WO2020183516A1 - Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system - Google Patents

Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system Download PDF

Info

Publication number
WO2020183516A1
WO2020183516A1 PCT/JP2019/009272 JP2019009272W WO2020183516A1 WO 2020183516 A1 WO2020183516 A1 WO 2020183516A1 JP 2019009272 W JP2019009272 W JP 2019009272W WO 2020183516 A1 WO2020183516 A1 WO 2020183516A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
shape
substrate
board
Prior art date
Application number
PCT/JP2019/009272
Other languages
French (fr)
Japanese (ja)
Inventor
一希 齋藤
聡浩 道添
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2019/009272 priority Critical patent/WO2020183516A1/en
Priority to JP2021504606A priority patent/JP7427652B2/en
Publication of WO2020183516A1 publication Critical patent/WO2020183516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a technique for supporting the creation of mounting data indicating a procedure for mounting a component on a board.
  • the component mounting machine produces a completed board in which the components are mounted on the board by transferring the components supplied by the feeder to the board by the mounting head. Further, as shown in Patent Document 1, the component mounting machine mounts a component on a substrate according to a procedure indicated by the mounting data, and information on the shape of the component is required to create the mounting data.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for supporting the creation of mounting data by reducing the burden on the operator required to acquire the height of the parts mounted on the board.
  • the mounting data creation support device is a mounting data creation support device that supports the creation of mounting data indicating a procedure for mounting components on a board, and is a completed board having a board and parts mounted on the board. It is equipped with an acquisition unit that acquires the completed board information including the shape measurement result and a calculation unit that obtains the component shape information indicating the shape of the component based on the completed board information.
  • the completed board information indicates the three-dimensional shape of the completed board. Of the three-dimensional data and the two-dimensional data indicating the two-dimensional shape, at least the three-dimensional data is included, and the arithmetic unit obtains the height of the component from the board based on the three-dimensional data, so that the component including the height of the component is included. Obtain shape information.
  • the mounting data creation support method is a mounting data creation support method that supports the creation of mounting data indicating a procedure for mounting components on a board, and is a completed board having a board and components mounted on the board. It includes a process of acquiring the shape measurement result as completed board information and a process of obtaining part shape information indicating the shape of the part based on the completed board information.
  • the completed board information is three-dimensional data indicating the three-dimensional shape of the completed board. Of the two-dimensional data indicating the two-dimensional shape, at least the three-dimensional data is included, the height of the component from the substrate is obtained based on the three-dimensional data, and the component shape information including the height of the component is obtained.
  • the visual inspection machine has a shape measuring unit for obtaining at least completed board information indicating the shape of a finished board having a board and a component mounted on the board by measuring the shape of the finished board, and a shape of the part. It is provided with a calculation unit that obtains the component shape information indicating the component shape information based on the completed board information, and the completed board information is the three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed board and the two-dimensional data indicating the two-dimensional shape. At least including, the calculation unit obtains the component shape information including the height of the component by obtaining the height of the component from the board based on the three-dimensional data.
  • the component mounting system is a computing device and a feeder that obtains component shape information indicating the shape of a component based on completed board information including a measurement result of the shape of a completed substrate having a substrate and a component mounted on the substrate. It is equipped with a component mounting machine that holds the components supplied to the component supply position by the mounting head and transfers them to the board, and the completed board information includes three-dimensional data indicating the three-dimensional shape of the finished board and two dimensions. Of the two-dimensional data indicating the shape, at least three-dimensional data is included, and the arithmetic unit obtains the part shape information including the height of the part by obtaining the height of the part from the board based on the three-dimensional data. The mounting machine mounts the component on the board according to the procedure indicated by the mounting data including the component shape information.
  • the measurement result of the shape of the completed substrate having the substrate and the components mounted on the substrate is measured.
  • the completed board information including, component shape information indicating the shape of the component is required.
  • the completed substrate information includes at least three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed substrate and the two-dimensional data indicating the two-dimensional shape. Then, by obtaining the height of the component from the substrate based on the three-dimensional data, the component shape information including the height of the component can be obtained. This makes it possible to reduce the burden on the operator required to acquire the height of the parts mounted on the board and support the creation of mounting data.
  • the arithmetic unit may configure the mounting data creation support device so as to estimate the type of the part by referring to the shape of the part indicated by the part shape information obtained based on the three-dimensional data. With such a configuration, it is possible to accurately estimate the type of parts based on the three-dimensional data.
  • the completed board information includes two-dimensional data
  • the calculation unit creates mounting data so that the component type is estimated by referring to the component shape indicated by the component shape information obtained by using the two-dimensional data together.
  • a support device may be configured. In such a configuration, it is possible to accurately estimate the type of parts by also using two-dimensional data.
  • the arithmetic unit searches for a registered part having a shape similar to the shape of the part indicated by the part shape information as a candidate part from the parts library in which the shapes of a plurality of registered parts of different types are registered for each registered part.
  • the mounting data creation support device may be configured so as to estimate the type of the component based on the result. In such a configuration, it is possible to accurately estimate the type of parts based on the parts library.
  • the arithmetic unit associates the component shape indicated by the component shape information with the component and adds it to the mounted component information regarding the component mounted on the board on the completed board.
  • the mounting data creation support device may be configured. In such a configuration, when the completed board contains a component that is not in the component library, this component can be added to the mounted component information.
  • the arithmetic unit resembles the shape of the part indicated by the part shape information from the parts list showing the shape of a plurality of different types of target parts mounted on the board for the production of the completed board for each target part.
  • the mounting data creation support device may be configured so as to estimate the type of the component based on the result of searching for the target component having a shape as a candidate component. With such a configuration, it is possible to accurately estimate the type of parts based on the parts list.
  • the arithmetic unit obtains component feature information indicating the features of the component in addition to the shape of the component from the completed board information, and the component feature information indicates from the plurality of candidate components.
  • the mounting data creation support device may be configured so as to estimate the type of the component based on the result of searching for one candidate component having a feature. With such a configuration, it is possible to accurately estimate the type of the part based on the characteristics of the part other than the shape of the part.
  • the calculation unit extracts the protruding portion protruding from the board from the three-dimensional data included in the completed board information, identifies the protruding portion as a component, and identifies the position of the protruding portion as the mounting position.
  • the mounting data creation support device may be configured. In such a configuration, the mounting position of the component can be accurately specified based on the three-dimensional data, the burden on the operator required to specify the mounting position of the component can be reduced, and the creation of the mounting data can be supported. It has become.
  • the arithmetic unit may configure the mounting data creation support device so as to specify the mounting position based on the mark attached to the board.
  • the mounting position of the component can be specified with reference to the mark attached to the substrate.
  • the arithmetic unit may configure a mounting data creation support device so that the mounting angle of the component in the rotation direction centered on the virtual straight line parallel to the normal of the board can be obtained from the completed board information.
  • the arithmetic unit may configure the mounting data creation support device so as to obtain the component shape information including the existence range of the upper surface of the component having a uniform height from the substrate based on the three-dimensional data.
  • the upper surface of the component can be accurately obtained based on the three-dimensional data.
  • the arithmetic unit may configure a mounting data creation support device so as to determine the type of nozzle for sucking the component in order to mount the component on the substrate based on the existence range of the upper surface.
  • the arithmetic unit may configure the mounting data creation support device so as to determine the suction position for sucking the component by the nozzle in order to mount the component on the substrate from the existing range on the upper surface.
  • the mounting data includes the angle of the component at the component supply position in the rotation direction centered on the virtual straight line parallel to the normal line of the board, and the component mounting machine recognizes the angle of the component supplied by the feeder.
  • the component mounting system may be configured so as to determine whether or not it matches the angle of the component at the component supply position included in the mounting data and determine the suitability of the mounting data. In such a configuration, the suitability of the angle of the component supplied to the component supply position indicated by the mounting data can be confirmed by the component mounting machine.
  • the component mounting machine may configure the component mounting system so as to correct the mounting data when it determines that the mounting data is inappropriate. In such a configuration, components can be appropriately mounted on the board based on the modified mounting data.
  • the block diagram which shows the substrate production system provided with the control device which corresponds to an example of the mounting data creation support device which concerns on this invention.
  • the figure which shows an example of the parts library schematically.
  • the block diagram which schematically exemplifies the appearance inspection machine.
  • the perspective view which shows the specific example of the information extracted by the flowchart of FIG.
  • a flowchart showing an example of a method for identifying a part.
  • the flowchart which shows an example of the calculation method of the component adsorption information.
  • FIG. 1 is a block diagram showing a substrate production system provided with a control device corresponding to an example of the mounting data creation support device according to the present invention.
  • the board production system 1 includes a control device 2, a database 4, a visual inspection machine 6, and a component mounting machine 8.
  • the control device 2 is composed of, for example, a personal computer, and includes a calculation unit 21, a storage unit 22, a UI (User Interface) 23, and a communication unit 24.
  • the calculation unit 21 is, for example, a processor composed of a CPU (Central Processing Unit), and is responsible for calculation by the control device 2.
  • the storage unit 22 is composed of, for example, an HDD (Hard Disk Drive), and stores various data used in calculations by the control device 2. Specifically, as will be described in detail later, the three-dimensional measurement result R obtained by measuring the three-dimensional shape of the completed substrate Bc with the visual inspection machine 6 and the component C mounted on the substrate B in the completed substrate Bc.
  • the mounting component information Im and the mounting data Dm indicating the procedure for mounting the component on the component mounting machine 8 are stored in the storage unit 22.
  • the UI 23 is composed of, for example, a touch panel display, accepts input operations from the operator, and presents information to the operator.
  • the communication unit 24 is responsible for communication with the external database 4, the visual inspection machine 6, and the component mounting machine 8.
  • the database 4 stores a component library Lc that indicates component information Ic related to component C mounted on the component mounting machine 8 for each component C.
  • FIG. 2 is a diagram schematically showing an example of a parts library.
  • the part library Lc a plurality of parts C of different types are identified by the part ID, and the part information Ic of the part C identified by the part ID is associated with the part C.
  • the component information Ic includes the component shape information Ics of the component C identified by the corresponding component ID, the component adsorption information Ica, and the like.
  • the component shape information Ics indicates the package and size (length, width, height) of the component C
  • the component suction information Ica is a nozzle for sucking the component C in the component mounting machine 8 and a component for supplying the component C.
  • the packing shape (rotation angle) of C and the suction position where the component C is sucked by the nozzle are shown.
  • the mounted component information Im corresponds to the component information Ic of the component C mounted on the substrate B in the completed substrate Bc, and the component shape method Ics included in the mounted component information Im is input with reference to the component library Lc. Information.
  • FIG. 3 is a block diagram schematically illustrating a visual inspection machine.
  • XYZ Cartesian coordinates composed of the Z direction parallel to the vertical direction, the X direction parallel to the horizontal direction, and the Y direction are appropriately shown.
  • the visual inspection machine 6 of FIG. 3 controls the conveyor 61, the inspection head 62, and the drive mechanism 63 by the inspection control unit 64, thereby mounting the substrate B (printed circuit board) and the component C mounted on the substrate B (“mounting component”).
  • the shape of the completed substrate Bc having "C" as appropriate) is measured.
  • the transport conveyor 61 transports the completed substrate Bc along a predetermined transport path. Specifically, the conveyor 61 carries the completed substrate Bc before shape measurement to the inspection position in the visual inspection machine 6 and holds the completed substrate Bc horizontally at the inspection position. In this way, the completed substrate Bc is fixed in a state where the main surface (upper surface) of the substrate B on which the component C is mounted faces upward. Further, when the shape measurement of the completed substrate Bc at the inspection position is completed, the conveyor 61 carries out the completed substrate Bc after the shape measurement to the outside of the visual inspection machine 6.
  • the inspection head 62 has an imaging camera 621 that images the inside of the imaging field of view V from above, and a part of the completed substrate Bc carried into the inspection position is stored in the imaging field of view V and imaged by the imaging camera 621. Further, the inspection head 62 has a projector 624 that projects a striped pattern light whose light intensity distribution changes in a sinusoidal manner onto an imaging field of view V.
  • the projector 624 has a light source such as an LED (Light Emitting Diode) and a digital micromirror device that reflects the light from the light source toward the imaging field V.
  • the projector 624 can project a plurality of pattern lights having different phases to the imaging field of view V. That is, the inspection head 62 takes an image with the imaging camera 621 while changing the phase of the pattern light projected from the projector 624, and acquires a three-dimensional image of the completed substrate Bc in the imaging field of view V by the phase shift method. , Three-dimensional shape can be measured.
  • the inspection head 62 has eight projectors 624 (in FIG. 3, two projectors 624 are represented as representatives for simplification of illustration).
  • the eight projectors 624 are arranged so as to surround the periphery of the image pickup camera 621, and are arranged at equal pitches in a circumferential shape centered on the vertical direction Z. Then, each projector 624 projects the pattern light from diagonally above with respect to the imaging field of view V of the imaging camera 621. Therefore, the pattern light can be projected onto the imaging field of view V from one projector 624 having an appropriate positional relationship with the component C among the plurality of projectors 624.
  • the drive mechanism 63 supports the inspection head 62 and drives the inspection head 62 in the horizontal direction and the vertical direction by a motor. By driving the drive mechanism 63, the inspection head 62 moves above the completed substrate Bc, and a part B of the completed substrate Bc can be captured in the imaging field of view V, and the tertiary of the completed substrate Bc in the imaging field of view V can be captured.
  • the original shape can be measured.
  • the inspection control unit 64 has a calculation unit 641 which is a processor composed of a CPU, and the calculation unit 641 controls the control of each unit of the device to execute the inspection.
  • the inspection control unit 64 includes a projection control unit 642 that controls the projector 624, an image pickup control unit 643 that controls the image pickup camera 621, a drive control unit 644 that controls the drive mechanism 63, a storage unit 645 composed of an HDD and the like, and control. It has a communication unit 646 that communicates with the communication unit 24 of the device 2.
  • the calculation unit 641 controls the drive mechanism 63 by the drive control unit 644 to move the inspection head 62 above the completed substrate Bc.
  • a part of the completed substrate Bc fits within the imaging field of view V of the imaging camera 621.
  • the calculation unit 641 captures the pattern light projected on the imaging field V by the imaging camera 621 while projecting the pattern light from the projector 624 onto the imaging field V including a part B of the completed substrate Bc (pattern imaging operation). ).
  • the calculation unit 641 measures the three-dimensional shape of the imaging field V by the phase shift method by repeating the pattern imaging operation while changing the phase of the pattern light. Such shape measurement is performed on the entire completed substrate Bc while changing the imaging field of view V. In this way, the result of measuring the three-dimensional shape of the completed substrate Bc is stored in the storage unit 645 as the three-dimensional measurement result R.
  • FIG. 4 is a plan view schematically showing an example of a component mounting machine.
  • the component mounting machine 8 includes a mounting control unit 81 that comprehensively controls the entire device.
  • the mounting control unit 81 includes a calculation unit 811, a storage unit 812, and a communication unit 813.
  • the calculation unit 811 is a processor composed of a CPU and a RAM, and is responsible for a calculation function in the component mounting machine 8.
  • the storage unit 812 is composed of an HDD or the like, and stores various data such as mounting data Dm indicating a procedure for mounting the component C on the board B in order to produce the completed board Bc.
  • the communication unit 813 communicates with the communication unit 24 of the control device 2.
  • the component mounting machine 8 includes a board transporting unit 82 that transports the board B in the X direction (board transport direction).
  • the substrate transfer unit 82 has a pair of conveyors 821 arranged in parallel in the X direction, and the substrate B is conveyed in the X direction by the conveyor 821.
  • the distance between the conveyors 821 can be changed in the Y direction (width direction) orthogonal to the X direction, and the substrate transport unit 82 adjusts the distance between the conveyors 821 according to the width of the substrate B to be conveyed.
  • the board transfer unit 82 carries the board B to a predetermined mounting work position 822 from the upstream side in the X direction, which is the board transfer direction, and mounts the board B on which the component C is mounted at the mounting work position 822 at the mounting work position 822. Carry out from to the downstream side in the X direction.
  • Two component supply units 83 are arranged in the X direction on both sides of the board transfer unit 82 in the Y direction, and a plurality of tape feeders 831 are arranged in the X direction in each component supply unit 83.
  • the component supply unit 83 is provided with a plurality of component supply positions 832 arranged in the X direction, and a tape feeder 831 for supplying the component C to be supplied to each component supply position 832 is associated with each component supply position 832. It is attached detachably.
  • a component supply reel around which a carrier tape containing small pieces C such as integrated circuits, transistors, capacitors, etc. is housed at predetermined intervals is arranged, and each tape feeder 831 has. By intermittently feeding out the carrier tape drawn from the component supply reel, the component C is supplied to the component supply position 832 at the tip thereof.
  • a pair of Y-axis rails 841 extending in the Y direction, a Y-axis ball screw 842 extending in the Y direction, and a Y-axis motor 843 that rotationally drives the Y-axis ball screw 842 are used. It is provided. Then, the X-axis beam 844 extending in the X direction is fixed to the nut of the Y-axis ball screw 842 in a state of being movably supported by the pair of Y-axis rails 841 in the Y direction.
  • An X-axis ball screw 845 extending in the X direction and an X-axis motor 846 for rotationally driving the X-axis ball screw 845 are attached to the X-axis beam 844, and the head unit 85 is attached to the X-axis beam 844 in the X direction. It is fixed to the nut of the X-axis ball screw 845 in a state where it is movably supported. Therefore, the mounting control unit 81 rotates the Y-axis ball screw 842 by the Y-axis motor 843 to move the head unit 85 in the Y direction, or rotates the X-axis ball screw 845 by the X-axis motor 846 to rotate the head unit 85 to X. It can be moved in a direction.
  • the head unit 85 has a plurality of mounting heads 851 arranged linearly in the X direction.
  • Each mounting head 851 is movable in the Z direction and the R direction independently of each other.
  • the R direction is a direction of rotation about a rotation axis parallel to the Z direction. Therefore, the mounting control unit 81 can raise and lower the mounting head 851 in the Z direction by the Z-axis motor (not shown), and can rotate the mounting head 851 in the R direction by the R-axis motor (not shown).
  • a recognition camera 86 that captures an image of the lower side is attached to the head unit 85, and the recognition camera 86 moves with the head unit 85.
  • Each mounting head 851 of the head unit 85 mounts the component C on the substrate B by the nozzle N attached to the lower end thereof. That is, the mounting head 851 abuts the nozzle N on the component C supplied by the tape feeder 831 to the component supply position 832 by lowering the nozzle N while positioning the nozzle N at the lower end thereof above the component supply position 832. Let me. Then, when the mounting head 851 applies a negative pressure to the nozzle N and attracts the component C by the nozzle N, the nozzle N is raised. The mounting head 851 moves above the substrate B at the mounting work position 822 while attracting and holding the component C picked up from the component supply position 832 by the nozzle N.
  • the mounting head 851 lowers the nozzle N and brings the component C into contact with the substrate B, the negative pressure of the nozzle N is released and the component C is placed on the substrate B.
  • the component C picked up from the component supply unit 83 is mounted at the mounting work position by using the mounting head 851 that moves between the component supply unit 83 that supplies the component C and the mounting work position 822.
  • the component mounting to be transferred to the board B of 822 is executed. Note that this component mounting is executed according to the procedure specified in the mounting data Dm based on the control of the mounting control unit 81.
  • the control device 2 obtains the component information Ic based on the three-dimensional shape (three-dimensional measurement result R) of the completed substrate Bc measured by the visual inspection machine 6, thereby creating the mounting data Dm. Assist.
  • FIG. 5 is a flowchart showing an example of the implementation data creation support method.
  • steps S101 to S102 are executed by the visual inspection machine 6
  • steps S103 to S114 are executed by the calculation unit 21 of the control device 2
  • steps S115 are executed by the component mounting machine 8.
  • step S101 the visual inspection machine 6 measures the three-dimensional shape of the completed substrate Bc in the same manner as described above, thereby acquiring the three-dimensional measurement result R.
  • the three-dimensional measurement result R is transferred from the visual inspection machine 6 to the control device 2 (step S102).
  • the control device 2 when the communication unit 24 acquires the three-dimensional measurement result R from the appearance inspection machine 6, the storage unit 22 stores the three-dimensional measurement result R, and the calculation unit 21 relates to the component C included in the completed board Bc.
  • the mounted component information Im is extracted from the three-dimensional measurement result R (step S103).
  • FIG. 6 is a flowchart showing an example of a method for extracting mounted component information
  • FIG. 7 is a perspective view schematically showing a specific example of the information extracted by the flowchart of FIG.
  • the flowchart of FIG. 6 is executed by the calculation unit 21 of the control device 2.
  • the height information of the completed substrate Bc is acquired from the three-dimensional measurement result R of the completed substrate Bc.
  • the height information of the completed substrate Bc indicates the height of the uneven surface formed by the upper surface Bu of the substrate B and the component C mounted on the upper surface Bu.
  • the upper surface Bu of the substrate B is the main surface of both main surfaces of the substrate B that faces upward when the shape is measured by the visual inspection machine 6.
  • step S202 the height of the upper surface Bu (that is, the lowest plane in which the component C does not exist) of the substrate B among the completed substrates Bc is estimated based on the height information of the completed substrate Bc (step). S202). Then, a portion higher than the upper surface Bu of the substrate B (in other words, a protruding portion protruding upward from the upper surface Bu of the substrate B) is extracted as the component C (step S203). Based on the extraction result of the component C in step S203, the component shape information Ics indicating at least the package type, width Cw, length Cl, and height Ch of the component C is acquired (step S204).
  • the component shape information Ics is acquired for all the components C included in the completed board Bc, and is stored in the storage unit 22 as the mounted component information Im. Then, the following steps S104 to S113 are executed for each of all the parts C. However, since the contents are the same for each component C, one component C will be described.
  • FIG. 8 is a flowchart showing an example of a method for identifying parts.
  • the flowchart of FIG. 8 is executed by the calculation unit 21 of the control device 2.
  • step S301 the component shape information Ics included in the mounted component information Im stored in the storage unit 22 is read out.
  • step S302 the component shape information Ics included in the mounted component information Im and the component shape information Ics registered in the component library Lc are collated.
  • the component C (candidate component) of the component ID corresponding to the component shape information Ics that satisfies the predetermined relationship (for example, the relationship that the size difference is less than the predetermined value) with the component shape information Ics included in the mounted component information Im is a candidate. Is selected as (step S303).
  • step S105 of FIG. 5 the number of selected candidate parts C is determined. If the number of candidate parts C is one, steps S106 to S108 are omitted, and the process proceeds to step S109. If the number of candidate parts C is zero, steps S106 to S107 are omitted. The process proceeds to step S108, and if the number of candidate parts C is a plurality, the process proceeds to step S106.
  • step S106 component feature information indicating the features of component C, which is not included in the component shape information Ics, is acquired.
  • This component feature information includes the characters described in the component C, the color of the component C, the silk characters described on the substrate B in close proximity to the mounting position of the component C, and the like, and is associated with the component ID in the component library Lc. It is registered in advance.
  • the component feature information regarding the component C included in the completed substrate Bc is extracted from the image information (the above three-dimensional image) used for the three-dimensional measurement. If a two-dimensional image of the component C has been acquired, component feature information may be extracted from the two-dimensional image.
  • step S107 among the component feature information associated with the plurality of candidate components C in the component library Lc, the component feature information that matches the component feature information extracted from the three-dimensional measurement result R is searched for. Then, when the corresponding component feature information exists, it is determined that the component C of the component ID associated with the component C is the component C included in the completed board Bc (“YES” in step S107), and the step Proceed to S109.
  • step S108 is executed.
  • the component information Ic is newly created based on the component shape information Ics indicated by the mounted component information Im extracted in step S103.
  • the component information Ic thus created is added to the mounting component information Im of the target completed board Bc.
  • step S109 the component information Ic of the component C included in the completed substrate Bc is determined. Specifically, when it is determined in step S105 that the number of candidate parts C is one, the part information Ic associated with the part ID of the candidate part C is included in the completed board Bc. It is determined to be information Ic. If "YES" is determined in step S107, the component information Ic associated with the component ID of the candidate component C determined in step S107 is the component information Ic of the component C included in the completed board Bc. Is decided. Further, when step S108 is executed, it is determined that the component information Ic newly registered in the component library Lc in step S108 is the component information Ic of the component C included in the completed board Bc.
  • step S110 the mounting position of the component C whose component information Ic is determined in step S109 is specified based on the three-dimensional measurement result R. Specifically, in the same manner as described above, the protruding portion protruding from the substrate B is extracted from the three-dimensional measurement result R, and the position of the protruding portion is specified as the mounting position. Further, in step S111, the mounting angle and the direction of the polarity of the component C for which the component information Ic has been determined are specified based on the three-dimensional measurement result R.
  • the mounting angle is the angle of the component C mounted on the board B in the rotation direction centered on the virtual straight line parallel to the normal line of the board B (in other words, the Z direction).
  • step S112 it is determined whether or not the component adsorption information Ica of the component C whose component information Ic is determined in step S109 exists in the component library Lc. If the corresponding component adsorption information Ica exists (when “YES” in step S112), step S113 is omitted and the process proceeds to step S114. On the other hand, when the corresponding component adsorption information Ica does not exist (in the case of step S112 “NO”), step S113 is executed and then the process proceeds to step S114.
  • step S113 the component adsorption information Ica of the component C for which the component information Ic has been determined is calculated.
  • FIG. 9 is a flowchart showing an example of a method of calculating the component suction information
  • FIG. 10 is a diagram showing an example of the positional relationship between the nozzle and the component considered in the calculation of the component suction information. The flowchart of FIG. 9 is executed by the calculation unit 21 of the control device 2.
  • step S401 the three-dimensional measurement result R is read out, and in step S402, the upper surface Cu of the corresponding component C is extracted from the three-dimensional measurement result R.
  • the upper surface Cu of the component C is extracted by specifying the existence range of a plane having a uniform height from the upper surface Bu of the substrate B in the component C. As shown in FIG. 10, when the component C has a step, a plurality of upper surface Cu having different heights are extracted.
  • step S403 it is tentatively determined that the component C is adsorbed by the nozzle N having the largest nozzle hole among the plurality of nozzles N of different types.
  • step S404 the suction position of the component C by the nozzle N is searched from inside the upper surface Cu. At this time, the positional relationship between the suction hole of the nozzle N and the upper surface Cu, the interference between the flange Nf of the nozzle N and the step of the component C, and the like are confirmed, and the suction position that meets the conditions is searched for.
  • step S405 it is determined whether the suction position searched in step S404 is appropriate. For example, if it is not possible to search for a suction position where interference between the nozzle N and the component C does not occur, or if the suction position is separated from the center of the component C by a predetermined distance or more, it is determined to be inappropriate (NO) in step S405. Then, the process returns to step S403. Then, the nozzle N for sucking the component C is changed to a nozzle N having a smaller nozzle hole, and steps S404 to S405 are repeated.
  • steps S403 and S404 are executed to determine the nozzle N for sucking the component C and the suction position of the component C by the nozzle N. Further, if there is a nozzle N having a smaller nozzle hole for the nozzle N that sucks the component C, the nozzle N is changed and steps S404 to S405 are repeated to extract a plurality of nozzles N that can be sucked.
  • the nozzle N having the largest nozzle hole for which the suction is stable may be selected from the nozzles N extracted so that the suction is possible, or the balance with the nozzle N used for suction of the other component C is balanced.
  • the nozzle N may be selected so as to suppress the time loss such as reducing the number of times the nozzle N is replaced.
  • the packing style of the component C supplied to the component supply position 832 cannot be determined from the three-dimensional measurement result R, so it is tentatively determined. In this way, the component adsorption information Ica is calculated.
  • step S114 of FIG. 5 the order of mounting the plurality of components C required for the production of the completed substrate Bc on the substrate B is calculated. Specifically, the time required to complete the mounting of the plurality of components C while changing the mounting order of the plurality of components C on the substrate B, that is, the production time of the completed substrate Bc is predicted. Then, the mounting order that minimizes the production time is calculated.
  • FIG. 11 is a diagram showing an example of the positional relationship between the nozzle and the component considered in the calculation of the mounting order.
  • FIG. 11 shows an example in which two parts C1 and C2 having different heights are mounted adjacent to each other, and the order in which the parts C1 lower than the parts C2 are mounted after the parts C2 are mounted on the board B is shown. It is shown. In this order, the flange Nf of the nozzle N that attracts the component C1 interferes with the component C2 mounted on the substrate B.
  • the mounting order in which the production time is the shortest is required.
  • the component information Ic, mounting position, mounting angle and polarity of each of the plurality of components C to be mounted on the board B for the production of the completed board Bc, and the mounting order of the plurality of components C are shown.
  • the mounting data Dm is created and transferred from the control device 2 to the component mounting machine 8. Then, the component mounting machine 8 starts mounting the component C on the board B based on the mounting data Dm.
  • FIG. 12 is a flowchart showing an example of a method of checking / correcting the packing style. The flowchart of FIG. 12 is executed by the mounting control unit 81 of the component mounting machine 8.
  • step S501 the component information Ic referred to in the mounting data Dm is read out.
  • step S502 the recognition camera 86 is moved above the component C supplied to the component supply position 832, and the packing shape of the component C is confirmed based on the image of the component C captured by the recognition camera 86.
  • the packing shape of the component C is the angle of the component C at the component supply position 832 in the rotation direction centered on the virtual straight line parallel to the normal line of the substrate B (in other words, the Z direction).
  • the mounting control unit 81 determines whether the angle of the component C supplied to the component supply position 832 by the tape feeder 831 matches the angle of the component C at the component supply position 832 indicated by the mounting data Dm. , The suitability of the mounting data Dm is determined (step S503). When these do not match and the mounting data Dm is inappropriate (when “NO” in step S503), the mounting control unit 81 corrects the mounting data Dm to match them.
  • the present invention is based on the three-dimensional measurement result R which is the measurement result of the shape of the completed substrate Bc having the substrate B and the component C (mounted component C) mounted on the substrate B.
  • the component shape information Ics indicating the shape of the mounted component C is obtained (step S103).
  • the three-dimensional measurement result R is three-dimensional data indicating the three-dimensional shape of the completed substrate Bc. Then, by obtaining the height of the component C from the substrate B based on the three-dimensional data, the component shape information Ics including the height of the component C can be obtained. As a result, it is possible to reduce the burden on the operator required to acquire the height of the component C mounted on the board B and support the creation of the mounting data Dm.
  • the calculation unit 21 estimates the type (part ID) of the mounted component C by referring to the shape of the mounted component C indicated by the component shape information Ics obtained based on the three-dimensional measurement result R (three-dimensional data) (step). S104). In such a configuration, the type of the component C mounted on the substrate B can be accurately estimated based on the three-dimensional measurement result R.
  • the calculation unit 21 mounts the component shape information Ics from the component library Lc in which the shapes of a plurality of registered components C (components C identified by the component IDs) of different types are registered for each registered component C.
  • the type of the mounted component C is estimated based on the result of searching for the registered component C having a shape similar to the shape of the component C as the candidate component C (step S104). In such a configuration, it is possible to accurately estimate the type of component C mounted on the substrate B based on the component library Lc.
  • the calculation unit 21 determines the shape of the mounting component C indicated by the component shape information Ics. It is added to the mounted component information Im in association with the mounted component C (step S108). In such a configuration, when the mounted component C not included in the component library Lc is included in the completed board Bc, this mounted component C can be added to the mounted component information Im.
  • the calculation unit 21 is a component showing the characteristics of the mounted component C in addition to the shape of the mounted component C.
  • the feature information is obtained from the three-dimensional measurement result R (step S106), and the type of the mounted component C is estimated based on the result of searching for one candidate component C having the feature indicated by the component feature information from the plurality of candidate components C. (Step S107).
  • the calculation unit 21 specifies the mounting position on which the component C is mounted on the board B based on the three-dimensional measurement result R (step S110). With such a configuration, it is possible to reduce the burden on the operator required to specify the mounting position of the component C on the substrate B and support the creation of the mounting data Dm.
  • the calculation unit 21 extracts the protruding portion protruding from the substrate B from the three-dimensional measurement result R, specifies that the protruding portion is the component C, and specifies that the position of the protruding portion is the mounting position.
  • the mounting position of the component C on the substrate B can be accurately specified based on the three-dimensional measurement result R.
  • the method of identifying the mounting component C from the two-dimensional image obtained by capturing the completed substrate Bc in a plan view if the contrast is low, the peripheral edge of the component C on the substrate B becomes unclear, and the component C can be accurately identified. It may not be possible to identify.
  • the method of extracting the protruding portion from the substrate B from the three-dimensional measurement result R there is an advantage that the component C on the substrate B can be accurately identified.
  • the mounting data Dm indicates a mounting order indicating the order in which the plurality of components C are mounted when the operation of sucking the component C by the nozzle N and mounting the component C on the substrate B is repeated to mount the plurality of components C on the substrate B. Including. Then, the calculation unit 21 determines whether or not there is interference between the nozzle N that attracts one component C1 among the plurality of components C and another component C2 mounted on a substrate B different from the one component C1. The mounting order is determined based on (step S114). Specifically, while changing the mounting order, the presence or absence of interference was predicted based on the mounting positions of these parts C1 and C2 and the heights of these parts C1 and C2 included in the part shape information Ics.
  • the mounting order is determined.
  • the mounting order in which the component C attracted by the nozzle N and heading for the mounting position does not interfere with the component C already mounted on the board B is obtained, and the component C is appropriately mounted on the board B according to this mounting order. Can be implemented in.
  • the calculation unit 21 obtains the mounting angle of the component C from the three-dimensional measurement result R (step S111). With such a configuration, it is possible to reduce the burden on the operator required to specify the mounting angle of the component C and support the creation of the mounting data Dm.
  • the calculation unit 21 obtains the component shape information Ics including the existence range of the upper surface Cu having a uniform height from the substrate B in the mounting component C based on the three-dimensional measurement result R (step S203).
  • the upper surface Cu of the mounting component C can be accurately obtained based on the three-dimensional measurement result R.
  • the calculation unit 21 determines the type of the nozzle N that attracts the component C in order to mount the component C on the substrate B based on the existence range of the upper surface Cu (step S113). With such a configuration, it is possible to reduce the burden on the operator required to determine the nozzle N suitable for adsorbing the upper surface Cu of the component C, and to support the creation of the mounting data Dm.
  • the calculation unit 21 determines the suction position for sucking the component C by the nozzle N in order to mount the component C on the substrate B from the existence range of the upper surface Cu (step S113). With such a configuration, it is possible to reduce the burden on the operator required to determine the suction position of the component C by the nozzle N and support the creation of the mounting data Dm.
  • the mounting data Dm includes the angle of the component C at the component supply position 832.
  • the component mounting machine 8 recognizes the angle of the component C supplied to the component supply position 832 by the tape feeder 831, and the result is the angle of the component C at the component supply position 832 included in the mounting data Dm. It is determined whether they match, and the suitability of the mounting data Dm is determined (steps S501 to S503). In such a configuration, the component mounting machine 8 can confirm the suitability of the angle of the component C at the component supply position 832 indicated by the mounting data Dm.
  • the component mounting machine 8 determines that the mounting data Dm is inappropriate, the component mounting machine 8 corrects the mounting data Dm.
  • the component C can be appropriately mounted on the substrate B based on the modified mounting data Dm.
  • control device 2 corresponds to an example of the "mounting data creation support device” and the “calculation device” of the present invention
  • the component mounting machine 8 corresponds to an example of the “component mounting machine” of the present invention.
  • the control device 2 and the component mounting machine 8 constitute the "component mounting system” of the present invention
  • the calculation unit 21 corresponds to an example of the "calculation unit” of the present invention
  • the communication unit 24 is the "acquisition” of the present invention.
  • the mounting data Dm corresponds to an example of the "mounting data” of the present invention
  • the substrate B corresponds to an example of the "board” of the present invention
  • the completed substrate Bc corresponds to the "completed substrate” of the present invention.
  • the upper surface Cu corresponds to an example of the "upper surface” of the present invention
  • the three-dimensional measurement result R corresponds to the "completed substrate information" of the present invention
  • the parts library Lc corresponds to an example of the "parts library” of the present invention
  • the nozzle N corresponds to an example of the "nozzle” of the present invention
  • the part feature information is the present.
  • the mounting position corresponds to an example of the "mounting position” of the present invention
  • the mounting order corresponds to an example of the "mounting order” of the present invention
  • the mounting angle corresponds to the present invention.
  • the suction position corresponds to an example of the "suction position" of the present invention.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described one without departing from the spirit of the present invention.
  • the measurement result acquired by the control device 2 in step S102 is not limited to the three-dimensional measurement result R. Therefore, the control device 2 acquires the two-dimensional data indicating the two-dimensional shape of the completed substrate Bc acquired from the two-dimensional image of the completed substrate Bc obtained by imaging the completed substrate Bc from the plan view together with the three-dimensional data.
  • the embodiment can be modified.
  • the calculation unit 21 can obtain the component shape information Ics of the component C included in the completed substrate Bc by using the two-dimensional data and the three-dimensional data (completed substrate information) of the completed substrate Bc together. For example, the mounting position of the component C on the substrate B and the width Cw and the length Cl of the component C are extracted from the two-dimensional data, while the height of the component C from the substrate B is extracted from the three-dimensional data. The part shape information Ics may be obtained. Then, the mounting data creation support of FIG. 5 can be executed based on the completed board information including the two-dimensional data and the three-dimensional data. Such a configuration is particularly suitable when two-dimensional data having a clear contrast can be obtained.
  • step S104 the calculation unit 21 estimates the type of the mounting component C by referring to the shape of the mounting component C indicated by the component shape information Ics obtained by using the two-dimensional data together. In such a configuration, it is possible to accurately estimate the type of component C mounted on the substrate B by also using two-dimensional data.
  • the specification of the component C in step S104 can be performed without using the component library Lc. That is, a component list showing the shapes of a plurality of target components C of different types mounted on the substrate B for the production of the completed substrate Bc may be obtained for each target component C.
  • the calculation unit 21 selects the target component C having a shape similar to the shape of the mounting component C indicated by the component shape information Ics extracted from the three-dimensional measurement result R in step S103 as a candidate component from the component list.
  • the type of mounting component C can be estimated based on the result of searching as C. With such a configuration, it is possible to accurately estimate the type of component C mounted on the substrate B based on the component list.
  • Step S108 may be modified.
  • the mounted component C when the mounted component C not included in the component list is included in the completed board Bc, the mounted component C can be added to the mounted component information Im.
  • the parts list and the parts library Lc may be used together. Specifically, when there is no candidate component C corresponding to the component list, the candidate component C may be searched from the component library Lc.
  • step S106 if the component feature information related to the component C included in the completed substrate Bc cannot be extracted from the three-dimensional measurement result R, the operator may be notified of the input of the component feature information.
  • the substrate B is provided with a fiducial mark (mark) indicating the position. Therefore, the calculation unit 21 can specify the mounting position with reference to this mark attached to the substrate B.
  • the position of the fiducial mark may be specified based on the above-mentioned three-dimensional data or may be specified based on the above-mentioned two-dimensional data.
  • step S115 the mounting control unit 81 automatically corrects the mounting data Dm.
  • the mounting control unit 81 may notify the operator of the correction of the mounting data Dm using, for example, a UI such as a display. .. With such a configuration, the operator can accurately grasp that the mounting data Dm needs to be modified.
  • the mounting control unit 81 may notify the operator of the modified content of the mounting data Dm by the UI. With such a configuration, it is possible to reduce the burden on the operator required for modifying the mounting data Dm and support the creation of the mounting data Dm.
  • the visual inspection machine 6 corresponds to an example of the "visual inspection machine" of the present invention.
  • the method for measuring the three-dimensional shape of the completed substrate Bc is not limited to the phase shift method, and for example, stereo matching may be used.
  • Control device mounting data creation support device, arithmetic unit, component mounting system
  • Calculation unit 24
  • Communication unit acquisition unit
  • 8 Parts mounting machine (parts mounting system)
  • B Board
  • Bc Completed board
  • C Parts Cu
  • Top surface Dm
  • Mounting data Lc Parts library
  • Nozzle R Three-dimensional measurement results (completed board information, three-dimensional data)

Abstract

Component shape information Ics indicating the shape of a substrate B is acquired on the basis of a three-dimensional measurement result R which is a measurement result on the shape of a complete substrate Bc having the substrate B and a component C mounted on the substrate B (step S103). In this case, the three-dimensional measurement result R is three-dimensional data indicating the three-dimensional shape of the complete substrate Bc. The component shape information Ics including the height of the substrate B is acquired by calculating, on the basis of the three-dimensional data, the height of the component C from the substrate B. Thus, the burden on an operator in acquiring the height of the component C mounted on the substrate B can be reduced, and generation of mounting data Dm can be assisted.

Description

実装データ作成支援装置、実装データ作成支援方法、外観検査機、部品実装システムMounting data creation support device, mounting data creation support method, visual inspection machine, component mounting system
 この発明は、部品を基板に実装する手順を示す実装データの作成を支援する技術に関する。 The present invention relates to a technique for supporting the creation of mounting data indicating a procedure for mounting a component on a board.
 部品実装機は、フィーダーにより供給した部品を実装ヘッドによって基板に移載することで、基板に部品を実装した完成基板を生産する。また、特許文献1に示されるように、部品実装機は、実装データが示す手順に従って基板に部品を実装し、この実装データの作成には部品の形状に関する情報が必要となる。 The component mounting machine produces a completed board in which the components are mounted on the board by transferring the components supplied by the feeder to the board by the mounting head. Further, as shown in Patent Document 1, the component mounting machine mounts a component on a substrate according to a procedure indicated by the mounting data, and information on the shape of the component is required to create the mounting data.
特許第3773985号公報Japanese Patent No. 3773985
 ところで、部品実装機を用いて完成基板を生産する作業者においては、詳細な部品の形状データの提供を必ずしも受けることができず、部品が実装された基板のみを提示されて、これと同一の完成基板を生産するように依頼される場合がある。かかる場合、完成基板の生産に用いられる、部品の形状を示す部品形状情報を作業者において作成する必要がある。この際、平面視における二次元的な部品の形状は、例えば上方から撮像した画像に対してエッジ検出等の画像処理を施すことで取得できる。しかしながら、部品の高さを取得することは必ずしも容易ではなく、実装データの作成に要する作業者の負担が大きかった。 By the way, a worker who produces a finished board using a component mounting machine cannot always receive detailed component shape data, and is presented with only a board on which components are mounted, which is the same as this. You may be asked to produce a finished board. In such a case, it is necessary for the operator to create component shape information indicating the shape of the component used in the production of the finished substrate. At this time, the shape of the two-dimensional component in the plan view can be obtained by performing image processing such as edge detection on the image captured from above, for example. However, it is not always easy to obtain the height of the component, and the burden on the operator required to create the mounting data is heavy.
 この発明は上記課題に鑑みなされたものであり、基板に実装された部品の高さの取得に要する作業者の負担を軽減して、実装データの作成を支援する技術の提供を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for supporting the creation of mounting data by reducing the burden on the operator required to acquire the height of the parts mounted on the board.
 本発明に係る実装データ作成支援装置は、基板に部品を実装する手順を示す実装データの作成を支援する実装データ作成支援装置であって、基板と基板に実装された部品とを有する完成基板の形状の計測結果を含む完成基板情報として取得する取得部と、部品の形状を示す部品形状情報を完成基板情報に基づき求める演算部とを備え、完成基板情報は、完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、三次元データを少なくとも含み、演算部は、基板からの部品の高さを三次元データに基づき求めることで、部品の高さを含む部品形状情報を求める。 The mounting data creation support device according to the present invention is a mounting data creation support device that supports the creation of mounting data indicating a procedure for mounting components on a board, and is a completed board having a board and parts mounted on the board. It is equipped with an acquisition unit that acquires the completed board information including the shape measurement result and a calculation unit that obtains the component shape information indicating the shape of the component based on the completed board information. The completed board information indicates the three-dimensional shape of the completed board. Of the three-dimensional data and the two-dimensional data indicating the two-dimensional shape, at least the three-dimensional data is included, and the arithmetic unit obtains the height of the component from the board based on the three-dimensional data, so that the component including the height of the component is included. Obtain shape information.
 本発明に係る実装データ作成支援方法は、基板に部品を実装する手順を示す実装データの作成を支援する実装データ作成支援方法であって、基板と基板に実装された部品とを有する完成基板の形状の計測結果を完成基板情報として取得する工程と、部品の形状を示す部品形状情報を完成基板情報に基づき求める工程とを備え、完成基板情報は、完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、三次元データを少なくとも含み、基板からの部品の高さが三次元データに基づき求められて、部品の高さを含む部品形状情報が求められる。 The mounting data creation support method according to the present invention is a mounting data creation support method that supports the creation of mounting data indicating a procedure for mounting components on a board, and is a completed board having a board and components mounted on the board. It includes a process of acquiring the shape measurement result as completed board information and a process of obtaining part shape information indicating the shape of the part based on the completed board information. The completed board information is three-dimensional data indicating the three-dimensional shape of the completed board. Of the two-dimensional data indicating the two-dimensional shape, at least the three-dimensional data is included, the height of the component from the substrate is obtained based on the three-dimensional data, and the component shape information including the height of the component is obtained.
 本発明に係る外観検査機は、基板と基板に実装された部品とを有する完成基板の形状を少なくとも示す完成基板情報を、完成基板の形状を計測することで求める形状計測部と、部品の形状を示す部品形状情報を完成基板情報に基づき求める演算部とを備え、完成基板情報は、完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、三次元データを少なくとも含み、演算部は、基板からの部品の高さを三次元データに基づき求めることで、部品の高さを含む部品形状情報を求める。 The visual inspection machine according to the present invention has a shape measuring unit for obtaining at least completed board information indicating the shape of a finished board having a board and a component mounted on the board by measuring the shape of the finished board, and a shape of the part. It is provided with a calculation unit that obtains the component shape information indicating the component shape information based on the completed board information, and the completed board information is the three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed board and the two-dimensional data indicating the two-dimensional shape. At least including, the calculation unit obtains the component shape information including the height of the component by obtaining the height of the component from the board based on the three-dimensional data.
 本発明に係る部品実装システムは、基板と基板に実装された部品とを有する完成基板の形状の計測結果を含む完成基板情報に基づき、部品の形状を示す部品形状情報を求める演算装置と、フィーダーにより部品供給位置に供給した部品を実装ヘッドにより保持して基板に移載する動作を実行する部品実装機とを備え、完成基板情報は、完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、三次元データを少なくとも含み、演算装置は、基板からの部品の高さを三次元データに基づき求めることで、部品の高さを含む部品形状情報を求め、部品実装機は、部品形状情報を含む実装データが示す手順に従って、基板に部品を実装する。 The component mounting system according to the present invention is a computing device and a feeder that obtains component shape information indicating the shape of a component based on completed board information including a measurement result of the shape of a completed substrate having a substrate and a component mounted on the substrate. It is equipped with a component mounting machine that holds the components supplied to the component supply position by the mounting head and transfers them to the board, and the completed board information includes three-dimensional data indicating the three-dimensional shape of the finished board and two dimensions. Of the two-dimensional data indicating the shape, at least three-dimensional data is included, and the arithmetic unit obtains the part shape information including the height of the part by obtaining the height of the part from the board based on the three-dimensional data. The mounting machine mounts the component on the board according to the procedure indicated by the mounting data including the component shape information.
 このように構成された本発明(実装データ作成支援装置、実装データ作成支援方法、外観検査機、部品実装システム)では、基板と基板に実装された部品とを有する完成基板の形状の計測結果を含む完成基板情報に基づき、部品の形状を示す部品形状情報が求められる。この際、完成基板情報は、完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、三次元データを少なくとも含む。そして、基板からの部品の高さを三次元データに基づき求めることで、部品の高さを含む部品形状情報が求められる。これによって、基板に実装された部品の高さの取得に要する作業者の負担を軽減して、実装データの作成を支援することが可能となっている。 In the present invention (mounting data creation support device, mounting data creation support method, visual inspection machine, component mounting system) configured in this way, the measurement result of the shape of the completed substrate having the substrate and the components mounted on the substrate is measured. Based on the completed board information including, component shape information indicating the shape of the component is required. At this time, the completed substrate information includes at least three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed substrate and the two-dimensional data indicating the two-dimensional shape. Then, by obtaining the height of the component from the substrate based on the three-dimensional data, the component shape information including the height of the component can be obtained. This makes it possible to reduce the burden on the operator required to acquire the height of the parts mounted on the board and support the creation of mounting data.
 また、演算部は、三次元データに基づき求めた部品形状情報が示す部品の形状を参照して部品の種類を推定するように、実装データ作成支援装置を構成しても良い。かかる構成では、三次元データに基づき、部品の種類を的確に推定することが可能となる。 Further, the arithmetic unit may configure the mounting data creation support device so as to estimate the type of the part by referring to the shape of the part indicated by the part shape information obtained based on the three-dimensional data. With such a configuration, it is possible to accurately estimate the type of parts based on the three-dimensional data.
 また、完成基板情報は、二次元データも含み、演算部は、二次元データを併用して求めた部品形状情報が示す部品の形状を参照して部品の種類を推定するように、実装データ作成支援装置を構成しても良い。かかる構成では、二次元データも併用して、部品の種類を的確に推定することが可能となる。 In addition, the completed board information includes two-dimensional data, and the calculation unit creates mounting data so that the component type is estimated by referring to the component shape indicated by the component shape information obtained by using the two-dimensional data together. A support device may be configured. In such a configuration, it is possible to accurately estimate the type of parts by also using two-dimensional data.
 また、演算部は、種類の異なる複数の登録部品の形状が登録部品ごとに登録された部品ライブラリのうちから、部品形状情報が示す部品の形状に類似する形状を有する登録部品を候補部品として探索した結果に基づき、部品の種類を推定するように、実装データ作成支援装置を構成しても良い。かかる構成では、部品ライブラリに基づき、部品の種類を的確に推定することが可能となる。 Further, the arithmetic unit searches for a registered part having a shape similar to the shape of the part indicated by the part shape information as a candidate part from the parts library in which the shapes of a plurality of registered parts of different types are registered for each registered part. The mounting data creation support device may be configured so as to estimate the type of the component based on the result. In such a configuration, it is possible to accurately estimate the type of parts based on the parts library.
 また、演算部は、部品ライブラリのうちから候補部品を探索できない場合には、部品形状情報が示す部品の形状を部品と関連付けて、完成基板において基板に実装される部品に関する実装部品情報に追加するように、実装データ作成支援装置を構成しても良い。かかる構成では、部品ライブラリに無い部品が完成基板に含まれる場合には、この部品を実装部品情報に追加することができる。 If the calculation unit cannot search for a candidate component from the component library, the arithmetic unit associates the component shape indicated by the component shape information with the component and adds it to the mounted component information regarding the component mounted on the board on the completed board. As described above, the mounting data creation support device may be configured. In such a configuration, when the completed board contains a component that is not in the component library, this component can be added to the mounted component information.
 また、演算部は、完成基板の生産のために基板に実装される種類の異なる複数の対象部品の形状を対象部品ごとに示す部品リストのうちから、部品形状情報が示す部品の形状に類似する形状を有する対象部品を候補部品として探索した結果に基づき、部品の種類を推定するように、実装データ作成支援装置を構成しても良い。かかる構成では、部品リストに基づき、部品の種類を的確に推定することが可能となる。 Further, the arithmetic unit resembles the shape of the part indicated by the part shape information from the parts list showing the shape of a plurality of different types of target parts mounted on the board for the production of the completed board for each target part. The mounting data creation support device may be configured so as to estimate the type of the component based on the result of searching for the target component having a shape as a candidate component. With such a configuration, it is possible to accurately estimate the type of parts based on the parts list.
 また、演算部は、複数の候補部品が探索された場合には、部品の形状以外に部品の特徴を示す部品特徴情報を完成基板情報から求め、複数の候補部品のうちから部品特徴情報が示す特徴を有する一の候補部品を探索した結果に基づき、部品の種類を推定するように、実装データ作成支援装置を構成しても良い。かかる構成では、部品の形状以外の部品の特徴に基づき、部品の種類を的確に推定することが可能となる。 Further, when a plurality of candidate parts are searched, the arithmetic unit obtains component feature information indicating the features of the component in addition to the shape of the component from the completed board information, and the component feature information indicates from the plurality of candidate components. The mounting data creation support device may be configured so as to estimate the type of the component based on the result of searching for one candidate component having a feature. With such a configuration, it is possible to accurately estimate the type of the part based on the characteristics of the part other than the shape of the part.
 また、演算部は、完成基板情報に含まれる三次元データから、基板から突出した突出部分を抽出して、突出部分が部品である特定するとともに、突出部分の位置が実装位置であると特定するように、実装データ作成支援装置を構成しても良い。かかる構成では、三次元データに基づき、部品の実装位置を的確に特定することができ、部品の実装位置の特定に要する作業者の負担を軽減して、実装データの作成を支援することが可能となっている。 In addition, the calculation unit extracts the protruding portion protruding from the board from the three-dimensional data included in the completed board information, identifies the protruding portion as a component, and identifies the position of the protruding portion as the mounting position. As described above, the mounting data creation support device may be configured. In such a configuration, the mounting position of the component can be accurately specified based on the three-dimensional data, the burden on the operator required to specify the mounting position of the component can be reduced, and the creation of the mounting data can be supported. It has become.
 また、演算部は、基板に付されたマークを基準に実装位置を特定するように、実装データ作成支援装置を構成しても良い。かかる構成では、基板に付されたマークを基準に部品の実装位置を特定することができる。 Further, the arithmetic unit may configure the mounting data creation support device so as to specify the mounting position based on the mark attached to the board. In such a configuration, the mounting position of the component can be specified with reference to the mark attached to the substrate.
 また、演算部は、基板の法線に平行な仮想直線を中心とする回転方向における部品の実装角度を、完成基板情報から求めるように、実装データ作成支援装置を構成しても良い。かかる構成では、部品の実装角度の特定に要する作業者の負担を軽減して、実装データの作成を支援することが可能となっている。 Further, the arithmetic unit may configure a mounting data creation support device so that the mounting angle of the component in the rotation direction centered on the virtual straight line parallel to the normal of the board can be obtained from the completed board information. With such a configuration, it is possible to reduce the burden on the operator required to specify the mounting angle of the component and support the creation of mounting data.
 また、演算部は、部品における基板からの高さが均一な上面の存在範囲を含む部品形状情報を三次元データに基づき求めるように、実装データ作成支援装置を構成しても良い。かかる構成では、三次元データに基づき、部品の上面を的確に求めることができる。 Further, the arithmetic unit may configure the mounting data creation support device so as to obtain the component shape information including the existence range of the upper surface of the component having a uniform height from the substrate based on the three-dimensional data. In such a configuration, the upper surface of the component can be accurately obtained based on the three-dimensional data.
 また、演算部は、部品を基板に実装するために部品を吸着するノズルの種類を上面の存在範囲に基づき決定するように、実装データ作成支援装置を構成しても良い。かかる構成では、部品の上面を吸着するのに適したノズルの決定に要する作業者の負担を軽減して、実装データの作成を支援することが可能となっている。 Further, the arithmetic unit may configure a mounting data creation support device so as to determine the type of nozzle for sucking the component in order to mount the component on the substrate based on the existence range of the upper surface. With such a configuration, it is possible to reduce the burden on the operator required to determine a nozzle suitable for adsorbing the upper surface of the component, and to support the creation of mounting data.
 また、演算部は、部品を基板に実装するために部品をノズルにより吸着する吸着位置を上面の存在範囲のうちから決定するように、実装データ作成支援装置を構成しても良い。かかる構成では、ノズルによる部品の吸着位置の決定に要する作業者の負担を軽減して、実装データの作成を支援することが可能となっている。 Further, the arithmetic unit may configure the mounting data creation support device so as to determine the suction position for sucking the component by the nozzle in order to mount the component on the substrate from the existing range on the upper surface. With such a configuration, it is possible to reduce the burden on the operator required to determine the suction position of the component by the nozzle and support the creation of mounting data.
 また、実装データは、基板の法線に平行な仮想直線を中心とする回転方向における部品供給位置での部品の角度を含み、部品実装機は、フィーダーにより供給される部品の角度を認識した結果が、実装データに含まれる部品供給位置での部品の角度と一致するかを判断して、実装データの適否を判定するように、部品実装システムを構成しても良い。かかる構成では、実装データが示す、部品供給位置に供給される部品の角度の適否を部品実装機において確認することができる。 Further, the mounting data includes the angle of the component at the component supply position in the rotation direction centered on the virtual straight line parallel to the normal line of the board, and the component mounting machine recognizes the angle of the component supplied by the feeder. However, the component mounting system may be configured so as to determine whether or not it matches the angle of the component at the component supply position included in the mounting data and determine the suitability of the mounting data. In such a configuration, the suitability of the angle of the component supplied to the component supply position indicated by the mounting data can be confirmed by the component mounting machine.
 また、部品実装機は、実装データが不適切であると判定すると、実装データを修正するように、部品実装システムを構成しても良い。かかる構成では、修正された実装データに基づき、基板に部品を適切に実装することができる。 Further, the component mounting machine may configure the component mounting system so as to correct the mounting data when it determines that the mounting data is inappropriate. In such a configuration, components can be appropriately mounted on the board based on the modified mounting data.
 本発明によれば、基板に実装された部品の高さの取得に要する作業者の負担を軽減して、実装データの作成を支援することが可能となる。 According to the present invention, it is possible to reduce the burden on the operator required to acquire the height of the parts mounted on the board and support the creation of mounting data.
本発明に係る実装データ作成支援装置の一例に相当する制御装置を備えた基板生産システムを示すブロック図。The block diagram which shows the substrate production system provided with the control device which corresponds to an example of the mounting data creation support device which concerns on this invention. 部品ライブラリの一例を模式的に示す図。The figure which shows an example of the parts library schematically. 外観検査機を模式的に例示するブロック図。The block diagram which schematically exemplifies the appearance inspection machine. 部品実装機の一例を模式的に示す平面図。A plan view schematically showing an example of a component mounting machine. 実装データ作成支援方法の一例を示すフローチャート。A flowchart showing an example of an implementation data creation support method. 実装部品情報の抽出方法の一例を示すフローチャート。A flowchart showing an example of a method for extracting mounting component information. 図6のフローチャートにより抽出される情報の具体例を模式的に示す斜視図。The perspective view which shows the specific example of the information extracted by the flowchart of FIG. 部品の特定方法の一例を示すフローチャート。A flowchart showing an example of a method for identifying a part. 部品吸着情報の算出方法の一例を示すフローチャート。The flowchart which shows an example of the calculation method of the component adsorption information. 部品吸着情報の算出で考慮されるノズルと部品の位置関係の一例を示す図。The figure which shows an example of the positional relationship between a nozzle and a component considered in the calculation of component suction information. 実装順序の算出で考慮されるノズルと部品との位置関係の一例を示す図。The figure which shows an example of the positional relationship between a nozzle and a component considered in the calculation of a mounting order. 荷姿の確認・修正方法の一例を示すフローチャート。A flowchart showing an example of how to check / correct the packing style.
 図1は本発明に係る実装データ作成支援装置の一例に相当する制御装置を備えた基板生産システムを示すブロック図である。この基板生産システム1は、制御装置2、データベース4、外観検査機6および部品実装機8を備える。 FIG. 1 is a block diagram showing a substrate production system provided with a control device corresponding to an example of the mounting data creation support device according to the present invention. The board production system 1 includes a control device 2, a database 4, a visual inspection machine 6, and a component mounting machine 8.
 制御装置2は、例えばパーソナルコンピューターで構成され、演算部21、記憶部22、UI(User Interface)23および通信部24を備える。演算部21は、例えばCPU(Central Processing Unit)で構成されたプロセッサーであり、制御装置2での演算を担う。記憶部22は例えばHDD(Hard Disk Drive)で構成され、制御装置2での演算で用いられる各種のデータを記憶する。具体的には、後に詳述するように、外観検査機6で完成基板Bcの三次元形状を計測することで得られる三次元計測結果Rや、完成基板Bcにおいて基板Bに実装された部品Cに関する実装部品情報Imや、部品実装機8での部品実装の手順を示す実装データDmが記憶部22に記憶される。UI23は、例えばタッチパネルディスプレイにより構成され、作業者からの入力操作を受け付けり、作業者へ情報を提示したりする。通信部24は、外部のデータベース4、外観検査機6および部品実装機8との通信を担う。 The control device 2 is composed of, for example, a personal computer, and includes a calculation unit 21, a storage unit 22, a UI (User Interface) 23, and a communication unit 24. The calculation unit 21 is, for example, a processor composed of a CPU (Central Processing Unit), and is responsible for calculation by the control device 2. The storage unit 22 is composed of, for example, an HDD (Hard Disk Drive), and stores various data used in calculations by the control device 2. Specifically, as will be described in detail later, the three-dimensional measurement result R obtained by measuring the three-dimensional shape of the completed substrate Bc with the visual inspection machine 6 and the component C mounted on the substrate B in the completed substrate Bc. The mounting component information Im and the mounting data Dm indicating the procedure for mounting the component on the component mounting machine 8 are stored in the storage unit 22. The UI 23 is composed of, for example, a touch panel display, accepts input operations from the operator, and presents information to the operator. The communication unit 24 is responsible for communication with the external database 4, the visual inspection machine 6, and the component mounting machine 8.
 データベース4は、部品実装機8で実装される部品Cに関する部品情報Icを部品Cごとに示す部品ライブラリLcを記憶する。図2は部品ライブラリの一例を模式的に示す図である。部品ライブラリLcでは、種類の異なる複数の部品Cが部品IDで識別されており、部品IDで識別される部品Cの部品情報Icが関連付けられている。部品情報Icは、対応する部品IDで識別される部品Cの部品形状情報Icsおよび部品吸着情報Ica等を含む。部品形状情報Icsは、部品Cのパッケージおよびサイズ(長さ、幅、高さ)を示し、部品吸着情報Icaは、部品実装機8において部品Cを吸着するノズル、部品Cを供給する際の部品Cの荷姿(回転角度)およびノズルにより部品Cを吸着する吸着位置を示す。なお、実装部品情報Imは、完成基板Bcにおいて基板Bに実装される部品Cの部品情報Icに相当し、実装部品情報Imに含まれる部品形状方法Icsは部品ライブラリLcを参照して入力された情報である。 The database 4 stores a component library Lc that indicates component information Ic related to component C mounted on the component mounting machine 8 for each component C. FIG. 2 is a diagram schematically showing an example of a parts library. In the part library Lc, a plurality of parts C of different types are identified by the part ID, and the part information Ic of the part C identified by the part ID is associated with the part C. The component information Ic includes the component shape information Ics of the component C identified by the corresponding component ID, the component adsorption information Ica, and the like. The component shape information Ics indicates the package and size (length, width, height) of the component C, and the component suction information Ica is a nozzle for sucking the component C in the component mounting machine 8 and a component for supplying the component C. The packing shape (rotation angle) of C and the suction position where the component C is sucked by the nozzle are shown. The mounted component information Im corresponds to the component information Ic of the component C mounted on the substrate B in the completed substrate Bc, and the component shape method Ics included in the mounted component information Im is input with reference to the component library Lc. Information.
 図3は外観検査機を模式的に例示するブロック図である。同図では、鉛直方向に平行なZ方向、水平方向に平行なX方向およびY方向で構成されるXYZ直交座標を適宜示す。図3の外観検査機6は、搬送コンベア61、検査ヘッド62および駆動機構63を検査制御部64によって制御することで、基板B(プリント基板)と基板Bに実装された部品C(「実装部品C」と適宜称する)とを有する完成基板Bcの形状を計測する。 FIG. 3 is a block diagram schematically illustrating a visual inspection machine. In the figure, XYZ Cartesian coordinates composed of the Z direction parallel to the vertical direction, the X direction parallel to the horizontal direction, and the Y direction are appropriately shown. The visual inspection machine 6 of FIG. 3 controls the conveyor 61, the inspection head 62, and the drive mechanism 63 by the inspection control unit 64, thereby mounting the substrate B (printed circuit board) and the component C mounted on the substrate B (“mounting component”). The shape of the completed substrate Bc having "C" as appropriate) is measured.
 搬送コンベア61は、完成基板Bcを所定の搬送経路に沿って搬送する。具体的には、搬送コンベア61は、形状計測前の完成基板Bcを外観検査機6内の検査位置に搬入し、完成基板Bcを検査位置で水平に保持する。こうして、部品Cが実装された基板Bの主面(上面)が上方へ向いた状態で、完成基板Bcが固定される。また、検査位置における完成基板Bcの形状計測が終了すると、搬送コンベア61は、形状計測後の完成基板Bcを外観検査機6の外へ搬出する。 The transport conveyor 61 transports the completed substrate Bc along a predetermined transport path. Specifically, the conveyor 61 carries the completed substrate Bc before shape measurement to the inspection position in the visual inspection machine 6 and holds the completed substrate Bc horizontally at the inspection position. In this way, the completed substrate Bc is fixed in a state where the main surface (upper surface) of the substrate B on which the component C is mounted faces upward. Further, when the shape measurement of the completed substrate Bc at the inspection position is completed, the conveyor 61 carries out the completed substrate Bc after the shape measurement to the outside of the visual inspection machine 6.
 検査ヘッド62は、撮像視野V内を上方から撮像する撮像カメラ621を有しており、検査位置に搬入された完成基板Bcの一部を撮像視野Vに収めて撮像カメラ621によって撮像する。さらに、検査ヘッド62は、光強度分布が正弦波状に変化する縞状のパターン光を撮像視野Vに投影するプロジェクター624を有する。プロジェクター624は、LED(Light Emitting Diode)等の光源と、光源からの光を撮像視野Vへ向けて反射するデジタル・マイクロミラー・デバイスとを有している。かかるプロジェクター624は、デジタル・マイクロミラー・デバイスの各マイクロミラーの角度を調整することで、互いに位相の異なる複数のパターン光を撮像視野Vに投影できる。つまり、検査ヘッド62は、プロジェクター624から投影するパターン光の位相を変化させながら撮像カメラ621により撮像を行って、位相シフト法によって撮像視野V内の完成基板Bcの三次元画像を取得することで、三次元形状を計測することができる。 The inspection head 62 has an imaging camera 621 that images the inside of the imaging field of view V from above, and a part of the completed substrate Bc carried into the inspection position is stored in the imaging field of view V and imaged by the imaging camera 621. Further, the inspection head 62 has a projector 624 that projects a striped pattern light whose light intensity distribution changes in a sinusoidal manner onto an imaging field of view V. The projector 624 has a light source such as an LED (Light Emitting Diode) and a digital micromirror device that reflects the light from the light source toward the imaging field V. By adjusting the angle of each micromirror of the digital micromirror device, the projector 624 can project a plurality of pattern lights having different phases to the imaging field of view V. That is, the inspection head 62 takes an image with the imaging camera 621 while changing the phase of the pattern light projected from the projector 624, and acquires a three-dimensional image of the completed substrate Bc in the imaging field of view V by the phase shift method. , Three-dimensional shape can be measured.
 ちなみに、検査ヘッド62は、8個のプロジェクター624を有している(図3では、図示を簡便化するために2個のプロジェクター624が代表して示されている)。8個のプロジェクター624は、撮像カメラ621の周囲を囲むように配置されており、鉛直方向Zを中心として円周状に等ピッチで並ぶ。そして、各プロジェクター624は、撮像カメラ621の撮像視野Vに対して斜め上方からパターン光を投影する。したがって、複数の方プロジェクター624のうち、部品Cとの位置関係が適切な一のプロジェクター624から、撮像視野Vにパターン光を投影することができる。 By the way, the inspection head 62 has eight projectors 624 (in FIG. 3, two projectors 624 are represented as representatives for simplification of illustration). The eight projectors 624 are arranged so as to surround the periphery of the image pickup camera 621, and are arranged at equal pitches in a circumferential shape centered on the vertical direction Z. Then, each projector 624 projects the pattern light from diagonally above with respect to the imaging field of view V of the imaging camera 621. Therefore, the pattern light can be projected onto the imaging field of view V from one projector 624 having an appropriate positional relationship with the component C among the plurality of projectors 624.
 駆動機構63は、検査ヘッド62を支持しつつ、モーターによって水平方向および鉛直方向へ検査ヘッド62を駆動させる。この駆動機構63の駆動によって、検査ヘッド62は完成基板Bcの上方に移動して、完成基板Bcの一部Bを撮像視野V内に捉えることができ、撮像視野V内の完成基板Bcの三次元形状を計測できる。 The drive mechanism 63 supports the inspection head 62 and drives the inspection head 62 in the horizontal direction and the vertical direction by a motor. By driving the drive mechanism 63, the inspection head 62 moves above the completed substrate Bc, and a part B of the completed substrate Bc can be captured in the imaging field of view V, and the tertiary of the completed substrate Bc in the imaging field of view V can be captured. The original shape can be measured.
 検査制御部64は、CPUで構成されたプロセッサーである演算部641を有しており、演算部641が装置各部の制御を統括することで、検査が実行される。この検査制御部64は、プロジェクター624を制御する投影制御部642、撮像カメラ621を制御する撮像制御部643、駆動機構63を制御する駆動制御部644、HDD等で構成された記憶部645および制御装置2の通信部24と通信を行う通信部646を有する。 The inspection control unit 64 has a calculation unit 641 which is a processor composed of a CPU, and the calculation unit 641 controls the control of each unit of the device to execute the inspection. The inspection control unit 64 includes a projection control unit 642 that controls the projector 624, an image pickup control unit 643 that controls the image pickup camera 621, a drive control unit 644 that controls the drive mechanism 63, a storage unit 645 composed of an HDD and the like, and control. It has a communication unit 646 that communicates with the communication unit 24 of the device 2.
 搬送コンベア61が検査位置に完成基板Bcを搬入すると、演算部641は、駆動制御部644により駆動機構63を制御して、完成基板Bcの上方へ検査ヘッド62を移動させる。これによって、撮像カメラ621の撮像視野V内に完成基板Bcの一部が収まる。 続いて、演算部641は、プロジェクター624から完成基板Bcの一部Bを含む撮像視野Vへパターン光を投影しつつ撮像視野Vに投影されたパターン光を撮像カメラ621により撮像する(パターン撮像動作)。演算部641は、パターン光の位相を変更しつつパターン撮像動作を繰り返すことで、位相シフト法により撮像視野Vの三次元形状を計測する。かかる形状計測は、撮像視野Vを変更しながら完成基板Bcの全体に対して実行される。こうして、完成基板Bcの三次元形状を計測した結果が三次元計測結果Rとして記憶部645に記憶される。 When the conveyor 61 carries the completed substrate Bc to the inspection position, the calculation unit 641 controls the drive mechanism 63 by the drive control unit 644 to move the inspection head 62 above the completed substrate Bc. As a result, a part of the completed substrate Bc fits within the imaging field of view V of the imaging camera 621. Subsequently, the calculation unit 641 captures the pattern light projected on the imaging field V by the imaging camera 621 while projecting the pattern light from the projector 624 onto the imaging field V including a part B of the completed substrate Bc (pattern imaging operation). ). The calculation unit 641 measures the three-dimensional shape of the imaging field V by the phase shift method by repeating the pattern imaging operation while changing the phase of the pattern light. Such shape measurement is performed on the entire completed substrate Bc while changing the imaging field of view V. In this way, the result of measuring the three-dimensional shape of the completed substrate Bc is stored in the storage unit 645 as the three-dimensional measurement result R.
 図4は部品実装機の一例を模式的に示す平面図である。部品実装機8は、装置全体を統括的に制御する実装制御部81を備える。実装制御部81は、演算部811、記憶部812および通信部813を有する。演算部811は、CPUやRAMで構成されたプロセッサーであり、部品実装機8における演算機能を担う。記憶部812はHDD等で構成され、完成基板Bcを生産するために基板Bに部品Cを実装する手順を示す実装データDm等の各種データを記憶する。通信部813は制御装置2の通信部24と通信を行う。 FIG. 4 is a plan view schematically showing an example of a component mounting machine. The component mounting machine 8 includes a mounting control unit 81 that comprehensively controls the entire device. The mounting control unit 81 includes a calculation unit 811, a storage unit 812, and a communication unit 813. The calculation unit 811 is a processor composed of a CPU and a RAM, and is responsible for a calculation function in the component mounting machine 8. The storage unit 812 is composed of an HDD or the like, and stores various data such as mounting data Dm indicating a procedure for mounting the component C on the board B in order to produce the completed board Bc. The communication unit 813 communicates with the communication unit 24 of the control device 2.
 部品実装機8は、基板BをX方向(基板搬送方向)に搬送する基板搬送部82を備える。この基板搬送部82は、X方向に並列に配置された一対のコンベア821を有し、コンベア821によって基板BをX方向に搬送する。これらコンベア821の間隔は、X方向に直交するY方向(幅方向)に変更可能であり、基板搬送部82は、搬送する基板Bの幅に応じてコンベア821の間隔を調整する。この基板搬送部82は、基板搬送方向であるX方向の上流側から所定の実装作業位置822に基板Bを搬入するとともに、実装作業位置822で部品Cが実装された基板Bを実装作業位置822からX方向の下流側に搬出する。 The component mounting machine 8 includes a board transporting unit 82 that transports the board B in the X direction (board transport direction). The substrate transfer unit 82 has a pair of conveyors 821 arranged in parallel in the X direction, and the substrate B is conveyed in the X direction by the conveyor 821. The distance between the conveyors 821 can be changed in the Y direction (width direction) orthogonal to the X direction, and the substrate transport unit 82 adjusts the distance between the conveyors 821 according to the width of the substrate B to be conveyed. The board transfer unit 82 carries the board B to a predetermined mounting work position 822 from the upstream side in the X direction, which is the board transfer direction, and mounts the board B on which the component C is mounted at the mounting work position 822 at the mounting work position 822. Carry out from to the downstream side in the X direction.
 基板搬送部82のY方向の両側それぞれでは2つの部品供給部83がX方向に並んでおり、各部品供給部83では、複数のテープフィーダー831がX方向に並ぶ。部品供給部83では、X方向に並ぶ複数の部品供給位置832が設けられており、各部品供給位置832に供給すべき部品Cを供給するテープフィーダー831が、各部品供給位置832に対応付けられて着脱可能に装着される。各テープフィーダー831に対しては、集積回路、トランジスター、コンデンサー等の小片状の部品Cを所定間隔おきに収容したキャリアテープが巻き付けられた部品供給リールが配置されており、各テープフィーダー831は部品供給リールから引き出されたキャリアテープを間欠的に送り出すことで、その先端部の部品供給位置832に部品Cを供給する。 Two component supply units 83 are arranged in the X direction on both sides of the board transfer unit 82 in the Y direction, and a plurality of tape feeders 831 are arranged in the X direction in each component supply unit 83. The component supply unit 83 is provided with a plurality of component supply positions 832 arranged in the X direction, and a tape feeder 831 for supplying the component C to be supplied to each component supply position 832 is associated with each component supply position 832. It is attached detachably. For each tape feeder 831, a component supply reel around which a carrier tape containing small pieces C such as integrated circuits, transistors, capacitors, etc. is housed at predetermined intervals is arranged, and each tape feeder 831 has. By intermittently feeding out the carrier tape drawn from the component supply reel, the component C is supplied to the component supply position 832 at the tip thereof.
 また、部品実装機8では、Y方向に延設された一対のY軸レール841と、Y方向に延設されたY軸ボールネジ842と、Y軸ボールネジ842を回転駆動するY軸モーター843とが設けられている。そして、X方向に延設されたX軸ビーム844が一対のY軸レール841にY方向に移動可能に支持された状態で、Y軸ボールネジ842のナットに固定されている。X軸ビーム844には、X方向に延設されたX軸ボールネジ845と、X軸ボールネジ845を回転駆動するX軸モーター846とが取り付けられており、ヘッドユニット85がX軸ビーム844にX方向に移動可能に支持された状態でX軸ボールネジ845のナットに固定されている。したがって、実装制御部81は、Y軸モーター843によりY軸ボールネジ842を回転させてヘッドユニット85をY方向に移動させたり、X軸モーター846によりX軸ボールネジ845を回転させてヘッドユニット85をX方向に移動させたりすることができる。 Further, in the component mounting machine 8, a pair of Y-axis rails 841 extending in the Y direction, a Y-axis ball screw 842 extending in the Y direction, and a Y-axis motor 843 that rotationally drives the Y-axis ball screw 842 are used. It is provided. Then, the X-axis beam 844 extending in the X direction is fixed to the nut of the Y-axis ball screw 842 in a state of being movably supported by the pair of Y-axis rails 841 in the Y direction. An X-axis ball screw 845 extending in the X direction and an X-axis motor 846 for rotationally driving the X-axis ball screw 845 are attached to the X-axis beam 844, and the head unit 85 is attached to the X-axis beam 844 in the X direction. It is fixed to the nut of the X-axis ball screw 845 in a state where it is movably supported. Therefore, the mounting control unit 81 rotates the Y-axis ball screw 842 by the Y-axis motor 843 to move the head unit 85 in the Y direction, or rotates the X-axis ball screw 845 by the X-axis motor 846 to rotate the head unit 85 to X. It can be moved in a direction.
 ヘッドユニット85は、X方向に直線状に並ぶ複数の実装ヘッド851を有する。各実装ヘッド851は、互いに独立してZ方向およびR方向へ可動である。ここで、R方向はZ方向に平行な回転軸を中心に回転する方向である。したがって、実装制御部81は、Z軸モーター(不図示)により実装ヘッド851をZ方向に昇降させたり、R軸モーター(不図示)により実装ヘッド851をR方向に回転させたりすることができる。また、ヘッドユニット85には、下方を撮像する認識カメラ86が取り付けられており、認識カメラ86は、ヘッドユニット85に伴って移動する。 The head unit 85 has a plurality of mounting heads 851 arranged linearly in the X direction. Each mounting head 851 is movable in the Z direction and the R direction independently of each other. Here, the R direction is a direction of rotation about a rotation axis parallel to the Z direction. Therefore, the mounting control unit 81 can raise and lower the mounting head 851 in the Z direction by the Z-axis motor (not shown), and can rotate the mounting head 851 in the R direction by the R-axis motor (not shown). Further, a recognition camera 86 that captures an image of the lower side is attached to the head unit 85, and the recognition camera 86 moves with the head unit 85.
 ヘッドユニット85が有する各実装ヘッド851は、その下端に取り付けられたノズルNにより、基板Bへの部品Cの実装を行う。つまり、実装ヘッド851は、その下端のノズルNを部品供給位置832の上方に位置させつつノズルNを下降させることで、テープフィーダー831が部品供給位置832に供給する部品CにノズルNを当接させる。そして、実装ヘッド851は、ノズルN内に負圧を与えてノズルNにより部品Cを吸着すると、ノズルNを上昇させる。実装ヘッド851は、こうして部品供給位置832からピックアップした部品CをノズルNによって吸着・保持しつつ、実装作業位置822の基板Bの上方へ移動する。そして、実装ヘッド851は、ノズルNを下降させて部品Cを基板Bに接触させると、ノズルNの負圧を解除して、部品Cを基板Bに載置する。このように、部品実装機8では、 部品Cを供給する部品供給部83と実装作業位置822との間を移動する実装ヘッド851を用いて、部品供給部83からピックアップした部品Cを実装作業位置822の基板Bに移載する部品実装が実行される。なお、この部品実装は、実装制御部81の制御に基づき、実装データDmに規定された手順で実行される。 Each mounting head 851 of the head unit 85 mounts the component C on the substrate B by the nozzle N attached to the lower end thereof. That is, the mounting head 851 abuts the nozzle N on the component C supplied by the tape feeder 831 to the component supply position 832 by lowering the nozzle N while positioning the nozzle N at the lower end thereof above the component supply position 832. Let me. Then, when the mounting head 851 applies a negative pressure to the nozzle N and attracts the component C by the nozzle N, the nozzle N is raised. The mounting head 851 moves above the substrate B at the mounting work position 822 while attracting and holding the component C picked up from the component supply position 832 by the nozzle N. Then, when the mounting head 851 lowers the nozzle N and brings the component C into contact with the substrate B, the negative pressure of the nozzle N is released and the component C is placed on the substrate B. In this way, in the component mounting machine 8, the component C picked up from the component supply unit 83 is mounted at the mounting work position by using the mounting head 851 that moves between the component supply unit 83 that supplies the component C and the mounting work position 822. The component mounting to be transferred to the board B of 822 is executed. Note that this component mounting is executed according to the procedure specified in the mounting data Dm based on the control of the mounting control unit 81.
 こうして部品実装機8で参照される実装データDmの作成には、完成基板Bcの生産のために基板Bに実装する部品Cに関する部品情報Icが必要となる。そこで、基板生産システム1は、外観検査機6で計測した完成基板Bcの三次元形状(三次元計測結果R)に基づき、制御装置2が部品情報Icを求めることで、実装データDmの作成を支援する。 In order to create the mounting data Dm referred to by the component mounting machine 8 in this way, the component information Ic related to the component C to be mounted on the substrate B for the production of the completed substrate Bc is required. Therefore, in the substrate production system 1, the control device 2 obtains the component information Ic based on the three-dimensional shape (three-dimensional measurement result R) of the completed substrate Bc measured by the visual inspection machine 6, thereby creating the mounting data Dm. Assist.
 図5は実装データ作成支援方法の一例を示すフローチャートである。このフローチャートのうち、ステップS101~S102は外観検査機6により実行され、ステップS103~S114は制御装置2の演算部21により実行され、ステップS115は部品実装機8により実行される。 FIG. 5 is a flowchart showing an example of the implementation data creation support method. In this flowchart, steps S101 to S102 are executed by the visual inspection machine 6, steps S103 to S114 are executed by the calculation unit 21 of the control device 2, and steps S115 are executed by the component mounting machine 8.
 ステップS101では、上述した要領で、外観検査機6が完成基板Bcの三次元形状を計測することで、三次元計測結果Rを取得する。この三次元計測結果Rは外観検査機6から制御装置2に転送される(ステップS102)。制御装置2では、通信部24が外観検査機6から三次元計測結果Rを取得すると、記憶部22が三次元計測結果Rを保存するとともに、演算部21が完成基板Bcに含まれる部品Cに関する実装部品情報Imをこの三次元計測結果Rから抽出する(ステップS103)。 In step S101, the visual inspection machine 6 measures the three-dimensional shape of the completed substrate Bc in the same manner as described above, thereby acquiring the three-dimensional measurement result R. The three-dimensional measurement result R is transferred from the visual inspection machine 6 to the control device 2 (step S102). In the control device 2, when the communication unit 24 acquires the three-dimensional measurement result R from the appearance inspection machine 6, the storage unit 22 stores the three-dimensional measurement result R, and the calculation unit 21 relates to the component C included in the completed board Bc. The mounted component information Im is extracted from the three-dimensional measurement result R (step S103).
 図6は実装部品情報の抽出方法の一例を示すフローチャートであり、図7は図6のフローチャートにより抽出される情報の具体例を模式的に示す斜視図である。図6のフローチャートは、制御装置2の演算部21により実行される。ステップS201では、完成基板Bcの高さ情報が完成基板Bcの三次元計測結果Rから取得される。この完成基板Bcの高さ情報は、基板Bの上面Buと、当該上面Buに実装された部品Cとで構成された凹凸形状の表面の高さを示す。ここで基板Bの上面Buとは、基板Bの両主面のうち、外観検査機6での形状計測の際に上方を向いていた主面である。 FIG. 6 is a flowchart showing an example of a method for extracting mounted component information, and FIG. 7 is a perspective view schematically showing a specific example of the information extracted by the flowchart of FIG. The flowchart of FIG. 6 is executed by the calculation unit 21 of the control device 2. In step S201, the height information of the completed substrate Bc is acquired from the three-dimensional measurement result R of the completed substrate Bc. The height information of the completed substrate Bc indicates the height of the uneven surface formed by the upper surface Bu of the substrate B and the component C mounted on the upper surface Bu. Here, the upper surface Bu of the substrate B is the main surface of both main surfaces of the substrate B that faces upward when the shape is measured by the visual inspection machine 6.
 ステップS202では、完成基板Bcのうちの基板Bの上面Bu(すなわち、部品Cが存在しない、最も高さの低い平面)の高さが、完成基板Bcの高さ情報に基づき推定される(ステップS202)。そして、基板Bの上面Buより高い部分(換言すれば、基板Bの上面Buから上方へ突出した突出部分)が部品Cとして抽出される(ステップS203)。このステップS203での部品Cの抽出結果に基づき、当該部品Cのパッケージの種類、幅Cw、長さClおよび高さChを少なくとも示す部品形状情報Icsが取得される(ステップS204)。 In step S202, the height of the upper surface Bu (that is, the lowest plane in which the component C does not exist) of the substrate B among the completed substrates Bc is estimated based on the height information of the completed substrate Bc (step). S202). Then, a portion higher than the upper surface Bu of the substrate B (in other words, a protruding portion protruding upward from the upper surface Bu of the substrate B) is extracted as the component C (step S203). Based on the extraction result of the component C in step S203, the component shape information Ics indicating at least the package type, width Cw, length Cl, and height Ch of the component C is acquired (step S204).
 この部品形状情報Icsは、完成基板Bcに含まれる全部品Cについて取得され、実装部品情報Imとして記憶部22に記憶される。そして、続くステップS104~S113は、当該全部品Cのそれぞれについて実行される。ただし、その内容は各部品Cで同様であるので、1個の部品Cについて説明を行うこととする。 The component shape information Ics is acquired for all the components C included in the completed board Bc, and is stored in the storage unit 22 as the mounted component information Im. Then, the following steps S104 to S113 are executed for each of all the parts C. However, since the contents are the same for each component C, one component C will be described.
 図5のフローチャートに示すように、実装部品情報Imの抽出が完了すると(ステップS103)、部品の特定が実行される(ステップS104)。図8は部品の特定方法の一例を示すフローチャートである。図8のフローチャートは、制御装置2の演算部21により実行される。ステップS301では、記憶部22に記憶された実装部品情報Imに含まれる部品形状情報Icsが読み出される。ステップS302では、実装部品情報Imに含まれる部品形状情報Icsと、部品ライブラリLcに登録されている部品形状情報Icsとが照合される。そして、実装部品情報Imに含まれる部品形状情報Icsと所定関係(例えば、サイズの差が所定値未満となる関係)を満たす部品形状情報Icsに対応する部品IDの部品C(候補部品)が候補として選定される(ステップS303)。 As shown in the flowchart of FIG. 5, when the extraction of the mounted component information Im is completed (step S103), the component identification is executed (step S104). FIG. 8 is a flowchart showing an example of a method for identifying parts. The flowchart of FIG. 8 is executed by the calculation unit 21 of the control device 2. In step S301, the component shape information Ics included in the mounted component information Im stored in the storage unit 22 is read out. In step S302, the component shape information Ics included in the mounted component information Im and the component shape information Ics registered in the component library Lc are collated. Then, the component C (candidate component) of the component ID corresponding to the component shape information Ics that satisfies the predetermined relationship (for example, the relationship that the size difference is less than the predetermined value) with the component shape information Ics included in the mounted component information Im is a candidate. Is selected as (step S303).
 図5のステップS105では、選定された候補部品Cの個数が判断される。候補部品Cの個数が1個である場合には、ステップS106~S108を省略して、ステップS109に進み、候補部品Cの個数がゼロ個である場合には、ステップS106~S107を省略してステップS108に進み、候補部品Cの個数が複数である場合には、ステップS106に進む。 In step S105 of FIG. 5, the number of selected candidate parts C is determined. If the number of candidate parts C is one, steps S106 to S108 are omitted, and the process proceeds to step S109. If the number of candidate parts C is zero, steps S106 to S107 are omitted. The process proceeds to step S108, and if the number of candidate parts C is a plurality, the process proceeds to step S106.
 ステップS106では、部品形状情報Icsに含まれない、部品Cの特徴を示す部品特徴情報が取得される。この部品特徴情報は、部品Cに記載された文字、部品Cの色あるいは部品Cの実装位置に近接して基板Bに記載されるシルクの文字等を含み、部品IDに関連付けて部品ライブラリLcに予め登録されている。これに対して、ステップS106では、完成基板Bcに含まれる部品Cに関する部品特徴情報が三次元計測に用いた画像情報(上記の三次元画像)から抽出される。なお、部品Cの二次元画像が取得されているような場合には、部品特徴情報を、この二次元画像から抽出してもよい。 In step S106, component feature information indicating the features of component C, which is not included in the component shape information Ics, is acquired. This component feature information includes the characters described in the component C, the color of the component C, the silk characters described on the substrate B in close proximity to the mounting position of the component C, and the like, and is associated with the component ID in the component library Lc. It is registered in advance. On the other hand, in step S106, the component feature information regarding the component C included in the completed substrate Bc is extracted from the image information (the above three-dimensional image) used for the three-dimensional measurement. If a two-dimensional image of the component C has been acquired, component feature information may be extracted from the two-dimensional image.
 ステップS107では、部品ライブラリLcで複数の候補部品Cに関連付けられた部品特徴情報のうち、三次元計測結果Rから抽出された部品特徴情報に一致する部品特徴情報が探索される。そして、該当する部品特徴情報が存在した場合には、これに関連付けられた部品IDの部品Cが、完成基板Bcに含まれる部品Cであると確定して(ステップS107で「YES」)、ステップS109に進む。 In step S107, among the component feature information associated with the plurality of candidate components C in the component library Lc, the component feature information that matches the component feature information extracted from the three-dimensional measurement result R is searched for. Then, when the corresponding component feature information exists, it is determined that the component C of the component ID associated with the component C is the component C included in the completed board Bc (“YES” in step S107), and the step Proceed to S109.
 一方、該当する部品特徴情報が存在しない場合(ステップS107で「NO」の場合)や、ステップS105で候補部品Cの個数がゼロと判断された場合には、ステップS108が実行される。このステップS108では、ステップS103で抽出された実装部品情報Imが示す部品形状情報Icsに基づき、部品情報Icが新たに作成される。こうして作成された部品情報Icが対象の完成基板Bcの実装部品情報Imに追加される。 On the other hand, if the corresponding component feature information does not exist ("NO" in step S107), or if the number of candidate components C is determined to be zero in step S105, step S108 is executed. In this step S108, the component information Ic is newly created based on the component shape information Ics indicated by the mounted component information Im extracted in step S103. The component information Ic thus created is added to the mounting component information Im of the target completed board Bc.
 ステップS109では、完成基板Bcに含まれる部品Cの部品情報Icが決定される。具体的には、ステップS105で候補部品Cの個数が1個と判断された場合には、当該候補部品Cの部品IDに関連付けられた部品情報Icが、完成基板Bcに含まれる部品Cの部品情報Icであると決定される。ステップS107で「YES」と判断された場合には、このステップS107で確定された候補部品Cの部品IDに関連付けられた部品情報Icが、完成基板Bcに含まれる部品Cの部品情報Icであると決定される。また、ステップS108が実行された場合には、ステップS108で部品ライブラリLcに新規登録された部品情報Icが、完成基板Bcに含まれる部品Cの部品情報Icであると決定される。 In step S109, the component information Ic of the component C included in the completed substrate Bc is determined. Specifically, when it is determined in step S105 that the number of candidate parts C is one, the part information Ic associated with the part ID of the candidate part C is included in the completed board Bc. It is determined to be information Ic. If "YES" is determined in step S107, the component information Ic associated with the component ID of the candidate component C determined in step S107 is the component information Ic of the component C included in the completed board Bc. Is decided. Further, when step S108 is executed, it is determined that the component information Ic newly registered in the component library Lc in step S108 is the component information Ic of the component C included in the completed board Bc.
 ステップS110では、ステップS109で部品情報Icが決定された部品Cの実装位置が、三次元計測結果Rに基づき特定される。具体的には、上述と同じ要領で、基板Bから突出した突出部分が三次元計測結果Rから抽出され、この突出部分の位置が実装位置であると特定される。さらに、ステップS111では、部品情報Icが決定された部品Cの実装角度および極性の向きが三次元計測結果Rに基づき特定される。ここで、実装角度は、基板Bの法線(換言すればZ方向)に平行な仮想直線を中心とする回転方向における、基板Bに実装される部品Cの角度である。 In step S110, the mounting position of the component C whose component information Ic is determined in step S109 is specified based on the three-dimensional measurement result R. Specifically, in the same manner as described above, the protruding portion protruding from the substrate B is extracted from the three-dimensional measurement result R, and the position of the protruding portion is specified as the mounting position. Further, in step S111, the mounting angle and the direction of the polarity of the component C for which the component information Ic has been determined are specified based on the three-dimensional measurement result R. Here, the mounting angle is the angle of the component C mounted on the board B in the rotation direction centered on the virtual straight line parallel to the normal line of the board B (in other words, the Z direction).
 ステップS112では、ステップS109で部品情報Icが決定された部品Cの部品吸着情報Icaが部品ライブラリLcに存在するかが判断される。該当の部品吸着情報Icaが存在する場合(ステップS112で「YES」の場合)には、ステップS113を省略して、ステップS114に進む。一方、該当の部品吸着情報Icaが存在しない場合(ステップS112「NO」の場合)には、ステップS113を実行してから、ステップS114に進む。 In step S112, it is determined whether or not the component adsorption information Ica of the component C whose component information Ic is determined in step S109 exists in the component library Lc. If the corresponding component adsorption information Ica exists (when “YES” in step S112), step S113 is omitted and the process proceeds to step S114. On the other hand, when the corresponding component adsorption information Ica does not exist (in the case of step S112 “NO”), step S113 is executed and then the process proceeds to step S114.
 ステップS113では、部品情報Icが決定された部品Cの部品吸着情報Icaが算出される。図9は部品吸着情報の算出方法の一例を示すフローチャートであり、図10は部品吸着情報の算出で考慮されるノズルと部品の位置関係の一例を示す図である。図9のフローチャートは、制御装置2の演算部21により実行される。 In step S113, the component adsorption information Ica of the component C for which the component information Ic has been determined is calculated. FIG. 9 is a flowchart showing an example of a method of calculating the component suction information, and FIG. 10 is a diagram showing an example of the positional relationship between the nozzle and the component considered in the calculation of the component suction information. The flowchart of FIG. 9 is executed by the calculation unit 21 of the control device 2.
 ステップS401では、三次元計測結果Rが読み出されて、ステップS402では、三次元計測結果Rのうちから該当部品Cの上面Cuが抽出される。部品Cの上面Cuは、部品Cにおける基板Bの上面Buからの高さが均一な平面の存在範囲を特定することで、抽出される。図10に示すように、部品Cが段差を有する場合には、高さの異なる複数の上面Cuが抽出される。 In step S401, the three-dimensional measurement result R is read out, and in step S402, the upper surface Cu of the corresponding component C is extracted from the three-dimensional measurement result R. The upper surface Cu of the component C is extracted by specifying the existence range of a plane having a uniform height from the upper surface Bu of the substrate B in the component C. As shown in FIG. 10, when the component C has a step, a plurality of upper surface Cu having different heights are extracted.
 ステップS403では、種類の異なる複数のノズルNのうち、最大のノズル孔を有するノズルNで部品Cを吸着すると仮に決定する。ステップS404では、このノズルNによる部品Cの吸着位置が、上面Cu内から探索される。この際、ノズルNの吸着孔と上面Cuとの位置関係や、ノズルNのフランジNfと部品Cの段差等との干渉等を確認して、条件に合う吸着位置が探索される。 In step S403, it is tentatively determined that the component C is adsorbed by the nozzle N having the largest nozzle hole among the plurality of nozzles N of different types. In step S404, the suction position of the component C by the nozzle N is searched from inside the upper surface Cu. At this time, the positional relationship between the suction hole of the nozzle N and the upper surface Cu, the interference between the flange Nf of the nozzle N and the step of the component C, and the like are confirmed, and the suction position that meets the conditions is searched for.
 ステップS405では、ステップS404で探索された吸着位置が適正かが判断される。例えば、ノズルNと部品Cとの干渉が生じない吸着位置が探索できなかったり、吸着位置が部品Cの中心から所定距離以上離れていたりする場合には、ステップS405で不適正(NO)と判断されて、ステップS403に戻る。そして、部品Cを吸着するノズルNを、より小さいノズル孔を有するノズルNに変更して、ステップS404~S405を繰り返す。こうして、ステップS405で「YES」と判断されると、ステップS403、S404が実行されることで、部品Cを吸着するノズルNおよび当該ノズルNによる部品Cの吸着位置が決定される。さらに、部品Cを吸着するノズルNを、より小さいノズル孔を有するノズルNが存在する場合、ノズルNを変更してステップS404~S405を繰り返し、吸着可能な複数のノズルNを抽出する。ノズルNの選定方法は、吸着可能として抽出したノズルNのうち、吸着が安定する最もノズル孔の大きいノズルNを選定しても良いし、他の部品Cの吸着に用いるノズルNとのバランスを考慮し、ノズルNの交換回数を少なくする等タイムロスを抑えるようにノズルNを選定しても良い。なお、部品供給位置832に供給される部品Cの荷姿については、三次元計測結果Rから決定できないため、仮に決定される。こうして、部品吸着情報Icaが算出される。 In step S405, it is determined whether the suction position searched in step S404 is appropriate. For example, if it is not possible to search for a suction position where interference between the nozzle N and the component C does not occur, or if the suction position is separated from the center of the component C by a predetermined distance or more, it is determined to be inappropriate (NO) in step S405. Then, the process returns to step S403. Then, the nozzle N for sucking the component C is changed to a nozzle N having a smaller nozzle hole, and steps S404 to S405 are repeated. In this way, if "YES" is determined in step S405, steps S403 and S404 are executed to determine the nozzle N for sucking the component C and the suction position of the component C by the nozzle N. Further, if there is a nozzle N having a smaller nozzle hole for the nozzle N that sucks the component C, the nozzle N is changed and steps S404 to S405 are repeated to extract a plurality of nozzles N that can be sucked. As a method for selecting the nozzle N, the nozzle N having the largest nozzle hole for which the suction is stable may be selected from the nozzles N extracted so that the suction is possible, or the balance with the nozzle N used for suction of the other component C is balanced. In consideration, the nozzle N may be selected so as to suppress the time loss such as reducing the number of times the nozzle N is replaced. The packing style of the component C supplied to the component supply position 832 cannot be determined from the three-dimensional measurement result R, so it is tentatively determined. In this way, the component adsorption information Ica is calculated.
 図5のステップS114では、完成基板Bcの生産に要する複数の部品Cを基板Bに実装する順序が算出される。具体的には、複数の部品Cの基板Bへの実装順序を変更しつつ、複数の部品Cの実装を完了するのに要する時間、すなわち完成基板Bcの生産時間が予測される。そして、生産時間が最短となる実装順序が算出される。 In step S114 of FIG. 5, the order of mounting the plurality of components C required for the production of the completed substrate Bc on the substrate B is calculated. Specifically, the time required to complete the mounting of the plurality of components C while changing the mounting order of the plurality of components C on the substrate B, that is, the production time of the completed substrate Bc is predicted. Then, the mounting order that minimizes the production time is calculated.
 ただし、実装順序は、図11に例示するノズルNと部品Cとの干渉が生じない範囲で求められる。図11は実装順序の算出で考慮されるノズルと部品との位置関係の一例を示す図である。図11では、高さの異なる2個の部品C1、C2が隣接して実装される例が示されており、部品C2を基板Bに実装した後に、部品C2より低い部品C1を実装する順序が示されている。この順序では、部品C1を吸着するノズルNのフランジNfが、基板Bに実装済みの部品C2に干渉する。したがって、実装済みの部品CとノズルNとの干渉を防止するためには、部品C1を実装した後に、部品C2を実装する必要がある。かかる干渉の有無は、部品C1、C2それぞれの実装位置と、実装部品情報Imの部品形状情報Icsに含まれる部品C1、C2それぞれの高さとに基づき判断することができる。そして、実装済みの部品CとノズルNとの干渉が生じない実装順序のうちから、生産時間が最短となる実装順序が求められる。 However, the mounting order is determined within a range in which the nozzle N illustrated in FIG. 11 and the component C do not interfere with each other. FIG. 11 is a diagram showing an example of the positional relationship between the nozzle and the component considered in the calculation of the mounting order. FIG. 11 shows an example in which two parts C1 and C2 having different heights are mounted adjacent to each other, and the order in which the parts C1 lower than the parts C2 are mounted after the parts C2 are mounted on the board B is shown. It is shown. In this order, the flange Nf of the nozzle N that attracts the component C1 interferes with the component C2 mounted on the substrate B. Therefore, in order to prevent interference between the mounted component C and the nozzle N, it is necessary to mount the component C2 after mounting the component C1. The presence or absence of such interference can be determined based on the mounting positions of the parts C1 and C2 and the heights of the parts C1 and C2 included in the part shape information Ics of the mounted part information Im. Then, from the mounting order in which the mounted component C and the nozzle N do not interfere with each other, the mounting order in which the production time is the shortest is required.
 こうして実装順序が算出されると、完成基板Bcの生産のために基板Bに実装する複数の部品Cそれぞれの部品情報Ic、実装位置、実装角度および極性や、複数の部品Cの実装順序を示す実装データDmが作成され、制御装置2から部品実装機8に転送される。そして、部品実装機8は、実装データDmに基づき基板Bへの部品Cの実装を開始する。 When the mounting order is calculated in this way, the component information Ic, mounting position, mounting angle and polarity of each of the plurality of components C to be mounted on the board B for the production of the completed board Bc, and the mounting order of the plurality of components C are shown. The mounting data Dm is created and transferred from the control device 2 to the component mounting machine 8. Then, the component mounting machine 8 starts mounting the component C on the board B based on the mounting data Dm.
 特に、部品実装機8の実装制御部81は、最初に部品Cを基板Bに実装する前に(つまり、部品実装の開始前に)、部品Cの荷姿の確認と修正を実行する(ステップS115)。図12は荷姿の確認・修正方法の一例を示すフローチャートである。図12のフローチャートは、部品実装機8の実装制御部81により実行される。 In particular, the mounting control unit 81 of the component mounting machine 8 executes confirmation and correction of the packing shape of the component C before first mounting the component C on the substrate B (that is, before the start of component mounting) (step). S115). FIG. 12 is a flowchart showing an example of a method of checking / correcting the packing style. The flowchart of FIG. 12 is executed by the mounting control unit 81 of the component mounting machine 8.
 ステップS501では、実装データDmにおいて参照される部品情報Icが読み出される。ステップS502では、部品供給位置832に供給された部品Cの上方に認識カメラ86を移動させて、部品Cを認識カメラ86で撮像した画像に基づき、部品Cの荷姿が確認される。ここで、部品Cの荷姿とは、基板Bの法線(換言すればZ方向)に平行な仮想直線を中心とする回転方向における、部品供給位置832での部品Cの角度である。そして、実装制御部81は、テープフィーダー831により部品供給位置832に供給された部品Cの角度が、実装データDmが示す部品供給位置832での部品Cの角度と一致するかを判断することで、実装データDmの適否を判定する(ステップS503)。これらが一致せず、実装データDmが不適切である場合(ステップS503で「NO」の場合)には、実装制御部81は、実装データDmを修正することで、これらを一致させる。 In step S501, the component information Ic referred to in the mounting data Dm is read out. In step S502, the recognition camera 86 is moved above the component C supplied to the component supply position 832, and the packing shape of the component C is confirmed based on the image of the component C captured by the recognition camera 86. Here, the packing shape of the component C is the angle of the component C at the component supply position 832 in the rotation direction centered on the virtual straight line parallel to the normal line of the substrate B (in other words, the Z direction). Then, the mounting control unit 81 determines whether the angle of the component C supplied to the component supply position 832 by the tape feeder 831 matches the angle of the component C at the component supply position 832 indicated by the mounting data Dm. , The suitability of the mounting data Dm is determined (step S503). When these do not match and the mounting data Dm is inappropriate (when “NO” in step S503), the mounting control unit 81 corrects the mounting data Dm to match them.
 このように、以上に説明した実施形態では、基板Bと基板Bに実装された部品C(実装部品C)とを有する完成基板Bcの形状の計測結果である三次元計測結果Rに基づき、当該実装部品Cの形状を示す部品形状情報Icsが求められる(ステップS103)。この際、三次元計測結果Rは、完成基板Bcの三次元形状を示す三次元データである。そして、基板Bからの部品Cの高さをこの三次元データに基づき求めることで、この部品Cの高さを含む部品形状情報Icsが求められる。これによって、基板Bに実装された部品Cの高さの取得に要する作業者の負担を軽減して、実装データDmの作成を支援することが可能となっている。 As described above, in the embodiment described above, the present invention is based on the three-dimensional measurement result R which is the measurement result of the shape of the completed substrate Bc having the substrate B and the component C (mounted component C) mounted on the substrate B. The component shape information Ics indicating the shape of the mounted component C is obtained (step S103). At this time, the three-dimensional measurement result R is three-dimensional data indicating the three-dimensional shape of the completed substrate Bc. Then, by obtaining the height of the component C from the substrate B based on the three-dimensional data, the component shape information Ics including the height of the component C can be obtained. As a result, it is possible to reduce the burden on the operator required to acquire the height of the component C mounted on the board B and support the creation of the mounting data Dm.
 また、演算部21は、三次元計測結果R(三次元データ)に基づき求めた部品形状情報Icsが示す実装部品Cの形状を参照して実装部品Cの種類(部品ID)を推定する(ステップS104)。かかる構成では、三次元計測結果Rに基づき、基板Bに実装された部部品Cの種類を的確に推定することができる。 Further, the calculation unit 21 estimates the type (part ID) of the mounted component C by referring to the shape of the mounted component C indicated by the component shape information Ics obtained based on the three-dimensional measurement result R (three-dimensional data) (step). S104). In such a configuration, the type of the component C mounted on the substrate B can be accurately estimated based on the three-dimensional measurement result R.
 また、演算部21は、種類の異なる複数の登録部品C(部品IDで識別される部品C)の形状が登録部品Cごとに登録された部品ライブラリLcのうちから、部品形状情報Icsが示す実装部品Cの形状に類似する形状を有する登録部品Cを候補部品Cとして探索した結果に基づき、当該実装部品Cの種類を推定する(ステップS104)。かかる構成では、部品ライブラリLcに基づき、基板Bに実装された部品Cの種類を的確に推定することが可能となる。 Further, the calculation unit 21 mounts the component shape information Ics from the component library Lc in which the shapes of a plurality of registered components C (components C identified by the component IDs) of different types are registered for each registered component C. The type of the mounted component C is estimated based on the result of searching for the registered component C having a shape similar to the shape of the component C as the candidate component C (step S104). In such a configuration, it is possible to accurately estimate the type of component C mounted on the substrate B based on the component library Lc.
 また、演算部21は、部品ライブラリLcのうちから候補部品Cを探索できない場合(ステップS105で、候補部品Cの個数がゼロの場合)には、部品形状情報Icsが示す実装部品Cの形状を当該実装部品Cと関連付けて実装部品情報Imに追加する(ステップS108)。かかる構成では、部品ライブラリLcに無い実装部品Cが完成基板Bcに含まれる場合には、この実装部品Cを実装部品情報Imに追加することができる。 Further, when the calculation unit 21 cannot search for the candidate component C from the component library Lc (when the number of candidate components C is zero in step S105), the calculation unit 21 determines the shape of the mounting component C indicated by the component shape information Ics. It is added to the mounted component information Im in association with the mounted component C (step S108). In such a configuration, when the mounted component C not included in the component library Lc is included in the completed board Bc, this mounted component C can be added to the mounted component information Im.
 また、演算部21は、複数の候補部品Cが探索された場合(ステップS105で、候補部品Cの個数が複数の場合)には、実装部品Cの形状以外に実装部品Cの特徴を示す部品特徴情報を三次元計測結果Rから求め(ステップS106)、複数の候補部品Cのうちから部品特徴情報が示す特徴を有する一の候補部品Cを探索した結果に基づき、実装部品Cの種類を推定する(ステップS107)。かかる構成では、基板Bに実装された部品Cの形状以外の特徴に基づき、当該部品Cの種類を的確に推定することが可能となる。 Further, when a plurality of candidate parts C are searched for (when the number of candidate parts C is a plurality in step S105), the calculation unit 21 is a component showing the characteristics of the mounted component C in addition to the shape of the mounted component C. The feature information is obtained from the three-dimensional measurement result R (step S106), and the type of the mounted component C is estimated based on the result of searching for one candidate component C having the feature indicated by the component feature information from the plurality of candidate components C. (Step S107). With such a configuration, it is possible to accurately estimate the type of the component C based on features other than the shape of the component C mounted on the substrate B.
 また、演算部21は、三次元計測結果Rに基づき、基板Bにおいて部品Cが実装された実装位置を特定する(ステップS110)。かかる構成では、基板Bにおける部品Cの実装位置の特定に要する作業者の負担を軽減して、実装データDmの作成を支援することが可能となっている。 Further, the calculation unit 21 specifies the mounting position on which the component C is mounted on the board B based on the three-dimensional measurement result R (step S110). With such a configuration, it is possible to reduce the burden on the operator required to specify the mounting position of the component C on the substrate B and support the creation of the mounting data Dm.
 この際、演算部21は、基板Bから突出した突出部分を三次元計測結果Rから抽出して、突出部分が部品Cである特定するとともに、突出部分の位置が実装位置であると特定する。かかる構成では、三次元計測結果Rに基づき、基板Bにおける部品Cの実装位置を的確に特定することができる。 At this time, the calculation unit 21 extracts the protruding portion protruding from the substrate B from the three-dimensional measurement result R, specifies that the protruding portion is the component C, and specifies that the position of the protruding portion is the mounting position. In such a configuration, the mounting position of the component C on the substrate B can be accurately specified based on the three-dimensional measurement result R.
 特に、完成基板Bcを平面視で撮像した二次元画像から実装部品Cを特定する方法では、コントラストが低いと、基板B上における部品Cの周縁が不明確となって、当該部品Cを的確に特定できない場合がある。これに対して、基板Bからの突出部分を三次元計測結果Rから抽出する方法によれば、基板B上の部品Cを的確に特定できるといった利点がある。 In particular, in the method of identifying the mounting component C from the two-dimensional image obtained by capturing the completed substrate Bc in a plan view, if the contrast is low, the peripheral edge of the component C on the substrate B becomes unclear, and the component C can be accurately identified. It may not be possible to identify. On the other hand, according to the method of extracting the protruding portion from the substrate B from the three-dimensional measurement result R, there is an advantage that the component C on the substrate B can be accurately identified.
 また、実装データDmは、部品CをノズルNにより吸着して基板Bに実装する動作を繰り返して複数の部品Cを基板Bに実装するにあたって、複数の部品Cを実装する順序を示す実装順序を含む。そして、演算部21は、複数の部品Cのうち、一の部品C1を吸着するノズルNと、一の部品C1と異なる基板Bに実装された他の部品C2との干渉の有無を判断した結果に基づき、実装順序を決定する(ステップS114)。具体的には、実装順序を変更しつつ、これらの部品C1、C2それぞれの実装位置と、部品形状情報Icsに含まれるこれらの部品C1、C2それぞれの高さとに基づき、干渉の有無を予測した結果から、実装順序が決定される。かかる構成では、ノズルNにより吸着されて実装位置へ向かう部品Cと、基板Bに既に実装された部品Cとの干渉が生じない実装順序を求めて、この実装順序に従って基板Bに部品Cを適切に実装することができる。 Further, the mounting data Dm indicates a mounting order indicating the order in which the plurality of components C are mounted when the operation of sucking the component C by the nozzle N and mounting the component C on the substrate B is repeated to mount the plurality of components C on the substrate B. Including. Then, the calculation unit 21 determines whether or not there is interference between the nozzle N that attracts one component C1 among the plurality of components C and another component C2 mounted on a substrate B different from the one component C1. The mounting order is determined based on (step S114). Specifically, while changing the mounting order, the presence or absence of interference was predicted based on the mounting positions of these parts C1 and C2 and the heights of these parts C1 and C2 included in the part shape information Ics. From the result, the mounting order is determined. In such a configuration, the mounting order in which the component C attracted by the nozzle N and heading for the mounting position does not interfere with the component C already mounted on the board B is obtained, and the component C is appropriately mounted on the board B according to this mounting order. Can be implemented in.
 また、演算部21は、部品Cの実装角度を三次元計測結果Rから求める(ステップS111)。かかる構成では、部品Cの実装角度の特定に要する作業者の負担を軽減して、実装データDmの作成を支援することが可能となっている。 Further, the calculation unit 21 obtains the mounting angle of the component C from the three-dimensional measurement result R (step S111). With such a configuration, it is possible to reduce the burden on the operator required to specify the mounting angle of the component C and support the creation of the mounting data Dm.
 また、演算部21は、実装部品Cにおける基板Bからの高さが均一な上面Cuの存在範囲を含む部品形状情報Icsを三次元計測結果Rに基づき求める(ステップS203)。かかる構成では、三次元計測結果Rに基づき、実装部品Cの上面Cuを的確に求めることができる。 Further, the calculation unit 21 obtains the component shape information Ics including the existence range of the upper surface Cu having a uniform height from the substrate B in the mounting component C based on the three-dimensional measurement result R (step S203). In such a configuration, the upper surface Cu of the mounting component C can be accurately obtained based on the three-dimensional measurement result R.
 また、演算部21は、部品Cを基板Bに実装するために部品Cを吸着するノズルNの種類を上面Cuの存在範囲に基づき決定する(ステップS113)。かかる構成では、部品Cの上面Cuを吸着するのに適したノズルNの決定に要する作業者の負担を軽減して、実装データDmの作成を支援することが可能となっている。 Further, the calculation unit 21 determines the type of the nozzle N that attracts the component C in order to mount the component C on the substrate B based on the existence range of the upper surface Cu (step S113). With such a configuration, it is possible to reduce the burden on the operator required to determine the nozzle N suitable for adsorbing the upper surface Cu of the component C, and to support the creation of the mounting data Dm.
 また、演算部21は、部品Cを基板Bに実装するために部品CをノズルNにより吸着する吸着位置を上面Cuの存在範囲のうちから決定する(ステップS113)。かかる構成では、ノズルNによる部品Cの吸着位置の決定に要する作業者の負担を軽減して、実装データDmの作成を支援することが可能となっている。 Further, the calculation unit 21 determines the suction position for sucking the component C by the nozzle N in order to mount the component C on the substrate B from the existence range of the upper surface Cu (step S113). With such a configuration, it is possible to reduce the burden on the operator required to determine the suction position of the component C by the nozzle N and support the creation of the mounting data Dm.
 また、実装データDmは、部品供給位置832での部品Cの角度を含む。これに対して、部品実装機8は、テープフィーダー831により部品供給位置832に供給される部品Cの角度を認識した結果が、実装データDmに含まれる部品供給位置832での部品Cの角度と一致するかを判断して、実装データDmの適否を判定する(ステップS501~S503)。かかる構成では、実装データDmが示す、部品供給位置832での部品Cの角度の適否を部品実装機8において確認することができる。 Further, the mounting data Dm includes the angle of the component C at the component supply position 832. On the other hand, the component mounting machine 8 recognizes the angle of the component C supplied to the component supply position 832 by the tape feeder 831, and the result is the angle of the component C at the component supply position 832 included in the mounting data Dm. It is determined whether they match, and the suitability of the mounting data Dm is determined (steps S501 to S503). In such a configuration, the component mounting machine 8 can confirm the suitability of the angle of the component C at the component supply position 832 indicated by the mounting data Dm.
 また、部品実装機8は、実装データDmが不適切であると判定すると、実装データDmを修正する。かかる構成では、修正された実装データDmに基づき、基板Bに部品Cを適切に実装することができる。 Further, when the component mounting machine 8 determines that the mounting data Dm is inappropriate, the component mounting machine 8 corrects the mounting data Dm. In such a configuration, the component C can be appropriately mounted on the substrate B based on the modified mounting data Dm.
 このように本実施形態では、制御装置2が本発明の「実装データ作成支援装置」および「演算装置」の一例に相当し、部品実装機8が本発明の「部品実装機」の一例に相当し、制御装置2と部品実装機8とが本発明の「部品実装システム」を構成し、演算部21が本発明の「演算部」の一例に相当し、通信部24が本発明の「取得部」の一例に相当し、実装データDmが本発明の「実装データ」の一例に相当し、基板Bが本発明の「基板」の一例に相当し、完成基板Bcが本発明の「完成基板」の一例に相当し、部品Cが本発明の「部品」の一例に相当し、上面Cuが本発明の「上面」の一例に相当し、三次元計測結果Rが本発明の「完成基板情報」および「三次元データ」の一例に相当し、部品ライブラリLcが本発明の「部品ライブラリ」の一例に相当し、ノズルNが本発明の「ノズル」の一例に相当し、部品特徴情報が本発明の「部品特徴情報」の一例に相当し、実装位置が本発明の「実装位置」の一例に相当し、実装順序が本発明の「実装順序」の一例に相当し、実装角度が本発明の「実装角度」の一例に相当し、吸着位置が本発明の「吸着位置」の一例に相当する。 As described above, in the present embodiment, the control device 2 corresponds to an example of the "mounting data creation support device" and the "calculation device" of the present invention, and the component mounting machine 8 corresponds to an example of the "component mounting machine" of the present invention. Then, the control device 2 and the component mounting machine 8 constitute the "component mounting system" of the present invention, the calculation unit 21 corresponds to an example of the "calculation unit" of the present invention, and the communication unit 24 is the "acquisition" of the present invention. The mounting data Dm corresponds to an example of the "mounting data" of the present invention, the substrate B corresponds to an example of the "board" of the present invention, and the completed substrate Bc corresponds to the "completed substrate" of the present invention. Corresponds to an example of the "part" of the present invention, the upper surface Cu corresponds to an example of the "upper surface" of the present invention, and the three-dimensional measurement result R corresponds to the "completed substrate information" of the present invention. And "three-dimensional data", the parts library Lc corresponds to an example of the "parts library" of the present invention, the nozzle N corresponds to an example of the "nozzle" of the present invention, and the part feature information is the present. The mounting position corresponds to an example of the "mounting position" of the present invention, the mounting order corresponds to an example of the "mounting order" of the present invention, and the mounting angle corresponds to the present invention. Corresponds to an example of the "mounting angle" of the above, and the suction position corresponds to an example of the "suction position" of the present invention.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、ステップS102で制御装置2が取得する計測結果は、三次元計測結果Rに限られない。したがって、平面視から完成基板Bcを撮像した当該完成基板Bcの二次元画像から取得した当該完成基板Bcの二次元形状を示す二次元データを制御装置2が三次元データとともに取得しするように、実施形態を変形できる。 The present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described one without departing from the spirit of the present invention. For example, the measurement result acquired by the control device 2 in step S102 is not limited to the three-dimensional measurement result R. Therefore, the control device 2 acquires the two-dimensional data indicating the two-dimensional shape of the completed substrate Bc acquired from the two-dimensional image of the completed substrate Bc obtained by imaging the completed substrate Bc from the plan view together with the three-dimensional data. The embodiment can be modified.
 この変形例では、演算部21は、完成基板Bcの二次元データおよび三次元データ(完成基板情報)を併用して、完成基板Bcに含まれる部品Cの部品形状情報Icsを求めることができる。例えば、基板Bにおける部品Cの実装位置や、部品Cの幅Cwおよび長さClを二次元データから抽出する一方、基板Bからの部品Cの高さを三次元データから抽出することで、当該部品形状情報Icsを求めれば良い。そして、二次元データおよび三次元データを含む完成基板情報に基づき、図5の実装データ作成支援を実行することができる。かかる構成は、コントラストがはっきりした二次元データが得られる場合に特に好適となる。 In this modification, the calculation unit 21 can obtain the component shape information Ics of the component C included in the completed substrate Bc by using the two-dimensional data and the three-dimensional data (completed substrate information) of the completed substrate Bc together. For example, the mounting position of the component C on the substrate B and the width Cw and the length Cl of the component C are extracted from the two-dimensional data, while the height of the component C from the substrate B is extracted from the three-dimensional data. The part shape information Ics may be obtained. Then, the mounting data creation support of FIG. 5 can be executed based on the completed board information including the two-dimensional data and the three-dimensional data. Such a configuration is particularly suitable when two-dimensional data having a clear contrast can be obtained.
 また、演算部21は、ステップS104では、二次元データを併用して求めた部品形状情報Icsが示す実装部品Cの形状を参照して、実装部品Cの種類を推定する。かかる構成では、二次元データも併用して、基板Bに実装された部品Cの種類を的確に推定することが可能となる。 Further, in step S104, the calculation unit 21 estimates the type of the mounting component C by referring to the shape of the mounting component C indicated by the component shape information Ics obtained by using the two-dimensional data together. In such a configuration, it is possible to accurately estimate the type of component C mounted on the substrate B by also using two-dimensional data.
 また、ステップS104での部品Cの特定は、部品ライブラリLcを用いずに行うこともできる。つまり、完成基板Bcの生産のために基板Bに実装される種類の異なる複数の対象部品Cの形状を対象部品Cごとに示す部品リストが得られる場合がある。このような場合、演算部21は、ステップS103で三次元計測結果Rから抽出した部品形状情報Icsが示す実装部品Cの形状に類似する形状を有する対象部品Cを、部品リストのうちから候補部品Cとして探索した結果に基づき、実装部品Cの種類を推定できる。かかる構成では、部品リストに基づき、基板Bに実装された部品Cの種類を的確に推定することが可能となる。 Further, the specification of the component C in step S104 can be performed without using the component library Lc. That is, a component list showing the shapes of a plurality of target components C of different types mounted on the substrate B for the production of the completed substrate Bc may be obtained for each target component C. In such a case, the calculation unit 21 selects the target component C having a shape similar to the shape of the mounting component C indicated by the component shape information Ics extracted from the three-dimensional measurement result R in step S103 as a candidate component from the component list. The type of mounting component C can be estimated based on the result of searching as C. With such a configuration, it is possible to accurately estimate the type of component C mounted on the substrate B based on the component list.
 この際、演算部21は、部品リストのうちから候補部品Cを探索できない場合には、部品形状情報Icsが示す実装部品Cの形状を部品Cと関連付けて実装部品情報Imに追加するように、ステップS108を変形しても良い。かかる構成では、部品リストに無い実装部品Cが完成基板Bcに含まれる場合には、この実装部品Cを実装部品情報Imに追加することができる。 At this time, when the calculation unit 21 cannot search for the candidate component C from the component list, the arithmetic unit 21 associates the shape of the mounted component C indicated by the component shape information Ics with the component C and adds it to the mounted component information Im. Step S108 may be modified. In such a configuration, when the mounted component C not included in the component list is included in the completed board Bc, the mounted component C can be added to the mounted component information Im.
 さらに、部品リストと部品ライブラリLcとを併用しても良い。具体的には、部品リストに該当する候補部品Cがなかった場合に、部品ライブラリLcから候補部品Cの探索を行うようにしても良い。 Furthermore, the parts list and the parts library Lc may be used together. Specifically, when there is no candidate component C corresponding to the component list, the candidate component C may be searched from the component library Lc.
 また、ステップS106において、完成基板Bcに含まれる部品Cに関する部品特徴情報が三次元計測結果Rから抽出できない場合には、作業者に部品特徴情報の入力を報知しても良い。 Further, in step S106, if the component feature information related to the component C included in the completed substrate Bc cannot be extracted from the three-dimensional measurement result R, the operator may be notified of the input of the component feature information.
 また、部品Cの実装位置の具体的な特定方法は種々考えられる。例えば、基板Bには、位置を示すフィデューシャルマーク(マーク)が付されている。そこで、演算部21は、基板Bに付されたこのマークを基準に実装位置を特定することができる。このフィデューシャルマークの位置は、上述の三次元データに基づき特定しても良いし、上述の二次元データに基づき特定しても良い。 In addition, various specific methods for specifying the mounting position of component C can be considered. For example, the substrate B is provided with a fiducial mark (mark) indicating the position. Therefore, the calculation unit 21 can specify the mounting position with reference to this mark attached to the substrate B. The position of the fiducial mark may be specified based on the above-mentioned three-dimensional data or may be specified based on the above-mentioned two-dimensional data.
 また、ステップS115では、実装制御部81が自動で実装データDmの修正を行っていた。しかしながら、実装制御部81は、実装データDmが不適切であると判定すると(ステップS503で「NO」)、例えばディスプレイ等のUIを用いて実装データDmの修正を作業者に報知しても良い。かかる構成では、作業者は、実装データDmの修正が必要であることを的確に把握することができる。 Further, in step S115, the mounting control unit 81 automatically corrects the mounting data Dm. However, if the mounting control unit 81 determines that the mounting data Dm is inappropriate (“NO” in step S503), the mounting control unit 81 may notify the operator of the correction of the mounting data Dm using, for example, a UI such as a display. .. With such a configuration, the operator can accurately grasp that the mounting data Dm needs to be modified.
 この際、実装制御部81は、実装データDmの修正内容をUIにより作業者に併せて報知しても良い。かかる構成では、実装データDmの修正に要する作業者の負担を軽減して、実装データDmの作成を支援することが可能となっている。 At this time, the mounting control unit 81 may notify the operator of the modified content of the mounting data Dm by the UI. With such a configuration, it is possible to reduce the burden on the operator required for modifying the mounting data Dm and support the creation of the mounting data Dm.
 また、外観検査機6と制御装置2とを別体に構成する必要は無く、外観検査機6に制御装置2を内蔵しても良い。かかる変形例では、外観検査機6が本発明の「外観検査機」の一例に相当する。 Further, it is not necessary to separately configure the visual inspection machine 6 and the control device 2, and the control device 2 may be built in the visual inspection machine 6. In such a modified example, the visual inspection machine 6 corresponds to an example of the "visual inspection machine" of the present invention.
 また、完成基板Bcの三次元形状を計測する方法は、位相シフト法に限られず、例えばステレオマッチングでも良い。 Further, the method for measuring the three-dimensional shape of the completed substrate Bc is not limited to the phase shift method, and for example, stereo matching may be used.
 2…制御装置(実装データ作成支援装置、演算装置、部品実装システム)
 21…演算部
 24…通信部(取得部)
 8…部品実装機(部品実装システム)
 B…基板
 Bc…完成基板
 C…部品
 Cu…上面
 Dm…実装データ
 Lc…部品ライブラリ
 N…ノズル
 R…三次元計測結果(完成基板情報、三次元データ)
 
2 ... Control device (mounting data creation support device, arithmetic unit, component mounting system)
21 ... Calculation unit 24 ... Communication unit (acquisition unit)
8 ... Parts mounting machine (parts mounting system)
B ... Board Bc ... Completed board C ... Parts Cu ... Top surface Dm ... Mounting data Lc ... Parts library N ... Nozzle R ... Three-dimensional measurement results (completed board information, three-dimensional data)

Claims (16)

  1.  基板に部品を実装する手順を示す実装データの作成を支援する実装データ作成支援装置であって、
     前記基板と前記基板に実装された前記部品とを有する完成基板の形状の計測結果を含む完成基板情報として取得する取得部と、
     前記部品の形状を示す部品形状情報を前記完成基板情報に基づき求める演算部と
    を備え、
     前記完成基板情報は、前記完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、前記三次元データを少なくとも含み、
     前記演算部は、前記基板からの前記部品の高さを前記三次元データに基づき求めることで、前記部品の高さを含む前記部品形状情報を求める実装データ作成支援装置。
    It is a mounting data creation support device that supports the creation of mounting data that shows the procedure for mounting components on a board.
    An acquisition unit to be acquired as completed board information including the measurement result of the shape of the finished board having the board and the component mounted on the board.
    It is provided with a calculation unit that obtains component shape information indicating the shape of the component based on the completed board information.
    The completed substrate information includes at least the three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed substrate and the two-dimensional data indicating the two-dimensional shape.
    The calculation unit is a mounting data creation support device that obtains the component shape information including the height of the component by obtaining the height of the component from the substrate based on the three-dimensional data.
  2.  前記演算部は、前記三次元データに基づき求めた前記部品形状情報が示す前記部品の形状を参照して前記部品の種類を推定する請求項1に記載の実装データ作成支援装置。 The mounting data creation support device according to claim 1, wherein the calculation unit estimates the type of the component by referring to the shape of the component indicated by the component shape information obtained based on the three-dimensional data.
  3.  前記完成基板情報は、前記二次元データも含み、
     前記演算部は、前記二次元データを併用して求めた前記部品形状情報が示す前記部品の形状を参照して前記部品の種類を推定する請求項2に記載の実装データ作成支援装置。
    The completed substrate information also includes the two-dimensional data.
    The mounting data creation support device according to claim 2, wherein the calculation unit estimates the type of the component by referring to the shape of the component indicated by the component shape information obtained by using the two-dimensional data together.
  4.  前記演算部は、種類の異なる複数の登録部品の形状が前記登録部品ごとに登録された部品ライブラリのうちから、前記部品形状情報が示す前記部品の形状に類似する形状を有する前記登録部品を候補部品として探索した結果に基づき、前記部品の種類を推定する請求項2または3に記載に実装データ作成支援装置。 The calculation unit can select the registered component having a shape similar to the shape of the component indicated by the component shape information from the component library in which the shapes of a plurality of registered components of different types are registered for each registered component. The mounting data creation support device according to claim 2 or 3, wherein the type of the component is estimated based on the result of searching as a component.
  5.  前記演算部は、前記部品ライブラリのうちから前記候補部品を探索できない場合には、前記部品形状情報が示す前記部品の形状を前記部品と関連付けて、前記完成基板において前記基板に実装される部品に関する実装部品情報に追加する請求項4に記載の実装データ作成支援装置。 When the candidate component cannot be searched from the component library, the calculation unit associates the shape of the component indicated by the component shape information with the component, and relates to a component mounted on the substrate in the completed substrate. The mounting data creation support device according to claim 4, which is added to the mounting component information.
  6.  前記演算部は、前記完成基板の生産のために前記基板に実装される種類の異なる複数の対象部品の形状を前記対象部品ごとに示す部品リストのうちから、前記部品形状情報が示す前記部品の形状に類似する形状を有する前記対象部品を候補部品として探索した結果に基づき、前記部品の種類を推定する請求項2ないし5のいずれか一項に記載の実装データ作成支援装置。 From the parts list showing the shapes of a plurality of different types of target parts mounted on the board for the production of the completed board for each target part, the calculation unit of the parts indicated by the part shape information. The mounting data creation support device according to any one of claims 2 to 5, which estimates the type of the component based on the result of searching for the target component having a shape similar to the shape as a candidate component.
  7.  前記演算部は、複数の候補部品が探索された場合には、前記部品の形状以外に前記部品の特徴を示す部品特徴情報を前記完成基板情報から求め、前記複数の候補部品のうちから前記部品特徴情報が示す特徴を有する一の候補部品を探索した結果に基づき、前記部品の種類を推定する請求項4ないし6のいずれか一項に記載の実装データ作成支援装置。 When a plurality of candidate parts are searched for, the arithmetic unit obtains component feature information indicating the features of the component in addition to the shape of the component from the completed board information, and the component is among the plurality of candidate components. The mounting data creation support device according to any one of claims 4 to 6, which estimates the type of the component based on the result of searching for one candidate component having the feature indicated by the feature information.
  8.  前記演算部は、前記完成基板情報に含まれる前記三次元データから、前記基板から突出した突出部分を抽出して、前記突出部分が前記部品である特定するとともに、前記突出部分の位置が前記実装位置であると特定する請求項1ないし7のいずれか一項に記載の実装データ作成支援装置。 The calculation unit extracts a protruding portion protruding from the board from the three-dimensional data included in the completed board information to identify the protruding portion as the component, and the position of the protruding portion is the mounting. The implementation data creation support device according to any one of claims 1 to 7, which identifies the position.
  9.  前記演算部は、前記基板に付されたマークを基準に前記実装位置を特定する請求項8に記載の実装データ作成支援装置。 The mounting data creation support device according to claim 8, wherein the calculation unit specifies the mounting position based on a mark attached to the board.
  10.  前記演算部は、前記基板の法線に平行な仮想直線を中心とする回転方向における前記部品の実装角度を、前記完成基板情報から求める請求項1ないし9のいずれか一項に記載の実装データ作成支援装置。 The mounting data according to any one of claims 1 to 9, wherein the calculation unit obtains the mounting angle of the component in the rotation direction about a virtual straight line parallel to the normal of the board from the completed board information. Creation support device.
  11.  前記演算部は、前記部品における前記基板からの高さが均一な上面の存在範囲を含む前記部品形状情報を前記三次元データに基づき求め、前記部品を前記基板に実装するために前記部品を吸着するノズルの種類を前記上面の前記存在範囲に基づき決定するとともに、前記部品を前記基板に実装するために前記部品をノズルにより吸着する吸着位置を前記上面の前記存在範囲のうちから決定する請求項1ないし10のいずれか一項に記載の実装データ作成支援装置。 The calculation unit obtains the component shape information including the existence range of the upper surface of the component having a uniform height from the substrate based on the three-dimensional data, and adsorbs the component in order to mount the component on the substrate. A claim that determines the type of nozzle to be used based on the existing range of the upper surface, and determines the suction position for sucking the component by the nozzle in order to mount the component on the substrate from the existing range of the upper surface. The mounting data creation support device according to any one of 1 to 10.
  12.  基板に部品を実装する手順を示す実装データの作成を支援する実装データ作成支援方法であって、
     前記基板と前記基板に実装された前記部品とを有する完成基板の形状の計測結果を完成基板情報として取得する工程と、
     前記部品の形状を示す部品形状情報を前記完成基板情報に基づき求める工程と
    を備え、
     前記完成基板情報は、前記完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、前記三次元データを少なくとも含み、
     前記基板からの前記部品の高さが前記三次元データに基づき求められて、前記部品の高さを含む前記部品形状情報が求められる実装データ作成支援方法。
    It is a mounting data creation support method that supports the creation of mounting data that shows the procedure for mounting components on a board.
    The process of acquiring the measurement result of the shape of the completed substrate having the substrate and the component mounted on the substrate as the completed substrate information, and
    It is provided with a step of obtaining component shape information indicating the shape of the component based on the completed board information.
    The completed substrate information includes at least the three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed substrate and the two-dimensional data indicating the two-dimensional shape.
    A mounting data creation support method in which the height of the component from the substrate is obtained based on the three-dimensional data, and the component shape information including the height of the component is obtained.
  13.  基板と前記基板に実装された部品とを有する完成基板の形状を少なくとも示す完成基板情報を、前記完成基板の形状を計測することで求める形状計測部と、
     前記部品の形状を示す部品形状情報を前記完成基板情報に基づき求める演算部と
    を備え、
     前記完成基板情報は、前記完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、前記三次元データを少なくとも含み、
     前記演算部は、前記基板からの前記部品の高さを前記三次元データに基づき求めることで、前記部品の高さを含む前記部品形状情報を求める外観検査機。
    A shape measuring unit that obtains completed board information indicating at least the shape of a finished board having a board and components mounted on the board by measuring the shape of the finished board.
    It is provided with a calculation unit that obtains component shape information indicating the shape of the component based on the completed board information.
    The completed substrate information includes at least the three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed substrate and the two-dimensional data indicating the two-dimensional shape.
    The calculation unit is an appearance inspection machine that obtains the component shape information including the height of the component by obtaining the height of the component from the substrate based on the three-dimensional data.
  14.  基板と前記基板に実装された部品とを有する完成基板の形状の計測結果を含む完成基板情報に基づき、前記部品の形状を示す部品形状情報を求める演算装置と、
     フィーダーにより部品供給位置に供給した前記部品を実装ヘッドにより保持して前記基板に移載する動作を実行する部品実装機と
    を備え、
     前記完成基板情報は、前記完成基板の三次元形状を示す三次元データおよび二次元形状を示す二次元データのうち、前記三次元データを少なくとも含み、
     前記演算装置は、前記基板からの前記部品の高さを前記三次元データに基づき求めることで、前記部品の高さを含む前記部品形状情報を求め、
     前記部品実装機は、前記部品形状情報を含む実装データが示す手順に従って、前記基板に前記部品を実装する部品実装システム。
    An arithmetic unit that obtains component shape information indicating the shape of the component based on the completed substrate information including the measurement result of the shape of the completed substrate having the substrate and the component mounted on the substrate.
    It is provided with a component mounting machine that holds the component supplied to the component supply position by the feeder by the mounting head and executes an operation of transferring the component to the board.
    The completed substrate information includes at least the three-dimensional data among the three-dimensional data indicating the three-dimensional shape of the completed substrate and the two-dimensional data indicating the two-dimensional shape.
    The arithmetic unit obtains the component shape information including the height of the component by obtaining the height of the component from the substrate based on the three-dimensional data.
    The component mounting machine is a component mounting system for mounting the component on the board according to a procedure indicated by mounting data including the component shape information.
  15.  前記実装データは、前記基板の法線に平行な仮想直線を中心とする回転方向における前記部品供給位置での前記部品の角度を含み、
     前記部品実装機は、前記フィーダーにより供給される前記部品の角度を認識した結果が、前記実装データに含まれる前記部品供給位置での前記部品の角度と一致するかを判断して、前記実装データの適否を判定する請求項14に記載の部品実装システム。
    The mounting data includes the angle of the component at the component supply position in the rotation direction about a virtual straight line parallel to the normal of the substrate.
    The component mounting machine determines whether the result of recognizing the angle of the component supplied by the feeder matches the angle of the component at the component supply position included in the mounting data, and determines that the mounting data The component mounting system according to claim 14, wherein the suitability of the component mounting system is determined.
  16.  前記部品実装機は、前記実装データが不適切であると判定すると、前記実装データを修正する請求項15に記載の部品実装システム。 The component mounting system according to claim 15, wherein the component mounting machine corrects the mounting data when it determines that the mounting data is inappropriate.
PCT/JP2019/009272 2019-03-08 2019-03-08 Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system WO2020183516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/009272 WO2020183516A1 (en) 2019-03-08 2019-03-08 Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system
JP2021504606A JP7427652B2 (en) 2019-03-08 2019-03-08 A system and component mounting system consisting of a mounting data creation support device, a mounting data creation support method, a visual inspection machine, and a control device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009272 WO2020183516A1 (en) 2019-03-08 2019-03-08 Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system

Publications (1)

Publication Number Publication Date
WO2020183516A1 true WO2020183516A1 (en) 2020-09-17

Family

ID=72426105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009272 WO2020183516A1 (en) 2019-03-08 2019-03-08 Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system

Country Status (2)

Country Link
JP (1) JP7427652B2 (en)
WO (1) WO2020183516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170814A1 (en) * 2022-03-09 2023-09-14 ヤマハ発動機株式会社 Operation device for three-dimensional measurement, three-dimensional measurement program, recording medium, three-dimensional measurement device, and operation method for three-dimensional measurement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198999A (en) * 1992-01-20 1993-08-06 Sony Corp Board inspection apparatus
JP2003051698A (en) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd Method and device for mounting electronic component
JP2004006605A (en) * 2002-03-28 2004-01-08 Juki Corp Electronic part mounting machine
JP2005172640A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Mounting inspection device and mounting inspection method
JP2011158477A (en) * 2010-02-01 2011-08-18 Koh Young Technology Inc Three-dimensional shape inspection method
WO2018105100A1 (en) * 2016-12-09 2018-06-14 株式会社Fuji Mounting job data creation method and creation device
JP2019003461A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Facility element repair management system and facility element repair management method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198999B2 (en) 2007-09-20 2013-05-15 株式会社シンク・ラボラトリー Method for producing a gravure plate having cushioning properties
JP5448136B2 (en) 2008-06-13 2014-03-19 富士機械製造株式会社 Pickup means selection device and pickup means selection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198999A (en) * 1992-01-20 1993-08-06 Sony Corp Board inspection apparatus
JP2003051698A (en) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd Method and device for mounting electronic component
JP2004006605A (en) * 2002-03-28 2004-01-08 Juki Corp Electronic part mounting machine
JP2005172640A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Mounting inspection device and mounting inspection method
JP2011158477A (en) * 2010-02-01 2011-08-18 Koh Young Technology Inc Three-dimensional shape inspection method
WO2018105100A1 (en) * 2016-12-09 2018-06-14 株式会社Fuji Mounting job data creation method and creation device
JP2019003461A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Facility element repair management system and facility element repair management method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170814A1 (en) * 2022-03-09 2023-09-14 ヤマハ発動機株式会社 Operation device for three-dimensional measurement, three-dimensional measurement program, recording medium, three-dimensional measurement device, and operation method for three-dimensional measurement

Also Published As

Publication number Publication date
JP7427652B2 (en) 2024-02-05
JPWO2020183516A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6199798B2 (en) Electronic component mounting device
JP5721469B2 (en) Component mounting method and component mounting apparatus
JP6309830B2 (en) Component mounting device
KR101908734B1 (en) Component mounting device, information processing device, information processing method, and substrate manufacturing method
WO2004066701A1 (en) Working machine for circuit board and method of feeding component thererto
JP6293454B2 (en) Electronic component mounting device
JP2015135886A (en) Management device
JP2010186867A (en) Method of positioning ejector pin and electronic component feeder using the same
JP2007189041A (en) Method for simultaneously sucking electronic part in mounting device and method for deciding propriety of simultaneous suction
WO2020183516A1 (en) Mounting data generation assistance device, mounting data generation assistance method, appearance inspection machine, and component mounting system
EP2931014A1 (en) Apparatus and method for generating mounting data, and substrate manufacturing system
EP3016489A1 (en) Component mounting system and component mounting method
WO2017145249A1 (en) Image processing system and image processing method
JP2017139388A (en) Mounting apparatus
WO2017081773A1 (en) Image processing device and image processing method for base plate
JP4927776B2 (en) Component mounting method
JPWO2018096577A1 (en) Image processing system and image processing method
CN109792859B (en) Component mounting machine
WO2015052755A1 (en) Mounting device
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
WO2016151797A1 (en) Mounting device and mounting method
JP7117507B2 (en) Component mounting method and component mounting device
JP5855866B2 (en) Dummy chip and component mounting accuracy inspection method using the same
JP6103805B2 (en) Component position recognition method and component supply apparatus
JP2014036028A (en) Die component supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918783

Country of ref document: EP

Kind code of ref document: A1