WO2016092906A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016092906A1
WO2016092906A1 PCT/JP2015/072828 JP2015072828W WO2016092906A1 WO 2016092906 A1 WO2016092906 A1 WO 2016092906A1 JP 2015072828 W JP2015072828 W JP 2015072828W WO 2016092906 A1 WO2016092906 A1 WO 2016092906A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
drive shaft
opposite
stator
compressor
Prior art date
Application number
PCT/JP2015/072828
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 藥師寺
小川 真
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP15866661.0A priority Critical patent/EP3217014B1/en
Priority to CN201580060639.1A priority patent/CN107076149A/en
Publication of WO2016092906A1 publication Critical patent/WO2016092906A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight

Definitions

  • the present invention relates to a compressor having a rotary compressor and a motor applied to an air conditioner or the like.
  • a compressor In a compressor used for an air conditioner, a compressor is driven by an electromagnetic motor.
  • the electromagnetic motor includes a rotor, a stator, and the like, and the rotor and the compression unit are connected to each other via a drive shaft.
  • the compressor rotates as the motor rotor rotates.
  • the drive shaft is fixed on the compression unit side, and the other end side of the drive shaft is a free end on the rotor side.
  • the drive shaft is provided with a crank pin (eccentric pin) on the compression unit side, and the crank pin is fitted to the roller of the compression unit.
  • the center of gravity of the roller of the compression section is eccentric with respect to the axis of the drive shaft and is not located on the axis of the drive shaft. Therefore, in order to balance the centrifugal force generated by the rotation of the roller, balance weights, which are weights, are provided on the upper and lower surfaces of the rotor.
  • the center of the drive shaft is provided on the upper surface of the rotor with respect to the center of the rotor in order to suppress swinging of the rotor of the motor and reduce vibration and noise of the rotor during operation.
  • the drive shaft in order to reduce vibration and noise during operation, has a first portion on which the rotor is mounted and a second portion on the cylinder chamber side, and the central axis of the first portion
  • a technique for displacing the central axis of the second portion to the opposite side to the side on which the balance weight is installed.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a compressor capable of reducing the amount of bending of a drive shaft and reducing the noise generated by the vibration caused by the bending characteristic value. With the goal.
  • a compressor includes a motor unit having a compression unit, a rotor on which a plurality of metal plates are stacked, and a stator provided on an outer peripheral portion of the rotor, and the motor unit and the compression unit
  • the rotor is provided with a weight portion on a surface on one end side in the axial direction of the drive shaft, and the metal plate on the weight portion side among the stacked metal plates is With respect to the axis of the drive shaft, the weight portion protrudes in the side direction opposite to the stator in the radial direction of the rotor.
  • the metal plates constituting the rotor project in the side direction opposite to the radial direction of the rotor from the weight portion, the metal plates project when the rotor of the motor rotates.
  • the magnetic attraction force generated on the stator side is greater at the portion where the metal plate is not protruding.
  • the surface of the one end side of the axial direction of the drive shaft in which a weight part is provided is a surface on the opposite side to the surface by the side of a compression part, for example.
  • the metal plate on the weight portion side of the stacked metal plates is the stator side opposite to the radial direction of the rotor with respect to the axis of the drive shaft. It may be stacked in a staggered manner.
  • the stacked metal plates constituting the rotor are stacked so as to be shifted so as to protrude in the side direction of the stator opposite to the weight portion, when the rotor of the motor rotates, the metal plates The magnetic attraction force generated on the stator side is larger in the portion where the metal plates project and are stacked than in the portion where the metal plates project and are not stacked.
  • the stator side opposite to the weight portion in the radial direction of the rotor with respect to the axis of the drive shaft A metallic coating may be applied to project in the direction.
  • the metal coating is applied so that the laminated metal plates constituting the rotor project in the side direction of the stator opposite to the weight portion, when the rotor of the motor rotates, In the portion where the metal coating is applied, the magnetic attraction force generated on the stator side is larger than the portion where the metal plate does not protrude.
  • the weight on the weight portion side with respect to the axis of the drive shaft may be reduced in consideration of the weight of the radially protruding portion of the rotor of the metal plate.
  • the rotor may be provided with a second weight portion on a surface on the other end side opposite to the one end side in the axial direction of the drive shaft.
  • the metal plate on the side of the second weight portion of the metal plate protrudes in the side direction of the stator opposite to the radial direction of the rotor with respect to the axis of the drive shaft.
  • the metal plate on the second weight portion side protrudes in the side direction of the stator opposite to the radial direction of the rotor from the second weight portion, and in addition to the metal plate on the weight portion side, The magnetic attraction force generated on the stator side is larger than the portion where the metal plate does not protrude.
  • the bending of the drive shaft can be further alleviated as compared with the case where the metal plate does not protrude in the rotor.
  • a compressor includes a motor unit having a compression unit, a rotor on which a plurality of metal plates are stacked, and a stator provided on an outer peripheral portion of the rotor, and the motor unit and the compression unit
  • the rotor is provided with a weight portion on the surface opposite to the compression portion side in the axial direction of the drive shaft, and a plurality of permanent magnets are provided inside the rotor.
  • the permanent magnet provided on the side opposite to the compression portion side in the axial direction of the drive shaft is opposite to the weight portion in the radial direction of the rotor with respect to the axis of the drive shaft as compared with other portions. It arrange
  • the magnetic force of the permanent magnet is increased in the side direction of the stator opposite to the radial direction of the rotor, so that the magnetic force of the permanent magnet is increased when the rotor of the motor rotates.
  • the magnetic attraction force generated on the stator side is larger than that in the other parts.
  • the permanent magnet provided on the side opposite to the compression portion side in the axial direction of the drive shaft is disposed closer to the stator side in the radial direction of the rotor than other portions.
  • the magnetic force may be stronger than the permanent magnet of the other part.
  • the permanent magnet since the permanent magnet is disposed on the side of the stator opposite to the radial direction of the rotor relative to the other portions, the permanent magnet is biased when the motor rotor rotates. In the disposed portion, the magnetic attraction force generated on the stator side is larger than the portion where the permanent magnet is not disposed in a biased manner.
  • the permanent magnet since the permanent magnet has a stronger magnetic force in the stator side direction opposite to the radial direction of the rotor as compared to other parts, when the rotor of the motor rotates, the magnetic force of the permanent magnet is compared to other parts. In the strong portion, the magnetic attraction force generated on the stator side is larger than in the other portions.
  • the multi-cylinder rotary compressor 1 includes a cylindrical hermetic container 2 whose upper and lower portions are sealed by an upper cover 3 and a lower cover 4, and the upper side of the inside A motor 5 is installed at the site, and a compression mechanism (rotary compression mechanism) 6 driven by the motor 5 is installed at the lower site.
  • a mounting leg 7 is provided on the lower periphery of the closed container 2. Further, a discharge pipe 8 penetrating the upper cover 3 is provided at the upper part of the closed container 2, and the discharge pipe 8 discharges the high pressure refrigerant gas compressed by the multi-cylinder rotary compressor 1 to the refrigeration cycle side. Furthermore, an accumulator 9 is attached to the outer peripheral portion of the closed container 2. The accumulator 9 separates liquid components such as oil and liquid refrigerant contained in low-pressure refrigerant gas returning from the refrigeration cycle side, Only a minute is sucked into the compression mechanism 6 through the suction pipes 10 and 11.
  • the motor 5 includes a stator 12 and a rotor 13.
  • the stator 12 is fixed to the inner peripheral surface of the sealed container 2 by press fitting or the like.
  • the rotor 13 can transmit the rotational drive force of the rotor 13 to the compression mechanism 6 through the drive shaft 14 by the drive shaft 14 being coupled and integrated.
  • a first eccentric pin 15 and a second eccentric pin 16 are provided corresponding to a first roller 24 and a second roller 25 of the rotary type compression mechanism 6 described later.
  • the rotary compression mechanism 6 is a two-cylinder type in the present embodiment, and the first and second compression mechanisms 6A and 6B have a first cylinder chamber 17 and a second cylinder chamber 18 formed therein.
  • the compression mechanism 6 further includes a first cylinder body 19 and a second cylinder body 20, a partition plate (separator plate) 21, an upper bearing 22, a lower bearing 23, and the like.
  • the first cylinder body 19 and the second cylinder body 20 are fixedly installed in the sealed container 2 in correspondence with the first eccentric pin 15 and the second eccentric pin 16 of the drive shaft 14.
  • the partition plate 21 is interposed between the first cylinder main body 19 and the second cylinder main body 20, and divides the first cylinder chamber 17 and the second cylinder chamber 18.
  • the upper bearing 22 is provided on the upper surface of the first cylinder main body 19 to define the first cylinder chamber 17 and to support the drive shaft 14.
  • the lower bearing 23 is provided on the lower surface of the second cylinder main body 20 and defines the second cylinder chamber 18 and supports the drive shaft 14.
  • the first and second compression mechanisms 6A and 6B respectively include a first roller 24 and a second roller 25 and blades 28 and 29.
  • the first roller 24 and the second roller 25 are rotatably fitted to the first eccentric pin 15 and the second eccentric pin 16, respectively, and rotate in the first cylinder chamber 17 and the second cylinder chamber 18.
  • the first eccentric pin 15 and the second eccentric pin 16 are coupled to the drive shaft 14 and integrally rotate with the drive shaft 14.
  • the center of gravity of the second roller 25 fitted to the second eccentric pin 16 is located opposite to the center of gravity of the first roller 24 fitted to the first eccentric pin 15 with respect to the axis of the drive shaft 14.
  • the blades 28 and 29 are slidably fitted in blade grooves 26 and 27 provided in the first cylinder body 19 and the second cylinder body 20, as shown in FIG. 2) Divide the inside of the cylinder chamber 18 into the suction chamber side and the discharge chamber side.
  • Low pressure refrigerant gas is drawn into the first cylinder chamber 17 and the second cylinder chamber 18 of the first and second compression mechanisms 6A and 6B from the suction pipes 10 and 11 through the suction ports 30 and 31, respectively.
  • the refrigerant gas sucked into the first cylinder chamber 17 and the second cylinder chamber 18 is compressed by the rotation of the first roller 24 and the second roller 25, and then, through the discharge port and the discharge valve (not shown). , And into the discharge chambers 32, 33.
  • the refrigerant gas discharged into the discharge chambers 32, 33 is discharged into the closed container 2 and then sent out to the refrigeration cycle through the discharge pipe 8.
  • the first cylinder body 19 and the second cylinder body 20 constituting the compression mechanism 6, the partition plate 21, the upper bearing 22 and the lower bearing 23 are integrally fastened and fixed via bolts. Further, the bottom of the closed container 2 is filled with refrigeration oil 34 such as PAG oil or POE oil, and the lubrication portion in the compression mechanism 6 is provided through the oil supply hole or the like provided in the drive shaft 14 Refueling is possible. An appropriate amount of extreme pressure agent adapted to each oil is added to the refrigerator oil 34.
  • the oil supply mechanism to the compression mechanism 6 is a structure used normally, and abbreviate
  • the first balance weight 35 is provided on the upper surface of the rotor 13, that is, on one side of the drive shaft 14 in the axial direction and opposite to the side on which the compression mechanism 6 is located. Further, the center of gravity of the first balance weight 35 is located on the opposite side of the center of gravity of the first roller 24 with respect to the axis of the drive shaft 14.
  • the second balance weight 36 is provided on the lower surface of the rotor 13, that is, on the other side of the drive shaft 14 in the axial direction and on the side where the compression mechanism 6 is located. Further, the center of gravity of the second balance weight 36 is located on the opposite side of the center of gravity of the second roller 25 with respect to the axis of the drive shaft 14.
  • the centrifugal force applied to the first balance weight 35 and the second balance weight 36 is obtained by the first roller 24 and the second roller 25. And the centrifugal force exerted on the first roller 24 and the second roller 25 caused by the rotation of
  • a plurality of steel plates are mutually insulated and stacked in the axial direction of the drive shaft 14.
  • the steel plate is an example of a magnetic metal plate, and may be another magnetic metal plate.
  • the steel plates are arranged such that the outer surfaces of the rotor 13 are on the same plane. Therefore, conventionally, the interval of the gap (also referred to as an air gap) formed between the stator 12 and the rotor 13 is constant in the circumferential direction.
  • the air gap is, for example, 100 to several tens of ⁇ m to several hundreds of ⁇ m depending on the size of the motor 5 or the like.
  • the air gap according to the present embodiment is the upper side of the rotor 13, that is, one side of the drive shaft 14 in the axial direction, opposite to the side where the compression mechanism 6 is located.
  • the air gap spacing differs between the installation side of the first balance weight 35 and the side opposite to the installation side of the first balance weight 35 with respect to the drive shaft 14.
  • the air gap on the opposite side to the installation side of the first balance weight 35 with respect to the drive shaft 14 is narrower than the installation side of the first balance weight 35.
  • the steel plate 13A laminated on the upper side of the rotor 13 is of the stator 12 positioned opposite to the installation side of the first balance weight 35 as compared to the other steel plates 13B. They are arranged offset so as to protrude in the direction.
  • the planar shape of the steel plate 13A and the planar shape of the steel plate 13B are the same.
  • the shift amount of the steel plate 13A is, for example, about 1/10 of the gap of the air gap.
  • FIG. 3 schematically shows how the rotor 13 swings with the compression mechanism 6 side as the fixed end (the same applies to FIGS. 5, 7 and 9 shown below).
  • the number of shifted steel plates 13A depends on, for example, the magnetic attraction force to be increased, and is a steel plate in the range of several percent to ten and several percent on the upper side of the rotor 13.
  • the minimum number is assumed to be one, and the maximum number is assumed to be, for example, in the range of 1/2 to 2/3 of all the steel plates.
  • the shift amount of 13 A of steel plates is shown about the case where it is the same value in all the steel plates 13A which are shifted and arrange
  • the shift amount of the steel plate 13A is not limited to this example, and is not limited to the illustrated example, such as increasing the shift amount stepwise or smoothly toward the upper side.
  • the centrifugal force is exerted by the first balance weight 35, and as described above, the steel plate 13A is disposed in a shifted manner, thereby reducing the bending of the drive shaft 14, that is, the first relative to the axis of the drive shaft 14.
  • a magnetic attraction force is generated in the direction opposite to the balance weight 35, and the bending of the drive shaft 14 can be relieved.
  • the amount of bending of the drive shaft 14 can be reduced as compared to the case where the steel plates are not disposed in a shifted manner, and noise generated by vibration caused by the bending characteristic value is reduced. be able to.
  • the weight of the steel plate 13 of the rotor 13 may be reduced on the side of the first balance weight 35 with respect to the axis of the drive shaft 14 in consideration of the protruding portion of the steel plate 13A.
  • 5 and 6 show an example in which the weight is reduced by forming the through holes 40 in each of the steel plates 13A.
  • the first roller 24 and the second roller 24 generated by the centrifugal force applied above the rotor 13 and the rotation of the first roller 24 and the second roller 25.
  • the balance with the centrifugal force applied to the roller 25 can be maintained.
  • the present invention is not limited to this. It is not limited to the example. That is, the through hole 40 may be installed in a part of the steel plate 13A. Further, instead of providing the through holes 40 in the steel plate 13A, the weight itself of the first balance weight 35 may be reduced in consideration of the protruding portion of the steel plate 13A.
  • the present invention is not limited to the composition of the embodiment mentioned above.
  • the air gap is narrowed on the upper side of the rotor 13 in order to reduce bending caused by the centrifugal force of the first balance weight 35, but the present invention is limited to this example I will not.
  • the steel plate 13C stacked on the lower side of the rotor 13 is a stator opposite to the side on which the second balance weight 36 is installed, as compared to the steel plate 13B of the other intermediate portion. It may be arranged in a staggered manner so as to protrude to the 12 side.
  • the drive shaft 14 when the drive shaft 14 resonates at a specific value by displacing the steel plates 13C of the rotor 13, the bending amount of the drive shaft 14 can be reduced, and if it is shifted together with the steel plate 13A of the rotor 13, the bending specific value It is possible to further reduce the noise generated by the vibration caused by the If the amount of bending of the drive shaft 14 on the lower side of the rotor 13 is larger, only the steel plate 13C of the rotor 13 may be shifted.
  • the steel plates 13A stacked on the upper side of the rotor 13 are offset from the other steel plates so as to protrude on the opposite side to the installation side of the first balance weight 35.
  • the invention is not limited to this example. That is, when the rotation of the rotor 13 is stopped, the air gap on the opposite side to the installation side of the first balance weight 35 with respect to the drive shaft 14 is narrowed compared to the installation side of the first balance weight 35
  • the protruding portion 41 may be provided by separately coating the outer peripheral portion of the steel plate 13A.
  • the protruding portion 41 is formed of silver paste or the like.
  • the projecting portion 41 may be formed so that the planar shape itself of the steel plate 13A is different from the shape of the steel plate 13B of the other portion.
  • the projecting portion 41 is formed on the side opposite to the installation side of the first balance weight 35 with respect to the drive shaft 14 among the stacked steel plates 13A.
  • the air gap on the opposite side of the drive shaft 14 to the first balance weight 35 installation side is narrower than the first balance weight 35 installation side.
  • the protruding portion 41 of the steel plate 13A of the rotor 13 protrudes to the opposite side to the first balance weight 35, when the rotor 13 of the motor 5 rotates, the magnetic attraction force larger than the portions other than the protruding portion 41 Occurs on the stator 12 side. That is, a centrifugal force is exerted by the first balance weight 35 and bending occurs in the drive shaft 14.
  • the direction in which the bending of the drive shaft 14 is alleviated ie, the drive shaft 14
  • the magnetic attraction force is generated in the direction of the side of the stator 12 opposite to the first balance weight 35 with respect to the axis of the shaft, and the bending of the drive shaft 14 can be relaxed.
  • a compressor according to a second embodiment of the present invention will be described.
  • the compressor according to the present embodiment is different from the compressor according to the above-described first embodiment in that the rotor 13 is different. Therefore, the rotor 13 according to the present embodiment will be described below. Components other than the rotor 13 are the same as those in the first embodiment, and thus detailed description will be omitted.
  • a plurality of steel plates are mutually insulated and stacked in the axial direction of the drive shaft 14. By laminating the steel plates, generation of eddy current is suppressed.
  • the steel plates according to the present embodiment are arranged such that the outer surfaces of the rotor 13 are on the same plane. Therefore, the gap (air gap) formed between the stator 12 and the rotor 13 is constant in the circumferential direction.
  • Permanent magnets 42 and 50 are embedded in the rotor 13. Although an arrangement example of the permanent magnets 42 and 50 is shown in FIG. 11, the size, position, orientation and the like of the permanent magnets arranged inside the rotor 13 are not limited to the arrangement example shown in FIG.
  • the permanent magnets 42, 50 are disposed in the openings formed in the steel plate.
  • the permanent magnet 42 is located on the opposite side of the first balance weight 35 on the side where the first balance weight 35 is installed, as compared with the permanent magnet 50 installed on the other steel plate 13E. It is arranged by shifting in the direction.
  • the planar shape of the steel plate 13D and the planar shape of the steel plate 13E are the same.
  • the plurality of permanent magnets 50 provided other than the upper side of the rotor 13 are point-symmetrically provided centering on the axis of the drive shaft 14 similarly to the arrangement of the permanent magnets in the conventional rotor.
  • the plurality of permanent magnets 42 provided on the upper side of the rotor 13 are offset to the side opposite to the installation side of the first balance weight 35, and the center of the point symmetry of the permanent magnet 42 Also, with respect to the axis of the drive shaft 14, the first balance weight 35 is offset to the side opposite to the installation side.
  • the magnetic attraction force may be increased in the direction in which the bending of the drive shaft 14 is relieved, that is, in the radial direction opposite to the first balance weight 35 with respect to the axis of the drive shaft 14.
  • the magnetic force of the permanent magnet disposed opposite to the first balance weight 35 with respect to the axis of the drive shaft 14 is stronger than the permanent magnet disposed on the first balance weight 35 with respect to the axis of the drive shaft 14.
  • a magnetic attraction force is generated in the direction to ease the bending of the drive shaft 14, that is, in the radial direction opposite to the first balance weight 35 with respect to the axis of the drive shaft 14, and the bending of the drive shaft 14 can be relaxed.
  • the permanent magnet 42 disposed on the upper side of the rotor 13 is disposed so that the magnetic attraction force increases in the radial direction opposite to the first balance weight 35 with respect to the axis of the drive shaft 14
  • the permanent magnets disposed below the rotor 13 may be similarly disposed. In this case, the permanent magnets disposed below the rotor 13 are disposed such that the magnetic attraction force increases in the opposite radial direction of the second balance weight 36 with respect to the axis of the drive shaft 14.
  • the present invention is not limited to this type of compressor.
  • the present invention can also be applied to a rotary compressor provided with only one rotary compression mechanism, and can also be applied to a scroll compressor provided with one or more scroll compression mechanisms.
  • Compressor 1 Compressor 2 Sealed container 5 Motor (Motor section) 6 Compression mechanism (compression unit) 6A first compression mechanism 6B second compression mechanism 8 discharge piping 9 accumulator 10, 11 suction piping 12 stator 13 rotors 13A, 13B, 13C, 13D, 13E steel plate 14 drive shaft 15 first eccentric pin 16 second eccentric pin 17 first Cylinder chamber 18 Second cylinder chamber 19 First cylinder body 20 Second cylinder body 24 First roller 25 Second roller 35 First balance weight (weight part) 36 Second balance weight (second weight) 40 through hole 41 projecting portion 42, 50 permanent magnet

Abstract

The objective of the present invention is to provide a compressor with which it is possible to reduce the bending amount of a drive shaft and reduce the noise generated by vibration caused by a bending eigenvalue. This compressor is provided with: a compression mechanism; a motor that has a rotor (13) formed by laminating a plurality of steel sheets, and a stator (12) provided in an outer peripheral portion of the rotor (13); and a drive shaft (14) that connects the motor and the compression mechanism. A first balance weight (35) is provided on the rotor (13) on the surface that is on the opposite side from the compression mechanism side in terms of the axial direction of the drive shaft (14), and a steel sheet (13A) from among the laminated steel sheets that is on the first balance weight (35) side protrudes, with respect to the axis of the drive shaft (14), toward the stator (12) that is located on the opposite side from the first balance weight (35) in the radial direction of the rotor (13).

Description

圧縮機Compressor
 本発明は、空気調和機などに適用される、ロータリ式圧縮部及びモータを有する圧縮機に関するものである。 The present invention relates to a compressor having a rotary compressor and a motor applied to an air conditioner or the like.
 空気調和機に用いられる圧縮機は、電磁式モータによって圧縮部が駆動される。電磁式モータは、ロータとステータなどから構成され、ロータと圧縮部は、駆動軸(シャフト)を介して互いに接続される。モータのロータが回転することによって、圧縮部が回転する。 In a compressor used for an air conditioner, a compressor is driven by an electromagnetic motor. The electromagnetic motor includes a rotor, a stator, and the like, and the rotor and the compression unit are connected to each other via a drive shaft. The compressor rotates as the motor rotor rotates.
 駆動軸の一端側は、圧縮部側で固定され、駆動軸の他端側は、ロータ側で自由端となっている。また、ロータリ式圧縮機の場合、駆動軸は、圧縮部側にクランクピン(偏心ピン)が設けられ、クランクピンは、圧縮部のローラに嵌合される。その結果、圧縮部のローラの重心は、駆動軸の軸線に対して偏心しており、駆動軸の軸線上に位置していない。したがって、ローラの回転によって生じる遠心力とバランスをとるため、ロータの上面や下面に、錘であるバランスウエイトが設けられる。 One end side of the drive shaft is fixed on the compression unit side, and the other end side of the drive shaft is a free end on the rotor side. In the case of a rotary compressor, the drive shaft is provided with a crank pin (eccentric pin) on the compression unit side, and the crank pin is fitted to the roller of the compression unit. As a result, the center of gravity of the roller of the compression section is eccentric with respect to the axis of the drive shaft and is not located on the axis of the drive shaft. Therefore, in order to balance the centrifugal force generated by the rotation of the roller, balance weights, which are weights, are provided on the upper and lower surfaces of the rotor.
 下記の特許文献1では、運転中、モータのロータの振れ回りを抑制して、ロータの振動及び騒音を減少するため、駆動軸の中心を、ロータの中心に対してロータ上面に設けられる第1のバランスウエイト側に変位させる技術が開示されている。また、特許文献2では、運転時の振動や騒音を低減するため、駆動軸は、ロータが装着される第1部分と、シリンダ室側の第2部分を有し、第1部分の中心軸を、第2部分の中心軸に対して、バランスウエイトが設置された側とは反対側に変位させる技術が開示されている。 In the following Patent Document 1, the center of the drive shaft is provided on the upper surface of the rotor with respect to the center of the rotor in order to suppress swinging of the rotor of the motor and reduce vibration and noise of the rotor during operation. Discloses a technique for displacing to the balance weight side of. Further, in Patent Document 2, in order to reduce vibration and noise during operation, the drive shaft has a first portion on which the rotor is mounted and a second portion on the cylinder chamber side, and the central axis of the first portion There is disclosed a technique for displacing the central axis of the second portion to the opposite side to the side on which the balance weight is installed.
特開2006-200527号公報Unexamined-Japanese-Patent No. 2006-200527 特開2009-74464号公報JP, 2009-74464, A
 圧縮機の運転時、駆動軸の曲げ固有値に起因した振動によって、騒音が発生する。この共振に基づく騒音は、駆動軸に生じる他の振動に起因する騒音よりも大きい。駆動軸が固有値で共振することは、圧縮機の構造上、回避することが困難である。しかし、たとえ共振が生じたとしても、駆動軸の曲げ量を低減することによって、振動を抑制し、騒音を低減することができる。 During operation of the compressor, noise is generated by vibration due to bending inherent values of the drive shaft. The noise due to this resonance is greater than the noise due to other vibrations occurring in the drive shaft. It is difficult to avoid that the drive shaft resonates at the eigenvalue due to the structure of the compressor. However, even if resonance occurs, vibration can be suppressed and noise can be reduced by reducing the amount of bending of the drive shaft.
 本発明は、このような事情に鑑みてなされたものであって、駆動軸の曲げ量を低減し、曲げ固有値に起因した振動によって発生する騒音を低減することが可能な圧縮機を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a compressor capable of reducing the amount of bending of a drive shaft and reducing the noise generated by the vibration caused by the bending characteristic value. With the goal.
 本発明の第1態様に係る圧縮機は、圧縮部と、複数の金属板が積層されたロータ及び前記ロータの外周部分に設けられるステータを有するモータ部と、前記モータ部と前記圧縮部を連結する駆動軸とを備え、前記ロータには、前記駆動軸の軸方向の一端側の面において、錘部が設けられ、積層された前記金属板のうち前記錘部側の前記金属板は、前記駆動軸の軸線に対し前記錘部とは前記ロータの径方向の反対の前記ステータ側方向に突出している。 A compressor according to a first aspect of the present invention includes a motor unit having a compression unit, a rotor on which a plurality of metal plates are stacked, and a stator provided on an outer peripheral portion of the rotor, and the motor unit and the compression unit The rotor is provided with a weight portion on a surface on one end side in the axial direction of the drive shaft, and the metal plate on the weight portion side among the stacked metal plates is With respect to the axis of the drive shaft, the weight portion protrudes in the side direction opposite to the stator in the radial direction of the rotor.
 この構成によれば、ロータを構成する積層された金属板が、錘部とはロータの径方向の反対のステータ側方向に突出していることから、モータのロータが回転するとき、金属板が突出している部分では、ステータ側に発生する磁気吸引力は、金属板が突出していない部分よりも大きい。その結果、回転時、錘部によって遠心力が作用するところ、駆動軸の曲げを緩和する方向に磁気吸引力が発生するため、ロータにおいて金属板が突出している部分がない場合に比べ、駆動軸の曲げを緩和できる。なお、錘部が設けられる駆動軸の軸方向の一端側の面とは、例えば、圧縮部側の面とは反対側の面である。 According to this configuration, since the stacked metal plates constituting the rotor project in the side direction opposite to the radial direction of the rotor from the weight portion, the metal plates project when the rotor of the motor rotates. The magnetic attraction force generated on the stator side is greater at the portion where the metal plate is not protruding. As a result, when the centrifugal force is applied by the weight portion during rotation, the magnetic attraction force is generated in the direction of relieving the bending of the drive shaft, so that the drive shaft is compared with the case where the metal plate does not protrude in the rotor. You can ease the bending of the In addition, the surface of the one end side of the axial direction of the drive shaft in which a weight part is provided is a surface on the opposite side to the surface by the side of a compression part, for example.
 本発明の第1態様において、積層された前記金属板のうち前記錘部側の前記金属板が、前記駆動軸の軸線に対し、前記錘部とは前記ロータの径方向の反対の前記ステータ側方向にずらして積層されてもよい。 In the first aspect of the present invention, the metal plate on the weight portion side of the stacked metal plates is the stator side opposite to the radial direction of the rotor with respect to the axis of the drive shaft. It may be stacked in a staggered manner.
 この構成によれば、ロータを構成する積層された金属板が、錘部とは反対のステータ側方向に突出するようにずらして積層されていることから、モータのロータが回転するとき、金属板が突出して積層されている部分では、ステータ側に発生する磁気吸引力は、金属板が突出して積層されていない部分よりも大きい。 According to this configuration, since the stacked metal plates constituting the rotor are stacked so as to be shifted so as to protrude in the side direction of the stator opposite to the weight portion, when the rotor of the motor rotates, the metal plates The magnetic attraction force generated on the stator side is larger in the portion where the metal plates project and are stacked than in the portion where the metal plates project and are not stacked.
 本発明の第1態様において、積層された前記金属板のうち前記錘部側の前記金属板において、前記駆動軸の軸線に対し、前記錘部とは前記ロータの径方向の反対の前記ステータ側方向に突出するように金属製コーティングが施されてもよい。 In the first aspect of the present invention, in the metal plate on the weight portion side among the stacked metal plates, the stator side opposite to the weight portion in the radial direction of the rotor with respect to the axis of the drive shaft A metallic coating may be applied to project in the direction.
 この構成によれば、ロータを構成する積層された金属板が、錘部とは反対のステータ側方向に突出するように金属製コーティングが施されていることから、モータのロータが回転するとき、金属製コーティングが施されている部分では、ステータ側に発生する磁気吸引力は、金属板が突出していない部分よりも大きい。 According to this configuration, since the metal coating is applied so that the laminated metal plates constituting the rotor project in the side direction of the stator opposite to the weight portion, when the rotor of the motor rotates, In the portion where the metal coating is applied, the magnetic attraction force generated on the stator side is larger than the portion where the metal plate does not protrude.
 本発明の第1態様において、前記金属板の前記ロータの径方向に突出している部分の重量を考慮して、前記駆動軸の軸線に対し前記錘部側の重量が低減されてもよい。 In the first aspect of the present invention, the weight on the weight portion side with respect to the axis of the drive shaft may be reduced in consideration of the weight of the radially protruding portion of the rotor of the metal plate.
 この構成によれば、積層されている金属板が、駆動軸の軸線に対し錘部とは反対側に突出している場合でも、圧縮部に作用する遠心力と、ロータに作用する遠心力とのバランスをとることができる。 According to this configuration, even when the stacked metal plates project on the side opposite to the weight portion with respect to the axis of the drive shaft, the centrifugal force acting on the compression portion and the centrifugal force acting on the rotor It can be balanced.
 本発明の第1態様において、前記ロータには、前記駆動軸の軸方向の前記一端側とは反対の他端側の面において、第2の錘部が設けられてもよく、積層された前記金属板のうち前記第2の錘部側の前記金属板は、前記駆動軸の軸線に対し前記第2の錘部とは前記ロータの径方向の反対の前記ステータ側方向に突出している。 In the first aspect of the present invention, the rotor may be provided with a second weight portion on a surface on the other end side opposite to the one end side in the axial direction of the drive shaft. The metal plate on the side of the second weight portion of the metal plate protrudes in the side direction of the stator opposite to the radial direction of the rotor with respect to the axis of the drive shaft.
 この構成によれば、第2の錘部側の金属板が、第2の錘部とはロータの径方向の反対のステータ側方向に突出しており、上述した錘部側の金属板に加え、ステータ側に発生する磁気吸引力が、金属板が突出していない部分よりも大きくなる。その結果、ロータにおいて金属板が突出している部分がない場合に比べ、駆動軸の曲げを更に緩和できる。 According to this configuration, the metal plate on the second weight portion side protrudes in the side direction of the stator opposite to the radial direction of the rotor from the second weight portion, and in addition to the metal plate on the weight portion side, The magnetic attraction force generated on the stator side is larger than the portion where the metal plate does not protrude. As a result, the bending of the drive shaft can be further alleviated as compared with the case where the metal plate does not protrude in the rotor.
 本発明の第2態様に係る圧縮機は、圧縮部と、複数の金属板が積層されたロータ及び前記ロータの外周部分に設けられるステータを有するモータ部と、前記モータ部と前記圧縮部を連結する駆動軸とを備え、前記ロータには、前記駆動軸の軸方向の前記圧縮部側とは反対側の面において、錘部が設けられ、前記ロータの内部には、複数の永久磁石が設置され、前記駆動軸の軸方向の前記圧縮部側とは反対側に設けられた永久磁石は、他部分に比べ、前記駆動軸の軸線に対し前記錘部とは前記ロータの径方向の反対の前記ステータ側方向の磁力が増加するように配置されている。 A compressor according to a second aspect of the present invention includes a motor unit having a compression unit, a rotor on which a plurality of metal plates are stacked, and a stator provided on an outer peripheral portion of the rotor, and the motor unit and the compression unit The rotor is provided with a weight portion on the surface opposite to the compression portion side in the axial direction of the drive shaft, and a plurality of permanent magnets are provided inside the rotor. The permanent magnet provided on the side opposite to the compression portion side in the axial direction of the drive shaft is opposite to the weight portion in the radial direction of the rotor with respect to the axis of the drive shaft as compared with other portions. It arrange | positions so that the magnetic force of the said stator side direction may increase.
 この構成によれば、永久磁石が、錘部とはロータの径方向の反対のステータ側方向に磁力が増加していることから、モータのロータが回転するとき、永久磁石の磁力が増加している部分では、ステータ側に発生する磁気吸引力は、他の部分よりも大きい。その結果、回転時、錘部によって遠心力が作用するところ、駆動軸の曲げを緩和する方向に磁気吸引力が増加して発生するため、ロータにおいて永久磁石の磁力が増加している部分がない場合に比べ、駆動軸の曲げを緩和できる。 According to this configuration, the magnetic force of the permanent magnet is increased in the side direction of the stator opposite to the radial direction of the rotor, so that the magnetic force of the permanent magnet is increased when the rotor of the motor rotates. In one part, the magnetic attraction force generated on the stator side is larger than that in the other parts. As a result, at the time of rotation, the centrifugal force is exerted by the weight portion, and the magnetic attraction force is generated in the direction of relieving the bending of the drive shaft so that there is no part where the magnetic force of the permanent magnet is increased in the rotor. Compared to the case, the bending of the drive shaft can be alleviated.
 本発明の第2態様において、前記駆動軸の軸方向の前記圧縮部側とは反対側に設けられた前記永久磁石は、他の部分に比べ前記ロータの径方向の前記ステータ側に偏って配置されてもよいし、又は、他部分の永久磁石に比べ磁力が強くてもよい。 In the second aspect of the present invention, the permanent magnet provided on the side opposite to the compression portion side in the axial direction of the drive shaft is disposed closer to the stator side in the radial direction of the rotor than other portions. Alternatively, the magnetic force may be stronger than the permanent magnet of the other part.
 この構成によれば、永久磁石が、他の部分に比べ錘部とはロータの径方向の反対のステータ側に偏って配置されることから、モータのロータが回転するとき、永久磁石が偏って配置されている部分では、ステータ側に発生する磁気吸引力は、永久磁石が偏って配置されていない部分よりも大きい。又は、永久磁石が、他の部分に比べ錘部とはロータの径方向の反対のステータ側方向の磁力が強いことから、モータのロータが回転するとき、永久磁石の磁力が他の部分に比べ強い部分では、ステータ側に発生する磁気吸引力は、他の部分よりも大きい。 According to this configuration, since the permanent magnet is disposed on the side of the stator opposite to the radial direction of the rotor relative to the other portions, the permanent magnet is biased when the motor rotor rotates. In the disposed portion, the magnetic attraction force generated on the stator side is larger than the portion where the permanent magnet is not disposed in a biased manner. Alternatively, since the permanent magnet has a stronger magnetic force in the stator side direction opposite to the radial direction of the rotor as compared to other parts, when the rotor of the motor rotates, the magnetic force of the permanent magnet is compared to other parts. In the strong portion, the magnetic attraction force generated on the stator side is larger than in the other portions.
 本発明によれば、駆動軸の曲げ量を低減し、曲げ固有値に起因した振動によって発生する騒音を低減することができる。 According to the present invention, it is possible to reduce the amount of bending of the drive shaft and to reduce the noise generated by the vibration caused by the bending characteristic value.
本発明の第1の実施形態に係る圧縮機を示す縦断面図である。It is a longitudinal section showing a compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機の圧縮機構を示す横断面図である。It is a cross-sectional view which shows the compression mechanism of the compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータ及びモータを示す模式的な縦断面図である。It is a typical longitudinal section showing a rotor and a motor of a compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータを示す平面図である。It is a top view showing a rotor of a compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータ及びモータの第1変形例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the 1st modification of the rotor and motor of a compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータの第1変形例を示す平面図である。It is a top view which shows the 1st modification of the rotor of the compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータ及びモータの第2変形例を示す模式的な縦断面図である。It is a typical longitudinal section showing the 2nd modification of the rotor and motor of a compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータの第2変形例を示す平面図である。It is a top view which shows the 2nd modification of the rotor of the compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータ及びモータの第3変形例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the 3rd modification of the rotor and motor of a compressor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る圧縮機のロータの第3変形例を示す平面図である。It is a top view which shows the 3rd modification of the rotor of the compressor concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る圧縮機のロータ及びモータを示す横断面図である。It is a cross-sectional view which shows the rotor and motor of a compressor concerning a 2nd embodiment of the present invention.
[第1実施形態]
 以下に、本発明の第1実施形態に係る圧縮機1について、図面を参照して説明する。本実施形態に係る多気筒ロータリ式の圧縮機1は、図1に示すように、上部及び下部が上部カバー3及び下部カバー4により密閉された円筒状の密閉容器2を備え、その内部の上方部位にモータ5が設置され、該モータ5により駆動される圧縮機構(ロータリ圧縮機構)6がその下方部位に設置される。
First Embodiment
Hereinafter, a compressor 1 according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the multi-cylinder rotary compressor 1 according to the present embodiment includes a cylindrical hermetic container 2 whose upper and lower portions are sealed by an upper cover 3 and a lower cover 4, and the upper side of the inside A motor 5 is installed at the site, and a compression mechanism (rotary compression mechanism) 6 driven by the motor 5 is installed at the lower site.
 密閉容器2の下部外周には、据え付け脚7が設けられている。また、密閉容器2の上部には、上部カバー3を貫通する吐出配管8が設けられ、吐出配管8は、多気筒ロータリ圧縮機1で圧縮された高圧の冷媒ガスを冷凍サイクル側へと吐き出す。更に、密閉容器2の外周部には、アキュームレータ9が組み付けられており、アキュームレータ9は、冷凍サイクル側からリターンする低圧の冷媒ガス中に含まれる油、液冷媒等の液分を分離し、ガス分のみを吸入配管10,11を介して圧縮機構6へと吸い込ませる。 A mounting leg 7 is provided on the lower periphery of the closed container 2. Further, a discharge pipe 8 penetrating the upper cover 3 is provided at the upper part of the closed container 2, and the discharge pipe 8 discharges the high pressure refrigerant gas compressed by the multi-cylinder rotary compressor 1 to the refrigeration cycle side. Furthermore, an accumulator 9 is attached to the outer peripheral portion of the closed container 2. The accumulator 9 separates liquid components such as oil and liquid refrigerant contained in low-pressure refrigerant gas returning from the refrigeration cycle side, Only a minute is sucked into the compression mechanism 6 through the suction pipes 10 and 11.
 モータ5は、ステータ12とロータ13とを備える。ステータ12は、密閉容器2の内周面に圧入等によって固定設置されている。ロータ13は、駆動軸14が結合されて一体化されていることによって、ロータ13の回転駆動力が駆動軸14を介して圧縮機構6に伝達可能とされている。また、駆動軸14の下方部位には、後述するロータリ式の圧縮機構6の第1ローラ24及び第2ローラ25に対応して第1偏心ピン15及び第2偏心ピン16が設けられている。 The motor 5 includes a stator 12 and a rotor 13. The stator 12 is fixed to the inner peripheral surface of the sealed container 2 by press fitting or the like. The rotor 13 can transmit the rotational drive force of the rotor 13 to the compression mechanism 6 through the drive shaft 14 by the drive shaft 14 being coupled and integrated. Further, at the lower portion of the drive shaft 14, a first eccentric pin 15 and a second eccentric pin 16 are provided corresponding to a first roller 24 and a second roller 25 of the rotary type compression mechanism 6 described later.
 ロータリ式の圧縮機構6は、本実施形態では2気筒タイプとされ、その第1及び第2圧縮機構6A,6Bは、第1シリンダ室17及び第2シリンダ室18が形成される。圧縮機構6は、更に、第1シリンダ本体19及び第2シリンダ本体20と、仕切板(セパレータプレート)21と、上部軸受22と、下部軸受23などを備えている。 The rotary compression mechanism 6 is a two-cylinder type in the present embodiment, and the first and second compression mechanisms 6A and 6B have a first cylinder chamber 17 and a second cylinder chamber 18 formed therein. The compression mechanism 6 further includes a first cylinder body 19 and a second cylinder body 20, a partition plate (separator plate) 21, an upper bearing 22, a lower bearing 23, and the like.
 第1シリンダ本体19及び第2シリンダ本体20は、駆動軸14の第1偏心ピン15及び第2偏心ピン16に対応して、密閉容器2内に固定設置されている。仕切板21は、第1シリンダ本体19と第2シリンダ本体20との間に介装され、第1シリンダ室17及び第2シリンダ室18を区画する。上部軸受22は、第1シリンダ本体19の上面に設けられ、第1シリンダ室17を区画するとともに、駆動軸14を支持する。下部軸受23は、第2シリンダ本体20の下面に設けられ、第2シリンダ室18を区画するとともに、駆動軸14を支持する。 The first cylinder body 19 and the second cylinder body 20 are fixedly installed in the sealed container 2 in correspondence with the first eccentric pin 15 and the second eccentric pin 16 of the drive shaft 14. The partition plate 21 is interposed between the first cylinder main body 19 and the second cylinder main body 20, and divides the first cylinder chamber 17 and the second cylinder chamber 18. The upper bearing 22 is provided on the upper surface of the first cylinder main body 19 to define the first cylinder chamber 17 and to support the drive shaft 14. The lower bearing 23 is provided on the lower surface of the second cylinder main body 20 and defines the second cylinder chamber 18 and supports the drive shaft 14.
 第1及び第2圧縮機構6A,6Bは、それぞれ、第1ローラ24及び第2ローラ25と、ブレード28及び29を備える。 The first and second compression mechanisms 6A and 6B respectively include a first roller 24 and a second roller 25 and blades 28 and 29.
 第1ローラ24及び第2ローラ25は、それぞれ、第1偏心ピン15及び第2偏心ピン16に回動自在に嵌合され、第1シリンダ室17及び第2シリンダ室18内を回動する。第1偏心ピン15及び第2偏心ピン16は、駆動軸14と結合され、駆動軸14と共に一体的に回転する。第2偏心ピン16に嵌合した第2ローラ25の重心は、駆動軸14の軸線に対し第1偏心ピン15に嵌合した第1ローラ24の重心と反対側に位置する。 The first roller 24 and the second roller 25 are rotatably fitted to the first eccentric pin 15 and the second eccentric pin 16, respectively, and rotate in the first cylinder chamber 17 and the second cylinder chamber 18. The first eccentric pin 15 and the second eccentric pin 16 are coupled to the drive shaft 14 and integrally rotate with the drive shaft 14. The center of gravity of the second roller 25 fitted to the second eccentric pin 16 is located opposite to the center of gravity of the first roller 24 fitted to the first eccentric pin 15 with respect to the axis of the drive shaft 14.
 ブレード28及び29は、図2に示すように、第1シリンダ本体19及び第2シリンダ本体20に設けられているブレード溝26,27に摺動自在に嵌合され、第1シリンダ室17及び第2シリンダ室18内を吸入室側と吐出室側とに仕切る。 The blades 28 and 29 are slidably fitted in blade grooves 26 and 27 provided in the first cylinder body 19 and the second cylinder body 20, as shown in FIG. 2) Divide the inside of the cylinder chamber 18 into the suction chamber side and the discharge chamber side.
 第1及び第2圧縮機構6A,6Bの第1シリンダ室17及び第2シリンダ室18内には、吸入配管10,11から吸入ポート30,31を介して低圧の冷媒ガスが吸入される。 Low pressure refrigerant gas is drawn into the first cylinder chamber 17 and the second cylinder chamber 18 of the first and second compression mechanisms 6A and 6B from the suction pipes 10 and 11 through the suction ports 30 and 31, respectively.
 第1シリンダ室17及び第2シリンダ室18内に吸入された冷媒ガスは、第1ローラ24及び第2ローラ25の回動により圧縮された後、吐出ポート及び吐出弁(図示省略)を介して、吐出チャンバー32,33内に吐出される。吐出チャンバー32,33内に吐出された冷媒ガスは、密閉容器2内に吐き出された後、吐出配管8を経て冷凍サイクルへと送り出される。 The refrigerant gas sucked into the first cylinder chamber 17 and the second cylinder chamber 18 is compressed by the rotation of the first roller 24 and the second roller 25, and then, through the discharge port and the discharge valve (not shown). , And into the discharge chambers 32, 33. The refrigerant gas discharged into the discharge chambers 32, 33 is discharged into the closed container 2 and then sent out to the refrigeration cycle through the discharge pipe 8.
 圧縮機構6を構成する第1シリンダ本体19及び第2シリンダ本体20と、仕切板21と、上部軸受22及び下部軸受23は、ボルトを介して一体に締め付け固定されている。また、密閉容器2内の底部には、PAG油、POE油等の冷凍機油34が充填されており、駆動軸14中に設けられている給油孔等を介して、圧縮機構6内の潤滑部位に給油可能とされている。冷凍機油34には、各々の油に適応する極圧剤が適量添加されている。なお、圧縮機構6への給油機構は、通常用いられる構成であり、ここでは詳細な説明を省略する。 The first cylinder body 19 and the second cylinder body 20 constituting the compression mechanism 6, the partition plate 21, the upper bearing 22 and the lower bearing 23 are integrally fastened and fixed via bolts. Further, the bottom of the closed container 2 is filled with refrigeration oil 34 such as PAG oil or POE oil, and the lubrication portion in the compression mechanism 6 is provided through the oil supply hole or the like provided in the drive shaft 14 Refueling is possible. An appropriate amount of extreme pressure agent adapted to each oil is added to the refrigerator oil 34. In addition, the oil supply mechanism to the compression mechanism 6 is a structure used normally, and abbreviate | omits detailed description here.
 第1バランスウエイト35は、ロータ13の上面、すなわち、駆動軸14の軸線方向の一側であって、圧縮機構6が位置する側と反対側の面に設けられる。また、第1バランスウエイト35の重心は、駆動軸14の軸線に対して、第1ローラ24の重心とは反対側に位置する。第2バランスウエイト36は、ロータ13の下面、すなわち、駆動軸14の軸線方向の他側であって、圧縮機構6が位置する側の面に設けられる。また、第2バランスウエイト36の重心は、駆動軸14の軸線に対して、第2ローラ25の重心とは反対側に位置する。 The first balance weight 35 is provided on the upper surface of the rotor 13, that is, on one side of the drive shaft 14 in the axial direction and opposite to the side on which the compression mechanism 6 is located. Further, the center of gravity of the first balance weight 35 is located on the opposite side of the center of gravity of the first roller 24 with respect to the axis of the drive shaft 14. The second balance weight 36 is provided on the lower surface of the rotor 13, that is, on the other side of the drive shaft 14 in the axial direction and on the side where the compression mechanism 6 is located. Further, the center of gravity of the second balance weight 36 is located on the opposite side of the center of gravity of the second roller 25 with respect to the axis of the drive shaft 14.
 ロータ13の上面や下面に第1バランスウエイト35及び第2バランスウエイト36が設けられることによって、第1バランスウエイト35及び第2バランスウエイト36にかかる遠心力は、第1ローラ24及び第2ローラ25の回転によって生じる第1ローラ24及び第2ローラ25にかかる遠心力とバランスをとることができる。 By providing the first balance weight 35 and the second balance weight 36 on the upper surface and the lower surface of the rotor 13, the centrifugal force applied to the first balance weight 35 and the second balance weight 36 is obtained by the first roller 24 and the second roller 25. And the centrifugal force exerted on the first roller 24 and the second roller 25 caused by the rotation of
 ロータ13は、複数の鋼板が互いに絶縁して駆動軸14の軸方向に積層されている。鋼板は、磁性金属板の一例であり、他の磁性金属板でもよい。鋼板が積層されることにより、渦電流の発生が抑制される。従来、各鋼板は、ロータ13の外面が同一面上となるように配置される。したがって、従来、ステータ12とロータ13との間に形成される隙間(エアギャップとも呼ばれる。)の間隔は、周方向で一定である。エアギャップは、モータ5の大きさ等にもよるが、例えば100数十μmから数百μmである。 In the rotor 13, a plurality of steel plates are mutually insulated and stacked in the axial direction of the drive shaft 14. The steel plate is an example of a magnetic metal plate, and may be another magnetic metal plate. By laminating the steel plates, generation of eddy current is suppressed. Conventionally, the steel plates are arranged such that the outer surfaces of the rotor 13 are on the same plane. Therefore, conventionally, the interval of the gap (also referred to as an air gap) formed between the stator 12 and the rotor 13 is constant in the circumferential direction. The air gap is, for example, 100 to several tens of μm to several hundreds of μm depending on the size of the motor 5 or the like.
 一方、本実施形態に係るエアギャップは、ロータ13の回転が停止しているとき、ロータ13の上側、すなわち、駆動軸14の軸線方向の一側である、圧縮機構6が位置する側と反対側において、第1バランスウエイト35の設置側と、駆動軸14に対して第1バランスウエイト35の設置側とは反対側は、エアギャップの間隔が異なる。駆動軸14に対して第1バランスウエイト35の設置側とは反対側のエアギャップは、第1バランスウエイト35の設置側に比べて狭い。 On the other hand, when the rotation of the rotor 13 is stopped, the air gap according to the present embodiment is the upper side of the rotor 13, that is, one side of the drive shaft 14 in the axial direction, opposite to the side where the compression mechanism 6 is located. On the side, the air gap spacing differs between the installation side of the first balance weight 35 and the side opposite to the installation side of the first balance weight 35 with respect to the drive shaft 14. The air gap on the opposite side to the installation side of the first balance weight 35 with respect to the drive shaft 14 is narrower than the installation side of the first balance weight 35.
 例えば、図3及び図4に示すように、ロータ13の上側に積層されている鋼板13Aは、それ以外の鋼板13Bに比べ、第1バランスウエイト35の設置側とは反対に位置するステータ12の方向に突出するように、ずらして配置される。ここで、鋼板13Aの平面形状と、鋼板13Bの平面形状は、同一である。鋼板13Aのずらし量は、例えばエアギャップの間隔の1/10程度である。なお、図3は、ロータ13が圧縮機構6側を固定端として振れ回りが生じている様子を模式的に表したものである(以下に示す図5、図7、図9も同様。)。 For example, as shown in FIG. 3 and FIG. 4, the steel plate 13A laminated on the upper side of the rotor 13 is of the stator 12 positioned opposite to the installation side of the first balance weight 35 as compared to the other steel plates 13B. They are arranged offset so as to protrude in the direction. Here, the planar shape of the steel plate 13A and the planar shape of the steel plate 13B are the same. The shift amount of the steel plate 13A is, for example, about 1/10 of the gap of the air gap. FIG. 3 schematically shows how the rotor 13 swings with the compression mechanism 6 side as the fixed end (the same applies to FIGS. 5, 7 and 9 shown below).
 ずらして配置される鋼板13Aの枚数は、例えば増加させる磁気吸引力に依存し、ロータ13の上側において数%から10数%の範囲にある鋼板である。なお、最小枚数は、1枚が想定され、最大枚数は、例えば全ての鋼板のうち1/2から2/3の範囲が想定される。なお、図3では、鋼板13Aのずらし量は、ずらして配置される鋼板13Aの全てにおいて同じ値である場合について示している。鋼板13Aのずらし量は、この例に限定されず、上側に行くにつれて、ずらし量を段階的に又は滑らかに増やすなど、図示した例に限定されない。 The number of shifted steel plates 13A depends on, for example, the magnetic attraction force to be increased, and is a steel plate in the range of several percent to ten and several percent on the upper side of the rotor 13. The minimum number is assumed to be one, and the maximum number is assumed to be, for example, in the range of 1/2 to 2/3 of all the steel plates. In addition, in FIG. 3, the shift amount of 13 A of steel plates is shown about the case where it is the same value in all the steel plates 13A which are shifted and arrange | positioned. The shift amount of the steel plate 13A is not limited to this example, and is not limited to the illustrated example, such as increasing the shift amount stepwise or smoothly toward the upper side.
 ロータ13の上側に積層されている鋼板13Aがずらして配置されることによって、ロータ13の回転が停止しているとき、駆動軸14に対して第1バランスウエイト35の設置側とは反対側のエアギャップは、第1バランスウエイト35の設置側に比べて狭い。その結果、ロータ13の鋼板13Aが第1バランスウエイト35と反対側に突出していることから、モータ5のロータ13が回転するとき、突出部分以外の部分よりも大きい磁気吸引力がステータ12側に発生する。すなわち、第1バランスウエイト35によって遠心力が作用するところ、上述したとおり鋼板13Aがずれて配置されていることによって、駆動軸14の曲げを緩和する方向、すなわち駆動軸14の軸線に対し第1バランスウエイト35とは反対の方向に磁気吸引力が発生し、駆動軸14の曲げを緩和できる。 When the rotation of the rotor 13 is stopped by displacing the steel plates 13A stacked on the upper side of the rotor 13, the side opposite to the installation side of the first balance weight 35 with respect to the drive shaft 14 The air gap is narrower than the installation side of the first balance weight 35. As a result, since the steel plate 13A of the rotor 13 protrudes to the opposite side to the first balance weight 35, when the rotor 13 of the motor 5 rotates, the magnetic attraction force larger than the portion other than the protruding portion moves to the stator 12 side. Occur. That is, the centrifugal force is exerted by the first balance weight 35, and as described above, the steel plate 13A is disposed in a shifted manner, thereby reducing the bending of the drive shaft 14, that is, the first relative to the axis of the drive shaft 14. A magnetic attraction force is generated in the direction opposite to the balance weight 35, and the bending of the drive shaft 14 can be relieved.
 その結果、駆動軸14が固有値で共振する場合であっても、鋼板がずらして配置されない場合に比べ、駆動軸14の曲げ量を低減でき、曲げ固有値に起因した振動によって発生する騒音を低減することができる。 As a result, even when the drive shaft 14 resonates at the characteristic value, the amount of bending of the drive shaft 14 can be reduced as compared to the case where the steel plates are not disposed in a shifted manner, and noise generated by vibration caused by the bending characteristic value is reduced. be able to.
 ロータ13の鋼板13は、鋼板13Aの突出部分を考慮して、駆動軸14の軸線に対し第1バランスウエイト35側の重量が低減されてもよい。図5及び図6には、鋼板13Aそれぞれに貫通孔40が形成されることによって、重量が低減される例が示されている。 The weight of the steel plate 13 of the rotor 13 may be reduced on the side of the first balance weight 35 with respect to the axis of the drive shaft 14 in consideration of the protruding portion of the steel plate 13A. 5 and 6 show an example in which the weight is reduced by forming the through holes 40 in each of the steel plates 13A.
 鋼板13Aをずらして配置している場合、磁気吸引力を高めることが可能となるが、鋼板13Aがずらされていない場合に比べ、第1ローラ24及び第2ローラ25にかかる遠心力とのバランスが悪化する可能性がある。なお、突出部分の重量は、第1バランスウエイト35の重量に比べて少ないため、バランスが悪化する割合は、それほど大きくないと見積もられる。 When the steel plates 13A are arranged in a staggered manner, it is possible to increase the magnetic attraction force, but the balance with the centrifugal force applied to the first roller 24 and the second roller 25 is greater than when the steel plates 13A are not displaced. Can be worse. In addition, since the weight of the protruding portion is smaller than the weight of the first balance weight 35, it is estimated that the rate of deterioration of the balance is not so large.
 図5及び図6に示すように、貫通孔40が形成されることで、ロータ13の上方にかかる遠心力と、第1ローラ24及び第2ローラ25の回転によって生じる第1ローラ24及び第2ローラ25にかかる遠心力とのバランスをとることができる。 As shown in FIG. 5 and FIG. 6, by forming the through holes 40, the first roller 24 and the second roller 24 generated by the centrifugal force applied above the rotor 13 and the rotation of the first roller 24 and the second roller 25. The balance with the centrifugal force applied to the roller 25 can be maintained.
 なお、図5及び図6では、第1バランスウエイト35と反対側に位置するステータ12の方向に突出している鋼板13Aの全てに貫通孔40が設けられる場合について示しているが、本発明はこの例に限定されない。すなわち、鋼板13Aの一部に貫通孔40を設置してもよい。また、鋼板13Aに貫通孔40を設けるのではなく、鋼板13Aの突出部分を考慮して、第1バランスウエイト35の重量そのものを低減してもよい。 5 and 6 show the case where the through holes 40 are provided in all of the steel plates 13A protruding in the direction of the stator 12 located on the opposite side to the first balance weight 35, but the present invention is not limited to this. It is not limited to the example. That is, the through hole 40 may be installed in a part of the steel plate 13A. Further, instead of providing the through holes 40 in the steel plate 13A, the weight itself of the first balance weight 35 may be reduced in consideration of the protruding portion of the steel plate 13A.
 以上、本発明の第1実施形態に係る圧縮機について説明したが、本発明は上述した実施形態の構成に限定されない。
 例えば、上述した実施形態では、第1バランスウエイト35の遠心力によって生じる曲げを軽減するため、ロータ13の上側において、エアギャップの間隔を狭くする例について説明したが、本発明はこの例に限定されない。
As mentioned above, although the compressor concerning a 1st embodiment of the present invention was explained, the present invention is not limited to the composition of the embodiment mentioned above.
For example, in the embodiment described above, an example is described in which the air gap is narrowed on the upper side of the rotor 13 in order to reduce bending caused by the centrifugal force of the first balance weight 35, but the present invention is limited to this example I will not.
 例えば、図7及び図8に示すように、ロータ13の下側に積層されている鋼板13Cが、それ以外の中間部分の鋼板13Bに比べ、第2バランスウエイト36の設置側とは反対のステータ12側に突出するように、ずらして配置されてもよい。これにより、ロータ13の回転が停止しているとき、ロータ13の下側、すなわち、駆動軸14の軸線方向の他側である、圧縮機構6が位置する側において、駆動軸14に対して第2バランスウエイト36の設置側とは反対側のエアギャップは、第2バランスウエイト36の設置側に比べて狭い。 For example, as shown in FIGS. 7 and 8, the steel plate 13C stacked on the lower side of the rotor 13 is a stator opposite to the side on which the second balance weight 36 is installed, as compared to the steel plate 13B of the other intermediate portion. It may be arranged in a staggered manner so as to protrude to the 12 side. Thereby, when the rotation of the rotor 13 is stopped, the lower side of the rotor 13, that is, the other side in the axial direction of the drive shaft 14, on the side where the compression mechanism 6 is positioned, The air gap on the opposite side to the installation side of the two balance weights 36 is narrower than the installation side of the second balance weights 36.
 その結果、ロータ13の鋼板13Cが第2バランスウエイト36と反対側に突出していることから、モータ5のロータ13が回転するとき、突出部分以外の部分よりも大きい磁気吸引力がステータ12側に発生する。すなわち、第2バランスウエイト36によって遠心力が働き、駆動軸14に曲げが生じるところ、上述したとおり鋼板13Cがずれて配置されていることによって、駆動軸14の曲げを緩和する方向、すなわち駆動軸14の軸線に対し第2バランスウエイト36とは反対の半径方向に磁気吸引力が発生し、駆動軸14の曲げを緩和できる。 As a result, since the steel plate 13C of the rotor 13 protrudes to the opposite side to the second balance weight 36, when the rotor 13 of the motor 5 rotates, the magnetic attraction force larger than the portion other than the protruding portion moves to the stator 12 side. Occur. That is, a centrifugal force is exerted by the second balance weight 36 to bend the drive shaft 14, and as described above, the steel plate 13C is disposed in a shifted manner, thereby reducing the bending of the drive shaft 14, ie, the drive shaft A magnetic attraction force is generated in the radial direction opposite to the second balance weight 36 with respect to the axis of 14, and the bending of the drive shaft 14 can be relaxed.
 以上より、ロータ13の鋼板13Cがずらして配置されることによって、駆動軸14が固有値で共振する場合、駆動軸14の曲げ量を低減でき、ロータ13の鋼板13Aと合わせてずらせば、曲げ固有値に起因した振動によって発生する騒音を更に低減することができる。なお、駆動軸14の曲げ量が、ロータ13の下側のほうが大きければ、ロータ13の鋼板13Cのみをずらして配置してもよい。 As described above, when the drive shaft 14 resonates at a specific value by displacing the steel plates 13C of the rotor 13, the bending amount of the drive shaft 14 can be reduced, and if it is shifted together with the steel plate 13A of the rotor 13, the bending specific value It is possible to further reduce the noise generated by the vibration caused by the If the amount of bending of the drive shaft 14 on the lower side of the rotor 13 is larger, only the steel plate 13C of the rotor 13 may be shifted.
 また、上述した実施形態では、ロータ13の上側に積層されている鋼板13Aは、それ以外の鋼板に比べ、第1バランスウエイト35の設置側とは反対側に突出するように、ずらして配置されるが、本発明は、この例に限定されない。すなわち、ロータ13の回転が停止しているとき、駆動軸14に対して第1バランスウエイト35の設置側とは反対側のエアギャップを、第1バランスウエイト35の設置側に比べて、狭くすればよく、例えば、図9及び図10に示すように、鋼板13Aの外周部分に別途コーティングを施すことで、突出部分41を設けてもよい。この場合、突出部分41は、銀ペースト等によって形成される。または、突出部分41は、鋼板13Aの平面形状そのものを他の部分の鋼板13Bの形状と異なるようにして形成してもよい。 Further, in the above-described embodiment, the steel plates 13A stacked on the upper side of the rotor 13 are offset from the other steel plates so as to protrude on the opposite side to the installation side of the first balance weight 35. However, the invention is not limited to this example. That is, when the rotation of the rotor 13 is stopped, the air gap on the opposite side to the installation side of the first balance weight 35 with respect to the drive shaft 14 is narrowed compared to the installation side of the first balance weight 35 For example, as shown in FIGS. 9 and 10, the protruding portion 41 may be provided by separately coating the outer peripheral portion of the steel plate 13A. In this case, the protruding portion 41 is formed of silver paste or the like. Alternatively, the projecting portion 41 may be formed so that the planar shape itself of the steel plate 13A is different from the shape of the steel plate 13B of the other portion.
 突出部分41は、積層された鋼板13Aのうち、駆動軸14に対して第1バランスウエイト35の設置側とは反対側に形成される。これにより、ロータ13の回転が停止しているとき、駆動軸14に対して第1バランスウエイト35の設置側とは反対側のエアギャップは、第1バランスウエイト35の設置側に比べて狭い。その結果、ロータ13の鋼板13Aの突出部分41が第1バランスウエイト35と反対側に突出していることから、モータ5のロータ13が回転するとき、突出部分41以外の部分よりも大きい磁気吸引力がステータ12側に発生する。すなわち、第1バランスウエイト35によって遠心力が働き、駆動軸14に曲げが生じるところ、上述したとおり突出部分41が形成されていることによって、駆動軸14の曲げを緩和する方向、すなわち駆動軸14の軸線に対し第1バランスウエイト35とは反対に位置するステータ12側の方向に磁気吸引力が発生し、駆動軸14の曲げを緩和できる。 The projecting portion 41 is formed on the side opposite to the installation side of the first balance weight 35 with respect to the drive shaft 14 among the stacked steel plates 13A. Thus, when the rotation of the rotor 13 is stopped, the air gap on the opposite side of the drive shaft 14 to the first balance weight 35 installation side is narrower than the first balance weight 35 installation side. As a result, since the protruding portion 41 of the steel plate 13A of the rotor 13 protrudes to the opposite side to the first balance weight 35, when the rotor 13 of the motor 5 rotates, the magnetic attraction force larger than the portions other than the protruding portion 41 Occurs on the stator 12 side. That is, a centrifugal force is exerted by the first balance weight 35 and bending occurs in the drive shaft 14. By forming the projecting portion 41 as described above, the direction in which the bending of the drive shaft 14 is alleviated, ie, the drive shaft 14 The magnetic attraction force is generated in the direction of the side of the stator 12 opposite to the first balance weight 35 with respect to the axis of the shaft, and the bending of the drive shaft 14 can be relaxed.
 その結果、駆動軸14が固有値で共振する場合であっても、駆動軸14の曲げ量を低減でき、曲げ固有値に起因した振動によって発生する騒音を低減することができる。 As a result, even when the drive shaft 14 resonates at the characteristic value, the amount of bending of the drive shaft 14 can be reduced, and the noise generated by the vibration caused by the bending characteristic value can be reduced.
[第2実施形態]
 次に、本発明の第2実施形態に係る圧縮機について説明する。本実施形態に係る圧縮機は、上述した第1実施形態に係る圧縮機と比較して、ロータ13が異なるため、以下では、本実施形態に係るロータ13について説明する。ロータ13以外の構成要素は、第1実施形態と重複するため詳細な説明を省略する。
Second Embodiment
Next, a compressor according to a second embodiment of the present invention will be described. The compressor according to the present embodiment is different from the compressor according to the above-described first embodiment in that the rotor 13 is different. Therefore, the rotor 13 according to the present embodiment will be described below. Components other than the rotor 13 are the same as those in the first embodiment, and thus detailed description will be omitted.
 ロータ13は、複数の鋼板が互いに絶縁して駆動軸14の軸方向に積層されている。鋼板が積層されることにより、渦電流の発生が抑制される。本実施形態に係る各鋼板は、ロータ13の外面が同一面上となるように配置される。したがって、ステータ12とロータ13との間に形成される隙間(エアギャップ)の間隔は、周方向で一定である。 In the rotor 13, a plurality of steel plates are mutually insulated and stacked in the axial direction of the drive shaft 14. By laminating the steel plates, generation of eddy current is suppressed. The steel plates according to the present embodiment are arranged such that the outer surfaces of the rotor 13 are on the same plane. Therefore, the gap (air gap) formed between the stator 12 and the rotor 13 is constant in the circumferential direction.
 ロータ13の内部には、永久磁石42,50が埋め込まれている。なお、図11には、永久磁石42,50の配置例を示すが、ロータ13の内部に配置される永久磁石の大きさや位置、向きなどは、図11に示す配置例に限定されない。 Permanent magnets 42 and 50 are embedded in the rotor 13. Although an arrangement example of the permanent magnets 42 and 50 is shown in FIG. 11, the size, position, orientation and the like of the permanent magnets arranged inside the rotor 13 are not limited to the arrangement example shown in FIG.
 永久磁石42,50は、鋼板に形成された開口部内に配置される。ロータ13の上側に積層されている鋼板13Dでは、永久磁石42は、それ以外の鋼板13Eに設置される永久磁石50に比べ、第1バランスウエイト35の設置側とは反対に位置するステータ12の方向にずらして配置される。ここで、鋼板13Dの平面形状と、鋼板13Eの平面形状は、同一である。 The permanent magnets 42, 50 are disposed in the openings formed in the steel plate. In the steel plate 13D stacked on the upper side of the rotor 13, the permanent magnet 42 is located on the opposite side of the first balance weight 35 on the side where the first balance weight 35 is installed, as compared with the permanent magnet 50 installed on the other steel plate 13E. It is arranged by shifting in the direction. Here, the planar shape of the steel plate 13D and the planar shape of the steel plate 13E are the same.
 すなわち、ロータ13の上側以外に設けられる複数の永久磁石50は、従来のロータにおける永久磁石の配置と同様に、駆動軸14の軸線を中心にして点対称に設けられる。これに対し、ロータ13の上側に設けられる複数の永久磁石42は、上述したとおり、第1バランスウエイト35の設置側とは反対側にずらして配置されており、永久磁石42の点対称の中心も、駆動軸14の軸線に対し第1バランスウエイト35の設置側とは反対側にずれている。 That is, the plurality of permanent magnets 50 provided other than the upper side of the rotor 13 are point-symmetrically provided centering on the axis of the drive shaft 14 similarly to the arrangement of the permanent magnets in the conventional rotor. On the other hand, as described above, the plurality of permanent magnets 42 provided on the upper side of the rotor 13 are offset to the side opposite to the installation side of the first balance weight 35, and the center of the point symmetry of the permanent magnet 42 Also, with respect to the axis of the drive shaft 14, the first balance weight 35 is offset to the side opposite to the installation side.
 これにより、モータ5のロータ13が回転するとき、ロータ13の上側では、ロータ13の上側以外よりも大きい磁気吸引力がステータ12側に発生する。すなわち、第1バランスウエイト35によって遠心力が働き、駆動軸14に曲げが生じるところ、上述したとおり永久磁石42がずれて配置されていることによって、駆動軸14の曲げを緩和する方向、すなわち駆動軸14の軸線に対し第1バランスウエイト35とは反対の半径方向に磁気吸引力が発生し、駆動軸14の曲げを緩和できる。 As a result, when the rotor 13 of the motor 5 rotates, a magnetic attraction force that is greater on the upper side of the rotor 13 than on the side other than the upper side of the rotor 13 is generated on the stator 12 side. That is, a centrifugal force is exerted by the first balance weight 35 to cause bending of the drive shaft 14, and the permanent magnet 42 is displaced as described above, thereby reducing the bending of the drive shaft 14, that is, driving A magnetic attraction force is generated in the radial direction opposite to the first balance weight 35 with respect to the axis of the shaft 14 and the bending of the drive shaft 14 can be relaxed.
 その結果、駆動軸14が固有値で共振する場合であっても、駆動軸14の曲げ量を低減でき、曲げ固有値に起因した振動によって発生する騒音を低減することができる。 As a result, even when the drive shaft 14 resonates at the characteristic value, the amount of bending of the drive shaft 14 can be reduced, and the noise generated by the vibration caused by the bending characteristic value can be reduced.
 以上、本発明の第2実施形態に係る圧縮機について、第1バランスウエイト35の遠心力によって生じる曲げを軽減するため、ロータ13の上側において、永久磁石42の設置位置をずらす例について説明したが、本発明はこの例に限定されない。 As described above, in the compressor according to the second embodiment of the present invention, an example in which the installation position of the permanent magnet 42 is shifted on the upper side of the rotor 13 has been described to reduce bending generated by centrifugal force of the first balance weight 35 The invention is not limited to this example.
 すなわち、ロータ13の上側において、駆動軸14の曲げを緩和する方向、すなわち、駆動軸14の軸線に対し第1バランスウエイト35とは反対の半径方向に磁気吸引力が増加すればよい。例えば、駆動軸14の軸線に対し第1バランスウエイト35とは反対に配置される永久磁石の磁力が、駆動軸14の軸線に対し第1バランスウエイト35側に配置される永久磁石よりも強い。 That is, on the upper side of the rotor 13, the magnetic attraction force may be increased in the direction in which the bending of the drive shaft 14 is relieved, that is, in the radial direction opposite to the first balance weight 35 with respect to the axis of the drive shaft 14. For example, the magnetic force of the permanent magnet disposed opposite to the first balance weight 35 with respect to the axis of the drive shaft 14 is stronger than the permanent magnet disposed on the first balance weight 35 with respect to the axis of the drive shaft 14.
 この場合も、駆動軸14の曲げを緩和する方向、すなわち駆動軸14の軸線に対し第1バランスウエイト35とは反対の半径方向に磁気吸引力が発生し、駆動軸14の曲げを緩和できる。 Also in this case, a magnetic attraction force is generated in the direction to ease the bending of the drive shaft 14, that is, in the radial direction opposite to the first balance weight 35 with respect to the axis of the drive shaft 14, and the bending of the drive shaft 14 can be relaxed.
 また、上述した実施形態では、ロータ13の上側に配置される永久磁石42が、駆動軸14の軸線に対し第1バランスウエイト35の反対の半径方向に磁気吸引力が増加するように配置される例について説明したが、ロータ13の下側に配置される永久磁石についても同様に配置してもよい。この場合、ロータ13の下側に配置される永久磁石は、駆動軸14の軸線に対し第2バランスウエイト36の反対の半径方向に磁気吸引力が増加するように配置される。 Further, in the embodiment described above, the permanent magnet 42 disposed on the upper side of the rotor 13 is disposed so that the magnetic attraction force increases in the radial direction opposite to the first balance weight 35 with respect to the axis of the drive shaft 14 Although the example has been described, the permanent magnets disposed below the rotor 13 may be similarly disposed. In this case, the permanent magnets disposed below the rotor 13 are disposed such that the magnetic attraction force increases in the opposite radial direction of the second balance weight 36 with respect to the axis of the drive shaft 14.
 さらに、上述した第1及び第2実施形態にかかる圧縮機では、多気筒ロータリ圧縮機の場合について説明したが、本発明は、この形式の圧縮機に限定されない。たとえば、ロータリ式の圧縮機構が一つのみ設けられるロータリ圧縮機にも適用でき、一又は複数のスクロール式の圧縮機構が設けられるスクロール圧縮機等にも適用できる。 Furthermore, in the compressor according to the first and second embodiments described above, the case of the multi-cylinder rotary compressor has been described, but the present invention is not limited to this type of compressor. For example, the present invention can also be applied to a rotary compressor provided with only one rotary compression mechanism, and can also be applied to a scroll compressor provided with one or more scroll compression mechanisms.
1 圧縮機
2 密閉容器
5 モータ(モータ部)
6 圧縮機構(圧縮部)
6A 第1圧縮機構
6B 第2圧縮機構
8 吐出配管
9 アキュームレータ
10,11 吸入配管
12 ステータ
13 ロータ
13A,13B,13C,13D,13E 鋼板
14 駆動軸
15 第1偏心ピン
16 第2偏心ピン
17 第1シリンダ室
18 第2シリンダ室
19 第1シリンダ本体
20 第2シリンダ本体
24 第1ローラ
25 第2ローラ
35 第1バランスウエイト(錘部)
36 第2バランスウエイト(第2の錘部)
40 貫通孔
41 突出部分
42,50 永久磁石
1 Compressor 2 Sealed container 5 Motor (Motor section)
6 Compression mechanism (compression unit)
6A first compression mechanism 6B second compression mechanism 8 discharge piping 9 accumulator 10, 11 suction piping 12 stator 13 rotors 13A, 13B, 13C, 13D, 13E steel plate 14 drive shaft 15 first eccentric pin 16 second eccentric pin 17 first Cylinder chamber 18 Second cylinder chamber 19 First cylinder body 20 Second cylinder body 24 First roller 25 Second roller 35 First balance weight (weight part)
36 Second balance weight (second weight)
40 through hole 41 projecting portion 42, 50 permanent magnet

Claims (7)

  1.  圧縮部と、
     複数の金属板が積層されたロータ及び前記ロータの外周部分に設けられるステータを有するモータ部と、
     前記モータ部と前記圧縮部を連結する駆動軸と、
    を備え、
     前記ロータには、前記駆動軸の軸方向の一端側の面において、錘部が設けられ、
     積層された前記金属板のうち前記錘部側の前記金属板は、前記駆動軸の軸線に対し前記錘部とは前記ロータの径方向の反対の前記ステータ側方向に突出している圧縮機。
    A compression unit,
    A motor unit having a rotor on which a plurality of metal plates are stacked and a stator provided on an outer peripheral portion of the rotor;
    A drive shaft connecting the motor unit and the compression unit;
    Equipped with
    The rotor is provided with a weight portion on a surface on one end side in the axial direction of the drive shaft,
    The said metal plate by the side of the said weight part among the metal plates laminated | stacked is a compressor which protrudes in the said stator side direction opposite to the radial direction of the said rotor with respect to the axial line of the said drive shaft.
  2.  積層された前記金属板のうち前記錘部側の前記金属板が、前記駆動軸の軸線に対し、前記錘部とは前記ロータの径方向の反対の前記ステータ側方向にずらして積層されている請求項1に記載の圧縮機。 Among the metal plates stacked, the metal plate on the weight portion side is stacked with being shifted in the direction of the stator opposite to the radial direction of the rotor with respect to the axis of the drive shaft. The compressor according to claim 1.
  3.  積層された前記金属板のうち前記錘部側の前記金属板において、前記駆動軸の軸線に対し、前記錘部とは前記ロータの径方向の反対の前記ステータ側方向に突出するように金属製コーティングが施されている請求項1に記載の圧縮機。 The metal plate on the weight portion side of the stacked metal plates is made of metal so as to protrude in the stator side direction opposite to the weight portion in the radial direction of the rotor with respect to the axis of the drive shaft The compressor according to claim 1, wherein a coating is applied.
  4.  前記金属板の前記ロータの径方向に突出している部分の重量を考慮して、前記駆動軸の軸線に対し前記錘部側の重量が低減されている請求項1から3のいずれか1項に記載の圧縮機。 The weight on the weight portion side with respect to the axis of the drive shaft is reduced in consideration of the weight of the radially projecting portion of the rotor of the metal plate. Description compressor.
  5.  前記ロータには、前記駆動軸の軸方向の前記一端側とは反対の他端側の面において、第2の錘部が設けられ、
     積層された前記金属板のうち前記第2の錘部側の前記金属板は、前記駆動軸の軸線に対し前記第2の錘部とは前記ロータの径方向の反対の前記ステータ側方向に突出している請求項1から4のいずれか1項に記載の圧縮機。
    A second weight portion is provided on the rotor at a surface on the other end side opposite to the one end side in the axial direction of the drive shaft,
    The metal plate on the second weight portion side of the stacked metal plates protrudes in the side direction of the stator opposite to the radial direction of the rotor with respect to the axis line of the drive shaft. The compressor according to any one of claims 1 to 4.
  6.  圧縮部と、
     複数の金属板が積層されたロータ及び前記ロータの外周部分に設けられるステータを有するモータ部と、
     前記モータ部と前記圧縮部を連結する駆動軸と、
    を備え、
     前記ロータには、前記駆動軸の軸方向の前記圧縮部側とは反対側の面において、錘部が設けられ、
     前記ロータの内部には、複数の永久磁石が設置され、
     前記駆動軸の軸方向の前記圧縮部側とは反対側に設けられた永久磁石は、他部分に比べ、前記駆動軸の軸線に対し前記錘部とは前記ロータの径方向の反対の前記ステータ側方向の磁力が増加するように配置されている圧縮機。
    A compression unit,
    A motor unit having a rotor on which a plurality of metal plates are stacked and a stator provided on an outer peripheral portion of the rotor;
    A drive shaft connecting the motor unit and the compression unit;
    Equipped with
    The rotor is provided with a weight portion on a surface opposite to the compression portion side in the axial direction of the drive shaft,
    A plurality of permanent magnets are installed inside the rotor,
    The permanent magnet provided on the side opposite to the compression portion side in the axial direction of the drive shaft is the stator in which the weight portion is opposite to the weight portion of the rotor with respect to the axis of the drive shaft A compressor that is arranged to increase the lateral magnetic force.
  7.  前記駆動軸の軸方向の前記圧縮部側とは反対側に設けられた前記永久磁石は、他の部分に比べ前記ロータの径方向の前記ステータ側に偏って配置される、又は、他部分の永久磁石に比べ磁力が強い請求項6に記載の圧縮機。 The permanent magnet provided on the opposite side to the compression part side in the axial direction of the drive shaft is disposed closer to the stator side in the radial direction of the rotor compared to other parts, or The compressor according to claim 6, wherein the magnetic force is stronger than that of the permanent magnet.
PCT/JP2015/072828 2014-12-12 2015-08-12 Compressor WO2016092906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15866661.0A EP3217014B1 (en) 2014-12-12 2015-08-12 Compressor
CN201580060639.1A CN107076149A (en) 2014-12-12 2015-08-12 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-251738 2014-12-12
JP2014251738A JP6502078B2 (en) 2014-12-12 2014-12-12 Compressor

Publications (1)

Publication Number Publication Date
WO2016092906A1 true WO2016092906A1 (en) 2016-06-16

Family

ID=56107104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072828 WO2016092906A1 (en) 2014-12-12 2015-08-12 Compressor

Country Status (4)

Country Link
EP (1) EP3217014B1 (en)
JP (1) JP6502078B2 (en)
CN (1) CN107076149A (en)
WO (1) WO2016092906A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6823096B2 (en) * 2019-02-27 2021-01-27 シナノケンシ株式会社 Inner rotor type motor rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208842A (en) * 1981-06-19 1982-12-22 Toshiba Corp Stacking method of iron core
JPS6413282U (en) * 1987-07-14 1989-01-24
JP2002272073A (en) * 2001-03-08 2002-09-20 Nissan Motor Co Ltd Rotating electric machine
JP2006042544A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Sealed motor compressor
JP2006507941A (en) * 2002-11-13 2006-03-09 デカ プロダックツ リミテッド パートナーシップ Distillation using vapor compression

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080287B2 (en) * 2008-01-09 2012-11-21 株式会社日立産機システム Compressor motor
JP6089412B2 (en) * 2012-02-24 2017-03-08 ダイキン工業株式会社 Compressor
JP2014128101A (en) * 2012-12-26 2014-07-07 Toyota Industries Corp Motor-driven compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208842A (en) * 1981-06-19 1982-12-22 Toshiba Corp Stacking method of iron core
JPS6413282U (en) * 1987-07-14 1989-01-24
JP2002272073A (en) * 2001-03-08 2002-09-20 Nissan Motor Co Ltd Rotating electric machine
JP2006507941A (en) * 2002-11-13 2006-03-09 デカ プロダックツ リミテッド パートナーシップ Distillation using vapor compression
JP2006042544A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Sealed motor compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217014A4 *

Also Published As

Publication number Publication date
EP3217014B1 (en) 2019-05-22
CN107076149A (en) 2017-08-18
EP3217014A1 (en) 2017-09-13
JP2016113923A (en) 2016-06-23
JP6502078B2 (en) 2019-04-17
EP3217014A4 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2749735B1 (en) Compressor
WO2014155938A1 (en) Multiple-cylinder rotary compressor and refrigeration cycle device
JP5441982B2 (en) Rotary compressor
EP2613053B1 (en) Rotary compressor with dual eccentric portion
EP2905470B1 (en) Rotary compressor
WO2016139873A1 (en) Compressor
AU2016339431B2 (en) Compressor
JP6502078B2 (en) Compressor
EP3163083B1 (en) Electric compressor
KR101380987B1 (en) Rotary compressor
KR20100081815A (en) Hermetic type compressor and refrigerator having the same
WO2019021432A1 (en) Scroll compressor
JP2019035391A (en) Compressor
KR102376260B1 (en) Rotary compressor
WO2018131436A1 (en) Compressor comprising shaft support
KR20110064281A (en) Twin type rotary compressor
JP2013133800A (en) Compressor
KR101878670B1 (en) Rotary compressor
JP2020007928A (en) Scroll compressor
JP2016125368A (en) Rotary compressor
JP2012102649A (en) Compressor
KR20100112487A (en) 2-stage rotary compressor
KR20060079810A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866661

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015866661

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE