WO2019021432A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2019021432A1
WO2019021432A1 PCT/JP2017/027302 JP2017027302W WO2019021432A1 WO 2019021432 A1 WO2019021432 A1 WO 2019021432A1 JP 2017027302 W JP2017027302 W JP 2017027302W WO 2019021432 A1 WO2019021432 A1 WO 2019021432A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
centrifugal force
rotor
scroll compressor
weight adjusting
Prior art date
Application number
PCT/JP2017/027302
Other languages
French (fr)
Japanese (ja)
Inventor
光勇 太田
昌晃 須川
鉄郎 平見
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019532302A priority Critical patent/JP6808044B2/en
Priority to PCT/JP2017/027302 priority patent/WO2019021432A1/en
Priority to CN201790001721.1U priority patent/CN211230820U/en
Publication of WO2019021432A1 publication Critical patent/WO2019021432A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor used as one of the components of a refrigeration cycle.
  • Scroll compressors that conventionally exist generally include a fixed scroll, a rocking scroll, a stator, a rotor, a main shaft, a slider, an eccentric shaft, a compression unit, an electric mechanism, a shell, a suction pipe, a discharge pipe, and a frame. , Sub-frame, and positive displacement oil pump.
  • the fixed scroll constitutes the compression unit and is fixed to the frame.
  • the oscillating scroll constitutes a compression unit together with the fixed scroll, and has a rotating shaft eccentric to the center of the fixed scroll.
  • the stator constitutes an electric mechanism portion and is fixed to the shell.
  • the rotor constitutes an electric mechanism together with the stator, and is inserted at the center of the stator.
  • the main shaft is fixed to the rotor and rotationally driven by the electric mechanism.
  • the slider is installed to be fitted to a rocking bearing for revolving movement of the rocking scroll and supports the rocking scroll.
  • the eccentric shaft portion is a slider mounting shaft installed at an upper portion of the main shaft so that the slider is eccentric to the main shaft.
  • the compression unit includes a fixed scroll and an oscillating scroll, and compresses the refrigerant gas.
  • the electric mechanism portion functions as a motor, includes a stator and a rotor, and drives the oscillating scroll via a main shaft.
  • the shell accommodates the compression part and the electric mechanism part, and is a closed container.
  • the suction pipe is connected to the low pressure portion of the shell and introduces the refrigerant gas into the shell from the outside of the shell.
  • the discharge pipe is connected to the high pressure portion of the shell and discharges the refrigerant gas compressed in the compression unit to the outside of the shell.
  • the frame supports the oscillating scroll and the main shaft, and is fixed to the shell by bolts or the like with respect to the fixed scroll.
  • the sub-frame is fixed to the shell and rotatably supports the main shaft.
  • the positive displacement oil pump sucks up refrigeration oil accumulated in the bottom of the shell to the slider.
  • the refrigeration oil sucked up by the positive displacement oil pump is guided to the slider through the oil supply passage in the main shaft.
  • the oscillating scroll is eccentric to the rotation axis of the main shaft in order to oscillate the oscillating scroll. Therefore, during operation of the scroll compressor, centrifugal force is generated on the main shaft by the oscillating scroll and peripheral members of the oscillating scroll, that is, the bush and the slider.
  • Two balancers are provided to balance the generated centrifugal force in the rotational direction and the axial direction of the main shaft. The two balancers offset the centrifugal force generated by the eccentricity of the oscillating scroll.
  • some scroll compressors include a balancer attached to the lower surface of the rotor integrally with the rotor.
  • Patent Document 2 describes a compressor in which a balancer cover is provided on the outer periphery of a balancer attached to the lower surface of a rotor so as to prevent oil from rising.
  • Patent Document 3 describes a scroll compressor in which a slider balancer is provided on the opposite side of the main shaft eccentric direction of the slider in addition to the two balancers. The scroll compressor described in Patent Document 3 makes it possible to offset the centrifugal force generated in the eccentric portion with an increase in the centrifugal force generated in the eccentric portion of the main shaft due to the acceleration of the compression portion.
  • Such a scroll compressor has a slider balancer, a first balancer, and a second balancer for operating against the centrifugal force Fc generated by the oscillating scroll, the eccentric portion of the main shaft, and the peripheral members of the oscillating scroll during operation.
  • the first balancer is attached to the top of the rotor.
  • the second balancer is attached to the lower part of the rotor.
  • the slider balancer is mounted on the side opposite to the main shaft eccentric direction of the slider.
  • Each of the slider balancer, the first balancer, and the second balancer is provided with an unbalanced portion.
  • a centrifugal force Fb is generated in the slider balancer during operation.
  • a centrifugal force F1 is generated in the first balancer during operation.
  • a centrifugal force F2 is generated in the second balancer during operation.
  • the slider balancer, the first balancer, and the second balancer make it possible to offset the centrifugal force Fc generated by the oscillating scroll or the like.
  • the slider balancer Since the slider balancer is provided at a position close to the eccentric portion of the main shaft, it is possible to offset most of the centrifugal force generated by the eccentric portion of the main shaft and the moment generated by the centrifugal force by increasing the weight. It is possible. However, since it is difficult to completely offset the centrifugal force Fc only with the slider balancer, the first balancer and the second balancer are required. Therefore, three balancers are to be installed, and the number of parts is increased, which causes a problem that the number of processing steps is increased.
  • Patent Document 4 describes a compressor in which the force of the entire rotating portion is balanced by the arrangement of magnets without providing the first balancer and the second balancer.
  • the scroll compressor includes a first balancer and a second balancer, and cancels out the centrifugal force generated by the eccentricity of the oscillating scroll. Further, in the scroll compressor described in Patent Document 3, a slider balancer is further provided to offset the centrifugal force generated by the eccentricity of the oscillating scroll.
  • a compressor equipped with a balancer has problems such as an increase in work processes, an increase in cost due to an increase in the number of parts, and an inhibition of resource saving due to an increase in the number of parts.
  • the centrifugal force generated by the oscillating scroll or the like is offset without providing a balancer.
  • the centrifugal force generated by the oscillating scroll or the like is offset by the arrangement of the magnets, there is a portion where the magnet is not provided, and the size of the magnet It can not be said that the efficiency of the motor is good.
  • the present invention has been made to solve the above problems, and can reduce the balancer required to offset the centrifugal force generated by the eccentricity of the oscillating scroll without reducing the efficiency of the motor.
  • the purpose is to provide a scroll compressor.
  • the scroll compressor according to the present invention comprises a container, a fixed scroll provided in the container, a rocking scroll provided in the container and combined with the fixed scroll, provided in the container, and A main shaft for oscillating movement of the moving scroll, a rotor provided in the container and rotating the main shaft, a stator provided in the container for rotating the rotor, and the rotating scroll provided on the oscillating scroll A swing bearing into which the eccentric shaft portion is inserted, a slider fitted with the swing bearing and supporting the swing scroll, and the eccentric shaft portion provided opposite to the eccentric direction of the eccentric shaft portion And a slider balancer for generating a centrifugal force, and a weight adjusting portion for canceling the centrifugal force generated in the eccentric shaft is provided inside the rotor.
  • the scroll compressor according to the present invention by inserting the weight adjusting unit into the rotor, it is possible to generate centrifugal force due to mass imbalance, and cancel the centrifugal force generated by the eccentricity of the oscillating scroll. Can reduce the amount of balancers.
  • FIG. 1 is a schematic configuration view schematically showing an example of an internal configuration of a scroll compressor 100 according to Embodiment 1 of the present invention.
  • the configuration and operation of the scroll compressor 100 will be described based on FIG.
  • the scroll compressor 100 is used as one of the components of a refrigeration cycle.
  • various refrigerating cycle apparatuses such as a refrigerator, a freezer, a vending machine, an air conditioning apparatus, a refrigerating apparatus, or a water heater, can be considered.
  • size of each structural member may differ from an actual thing.
  • the scroll compressor 100 sucks, compresses and discharges the refrigerant circulating in the refrigeration cycle as a high-temperature and high-pressure state.
  • the scroll compressor 100 has a compression unit 50 including the fixed scroll 9 and the oscillating scroll 10 and the like, and an electric mechanism unit 60 including the stator 2 and the rotor 3 and the like.
  • the compression unit 50 and the electric mechanism unit 60 are housed in a container 1 which is a shell. As shown in FIG. 1, in the state where the scroll compressor 100 is installed, the compression unit 50 is disposed on the upper side of the container 1 and the electric mechanism unit 60 is disposed on the lower side of the container 1.
  • the container 1 is an airtight container provided with the upper container 1c in the upper part of the middle part container 1a, and the lower container 1b in the lower part of the middle part container 1a.
  • the lower container 1 b is an oil reservoir 23 for storing refrigeration oil that is to be lubricating oil.
  • a suction pipe 24 for suctioning the refrigerant gas is connected to the intermediate container 1a.
  • a discharge pipe 25 for discharging the refrigerant gas is connected to the upper container 1c.
  • the compression unit 50 is configured to include the oscillating scroll 10, the fixed scroll 9, the frame 11, and the like. As shown in FIG. 1, the swing scroll 10 is installed below the container 1, and the fixed scroll 9 is installed above the container 1. Further, a thrust plate 14 for supporting the oscillating scroll 10 is provided between the oscillating scroll 10 and the frame 11. The rocking scroll 10 and the thrust plate 14 are in close contact with each other through a refrigerator oil to constitute a thrust bearing.
  • the fixed scroll 9 is formed with a wrap portion 9a which is a spiral protrusion standing on one surface. Further, the oscillating scroll 10 is also provided with a wrap portion 10a which is a spiral protrusion provided on one surface.
  • the swing scroll 10 and the fixed scroll 9 are mounted in the container 1 by combining the wrap portion 10 a and the wrap portion 9 a with each other. When the rocking scroll 10 and the fixed scroll 9 are combined, the winding directions of the wrap portion 9a and the wrap portion 10a are opposite to each other.
  • a seal 28 is disposed on the lower end surface which is the tip end surface of the wrap portion 9a in order to reduce the refrigerant leakage from the tip end surface of the wrap portion 9a.
  • a seal 27 is disposed on the upper end surface, which is the tip surface of the wrap portion 10a, in order to reduce the refrigerant leakage from the tip surface of the wrap portion 10a.
  • the fixed scroll 9 is fixed to the frame 11 by a bolt or the like (not shown).
  • a discharge port 9b is formed which discharges the compressed refrigerant gas that has a high pressure. Then, the refrigerant gas that has been compressed to a high pressure is discharged to the discharge space 33 provided at the upper portion of the fixed scroll 9. The refrigerant gas discharged to the discharge space 33 is discharged to the refrigeration cycle through the discharge pipe 25.
  • the discharge port 9 b is provided with a discharge valve 29 for preventing the backflow of the refrigerant from the discharge space 33 to the discharge port 9 b side.
  • the rocking scroll 10 is configured to perform a revolving movement (rocking movement) without rotating with respect to the fixed scroll 9 by the Oldham ring 15 for blocking the rotation. Further, a hollow cylindrical swing bearing 13 is formed at a substantially central portion of a thrust surface which is a surface opposite to the wrap 10 a forming surface of the swing scroll 10.
  • a slider 16 for rotating the oscillating scroll 10 is rotatably fitted to the oscillating bearing 13, and the oscillating scroll 10 is supported by the slider 16.
  • An eccentric shaft 4 a provided at the upper end of the main shaft 4 is inserted into the slide surface of the slider 16.
  • the eccentric shaft 4 a is a slider mounting shaft installed at the upper portion of the main shaft 4 so that the slider 16 is eccentric to the main shaft 4. Then, the inner peripheral portion of the rocking bearing 13 and the outer peripheral portion of the slider 16 are in close contact with each other through the refrigerator oil to constitute the rocking bearing portion. Further, a slider balancer 37 is attached to the eccentric shaft 4a.
  • the frame 11 is fixed to the inside of the container 1 by bolts or the like (not shown) and supports the swing scroll 10 and the main shaft 4. Further, at the central portion of the frame 11, a main bearing 12 into which the main shaft 4 is inserted and rotatably supported is formed.
  • the electric mechanism portion 60 includes the rotor 3 into which the main shaft 4 is inserted, the stator 2 and the main shaft 4 which is a rotating shaft.
  • the rotor 3 is fixed to the main shaft 4 and is rotationally driven by starting energization of the stator 2 so as to rotate the main shaft 4.
  • the rotor 3 is configured by laminating electromagnetic steel plates or the like, and the first weight adjusting unit 34 and the second weight adjusting unit 35 are inserted inside. As shown in FIG. 1, the first weight adjusting unit 34 is inserted to the compression unit 50 side. Further, the second weight adjusting unit 35 is inserted on the sub frame 20 side.
  • the main shaft 4 is rotated along with the rotation of the rotor 3 to swing the oscillating scroll 10.
  • the upper portion of the main shaft 4 is supported by a main bearing 12 provided on the frame 11.
  • a sleeve 17 is provided between the main bearing 12 and the main shaft 4 in order to make the main shaft 4 rotate smoothly.
  • the lower part of the main shaft 4 is rotatably supported by a ball bearing 21.
  • the ball bearing 21 is press-fitted and fixed to a bearing accommodating portion 20 a formed at a central portion of a sub-frame 20 provided at the lower portion of the container 1.
  • the sub-frame 20 is provided with a positive displacement oil pump 22.
  • a pump shaft 4 b for transmitting a rotational force to the oil pump 22 is integrally formed with the main shaft 4.
  • the refrigerating machine oil of the oil reservoir 23 sucked by the oil pump 22 is sent to each sliding portion such as the slider 16 via the oil hole 4 c and the like formed inside the main shaft 4.
  • the rocking scroll 10 starts rocking operation
  • the refrigerant sucked from the suction pipe 24 is introduced into the compression chamber 26.
  • the compression chamber 26 moves to the center of the oscillating scroll 10 by the oscillating motion of the oscillating scroll 10, and the volume is reduced.
  • the refrigerant is compressed.
  • a load is applied to the fixed scroll 9 and the swing scroll 10 so as to be separated in the axial direction by the compressed refrigerant. This load is supported by the thrust plate 14.
  • the compressed refrigerant passes through the discharge port 9 b of the fixed scroll 9, pushes the discharge valve 29 open, and flows into the discharge space 33. Then, it is discharged from the container 1 through the discharge pipe 25.
  • each sliding portion is supplied with refrigeration oil which is lubricating oil.
  • refrigeration oil which is lubricating oil.
  • shaft 4, etc. are mentioned.
  • the refrigeration oil supplied to each sliding portion returns to the oil reservoir 23 again by gravity.
  • the scroll compressor 100 stops its operation.
  • FIG. 2 is a configuration diagram extracting and enlarging the main shaft 4, the rotor 3 and the sub frame 20 of the scroll compressor 100.
  • FIG. 3 is a plan view of the electromagnetic steel plate 38 which constitutes the rotor 3 of the scroll compressor 100. As shown in FIG. The main shaft 4 and the rotor 3 of the scroll compressor 100 will be described in detail based on FIGS. 2 and 3.
  • the main shaft 4 has the eccentric shaft 4a at the top.
  • a slider balancer 37 is attached to the eccentric shaft 4a.
  • the slider balancer 37 generates a centrifugal force in the direction opposite to the eccentric direction of the eccentric shaft 4 a.
  • the slider 16 is rotatably fitted to the rocking bearing 13 of the rocking scroll 10. Therefore, a slide bearing structure is formed by the inner peripheral surface of the rocking bearing 13 and the outer peripheral surface of the slider 16.
  • the supply of refrigeration oil to the slide bearing structure supports the transmission of force of the swing scroll 10 and the slider balancer 37 by the slide bearing structure.
  • the rotor 3 has a structure in which a plurality of electromagnetic steel plates 38 as shown in FIG. 3 are stacked.
  • a punching portion 39, a spindle insertion portion 42, a magnet insertion portion 47, and a slit 48 are formed to penetrate.
  • the punched portion 39 may be formed so as to penetrate the first weight adjusting portion 34 and the second weight adjusting portion 35 at the position where the insertion is desired. Then, the first weight adjusting unit 34 and the second weight adjusting unit 35 are inserted into the inside of the rotor 3 through the punching unit 39.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 offset the centrifugal force Fc generated in the eccentric shaft 4 a. Therefore, the first weight adjusting unit 34 and the second weight adjusting unit 35 are set to a weight that produces a centrifugal force that can offset the centrifugal force Fc generated in the eccentric shaft 4a.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 are formed using a material having a higher specific gravity than the electromagnetic steel plate 38.
  • materials for forming the first weight adjusting portion 34 and the second weight adjusting portion 35 an alloy such as zinc, lead, copper or brass can be considered.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 may be magnetic members.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 may be formed so as to have a specific gravity different from that of the electromagnetic steel plate 38.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 may be formed of a material having a specific gravity lower than that of the electromagnetic steel plate 38, or may be formed of an air gap.
  • the first weight adjusting portion 34 and the second weight adjusting portion 35 are inserted into the space formed by the punching portion 39. Then, the upper end surface and the lower end surface of the first weight adjusting unit 34 and the upper end surface and the lower end surface of the second weight adjusting unit 35 are fixed, and the movement of the first weight adjusting unit 34 and the second weight adjusting unit 35 is restricted. Do.
  • the upper end surfaces of the first weight adjusting unit 34 and the second weight adjusting unit 35 are the end surfaces on the side of the compression unit 50, and the lower end surfaces of the first weight adjusting unit 34 and the second weight adjusting unit 35 are sub The end face on the frame 20 side.
  • the slider balancer 37 is fixed to the eccentric shaft 4 a by shrink fitting or press fitting.
  • the rotor 3 is fixed to the main shaft 4 by shrink fitting or press fitting.
  • centrifugal force Fc As shown in FIG. 2, during operation of the scroll compressor 100, centrifugal force Fc, centrifugal force Fb, centrifugal force F3, and centrifugal force F4 act on the main shaft 4.
  • the centrifugal force Fc and the centrifugal force Fb are generated by the rocking motion of the rocking scroll 10.
  • the centrifugal force F3 is generated due to the mass unbalance of the first weight adjusting unit 34 during the swinging motion of the swinging scroll 10.
  • the centrifugal force F4 is generated due to the mass unbalance of the second weight adjusting unit 35 during the swinging motion of the swinging scroll 10.
  • the centrifugal force Fc and the rotation of the main shaft 4 by the centrifugal force Fc are adjusted by adjusting the mass imbalance amount of the slider balancer 37, the first weight adjusting unit 34, and the second weight adjusting unit 35.
  • the moments of the direction and the axial longitudinal direction of the main shaft 4 are offset.
  • the moment is the product of the strength of the centrifugal force and the distance from the ball bearing 21 supporting the main shaft 4. Therefore, as the strength of the centrifugal force increases or the distance from the ball bearing 21 increases, the influence on the moment increases.
  • the mass imbalance amount is determined by the weight of each part and the position of the center of gravity of each part.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 are inserted into the rotor 3, and the centrifugal force F3 is generated by mass imbalance by the first weight adjusting unit 34, and the second weight adjustment is performed. It is equipped with the structure which generates the centrifugal force F4 by the mass imbalance by the part 35. FIG. Therefore, according to the scroll compressor 100, even if the balancer is not provided, the same function and the same effect as those of the scroll compressor provided with the conventional balancer can be obtained.
  • the first balancer and the second conventionally required by using the centrifugal force of the first weight adjusting unit 34 and the second weight adjusting unit 35 to offset the centrifugal force Fc. It can be substituted for the centrifugal force of the balancer. Therefore, according to the scroll compressor 100, the first balancer and the second balancer can be eliminated, and the process of shrink fitting or press fitting, which is necessary when attaching the first balancer and the second balancer, can be omitted. it can.
  • the scroll compressor 100 is not provided with the first balancer and the second balancer, the stirring of the refrigerant and the refrigerator oil in the container 1 which is generated by the rotation of the first balancer and the second balancer during operation is also eliminated. Can. Therefore, according to the scroll compressor 100, the improvement of the oil increase can be expected, and the balancer cover attached to prevent the oil increase due to the stirring can be eliminated.
  • the scroll compressor 100 can form the punched portion 39 simultaneously with the pressing of the electromagnetic steel plate 38, that is, the formation of the spindle insertion portion 42, the magnet insertion portion 47, and the slit 48. Therefore, according to the scroll compressor 100, the punching portion 39 can be formed with high accuracy without increasing the number of processing steps. That is, in the scroll compressor 100, the shape and the formation position of the punching portion 39 can be processed with high accuracy without increasing the processing cost.
  • the first weight adjusting portion 34 is inserted above the center of the rotor 3 in the height direction, and the second weight adjusting portion 35 is inserted below the center of the rotor 3 in the height direction.
  • the centrifugal force Fc, the centrifugal force F3 generated in the opposite direction to the centrifugal force Fc, and the centrifugal force F4 in the same direction as the centrifugal force Fc act on the main shaft 4. Therefore, according to the scroll compressor 100, the generation position of the centrifugal force F3 generated by the first weight adjusting unit 34 and the centrifugal force F4 generated by the second weight adjusting unit 35 can be adjusted by the distance from the ball bearing 21. , It will be easier to balance the moment.
  • the first weight adjusting unit 34 is inserted in a direction opposite to the centrifugal force Fc, that is, in the direction opposite to the centrifugal force, and the second weight adjusting unit 35 is directed to the centrifugal force Fc. It is inserted below.
  • the centrifugal force F3 generated by the first weight adjusting unit 34 acts in the opposite direction to the centrifugal force Fc
  • the centrifugal force F4 generated by the second weight adjusting unit 35 acts in the same direction as the centrifugal force Fc.
  • the centrifugal force can be made smaller than the moment required to offset the moment due to the centrifugal force Fc.
  • the weight of the first weight adjusting unit 34 and the second weight adjusting unit 35 can be made smaller than the weight of the first balancer and the second balancer, and implementation at lower cost is possible. It becomes.
  • FIG. 4 is a structural view extracting and enlarging a main shaft 4, a rotor 3 and a sub frame 20 of a scroll compressor according to Embodiment 2 of the present invention.
  • FIG. 5 is a plan view of an electromagnetic steel sheet 38 constituting the rotor 3 of the scroll compressor according to Embodiment 2 of the present invention.
  • a main shaft 4 and a rotor 3 of a scroll compressor according to a second embodiment of the present invention will be described in detail based on FIGS. 4 and 5.
  • FIG. 5 a state in which the weight adjustment unit 36 is inserted into the punching unit 39 and the magnet 40 is inserted into the magnet insertion unit 47 is illustrated.
  • differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the scroll compressor according to the second embodiment is different from the scroll compressor 100 according to the first embodiment in that the rotor attachment portion 41 of the main shaft 4 is eccentric in the anti-centrifugal direction of the centrifugal force Fc. .
  • the scroll according to the first embodiment is that the main shaft insertion portion 42 of the magnetic steel plate 38 is eccentric from the central axis 43 of the main shaft 4 by the same amount as the rotor attachment portion 41. It differs from the compressor 100.
  • the scroll compressor according to the second embodiment is different from the scroll compressor 100 according to the first embodiment in that the first weight adjusting unit 34 is not inserted into the rotor 3.
  • the main shaft 4 has the eccentric shaft 4a at the top.
  • a slider balancer 37 is attached to the eccentric shaft 4a.
  • the slider 16 is rotatably fitted to the rocking bearing 13 of the rocking scroll 10. Therefore, a slide bearing structure is formed by the inner peripheral surface of the rocking bearing 13 and the outer peripheral surface of the slider 16.
  • the supply of refrigeration oil to the slide bearing structure supports the transmission of force of the swing scroll 10 and the slider balancer 37 by the slide bearing structure.
  • the main shaft 4 is formed using a material having a specific gravity higher than that of the electromagnetic steel plate 38 constituting the rotor 3.
  • the rotor attachment portion 41 where the rotor 3 of the main shaft 4 is attached is decentered in the anti-centrifugal direction of the centrifugal force Fc generated on the eccentric shaft portion 4a.
  • the main shaft insertion portion 42 of the magnetic steel plate 38 is also eccentric from the central axis 43 of the main shaft 4 by the same amount as the rotor attachment portion 41.
  • a weight adjusting portion 36 made of a material having a higher specific gravity than the main shaft 4 in the direction of centrifugal force with respect to the centrifugal force Fc.
  • the weight adjusting unit 36 corresponds to the second weight adjusting unit 35 described in the first embodiment.
  • the rotor 3 has a structure in which a plurality of electromagnetic steel plates 38 as shown in FIG. 5 are stacked.
  • a punching portion 39, a spindle insertion portion 42, a magnet insertion portion 47, and a slit 48 are formed to penetrate.
  • the punched portion 39 may be formed so as to penetrate the weight adjustment portion 36 at the position where it is desired to be inserted. Then, the weight adjusting unit 36 is inserted into the inside of the rotor 3 through the punching unit 39.
  • the weight adjusting portion 36 is inserted into the space formed by the punching portion 39. Then, the upper end surface and the lower end surface of the weight adjusting unit 36 are fixed, and the movement of the weight adjusting unit 36 is restricted.
  • the upper end surface of the weight adjusting unit 36 is an end surface on the side of the compression unit 50, and the lower end surface of the weight adjusting unit 36 is an end surface on the sub frame 20 side.
  • the centrifugal force during operation of the scroll compressor according to the second embodiment will be described.
  • the rotor attachment portion 41 and the spindle insertion portion 42 are offset from the central axis 43 of the spindle 4.
  • the centrifugal force Fc generated in the eccentric shaft 4a due to the specific gravity difference with the electromagnetic steel plate 38.
  • a centrifugal force F5 is generated due to mass imbalance in the direction of the anti-centrifugal force.
  • centrifugal force Fc acts on the main shaft 4.
  • centrifugal force Fb acts on the centrifugal force F5 to act on the main shaft 4.
  • the centrifugal force F5 is generated due to the mass unbalance of the rotor attachment portion 41 when the oscillating scroll 10 oscillates.
  • the centrifugal force Fc, the centrifugal force Fb, the centrifugal force F4, and the centrifugal force F5 are offset each other to rotate the main shaft 4 by the centrifugal force Fc and the centrifugal force Fc. Balanced with the moment as well as the direction and axial longitudinal direction.
  • the centrifugal force F3 generated in the first weight adjusting unit 34 can be substituted by the centrifugal force F5 due to the mass imbalance of the rotor attachment unit 41. Therefore, according to the scroll compressor according to the second embodiment, the first weight adjusting unit 34 is not necessary, and one weight adjusting unit 36 may be inserted into the rotor 3.
  • the insertion position of the main shaft 4 is made eccentric from the central axis 43 in the anti-centrifugal force direction, thereby expanding the range in which the weight adjusting portion 36 can be inserted. It is easy to do. Therefore, according to the scroll compressor according to the second embodiment, the balance between the centrifugal force and the moment can be easily obtained.
  • FIG. 6 is a plan view of an electromagnetic steel sheet 38 constituting a rotor 3 of a scroll compressor according to Embodiment 3 of the present invention.
  • a main shaft 4 and a rotor 3 of a scroll compressor according to a third embodiment of the present invention will be described in detail based on FIG.
  • the second weight adjusting portion 35 is inserted into the punching portion 39, and the magnet 40 is inserted into the magnet insertion portion 47.
  • differences from the first embodiment and the second embodiment will be mainly described, and the same parts as the first embodiment and the second embodiment will be assigned the same reference numerals and descriptions thereof will be omitted. It shall be.
  • the second weight adjusting unit 35 is formed of a material that is a magnetic body.
  • the first weight adjusting unit 34 and the second weight adjusting unit 35 may be magnetic members, and the material is not particularly limited.
  • Reference Signs List 1 container, 1a intermediate container, 1b lower container, 1c upper container, 2 stator, 3 rotor, 4 main shaft, 4a eccentric shaft, 4b pump shaft, 4c oil hole, 9 fixed scroll, 9a wrap, 9b discharge port, DESCRIPTION OF SYMBOLS 10 rocking scroll, 10a lap part, 11 frame, 12 main bearing, 13 rocking bearing, 14 thrust plate, 15 oldham ring, 16 slider, 17 sleeve, 20 sub frame, 20a bearing storage part, 21 ball bearing, 22 oil Pumps, 23 oil reservoirs, 24 suction pipes, 25 discharge pipes, 26 compression chambers, 27 seals, 28 seals, 29 discharge valves, 33 discharge spaces, 34 first weight adjusting section, 35 second weight adjusting section, 36 weight adjusting section , 37 slider balancer, 38 electrical steel plate, 39 Chipping part, 40 magnets, 41 rotor mounting parts, 42 spindle insertion parts, 43 central axes, 47 magnet insertion parts, 48 slits, 50 compression parts, 60 electric mechanism parts, 100 scroll

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This scroll compressor comprises: a container; a stationary scroll provided within the container; an orbiting scroll provided within the container and combined with the stationary scroll; a main shaft provided within the container and causing the orbiting scroll to orbit; a rotor provided within the container and rotating the main shaft; a stator provided within the container and rotating the rotor; an orbiting bearing provided to the orbiting scroll and having inserted therein the eccentric shaft section of the main shaft; a slider fitted in the orbiting bearing and supporting the orbiting scroll; and a slider balancer provided to the eccentric shaft section and generating centrifugal force in the direction opposite the direction of eccentricity of the eccentric shaft section. The rotor has provided therein a weight adjustment section for offsetting centrifugal force occurring at the eccentric shaft section.

Description

スクロール圧縮機Scroll compressor
 本発明は、冷凍サイクルの構成要素の一つとして使用されるスクロール圧縮機に関するものである。 The present invention relates to a scroll compressor used as one of the components of a refrigeration cycle.
 従来から存在しているスクロール圧縮機は、一般的に、固定スクロール、揺動スクロール、ステータ、ロータ、主軸、スライダ、偏心軸部、圧縮部、電動機構部、シェル、吸入管、吐出管、フレーム、サブフレーム、及び、容積形油ポンプを有している。 Scroll compressors that conventionally exist generally include a fixed scroll, a rocking scroll, a stator, a rotor, a main shaft, a slider, an eccentric shaft, a compression unit, an electric mechanism, a shell, a suction pipe, a discharge pipe, and a frame. , Sub-frame, and positive displacement oil pump.
 固定スクロールは、圧縮部を構成するものであり、フレームに固定される。
 揺動スクロールは、固定スクロールとともに圧縮部を構成するものであり、固定スクロールの中心に対して偏心した回転軸を有する。
 ステータは、電動機構部を構成するものであり、シェルに固定される。
 ロータは、ステータとともに電動機構部を構成するものであり、ステータの中心に挿入される。
 主軸は、ロータに固定され、電動機構部により回転駆動される。
The fixed scroll constitutes the compression unit and is fixed to the frame.
The oscillating scroll constitutes a compression unit together with the fixed scroll, and has a rotating shaft eccentric to the center of the fixed scroll.
The stator constitutes an electric mechanism portion and is fixed to the shell.
The rotor constitutes an electric mechanism together with the stator, and is inserted at the center of the stator.
The main shaft is fixed to the rotor and rotationally driven by the electric mechanism.
 スライダは、揺動スクロールを公転運動させるための揺動軸受に嵌合するように設置され、揺動スクロールを支承する。
 偏心軸部は、スライダが主軸に対して偏心するように主軸の上部に設置されたスライダ装着軸である。
 圧縮部は、固定スクロール及び揺動スクロールを含み、冷媒ガスを圧縮する。
 電動機構部は、モータとして機能するものであり、ステータ及びロータを含み、主軸を介して揺動スクロールを駆動する。
 シェルは、圧縮部及び電動機構部を収容するものであり、密閉容器となっている。
The slider is installed to be fitted to a rocking bearing for revolving movement of the rocking scroll and supports the rocking scroll.
The eccentric shaft portion is a slider mounting shaft installed at an upper portion of the main shaft so that the slider is eccentric to the main shaft.
The compression unit includes a fixed scroll and an oscillating scroll, and compresses the refrigerant gas.
The electric mechanism portion functions as a motor, includes a stator and a rotor, and drives the oscillating scroll via a main shaft.
The shell accommodates the compression part and the electric mechanism part, and is a closed container.
 吸入管は、シェルの低圧部分に連接され、シェルの外部よりシェルの内部に冷媒ガスを導入する。
 吐出管は、シェルの高圧部分に連接され、圧縮部で圧縮された冷媒ガスをシェルの外部に吐出する。
 フレームは、揺動スクロール及び主軸を支承し、固定スクロールに対してボルト等でシェルに固定される。
 サブフレームは、シェルに固定され、主軸を回転自在に支えるものである。
 容積形油ポンプは、シェルの底部に溜まった冷凍機油をスライダまで吸い上げるものである。なお、容積形油ポンプにより吸い上げられた冷凍機油は、主軸内の給油通路を通ってスライダに導かれる。
The suction pipe is connected to the low pressure portion of the shell and introduces the refrigerant gas into the shell from the outside of the shell.
The discharge pipe is connected to the high pressure portion of the shell and discharges the refrigerant gas compressed in the compression unit to the outside of the shell.
The frame supports the oscillating scroll and the main shaft, and is fixed to the shell by bolts or the like with respect to the fixed scroll.
The sub-frame is fixed to the shell and rotatably supports the main shaft.
The positive displacement oil pump sucks up refrigeration oil accumulated in the bottom of the shell to the slider. The refrigeration oil sucked up by the positive displacement oil pump is guided to the slider through the oil supply passage in the main shaft.
 また、スクロール圧縮機は、揺動スクロールを揺動運動させるため、主軸の回転軸に対し、揺動スクロールを偏心させている。そのため、スクロール圧縮機は、運転時に、揺動スクロール、及び、揺動スクロールの周辺部材、つまりブッシュ及びスライダなどにより主軸に遠心力が発生する。発生した遠心力に対しては、主軸の回転方向及び軸方向でバランスを取るために、2つのバランサが設けられている。この2つのバランサにより、揺動スクロールの偏心によって発生する遠心力を相殺させている。 Further, in the scroll compressor, the oscillating scroll is eccentric to the rotation axis of the main shaft in order to oscillate the oscillating scroll. Therefore, during operation of the scroll compressor, centrifugal force is generated on the main shaft by the oscillating scroll and peripheral members of the oscillating scroll, that is, the bush and the slider. Two balancers are provided to balance the generated centrifugal force in the rotational direction and the axial direction of the main shaft. The two balancers offset the centrifugal force generated by the eccentricity of the oscillating scroll.
 特許文献1に記載されているように、スクロール圧縮機の中には、ロータの下面にロータと一体となって取り付けられているバランサを備えたものがある。
 また、特許文献2には、ロータの下面に取り付けられたバランサの外周にバランサカバーを設け、油上がりを防止するようにした圧縮機が記載されている。
 さらに、特許文献3には、2つのバランサに加え、スライダの主軸偏心方向と反対側にスライダバランサを設けたスクロール圧縮機が記載されている。特許文献3に記載のスクロール圧縮機は、圧縮部の増速による主軸の偏心部に発生する遠心力の増加に伴い、偏心部に発生する遠心力を相殺させることを可能にしている。
As described in Patent Document 1, some scroll compressors include a balancer attached to the lower surface of the rotor integrally with the rotor.
Further, Patent Document 2 describes a compressor in which a balancer cover is provided on the outer periphery of a balancer attached to the lower surface of a rotor so as to prevent oil from rising.
Further, Patent Document 3 describes a scroll compressor in which a slider balancer is provided on the opposite side of the main shaft eccentric direction of the slider in addition to the two balancers. The scroll compressor described in Patent Document 3 makes it possible to offset the centrifugal force generated in the eccentric portion with an increase in the centrifugal force generated in the eccentric portion of the main shaft due to the acceleration of the compression portion.
 このようなスクロール圧縮機は、運転時に、揺動スクロール、主軸の偏心部、及び、揺動スクロールの周辺部材により発生する遠心力Fcに対するために、スライダバランサ、第1バランサ、及び、第2バランサを設けている。第1バランサは、ロータの上部に取り付けられている。第2バランサは、ロータの下部に取り付けられている。スライダバランサは、スライダの主軸偏心方向と反対側に取り付けられている。 Such a scroll compressor has a slider balancer, a first balancer, and a second balancer for operating against the centrifugal force Fc generated by the oscillating scroll, the eccentric portion of the main shaft, and the peripheral members of the oscillating scroll during operation. Is provided. The first balancer is attached to the top of the rotor. The second balancer is attached to the lower part of the rotor. The slider balancer is mounted on the side opposite to the main shaft eccentric direction of the slider.
 スライダバランサ、第1バランサ、及び、第2バランサには、それぞれアンバランス部が設けられている。スライダバランサには、運転時に遠心力Fbが発生する。第1バランサには、運転時に遠心力F1が発生する。第2バランサには、運転時に遠心力F2が発生する。スライダバランサ、第1バランサ、及び、第2バランサによって、揺動スクロール等で発生する遠心力Fcを相殺することを可能としている。 Each of the slider balancer, the first balancer, and the second balancer is provided with an unbalanced portion. A centrifugal force Fb is generated in the slider balancer during operation. A centrifugal force F1 is generated in the first balancer during operation. A centrifugal force F2 is generated in the second balancer during operation. The slider balancer, the first balancer, and the second balancer make it possible to offset the centrifugal force Fc generated by the oscillating scroll or the like.
 スライダバランサについては、主軸の偏心部と近い位置に設けられていることから、重量を重くすることで主軸の偏心部に発生する遠心力及び遠心力によって発生するモーメントの大部分を相殺することが可能である。しかしながら、スライダバランサのみで遠心力Fcを完全に相殺することは困難であるため、第1バランサ及び第2バランサが必要となる。そのため、3つのバランサを設置することになってしまうことになり、部品点数が増加し、加工工程が増えてしまうという課題がある。 Since the slider balancer is provided at a position close to the eccentric portion of the main shaft, it is possible to offset most of the centrifugal force generated by the eccentric portion of the main shaft and the moment generated by the centrifugal force by increasing the weight. It is possible. However, since it is difficult to completely offset the centrifugal force Fc only with the slider balancer, the first balancer and the second balancer are required. Therefore, three balancers are to be installed, and the number of parts is increased, which causes a problem that the number of processing steps is increased.
 また、特許文献4には、第1バランサ及び第2バランサを備えずに、磁石の配置によって、回転する部分全体の力の釣り合いをとるようにした圧縮機が記載されている。 Further, Patent Document 4 describes a compressor in which the force of the entire rotating portion is balanced by the arrangement of magnets without providing the first balancer and the second balancer.
特開平04-112652号公報Japanese Patent Application Laid-Open No. 04-112652 特開2015-166553号公報JP, 2015-166553, A 実開平04-49602号公報Japanese Utility Model Publication No. 04-49602 国際公開第2016/097478号International Publication No. 2016/974778
 特許文献1及び特許文献2に記載されているように、一般的に、スクロール圧縮機では、第1バランサ及び第2バランサを備え、揺動スクロールの偏心によって発生する遠心力を相殺させている。また、特許文献3に記載されているスクロール圧縮機では、更にスライダバランサを設け、揺動スクロールの偏心によって発生する遠心力を相殺させている。
 しかしながら、バランサを備えた圧縮機には、作業工程の増加、部品点数の増加による費用の増大、及び、部品点数の増加による省資源化の阻害という課題があった。
As described in Patent Document 1 and Patent Document 2, generally, the scroll compressor includes a first balancer and a second balancer, and cancels out the centrifugal force generated by the eccentricity of the oscillating scroll. Further, in the scroll compressor described in Patent Document 3, a slider balancer is further provided to offset the centrifugal force generated by the eccentricity of the oscillating scroll.
However, a compressor equipped with a balancer has problems such as an increase in work processes, an increase in cost due to an increase in the number of parts, and an inhibition of resource saving due to an increase in the number of parts.
 そのため、特許文献4に記載の圧縮機では、バランサを備えることなく、揺動スクロール等で発生する遠心力を相殺させるようにしている。
 しかしながら、特許文献4に記載の圧縮機では、磁石の配置によって、揺動スクロール等で発生する遠心力を相殺させるようにしているが、磁石が設けられていない部分が存在し、磁石の大きさに対してモータの効率がよいとは言えなかった。
Therefore, in the compressor described in Patent Document 4, the centrifugal force generated by the oscillating scroll or the like is offset without providing a balancer.
However, in the compressor described in Patent Document 4, although the centrifugal force generated by the oscillating scroll or the like is offset by the arrangement of the magnets, there is a portion where the magnet is not provided, and the size of the magnet It can not be said that the efficiency of the motor is good.
 本発明は、以上のような課題を解決するためになされたもので、モータの効率を低減することなく、揺動スクロールの偏心によって発生する遠心力を相殺するために必要なバランサの削減を可能としたスクロール圧縮機を提供することを目的としている。 The present invention has been made to solve the above problems, and can reduce the balancer required to offset the centrifugal force generated by the eccentricity of the oscillating scroll without reducing the efficiency of the motor. The purpose is to provide a scroll compressor.
 本発明に係るスクロール圧縮機は、容器と、前記容器内に設けられた固定スクロールと、前記容器内に設けられ、前記固定スクロールと組み合わされる揺動スクロールと、前記容器内に設けられ、前記揺動スクロールを揺動運動させる主軸と、前記容器内に設けられ、前記主軸を回転させるロータと、前記容器内に設けられ、前記ロータを回転させるステータと、前記揺動スクロールに設けられ、前記主軸の偏心軸部が挿入される揺動軸受と、前記揺動軸受に嵌合され、前記揺動スクロールを支承するスライダと、前記偏心軸部に設けられ、前記偏心軸部の偏心方向と逆方向に遠心力を発生させるスライダバランサと、を備え、前記ロータの内部に、前記偏心軸部に発生する遠心力を相殺する重量調整部が設けられているものである。 The scroll compressor according to the present invention comprises a container, a fixed scroll provided in the container, a rocking scroll provided in the container and combined with the fixed scroll, provided in the container, and A main shaft for oscillating movement of the moving scroll, a rotor provided in the container and rotating the main shaft, a stator provided in the container for rotating the rotor, and the rotating scroll provided on the oscillating scroll A swing bearing into which the eccentric shaft portion is inserted, a slider fitted with the swing bearing and supporting the swing scroll, and the eccentric shaft portion provided opposite to the eccentric direction of the eccentric shaft portion And a slider balancer for generating a centrifugal force, and a weight adjusting portion for canceling the centrifugal force generated in the eccentric shaft is provided inside the rotor.
 本発明に係るスクロール圧縮機によれば、ロータの内部に重量調整部を挿入することで、質量アンバランスによる遠心力を発生させることができ、揺動スクロールの偏心によって発生する遠心力を相殺するためのバランサを削減できる。 According to the scroll compressor according to the present invention, by inserting the weight adjusting unit into the rotor, it is possible to generate centrifugal force due to mass imbalance, and cancel the centrifugal force generated by the eccentricity of the oscillating scroll. Can reduce the amount of balancers.
本発明の実施の形態1に係るスクロール圧縮機の内部構成の一例を概略に示す概略構成図である。It is a schematic block diagram which roughly shows an example of an internal structure of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機の主軸、ロータ及びサブフレームを抜き出して拡大して示す構成図である。It is a block diagram which extracts and expands and shows a main axis, a rotor, and a sub frame of a scroll compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクロール圧縮機のロータを構成している電磁鋼板の平面図である。It is a top view of the electromagnetic steel plate which constitutes the rotor of the scroll compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態2に係るスクロール圧縮機の主軸及びロータを抜き出して拡大して示す構成図である。It is a block diagram which extracts and expands and shows the principal axis and rotor of a scroll compressor concerning Embodiment 2 of the present invention. 本発明の実施の形態2に係るスクロール圧縮機のロータを構成している電磁鋼板の平面図である。It is a top view of the electromagnetic steel plate which comprises the rotor of the scroll compressor concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係るスクロール圧縮機のロータを構成している電磁鋼板の平面図である。It is a top view of the electromagnetic steel plate which comprises the rotor of the scroll compressor concerning Embodiment 3 of the present invention.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係るスクロール圧縮機100の内部構成の一例を概略に示す概略構成図である。図1に基づいて、スクロール圧縮機100の構成及び動作について説明する。このスクロール圧縮機100は、冷凍サイクルの構成要素の一つとして使用されるものである。冷凍サイクルを備えた装置としては、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、又は、給湯器等の各種冷凍サイクル装置が考えられる。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described based on the drawings.
Embodiment 1
FIG. 1 is a schematic configuration view schematically showing an example of an internal configuration of a scroll compressor 100 according to Embodiment 1 of the present invention. The configuration and operation of the scroll compressor 100 will be described based on FIG. The scroll compressor 100 is used as one of the components of a refrigeration cycle. As an apparatus provided with a refrigerating cycle, various refrigerating cycle apparatuses, such as a refrigerator, a freezer, a vending machine, an air conditioning apparatus, a refrigerating apparatus, or a water heater, can be considered. In addition, in the following drawings including FIG. 1, the relationship of the magnitude | size of each structural member may differ from an actual thing.
<スクロール圧縮機100の全体構成>
 スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入し、圧縮して高温高圧の状態として吐出させるものである。このスクロール圧縮機100は、固定スクロール9及び揺動スクロール10等からなる圧縮部50と、ステータ2及びロータ3等からなる電動機構部60と、を有している。圧縮部50及び電動機構部60は、シェルである容器1内に収納されている。図1に示すように、スクロール圧縮機100が設置された状態において、圧縮部50が容器1の上側に、電動機構部60が容器1の下側に、それぞれ配置されている。
<Overall Configuration of Scroll Compressor 100>
The scroll compressor 100 sucks, compresses and discharges the refrigerant circulating in the refrigeration cycle as a high-temperature and high-pressure state. The scroll compressor 100 has a compression unit 50 including the fixed scroll 9 and the oscillating scroll 10 and the like, and an electric mechanism unit 60 including the stator 2 and the rotor 3 and the like. The compression unit 50 and the electric mechanism unit 60 are housed in a container 1 which is a shell. As shown in FIG. 1, in the state where the scroll compressor 100 is installed, the compression unit 50 is disposed on the upper side of the container 1 and the electric mechanism unit 60 is disposed on the lower side of the container 1.
 容器1は、中間部容器1aの上部に上部容器1cが設けられ、中間部容器1aの下部に下部容器1bが設けられた密閉容器となっている。下部容器1bは、潤滑油となる冷凍機油を貯留する油溜め23となっている。中間部容器1aには、冷媒ガスを吸入するための吸入管24が接続されている。上部容器1cには、冷媒ガスを吐出するための吐出管25が接続されている。 The container 1 is an airtight container provided with the upper container 1c in the upper part of the middle part container 1a, and the lower container 1b in the lower part of the middle part container 1a. The lower container 1 b is an oil reservoir 23 for storing refrigeration oil that is to be lubricating oil. A suction pipe 24 for suctioning the refrigerant gas is connected to the intermediate container 1a. A discharge pipe 25 for discharging the refrigerant gas is connected to the upper container 1c.
 圧縮部50は、揺動スクロール10、固定スクロール9、及び、フレーム11等を含んで構成されている。図1に示すように、揺動スクロール10は容器1の下側に設置され、固定スクロール9は容器1の上側に設置される。また、揺動スクロール10とフレーム11との間には、揺動スクロール10を支承するスラストプレート14が設けられている。そして、揺動スクロール10とスラストプレート14とが、冷凍機油を介して密着することにより、スラスト軸受を構成するようになっている。 The compression unit 50 is configured to include the oscillating scroll 10, the fixed scroll 9, the frame 11, and the like. As shown in FIG. 1, the swing scroll 10 is installed below the container 1, and the fixed scroll 9 is installed above the container 1. Further, a thrust plate 14 for supporting the oscillating scroll 10 is provided between the oscillating scroll 10 and the frame 11. The rocking scroll 10 and the thrust plate 14 are in close contact with each other through a refrigerator oil to constitute a thrust bearing.
 固定スクロール9には、一方の面に立設された渦巻状突起であるラップ部9aが形成されている。また、揺動スクロール10にも、一方の面に立設された渦巻状突起であるラップ部10aが形成されている。揺動スクロール10及び固定スクロール9は、ラップ部10aとラップ部9aとを互いに組み合わせ、容器1内に装着されている。揺動スクロール10及び固定スクロール9が組み合わされた状態では、ラップ部9aとラップ部10aの巻方向が互いに逆となる。 The fixed scroll 9 is formed with a wrap portion 9a which is a spiral protrusion standing on one surface. Further, the oscillating scroll 10 is also provided with a wrap portion 10a which is a spiral protrusion provided on one surface. The swing scroll 10 and the fixed scroll 9 are mounted in the container 1 by combining the wrap portion 10 a and the wrap portion 9 a with each other. When the rocking scroll 10 and the fixed scroll 9 are combined, the winding directions of the wrap portion 9a and the wrap portion 10a are opposite to each other.
 そして、ラップ部10aとラップ部9aとの間には、相対的に容積が変化する圧縮室26が形成される。固定スクロール9のラップ部9aには、ラップ部9aの先端面からの冷媒漏れを低減するため、ラップ部9aの先端面である下端面にシール28が配設されている。揺動スクロール10のラップ部10aには、ラップ部10aの先端面からの冷媒漏れを低減するため、ラップ部10aの先端面である上端面にシール27が配設されている。 And between the lap | wrap part 10a and the lap | wrap part 9a, the compression chamber 26 to which a volume changes relatively is formed. In the wrap portion 9a of the fixed scroll 9, a seal 28 is disposed on the lower end surface which is the tip end surface of the wrap portion 9a in order to reduce the refrigerant leakage from the tip end surface of the wrap portion 9a. In the wrap portion 10a of the orbiting scroll 10, a seal 27 is disposed on the upper end surface, which is the tip surface of the wrap portion 10a, in order to reduce the refrigerant leakage from the tip surface of the wrap portion 10a.
 固定スクロール9は、フレーム11に図示省略のボルト等によって固定されている。固定スクロール9の中央部には、圧縮され、高圧となった冷媒ガスを吐出する吐出ポート9bが形成されている。そして、圧縮され、高圧となった冷媒ガスは、固定スクロール9の上部に設けられている吐出空間33に排出されるようになっている。吐出空間33に排出された冷媒ガスは、吐出管25を介して冷凍サイクルに吐出されることになる。なお、吐出ポート9bには、吐出空間33から吐出ポート9b側への冷媒の逆流を防止する吐出弁29が設けられている。 The fixed scroll 9 is fixed to the frame 11 by a bolt or the like (not shown). At a central portion of the fixed scroll 9, a discharge port 9b is formed which discharges the compressed refrigerant gas that has a high pressure. Then, the refrigerant gas that has been compressed to a high pressure is discharged to the discharge space 33 provided at the upper portion of the fixed scroll 9. The refrigerant gas discharged to the discharge space 33 is discharged to the refrigeration cycle through the discharge pipe 25. The discharge port 9 b is provided with a discharge valve 29 for preventing the backflow of the refrigerant from the discharge space 33 to the discharge port 9 b side.
 揺動スクロール10は、自転運動を阻止するためのオルダムリング15により、固定スクロール9に対して自転運動することなく公転旋回運動(揺動運動)を行うようになっている。また、揺動スクロール10のラップ部10a形成面とは反対側の面であるスラスト面の略中心部には、中空円筒形状の揺動軸受13が形成されている。 The rocking scroll 10 is configured to perform a revolving movement (rocking movement) without rotating with respect to the fixed scroll 9 by the Oldham ring 15 for blocking the rotation. Further, a hollow cylindrical swing bearing 13 is formed at a substantially central portion of a thrust surface which is a surface opposite to the wrap 10 a forming surface of the swing scroll 10.
 揺動軸受13には揺動スクロール10を公転運動させるためのスライダ16が回転自在に嵌合され、スライダ16により揺動スクロール10を支承する。このスライダ16のスライド面には主軸4の上端に設けられた偏心軸部4aが挿入されている。偏心軸部4aは、スライダ16が主軸4に対して偏心するように主軸4の上部に設置されたスライダ装着軸である。そして、揺動軸受13の内周部とスライダ16の外周部とが冷凍機油を介して密着し、揺動軸受部を構成するようになっている。また、偏心軸部4aには、スライダバランサ37が取り付けられている。 A slider 16 for rotating the oscillating scroll 10 is rotatably fitted to the oscillating bearing 13, and the oscillating scroll 10 is supported by the slider 16. An eccentric shaft 4 a provided at the upper end of the main shaft 4 is inserted into the slide surface of the slider 16. The eccentric shaft 4 a is a slider mounting shaft installed at the upper portion of the main shaft 4 so that the slider 16 is eccentric to the main shaft 4. Then, the inner peripheral portion of the rocking bearing 13 and the outer peripheral portion of the slider 16 are in close contact with each other through the refrigerator oil to constitute the rocking bearing portion. Further, a slider balancer 37 is attached to the eccentric shaft 4a.
 フレーム11は、図示省略のボルト等によって容器1の内部に固定され、揺動スクロール10及び主軸4を支承する。また、フレーム11の中心部には、主軸4が挿通されて回転自在に支承される主軸受12が形成されている。 The frame 11 is fixed to the inside of the container 1 by bolts or the like (not shown) and supports the swing scroll 10 and the main shaft 4. Further, at the central portion of the frame 11, a main bearing 12 into which the main shaft 4 is inserted and rotatably supported is formed.
 電動機構部60は、主軸4が挿入されたロータ3、ステータ2、及び、回転軸である主軸4等を含んで構成されている。ロータ3は、主軸4に固定され、ステータ2への通電が開始することにより回転駆動し、主軸4を回転させるようになっている。ロータ3は、電磁鋼板等が積層されて構成されており、内部に第1重量調整部34及び第2重量調整部35が挿入されている。図1に示すように、第1重量調整部34は圧縮部50側に挿入されている。また、第2重量調整部35はサブフレーム20側に挿入されている。 The electric mechanism portion 60 includes the rotor 3 into which the main shaft 4 is inserted, the stator 2 and the main shaft 4 which is a rotating shaft. The rotor 3 is fixed to the main shaft 4 and is rotationally driven by starting energization of the stator 2 so as to rotate the main shaft 4. The rotor 3 is configured by laminating electromagnetic steel plates or the like, and the first weight adjusting unit 34 and the second weight adjusting unit 35 are inserted inside. As shown in FIG. 1, the first weight adjusting unit 34 is inserted to the compression unit 50 side. Further, the second weight adjusting unit 35 is inserted on the sub frame 20 side.
 主軸4は、ロータ3の回転に伴って回転し、揺動スクロール10を揺動運動させるようになっている。この主軸4の上部は、フレーム11に設けられた主軸受12によって支持されている。この主軸受12と主軸4との間には、主軸4を円滑に回転運動させるため、スリーブ17が設けられている。 The main shaft 4 is rotated along with the rotation of the rotor 3 to swing the oscillating scroll 10. The upper portion of the main shaft 4 is supported by a main bearing 12 provided on the frame 11. A sleeve 17 is provided between the main bearing 12 and the main shaft 4 in order to make the main shaft 4 rotate smoothly.
 一方、主軸4の下部は、ボールベアリング21によって回転自在に支持されている。このボールベアリング21は、容器1の下部に設けられたサブフレーム20の中央部に形成された軸受収納部20aに圧入固定されている。また、サブフレーム20には、容積型のオイルポンプ22が設けられている。このオイルポンプ22に回転力を伝達するポンプ軸4bは主軸4と一体形成されている。オイルポンプ22で吸引された油溜め23の冷凍機油は、主軸4の内部形成された油穴4c等を介してスライダ16等の各摺動部に送られる。 On the other hand, the lower part of the main shaft 4 is rotatably supported by a ball bearing 21. The ball bearing 21 is press-fitted and fixed to a bearing accommodating portion 20 a formed at a central portion of a sub-frame 20 provided at the lower portion of the container 1. In addition, the sub-frame 20 is provided with a positive displacement oil pump 22. A pump shaft 4 b for transmitting a rotational force to the oil pump 22 is integrally formed with the main shaft 4. The refrigerating machine oil of the oil reservoir 23 sucked by the oil pump 22 is sent to each sliding portion such as the slider 16 via the oil hole 4 c and the like formed inside the main shaft 4.
<スクロール圧縮機100の全体的な動作>
 電動機構部60に電圧が印加されると、ステータ2に電流が流れ、磁界が発生する。この磁界は、ロータ3を回転させるように働く。ロータ3が回転すると、それに伴い主軸4が回転駆動される。主軸4が回転駆動されると、偏心軸部4aを介してスライダ16も揺動軸受13内で回転する。それに伴い、オルダムリング15により自転を抑制された揺動スクロール10が揺動運動を行う。揺動スクロール10が揺動運転を行うと、公知の圧縮原理により冷媒を圧縮することになる。
<Overall Operation of Scroll Compressor 100>
When a voltage is applied to the motorized mechanism 60, a current flows in the stator 2 and a magnetic field is generated. This magnetic field acts to rotate the rotor 3. When the rotor 3 rotates, the main shaft 4 is rotationally driven accordingly. When the main shaft 4 is rotationally driven, the slider 16 is also rotated in the rocking bearing 13 via the eccentric shaft 4 a. Along with this, the rocking scroll 10 whose rotation is suppressed by the Oldham ring 15 performs rocking movement. When the oscillating scroll 10 performs the oscillating operation, the refrigerant is compressed by a known compression principle.
 揺動スクロール10が揺動運転を始めると、吸入管24から吸入された冷媒が圧縮室26内に導かれる。圧縮室26は、揺動スクロール10の揺動運動により揺動スクロール10の中心へ移動し、容積が縮小されていく。これにより、冷媒が圧縮されていく。このとき、圧縮される冷媒により固定スクロール9及び揺動スクロール10には軸方向に離れようとする荷重が働く。この荷重はスラストプレート14で支持されることになる。圧縮された冷媒は、固定スクロール9の吐出ポート9bを通り、吐出弁29を押し開けて吐出空間33に流入する。そして、吐出管25を介して容器1から吐出される。 When the rocking scroll 10 starts rocking operation, the refrigerant sucked from the suction pipe 24 is introduced into the compression chamber 26. The compression chamber 26 moves to the center of the oscillating scroll 10 by the oscillating motion of the oscillating scroll 10, and the volume is reduced. Thus, the refrigerant is compressed. At this time, a load is applied to the fixed scroll 9 and the swing scroll 10 so as to be separated in the axial direction by the compressed refrigerant. This load is supported by the thrust plate 14. The compressed refrigerant passes through the discharge port 9 b of the fixed scroll 9, pushes the discharge valve 29 open, and flows into the discharge space 33. Then, it is discharged from the container 1 through the discharge pipe 25.
 スクロール圧縮機100の動作中、各摺動部には、潤滑油である冷凍機油が供給される。摺動部としては、揺動スクロール10及びスラストプレート14の接触部、揺動軸受13及びスライダ16の接触部、偏心軸部4a及びスライダ16の接触部、主軸受12及びスリーブ17の接触部、並びに、スリーブ17及び主軸4の接触部等が挙げられる。各摺動部に供給された冷凍機油は、重力により再び油溜め23へ戻る。
 ステータ2への通電を止めると、スクロール圧縮機100が運転を停止する。
During operation of the scroll compressor 100, each sliding portion is supplied with refrigeration oil which is lubricating oil. As the sliding portion, the contact portion between the swing scroll 10 and the thrust plate 14, the contact portion between the swing bearing 13 and the slider 16, the contact portion between the eccentric shaft 4a and the slider 16, the contact portion between the main bearing 12 and the sleeve 17, And the contact part of the sleeve 17 and the main axis | shaft 4, etc. are mentioned. The refrigeration oil supplied to each sliding portion returns to the oil reservoir 23 again by gravity.
When energization of the stator 2 is stopped, the scroll compressor 100 stops its operation.
<スクロール圧縮機100の主軸4及びロータ3の詳細>
 図2は、スクロール圧縮機100の主軸4、ロータ3及びサブフレーム20を抜き出して拡大して示す構成図である。図3は、スクロール圧縮機100のロータ3を構成している電磁鋼板38の平面図である。図2及び図3に基づいて、スクロール圧縮機100の主軸4及びロータ3について詳細に説明する。
<Details of Main Shaft 4 and Rotor 3 of Scroll Compressor 100>
FIG. 2 is a configuration diagram extracting and enlarging the main shaft 4, the rotor 3 and the sub frame 20 of the scroll compressor 100. FIG. 3 is a plan view of the electromagnetic steel plate 38 which constitutes the rotor 3 of the scroll compressor 100. As shown in FIG. The main shaft 4 and the rotor 3 of the scroll compressor 100 will be described in detail based on FIGS. 2 and 3.
 上述したように、主軸4は、上部に偏心軸部4aを有している。そして、偏心軸部4aには、スライダバランサ37が取り付けられている。スライダバランサ37は、偏心軸部4aの偏心方向と逆方向に遠心力を発生させる。スライダ16は、揺動スクロール10の揺動軸受13に回転自在に嵌合される。そのため、揺動軸受13の内周面とスライダ16の外周面とにより、滑り軸受構造が形成されることになる。滑り軸受構造に冷凍機油が供給されることで、滑り軸受構造により揺動スクロール10及びスライダバランサ37の力の伝達を支承している。 As described above, the main shaft 4 has the eccentric shaft 4a at the top. And, a slider balancer 37 is attached to the eccentric shaft 4a. The slider balancer 37 generates a centrifugal force in the direction opposite to the eccentric direction of the eccentric shaft 4 a. The slider 16 is rotatably fitted to the rocking bearing 13 of the rocking scroll 10. Therefore, a slide bearing structure is formed by the inner peripheral surface of the rocking bearing 13 and the outer peripheral surface of the slider 16. The supply of refrigeration oil to the slide bearing structure supports the transmission of force of the swing scroll 10 and the slider balancer 37 by the slide bearing structure.
 ロータ3は、図3に示すような電磁鋼板38が複数枚積層された構造となっている。電磁鋼板38には、打ち抜き部39、主軸挿入部42、磁石挿入部47、及び、スリット48が貫通形成されている。打ち抜き部39は、第1重量調整部34及び第2重量調整部35を挿入したい位置に貫通形成すればよい。そして、第1重量調整部34及び第2重量調整部35は、打ち抜き部39を介してロータ3の内部に挿入される。 The rotor 3 has a structure in which a plurality of electromagnetic steel plates 38 as shown in FIG. 3 are stacked. In the magnetic steel plate 38, a punching portion 39, a spindle insertion portion 42, a magnet insertion portion 47, and a slit 48 are formed to penetrate. The punched portion 39 may be formed so as to penetrate the first weight adjusting portion 34 and the second weight adjusting portion 35 at the position where the insertion is desired. Then, the first weight adjusting unit 34 and the second weight adjusting unit 35 are inserted into the inside of the rotor 3 through the punching unit 39.
 第1重量調整部34及び第2重量調整部35は、偏心軸部4aに発生する遠心力Fcを相殺するものである。そのため、第1重量調整部34及び第2重量調整部35は、偏心軸部4aに発生する遠心力Fcを相殺することができる遠心力が生じる重量に設定される。第1重量調整部34及び第2重量調整部35は、電磁鋼板38よりも比重の高い素材を用いて形成されている。第1重量調整部34及び第2重量調整部35を形成する素材としては、亜鉛、鉛、銅、あるいは、真鍮のような合金が考えられる。また、第1重量調整部34及び第2重量調整部35は、磁性体であるとよい。
 なお、第1重量調整部34及び第2重量調整部35は、電磁鋼板38とは異なる比重となるように形成されていればよい。第1重量調整部34及び第2重量調整部35は、電磁鋼板38よりも比重の低い素材で形成されてもよいし、空隙で形成されてもよい。
The first weight adjusting unit 34 and the second weight adjusting unit 35 offset the centrifugal force Fc generated in the eccentric shaft 4 a. Therefore, the first weight adjusting unit 34 and the second weight adjusting unit 35 are set to a weight that produces a centrifugal force that can offset the centrifugal force Fc generated in the eccentric shaft 4a. The first weight adjusting unit 34 and the second weight adjusting unit 35 are formed using a material having a higher specific gravity than the electromagnetic steel plate 38. As materials for forming the first weight adjusting portion 34 and the second weight adjusting portion 35, an alloy such as zinc, lead, copper or brass can be considered. In addition, the first weight adjusting unit 34 and the second weight adjusting unit 35 may be magnetic members.
The first weight adjusting unit 34 and the second weight adjusting unit 35 may be formed so as to have a specific gravity different from that of the electromagnetic steel plate 38. The first weight adjusting unit 34 and the second weight adjusting unit 35 may be formed of a material having a specific gravity lower than that of the electromagnetic steel plate 38, or may be formed of an air gap.
 また、打ち抜き部39を形成した電磁鋼板38を複数枚積層することで、ロータ3の内部に空間を形成することが可能になる。打ち抜き部39により形成される空間に、第1重量調整部34及び第2重量調整部35が挿入される。そして、第1重量調整部34の上端面及び下端面、並びに、第2重量調整部35の上端面及び下端面を固定し、第1重量調整部34及び第2重量調整部35の動きを規制する。なお、第1重量調整部34及び第2重量調整部35の上端面とは圧縮部50側の端面のことであり、第1重量調整部34及び第2重量調整部35の下端面とはサブフレーム20側の端面のことである。
 スライダバランサ37は、焼嵌め又は圧入により偏心軸部4aに固定される。
 ロータ3は、焼嵌め又は圧入により主軸4に固定される。
Further, by laminating a plurality of electromagnetic steel plates 38 in which the punched portions 39 are formed, it is possible to form a space inside the rotor 3. The first weight adjusting portion 34 and the second weight adjusting portion 35 are inserted into the space formed by the punching portion 39. Then, the upper end surface and the lower end surface of the first weight adjusting unit 34 and the upper end surface and the lower end surface of the second weight adjusting unit 35 are fixed, and the movement of the first weight adjusting unit 34 and the second weight adjusting unit 35 is restricted. Do. The upper end surfaces of the first weight adjusting unit 34 and the second weight adjusting unit 35 are the end surfaces on the side of the compression unit 50, and the lower end surfaces of the first weight adjusting unit 34 and the second weight adjusting unit 35 are sub The end face on the frame 20 side.
The slider balancer 37 is fixed to the eccentric shaft 4 a by shrink fitting or press fitting.
The rotor 3 is fixed to the main shaft 4 by shrink fitting or press fitting.
 次に、スクロール圧縮機100の動作中における遠心力について説明する。
 図2に示すように、スクロール圧縮機100の動作中、主軸4には、遠心力Fc、遠心力Fb、遠心力F3、及び、遠心力F4が作用する。遠心力Fc及び遠心力Fbは、揺動スクロール10の揺動運動によって発生するものである。遠心力F3は、揺動スクロール10の揺動運動時に第1重量調整部34の質量アンバランスによって発生するものである。遠心力F4は、揺動スクロール10の揺動運動時に第2重量調整部35の質量アンバランスによって発生するものである。
Next, the centrifugal force during operation of the scroll compressor 100 will be described.
As shown in FIG. 2, during operation of the scroll compressor 100, centrifugal force Fc, centrifugal force Fb, centrifugal force F3, and centrifugal force F4 act on the main shaft 4. The centrifugal force Fc and the centrifugal force Fb are generated by the rocking motion of the rocking scroll 10. The centrifugal force F3 is generated due to the mass unbalance of the first weight adjusting unit 34 during the swinging motion of the swinging scroll 10. The centrifugal force F4 is generated due to the mass unbalance of the second weight adjusting unit 35 during the swinging motion of the swinging scroll 10.
 ここで遠心力Fは、主軸4の中心軸を基準とした場合、
 F=mrωで表すことができる。
 mは各部の重量[kg]、rは主軸4の中心からの各部の重心位置までの距離[m]、ωは角速度[rad/s]である。
Here, when the centrifugal force F is based on the central axis of the spindle 4,
It can be expressed by F = mrω 2.
m is the weight [kg] of each part, r is the distance [m] from the center of the main shaft 4 to the position of the center of gravity of each part, and ω is the angular velocity [rad / s].
 スライダバランサ37及びロータ3は、主軸4と一体となっていることから、角速度ωは全て同値である。そのため、スクロール圧縮機100では、スライダバランサ37、第1重量調整部34、及び、第2重量調整部35の質量アンバランス量を調整することにより、遠心力Fc及び遠心力Fcによる主軸4の回転方向及び主軸4の軸長手方向のモーメントを相殺させている。 Since the slider balancer 37 and the rotor 3 are integrated with the main shaft 4, the angular velocities ω all have the same value. Therefore, in the scroll compressor 100, the centrifugal force Fc and the rotation of the main shaft 4 by the centrifugal force Fc are adjusted by adjusting the mass imbalance amount of the slider balancer 37, the first weight adjusting unit 34, and the second weight adjusting unit 35. The moments of the direction and the axial longitudinal direction of the main shaft 4 are offset.
 また、モーメントについては、遠心力の強さと、主軸4を支えているボールベアリング21からの距離と、の積となる。そのため、遠心力の強さが大きい程、あるいは、ボールベアリング21からの距離が遠くなる程、モーメントに与える影響が大きくなる。
 なお、質量アンバランス量は、各部の重量及び各部の重心位置で決まる。
The moment is the product of the strength of the centrifugal force and the distance from the ball bearing 21 supporting the main shaft 4. Therefore, as the strength of the centrifugal force increases or the distance from the ball bearing 21 increases, the influence on the moment increases.
The mass imbalance amount is determined by the weight of each part and the position of the center of gravity of each part.
 スクロール圧縮機100の奏する効果について説明する。
 スクロール圧縮機100は、ロータ3の内部に第1重量調整部34及び第2重量調整部35を挿入し、第1重量調整部34による質量アンバランスで遠心力F3を発生させ、第2重量調整部35による質量アンバランスで遠心力F4を発生させる構造を備えている。そのため、スクロール圧縮機100によれば、バランサを備えていなくても、従来のバランサを備えたスクロール圧縮機と同様の機能及び同様の効果を得ることができる。
The effects of the scroll compressor 100 will be described.
In the scroll compressor 100, the first weight adjusting unit 34 and the second weight adjusting unit 35 are inserted into the rotor 3, and the centrifugal force F3 is generated by mass imbalance by the first weight adjusting unit 34, and the second weight adjustment is performed. It is equipped with the structure which generates the centrifugal force F4 by the mass imbalance by the part 35. FIG. Therefore, according to the scroll compressor 100, even if the balancer is not provided, the same function and the same effect as those of the scroll compressor provided with the conventional balancer can be obtained.
 これにより、スクロール圧縮機100では、遠心力Fcを相殺するために第1重量調整部34及び第2重量調整部35の遠心力を利用することで、従来必要であった第1バランサ及び第2バランサの遠心力の代用とできる。そのため、スクロール圧縮機100によれば、第1バランサ及び第2バランサの廃止が可能となり、第1バランサ及び第2バランサを取り付ける際に必要であった焼嵌めまたは圧入の工程についても省略することができる。 Thereby, in the scroll compressor 100, the first balancer and the second conventionally required by using the centrifugal force of the first weight adjusting unit 34 and the second weight adjusting unit 35 to offset the centrifugal force Fc. It can be substituted for the centrifugal force of the balancer. Therefore, according to the scroll compressor 100, the first balancer and the second balancer can be eliminated, and the process of shrink fitting or press fitting, which is necessary when attaching the first balancer and the second balancer, can be omitted. it can.
 また、スクロール圧縮機100は、第1バランサ及び第2バランサを備えていないので、運転時に第1バランサ及び第2バランサの回転によって発生していた容器1内の冷媒及び冷凍機油の撹拌もなくすことができる。そのため、スクロール圧縮機100によれば、油上りの改善が見込め、撹拌による油上りを防止するために取り付けていたバランサーカバーについても廃止することができる。 Further, since the scroll compressor 100 is not provided with the first balancer and the second balancer, the stirring of the refrigerant and the refrigerator oil in the container 1 which is generated by the rotation of the first balancer and the second balancer during operation is also eliminated. Can. Therefore, according to the scroll compressor 100, the improvement of the oil increase can be expected, and the balancer cover attached to prevent the oil increase due to the stirring can be eliminated.
 また、スクロール圧縮機100は、打ち抜き部39については電磁鋼板38のプレス加工、つまり主軸挿入部42、磁石挿入部47、及び、スリット48の形成と同時に形成することができる。そのため、スクロール圧縮機100によれば、加工工程を増やすことなく、かつ高精度に打ち抜き部39を成形できる。つまり、スクロール圧縮機100では、打ち抜き部39の形状及び形成位置を、加工費用を上げることなく、高精度に加工することが可能になる。 Further, the scroll compressor 100 can form the punched portion 39 simultaneously with the pressing of the electromagnetic steel plate 38, that is, the formation of the spindle insertion portion 42, the magnet insertion portion 47, and the slit 48. Therefore, according to the scroll compressor 100, the punching portion 39 can be formed with high accuracy without increasing the number of processing steps. That is, in the scroll compressor 100, the shape and the formation position of the punching portion 39 can be processed with high accuracy without increasing the processing cost.
 また、第1重量調整部34はロータ3の高さ方向の中心に対して上側、第2重量調整部35はロータ3の高さ方向の中心に対して下側に挿入している。これにより、運転時、主軸4には、遠心力Fcと、遠心力Fcと反対方向に発生する遠心力F3と、遠心力Fcと同方向に遠心力F4と、が作用することになる。したがって、スクロール圧縮機100によれば、第1重量調整部34によって生じる遠心力F3及び第2重量調整部35によって生じる遠心力F4の発生位置を、ボールベアリング21からの距離で調整できることになるため、モーメントのつり合いがとりやすくなる。 The first weight adjusting portion 34 is inserted above the center of the rotor 3 in the height direction, and the second weight adjusting portion 35 is inserted below the center of the rotor 3 in the height direction. As a result, during operation, the centrifugal force Fc, the centrifugal force F3 generated in the opposite direction to the centrifugal force Fc, and the centrifugal force F4 in the same direction as the centrifugal force Fc act on the main shaft 4. Therefore, according to the scroll compressor 100, the generation position of the centrifugal force F3 generated by the first weight adjusting unit 34 and the centrifugal force F4 generated by the second weight adjusting unit 35 can be adjusted by the distance from the ball bearing 21. , It will be easier to balance the moment.
 加えて、第1重量調整部34は遠心力Fcに対して反遠心力方向、つまり遠心力と反対方向となる位置に挿入され、第2重量調整部35は遠心力Fcに対して遠心力方向下側に挿入されている。これにより、第1重量調整部34によって生じる遠心力F3は遠心力Fcと反対方向に働き、第2重量調整部35によって生じる遠心力F4は遠心力Fcと同方向に働くことになる。 In addition, the first weight adjusting unit 34 is inserted in a direction opposite to the centrifugal force Fc, that is, in the direction opposite to the centrifugal force, and the second weight adjusting unit 35 is directed to the centrifugal force Fc. It is inserted below. Thereby, the centrifugal force F3 generated by the first weight adjusting unit 34 acts in the opposite direction to the centrifugal force Fc, and the centrifugal force F4 generated by the second weight adjusting unit 35 acts in the same direction as the centrifugal force Fc.
 また、ボールベアリング21からの距離については、第1重量調整部34は遠ざかり、第2重量調整部35は近づくことになる。そのため、つり合いを考慮した場合、遠心力Fcによるモーメントを相殺するために必要なモーメントに対して、遠心力を小さくすることができる。これにより、スクロール圧縮機100では、第1重量調整部34及び第2重量調整部35の重量を、第1バランサ及び第2バランサの重量よりも軽くすることができ、より安価での実施が可能となる。 In addition, with respect to the distance from the ball bearing 21, the first weight adjusting unit 34 moves away and the second weight adjusting unit 35 approaches. Therefore, in consideration of the balance, the centrifugal force can be made smaller than the moment required to offset the moment due to the centrifugal force Fc. As a result, in the scroll compressor 100, the weight of the first weight adjusting unit 34 and the second weight adjusting unit 35 can be made smaller than the weight of the first balancer and the second balancer, and implementation at lower cost is possible. It becomes.
実施の形態2.
 図4は、本発明の実施の形態2に係るスクロール圧縮機の主軸4、ロータ3及びサブフレーム20を抜き出して拡大して示す構成図である。図5は、本発明の実施の形態2に係るスクロール圧縮機のロータ3を構成している電磁鋼板38の平面図である。図4及び図5に基づいて、本発明の実施の形態2に係るスクロール圧縮機の主軸4及びロータ3について詳細に説明する。図5では、打ち抜き部39に重量調整部36が挿入され、磁石挿入部47に磁石40が挿入されている状態を図示している。
 なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Second Embodiment
FIG. 4 is a structural view extracting and enlarging a main shaft 4, a rotor 3 and a sub frame 20 of a scroll compressor according to Embodiment 2 of the present invention. FIG. 5 is a plan view of an electromagnetic steel sheet 38 constituting the rotor 3 of the scroll compressor according to Embodiment 2 of the present invention. A main shaft 4 and a rotor 3 of a scroll compressor according to a second embodiment of the present invention will be described in detail based on FIGS. 4 and 5. In FIG. 5, a state in which the weight adjustment unit 36 is inserted into the punching unit 39 and the magnet 40 is inserted into the magnet insertion unit 47 is illustrated.
In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
 実施の形態2に係るスクロール圧縮機では、主軸4のロータ取付部41を遠心力Fcの反遠心力方向に偏心させている点で、実施の形態1に係るスクロール圧縮機100と相違している。また、実施の形態2に係るスクロール圧縮機では、電磁鋼板38の主軸挿入部42をロータ取付部41と同じだけ主軸4の中心軸43から偏心させている点で、実施の形態1に係るスクロール圧縮機100と相違している。さらに、実施の形態2に係るスクロール圧縮機では、第1重量調整部34をロータ3の内部に挿入していない点で、実施の形態1に係るスクロール圧縮機100と相違している。 The scroll compressor according to the second embodiment is different from the scroll compressor 100 according to the first embodiment in that the rotor attachment portion 41 of the main shaft 4 is eccentric in the anti-centrifugal direction of the centrifugal force Fc. . Further, in the scroll compressor according to the second embodiment, the scroll according to the first embodiment is that the main shaft insertion portion 42 of the magnetic steel plate 38 is eccentric from the central axis 43 of the main shaft 4 by the same amount as the rotor attachment portion 41. It differs from the compressor 100. Furthermore, the scroll compressor according to the second embodiment is different from the scroll compressor 100 according to the first embodiment in that the first weight adjusting unit 34 is not inserted into the rotor 3.
 実施の形態1で説明したように、主軸4は、上部に偏心軸部4aを有している。そして、偏心軸部4aには、スライダバランサ37が取り付けられている。スライダ16は、揺動スクロール10の揺動軸受13に回転自在に嵌合される。そのため、揺動軸受13の内周面とスライダ16の外周面とにより、滑り軸受構造が形成されることになる。滑り軸受構造に冷凍機油が供給されることで、滑り軸受構造により揺動スクロール10及びスライダバランサ37の力の伝達を支承している。 As described in the first embodiment, the main shaft 4 has the eccentric shaft 4a at the top. And, a slider balancer 37 is attached to the eccentric shaft 4a. The slider 16 is rotatably fitted to the rocking bearing 13 of the rocking scroll 10. Therefore, a slide bearing structure is formed by the inner peripheral surface of the rocking bearing 13 and the outer peripheral surface of the slider 16. The supply of refrigeration oil to the slide bearing structure supports the transmission of force of the swing scroll 10 and the slider balancer 37 by the slide bearing structure.
 主軸4はロータ3を構成する電磁鋼板38よりも比重の高い素材を用いて形成されている。主軸4のロータ3が取り付けられる箇所であるロータ取付部41は、偏心軸部4aに生じる遠心力Fcの反遠心力方向に偏心させてある。
 また、電磁鋼板38の主軸挿入部42についても、図4及び図5に示すようにロータ取付部41と同じだけ主軸4の中心軸43から偏心させている。
 さらに、ロータ3の内部には、遠心力Fcに対して遠心力方向に、主軸4よりも比重の高い素材で構成されている重量調整部36を挿入している。
 重量調整部36は、実施の形態1で説明した第2重量調整部35に相当する。
The main shaft 4 is formed using a material having a specific gravity higher than that of the electromagnetic steel plate 38 constituting the rotor 3. The rotor attachment portion 41 where the rotor 3 of the main shaft 4 is attached is decentered in the anti-centrifugal direction of the centrifugal force Fc generated on the eccentric shaft portion 4a.
Further, as shown in FIGS. 4 and 5, the main shaft insertion portion 42 of the magnetic steel plate 38 is also eccentric from the central axis 43 of the main shaft 4 by the same amount as the rotor attachment portion 41.
Furthermore, inside the rotor 3 is inserted a weight adjusting portion 36 made of a material having a higher specific gravity than the main shaft 4 in the direction of centrifugal force with respect to the centrifugal force Fc.
The weight adjusting unit 36 corresponds to the second weight adjusting unit 35 described in the first embodiment.
 ロータ3は、図5に示すような電磁鋼板38が複数枚積層された構造となっている。電磁鋼板38には、打ち抜き部39、主軸挿入部42、磁石挿入部47、及び、スリット48が貫通形成されている。打ち抜き部39は、重量調整部36を挿入したい位置に貫通形成すればよい。そして、重量調整部36は、打ち抜き部39を介してロータ3の内部に挿入される。 The rotor 3 has a structure in which a plurality of electromagnetic steel plates 38 as shown in FIG. 5 are stacked. In the magnetic steel plate 38, a punching portion 39, a spindle insertion portion 42, a magnet insertion portion 47, and a slit 48 are formed to penetrate. The punched portion 39 may be formed so as to penetrate the weight adjustment portion 36 at the position where it is desired to be inserted. Then, the weight adjusting unit 36 is inserted into the inside of the rotor 3 through the punching unit 39.
 打ち抜き部39を形成した電磁鋼板38を複数枚積層することで、ロータ3の内部に空間を形成することが可能になる。つまり、打ち抜き部39により形成される空間に、重量調整部36が挿入される。そして、重量調整部36の上端面及び下端面を固定し、重量調整部36の動きを規制する。なお、重量調整部36の上端面とは圧縮部50側の端面のことであり、重量調整部36の下端面とはサブフレーム20側の端面のことである。 By laminating a plurality of electromagnetic steel plates 38 in which the punched portion 39 is formed, it is possible to form a space inside the rotor 3. That is, the weight adjusting portion 36 is inserted into the space formed by the punching portion 39. Then, the upper end surface and the lower end surface of the weight adjusting unit 36 are fixed, and the movement of the weight adjusting unit 36 is restricted. The upper end surface of the weight adjusting unit 36 is an end surface on the side of the compression unit 50, and the lower end surface of the weight adjusting unit 36 is an end surface on the sub frame 20 side.
 次に、実施の形態2に係るスクロール圧縮機の動作中における遠心力について説明する。
 図4及び図5に示すように、実施の形態2に係るスクロール圧縮機は、ロータ取付部41及び主軸挿入部42を、主軸4の中心軸43から偏心させている。こうしたことにより、実施の形態2に係るスクロール圧縮機においては、ロータ3が主軸4の中心軸43を中心に回転する際に、電磁鋼板38との比重差により偏心軸部4aに生じる遠心力Fcの反遠心力方向に質量アンバランスによる遠心力F5が生じる。
Next, the centrifugal force during operation of the scroll compressor according to the second embodiment will be described.
As shown in FIGS. 4 and 5, in the scroll compressor according to the second embodiment, the rotor attachment portion 41 and the spindle insertion portion 42 are offset from the central axis 43 of the spindle 4. Thus, in the scroll compressor according to the second embodiment, when the rotor 3 rotates about the central axis 43 of the main shaft 4, the centrifugal force Fc generated in the eccentric shaft 4a due to the specific gravity difference with the electromagnetic steel plate 38. A centrifugal force F5 is generated due to mass imbalance in the direction of the anti-centrifugal force.
 そのため、実施の形態2に係るスクロール圧縮機の動作中、主軸4には、遠心力Fc、遠心力Fb、遠心力F4、及び、遠心力F5が作用する。
 遠心力F5は、揺動スクロール10の揺動運動時にロータ取付部41の質量アンバランスによって発生するものである。
Therefore, during operation of the scroll compressor according to the second embodiment, centrifugal force Fc, centrifugal force Fb, centrifugal force F4, and centrifugal force F5 act on the main shaft 4.
The centrifugal force F5 is generated due to the mass unbalance of the rotor attachment portion 41 when the oscillating scroll 10 oscillates.
 そこで、実施の形態2に係るスクロール圧縮機では、遠心力Fc、遠心力Fb、遠心力F4、及び、遠心力F5を互いに相殺させて、遠心力Fc、及び、遠心力Fcによる主軸4の回転方向並びに軸長手方向のモーメントとのつり合いをとっている。 Thus, in the scroll compressor according to the second embodiment, the centrifugal force Fc, the centrifugal force Fb, the centrifugal force F4, and the centrifugal force F5 are offset each other to rotate the main shaft 4 by the centrifugal force Fc and the centrifugal force Fc. Balanced with the moment as well as the direction and axial longitudinal direction.
 実施の形態2に係るスクロール圧縮機の奏する効果について説明する。
 実施の形態1においては、遠心力Fcを相殺するために、ロータ3の内部に第1重量調整部34及び第2重量調整部35を用意する必要があった。それに対し、実施の形態2に係るスクロール圧縮機では、ロータ取付部41の質量アンバランスによる遠心力F5によって、第1重量調整部34で発生させていた遠心力F3を代用することができる。そのため、実施の形態2に係るスクロール圧縮機によれば、第1重量調整部34が不要となり、ロータ3の内部に重量調整部36を1つ挿入すればよいことになる。
The effect of the scroll compressor according to the second embodiment will be described.
In the first embodiment, in order to offset the centrifugal force Fc, it is necessary to prepare the first weight adjusting unit 34 and the second weight adjusting unit 35 inside the rotor 3. On the other hand, in the scroll compressor according to the second embodiment, the centrifugal force F3 generated in the first weight adjusting unit 34 can be substituted by the centrifugal force F5 due to the mass imbalance of the rotor attachment unit 41. Therefore, according to the scroll compressor according to the second embodiment, the first weight adjusting unit 34 is not necessary, and one weight adjusting unit 36 may be inserted into the rotor 3.
 また、実施の形態2に係るスクロール圧縮機では、主軸4の挿入位置を中心軸43から反遠心力方向に偏心させたことにより、重量調整部36を挿入できる範囲が広がり、挿入位置の調整が行いやすくなっている。そのため、実施の形態2に係るスクロール圧縮機によれば、遠心力及びモーメントのつり合いが更にとりやすいものとなる。 Further, in the scroll compressor according to the second embodiment, the insertion position of the main shaft 4 is made eccentric from the central axis 43 in the anti-centrifugal force direction, thereby expanding the range in which the weight adjusting portion 36 can be inserted. It is easy to do. Therefore, according to the scroll compressor according to the second embodiment, the balance between the centrifugal force and the moment can be easily obtained.
実施の形態3.
 図6は、本発明の実施の形態3に係るスクロール圧縮機のロータ3を構成している電磁鋼板38の平面図である。図6に基づいて、本発明の実施の形態3に係るスクロール圧縮機の主軸4及びロータ3について詳細に説明する。図6では、打ち抜き部39に第2重量調整部35が挿入され、磁石挿入部47に磁石40が挿入されている状態を図示している。
 なお、実施の形態3では実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。
Third Embodiment
FIG. 6 is a plan view of an electromagnetic steel sheet 38 constituting a rotor 3 of a scroll compressor according to Embodiment 3 of the present invention. A main shaft 4 and a rotor 3 of a scroll compressor according to a third embodiment of the present invention will be described in detail based on FIG. In FIG. 6, the second weight adjusting portion 35 is inserted into the punching portion 39, and the magnet 40 is inserted into the magnet insertion portion 47.
In the third embodiment, differences from the first embodiment and the second embodiment will be mainly described, and the same parts as the first embodiment and the second embodiment will be assigned the same reference numerals and descriptions thereof will be omitted. It shall be.
 実施の形態1及び実施の形態2では、第1重量調整部34及び第2重量調整部35の具体的な性質については言及していないが、実施の形態3では、第1重量調整部34及び第2重量調整部35は、磁性体である素材で形成されている。なお、第1重量調整部34及び第2重量調整部35が磁性体であればよく、素材を特に限定するものではない。 In the first embodiment and the second embodiment, although the specific properties of the first weight adjusting unit 34 and the second weight adjusting unit 35 are not mentioned, in the third embodiment, the first weight adjusting unit 34 and the second weight adjusting unit 35 are described. The second weight adjusting unit 35 is formed of a material that is a magnetic body. The first weight adjusting unit 34 and the second weight adjusting unit 35 may be magnetic members, and the material is not particularly limited.
 実施の形態3に係るスクロール圧縮機の奏する効果について説明する。
 ロータ3の内部では、磁石40によって磁界が形成されており、磁石40からはN極から出てS極に戻る磁力線が生じている。磁石40のS極に戻る磁力線の量が変化するとスクロール圧縮機の性能が低下する等の影響を与えることになる。
The effects of the scroll compressor according to the third embodiment will be described.
Inside the rotor 3, a magnetic field is formed by the magnet 40, and from the magnet 40, magnetic lines of force are generated that return from the N pole and return to the S pole. If the amount of magnetic field lines returning to the S pole of the magnet 40 changes, it will affect the performance of the scroll compressor and so on.
 ここで、ロータ3の内部に非磁性体の第1重量調整部34及び第2重量調整部35を挿入する場合、磁力線は第1重量調整部34及び第2重量調整部35を通過できない。そのため、打ち抜き部39の形成位置を磁力線が変化しないよう磁石40から遠ざけておく必要がある。
 それに対し、ロータ3の内部に磁性体の第1重量調整部34及び第2重量調整部35を挿入する場合、磁力線は第1重量調整部34及び第2重量調整部35を通過することが可能になる。そのため、実施の形態3に係るスクロール圧縮機によれば、磁石40の位置を考慮せずに、打ち抜き部39の形成位置を決めることができる。
Here, when the first weight adjusting portion 34 and the second weight adjusting portion 35 of nonmagnetic material are inserted into the rotor 3, magnetic lines of force can not pass through the first weight adjusting portion 34 and the second weight adjusting portion 35. Therefore, it is necessary to keep the formation position of the punching portion 39 away from the magnet 40 so that the magnetic lines of force do not change.
On the other hand, when inserting the 1st weight adjustment part 34 and the 2nd weight adjustment part 35 of a magnetic body into the inside of rotor 3, a line of magnetic force can pass the 1st weight adjustment part 34 and the 2nd weight adjustment part 35 become. Therefore, according to the scroll compressor according to the third embodiment, the formation position of the punching portion 39 can be determined without considering the position of the magnet 40.
 1 容器、1a 中間部容器、1b 下部容器、1c 上部容器、2 ステータ、3 ロータ、4 主軸、4a 偏心軸部、4b ポンプ軸、4c 油穴、9 固定スクロール、9a ラップ部、9b 吐出ポート、10 揺動スクロール、10a ラップ部、11 フレーム、12 主軸受、13 揺動軸受、14 スラストプレート、15 オルダムリング、16 スライダ、17 スリーブ、20 サブフレーム、20a 軸受収納部、21 ボールベアリング、22 オイルポンプ、23 油溜め、24 吸入管、25 吐出管、26 圧縮室、27 シール、28 シール、29 吐出弁、33 吐出空間、34 第1重量調整部、35 第2重量調整部、36 重量調整部、37 スライダバランサ、38 電磁鋼板、39 打ち抜き部、40 磁石、41 ロータ取付部、42 主軸挿入部、43 中心軸、47 磁石挿入部、48 スリット、50 圧縮部、60 電動機構部、100 スクロール圧縮機、F 遠心力、F1 遠心力、F2 遠心力、F3 遠心力、F4 遠心力、F5 遠心力、Fb 遠心力、Fc 遠心力、ω 角速度。 Reference Signs List 1 container, 1a intermediate container, 1b lower container, 1c upper container, 2 stator, 3 rotor, 4 main shaft, 4a eccentric shaft, 4b pump shaft, 4c oil hole, 9 fixed scroll, 9a wrap, 9b discharge port, DESCRIPTION OF SYMBOLS 10 rocking scroll, 10a lap part, 11 frame, 12 main bearing, 13 rocking bearing, 14 thrust plate, 15 oldham ring, 16 slider, 17 sleeve, 20 sub frame, 20a bearing storage part, 21 ball bearing, 22 oil Pumps, 23 oil reservoirs, 24 suction pipes, 25 discharge pipes, 26 compression chambers, 27 seals, 28 seals, 29 discharge valves, 33 discharge spaces, 34 first weight adjusting section, 35 second weight adjusting section, 36 weight adjusting section , 37 slider balancer, 38 electrical steel plate, 39 Chipping part, 40 magnets, 41 rotor mounting parts, 42 spindle insertion parts, 43 central axes, 47 magnet insertion parts, 48 slits, 50 compression parts, 60 electric mechanism parts, 100 scroll compressor, F centrifugal force, F1 centrifugal force , F2 centrifugal force, F3 centrifugal force, F4 centrifugal force, F5 centrifugal force, Fb centrifugal force, Fc centrifugal force, ω angular velocity.

Claims (9)

  1.  容器と、
     前記容器内に設けられた固定スクロールと、
     前記容器内に設けられ、前記固定スクロールと組み合わされる揺動スクロールと、
     前記容器内に設けられ、前記揺動スクロールを揺動運動させる主軸と、
     前記容器内に設けられ、前記主軸を回転させるロータと、
     前記容器内に設けられ、前記ロータを回転させるステータと、
     前記揺動スクロールに設けられ、前記主軸の偏心軸部が挿入される揺動軸受と、
     前記揺動軸受に嵌合され、前記揺動スクロールを支承するスライダと、
     前記偏心軸部に設けられ、前記偏心軸部の偏心方向と逆方向に遠心力を発生させるスライダバランサと、を備え、
     前記ロータの内部に、前記偏心軸部に発生する遠心力を相殺する重量調整部が設けられている
     スクロール圧縮機。
    A container,
    A fixed scroll provided in the container;
    An oscillating scroll provided in the container and combined with the fixed scroll;
    A main shaft provided in the container for oscillating movement of the oscillating scroll;
    A rotor provided in the container for rotating the main shaft;
    A stator provided in the container for rotating the rotor;
    A rocking bearing provided on the rocking scroll and into which the eccentric shaft portion of the main shaft is inserted;
    A slider fitted to the rocking bearing and supporting the rocking scroll;
    And a slider balancer that is provided on the eccentric shaft and generates a centrifugal force in a direction opposite to the eccentric direction of the eccentric shaft.
    A scroll compressor is provided with a weight adjustment unit that offsets the centrifugal force generated in the eccentric shaft inside the rotor.
  2.  前記重量調整部は、
     前記ロータを構成している電磁鋼板よりも比重の高い素材で構成されている
     請求項1に記載のスクロール圧縮機。
    The weight adjusting unit is
    The scroll compressor according to claim 1, wherein the scroll compressor is made of a material having a specific gravity higher than that of a magnetic steel sheet constituting the rotor.
  3.  前記重量調整部は、
     前記ロータの高さ方向の中心に対して上側に設けられた第1重量調整部と、
     前記ロータの高さ方向の中心に対して下側に設けられた第2重量調整部と、で構成されている
     請求項1又は2に記載のスクロール圧縮機。
    The weight adjusting unit is
    A first weight adjusting unit provided on the upper side with respect to the center in the height direction of the rotor;
    The scroll compressor according to claim 1, further comprising: a second weight adjusting unit provided on the lower side with respect to the center in the height direction of the rotor.
  4.  前記第1重量調整部は、
     前記偏心軸部の遠心力と反対方向に遠心力が作用する位置に設けられ、
     前記第2重量調整部は、
     前記偏心軸部の遠心力と同じ方向に遠心力が作用する位置に設けられている
     請求項3に記載のスクロール圧縮機。
    The first weight adjusting unit is
    Provided at a position where a centrifugal force acts in a direction opposite to the centrifugal force of the eccentric shaft portion,
    The second weight adjusting unit is
    The scroll compressor according to claim 3, wherein centrifugal force acts in the same direction as the centrifugal force of the eccentric shaft portion.
  5.  前記重量調整部は、
     前記偏心軸部の遠心力と同じ方向に遠心力が作用する位置に設けられ、
     前記主軸のロータ取付部及び前記ロータの主軸挿入部を、前記主軸の中心軸に対して偏心させて、前記偏心軸部に発生する遠心力を相殺する
     請求項1又は2に記載のスクロール圧縮機。
    The weight adjusting unit is
    Provided at a position where a centrifugal force acts in the same direction as the centrifugal force of the eccentric shaft portion,
    The scroll compressor according to claim 1 or 2, wherein the rotor attachment portion of the main shaft and the main shaft insertion portion of the rotor are eccentric with respect to the central axis of the main shaft to offset centrifugal force generated in the eccentric shaft portion. .
  6.  前記ロータ取付部を、前記偏心軸部の遠心力と反対方向に偏心させた
     請求項5に記載のスクロール圧縮機。
    The scroll compressor according to claim 5, wherein the rotor mounting portion is eccentric in a direction opposite to a centrifugal force of the eccentric shaft portion.
  7.  前記主軸は、
     前記ロータを構成している電磁鋼板の比重よりも高い比重の素材で形成されている
     請求項5又は6に記載のスクロール圧縮機。
    The main spindle is
    The scroll compressor according to claim 5 or 6, wherein the scroll compressor is formed of a material having a specific gravity higher than that of the electromagnetic steel plates constituting the rotor.
  8.  前記重量調整部は、
     前記主軸の比重よりも高い素材で形成されている
     請求項5~7のいずれか一項に記載のスクロール圧縮機。
    The weight adjusting unit is
    The scroll compressor according to any one of claims 5 to 7, wherein the scroll compressor is formed of a material having a higher specific gravity than that of the main shaft.
  9.  前記重量調整部は磁性体で構成されている
     請求項1~8のいずれか一項に記載のスクロール圧縮機。
    The scroll compressor according to any one of claims 1 to 8, wherein the weight adjusting unit is made of a magnetic material.
PCT/JP2017/027302 2017-07-27 2017-07-27 Scroll compressor WO2019021432A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019532302A JP6808044B2 (en) 2017-07-27 2017-07-27 Scroll compressor
PCT/JP2017/027302 WO2019021432A1 (en) 2017-07-27 2017-07-27 Scroll compressor
CN201790001721.1U CN211230820U (en) 2017-07-27 2017-07-27 Scroll compressor having a discharge port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027302 WO2019021432A1 (en) 2017-07-27 2017-07-27 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2019021432A1 true WO2019021432A1 (en) 2019-01-31

Family

ID=65040988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027302 WO2019021432A1 (en) 2017-07-27 2017-07-27 Scroll compressor

Country Status (3)

Country Link
JP (1) JP6808044B2 (en)
CN (1) CN211230820U (en)
WO (1) WO2019021432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203636A1 (en) * 2020-04-07 2021-10-14 艾默生环境优化技术(苏州)有限公司 Scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151088A (en) * 1993-11-29 1995-06-13 Sanyo Electric Co Ltd Rotary compressor
JPH1189138A (en) * 1997-09-11 1999-03-30 Mitsubishi Heavy Ind Ltd Magnet motor
JP2008178233A (en) * 2007-01-19 2008-07-31 Daikin Ind Ltd Motor and compressor
US20150078945A1 (en) * 2012-04-11 2015-03-19 Emerson Climate Technologies (Suzhou) Co., Ltd. Scroll compressor
JP2015165105A (en) * 2014-02-28 2015-09-17 三菱重工業株式会社 scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151088A (en) * 1993-11-29 1995-06-13 Sanyo Electric Co Ltd Rotary compressor
JPH1189138A (en) * 1997-09-11 1999-03-30 Mitsubishi Heavy Ind Ltd Magnet motor
JP2008178233A (en) * 2007-01-19 2008-07-31 Daikin Ind Ltd Motor and compressor
US20150078945A1 (en) * 2012-04-11 2015-03-19 Emerson Climate Technologies (Suzhou) Co., Ltd. Scroll compressor
JP2015165105A (en) * 2014-02-28 2015-09-17 三菱重工業株式会社 scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203636A1 (en) * 2020-04-07 2021-10-14 艾默生环境优化技术(苏州)有限公司 Scroll compressor

Also Published As

Publication number Publication date
JP6808044B2 (en) 2021-01-06
CN211230820U (en) 2020-08-11
JPWO2019021432A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US20110002797A1 (en) Rotary machine
US20170350394A1 (en) Rotary-type compressor
WO2013046694A1 (en) Scroll compressor
JP5114709B2 (en) Hermetic scroll compressor and its assembly method
JP6366833B2 (en) Scroll compressor
CN107949701B (en) Compressor
WO2019021432A1 (en) Scroll compressor
JP2010144528A (en) Compressor
JP6033467B2 (en) Scroll compressor
JP6745913B2 (en) Compressor
WO2015177851A1 (en) Scroll compressor
WO2014091641A1 (en) Scroll compressor
JP2011099377A (en) Refrigerant compressor
KR101380987B1 (en) Rotary compressor
EP3217014B1 (en) Compressor
JP6192801B2 (en) Compressor
JP6320575B2 (en) Electric compressor
JP5836845B2 (en) Scroll compressor
WO2015049745A1 (en) Scroll compressor
JP5559839B2 (en) Hermetic scroll compressor
JP5773922B2 (en) Scroll compressor
JP2014132158A (en) Scroll compressor
KR20110015855A (en) Compressor
JP2012102649A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919297

Country of ref document: EP

Kind code of ref document: A1