WO2020183743A1 - 電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器 - Google Patents

電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器 Download PDF

Info

Publication number
WO2020183743A1
WO2020183743A1 PCT/JP2019/022780 JP2019022780W WO2020183743A1 WO 2020183743 A1 WO2020183743 A1 WO 2020183743A1 JP 2019022780 W JP2019022780 W JP 2019022780W WO 2020183743 A1 WO2020183743 A1 WO 2020183743A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power
voltage
power conversion
mode
Prior art date
Application number
PCT/JP2019/022780
Other languages
English (en)
French (fr)
Inventor
有澤 浩一
啓介 植村
貴昭 ▲高▼原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2020183743A1 publication Critical patent/WO2020183743A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention is a power converter that converts AC power supplied from an AC power source into DC power and supplies it to a load, a motor drive device provided with the power conversion device, a refrigeration cycle device provided with the motor drive device, and a blower. , Air conditioning equipment and refrigeration equipment.
  • one of the issues is to suppress the loss on the circuit through which the current flows to improve the efficiency.
  • MOSFETs Metal-Oxide-Semiconductor Field-Effective Transistor
  • the conduction loss is reduced by controlling the MOSFET in synchronization with the timing when the current starts to flow in the bridge circuit and the timing when the current flowing in the bridge circuit changes to zero. This technique is called synchronous rectification.
  • the present invention has been made in order to solve the above problems, and in a rectifier having a configuration in which a part of a rectifier circuit is replaced with a MOSFET, the loss as a system is smaller and a wide drive range is supported.
  • the purpose is to obtain a power conversion device that can be used.
  • the power conversion device includes a plurality of legs consisting of an upper arm and a lower arm composed of a semiconductor switch or a diode, a bridge circuit that rectifies the AC power of the AC power supply into DC power, and smoothes the DC power.
  • An integrated magnetic component whose one end is connected to one end of the AC power supply and the other end is connected to the connection point between the upper arm and the lower arm, and the current of the AC power supply or the current correlated with the current of the AC power supply.
  • the control unit includes a current detection unit for detecting, a voltage detection unit for detecting the voltage of the DC power or a voltage correlated with the voltage of the DC power, and a control unit for controlling the opening and closing of the semiconductor switch. Switching the conduction mode of the semiconductor switch based on any one or two of the detection value of the current detection unit and the detection value of the voltage detection unit to change the current pattern flowing through the integrated magnetic component. It is characterized by.
  • the switching operation can be switched and flexibly controlled, the effect of improving efficiency and boosting performance can be achieved in a wide operating range.
  • Configuration example of the power conversion device according to the first embodiment Examples of integrated magnetic components used in power converters Configuration example of the power conversion device according to the first embodiment (when the motor drive unit is connected to the load side) Example of diode loss characteristics according to the first embodiment and loss characteristics when the switching element is turned on.
  • Example of current path in load supply mode of the power conversion device according to the first embodiment (operating region when the current is relatively small)
  • Example of current path in load supply mode of the power conversion device according to the first embodiment (operating region when the current is relatively large)
  • Example of current path in power supply short-circuit mode of the power conversion device according to the first embodiment (operating region when the current is relatively small)
  • Example of current path in power supply short-circuit mode of the power conversion device according to the first embodiment (operating region when the current is relatively large)
  • Example of current path in blend mode of the power conversion device according to the first embodiment (operating region when the current is relatively small)
  • Current path example 1 of the blend mode of the power conversion device according to the first embodiment (operating region when the current is relatively large)
  • Current path example 2 of the blend mode of the power conversion device according to the first embodiment (operating region when the current is relatively large)
  • Setting example of mode switching area of the power conversion device according to the first embodiment (3 areas)
  • FIG. 1 is a circuit diagram showing the configuration of the power conversion device 101 according to the first embodiment.
  • the power conversion device 101 according to the first embodiment is a device that converts the AC voltage supplied from the single-phase AC power supply 1 into a DC voltage and supplies it to the load 7.
  • the power conversion device 101 according to the first embodiment is connected to the integrated magnetic component 3 and the converter 40 (switching elements 4a to 4f which are a plurality of semiconductor switches) in antiparallel to these switching elements. It is composed of diodes 5a to 5f), a smoothing capacitor 6, a current sensor 2, a current detection unit 41, a voltage detection unit 31, and a control unit 11.
  • the integrated magnetic component 3 is configured by winding a DC winding 3c and a plurality of coupling windings 3a and 3b around one magnetic material.
  • an example of the load 7 is composed of a motor built in a blower, a compressor, or an air conditioner (these are referred to as actuators), an inverter for driving these actuators, and the like.
  • FIG. 2 shows a configuration example of the integrated magnetic component 3.
  • the integrated magnetic component 3 is mainly composed of a core and windings, and particularly for windings, it is composed of a DC winding 3c and a plurality of coupling windings 3a and 3b connected in series.
  • a shape having a tripod such as an EE type or an EI type is used.
  • FIG. 2 shows an example of the EE type, but the present invention is not limited to this.
  • a coupling reactor can be formed by winding the coupling windings 3a and 3b around the side legs of each winding so as to cancel each other's DC magnetic flux.
  • the DC winding 3c can form a DC reactor by winding the coupling windings 3a and 3b around the central leg of the core in a direction in which the magnetic fluxes of the coupling windings 3a and 3b are strengthened.
  • the integrated magnetic component 3 has self-inductance, mutual inductance, and leakage inductance, and it is possible to configure a compact, highly efficient, and highly boosted system by devising a method of energizing the winding. ..
  • One end of the DC winding 3c is connected to the AC power supply 1, and the other end is connected to the coupling winding side.
  • Each end on the other side of the coupling winding side is connected to each intermediate connection point between the switching elements 4c and 4d (diodes 5c and 5d) and the switching elements 4e and 4f (diodes 5e and 5f). That is, the magnetic flux generated by the current flowing through the DC winding and the coupling winding merges in the same direction.
  • the switching elements constituting the converter 40 are formally described as follows. That is, the switching element 4a and the diode 5a connected in antiparallel to the switching element 4a are used as the first upper arm element.
  • the switching element 4b and the diode 5b connected in antiparallel to the switching element 4b are used as the first lower arm element.
  • the switching element 4c and the diode 5c connected in antiparallel to the switching element 4c are used as the second upper arm element.
  • the switching element 4d and the diode 5d connected in antiparallel to the switching element 4d are used as the second lower arm element.
  • the switching element 4e and the diode 5e connected in antiparallel to the switching element 4e are used as the third upper arm element.
  • the switching element 4f and the diode 5f connected in antiparallel to the switching element 4f are used as the third lower arm element.
  • FIG. 1 illustrates the use of a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effective Transistor: MOSFET) for each of the switching elements used for the first to third upper and lower arms.
  • MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor
  • a MOSFET is a switching element capable of passing a current in both directions between a drain and a source. Any switching element may be used as long as it is a switching element capable of bidirectionally flowing a current between the first terminal corresponding to the drain and the second terminal corresponding to the source, that is, a bidirectional switching element.
  • antiparallel means that the first terminal corresponding to the drain of the MOSFET and the cathode of the diode are connected, and the second terminal corresponding to the source of the MOSFET and the anode of the diode are connected.
  • diode a parasitic diode that the MOSFET itself has inside may be used. Parasitic diodes are also called body diodes.
  • At least one of the switching elements used for the first to third upper and lower arms is not limited to the MOSFET formed of the silicon-based material, and is made of a wide bandgap semiconductor such as silicon carbide, gallium nitride-based material, or diamond. It may be a formed MOSFET.
  • wide bandgap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide bandgap semiconductor for at least one of the switching elements used for the first to third upper and lower arms, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor incorporating the switching element.
  • the module can be miniaturized.
  • the first upper arm element in the first leg, the second upper arm element in the second leg, and the third upper arm element side in the third leg are connected to the DC bus on the high potential side.
  • One end of the smoothing capacitor 6 is connected to the DC bus on the high potential side.
  • the first lower arm element in the first leg, the second lower arm element in the second leg, and the third lower arm element side in the third leg are connected to the DC bus on the low potential side. ..
  • the other end of the smoothing capacitor 6 is connected to the DC bus on the low potential side.
  • the output of the bridge circuit composed of the above three legs is applied to both ends of the smoothing capacitor 6.
  • the smoothing capacitor 6 smoothes the output voltage of the bridge circuit.
  • the smoothing capacitor 6 is connected to the DC bus on the high potential side and the low potential side.
  • the voltage smoothed by the smoothing capacitor 6 is called "bus voltage".
  • the bus voltage may be referred to as a "second voltage” or a "DC voltage”.
  • the bus voltage is also the voltage applied to the load 7.
  • the current sensor 2 detects the alternating current flowing between the alternating current power supply 1 and the converter 40 (bridge circuit), and outputs the alternating current to the current detection unit 41. Then, the current detection unit 41 outputs the detected value Is of the alternating current to the control unit 11.
  • An example of the current sensor 2 is a current transformer (CT).
  • CT current transformer
  • the AC current flowing between the AC power supply 1 and the bridge circuit is appropriately referred to as "power supply current”.
  • the current detection unit 41 detects the current of the AC power supply 1 or the current correlated with the current of the AC power supply 1.
  • the voltage detection unit 31 detects the bus voltage and outputs the detection value Vdc of the bus voltage to the control unit 11.
  • the voltage detection unit 31 detects the voltage of DC power or the voltage correlated with the voltage of the DC power.
  • the control unit 11 controls the control signals S1 to S6 for controlling each switching element constituting the converter 40 (bridge circuit) based on the detection value Is of the current detection unit 41, the detection value Vdc of the voltage detection unit 31, and the like. To generate.
  • a means for detecting the power supply voltage may be provided depending on the type of converter control (control related to AC / DC conversion).
  • the control signal S1 is a control signal for controlling the switching element 4a.
  • the control signal S2 is a control signal for controlling the switching element 4b
  • the control signal S3 is a control signal for controlling the switching element 4c
  • the control signal S4 controls the switching element 4d.
  • the control signal S5 is a control signal for controlling the switching element 4e
  • the control signal S6 is a control signal for controlling the switching element 4f.
  • the control signals S1 to S6 generated by the control unit 11 are output as drive signals S11 to S16 of each switching element via the gate drive unit 51.
  • an inverter motor or the like may be connected to the load 7.
  • An example is shown in FIG. In FIG. 3, based on the power conversion device 101 of FIG. 1, an inverter 500a (composed of switching elements 8a to 8f which are semiconductor switches and diodes 9a to 9f connected in antiparallel to each switching element) and a motor. It is a motor drive device that connects 500b and converts the DC power output from the power conversion device 101 into AC power to drive the motor 500b.
  • the control signals S21 to S26 of the inverter 500a (AC / DC conversion unit) generated by the control unit 11 are output as drive signals S31 to S36 of each switching element via the gate drive unit 52.
  • the control signal S21 is a control signal for controlling the switching element 8a.
  • control signal S22 is a control signal for controlling the switching element 8b
  • control signal S23 is a control signal for controlling the switching element 8c
  • control signal S24 controls the switching element 8d
  • control signal S25 is a control signal for controlling the switching element 8e
  • control signal S26 is a control signal for controlling the switching element 8f.
  • the control signals S21 to S26 generated by the control unit 11 are output as drive signals S31 to S36 of each switching element via the gate drive unit 52.
  • a motor 500b is connected to the output side of the inverter 500a.
  • the inverter 500a drives the motor 500b by inputting DC power output from the power conversion device 101, converting it into AC power, and supplying it to the motor 500b.
  • the motor 500b it can be applied to products such as a blower, a compressor and an air conditioner.
  • FIG. 4 shows an example of the loss characteristic of the diode and the loss characteristic when the switching element is turned on.
  • the diode loss is larger than the switching element loss in the A region where the current is smaller than the current value I0.
  • the operation mode of the power converter 101 is a load supply mode for supplying a power supply current to a load, a power supply short circuit mode for storing energy in a reactor by short-circuiting the power supply, and utilizing the fact that the integrated magnetic component 3 has three terminals. It can be divided into blend modes that combine the above modes. By combining these modes and selecting and operating the operation mode according to the load conditions, it is possible to configure a compact, highly efficient, and highly boosted system.
  • 5 to 11 show the current flow of the switching element of the power conversion device 101 of the first embodiment shown in FIG.
  • FIG. 5 shows a current path when the AC input voltage of the circuit of the power conversion device 101 of the first embodiment shown in FIG. 1 is the negative electrode (dotted line arrow in the figure).
  • the current from the AC power supply 1 enters the integrated magnetic component 3, passes through the DC winding 3c, and is output from the coupling windings 3a and 3b.
  • the switching elements 4c and 4e are turned on, the flow is divided into the switching elements 4c and 4e, enters the smoothing capacitor 6, and is supplied to the load 7. Further, the switching element 4b on the side returning to the power supply is also turned on to return to the AC power supply 1. The other switching elements are turned off.
  • V1e Vin-Vout-2 ⁇ Vsd (Equation 1)
  • V2e Vin-Vout-2 ⁇ Vsd (Equation 2)
  • the three elements of the switching element are in the reverse conduction mode, and especially in the A region (low current region) of FIG. 4, the flow of each switching element is performed with less voltage drop than the diodes 5b, 5c, and 5e, so that it is in the conduction path. Loss can be reduced and high-efficiency operation is possible. In other words, if the on-voltages (forward voltage) of the diodes 5b, 5c, and 5e are Vf, Vsd is smaller than Vf, so the power loss of each element determined by the product of the current and voltage is each switching. It can be made smaller by passing through the element.
  • V1e Vin-Vout-2 x Vf (Equation 3)
  • V2e Vin-Vout-2 x Vf (Equation 4)
  • the on-voltage of the diodes 5b, 5c, and 5e can be lower than the on-voltage of the switching elements 4b, 4c, and 4e, and the flow of each diode is higher than that of the switching element.
  • the loss in the conduction path can be reduced and high-efficiency operation becomes possible because the operation can be performed with less voltage drop.
  • Vsd and Vf of the switching elements 4b, 4c, and 4e Vf is smaller than Vsd, so the power of each element determined by the product of the current and voltage. The loss can be reduced by passing through each diode.
  • FIGS. 7 to 8 show a power supply short-circuit mode in which the power supply is short-circuited to store energy in the reactor.
  • the switching elements 4d and 4f and 4b are turned on to pass through the switching elements 4d and 4f, and then the switching element 4b is connected from the low voltage side of the DC bus. It returns to the AC power supply 1 through. The other switching elements are turned off.
  • V1e Vin-Vds-Vsd (Equation 5)
  • V2e Vin-Vds-Vsd (Equation 6)
  • switching element 4b is in the reverse conduction mode, and can be made lower than the on-voltage of the diode especially in the A region (low current region) of FIG. 4, so that the loss in the conduction path is small. It is possible and highly efficient operation is possible. This is also based on the comparison of the power loss of each element as described above.
  • the switching elements 4d and 4f are turned on to pass through the switching elements 4d and 4f, and then the alternating current is passed through the diode 5b from the low voltage side of the DC bus. Return to power supply 1.
  • the other switching elements are turned off.
  • V1e Vin-Vout-Vds-Vf
  • V2e Vin-Vout-Vds-Vf
  • the diode 5b can be made lower than the on-voltage (source-drain voltage) of the switching element 4b, so that the loss in the conduction path can be reduced and high-efficiency operation can be performed. It is possible. This is also due to the reason for comparing the power loss of each element described above.
  • the blend mode utilizes the fact that the integrated magnetic component 3 has three terminals, and forms a power short-circuit mode on one side of the coupling winding by combining on / off of each switch element, and sets a load supply mode on the other side. This is the operation mode to be formed.
  • FIG. 9 shows an example of a current path when this mode is executed.
  • a power short-circuit mode is formed in the current path output from the coupling winding 3a, and a load supply mode is formed in the current path output from the coupling winding 3b.
  • the load supply mode may be formed in the current path output from the coupling winding 3a, and the power supply short-circuit mode may be formed in the current path output from the coupling winding 3b.
  • the switching element 4e is turned on so that the current flows into the smoothing capacitor 6 and is supplied to the load 7. Further, the switching element 4b on the side returning to the power supply is also turned on to return to the AC power supply 1. The other switching elements are turned off.
  • the voltage between the DC winding 3c and the coupling winding 3a is V1e (between A and C in FIG. 1), and the voltage between the DC winding 3c and the coupling winding 3b is V2e (A- in FIG. 1).
  • the on-voltage of the switching element 4b source-drain voltage
  • the on-voltage of the switching element 4d drain-source voltage
  • the on-voltage of 4e source-drain voltage
  • the voltages of (Equation 8) and (Equation 9) are applied to V1e and V2e.
  • V1e Vin-Vds-Vsd (Equation 9)
  • V2e Vin-2 ⁇ Vsd (Equation 10)
  • the two elements (switching elements 4b and 4e) of the switching element are in the reverse conduction mode, and in particular, in the region A (low current region) of FIG. 4, the voltage can be lower than the on-voltage of the diode, so that the voltage is within the conduction path. Loss can be reduced and high-efficiency operation is possible. That is, if the on-voltage (forward voltage) of the diode 5e is Vf, the on-voltage Vsd of the switching elements 4b and 4e is smaller than Vf, so that the power loss of each element determined by the product of the current and voltage is It can be made smaller by passing through each switching element.
  • the switching element 4d is turned on to pass through the switching element 4d and then return to the AC power supply 1 from the low voltage side of the DC bus via the diode 5b. Further, after being output from the coupling winding 3b, by turning on the switching element 4e, after passing through the switching element 4e, it returns to the AC power supply 1 from the low voltage side of the DC bus via the diode 5b.
  • the diode 5b can be made lower than the on voltage (source-drain voltage) of the switching element 4b, so that the loss in the conduction path can be reduced and high-efficiency operation can be performed. It is possible. This is also for the reason mentioned above.
  • the switching element 4e may also have a lower loss if it is passed through the diode 5e side. In that case, the mode as shown in FIG. 11 (switching element 4d is turned on, 4b, 4e is turned off) may be set. The other switching elements are turned off.
  • various boost control is constructed based on the detection value Is of the current detection unit 41, the detection value Vdc of the voltage detection unit 31, and the like, and the control signal S1 for controlling each switching element.
  • ⁇ S6 may be generated.
  • the mode may be flexibly switched according to the operating conditions. For example, when the boosting operation is unnecessary, it is not necessary to use the power short-circuit mode or the blend mode, so only the load supply mode may be used. Alternatively, the blend mode does not have to be positively used under the usage conditions in which the split flow ratios of the coupling windings are substantially the same. That is, the operation mode may be appropriately switched according to the usage conditions and the specifications required by the user.
  • the reverse conduction mode of the switching element may not need to be actively used according to the load, usage environment, and required specifications even during light load operation. Therefore, the selection of the reverse conduction mode may be flexibly constructed according to the operating conditions, usage conditions, and the like.
  • the mode is switched according to the magnitude of the detection value Is detected by the current detection unit 41 and the detection value Vdc detected by the voltage detection unit 31.
  • the power supply current is used for Is, but any current that correlates with Is may be used. That is, for example, a current flowing through the DC winding, a current flowing through at least one of the coupling windings, a DC current (current flowing on the DC bus side), a current flowing through the motor winding, or the like may be used.
  • Vdc a DC voltage is used here, but any voltage that correlates with Vdc may be used. That is, the voltage detected by dividing the DC voltage, the correlation with the power supply voltage, or the like may be used instead.
  • FIG. 12 shows an example when the switching area is three areas. For example, when Is is smaller than I1, the use of the reverse conduction mode is permitted (A region in FIG. 12). In the A region, the reverse conduction mode may be used, or may not be used depending on the usage environment and required specifications.
  • Vdc when Vdc is larger than Vdc1, the use of the operation mode (power short-circuit mode or blend mode) for boosting is permitted (C region in FIG. 12).
  • the power supply short-circuit mode or the blend mode may be used, or may not be used depending on the usage environment and required specifications.
  • a DC voltage is used for Vdc, but a power supply voltage or the like that correlates with Vdc may be used.
  • FIG. 12 in the operation mode in which boosting is performed as in the C region, permission or prohibition of use of the reverse conduction mode may be switched. That is, as shown in FIG. 13, a new D region may be added.
  • the reverse conduction mode is switched between the C region and the D region.
  • the reverse conduction mode is used together in the power short circuit mode and the blend mode.
  • the power short-circuit mode and the blend mode may be switched by setting the reverse conduction mode not to be used together.
  • FIGS. 9 and 11 have been described above as typical examples, they may be applied to other switching patterns such as switching between FIGS. 9 and 10 and switching in a power short-circuit mode such as a combination of FIGS. 7 and 8. good.
  • the boundary between the C region and the D region is the same as the boundary between the A region and the B region, but there is no problem even if the boundary is different (I2 in FIG. 14) as shown in FIG. 14, for example.
  • the setting of the reverse conduction mode may be switched between the C region and the D region.
  • the area according to the magnitude relationship between the two parameters Vdc and Is as shown in FIGS. 12 to 14 there is no problem in setting the area using a combination of three or more parameters.
  • the description is limited to the polarity in which the current conducts from the coupling winding 3a and 3b sides to the current sensor 2 side, but the polarity of the AC power supply is switched, that is, the coupling winding from the current sensor 2 side.
  • the current path and switching pattern as shown in FIGS. 5 to 14 change.
  • a circuit may be configured in which a part of the AC / DC converter is replaced with a diode.
  • FIG. 15 shows an example in which the upper arm of the three legs is composed of a diode and the lower arm is composed of a switching element in the AC / DC conversion unit.
  • the drive signal in the AC / DC conversion unit may be three signals.
  • the control signals S1 to S3 generated by the control unit 11 are output as drive signals S11 to S13 of each switching element via the gate drive unit 51.
  • FIG. 16 is a diagram showing an example of an air conditioner equipped with the power conversion device 101 according to the second embodiment.
  • a motor 500b is connected to the output side of the power conversion device 101, and the motor 500b is connected to the compression element 504.
  • the compressor 505 includes a motor 500b and a compression element 504.
  • the refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
  • the flow path of the refrigerant circulating inside the air conditioner is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. , It is configured to return to the compression element 504.
  • the motor drive device receives AC power from the AC power source 1 and rotates the motor 500b.
  • the compression element 504 executes a compression operation of the refrigerant by rotating the motor 500b, and the refrigerant can be circulated inside the refrigeration cycle unit 506.
  • the effects described in the first embodiment can be enjoyed in products such as compressors and air conditioners to which the motor drive device according to the second embodiment is applied.
  • this motor drive device may be used for driving the blower.
  • the refrigerator may be configured by using the refrigeration cycle unit 506.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is configured without departing from the gist of the present invention. It is also possible to omit or change a part of.

Abstract

広範囲な運転領域に対応すべく特に高負荷運転領域で通流電流を抑制しシステムを高効率化する。電力変換装置(101)は、半導体スイッチまたはダイオードで構成される上アーム及び下アームからなるレグを複数備え、交流電力を直流電力に整流するブリッジ回路(40)と、前記直流電力を平滑するコンデンサと(6)、一端が交流電源の一端に接続され、他端が前記上アームと下アームの接続点に接続される統合磁気部品(3)と、前記交流電源の電流又はこの電流と相関のある電流を検出する電流検出部(41)と、前記直流電力の電圧又はこの電圧と相関のある電圧を検出する電圧検出部(31)と、前記半導体スイッチの開閉を制御する制御部(11)とを備え、前記制御部は、前記電流検出部の検出値、前記電圧検出部の検出値、のうちのいずれか1つまたは2つに基づいて前記半導体スイッチの導通モードを切替え前記統合磁気部品に流れる電流パターンを変更する。

Description

電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器
 本発明は、交流電源から供給される交流電力を直流電力に変換して負荷に供給する電力変換装置、当該電力変換装置を備えたモータ駆動装置、当該モータ駆動装置を備えた冷凍サイクル装置、送風機、空調機器および冷凍機器に関する。
 電力変換装置においては、電流が流れる回路上の損失を抑制して高効率化を図ることが課題の1つとされる。高効率化を目的とした電力変換装置として、下記の特許文献1に記載された電力変換装置においては、4つのダイオードのうちの2つをMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)に置き換えた構成の整流器が開示されている。整流器は、2つのダイオードと、2つのMOSFETとがブリッジ接続されてブリッジ回路を構成している。
 特許文献1の電力変換装置では、ブリッジ回路に電流が流れ始めるタイミング及びブリッジ回路に流れる電流がゼロに変化するタイミングに同期させてMOSFETを制御することにより、導通損失の低減を図っている。この技術は、同期整流と呼ばれている。
特開2012-143154号公報
 上記のような背景に加え、近年はより広範囲な運転領域に対応するために、特に高負荷運転領域において通流電流を抑制し、システムの高効率化を行いたいという課題があった。
 本発明は、上記の課題を解決するために成されたものであって、整流回路の一部をMOSFETで置き換えた構成の整流器において、よりシステムとして損失を少なく、広範囲な駆動レンジに対応することができる電力変換装置を得ることを目的とする。
 本発明に係る電力変換装置は、半導体スイッチまたはダイオードで構成される上アーム及び下アームからなるレグを複数備え、交流電源の交流電力を直流電力に整流するブリッジ回路と、前記直流電力を平滑するコンデンサと一端が交流電源の一端に接続され、他端が前記上アームと下アームの接続点に接続される統合磁気部品と、前記交流電源の電流または前記交流電源の電流と相関のある電流を検出する電流検出部と、前記直流電力の電圧または前記直流電力の電圧と相関のある電圧を検出する電圧検出部と、前記半導体スイッチの開閉を制御する制御部とを備え、前記制御部は、前記電流検出部の検出値、前記電圧検出部の検出値、のうちのいずれか1つまたは2つに基づいて前記半導体スイッチの導通モードを切り替え、前記統合磁気部品に流れる電流パターンを変更することを特徴とする。
 本発明に係る電力変換装置によれば、スイッチング動作を切り替えて柔軟に制御することができるため、広範な運転範囲において、効率改善と昇圧性能向上を図ることができるという効果を奏する。
実施の形態1に係る電力変換装置の構成例 電力変換装置に用いる統合磁気部品の例 実施の形態1に係る電力変換装置の構成例(負荷側にモータ駆動部を接続する場合) 実施の形態1に係るダイオードの損失特性と、スイッチング素子のオン時の損失特性例 実施の形態1に係る電力変換装置の負荷供給モードの電流経路例(比較的電流が小さい場合の運転領域) 実施の形態1に係る電力変換装置の負荷供給モードの電流経路例(比較的電流が大きい場合の運転領域) 実施の形態1に係る電力変換装置の電源短絡モードの電流経路例(比較的電流が小さい場合の運転領域) 実施の形態1に係る電力変換装置の電源短絡モードの電流経路例(比較的電流が大きい場合の運転領域) 実施の形態1に係る電力変換装置のブレンドモードの電流経路例(比較的電流が小さい場合の運転領域) 実施の形態1に係る電力変換装置のブレンドモードの電流経路例1(比較的電流が大きい場合の運転領域) 実施の形態1に係る電力変換装置のブレンドモードの電流経路例2(比較的電流が大きい場合の運転領域) 実施の形態1に係る電力変換装置のモード切り替え領域の設定例(3領域) 実施の形態1に係る電力変換装置のモード切り替え領域の設定例(4領域) 実施の形態1に係る電力変換装置のモード切り替え領域の設定例(4領域) 実施の形態1に係る電力変換装置において、コンバータ(交流直流変換部)の一部をダイオードで構成する場合の例 実施の形態2に係る電力変換装置を空調機に適用する場合の例
 以下に添付図面を参照し、本発明の実施の形態に係る電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器および冷凍機器について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。また、以下では、電気的な接続を単に「接続」と称して説明する。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置101の構成を示す回路図である。実施の形態1に係る電力変換装置101は、単相の交流電源1から供給される交流電圧を直流電圧に変換して負荷7に供給する装置である。実施の形態1に係る電力変換装置101は、図1に示すように、統合磁気部品3と、コンバータ40(複数の半導体スイッチであるスイッチング素子4a~4fと、これらスイッチング素子に逆並列接続されたダイオード5a~5fで構成される)、平滑用のコンデンサ6、電流センサ2、電流検出部41、電圧検出部31、制御部11、を備える。また統合磁気部品3は、直流巻線3cと複数の結合巻線3a・3bとが1つの磁性体に巻回されて構成される。
 図1において、負荷7の例は、送風機、又は圧縮機、又は空気調和機に内蔵されるモータ(これらをアクチュエータと称す)とこれらのアクチュエータを駆動するインバータ等で構成される。
 図2に統合磁気部品3の構成例を示す。
 統合磁気部品3は、主にコアと巻線で構成されるが、特に巻線については直流巻線3cと、複数の結合巻線3a・3bとの直列接続で構成される。統合磁気部品3のコア形状としては、例えば、EE型もしくはEI型等の3脚を有する形状が用いられる。図2ではEE型の例を示すが、これに限るものではない。ここで結合巻線3a・3bについては、各巻線の側脚に互いに直流磁束を打ち消すように巻回すことで結合リアクトルを形成することができる。また直流巻線3cはコアの中央脚に結合巻線3a・3bの磁束を強め合う方向に巻回すことで、直流リアクトルを構成することができる。その結果として統合磁気部品3は、インダクタンスが自己インダクタンスと相互インダクタンスと漏れインダクタンスを有することとなり、巻線への通電方法の工夫により小型・高効率・高昇圧なシステムを構成することが可能となる。
 直流巻線3cの一端は、交流電源1に接続され、もう一端は結合巻線側に接続される。結合巻線側のもう片側の各一端は、スイッチング素子4c・4d(ダイオード5c・5d)と、スイッチング素子4e・4f(ダイオード5e・5f)との各中間接続点に接続される。すなわち、直流巻線と結合巻線に流れる電流により発生する磁束が互いに同方向で合流する構成としている。
 次に図1において、コンバータ40について説明する。まず、コンバータ40を構成するスイッチング素子について形式的に以下の表記とする。すなわち、スイッチング素子4aと、スイッチング素子4aに逆並列に接続されるダイオード5aを第1の上アーム素子とする。スイッチング素子4bと、スイッチング素子4bに逆並列に接続されるダイオード5bを第1の下アーム素子とする。
 スイッチング素子4cと、スイッチング素子4cに逆並列に接続されるダイオード5cを第2の上アーム素子とする。スイッチング素子4dと、スイッチング素子4dに逆並列に接続されるダイオード5dを第2の下アーム素子とする。
 スイッチング素子4eと、スイッチング素子4eに逆並列に接続されるダイオード5eを第3の上アーム素子とする。スイッチング素子4fと、スイッチング素子4fに逆並列に接続されるダイオード5fを第3の下アーム素子とする。
 図1では、第1~第3の上下アームに用いるスイッチング素子のそれぞれに金属酸化物半導体電界効果トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)の使用を例示しているが、MOSFETに限定されない。MOSFETは、ドレインとソースとの間で双方向に電流を流すことができるスイッチング素子である。ドレインに相当する第1端子とソースに相当する第2端子との間で双方向に電流を流すことができるスイッチング素子、即ち双方向スイッチング素子であれば、どのようなスイッチング素子でもよい。
 また、逆並列とは、MOSFETのドレインに相当する第1端子とダイオードのカソードとが接続され、MOSFETのソースに相当する第2端子とダイオードのアノードとが接続されることを意味する。なお、ダイオードは、MOSFET自身が内部に有する寄生ダイオードを用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。
 また、第1~第3の上下アームに用いるスイッチング素子のうちの少なくとも1つは、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されたMOSFETでもよい。
 一般的にワイドバンドギャップ半導体は、シリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、第1~第3の上下アームに用いるスイッチング素子のうちの少なくとも1つにワイドバンドギャップ半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。
 第1のレグにおける第1の上アーム素子と、第2のレグにおける第2の上アーム素子と第3のレグにおける第3の上アーム素子側は高電位側の直流母線に接続されている。そして、平滑用のコンデンサ6の一端は前記高電位側の直流母線に接続されている。第1のレグにおける第1の下アーム素子と、第2のレグにおける第2の下アーム素子と、第3のレグにおける第3の下アーム素子側は低電位側の直流母線に接続されている。そして平滑用のコンデンサ6の他端は、低電位側の直流母線に接続されている。
 上記の3つのレグより構成されるブリッジ回路の出力は、平滑用のコンデンサ6の両端に印加される。平滑用のコンデンサ6は、ブリッジ回路の出力電圧を平滑する。平滑用のコンデンサ6は、高電位側と低電位側の直流母線に接続されている。平滑用のコンデンサ6で平滑された電圧を「母線電圧」と呼ぶ。なお、母線電圧を「第2電圧」あるいは「直流電圧」と呼ぶ場合がある。母線電圧は、負荷7への印加電圧でもある。
 電流センサ2は、交流電源1とコンバータ40(ブリッジ回路)との間に流れる交流電流を検出し、電流検出部41に出力する。そして電流検出部41から交流電流の検出値Isを制御部11に出力する。電流センサ2の一例は、変流器(Current Transformer:CT)である。なお、交流電源1とブリッジ回路との間に流れる交流電流を、適宜「電源電流」と呼ぶ。尚、電流検出部41は、交流電源1の電流または交流電源1の電流と相関のある電流を検出する。
 電圧検出部31は、母線電圧を検出し、母線電圧の検出値Vdcを制御部11に出力する。尚、電圧検出部31は、直流電力の電圧または前記直流電力の電圧と相関のある電圧を検出する。
 制御部11は、電流検出部41の検出値Is、及び電圧検出部31の検出値Vdc等に基づいて、コンバータ40(ブリッジ回路)を構成する各スイッチング素子を制御するための制御信号S1~S6を生成する。ここでは明記しないが、コンバータ制御(交流直流変換に関する制御)の種類によっては、電源電圧を検出する手段を設けても良い。
 制御信号S1は、スイッチング素子4aを制御するための制御信号である。以下同様に、制御信号S2は、スイッチング素子4bを制御するための制御信号であり、制御信号S3は、スイッチング素子4cを制御するための制御信号であり、制御信号S4は、スイッチング素子4dを制御するための制御信号であり、制御信号S5は、スイッチング素子4eを制御するための制御信号であり、制御信号S6は、スイッチング素子4fを制御するための制御信号である。制御部11によって生成された制御信号S1~S6は、ゲート駆動部51を介して各スイッチング素子の駆動信号S11~S16として出力される。
 負荷7には、例えばインバータ・モータ等を接続することが考えられる。
 図3に一例を示す。図3では、図1の電力変換装置101をベースにして、インバータ500a(半導体スイッチであるスイッチング素子8a~8fと各スイッチング素子に逆並列に接続されるダイオード9a~9fで構成される)とモータ500bを接続し、電力変換装置101から出力される直流電力を交流電力に変換しモータ500bを駆動するモータ駆動装置である。
 ここで、制御部11によって生成されたインバータ500a(交流直流変換部)の制御信号S21~S26は、ゲート駆動部52を介して各スイッチング素子の駆動信号S31~S36として出力されることとなる。
 制御信号S21は、スイッチング素子8aを制御するための制御信号である。以下同様に、制御信号S22は、スイッチング素子8bを制御するための制御信号であり、制御信号S23は、スイッチング素子8cを制御するための制御信号であり、制御信号S24は、スイッチング素子8dを制御するための制御信号であり、制御信号S25は、スイッチング素子8eを制御するための制御信号であり、制御信号S26は、スイッチング素子8fを制御するための制御信号である。制御部11によって生成された制御信号S21~S26は、ゲート駆動部52を介して各スイッチング素子の駆動信号S31~S36として出力される。
 インバータ500aの出力側には、モータ500bが接続されている。インバータ500aは、電力変換装置101から出力される直流電力を入力し、交流電力に変換してモータ500bに供給することでモータ500bを駆動する。
 また、モータ500bのアプリケーションとしては、送風機、圧縮機及び空気調和機といった製品に適用することが可能である。
 次に、実施の形態1に係る電力変換装置101における要部の動作について、図面を参照して説明する。
 電力変換装置101の駆動にあたっては、スイッチング素子の特性を考慮することで、より高効率運転でき、損失が少ないことにより、負荷側で負荷が高い場合でも運転領域を広げることが可能である。
 図4には、ダイオードの損失特性と、スイッチング素子のオン時の損失特性の例を示す。図4に示すような特性を有する素子を用いる場合、電流値I0よりも電流が小さいA領域では、スイッチング素子の損失よりも、ダイオードの損失の方が大きい。この特性を利用し、電流がダイオードに流れるタイミングに合わせ、ダイオードに逆並列に接続されるスイッチング素子をオン動作させ逆導通する同期整流制御を利用すれば、装置を高効率に動作させることができる。
 電力変換装置101の運転モードは、電源電流を負荷へ供給する負荷供給モード、電源を短絡させることでリアクトルにエネルギーを蓄積する電源短絡モード、統合磁気部品3が3端子であることを利用して上記モードを組み合わせるブレンドモードに分けられる。これらモードを組み合わせて、負荷条件に応じて運転モードを選択して運転することで小型・高効率・高昇圧なシステムを構成することが可能となる。
 以下、各モードの動作について図5~図11を用いながら説明する。
 図5~図11に、図1で示された実施の形態1の電力変換装置101のスイッチング素子の電流の流れを示す。
 上記図面においては、代表として交流入力電圧が負極性の場合について説明するが、正極性の場合も同様の考え方で制御することができる。
 また図中点線を用い、交流入力電圧が負極時の場合の電流経路を示す。
 はじめに、負荷供給モードについて説明する。
 図5に、図1で示された実施の形態1の電力変換装置101の回路の交流入力電圧が負極時の電流経路を示す(図中点線矢印)。
 交流電源1からの電流は、統合磁気部品3に入り、直流巻線3cを経て結合巻線3a、3bより出力される。
 ここでスイッチング素子4c、4eをオン状態とすることで、スイッチング素子4c、4eに分流され、平滑用のコンデンサ6に入り、負荷7に供給される。
 また電源に戻る側のスイッチング素子4bに関してもオン状態とすることで、交流電源1に戻る。なお、他のスイッチング素子はオフ状態とする。
 ここで直流巻線3cと結合巻線3aとの間の電圧をV1e(図1のA-C間)、直流巻線3cと結合巻線3bとの間の電圧をV2e(図1のA-D間)、スイッチング素子4b、4c、4eのオン電圧(ソース-ドレイン間電圧)を各々Vsdとすると、V1e及びV2eには(式1)、(式2)の電圧が印加されることとなる。
V1e=Vin-Vout-2×Vsd(式1)
V2e=Vin-Vout-2×Vsd(式2)
 上記スイッチング素子の3素子は逆導通モードとなり、特に図4のA領域(低電流領域)では各スイッチング素子の通流はダイオード5b、5c、5eに比べて電圧ドロップ少なく行われるため、導通経路内における損失を少なくでき、高効率運転が可能である。
 言い換えればダイオード5b、5c、5eのオン電圧(順方向電圧)を各々Vfとすると、VfよりもVsdの方が小さくなるため、通流電流と電圧の積で定まる各素子の電力損失は各スイッチング素子を通流する方が小さくすることができる。
 一方で、図4のB領域(中高電流領域)においては、図6のようなモード(スイッチング素子4c、4e、4bをオフする)とすることで、高効率運転が可能である。なお、他のスイッチング素子はオフ状態とする。
 この場合、電流は結合巻線3a、3bより出力された後、各々ダイオード5c、5eを介して平滑用のコンデンサ6に入り、負荷7に供給される。その後、電源に戻る側のダイオード5bを介して交流電源1に戻る。
 ここでダイオード5b、5c、5eのオン電圧(順方向電圧)を各々Vfとすると、V1e及びV2eには(式3)、(式4)の電圧が印加されることとなる。
V1e=Vin-Vout-2×Vf(式3)
V2e=Vin-Vout-2×Vf(式4)
 図4のB領域(中高電流領域)では、ダイオード5b、5c、5eのオン電圧はスイッチング素子4b、4c、4eのオン電圧よりも低くすることができ、各ダイオードの通流はスイッチング素子に比べて電圧ドロップ少なく動作させることができるため、結果として導通経路内における損失を少なくでき高効率運転が可能となる。
 言い換えればスイッチング素子4b、4c、4eのオン電圧(ソース-ドレイン間電圧)VsdとVfを比較すると、VsdよりもVfの方が小さくなるため、通流電流と電圧の積で定まる各素子の電力損失は各ダイオードを通流する方が小さくすることができる。
 次に、電源短絡モードについて説明する。
 また図7~図8に、電源を短絡させてリアクトルにエネルギーを蓄積する電源短絡モードを示す。
 図7の場合、結合巻線3a、3bより出力された後、スイッチング素子4d、4f、4bをオンすることで、スイッチング素子4d、4fを通った後、直流母線の低圧側からスイッチング素子4bを介して交流電源1に戻る。なお、他のスイッチング素子はオフ状態とする。
 ここで直流巻線3cと結合巻線3aとの間の電圧をV1e(図1のA-C間)、直流巻線3cと結合巻線3bとの間の電圧をV2e(図1のA-D間)、スイッチング素子4bのオン電圧(ソース-ドレイン間電圧)をVsd、スイッチング素子4c、4eのオン電圧(ドレイン-ソース間電圧)を各々Vdsとすると、V1e及びV2eには(式5)、(式6)の電圧が印加されることとなる。
V1e=Vin-Vds-Vsd(式5)
V2e=Vin-Vds-Vsd(式6)
 上記スイッチング素子の1素子(スイッチング素子4b)は逆導通モードとなり、特に図4のA領域(低電流領域)においてはダイオードのオン電圧よりも低くすることができるため、導通経路内における損失を少なくでき、高効率運転が可能である。これも上述したように各素子の電力損失の比較によるものである。
 一方、図4のB領域(中高電流領域)においては、図8のようなモード(スイッチング素子4d、4fはオンし、4bはオフする)とすることで、高効率運転が可能である。
 この場合、電流は結合巻線3a、3bより出力された後、スイッチング素子4d、4fをオンすることで、スイッチング素子4d、4fを通った後、直流母線の低圧側からダイオード5bを介して交流電源1に戻る。なお、他のスイッチング素子はオフ状態とする。
 ここで直流巻線3cと結合巻線3aとの間の電圧をV1e(図1のA-C間)、直流巻線3cと結合巻線3bとの間の電圧をV2e(図1のA-D間)、ダイオード5bのオン電圧(順方向電圧)をVfとすると、V1e及びV2eには(式7)、(式8)の電圧が印加されることとなる。
V1e=Vin-Vout-Vds-Vf(式7)
V2e=Vin-Vout-Vds-Vf(式8)
 図4のB領域(中高電流領域)において、ダイオード5bはスイッチング素子4bのオン電圧(ソース-ドレイン間電圧)よりも低くすることができるため、導通経路内における損失を少なくでき、高効率運転が可能である。これも上述した各素子の電力損失の比較の理由によるものである。
 最後に、ブレンドモードについて説明する。
 ブレンドモードは、統合磁気部品3が3端子であることを利用し、各スイッチ素子のオン・オフの組み合わせにより結合巻線の片側にて電源短絡モードを形成し、もう片側にて負荷供給モードを形成する動作モードである。
 図9に、本モード実施時の電流経路例を示す。
 結合巻線3aより出力される電流経路にて電源短絡モードを形成し、結合巻線3bより出力される電流経路にて負荷供給モードを形成する。本例にて一例を示すが、結合巻線3aより出力される電流経路にて負荷供給モードを形成し、結合巻線3bより出力される電流経路にて電源短絡モードを形成しても良い。
 図9の場合、電流が結合巻線3aより出力された後、スイッチング素子4d、4bをオンすることで、スイッチング素子4dを通った後、直流母線の低圧側からスイッチング素子4bを介して交流電源1に戻る。
 一方、電流が結合巻線3bより出力された後、スイッチング素子4eをオン状態とすることで平滑用のコンデンサ6に流入し、負荷7に供給される。
 また電源に戻る側のスイッチング素子4bに関してもオン状態とすることで、交流電源1に戻る。なお、他のスイッチング素子はオフ状態とする。
 ここで直流巻線3cと結合巻線3aとの間の電圧をV1e(図1のA-C間)、直流巻線3cと結合巻線3bとの間の電圧をV2e(図1のA-D間)、スイッチング素子4bのオン電圧(ソース-ドレイン間電圧)をVsd、スイッチング素子4dのオン電圧(ドレイン-ソース間電圧)をVds、4eのオン電圧(ソース-ドレイン間電圧)をVsdとすると、V1e及びV2eには(式8)、(式9)の電圧が印加されることとなる。
V1e=Vin-Vds-Vsd(式9)
V2e=Vin-2×Vsd(式10)
 ここで上記スイッチング素子の2素子(スイッチング素子4b、4e)は逆導通モードとなり、特に図4のA領域(低電流領域)においてはダイオードのオン電圧よりも低くすることができるため、導通経路内における損失を少なくでき、高効率運転が可能である。
 すなわちダイオード5eのオン電圧(順方向電圧)をVfとすると、Vfよりもスイッチング素子4b、4eのオン電圧Vsdの方が小さくなるため、通流電流と電圧の積で定まる各素子の電力損失は各スイッチング素子を通流する方が小さくすることができる。
 一方、図4のB領域(中高電流領域)においては、図10のようなモード(スイッチング素子4d、4eはオンし、4bはオフする)とすることで、高効率運転が可能である。なお、他のスイッチング素子はオフ状態とする。
 この場合、電流が結合巻線3aより出力された後、スイッチング素子4dをオンすることで、スイッチング素子4dを通った後、直流母線の低圧側からダイオード5bを介して交流電源1に戻る。
 また結合巻線3bより出力された後、スイッチング素子4eをオンすることで、スイッチング素子4eを通った後、直流母線の低圧側からダイオード5bを介して交流電源1に戻る。
 ここでスイッチング素子4dのオン電圧(ドレイン-ソース電圧)をVds、スイッチング素子4eのオン電圧(ソース-ドレイン間電圧)をVsd、ダイオード5bのオン電圧(順方向電圧)をVfとすると、V1e及びV2eには(式11)、(式12)の電圧が印加されることとなる。
V1e=Vin-Vout-Vds-Vf(式11)
V2e=Vin-Vout-Vsd-Vf(式12)
 図4のB領域(中高電流領域)においてはダイオード5bはスイッチング素子4bのオン電圧(ソース-ドレイン間電圧)よりも低くすることができるため、導通経路内における損失を少なくでき、高効率運転が可能である。これも上述した理由の通りである。
 また結合巻線3a、3bの分流比によっては、スイッチング素子4eについても、ダイオード5e側に通流した方が、低損失な場合がある。その場合は図11のようなモード(スイッチング素子4dはオン、4b、4eはオフする)にすることで対応すれば良い。なお、他のスイッチング素子はオフ状態とする。
 以上、3モードについての動作について示したが、3モードを組み合わせてスイッチングパターンを作成することにより、各巻線にかかる電圧が可変でき、磁束を可変できるため、リアクトルの小型化と併せて、負荷条件に応じた所望の効率・昇圧性能を得ることが可能となる。
 また、これらの3モードを用いて、電流検出部41の検出値Is、電圧検出部31の検出値Vdc等に基づいて、各種昇圧制御を構築し、各スイッチング素子を制御するための制御信号S1~S6を生成すれば良い。
 モードは、運転条件に応じて柔軟に切り替えて良い。
 例えば昇圧動作不要な場合は、電源短絡モードやブレンドモードは使用する必要がないため、負荷供給モードのみ使用しても良い。あるいは、結合巻線の分流比を略同一とする使用条件の場合には、ブレンドモードを積極的に使わなくても良い。
 すなわち運転モードは、使用条件に応じ、またユーザの要求仕様に応じて、適宜切り替えられる仕様を構築して行えば良い。
 また、スイッチング素子の逆導通モードは、軽負荷運転時であっても、負荷や使用環境、要求仕様に応じて積極的に使用する必要の無い場合もある。よって、逆導通モードの選択も、運転条件や使用条件等により、柔軟に構築すれば良い。
 図12~図14に切り替えの一例を示す。
 電流検出部41により検出される検出値Isや電圧検出部31により検出される検出値Vdcの大きさにより、モードを切り替える。
 ここではIsに電源電流を用いているが、Isと相関がある電流であれば良い。
 すなわち例えば、直流巻線に流れる電流や結合巻線の少なくとも1方に流れる電流、あるいは直流電流(直流母線側に流れる電流)やモータ巻線に流れる電流等を用いても良い。
 またVdcについても同様に、ここでは直流電圧を用いているが、Vdcと相関のある電圧であれば良い。すなわち、直流電圧を分圧して検出した電圧や、電源電圧との相関等を用いて代替して用いても良い。
 図12に、切り替え領域が3領域の場合の一例を示す。
 例えば、IsがI1より小さい場合は、逆導通モードの使用を許可する(図12のA領域)。A領域では、逆導通モードを使用しても良いし、使用環境や要求仕様によっては使用しなくても良い。
 またIsがI1より大きい場合は、逆導通モードの使用を禁止する(図12のB領域)。
 例えば、VdcがVdc1より大きい場合は、昇圧を行う動作モード(電源短絡モードやブレンドモード)の使用を許可する(図12のC領域)。C領域においては、電源短絡モードやブレンドモードを使用しても良いし、使用環境や要求仕様によっては使用しなくても良い。
 ここではVdcに直流電圧を用いているが、Vdcと相関がある電源電圧等を用いても良い。
 また図12ではC領域のように昇圧を行う動作モードにおいて、逆導通モードの使用の許可および禁止を切り替えても良い。すなわち、図13のように、新たなD領域を追加しても良い。
 D領域を追加する場合は、C領域とD領域で逆導通モードを切り替える。
 例えばC領域においては、電源短絡モードとブレンドモードにおいて、逆導通モードを併用する。一方D領域においては、電源短絡モードとブレンドモードにおいて、逆導通モードを併用しない設定とする等で切り替えれば良い。
 C領域およびD領域の相違点に関して、類似したスイッチングパターンである図9、図11を例にして説明する。
 C領域では図9のようなスイッチング素子を導通させる動作を行い、D領域では図11に示すように、ブレンドモード時においてダイオードを導通させるようなスイッチングパターンとする。これにより、A領域およびB領域と同様にスイッチング素子オン電圧(ドレイン-ソース電圧)VdsやVsd、ダイオードのオン電圧(順方向電圧)Vfの大小関係に応じた広範囲な高効率運転を実現することが可能である。
 前述では図9および図11を代表例として説明したが、例えば図9と図10の切り替えや、図7および図8の組み合わせといった電源短絡モードにおける切り替えのような他のスイッチングパターンに適用しても良い。また図13ではC領域およびD領域の境界をA領域およびB領域の境界と同一としていたが、例えば図14のように、異なる境界(図14ではI2)としても問題ない。
 この場合も、上述したように、C領域とD領域で逆導通モードの設定を切り替える等行えば良い。
 また図12~図14のようにVdcおよびIsの2パラメータの大小関係に応じて領域設定を行う以外にも、3つ以上のパラメータを複合的に用いた領域設定を行っても問題ない。
 またここまでの説明においては、結合巻線3a、3b側から電流センサ2側へ電流が導通する極性に限定した記載としたが、交流電源の極性の切り替わり、すなわち電流センサ2側から結合巻線3a、3b側へ電流が流れる場合には、図5~図14に示したような電流経路およびスイッチングパターンが変わる。ただ交流電源の極性が切り替わった場合においても、図5~図14で示したようなスイッチング動作切り替え、すなわちスイッチング素子への導通もしくはダイオードへの導通の切り替えによる高効率運転を実現可能であるスイッチングパターンであれば問題ない。
 このようにすることで、様々なアプリケーションに対して対応することができる。
 また、要求仕様に応じてスイッチング素子をダイオードに変更したい場合もある。その場合は、交流直流変換部の一部をダイオードに置き換えた回路で構成しても良い。
 例えば、図15に交流直流変換部において、3つのレグのうちの上アームをダイオードで構成し、下アームをスイッチング素子で構成した場合の例を示す。
 この場合は、スイッチング素子は3素子となるため、交流直流変換部における駆動信号は3信号で良い。
 ここで、制御部11によって生成された制御信号S1~S3は、ゲート駆動部51を介して各スイッチング素子の駆動信号S11~S13として出力されることとなる。
 スイッチング素子を各部位に設けなくても、ダイオードの存在により上記3モードの導通経路は確保できる。
 よって、レグの上アームの各スイッチング素子で実施していた逆導通モードを省略することで、すなわちこれらスイッチの駆動信号をオフ設定等にすることで、大幅な制御変更を行うことなく、比較的安価なシステムを構築することが可能である。
実施の形態2.
 図16は、実施の形態2に係る電力変換装置101を搭載した空気調和機の例を示す図である。
 電力変換装置101の出力側にはモータ500bが接続されており、モータ500bは、圧縮要素504に連結されている。圧縮機505は、モータ500bと圧縮要素504とを備える。冷凍サイクル部506は、四方弁506a、室内熱交換器506b、膨張弁506c及び室外熱交換器506dを含む態様で構成されている。
 空気調和機の内部を循環する冷媒の流路は、圧縮要素504から、四方弁506a、室内熱交換器506b、膨張弁506c、室外熱交換器506dを経由し、再び四方弁506aを経由して、圧縮要素504へ戻る態様で構成されている。モータ駆動装置は、交流電源1より交流電力の供給を受け、モータ500bを回転させる。圧縮要素504は、モータ500bが回転することによって、冷媒の圧縮動作を実行し、冷媒を冷凍サイクル部506の内部で循環させることができる。
 これにより、実施の形態2に係るモータ駆動装置を適用した、圧縮機及び空気調和機といった製品において、実施の形態1で説明した効果を享受することができる。また、このモータ駆動装置を送風機の駆動用に用いても良い。また上記冷凍サイクル部506を用いて冷凍機を構成してもよい。
 また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 交流電源、2 電流センサ、3 統合磁気部品、3a,3b 結合巻線、3c 直流巻線、4a~4f スイッチング素子、5a~5f ダイオード(内蔵ダイオード)、6 コンデンサ、7 負荷、8a~8f スイッチング素子、9a~9f ダイオード(直流交流変換側)、11 制御部、31 電圧検出部、40 コンバータ(交流直流変換部)、41 電流検出部、51,52 ゲート駆動部、101 電力変換装置、500a インバータ(直流交流変換部)、500b モータ、504 圧縮要素、505 圧縮機、506 冷凍サイクル部、506a 四方弁、506b 室内熱交換器、506c 膨張弁、506d 室外熱交換器。

Claims (18)

  1. 半導体スイッチまたはダイオードで構成される上アーム及び下アームからなるレグを複数備え、交流電源の交流電力を直流電力に整流するブリッジ回路と、
    前記直流電力を平滑するコンデンサと
    一端が交流電源の一端に接続され、他端が前記上アームと下アームの接続点に接続される統合磁気部品と、
    前記交流電源の電流または前記交流電源の電流と相関のある電流を検出する電流検出部と、
    前記直流電力の電圧または前記直流電力の電圧と相関のある電圧を検出する電圧検出部と、
    前記半導体スイッチの開閉を制御する制御部とを備え、
    前記制御部は、前記電流検出部の検出値、前記電圧検出部の検出値、のうちのいずれか1つまたは2つに基づいて前記半導体スイッチの導通モードを切り替え、前記統合磁気部品に流れる電流パターンを変更することを特徴とする電力変換装置。
  2. 前記統合磁気部品の巻線が直流巻線と結合巻線に分かれ、前記交流電源と接続される一端が直流巻線側であり、前記上アームと下アームの接続点に接続される側が結合巻線側であり、前記結合巻線側は少なくとも二端子より構成されることを特徴とする請求項1に記載の電力変換装置。
  3. 前記制御部は複数の前記半導体スイッチを切替えることにより複数種類の電力変換モードの制御を行い、
    前記電力変換モードとして、直流に変換した後の電流を負荷に供給させる負荷供給モードと、前記ブリッジ回路内で前記交流電源を短絡させ前記統合磁気部品に電力を蓄積する電源短絡モードと、直流に変換した後の電流を負荷に供給させる動作と、前記ブリッジ回路内で前記交流電源を短絡させ前記統合磁気部品に電力を蓄積する動作を並行して行うブレンドモードのうち、いずれか1つ、またはいずれか2つ、またはすべてを行うことを特徴とする、請求項1または2に記載の電力変換装置。
  4. 前記制御部は前記電流検出部の検出値、または前記電圧検出部の検出値のうちのいずれか1つまたは2つに基づいて前記電力変換モードを切り替えることを特徴とする請求項3に記載の電力変換装置。
  5. 前記半導体スイッチに逆並列にダイオードが接続されていることを特徴とする請求項1~4のうちのいずれか1つに記載の電力変換装置。
  6. 前記導通モードが、半導体スイッチの順方向に電流が流れる順方向モードと、逆方向に電流が流れる逆方向モードであることを特徴とする請求項1~5のうちのいずれか1つに記載の電力変換装置。
  7. 前記半導体スイッチごとに個別に前記導通モードを切り替えることを特徴とする請求項1~6のうちのいずれか1つに記載の電力変換装置。
  8. 前記導通モードの切り替えを電流で行うことを特徴とする請求項1~7のうちのいずれか1つに記載の電力変換装置。
  9. 前記電流は、電源電流または直流巻線に流れる電流または結合巻線の少なくとも1方に流れる電流またはそれと等価である電流であることを特徴とする請求項1~8のうちのいずれか1つに記載の電力変換装置。
  10. 前記電流が所定値以上の場合に、前記導通モードが逆方向モードとすることを特徴とする請求項1~9のうちのいずれか1つに記載の電力変換装置。
  11. 前記半導体スイッチを直列に構成したものを含むレグを少なくとも1つ含むことを特徴とする請求項1~10のうちのいずれか1つに記載の電力変換装置。
  12. 前記半導体スイッチとダイオードを直列に接続して構成したレグを少なくとも1つ含むことを特徴とする請求項1~11のうちのいずれか1つに記載の電力変換装置。
  13. 前記半導体スイッチまたはダイオードにワイドバンドギャップ半導体を用いることを特徴とする請求項1~12のうちのいずれか1つに記載の電力変換装置。
  14. 請求項1~13のうちのいずれか1つに記載の電力変換装置を具備することを特徴とするモータ駆動装置。
  15. 請求項14に記載のモータ駆動装置を具備することを特徴とする冷凍サイクル装置。
  16. 請求項14に記載のモータ駆動装置を具備することを特徴とする送風機。
  17. 請求項14に記載のモータ駆動装置を具備することを特徴とする空調機器。
  18. 請求項14に記載のモータ駆動装置を具備することを特徴とする冷凍機器。
PCT/JP2019/022780 2019-03-11 2019-06-07 電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器 WO2020183743A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-043803 2019-03-11
JP2019043803A JP7086016B2 (ja) 2019-03-11 2019-03-11 電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器

Publications (1)

Publication Number Publication Date
WO2020183743A1 true WO2020183743A1 (ja) 2020-09-17

Family

ID=72427367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022780 WO2020183743A1 (ja) 2019-03-11 2019-06-07 電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器

Country Status (2)

Country Link
JP (1) JP7086016B2 (ja)
WO (1) WO2020183743A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116437A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 電力変換装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210331B2 (ja) * 2010-01-06 2013-06-12 力銘科技股▲分▼有限公司 インタリーブ・ブリッジレス・パワー・ファクター修正器およびその制御方法
JP2015056940A (ja) * 2013-09-11 2015-03-23 株式会社デンソー 多相電力変換装置のフィルタ回路および多相電力変換装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116437A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP7086016B2 (ja) 2022-06-17
JP2020150586A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
JP4984751B2 (ja) 空調機のコンバータ装置
USRE39060E1 (en) Power supply device and air conditioner using the same
JP5855025B2 (ja) 逆流防止手段、電力変換装置及び冷凍空気調和装置
US9431915B2 (en) Power conversion apparatus and refrigeration air-conditioning apparatus
US9742267B2 (en) Power conversion apparatus and refrigeration air-conditioning apparatus
KR20130132992A (ko) 전력 변환 장치, 모터 구동 장치 및 냉동 공기 조화 장치
JP4509936B2 (ja) 三相電力変換装置および電力変換装置
JP2018007327A (ja) 直流電源装置および空気調和機
JP5031004B2 (ja) インバータ駆動装置及び冷凍空気調和装置
JP7179222B2 (ja) 電力変換装置、冷凍サイクル装置及び空気調和機
JP7086016B2 (ja) 電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器
JP6207607B2 (ja) 電力変換装置及び冷凍空気調和装置
JP6231400B2 (ja) 交流直流変換装置及びそれを備えた電気機器
JP4874372B2 (ja) インバータ駆動装置及び冷凍空気調和装置
JP7175364B2 (ja) 直流電源装置および空気調和機
WO2021171562A1 (ja) 電動機駆動装置及び空気調和機
WO2021149157A1 (ja) 電力変換装置および冷凍サイクル適用機器
US20160049783A1 (en) Backflow preventing device, power conversion device, and refrigeration air-conditioning apparatus
JP2006136113A (ja) 電源装置
JP2013143796A (ja) インバータ制御回路およびそれを用いた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918709

Country of ref document: EP

Kind code of ref document: A1