-05-19 | ||
JP7318826B2 (ja) | 2020-11-13 | 2023-08-01 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
CN116529303A (zh) * | 2020-11-13 | 2023-08-01 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶显示元件 |
CN116529303B (zh) * | 2020-11-13 | 2024-02-13 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶显示元件 |
WO2023068085A1 (ja) * | 2021-10-18 | 2023-04-27 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 |
WO2023120726A1 (ja) * | 2021-12-24 | 2023-06-29 | 日産化学株式会社 | 弱アンカリング液晶配向剤、及び液晶表示素子 |
Also Published As
Publication number | Publication date |
---|---|
JP7417205B2 (ja) | 2024-01-18 |
JPWO2020184628A1 (ja) | 2020-09-17 |
TWI842852B (zh) | 2024-05-21 |
CN113557471B (zh) | 2024-07-23 |
KR20210137494A (ko) | 2021-11-17 |
TW202045698A (zh) | 2020-12-16 |
CN113557471A (zh) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109913241B (zh) | 液晶取向剂、液晶取向膜以及液晶显示元件 | |
JP7417205B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
JP6852347B2 (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
JP7468365B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
KR20160095610A (ko) | 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법, 액정 소자, 중합체, 디아민 및 산 2무수물 | |
KR20160005644A (ko) | 액정 배향제, 액정 배향막 및 액정 표시 소자 | |
WO2022176680A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
TW202227532A (zh) | 液晶配向劑、液晶配向膜以及液晶顯示元件 | |
JP2024019271A (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン | |
WO2021161989A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン | |
JP7552582B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
JP7494852B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
WO2022234820A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP2022031136A (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
WO2022190896A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2023068085A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 | |
WO2021246431A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP2024007369A (ja) | 液晶配向膜の製造方法、液晶表示素子の製造方法、液晶配向膜、及び液晶表示素子 | |
TW202206499A (zh) | 液晶配向劑、液晶配向膜以及液晶顯示元件 | |
JP2022027466A (ja) | 液晶配向剤、液晶配向膜及び液晶素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20770936 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021505113 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217031815 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20770936 Country of ref document: EP Kind code of ref document: A1 |