WO2020183694A1 - Hermetic-type compressor and manufacturing method therefor - Google Patents

Hermetic-type compressor and manufacturing method therefor Download PDF

Info

Publication number
WO2020183694A1
WO2020183694A1 PCT/JP2019/010515 JP2019010515W WO2020183694A1 WO 2020183694 A1 WO2020183694 A1 WO 2020183694A1 JP 2019010515 W JP2019010515 W JP 2019010515W WO 2020183694 A1 WO2020183694 A1 WO 2020183694A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
receiving plate
rivet hole
discharge
discharge valve
Prior art date
Application number
PCT/JP2019/010515
Other languages
French (fr)
Japanese (ja)
Inventor
賢太郎 大野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/010515 priority Critical patent/WO2020183694A1/en
Priority to JP2021504747A priority patent/JPWO2020183694A1/en
Publication of WO2020183694A1 publication Critical patent/WO2020183694A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/16Check valves with flexible valve members with tongue-shaped laminae

Definitions

  • the present invention relates to a closed compressor having an electric motor portion and a compression mechanism portion in a closed container, and a method for manufacturing the same.
  • an electric motor unit having a stator and a rotor and a compression mechanism unit connected to the electric motor unit via a crankshaft and compressing a refrigerant by rotation of the crankshaft are inside the closed container. It is arranged and configured in. Then, the compression mechanism is driven by the rotation of the crankshaft by the electric motor, and the low-pressure refrigerant gas sucked from the suction pipe is compressed by the compression mechanism to become high-pressure refrigerant gas outside the closed container from the discharge pipe. Is discharged to.
  • the compression mechanism is provided on the cylinder, a rolling piston that fits into the eccentric shaft of the crankshaft, bearings that are installed on both end faces in the axial direction of the cylinder and rotatably support the crankshaft, and the cylinder. It is equipped with a vane that is slidably arranged in the vane groove. A compression chamber is formed inside the cylinder by closing both end faces in the axial direction with end plates of bearings. Then, the rolling piston performs an eccentric motion in the cylinder, and as a result, the refrigerant sucked into the compression chamber is compressed as the crankshaft rotates.
  • the compressed high-pressure refrigerant gas is discharged into the closed container from the discharge port provided in the recess formed in the end plate portion of the bearing.
  • a lead valve type discharge valve portion composed of a valve seat, a valve, a valve receiving plate and a rivet is provided in this recess.
  • the discharge valve portion is configured by placing a valve and a valve receiving plate in order on the valve seat and fastening them to the bearing with rivets, and when the compression chamber reaches a predetermined pressure, the valve is pushed up.
  • the discharge port is opened (see, for example, Patent Document 1).
  • the valve receiving plate limits the lift amount of the valve and reduces the stress generated in the valve by limiting the curvature of the valve, so that the valve is prevented from being lifted too much and breaking from the root when the valve is lifted. It acts as a valve retainer.
  • the shape of the valve receiving plate is determined so that the bending stress generated in the valve becomes equal to or less than the allowable stress when the valve is lifted along the curvature of the valve receiving plate. Further, the lift amount of the valve is determined by the length from the fixed portion of the valve to the tip to be lifted and the allowable curvature of the valve.
  • a lightening portion is provided near the rivet hole to which the rivet is attached for the purpose of preventing distortion of the end plate portion when the discharge valve and the valve receiving plate are assembled by the rivet. There is. As a result, even if the discharge valve and the valve receiving plate are assembled to the end plate portion by rivets, the end plate portion is distorted and the flatness is deteriorated, and the adhesion and airtightness between the end plate portion and the cylinder are deteriorated. I was preventing it.
  • valve and the valve receiving plate are provided in a limited space in the closed container, it is difficult to secure a sufficiently long valve length, so that the valve lift amount is inevitably small. Therefore, the discharge flow path through which the fluid compressed in the compression chamber is discharged becomes narrow. Therefore, the refrigerant compressed in the compression chamber is discharged from the compression chamber through a narrow discharge flow path, so that the pressure loss becomes large. Therefore, the pressure rises abnormally upstream of the discharge valve portion. If the refrigerant is compressed while the pressure is abnormally increased upstream of the discharge valve portion, the temperature of the refrigerant tends to increase, which may reduce the reliability of the compressor.
  • valve and the valve receiving plate open and close at high speed and are struck against the discharge port. Therefore, if the amount of warpage of the valve receiving plate is increased, the collision load of the valve increases, which occurs in the valve receiving plate. Bending stress increases. As a result, when a stress exceeding the fatigue strength of the valve receiving plate is generated, there is a problem that the periphery of the rivet hole of the valve receiving plate is broken.
  • the present invention is to solve the above problems, and to provide a sealed compressor and a method for manufacturing the same, which can prevent breakage around the rivet hole of the valve receiving plate and improve reliability and durability.
  • the purpose is to provide a sealed compressor and a method for manufacturing the same, which can prevent breakage around the rivet hole of the valve receiving plate and improve reliability and durability.
  • the closed-type compressor according to the present invention includes a compression mechanism portion and an electric motor portion for driving the compression mechanism portion inside the closed container, and the compression mechanism portion has an annular cylinder and a bearing portion.
  • a valve receiving plate having a valve receiving plate that limits the lift amount of the discharge valve by contacting the discharge valve when the discharge valve is opened, and the valve receiving plate is provided with the discharge valve.
  • a rivet hole through which a rivet for assembling the mechanical portion to the bearing portion is passed through, and a groove portion in which at least a part thereof communicates with the rivet hole are formed.
  • the method for manufacturing a closed compressor according to the present invention is the method for manufacturing a closed compressor described above, wherein the rivet hole is formed in the valve receiving plate and the groove portion is cold plastically processed. It has a drilling process for forming by.
  • the present invention by improving the fatigue strength around the rivet hole of the valve receiving plate, the bending stress around the rivet hole increases even if the lift amount of the valve receiving plate is increased in order to improve the compressor efficiency. As a result, breakage around the rivet hole can be prevented, and reliability and durability can be improved.
  • FIG. 3 is an exploded cross-sectional view showing a state before assembly of the discharge valve mechanism portion of FIG. 3 as viewed from the direction of arrow BB. It is sectional drawing which shows the discharge valve mechanism part of FIG.
  • FIG. 1 is a vertical cross-sectional view of the sealed compressor 1 according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the compression mechanism portion 30 of the sealed compressor 1 of FIG.
  • the closed type compressor 1 shown in FIG. 1 is, for example, a vertical high-pressure dome type single rotary compressor, and is a closed container 10, an electric motor unit 20 housed in the closed container 10, and an electric motor unit 20. It is configured to include a compression mechanism unit 30 that compresses the refrigerant gas in conjunction with the drive.
  • the closed container 10 is composed of a lower container 11 formed in a bottomed tubular shape and an upper container 12 that covers the upper opening of the lower container 11 in a closed state.
  • the electric motor unit 20 is installed on the upper side in the lower container 11, and the compression mechanism unit 30 is installed on the lower side in the lower container 11.
  • the electric motor unit 20 and the compression mechanism unit 30 are connected by a rotating shaft 23 of the electric motor unit 20, and the rotational motion of the electric motor unit 20 is transmitted to the compression mechanism unit 30.
  • the compression mechanism unit 30 compresses the refrigerant gas by the transmitted rotational force and discharges it into the closed container 10 through the discharge port 40 described later. That is, the inside of the closed container 10 is filled with the compressed high-temperature and high-pressure refrigerant gas.
  • Refrigerating machine oil for lubricating the compression mechanism portion 30 is stored in the bottom of the lower container 11 of the closed container 10.
  • An oil pump is provided at the lower part of the rotating shaft 23. This oil pump pumps up the above-mentioned refrigerating machine oil by the rotation of the rotating shaft 23 and supplies oil to each sliding portion of the compression mechanism portion 30. As a result, the mechanical lubrication action of the compression mechanism portion 30 is ensured.
  • synthetic oils such as POE (polyvinyl ester), PVE (polyvinyl ether) and AB (alkylbenzene) are used.
  • the electric motor unit 20 is composed of, for example, a brushless DC (Direct Current) motor, and has a cylindrical stator 21 fixed to the inner circumference of the lower container 11 and a cylindrical stator 21 rotatably arranged inside the stator 21. It includes a rotor 22 and.
  • a brushless DC (Direct Current) motor and has a cylindrical stator 21 fixed to the inner circumference of the lower container 11 and a cylindrical stator 21 rotatably arranged inside the stator 21. It includes a rotor 22 and.
  • the rotor 22 includes a rotor core 22a formed by laminating an iron core sheet punched from a thin electromagnetic steel plate, a permanent magnet 22b such as a ferrite magnet or a rare earth magnet inserted in the axial direction of the rotor core 22a. It is composed of a rotating shaft 23.
  • the magnetic pole on the rotor 22 is formed by a permanent magnet 22b.
  • the rotor 22 rotates by the action of the magnetic flux created by the magnetic poles on the rotor 22 and the magnetic flux created by the stator winding 21c of the stator 21.
  • the electric motor unit 20 has been described as a brushless DC motor, the present invention is not limited to this, and for example, an induction motor may be used.
  • the rotor core 22a is provided with a secondary winding instead of the permanent magnet 22b, and the stator winding 21c of the stator 21 induces magnetic flux to the secondary winding on the rotor side. To generate a rotational force to rotate the rotor 22.
  • a shaft hole for passing the above-mentioned rotating shaft 23 is provided in the center of the rotor core 22a, and the main shaft portion 23a of the rotating shaft 23 is fastened by shrink fitting or the like. As a result, the rotational movement of the rotor 22 is transmitted to the rotating shaft 23.
  • a plurality of air holes are provided around the shaft hole of the rotor core 22a. This air hole allows high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 30 located below the electric motor unit 20 to pass through. The high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 30 passes through the air gap between the rotor 22 and the stator 21 and the gap of the stator winding 21c in addition to the above-mentioned air holes.
  • the rotating shaft 23 is composed of the above-mentioned main shaft portion 23a, eccentric shaft portion 23b, and sub-shaft portion 23c, and is integrally formed in the axial direction in the order of the main shaft portion 23a, the eccentric shaft portion 23b, and the sub-shaft portion 23c. ing.
  • the eccentric shaft portion 23b is fitted into, for example, a ring-shaped piston 32.
  • the stator 21 is composed of a stator core 21a, an insulating member 21b, and a stator winding 21c.
  • the stator core 21a is formed by laminating iron core sheets punched from thin electromagnetic steel sheets.
  • the outer diameter of the stator core 21a is formed to be larger than the inner diameter of the intermediate portion of the lower container 11, and is fixed to the inner circumference of the lower container 11 by shrink fitting.
  • the compression mechanism portion 30 includes a cylinder 31, a piston 32, an upper bearing 33, a lower bearing 34, and a plate-shaped vane 35 (see FIG. 2).
  • the cylinder 31 is formed in a cylindrical shape having a circular hole in the axial direction, and includes a compression chamber 36 formed by the hole and the upper bearing 33 and the lower bearing 34.
  • the compression chamber 36 includes an eccentric shaft portion 23b that performs eccentric movement in the compression chamber 36, a piston 32 into which the eccentric shaft portion 23b is fitted, an inner circumference of the compression chamber 36, and an outer circumference of the piston 32.
  • a vane 35 that partitions the space formed by the above is provided.
  • the cylinder 31 has a back pressure chamber 31a into which a high-temperature and high-pressure refrigerant gas in the closed container 10 flows, a vane groove portion 31b that communicates the back pressure chamber 31a and the compression chamber 36, and a low-pressure refrigerant from the outside of the closed container 10.
  • a suction port 31c for sucking gas into the compression chamber 36 is provided.
  • the vane 35 is reciprocally pushed into the vane groove portion 31b in the radial direction of the cylinder 31.
  • the end of the vane 35 on the compression chamber 36 side is pressed against the side surface of the piston 32 by the pressing force of the spring member on the piston 32 side and the pressure of the high-temperature and high-pressure refrigerant gas flowing into the back pressure chamber 31a.
  • the vane 35 divides the compression chamber 36 into a low-pressure side compression chamber 36a and a high-pressure side compression chamber 36b.
  • the upper bearing 33 is formed in an inverted T shape in a side view, closes the upper opening of the compression chamber 36, and rotatably supports the spindle portion 23a of the rotating shaft 23.
  • the upper bearing 33 is provided with a discharge port 40 for discharging compressed high-temperature and high-pressure refrigerant gas to the outside of the compression chamber 36.
  • the lower bearing 34 is formed in a T shape in a side view, closes the lower opening of the compression chamber 36, and rotatably supports the sub-shaft portion 23c of the rotating shaft 23.
  • a discharge muffler 37 that covers the upper bearing 33 is attached to the upper portion of the upper bearing 33.
  • the discharge muffler 37 is provided to reduce the pulsating noise of the refrigerant gas intermittently discharged from the discharge port 40.
  • the discharge muffler 37 is provided with a discharge hole (not shown) that communicates the space formed by covering the upper bearing 33 with the discharge muffler 37 and the inside of the closed container 10. The refrigerant gas discharged from the high-pressure side compression chamber 36b through the discharge port 40 is once discharged into the space formed by the discharge muffler 37 and the upper bearing 33, and then discharged from the discharge hole into the closed container 10. ..
  • a suction muffler 50 that prevents the refrigerant liquid from being directly sucked into the low-pressure side compression chamber 36a of the cylinder 31 is provided.
  • the suction muffler 50 is connected to the suction port 31c of the cylinder 31 via a connecting pipe 50a.
  • the low-pressure refrigerant gas sent from the suction muffler 50 is sucked into the low-pressure side compression chamber 36a of the cylinder 31 through the connecting pipe 50a.
  • the material of the cylinder 31, the upper bearing 33 and the lower bearing 34 is gray cast iron, sintered steel or carbon steel, and the material of the piston 32 is alloy steel containing, for example, chromium.
  • the material of the vane 35 is, for example, high speed tool steel.
  • the piston 32 of the compression mechanism unit 30 eccentrically rotates in the compression chamber 36 of the cylinder 31 of the compression mechanism unit 30.
  • the space between the cylinder 31 and the piston 32 is divided into two, a low pressure side compression chamber 36a and a high pressure side compression chamber 36b, by the vane 35 of the compression mechanism unit 30.
  • the volumes of the low-pressure side compression chamber 36a and the high-pressure side compression chamber 36b change.
  • the low-pressure side compression chamber 36a the low-pressure gas refrigerant is sucked from the suction muffler 50 by gradually expanding the volume.
  • the gas refrigerant inside is compressed by gradually reducing the volume.
  • the compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 37 into the space inside the closed container 10.
  • the discharged gas refrigerant further passes through the electric motor unit 20 and is discharged to the outside of the closed container 10 from the discharge pipe 51 at the top of the closed container 10.
  • the refrigerant discharged to the outside of the closed container 10 returns to the suction muffler 50 through the refrigerant circuit.
  • the vane 35 is provided integrally with the piston 32.
  • the vane 35 moves in and out along the receiving groove of the support rotatably attached to the piston 32.
  • the vane 35 moves back and forth in the radial direction while swinging according to the rotation of the piston 32, thereby partitioning the space between the cylinder 31 and the piston 32 into a compression chamber and a suction chamber.
  • the support is composed of two columnar members having a semicircular cross section. The support is rotatably fitted into a circular holding hole formed in the intermediate portion between the suction port 31c and the discharge port 40 of the cylinder 31.
  • FIG. 3 is an enlarged vertical sectional view showing a portion A of the closed compressor 1 of FIG.
  • FIG. 4 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 of FIG.
  • FIG. 5 is a vertical cross-sectional view showing the valve receiving plate 42 of FIG. 4 as viewed from the direction of arrow CC.
  • FIG. 6 is an exploded cross-sectional view showing a state before assembly of the discharge valve mechanism portion 47 of FIG. 3 as viewed from the direction of arrow BB.
  • FIG. 7 is a cross-sectional view showing the discharge valve mechanism portion 47 of FIG. 3 as viewed from the direction of arrow BB.
  • the discharge port 40 is a circular through hole provided through the upper bearing 33 of the compression mechanism portion 30 in the axial direction of the compression mechanism portion 30, and a part of the refrigerant inlet on the cylinder 31 side is provided. It is blocked by the cylinder 31.
  • the discharge port 40 discharges the refrigerant gas from the high-pressure side compression chamber 36b compressed by the compression mechanism unit 30 into the closed container 10 with the axial direction of the compression mechanism unit 30 as the refrigerant discharge direction.
  • a discharge valve mechanism portion 47 is provided above the upper bearing 33 to open and close the refrigerant outlet on the discharge muffler 37 side of the discharge port 40 so as to be openable and closable.
  • the discharge valve mechanism 47 is composed of, for example, a discharge valve 41 made of an elastic lead valve and a valve receiving plate 42 provided on the upper portion of the discharge valve 41, which will be described in detail later.
  • the discharge valve 41 is provided between the upper bearing 33 and the valve receiving plate 42.
  • the valve receiving plate 42 is for restricting the upward lift of the discharge valve 41, and one end thereof is assembled to the upper bearing 33 together with the discharge valve 41 by, for example, a rivet 46. Therefore, a rivet hole 43 for penetrating the rivet 46 is provided at one end of the valve receiving plate 42.
  • the above-mentioned discharge valve 41 controls the discharge timing of the high-temperature and high-pressure refrigerant gas discharged from the high-pressure side compression chamber 36b via the discharge port 40. That is, the discharge valve 41 closes the discharge port 40 until the high-temperature and high-pressure refrigerant gas compressed in the high-pressure side compression chamber 36b of the cylinder 31 reaches a predetermined pressure. Then, when the refrigerant gas reaches a predetermined pressure or higher, the discharge valve 41 lifts upward to open the refrigerant outlet of the discharge port 40, and discharges the high-temperature and high-pressure refrigerant gas into the discharge muffler 37. In this case, the lift amount of the discharge valve 41 is regulated by the valve receiving plate 42 as described above.
  • the piston 32 in the compression chamber 36 rotates.
  • the volumes of the low-pressure side compression chamber 36a and the high-pressure side compression chamber 36b partitioned by the vane 35 increase or decrease as the piston 32 rotates.
  • the low-pressure side compression chamber 36a and the suction port 31c communicate with each other, and the low-pressure refrigerant gas is sucked.
  • the communication between the low-pressure side compression chamber 36a and the suction port 31c is closed by the piston 32, and the refrigerant gas in the high-pressure side compression chamber 36b is compressed as the volume of the low-pressure side compression chamber 36a decreases.
  • the high-pressure side compression chamber 36b and the discharge port 40 are communicated with each other, and when the high-temperature and high-pressure refrigerant gas in the high-pressure side compression chamber 36b reaches a predetermined pressure, the discharge valve 41 of the discharge port 40 opens. At this time, the high-temperature and high-pressure refrigerant gas is discharged from the discharge port 40 into the discharge muffler 37, and is discharged into the closed container 10 via the discharge muffler 37.
  • the discharge port 40 is closed by the pressure difference between the high-pressure side compression chamber 36b and the closed container 10 and the elastic force of the discharge valve 41.
  • the high-temperature and high-pressure refrigerant gas released into the closed container 10 passes through the electric motor unit 20, rises in the closed container 10, and is discharged to the outside from the discharge pipe 51 provided in the upper part of the closed container 10.
  • the discharge valve mechanism is arranged in the upper bearing 33, and the discharge valve 41 that opens and closes the discharge port 40 of the upper bearing 33 and the valve receiver for restricting the upward lift of the discharge valve 41. It is configured to include a plate 42 and a rivet 46 for fixing the discharge valve 41 and the valve receiving plate 42.
  • the valve receiving plate 42 is formed with a groove 44 communicating with the rivet hole 43 so as to surround the rivet hole 43 on the surface of the cylinder 31 on the suction port 31c side. ..
  • the groove 44 is formed by applying residual compressive stress by cold plastic working when the rivet hole 43 is drilled.
  • the valve receiving plate 42 is provided with a refrigerant gas vent hole 45 at the other end on the opposite side of the rivet hole 43.
  • the refrigerant gas vent hole 45 stays between the discharge valve 41 and the valve receiving plate 42 when the refrigerant gas compressed in the compression chamber 36 opens the discharge valve 41 and is discharged into the discharge muffler 37. Let the refrigerant gas out. Further, the refrigerant gas vent hole 45 supplies the refrigerant gas between the discharge valve 41 and the valve receiving plate 42 when the discharge valve 41 is closed, and prevents the discharge valve 41 from being delayed in closing. As described above, the refrigerant gas vent hole 45 is for reducing the resistance when the discharge valve 41 is opened and closed.
  • the discharge valve 41 is arranged so as to close the discharge port 40 of the upper bearing 33, and the valve receiving plate 42 is arranged on the discharge valve 41. Then, in this state, the discharge valve 41 and the valve receiving plate 42 are fixed to the upper bearing 33 by the rivet 46, so that the discharge valve mechanism is assembled to the upper bearing 33.
  • the present inventor has focused on the fact that a lightening portion is provided around the rivet hole in the sealed compressor of Patent Document 1 described above, and has come to propose a method for solving the above-mentioned problem by applying this technique. It was.
  • a lightening portion is provided around the rivet hole to prevent distortion of the end plate portion when the valve and the valve receiving plate are assembled by the rivet, and the end plate portion and the cylinder. The purpose is to prevent the adhesion and airtightness from being lowered.
  • the closed compressor of Patent Document 1 there is no disclosure or suggestion regarding the present invention that prevents breakage around the rivet hole and improves the reliability and durability of the closed compressor.
  • a groove portion 44 communicating with the rivet hole 43 is formed around the rivet hole 43 by applying residual compressive stress by cold plastic working. Therefore, the fatigue strength of the valve receiving plate 42 is increased, and high reliability is achieved.
  • the method for manufacturing the closed compressor 1 according to the first embodiment includes a drilling step of forming the rivet hole 43 in the valve receiving plate 42 and forming the groove 44 by cold plastic working. There is.
  • the cold plastic working of the groove 44 provided around the rivet hole 43 is performed at the same time as the drilling of the rivet hole 43. To. Therefore, it is not necessary to separately provide a processing process for newly providing the groove 44. That is, the processing process is not increased by providing the groove 44. In addition, heat treatment such as high-strength steel conversion, tempering or quenching of the material for increasing fatigue strength is not required. Further, this cold plastic working is effective even when a large number of parts are manufactured, and the barrel polishing step for applying residual compressive stress can be omitted. Therefore, high reliability by improving fatigue strength can be achieved at low cost and energy saving.
  • the discharge valve mechanism portion 47 provided in the upper bearing 33 communicates with the rivet hole 43 around the rivet hole 43 of the valve receiving plate 42.
  • the groove portion 44 to be formed is formed by applying residual compressive stress by cold plastic working.
  • the groove 44 is arranged so as to surround the periphery of the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side. Therefore, the fatigue strength around the rivet hole of the valve receiving plate 42 can be improved, and the reliability of the discharge valve mechanism can be improved. Therefore, even if the lift amount of the valve receiving plate 42 is increased in order to improve the compressor efficiency, it is possible to prevent breakage around the rivet hole due to the increase in bending stress around the rivet hole 43, and the reliability and durability are improved. it can.
  • the manufacturing method of the closed type compressor 1 includes a hole drilling process in which the rivet hole 43 is formed in the valve receiving plate 42 and the groove portion 44 is formed by cold plastic working. That is, since the cold plastic working of the groove 44 provided around the rivet hole 43 is performed at the same time as the drilling of the rivet hole 43, it is possible to prevent an increase in new processing steps for providing the groove 44. In addition, heat treatment such as high-strength steel conversion, tempering or quenching of the material for increasing fatigue strength is not required. Further, this cold plastic working is effective even when a large number of parts are manufactured, and the barrel polishing step for applying residual compressive stress can be omitted. Therefore, high reliability by improving fatigue strength can be achieved at low cost and energy saving.
  • FIG. 8 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 according to the second embodiment of the present invention. The description of the same components as in the first embodiment described above will be omitted.
  • the shape of the groove 44 provided around the rivet hole 43 is different from that in the first embodiment. Except for the point, the discharge valve mechanism portion 47 including the valve receiving plate 42 is configured in the same manner as in the first embodiment.
  • the valve receiving plate 42 of the second embodiment has an arc shape in a part of the periphery of the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side toward the refrigerant gas vent hole 45 side. It is located in. At this time, the groove 44 is communicated with the rivet hole 43.
  • the shape of the groove 44 is not limited to the arc shape.
  • the groove 44 provided around the rivet hole 43 is located around the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side.
  • a part of the refrigerant gas vent hole 45 is arranged in an arc shape.
  • the groove 44 is arranged in an arc shape on a part of the periphery of the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side toward the discharge port 40 side of the upper bearing 33.
  • FIG. 9 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 according to the third embodiment of the present invention. The description of the same components as in the first embodiment described above will be omitted.
  • the groove 44 formed by applying the residual compressive stress around the rivet hole 43 is the surface of the valve receiving plate 42 on the upper bearing 33 side.
  • the valve receiving plate 42 is arranged so as to extend linearly in the width direction.
  • the shape of the groove 44 is not limited to a straight line.
  • the range of the groove 44 is not limited as long as it is provided in at least a part of the region in the width direction of the valve receiving plate 42.
  • the groove 44 provided around the rivet hole 43 is located around the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side.
  • the valve receiving plate 42 is arranged so as to extend linearly in the width direction.
  • the groove 44 may be provided in at least a part of the width direction of the valve receiving plate 42.
  • FIG. 10 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 according to the fourth embodiment of the present invention. The description of the same components as in the first embodiment described above will be omitted.
  • the groove 44 formed by applying the residual compressive stress around the rivet hole 43 is linear and is formed by the valve receiving plate 42. It is provided in the entire width direction. At this time, the shape of the groove 44 is not limited to a straight line.
  • the groove 44 provided around the rivet hole 43 is close to the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side.
  • the bearing plate 42 is arranged so as to extend linearly over the entire width direction.
  • the shape of the groove 44 is not limited to a straight line.
  • the sealed compressor 1 is not limited to the single rotary compressor described in the above-described first to fourth embodiments.
  • the closed type compressor 1 may also be a multi-cylinder rotary compressor, a swing type rotary compressor, or the like.

Abstract

This hermetic-type compressor has, provided inside a hermetic casing thereof, a compression mechanism part and an electric motor part for driving the compression mechanism part, wherein the compression mechanism part has an annular cylinder and a bearing, and is driven by the electric motor part coupled thereto via a crank shaft. The compression mechanism part is fixed to the bearing, and has a discharge valve mechanism part provided with: a discharge valve which opens/closes a discharge port formed in the bearing; and a valve receiving plate which, when the discharge valve is opened, comes into contact with the discharge valve to thereby restrict the lifting amount of the discharge valve. The valve receiving plate has formed therein: a rivet hole through which a rivet for mounting the discharge valve mechanism part to the bearing is passed; and a groove at least partially connected to the rivet hole. With this configuration, the fatigue strength, around the rivet hole, of the valve receiving plate is improved, and thus it is possible to prevent breakage around the rivet hole caused by increase in bending stress around the rivet hole, even when the lifting amount of the valve receiving plate is increased for the sake of improved efficiency of the compressor, and thereby improved reliability and durability can be achieved.

Description

密閉型圧縮機およびその製造方法Sealed compressor and its manufacturing method
 本発明は、密閉容器内に電動機部と圧縮機構部とを備える密閉型圧縮機およびその製造方法に関するものである。 The present invention relates to a closed compressor having an electric motor portion and a compression mechanism portion in a closed container, and a method for manufacturing the same.
 一般に密閉型圧縮機は、固定子と回転子とを有する電動機部と、当該電動機部にクランク軸を介して連結され、クランク軸の回転によって冷媒を圧縮する圧縮機構部と、が密閉容器の内部に配置されて構成されている。そして、電動機部によってクランク軸が回転することで圧縮機構部が駆動し、これにより吸入管から吸入された低圧冷媒ガスが圧縮機構部で圧縮され、高圧冷媒ガスとなって吐出管から密閉容器外へと吐出される。 Generally, in a closed compressor, an electric motor unit having a stator and a rotor and a compression mechanism unit connected to the electric motor unit via a crankshaft and compressing a refrigerant by rotation of the crankshaft are inside the closed container. It is arranged and configured in. Then, the compression mechanism is driven by the rotation of the crankshaft by the electric motor, and the low-pressure refrigerant gas sucked from the suction pipe is compressed by the compression mechanism to become high-pressure refrigerant gas outside the closed container from the discharge pipe. Is discharged to.
 圧縮機構部は、円筒状のシリンダと、クランク軸の偏心軸部に嵌合するローリングピストンと、シリンダの軸方向両端面に設置され、クランク軸を回転自在に支持する軸受と、シリンダに設けられたベーン溝に摺動自在に配置されたベーンとを備えている。シリンダは、軸方向両端面が軸受の端板部で閉塞されることにより内部に圧縮室を形成している。そして、ローリングピストンがシリンダ内で偏心運動を行い、その結果、圧縮室内に吸入された冷媒がクランク軸の回転に伴って圧縮される。 The compression mechanism is provided on the cylinder, a rolling piston that fits into the eccentric shaft of the crankshaft, bearings that are installed on both end faces in the axial direction of the cylinder and rotatably support the crankshaft, and the cylinder. It is equipped with a vane that is slidably arranged in the vane groove. A compression chamber is formed inside the cylinder by closing both end faces in the axial direction with end plates of bearings. Then, the rolling piston performs an eccentric motion in the cylinder, and as a result, the refrigerant sucked into the compression chamber is compressed as the crankshaft rotates.
 圧縮された高圧冷媒ガスは、軸受の端板部に形成された窪みに設けられた吐出口から密閉容器内に吐出される。この窪みには、弁座、弁、弁受板およびリベットから構成されたリード弁型の吐出弁部が設けられている。吐出弁部は、弁座上に弁および弁受板が順に載置され、これらがリベットで軸受に締結されることで構成されており、圧縮室が所定の圧力に達すると弁が押し上げられて吐出口を開放する(例えば、特許文献1参照)。 The compressed high-pressure refrigerant gas is discharged into the closed container from the discharge port provided in the recess formed in the end plate portion of the bearing. A lead valve type discharge valve portion composed of a valve seat, a valve, a valve receiving plate and a rivet is provided in this recess. The discharge valve portion is configured by placing a valve and a valve receiving plate in order on the valve seat and fastening them to the bearing with rivets, and when the compression chamber reaches a predetermined pressure, the valve is pushed up. The discharge port is opened (see, for example, Patent Document 1).
 弁受板は、弁のリフト量を制限し、且つ、弁の曲率を制限することで弁に発生する応力を小さくするため、弁のリフト時に当該弁がリフトし過ぎて根元から折れるのを抑制する弁押さえとしての役割を果たす。弁受板の形状は、弁受板の曲率に沿って弁がリフトしたとき、弁に発生する曲げ応力が許容応力以下になるように決定される。また、弁のリフト量は、弁の固定部からリフトされる先端までの長さと、許容される弁の曲率と、によって決定される。 The valve receiving plate limits the lift amount of the valve and reduces the stress generated in the valve by limiting the curvature of the valve, so that the valve is prevented from being lifted too much and breaking from the root when the valve is lifted. It acts as a valve retainer. The shape of the valve receiving plate is determined so that the bending stress generated in the valve becomes equal to or less than the allowable stress when the valve is lifted along the curvature of the valve receiving plate. Further, the lift amount of the valve is determined by the length from the fixed portion of the valve to the tip to be lifted and the allowable curvature of the valve.
 かかる特許文献1の密閉型圧縮機では、吐出弁および弁受板をリベットにより組み付ける際の端板部の歪みを防止することを目的として、当該リベットを取り付けるリベット孔付近に肉抜き部を設けている。これにより、吐出弁および弁受板をリベットによって端板部に組み付けても、当該端板部が歪んで平面度が悪化し、端板部とシリンダとの密着性および気密性が低下するのを防止していた。 In the closed compressor of Patent Document 1, a lightening portion is provided near the rivet hole to which the rivet is attached for the purpose of preventing distortion of the end plate portion when the discharge valve and the valve receiving plate are assembled by the rivet. There is. As a result, even if the discharge valve and the valve receiving plate are assembled to the end plate portion by rivets, the end plate portion is distorted and the flatness is deteriorated, and the adhesion and airtightness between the end plate portion and the cylinder are deteriorated. I was preventing it.
 ここで、弁および弁受板が密閉容器内の限られた空間に設けられる場合には、弁の長さを十分長く確保することが困難なため、弁のリフト量は必然的に小さくなる。そのため、圧縮室で圧縮された流体が吐出される吐出流路は狭くなる。したがって、圧縮室内で圧縮された冷媒は、狭い吐出流路を通って圧縮室から吐出されるため、圧力損失が大きくなる。よって、吐出弁部の上流において圧力が異常に上昇してしまう。そして、吐出弁部の上流において圧力が異常に上昇した状態で、冷媒が圧縮されると、冷媒の温度は上昇し易くなるため、圧縮機の信頼性を低下させてしまう虞がある。 Here, when the valve and the valve receiving plate are provided in a limited space in the closed container, it is difficult to secure a sufficiently long valve length, so that the valve lift amount is inevitably small. Therefore, the discharge flow path through which the fluid compressed in the compression chamber is discharged becomes narrow. Therefore, the refrigerant compressed in the compression chamber is discharged from the compression chamber through a narrow discharge flow path, so that the pressure loss becomes large. Therefore, the pressure rises abnormally upstream of the discharge valve portion. If the refrigerant is compressed while the pressure is abnormally increased upstream of the discharge valve portion, the temperature of the refrigerant tends to increase, which may reduce the reliability of the compressor.
 そのため、この種の密閉型圧縮機では、吐出口から吐出される高圧冷媒ガスの圧力損失を抑制することで、圧縮機効率を向上させることが望まれる。そのためには、弁のリフト量を大きくし、吐出部と弁受板との間隔を広げることが有効であると考えられる。 Therefore, in this type of closed compressor, it is desired to improve the compressor efficiency by suppressing the pressure loss of the high-pressure refrigerant gas discharged from the discharge port. For that purpose, it is considered effective to increase the lift amount of the valve and widen the distance between the discharge portion and the valve receiving plate.
特開2014-167283号公報Japanese Unexamined Patent Publication No. 2014-167283
 しかしながら、従来の密閉型圧縮機では、弁および弁受板が高速で開閉して吐出ポートに叩きつけられるため、弁受板の反り量を大きくすると弁の衝突荷重が増大し、弁受板に生じる曲げ応力が増加する。その結果、弁受板の疲労強度を超える応力が発生すると、弁受板のリベット孔周辺が折損してしまうという問題があった。 However, in a conventional sealed compressor, the valve and the valve receiving plate open and close at high speed and are struck against the discharge port. Therefore, if the amount of warpage of the valve receiving plate is increased, the collision load of the valve increases, which occurs in the valve receiving plate. Bending stress increases. As a result, when a stress exceeding the fatigue strength of the valve receiving plate is generated, there is a problem that the periphery of the rivet hole of the valve receiving plate is broken.
 また、特許文献1の密閉型圧縮機では、吐出弁および弁受板をリベットにより組み付ける際の端板部の歪みを防止し、端板部とシリンダとの密着性および気密性が低下するのを防止できるものの、弁受板のリベット孔周辺の折損を防止することは困難であった。 Further, in the closed compressor of Patent Document 1, distortion of the end plate portion when assembling the discharge valve and the valve receiving plate by rivets is prevented, and the adhesion and airtightness between the end plate portion and the cylinder are lowered. Although it can be prevented, it is difficult to prevent breakage around the rivet hole of the valve receiving plate.
 本発明は、上記課題を解決するためのものであり、弁受板のリベット孔周辺の折損を防止して、信頼性および耐久性を向上できる密閉型圧縮機およびその製造方法を提供することを目的とする。 The present invention is to solve the above problems, and to provide a sealed compressor and a method for manufacturing the same, which can prevent breakage around the rivet hole of the valve receiving plate and improve reliability and durability. The purpose.
 本発明に係る密閉型圧縮機は、密閉容器の内部に、圧縮機構部と、前記圧縮機構部を駆動する電動機部と、を備え、前記圧縮機構部が環状のシリンダおよび軸受部を有し、クランク軸を介して連結された前記電動機部によって駆動される密閉型圧縮機であって、前記圧縮機構部は、前記軸受部に固定され、当該軸受部に形成された吐出口を開閉する吐出弁と、前記吐出弁の開放時に、当該吐出弁が当接することで当該吐出弁のリフト量を制限する弁受板と、を有する吐出弁機構部を備え、前記弁受板には、前記吐出弁機構部を前記軸受部に組み付けるためのリベットを貫通させるリベット孔と、少なくとも一部分が前記リベット孔に連通する溝部と、が形成されているものである。 The closed-type compressor according to the present invention includes a compression mechanism portion and an electric motor portion for driving the compression mechanism portion inside the closed container, and the compression mechanism portion has an annular cylinder and a bearing portion. A sealed compressor driven by the electric motor portion connected via a crankshaft, wherein the compression mechanism portion is fixed to the bearing portion and a discharge valve that opens and closes a discharge port formed in the bearing portion. And a valve receiving plate having a valve receiving plate that limits the lift amount of the discharge valve by contacting the discharge valve when the discharge valve is opened, and the valve receiving plate is provided with the discharge valve. A rivet hole through which a rivet for assembling the mechanical portion to the bearing portion is passed through, and a groove portion in which at least a part thereof communicates with the rivet hole are formed.
 また、本発明に係る密閉型圧縮機の製造方法は、上記に記載の密閉型圧縮機の製造方法であって、前記弁受板に前記リベット孔を形成すると共に、前記溝部を冷間塑性加工によって成形する穴開け加工工程を有するものである。 Further, the method for manufacturing a closed compressor according to the present invention is the method for manufacturing a closed compressor described above, wherein the rivet hole is formed in the valve receiving plate and the groove portion is cold plastically processed. It has a drilling process for forming by.
 本発明によれば、弁受板のリベット孔周辺の疲労強度を向上させることにより、圧縮機効率向上のために弁受板のリフト量を大きくしても、リベット孔周辺の曲げ応力が増大することによるリベット孔周辺の折損を防止でき、信頼性および耐久性を向上できる。 According to the present invention, by improving the fatigue strength around the rivet hole of the valve receiving plate, the bending stress around the rivet hole increases even if the lift amount of the valve receiving plate is increased in order to improve the compressor efficiency. As a result, breakage around the rivet hole can be prevented, and reliability and durability can be improved.
本発明の実施の形態に係る密閉型圧縮機の概略構成を示す縦断面図である。It is a vertical sectional view which shows the schematic structure of the closed type compressor which concerns on embodiment of this invention. 図1の密閉型圧縮機の圧縮機構部を拡大して示す横断面図である。It is a cross-sectional view which shows the compression mechanism part of the closed type compressor of FIG. 1 enlarged. 図1の密閉型圧縮機のA部を拡大して示す縦断面図である。It is a vertical cross-sectional view which shows the part A of the closed type compressor of FIG. 1 enlarged. 図1の密閉型圧縮機における吐出弁機構部の弁受板を示す平面図である。It is a top view which shows the valve receiving plate of the discharge valve mechanism part in the closed type compressor of FIG. 図4の弁受板を矢視C-C方向から見て示す縦断面図である。It is a vertical cross-sectional view which shows the valve receiving plate of FIG. 4 as seen from the direction of arrow CC. 図3の吐出弁機構部の組み付け前の状態を矢視B-B方向から見て示す分解断面図である。FIG. 3 is an exploded cross-sectional view showing a state before assembly of the discharge valve mechanism portion of FIG. 3 as viewed from the direction of arrow BB. 図3の吐出弁機構部を矢視B-B方向から見て示す断面図である。It is sectional drawing which shows the discharge valve mechanism part of FIG. 3 as seen from the direction of arrow BB. 本発明の実施の形態2に係る密閉型圧縮機における吐出弁機構部の弁受板を示す平面図である。It is a top view which shows the valve receiving plate of the discharge valve mechanism part in the closed type compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る密閉型圧縮機における吐出弁機構部の弁受板を示す平面図である。It is a top view which shows the valve receiving plate of the discharge valve mechanism part in the closed type compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る密閉型圧縮機における吐出弁機構部の弁受板を示す平面図である。It is a top view which shows the valve receiving plate of the discharge valve mechanism part in the closed type compressor which concerns on Embodiment 4 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。すなわち、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨または思想に反しない範囲で適宜変更可能である。また、そのような変更を伴う密閉型圧縮機も本発明の技術思想に含まれる。さらに、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」および「裏」といった配置または向き等は、説明の便宜上、記しているだけであって、装置、器具および部品等の配置または向き等を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the forms of the components shown in the entire specification are merely examples and are not limited to these descriptions. That is, the present invention can be appropriately modified as long as it does not contradict the gist or idea of the invention that can be read from the claims and the entire specification. A closed compressor with such a change is also included in the technical idea of the present invention. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the whole text of the specification. Further, in the description of the embodiment, the arrangement or orientation such as "top", "bottom", "left", "right", "front", "rear", "front" and "back" is for convenience of explanation. , And does not limit the arrangement or orientation of devices, appliances, parts, etc.
実施の形態1.
<密閉型圧縮機1の構成>
 図1および図2を参照しながら、本発明の実施の形態1に係る密閉型圧縮機1について説明する。図1は、本発明の実施の形態1に係る密閉型圧縮機1の縦断面図である。図2は、図1の密閉型圧縮機1の圧縮機構部30を拡大して示す横断面図である。
Embodiment 1.
<Structure of sealed compressor 1>
The closed compressor 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a vertical cross-sectional view of the sealed compressor 1 according to the first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view showing the compression mechanism portion 30 of the sealed compressor 1 of FIG.
 図1に示す密閉型圧縮機1は、例えば縦型の高圧ドーム型のシングルロータリ圧縮機であり、密閉容器10と、この密閉容器10内に収納される、電動機部20と、電動機部20の駆動に連動し冷媒ガスを圧縮する圧縮機構部30と、を有して構成される。 The closed type compressor 1 shown in FIG. 1 is, for example, a vertical high-pressure dome type single rotary compressor, and is a closed container 10, an electric motor unit 20 housed in the closed container 10, and an electric motor unit 20. It is configured to include a compression mechanism unit 30 that compresses the refrigerant gas in conjunction with the drive.
 密閉容器10は、有底筒状に形成された下部容器11と、下部容器11の上部開口を密閉状態で覆う上部容器12と、で構成されている。下部容器11内の上側には電動機部20が設置され、下部容器11内の下側には圧縮機構部30が設置されている。電動機部20と圧縮機構部30は、電動機部20の回転軸23によって連結されており、電動機部20の回転運動が圧縮機構部30に伝達される。 The closed container 10 is composed of a lower container 11 formed in a bottomed tubular shape and an upper container 12 that covers the upper opening of the lower container 11 in a closed state. The electric motor unit 20 is installed on the upper side in the lower container 11, and the compression mechanism unit 30 is installed on the lower side in the lower container 11. The electric motor unit 20 and the compression mechanism unit 30 are connected by a rotating shaft 23 of the electric motor unit 20, and the rotational motion of the electric motor unit 20 is transmitted to the compression mechanism unit 30.
 圧縮機構部30は、伝達された回転力によって冷媒ガスを圧縮し、後述する吐出口40を通じて密閉容器10内に放出する。つまり、密閉容器10内は、圧縮された高温高圧の冷媒ガスによって満たされる。密閉容器10の下部容器11の底部には、圧縮機構部30を潤滑するための冷凍機油が貯留されている。回転軸23の下部には、オイルポンプが設けられている。このオイルポンプは、回転軸23の回転により、前述の冷凍機油を汲み上げ、圧縮機構部30の各摺動部へ給油する。これにより、圧縮機構部30の機械的潤滑作用が確保される。この冷凍機油としては、合成油であるPOE(ポリオールエステル)、PVE(ポリビニルエーテル)またはAB(アルキルベンゼン)などが使用される。 The compression mechanism unit 30 compresses the refrigerant gas by the transmitted rotational force and discharges it into the closed container 10 through the discharge port 40 described later. That is, the inside of the closed container 10 is filled with the compressed high-temperature and high-pressure refrigerant gas. Refrigerating machine oil for lubricating the compression mechanism portion 30 is stored in the bottom of the lower container 11 of the closed container 10. An oil pump is provided at the lower part of the rotating shaft 23. This oil pump pumps up the above-mentioned refrigerating machine oil by the rotation of the rotating shaft 23 and supplies oil to each sliding portion of the compression mechanism portion 30. As a result, the mechanical lubrication action of the compression mechanism portion 30 is ensured. As the refrigerating machine oil, synthetic oils such as POE (polyvinyl ester), PVE (polyvinyl ether) and AB (alkylbenzene) are used.
 電動機部20は、例えばブラシレスDC(Direct Current)モーターで構成され、下部容器11の内周に固定された円筒形状の固定子21と、固定子21の内側に回転自在に配置された円柱形状の回転子22と、を備えている。 The electric motor unit 20 is composed of, for example, a brushless DC (Direct Current) motor, and has a cylindrical stator 21 fixed to the inner circumference of the lower container 11 and a cylindrical stator 21 rotatably arranged inside the stator 21. It includes a rotor 22 and.
 回転子22は、薄板電磁鋼板を打抜いた鉄心シートを積層して形成された回転子鉄心22aと、回転子鉄心22aの軸方向に挿入されたフェライト磁石または希土類磁石などの永久磁石22bと、回転軸23と、で構成されている。回転子22上の磁極は、永久磁石22bによって形成される。この回転子22は、回転子22上の磁極が作る磁束と固定子21の固定子巻線21cが作る磁束との作用によって回転する。 The rotor 22 includes a rotor core 22a formed by laminating an iron core sheet punched from a thin electromagnetic steel plate, a permanent magnet 22b such as a ferrite magnet or a rare earth magnet inserted in the axial direction of the rotor core 22a. It is composed of a rotating shaft 23. The magnetic pole on the rotor 22 is formed by a permanent magnet 22b. The rotor 22 rotates by the action of the magnetic flux created by the magnetic poles on the rotor 22 and the magnetic flux created by the stator winding 21c of the stator 21.
 なお、電動機部20をブラシレスDCモーターとして説明したが、これに限定されるものではなく、例えば誘導電動機でもよい。誘導電動機の場合は、回転子鉄心22aに永久磁石22bの代わりに二次巻線が設けられており、固定子21の固定子巻線21cが回転子側の二次巻線に磁束を誘導して回転力を発生させ、回転子22を回転させる。 Although the electric motor unit 20 has been described as a brushless DC motor, the present invention is not limited to this, and for example, an induction motor may be used. In the case of an induction motor, the rotor core 22a is provided with a secondary winding instead of the permanent magnet 22b, and the stator winding 21c of the stator 21 induces magnetic flux to the secondary winding on the rotor side. To generate a rotational force to rotate the rotor 22.
 回転子鉄心22aの中心には、前述の回転軸23を通す軸穴が設けられており、回転軸23の主軸部23aが焼き嵌めなどにより締結されている。これにより、回転子22の回転運動を回転軸23に伝達する。回転子鉄心22aの軸穴の周囲には、複数の風穴が設けられている。この風穴は、電動機部20の下方に位置する圧縮機構部30にて圧縮された高温高圧の冷媒ガスを通過させる。なお、圧縮機構部30にて圧縮された高温高圧の冷媒ガスは、前述の風穴以外に、回転子22と固定子21との間のエアギャップおよび固定子巻線21cの間隙も通過する。 A shaft hole for passing the above-mentioned rotating shaft 23 is provided in the center of the rotor core 22a, and the main shaft portion 23a of the rotating shaft 23 is fastened by shrink fitting or the like. As a result, the rotational movement of the rotor 22 is transmitted to the rotating shaft 23. A plurality of air holes are provided around the shaft hole of the rotor core 22a. This air hole allows high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 30 located below the electric motor unit 20 to pass through. The high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 30 passes through the air gap between the rotor 22 and the stator 21 and the gap of the stator winding 21c in addition to the above-mentioned air holes.
 回転軸23は、前述の主軸部23aと、偏心軸部23bと、副軸部23cと、から構成され、軸方向に主軸部23a、偏心軸部23bおよび副軸部23cの順に一体に形成されている。偏心軸部23bは、例えばリング形状のピストン32に嵌め込まれている。 The rotating shaft 23 is composed of the above-mentioned main shaft portion 23a, eccentric shaft portion 23b, and sub-shaft portion 23c, and is integrally formed in the axial direction in the order of the main shaft portion 23a, the eccentric shaft portion 23b, and the sub-shaft portion 23c. ing. The eccentric shaft portion 23b is fitted into, for example, a ring-shaped piston 32.
 固定子21は、固定子鉄心21a、絶縁部材21bおよび固定子巻線21cから構成されている。固定子鉄心21aは、回転子22と同様に薄板電磁鋼板を打抜いた鉄心シートを積層して形成されている。この固定子鉄心21aの外径は、下部容器11の中間部分の内径より大きく形成され、下部容器11の内周に焼嵌めによって固定されている。 The stator 21 is composed of a stator core 21a, an insulating member 21b, and a stator winding 21c. Like the rotor 22, the stator core 21a is formed by laminating iron core sheets punched from thin electromagnetic steel sheets. The outer diameter of the stator core 21a is formed to be larger than the inner diameter of the intermediate portion of the lower container 11, and is fixed to the inner circumference of the lower container 11 by shrink fitting.
<圧縮機構部30の構成>
 次に、圧縮機構部30の構成について説明する。圧縮機構部30は、シリンダ31と、ピストン32と、上軸受33と、下軸受34と、板状のベーン35(図2参照)とを備えている。シリンダ31は、図2に示すように、軸方向に円形の穴を有する円筒状に形成され、その穴と上軸受33および下軸受34とで形成される圧縮室36を備えている。圧縮室36には、前述したように、圧縮室36内で偏心運動を行う偏心軸部23bと、偏心軸部23bが嵌め込まれたピストン32と、圧縮室36の内周とピストン32の外周とで形成される空間を仕切るベーン35とが設けられている。
<Structure of compression mechanism unit 30>
Next, the configuration of the compression mechanism unit 30 will be described. The compression mechanism portion 30 includes a cylinder 31, a piston 32, an upper bearing 33, a lower bearing 34, and a plate-shaped vane 35 (see FIG. 2). As shown in FIG. 2, the cylinder 31 is formed in a cylindrical shape having a circular hole in the axial direction, and includes a compression chamber 36 formed by the hole and the upper bearing 33 and the lower bearing 34. As described above, the compression chamber 36 includes an eccentric shaft portion 23b that performs eccentric movement in the compression chamber 36, a piston 32 into which the eccentric shaft portion 23b is fitted, an inner circumference of the compression chamber 36, and an outer circumference of the piston 32. A vane 35 that partitions the space formed by the above is provided.
 シリンダ31には、密閉容器10内の高温高圧の冷媒ガスが流入する背圧室31aと、背圧室31aおよび圧縮室36を連通するベーン溝部31bと、密閉容器10の外部からの低圧の冷媒ガスを圧縮室36内に吸入する吸入口31cと、が設けられている。ベーン溝部31bには、ベーン35がシリンダ31の径方向に往復運動自在に押入されている。ベーン35の圧縮室36側の端部は、バネ部材のピストン32側への押圧力と背圧室31aに流入する高温高圧の冷媒ガスの圧力とによって、ピストン32の側面に押さえつけられている。このベーン35により、圧縮室36が低圧側圧縮室36aと高圧側圧縮室36bとに分けられる。 The cylinder 31 has a back pressure chamber 31a into which a high-temperature and high-pressure refrigerant gas in the closed container 10 flows, a vane groove portion 31b that communicates the back pressure chamber 31a and the compression chamber 36, and a low-pressure refrigerant from the outside of the closed container 10. A suction port 31c for sucking gas into the compression chamber 36 is provided. The vane 35 is reciprocally pushed into the vane groove portion 31b in the radial direction of the cylinder 31. The end of the vane 35 on the compression chamber 36 side is pressed against the side surface of the piston 32 by the pressing force of the spring member on the piston 32 side and the pressure of the high-temperature and high-pressure refrigerant gas flowing into the back pressure chamber 31a. The vane 35 divides the compression chamber 36 into a low-pressure side compression chamber 36a and a high-pressure side compression chamber 36b.
 上軸受33は、図1に示すように、側面視で逆T字形状に形成され、圧縮室36の上部開口を閉塞すると共に、回転軸23の主軸部23aを回転自在に支持している。この上軸受33には、圧縮された高温高圧の冷媒ガスを圧縮室36外に吐出する吐出口40が設けられている。下軸受34は、側面視でT字形状に形成され、圧縮室36の下部開口を閉塞すると共に、回転軸23の副軸部23cを回転自在に支持している。 As shown in FIG. 1, the upper bearing 33 is formed in an inverted T shape in a side view, closes the upper opening of the compression chamber 36, and rotatably supports the spindle portion 23a of the rotating shaft 23. The upper bearing 33 is provided with a discharge port 40 for discharging compressed high-temperature and high-pressure refrigerant gas to the outside of the compression chamber 36. The lower bearing 34 is formed in a T shape in a side view, closes the lower opening of the compression chamber 36, and rotatably supports the sub-shaft portion 23c of the rotating shaft 23.
 また、上軸受33の上部には、上軸受33を覆う吐出マフラ37が取り付けられている。この吐出マフラ37は、吐出口40から間欠的に吐出される冷媒ガスの脈動音を低減するために設けられている。この吐出マフラ37には、上軸受33を吐出マフラ37で覆って形成される空間と密閉容器10内とを連通する不図示の吐出穴が設けられている。高圧側圧縮室36bから吐出口40を介して吐出される冷媒ガスは、吐出マフラ37と上軸受33とで形成される空間に一旦吐出された後、吐出穴から密閉容器10内へ放出される。 Further, a discharge muffler 37 that covers the upper bearing 33 is attached to the upper portion of the upper bearing 33. The discharge muffler 37 is provided to reduce the pulsating noise of the refrigerant gas intermittently discharged from the discharge port 40. The discharge muffler 37 is provided with a discharge hole (not shown) that communicates the space formed by covering the upper bearing 33 with the discharge muffler 37 and the inside of the closed container 10. The refrigerant gas discharged from the high-pressure side compression chamber 36b through the discharge port 40 is once discharged into the space formed by the discharge muffler 37 and the upper bearing 33, and then discharged from the discharge hole into the closed container 10. ..
 密閉容器10の横には、冷媒液が直接シリンダ31の低圧側圧縮室36aに吸入されることを抑制する吸入マフラ50が設けられている。この吸入マフラ50は、シリンダ31の吸入口31cに連結管50aを介して接続されている。吸入マフラ50から送られる低圧の冷媒ガスは、連結管50aを通ってシリンダ31の低圧側圧縮室36aに吸入される。 Next to the closed container 10, a suction muffler 50 that prevents the refrigerant liquid from being directly sucked into the low-pressure side compression chamber 36a of the cylinder 31 is provided. The suction muffler 50 is connected to the suction port 31c of the cylinder 31 via a connecting pipe 50a. The low-pressure refrigerant gas sent from the suction muffler 50 is sucked into the low-pressure side compression chamber 36a of the cylinder 31 through the connecting pipe 50a.
 シリンダ31、上軸受33および下軸受34の材質は、ねずみ鋳鉄、焼結鋼または炭素鋼などであり、ピストン32の材質は、例えばクロムなどを含有する合金鋼である。ベーン35の材質は、例えば高速度工具鋼である。 The material of the cylinder 31, the upper bearing 33 and the lower bearing 34 is gray cast iron, sintered steel or carbon steel, and the material of the piston 32 is alloy steel containing, for example, chromium. The material of the vane 35 is, for example, high speed tool steel.
<密閉型圧縮機1の動作>
 ここで、密閉型圧縮機1の動作について図1および図2を参照しながら説明する。端子24からリード線25を介して電動機部20の固定子21に電力が供給されることにより、固定子21の固定子巻線21cに電流が流れ、固定子巻線21cから磁束が発生する。電動機部20の回転子22は、固定子巻線21cから発生する磁束と、回転子22の永久磁石22bから発生する磁束との作用によって回転する。回転子22の回転によって、回転子22に固定された回転軸23が回転する。回転軸23の回転に伴い、圧縮機構部30のピストン32が圧縮機構部30のシリンダ31の圧縮室36内で偏心回転する。シリンダ31とピストン32との間の空間は、圧縮機構部30のベーン35によって低圧側圧縮室36aと高圧側圧縮室36bとの2つに分割されている。回転軸23の回転に伴い、これら低圧側圧縮室36aと高圧側圧縮室36bとの容積が変化する。一方の低圧側圧縮室36aでは、徐々に容積が拡大することにより、吸入マフラ50から低圧のガス冷媒が吸入される。他方の高圧側圧縮室36bでは、徐々に容積が縮小することにより、中のガス冷媒が圧縮される。圧縮され、高圧かつ高温となったガス冷媒は、吐出マフラ37から密閉容器10内の空間に吐出される。吐出されたガス冷媒は、さらに、電動機部20を通過して密閉容器10の頂部にある吐出管51から密閉容器10の外へ吐出される。密閉容器10の外へ吐出された冷媒は、冷媒回路を通って、再び吸入マフラ50に戻ってくる。
<Operation of closed compressor 1>
Here, the operation of the sealed compressor 1 will be described with reference to FIGS. 1 and 2. When electric power is supplied from the terminal 24 to the stator 21 of the electric motor unit 20 via the lead wire 25, a current flows through the stator winding 21c of the stator 21, and a magnetic flux is generated from the stator winding 21c. The rotor 22 of the electric motor unit 20 rotates by the action of the magnetic flux generated from the stator winding 21c and the magnetic flux generated from the permanent magnet 22b of the rotor 22. The rotation of the rotor 22 causes the rotation shaft 23 fixed to the rotor 22 to rotate. As the rotation shaft 23 rotates, the piston 32 of the compression mechanism unit 30 eccentrically rotates in the compression chamber 36 of the cylinder 31 of the compression mechanism unit 30. The space between the cylinder 31 and the piston 32 is divided into two, a low pressure side compression chamber 36a and a high pressure side compression chamber 36b, by the vane 35 of the compression mechanism unit 30. As the rotating shaft 23 rotates, the volumes of the low-pressure side compression chamber 36a and the high-pressure side compression chamber 36b change. On the other hand, in the low-pressure side compression chamber 36a, the low-pressure gas refrigerant is sucked from the suction muffler 50 by gradually expanding the volume. In the other high-pressure side compression chamber 36b, the gas refrigerant inside is compressed by gradually reducing the volume. The compressed, high-pressure and high-temperature gas refrigerant is discharged from the discharge muffler 37 into the space inside the closed container 10. The discharged gas refrigerant further passes through the electric motor unit 20 and is discharged to the outside of the closed container 10 from the discharge pipe 51 at the top of the closed container 10. The refrigerant discharged to the outside of the closed container 10 returns to the suction muffler 50 through the refrigerant circuit.
 図示省略するが、密閉型圧縮機1がスイング式のロータリ圧縮機として構成される場合には、ベーン35が、ピストン32と一体に設けられる。回転軸23が駆動されると、ベーン35は、ピストン32に回転自在に取り付けられた支持体の受入溝に沿って出入りする。ベーン35は、ピストン32の回転に従って揺動しながら半径方向へ進退することによって、シリンダ31とピストン32との間の空間を圧縮室と吸入室とに区画する。支持体は、横断面が半円形状の2つの柱状部材で構成される。支持体は、シリンダ31の吸入口31cと吐出口40との中間部に形成された円形状の保持孔に回転自在に嵌められる。 Although not shown, when the sealed compressor 1 is configured as a swing type rotary compressor, the vane 35 is provided integrally with the piston 32. When the rotating shaft 23 is driven, the vane 35 moves in and out along the receiving groove of the support rotatably attached to the piston 32. The vane 35 moves back and forth in the radial direction while swinging according to the rotation of the piston 32, thereby partitioning the space between the cylinder 31 and the piston 32 into a compression chamber and a suction chamber. The support is composed of two columnar members having a semicircular cross section. The support is rotatably fitted into a circular holding hole formed in the intermediate portion between the suction port 31c and the discharge port 40 of the cylinder 31.
<吐出口40および吐出弁機構部47の構成>
 次に、前述した吐出口40および吐出弁機構部47の構成について、図3~図7を用いて説明する。図3は、図1の密閉型圧縮機1のA部を拡大して示す縦断面図である。図4は、図1の密閉型圧縮機1における吐出弁機構部47の弁受板42を示す平面図である。図5は、図4の弁受板42を矢視C-C方向から見て示す縦断面図である。図6は、図3の吐出弁機構部47の組み付け前の状態を矢視B-B方向から見て示す分解断面図である。図7は、図3の吐出弁機構部47を矢視B-B方向から見て示す断面図である。
<Structure of discharge port 40 and discharge valve mechanism 47>
Next, the configurations of the discharge port 40 and the discharge valve mechanism portion 47 described above will be described with reference to FIGS. 3 to 7. FIG. 3 is an enlarged vertical sectional view showing a portion A of the closed compressor 1 of FIG. FIG. 4 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 of FIG. FIG. 5 is a vertical cross-sectional view showing the valve receiving plate 42 of FIG. 4 as viewed from the direction of arrow CC. FIG. 6 is an exploded cross-sectional view showing a state before assembly of the discharge valve mechanism portion 47 of FIG. 3 as viewed from the direction of arrow BB. FIG. 7 is a cross-sectional view showing the discharge valve mechanism portion 47 of FIG. 3 as viewed from the direction of arrow BB.
 吐出口40は、圧縮機構部30の上軸受33に対して、当該圧縮機構部30の軸方向に貫通して設けられた円形状の貫通穴であり、シリンダ31側の冷媒入口の一部がシリンダ31によって塞がれている。この吐出口40は、圧縮機構部30の軸方向を冷媒吐出方向として、圧縮機構部30により圧縮された高圧側圧縮室36bからの冷媒ガスを密閉容器10内に放出する。上軸受33の上部には、吐出口40の吐出マフラ37側の冷媒出口を開閉自在に閉塞する吐出弁機構部47が設けられている。この吐出弁機構部47は、詳細は後述するが、例えば弾性を有するリード弁からなる吐出弁41と、吐出弁41の上部に設けられた弁受板42とで構成されている。吐出弁41は、上軸受33と弁受板42との間に設けられている。弁受板42は、吐出弁41の上方へのリフトを規制するためのもので、一端部が例えばリベット46によって、吐出弁41と共に上軸受33に組み付けられている。このため、弁受板42の一端部には、リベット46を貫通させるためのリベット孔43が設けられている。 The discharge port 40 is a circular through hole provided through the upper bearing 33 of the compression mechanism portion 30 in the axial direction of the compression mechanism portion 30, and a part of the refrigerant inlet on the cylinder 31 side is provided. It is blocked by the cylinder 31. The discharge port 40 discharges the refrigerant gas from the high-pressure side compression chamber 36b compressed by the compression mechanism unit 30 into the closed container 10 with the axial direction of the compression mechanism unit 30 as the refrigerant discharge direction. A discharge valve mechanism portion 47 is provided above the upper bearing 33 to open and close the refrigerant outlet on the discharge muffler 37 side of the discharge port 40 so as to be openable and closable. The discharge valve mechanism 47 is composed of, for example, a discharge valve 41 made of an elastic lead valve and a valve receiving plate 42 provided on the upper portion of the discharge valve 41, which will be described in detail later. The discharge valve 41 is provided between the upper bearing 33 and the valve receiving plate 42. The valve receiving plate 42 is for restricting the upward lift of the discharge valve 41, and one end thereof is assembled to the upper bearing 33 together with the discharge valve 41 by, for example, a rivet 46. Therefore, a rivet hole 43 for penetrating the rivet 46 is provided at one end of the valve receiving plate 42.
 前述の吐出弁41は、高圧側圧縮室36bから吐出口40を介して吐出される高温高圧の冷媒ガスの吐出タイミングを制御する。すなわち、吐出弁41は、シリンダ31の高圧側圧縮室36bで圧縮された高温高圧の冷媒ガスが、所定の圧力になるまで吐出口40を閉塞する。そして、吐出弁41は、冷媒ガスが所定の圧力以上となったときに、上方へリフトして吐出口40の冷媒出口を開き、高温高圧の冷媒ガスを吐出マフラ37内に吐出させる。この場合、吐出弁41のリフト量は、前述したように弁受板42によって規制される。 The above-mentioned discharge valve 41 controls the discharge timing of the high-temperature and high-pressure refrigerant gas discharged from the high-pressure side compression chamber 36b via the discharge port 40. That is, the discharge valve 41 closes the discharge port 40 until the high-temperature and high-pressure refrigerant gas compressed in the high-pressure side compression chamber 36b of the cylinder 31 reaches a predetermined pressure. Then, when the refrigerant gas reaches a predetermined pressure or higher, the discharge valve 41 lifts upward to open the refrigerant outlet of the discharge port 40, and discharges the high-temperature and high-pressure refrigerant gas into the discharge muffler 37. In this case, the lift amount of the discharge valve 41 is regulated by the valve receiving plate 42 as described above.
 前述のように構成された圧縮機構部30においては、電動機部20の駆動により主軸部23aおよび偏心軸部23bが回転すると、圧縮室36内のピストン32が自転運動する。このとき、ベーン35によって仕切られた低圧側圧縮室36aと高圧側圧縮室36bとの容積が、ピストン32の自転運動に伴って増減する。まず、低圧側圧縮室36aと吸入口31cとが連通し、低圧の冷媒ガスが吸入される。次に、ピストン32により低圧側圧縮室36aと吸入口31cとの連通が閉鎖され、低圧側圧縮室36aの容積減少に伴い高圧側圧縮室36bの冷媒ガスが圧縮される。 In the compression mechanism portion 30 configured as described above, when the spindle portion 23a and the eccentric shaft portion 23b are rotated by the drive of the electric motor portion 20, the piston 32 in the compression chamber 36 rotates. At this time, the volumes of the low-pressure side compression chamber 36a and the high-pressure side compression chamber 36b partitioned by the vane 35 increase or decrease as the piston 32 rotates. First, the low-pressure side compression chamber 36a and the suction port 31c communicate with each other, and the low-pressure refrigerant gas is sucked. Next, the communication between the low-pressure side compression chamber 36a and the suction port 31c is closed by the piston 32, and the refrigerant gas in the high-pressure side compression chamber 36b is compressed as the volume of the low-pressure side compression chamber 36a decreases.
 そして、高圧側圧縮室36bと吐出口40とを連通し、高圧側圧縮室36bの高温高圧の冷媒ガスが所定の圧力に達したときに、吐出口40の吐出弁41が開く。このとき、高温高圧となった冷媒ガスが吐出口40から吐出マフラ37内へ吐出され、吐出マフラ37を介して密閉容器10内に放出される。高圧側圧縮室36bの冷媒ガスが吐出されると、高圧側圧縮室36bと密閉容器10内の圧力差および吐出弁41の弾性力によって吐出口40が閉じられる。密閉容器10内に放出された高温高圧の冷媒ガスは、電動機部20内を通過して密閉容器10内を上昇し、密閉容器10の上部に設けられた吐出管51から外部へ吐出される。 Then, the high-pressure side compression chamber 36b and the discharge port 40 are communicated with each other, and when the high-temperature and high-pressure refrigerant gas in the high-pressure side compression chamber 36b reaches a predetermined pressure, the discharge valve 41 of the discharge port 40 opens. At this time, the high-temperature and high-pressure refrigerant gas is discharged from the discharge port 40 into the discharge muffler 37, and is discharged into the closed container 10 via the discharge muffler 37. When the refrigerant gas in the high-pressure side compression chamber 36b is discharged, the discharge port 40 is closed by the pressure difference between the high-pressure side compression chamber 36b and the closed container 10 and the elastic force of the discharge valve 41. The high-temperature and high-pressure refrigerant gas released into the closed container 10 passes through the electric motor unit 20, rises in the closed container 10, and is discharged to the outside from the discharge pipe 51 provided in the upper part of the closed container 10.
 本実施の形態1の場合、吐出弁機構は上軸受33に配置され、当該上軸受33の吐出口40を開閉する吐出弁41と、吐出弁41の上方へのリフトを規制するための弁受板42と、これら吐出弁41と弁受板42とを固定するリベット46とを有して構成される。 In the case of the first embodiment, the discharge valve mechanism is arranged in the upper bearing 33, and the discharge valve 41 that opens and closes the discharge port 40 of the upper bearing 33 and the valve receiver for restricting the upward lift of the discharge valve 41. It is configured to include a plate 42 and a rivet 46 for fixing the discharge valve 41 and the valve receiving plate 42.
 図4および図5に示すように、弁受板42は、シリンダ31の吸入口31c側の面におけるリベット孔43の周囲を囲むように、当該リベット孔43と連通した溝部44が形成されている。この溝部44は、リベット孔43の穴開け加工時に、冷間塑性加工によって、残留圧縮応力が付加されて形成される。また、弁受板42は、リベット孔43とは反対側の他端部に、冷媒ガス抜き孔45が設けられている。 As shown in FIGS. 4 and 5, the valve receiving plate 42 is formed with a groove 44 communicating with the rivet hole 43 so as to surround the rivet hole 43 on the surface of the cylinder 31 on the suction port 31c side. .. The groove 44 is formed by applying residual compressive stress by cold plastic working when the rivet hole 43 is drilled. Further, the valve receiving plate 42 is provided with a refrigerant gas vent hole 45 at the other end on the opposite side of the rivet hole 43.
 冷媒ガス抜き孔45は、圧縮室36内で圧縮された冷媒ガスが吐出弁41を開き、吐出マフラ37内に吐出されるときに、吐出弁41と弁受板42との間に滞留している冷媒ガスを逃がす。また、冷媒ガス抜き孔45は、吐出弁41が閉じるときに、弁受板42との間に冷媒ガスを供給し、吐出弁41の閉じ遅れが生じるのを防止する。このように、冷媒ガス抜き孔45は、吐出弁41の開閉時における抵抗を減らすためのものである。 The refrigerant gas vent hole 45 stays between the discharge valve 41 and the valve receiving plate 42 when the refrigerant gas compressed in the compression chamber 36 opens the discharge valve 41 and is discharged into the discharge muffler 37. Let the refrigerant gas out. Further, the refrigerant gas vent hole 45 supplies the refrigerant gas between the discharge valve 41 and the valve receiving plate 42 when the discharge valve 41 is closed, and prevents the discharge valve 41 from being delayed in closing. As described above, the refrigerant gas vent hole 45 is for reducing the resistance when the discharge valve 41 is opened and closed.
 図6および図7に示すように、吐出弁41が上軸受33の吐出口40を塞ぐように配置され、当該吐出弁41の上に弁受板42が配置される。そして、この状態において、吐出弁41と弁受板42とがリベット46により上軸受33に固定されることで、吐出弁機構が上軸受33に組み付けられる。 As shown in FIGS. 6 and 7, the discharge valve 41 is arranged so as to close the discharge port 40 of the upper bearing 33, and the valve receiving plate 42 is arranged on the discharge valve 41. Then, in this state, the discharge valve 41 and the valve receiving plate 42 are fixed to the upper bearing 33 by the rivet 46, so that the discharge valve mechanism is assembled to the upper bearing 33.
 このような吐出弁機構は、吐出弁41が開放すると同時に、当該吐出弁41が弁受板42に衝突することになり、その衝突時の衝撃力によって、弁受板42のリベット孔43周辺には曲げ応力が発生する。このとき、リベット孔43周辺に発生する曲げ応力は、弁受板42の信頼性に悪影響を及ぼすほか、場合によっては弁受板42を折損させてしまう。 In such a discharge valve mechanism, at the same time as the discharge valve 41 is opened, the discharge valve 41 collides with the valve receiving plate 42, and the impact force at the time of the collision causes the discharge valve 41 to collide with the rivet hole 43 of the valve receiving plate 42. Bending stress is generated. At this time, the bending stress generated around the rivet hole 43 adversely affects the reliability of the valve receiving plate 42 and, in some cases, breaks the valve receiving plate 42.
 そのため、本発明者は、前述した特許文献1の密閉型圧縮機におけるリベット孔周辺に肉抜き部を設ける点に着目し、この技術の応用により、前述の課題を解決する手法を提案するに至った。なお、特許文献1の密閉型圧縮機においては、リベット孔周辺に肉抜き部を設けることで、弁および弁受板をリベットにより組み付ける際の端板部の歪みを防止し、端板部とシリンダとの密着性および気密性が低下するのを防止することを目的としている。しかしながら、特許文献1の密閉型圧縮機では、リベット孔周辺の折損を防止して、密閉型圧縮機の信頼性および耐久性の向上を図るといった本発明に関する開示または示唆は見受けられない。 Therefore, the present inventor has focused on the fact that a lightening portion is provided around the rivet hole in the sealed compressor of Patent Document 1 described above, and has come to propose a method for solving the above-mentioned problem by applying this technique. It was. In the closed compressor of Patent Document 1, a lightening portion is provided around the rivet hole to prevent distortion of the end plate portion when the valve and the valve receiving plate are assembled by the rivet, and the end plate portion and the cylinder. The purpose is to prevent the adhesion and airtightness from being lowered. However, in the closed compressor of Patent Document 1, there is no disclosure or suggestion regarding the present invention that prevents breakage around the rivet hole and improves the reliability and durability of the closed compressor.
 そこで、本実施の形態1における弁受板42では、リベット孔43の周囲に、当該リベット孔43と連通する溝部44を、冷間塑性加工によって残留圧縮応力を付加させて形成している。このため、弁受板42の疲労強度が増大し、高信頼性化が図られている。 Therefore, in the valve receiving plate 42 according to the first embodiment, a groove portion 44 communicating with the rivet hole 43 is formed around the rivet hole 43 by applying residual compressive stress by cold plastic working. Therefore, the fatigue strength of the valve receiving plate 42 is increased, and high reliability is achieved.
<密閉型圧縮機1の製造方法>
 ここで、本実施の形態1における密閉型圧縮機1の製造方法は、弁受板42にリベット孔43を形成すると共に、溝部44を冷間塑性加工によって成形する穴開け加工工程を有している。
<Manufacturing method of sealed compressor 1>
Here, the method for manufacturing the closed compressor 1 according to the first embodiment includes a drilling step of forming the rivet hole 43 in the valve receiving plate 42 and forming the groove 44 by cold plastic working. There is.
 本実施の形態1における密閉型圧縮機1の製造方法では、穴開け加工工程において、リベット孔43の周囲に設けられる溝部44の冷間塑性加工が、リベット孔43の穴開け加工と同時に施される。このため、溝部44を新たに設けるための加工工程を別途設ける必要はない。すなわち、溝部44を設けることによって加工工程が増加されることはない。また、疲労強度を増加させるための材質の高張力鋼化、調質または焼入れなどの熱処理も必要としない。さらに、この冷間塑性加工は、大量に部品を製作する場合にも有効であると共に、残留圧縮応力を付加するためのバレル研磨工程も省略できる。よって、疲労強度向上による高信頼性化を、低コストで且つ省エネルギーで達成できる。 In the manufacturing method of the closed compressor 1 according to the first embodiment, in the drilling process, the cold plastic working of the groove 44 provided around the rivet hole 43 is performed at the same time as the drilling of the rivet hole 43. To. Therefore, it is not necessary to separately provide a processing process for newly providing the groove 44. That is, the processing process is not increased by providing the groove 44. In addition, heat treatment such as high-strength steel conversion, tempering or quenching of the material for increasing fatigue strength is not required. Further, this cold plastic working is effective even when a large number of parts are manufactured, and the barrel polishing step for applying residual compressive stress can be omitted. Therefore, high reliability by improving fatigue strength can be achieved at low cost and energy saving.
<実施の形態1における効果>
 以上、説明したように本実施の形態1の密閉型圧縮機1では、上軸受33に設けられる吐出弁機構部47において、弁受板42のリベット孔43の周囲に、当該リベット孔43と連通する溝部44を、冷間塑性加工によって残留圧縮応力を付加させて形成している。このとき、溝部44は、弁受板42の上軸受33側の面におけるリベット孔43の周囲を囲んで配置されている。このため、弁受板42のリベット孔周辺の疲労強度を向上させ、吐出弁機構の信頼性を向上できる。よって、圧縮機効率向上のために弁受板42のリフト量を大きくしても、リベット孔43周辺の曲げ応力が増大することによるリベット孔周辺の折損を防止でき、信頼性および耐久性を向上できる。
<Effect in Embodiment 1>
As described above, in the sealed compressor 1 of the first embodiment, the discharge valve mechanism portion 47 provided in the upper bearing 33 communicates with the rivet hole 43 around the rivet hole 43 of the valve receiving plate 42. The groove portion 44 to be formed is formed by applying residual compressive stress by cold plastic working. At this time, the groove 44 is arranged so as to surround the periphery of the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side. Therefore, the fatigue strength around the rivet hole of the valve receiving plate 42 can be improved, and the reliability of the discharge valve mechanism can be improved. Therefore, even if the lift amount of the valve receiving plate 42 is increased in order to improve the compressor efficiency, it is possible to prevent breakage around the rivet hole due to the increase in bending stress around the rivet hole 43, and the reliability and durability are improved. it can.
 また、かかる密閉型圧縮機1の製造方法は、弁受板42にリベット孔43を形成すると共に、溝部44を冷間塑性加工によって成形する穴開け加工工程を有している。すなわち、リベット孔43の周囲に設けられる溝部44の冷間塑性加工は、リベット孔43の穴開け加工と同時に施されるので、溝部44を設けるための新たな加工工程の増加を防止できる。また、疲労強度を増加させるための材質の高張力鋼化、調質または焼入れなどの熱処理も必要としない。さらに、この冷間塑性加工は、大量に部品を製作する場合にも有効であると共に、残留圧縮応力を付加するためのバレル研磨工程も省略できる。よって、疲労強度向上による高信頼性化を、低コストで且つ省エネルギーで達成できる。 Further, the manufacturing method of the closed type compressor 1 includes a hole drilling process in which the rivet hole 43 is formed in the valve receiving plate 42 and the groove portion 44 is formed by cold plastic working. That is, since the cold plastic working of the groove 44 provided around the rivet hole 43 is performed at the same time as the drilling of the rivet hole 43, it is possible to prevent an increase in new processing steps for providing the groove 44. In addition, heat treatment such as high-strength steel conversion, tempering or quenching of the material for increasing fatigue strength is not required. Further, this cold plastic working is effective even when a large number of parts are manufactured, and the barrel polishing step for applying residual compressive stress can be omitted. Therefore, high reliability by improving fatigue strength can be achieved at low cost and energy saving.
実施の形態2.
 次に、図8を参照しながら、本発明の実施の形態2に係る密閉型圧縮機1について説明する。図8は、本発明の実施の形態2に係る密閉型圧縮機1における吐出弁機構部47の弁受板42を示す平面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Embodiment 2.
Next, the closed compressor 1 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 according to the second embodiment of the present invention. The description of the same components as in the first embodiment described above will be omitted.
 図4との対応部分に同一符号を付した図8に示すように、本実施の形態2の場合、リベット孔43の周囲に設けられる溝部44の形状が実施の形態1の場合と異なっている点を除き、弁受板42を含む吐出弁機構部47は実施の形態1と同様に構成されている。 As shown in FIG. 8 in which the corresponding portions corresponding to FIG. 4 are designated by the same reference numerals, in the case of the second embodiment, the shape of the groove 44 provided around the rivet hole 43 is different from that in the first embodiment. Except for the point, the discharge valve mechanism portion 47 including the valve receiving plate 42 is configured in the same manner as in the first embodiment.
 具体的に、本実施の形態2の弁受板42は、弁受板42の上軸受33側の面におけるリベット孔43の周囲のうち、冷媒ガス抜き孔45側に向けた一部に円弧状に配置されている。このとき、溝部44は、リベット孔43に連通されている。なお、溝部44の形状は円弧状に限定されることはない。 Specifically, the valve receiving plate 42 of the second embodiment has an arc shape in a part of the periphery of the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side toward the refrigerant gas vent hole 45 side. It is located in. At this time, the groove 44 is communicated with the rivet hole 43. The shape of the groove 44 is not limited to the arc shape.
<実施の形態2における効果>
 以上、説明したように、本実施の形態2の密閉型圧縮機1では、リベット孔43の周囲に設けられる溝部44が、弁受板42の上軸受33側の面におけるリベット孔43の周囲のうち、冷媒ガス抜き孔45側に向けた一部に円弧状に配置されている。換言すれば、溝部44は、弁受板42の上軸受33側の面におけるリベット孔43の周囲のうち、上軸受33の吐出口40側に向けた一部に円弧状に配置されている。これにより、実施の形態1の効果に加え、当該実施の形態1の場合と比較して、弁受板42に対して溝部44を形成する加工をより簡易化できる。
<Effect in Embodiment 2>
As described above, in the sealed compressor 1 of the second embodiment, the groove 44 provided around the rivet hole 43 is located around the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side. Of these, a part of the refrigerant gas vent hole 45 is arranged in an arc shape. In other words, the groove 44 is arranged in an arc shape on a part of the periphery of the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side toward the discharge port 40 side of the upper bearing 33. As a result, in addition to the effect of the first embodiment, the process of forming the groove 44 with respect to the valve receiving plate 42 can be further simplified as compared with the case of the first embodiment.
実施の形態3.
 次に、図9を参照しながら、本発明の実施の形態3に係る密閉型圧縮機1について説明する。図9は、本発明の実施の形態3に係る密閉型圧縮機1における吐出弁機構部47の弁受板42を示す平面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Embodiment 3.
Next, the closed compressor 1 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 9 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 according to the third embodiment of the present invention. The description of the same components as in the first embodiment described above will be omitted.
 図4との対応部分に同一符号を付した図9に示すように、リベット孔43の周囲に残留圧縮応力が付加されて形成された溝部44は、弁受板42の上軸受33側の面におけるリベット孔43の周囲のうち、弁受板42の幅方向に直線状に延在して配置されている。このとき、溝部44の形状は直線状に限定されることはない。また、溝部44は弁受板42の幅方向における少なくとも一部の領域に設けられていれば、その範囲を限定されることはない。 As shown in FIG. 9 in which the corresponding portions corresponding to those in FIG. 4 are designated by the same reference numerals, the groove 44 formed by applying the residual compressive stress around the rivet hole 43 is the surface of the valve receiving plate 42 on the upper bearing 33 side. Among the periphery of the rivet hole 43 in the above, the valve receiving plate 42 is arranged so as to extend linearly in the width direction. At this time, the shape of the groove 44 is not limited to a straight line. Further, the range of the groove 44 is not limited as long as it is provided in at least a part of the region in the width direction of the valve receiving plate 42.
<実施の形態3における効果>
 以上、説明したように、本実施の形態3の密閉型圧縮機1では、リベット孔43の周囲に設けられる溝部44が、弁受板42の上軸受33側の面におけるリベット孔43の周囲のうち、弁受板42の幅方向に直線状に延在して配置されている。このとき、溝部44は弁受板42の幅方向における少なくとも一部の領域に設けられていればよい。これにより、実施の形態1の効果に加え、当該実施の形態1の場合と比較して、弁受板42に対して溝部44を形成する加工を更に簡易化できる。
<Effect in Embodiment 3>
As described above, in the sealed compressor 1 of the third embodiment, the groove 44 provided around the rivet hole 43 is located around the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side. Among them, the valve receiving plate 42 is arranged so as to extend linearly in the width direction. At this time, the groove 44 may be provided in at least a part of the width direction of the valve receiving plate 42. Thereby, in addition to the effect of the first embodiment, the process of forming the groove 44 with respect to the valve receiving plate 42 can be further simplified as compared with the case of the first embodiment.
実施の形態4.
 次に、図10を参照しながら、本発明の実施の形態4に係る密閉型圧縮機1について説明する。図10は、本発明の実施の形態4に係る密閉型圧縮機1における吐出弁機構部47の弁受板42を示す平面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Embodiment 4.
Next, the closed compressor 1 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a plan view showing a valve receiving plate 42 of the discharge valve mechanism portion 47 in the closed compressor 1 according to the fourth embodiment of the present invention. The description of the same components as in the first embodiment described above will be omitted.
 図9との対応部分に同一符号を付した図10に示すように、リベット孔43の周囲に残留圧縮応力が付加されて形成された溝部44は、直線状で、且つ、弁受板42の幅方向全域に設けられている。このとき、溝部44の形状は直線状に限ることはない。 As shown in FIG. 10 in which the corresponding portions corresponding to those in FIG. 9 are designated by the same reference numerals, the groove 44 formed by applying the residual compressive stress around the rivet hole 43 is linear and is formed by the valve receiving plate 42. It is provided in the entire width direction. At this time, the shape of the groove 44 is not limited to a straight line.
<実施の形態4における効果>
 以上、説明したように、本実施の形態4の密閉型圧縮機1では、リベット孔43の周囲に設けられる溝部44が、弁受板42の上軸受33側の面におけるリベット孔43に近接して当該弁受板42の幅方向の全域に直線状に延在して配置されている。このとき、溝部44の形状は直線状に限ることはない。これにより、実施の形態3の効果に加え、当該実施の形態3の場合と比較して、弁受板42に対して溝部44を形成する加工を更に簡易化できる。
<Effect in Embodiment 4>
As described above, in the closed compressor 1 of the fourth embodiment, the groove 44 provided around the rivet hole 43 is close to the rivet hole 43 on the surface of the valve receiving plate 42 on the upper bearing 33 side. The bearing plate 42 is arranged so as to extend linearly over the entire width direction. At this time, the shape of the groove 44 is not limited to a straight line. Thereby, in addition to the effect of the third embodiment, the process of forming the groove 44 with respect to the valve receiving plate 42 can be further simplified as compared with the case of the third embodiment.
 なお、密閉型圧縮機1は、前述した実施の形態1~4に記載のシングルロータリ圧縮機に限定されることはない。密閉型圧縮機1としては、この他、多気筒のロータリ圧縮機またはスイング式のロータリ圧縮機などであってもよい。 The sealed compressor 1 is not limited to the single rotary compressor described in the above-described first to fourth embodiments. The closed type compressor 1 may also be a multi-cylinder rotary compressor, a swing type rotary compressor, or the like.
 1 密閉型圧縮機、10 密閉容器、11 下部容器、12 上部容器、20 電動機部、21 固定子、21a 固定子鉄心、21b 絶縁部材、21c 固定子巻線、22 回転子、22a 回転子鉄心、22b 永久磁石、23 回転軸、23a 主軸部、23b 偏心軸部、23c 副軸部、24 端子、25 リード線、30 圧縮機構部、31 シリンダ、31a 背圧室、31b ベーン溝部、31c 吸入口、32 ピストン、33 上軸受、34 下軸受、35 ベーン、36 圧縮室、36a 低圧側圧縮室、36b 高圧側圧縮室、37 吐出マフラ、40 吐出口、41 吐出弁、42 弁受板、43 リベット孔、44 溝部、45 冷媒ガス抜き孔、46 リベット、47 吐出弁機構部、50 吸入マフラ、50a 連結管、51 吐出管。 1 closed compressor, 10 closed container, 11 lower container, 12 upper container, 20 electric motor part, 21 stator, 21a stator core, 21b insulation member, 21c stator winding, 22 rotor, 22a rotor core, 22b permanent magnet, 23 rotating shaft, 23a main shaft, 23b eccentric shaft, 23c sub-shaft, 24 terminal, 25 lead wire, 30 compression mechanism, 31 cylinder, 31a back pressure chamber, 31b vane groove, 31c suction port, 32 piston, 33 upper bearing, 34 lower bearing, 35 vane, 36 compression chamber, 36a low pressure side compression chamber, 36b high pressure side compression chamber, 37 discharge muffler, 40 discharge port, 41 discharge valve, 42 valve receiving plate, 43 rivet hole , 44 groove, 45 refrigerant gas vent hole, 46 rivet, 47 discharge valve mechanism, 50 suction muffler, 50a connecting pipe, 51 discharge pipe.

Claims (6)

  1.  密閉容器の内部に、圧縮機構部と、前記圧縮機構部を駆動する電動機部と、を備え、前記圧縮機構部が環状のシリンダおよび軸受部を有し、クランク軸を介して連結された前記電動機部によって駆動される密閉型圧縮機であって、
     前記圧縮機構部は、
     前記軸受部に固定され、当該軸受部に形成された吐出口を開閉する吐出弁と、
     前記吐出弁の開放時に、当該吐出弁が当接することで当該吐出弁のリフト量を制限する弁受板と、
    を有する吐出弁機構部を備え、
     前記弁受板には、
     前記吐出弁機構部を前記軸受部に組み付けるためのリベットを貫通させるリベット孔と、
     少なくとも一部分が前記リベット孔に連通する溝部と、が形成されている、密閉型圧縮機。
    The electric motor is provided with a compression mechanism and an electric motor for driving the compression mechanism inside the closed container, and the compression mechanism has an annular cylinder and a bearing and is connected via a crankshaft. It is a sealed compressor driven by a part.
    The compression mechanism unit
    A discharge valve that is fixed to the bearing and opens and closes the discharge port formed in the bearing.
    When the discharge valve is opened, the discharge valve comes into contact with the valve receiving plate that limits the lift amount of the discharge valve.
    Equipped with a discharge valve mechanism
    On the valve plate,
    A rivet hole through which a rivet for assembling the discharge valve mechanism portion to the bearing portion is passed,
    A closed compressor in which at least a part thereof is formed with a groove portion communicating with the rivet hole.
  2.  前記溝部は、
     前記弁受板の前記軸受部側の面における前記リベット孔の周囲を囲んで配置されている、請求項1に記載の密閉型圧縮機。
    The groove is
    The sealed compressor according to claim 1, which is arranged so as to surround the rivet hole on the surface of the valve receiving plate on the bearing portion side.
  3.  前記溝部は、
     前記弁受板の前記軸受部側の面における前記リベット孔の周囲のうち、前記吐出口側に向けた一部に円弧状に配置されている、請求項1に記載の密閉型圧縮機。
    The groove is
    The sealed compressor according to claim 1, wherein a part of the periphery of the rivet hole on the surface of the valve receiving plate on the bearing portion side toward the discharge port side is arranged in an arc shape.
  4.  前記溝部は、
     前記弁受板の前記軸受部側の面における前記リベット孔の周囲のうち、前記弁受板の幅方向に直線状に延在して配置されている、請求項1に記載の密閉型圧縮機。
    The groove is
    The closed compressor according to claim 1, wherein the rivet hole on the surface of the valve receiving plate on the bearing portion side is arranged so as to extend linearly in the width direction of the valve receiving plate. ..
  5.  前記溝部は、
     前記弁受板の幅方向における全域に配置されている、請求項4に記載の密閉型圧縮機。
    The groove is
    The sealed compressor according to claim 4, which is arranged over the entire width direction of the valve receiving plate.
  6.  請求項1~5のいずれか一項に記載の密閉型圧縮機の製造方法であって、
     前記弁受板に前記リベット孔を形成すると共に、前記溝部を冷間塑性加工によって成形する穴開け加工工程を有する、密閉型圧縮機の製造方法。
    The method for manufacturing a closed compressor according to any one of claims 1 to 5.
    A method for manufacturing a closed compressor, which comprises forming the rivet hole in the valve receiving plate and forming the groove portion by cold plastic working.
PCT/JP2019/010515 2019-03-14 2019-03-14 Hermetic-type compressor and manufacturing method therefor WO2020183694A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/010515 WO2020183694A1 (en) 2019-03-14 2019-03-14 Hermetic-type compressor and manufacturing method therefor
JP2021504747A JPWO2020183694A1 (en) 2019-03-14 2019-03-14 Sealed compressor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010515 WO2020183694A1 (en) 2019-03-14 2019-03-14 Hermetic-type compressor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020183694A1 true WO2020183694A1 (en) 2020-09-17

Family

ID=72426490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010515 WO2020183694A1 (en) 2019-03-14 2019-03-14 Hermetic-type compressor and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2020183694A1 (en)
WO (1) WO2020183694A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271732A (en) * 1975-12-12 1977-06-15 Tokico Ltd Valve device
JPS52168335U (en) * 1976-06-15 1977-12-20

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595942B2 (en) * 2004-12-06 2010-12-08 ダイキン工業株式会社 Compressor
JP6201341B2 (en) * 2013-02-28 2017-09-27 株式会社富士通ゼネラル Rotary compressor
JP2018031413A (en) * 2016-08-24 2018-03-01 大豊工業株式会社 Reed valve and vane pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271732A (en) * 1975-12-12 1977-06-15 Tokico Ltd Valve device
JPS52168335U (en) * 1976-06-15 1977-12-20

Also Published As

Publication number Publication date
JPWO2020183694A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP5286937B2 (en) Rotary compressor
US20050031465A1 (en) Compact rotary compressor
JP4900081B2 (en) Rotary compressor
EP2818711B1 (en) Linear compressor
US9429156B2 (en) Compressor
EP1967737A1 (en) Rotary compressor
US20120087819A1 (en) Rotary compressor
JP4380734B2 (en) Rotary compressor
WO2014049914A1 (en) Rotary compressor
EP3364029B1 (en) Compressor
WO2020183694A1 (en) Hermetic-type compressor and manufacturing method therefor
CN114555950B (en) Rotary compressor
EP3315774A1 (en) Hermetic electric compressor
JP5135779B2 (en) Compressor
US20090068035A1 (en) Refrigerant compressor arrangement
JP2008138591A5 (en)
WO2019123531A1 (en) Stator and electric motor provided with stator
JP2011074814A (en) Rotary compressor and manufacturing method for the same
KR20140086492A (en) Compressor
CN112601890B (en) Compressor
KR20230153044A (en) Reciprocating compressor
WO2016092906A1 (en) Compressor
CN109804164B (en) Hermetic compressor
KR20140086482A (en) Compressor
WO2018189827A1 (en) Enclosed compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919132

Country of ref document: EP

Kind code of ref document: A1