WO2020182186A1 - 通风槽支撑结构及包括其的电机通风槽结构 - Google Patents

通风槽支撑结构及包括其的电机通风槽结构 Download PDF

Info

Publication number
WO2020182186A1
WO2020182186A1 PCT/CN2020/078973 CN2020078973W WO2020182186A1 WO 2020182186 A1 WO2020182186 A1 WO 2020182186A1 CN 2020078973 W CN2020078973 W CN 2020078973W WO 2020182186 A1 WO2020182186 A1 WO 2020182186A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation slot
spoiler
ventilation
support structure
plate
Prior art date
Application number
PCT/CN2020/078973
Other languages
English (en)
French (fr)
Inventor
崔明
吴立建
王海洋
施杨
闻汇
许爽
方攸同
Original Assignee
浙江大学
上海电气风电集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 上海电气风电集团股份有限公司 filed Critical 浙江大学
Publication of WO2020182186A1 publication Critical patent/WO2020182186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Definitions

  • the invention relates to a ventilation slot support structure and a motor ventilation slot structure including the same.
  • the radial ventilation method is a cooling method widely used in motors.
  • a common cooling air flow path in the motor is that the cooling air flows through the winding ends and enters the air gap, from the radial ventilation slot inside the stator core. Cool the windings and stator core.
  • the ventilation slot support structure in the prior art and the motor ventilation slot structure including the same have the defect that the cooling medium cannot fully exchange heat with the windings and the stator core, resulting in a large temperature gradient between the components.
  • the technical problem to be solved by the present invention is to overcome the defect that the cooling medium cannot fully exchange heat with the winding and the stator core in the prior art, which leads to a large temperature gradient between the components, and provides a ventilation slot support structure and a motor including the same Ventilation slot structure.
  • a support structure for a ventilation slot characterized in that the support structure of the ventilation slot includes a ventilation slot plate, a support rib for the ventilation slot and a spoiler structure, the support rib for the ventilation slot is fixed on the ventilation slot plate, and the spoiler The structure is used to form air disturbance on the ventilation slot plate, and the turbulence structure is fixed on the ventilation slot plate.
  • the turbulence structure disturbs the air, increases the turbulence intensity of the air, destroys the formation of the air boundary layer, and guides the air to flow more toward the edge with higher temperature.
  • the motor parts enhance the mixing between the air in the edge area and the air in the middle area.
  • the disturbance structure also increases the heat exchange area in the channel, increases the heat exchange between the air and the solid heating parts, and enhances the heat exchange effect at the same time. The heat exchange between the components is more fully and uniform.
  • the turbulence structure is a column, and the cross section of the column is rectangular, triangular or streamlined.
  • the shape of the spoiler structure can play a spoiler function and is easy to process.
  • the distance from the end of the spoiler structure close to the slot wedge to the support rib of the ventilation slot is L 1 ; along the length direction of the ventilation slot plate, the disturbance The distance between the end of the flow structure away from the slot wedge and the support rib of the ventilation slot is L 2 , and L 1 ⁇ L 2 , and the included angle between the length direction of the spoiler structure and the length direction of the support rib of the ventilation slot is Acute angle.
  • the spoiler structure directs more air to flow toward higher temperature components.
  • the acute angle is greater than or equal to 30° and less than or equal to 60°.
  • the height of the turbulence structure does not exceed half of the height of the supporting ribs of the ventilation slot.
  • the turbulence structure is not easy to be too high, otherwise it will cause excessive wind resistance and require more energy.
  • the ventilation slot plate includes a flow area and a connection area
  • the flow area is an area for fixing the spoiler structure
  • the connection area is an area for connecting an adjacent stator core .
  • the projected area of the turbulence structure on the ventilation slot plate does not exceed 1/3 of the area of the flow area.
  • the area of the spoiler structure is not easy to be too large, otherwise it will cause excessive wind resistance and require more energy.
  • the distance between two adjacent spoiler structures is 8-10 times the length of the spoiler structure.
  • the distance between two adjacent turbulence structures is to ensure that the interference effect of the turbulence structure on the fluid can continue, that is, to ensure that the interference effect of the previous turbulence structure on the fluid is about to disappear, the latter one
  • the turbulence structure continues to have an interference effect on the fluid, and the interference effect of the turbulence structure on the fluid will not disappear.
  • the turbulence structure and the ventilation slot plate are integrally formed, or the turbulence structure is welded and fixed to the ventilation slot plate.
  • the supporting ribs of the ventilation slot are welded and fixed to the ventilation slot plate.
  • a motor ventilation slot structure which is characterized in that the motor ventilation slot structure includes a stator core, a winding, and the above-mentioned ventilation slot support structure, the winding is fixed on the stator core, and the ventilation slot support structure is fixed by The piece is fixed between the two stator cores.
  • the stator core is provided with a threaded hole on the side away from the winding
  • the ventilation slot support structure is provided with a threaded hole on the side away from the winding
  • the stator core threaded hole and the wind slot support structure The diameter of the threaded holes is the same.
  • the stator core is formed by stacking silicon steel sheets in the axial direction.
  • the positive improvement effect of the present invention is that the present invention can effectively suppress the increase of flow resistance by arranging the turbulence structure on both sides of the supporting ribs of the ventilation groove, and at the same time strengthen the degree of air disturbance and turbulence, and increase the exchange of solid parts.
  • Heat area, and make more cooling air flow to the winding with higher heating which enhances the heat exchange effect and makes the heat exchange between the components more fully and uniformly, which effectively overcomes the inability of the cooling medium to interact with the winding and stator in the prior art
  • the iron core fully exchanges heat and causes the defect of a large temperature gradient between the components.
  • the winding temperature can be reduced by 5 to 10°C, and the temperature rise can be reduced to make the motor smaller, which saves space while also reducing material costs and improving the economic efficiency and competitiveness of the product.
  • the structural form of the spoiler structure located on both sides of the supporting ribs of the ventilation slot has the advantages of low production and processing difficulty and low cost, and the optimization of the specific shape and size parameters of the spoiler structure has strong flexibility.
  • FIG. 1 is a structural diagram of a ventilation slot support structure and a motor ventilation slot structure including the same according to a preferred embodiment of the present invention.
  • Fig. 2 is an enlarged view of the structure of part A of the ventilation slot supporting structure in Fig. 1.
  • FIG. 3 is a schematic diagram of a radial cross-section of a ventilation slot support structure and a motor ventilation slot structure including the same according to a preferred embodiment of the present invention.
  • Fig. 4 is a supporting structure of a ventilation slot according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a rectangular spoiler structure according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a triangular spoiler structure according to a preferred embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an inverted triangle spoiler structure according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a streamlined spoiler structure according to a preferred embodiment of the present invention.
  • the present invention provides a ventilation slot support structure 10, which includes a ventilation slot plate 101, a ventilation slot support rib 102 and a spoiler structure 103.
  • the ventilation slot support rib 102 is fixed to the ventilation slot by welding.
  • the spoiler structure 103 is used to form air disturbance on the ventilation slot plate 101, and the spoiler structure 103 is fixed on the ventilation slot plate 101.
  • the distance from the end of the spoiler structure 103 near the slot wedge 40 to the ventilation slot support rib 102 is L 1 ; along the length direction of the ventilation slot plate 101, The distance from the end of the spoiler structure 103 away from the slot wedge 40 to the ventilation slot supporting rib 102 is L 2 , L 1 ⁇ L 2 .
  • the included angle between the length direction of the turbulence structure 103 and the longitudinal direction of the ventilation slot support rib 102 is an acute angle ⁇ , and the acute angle ⁇ needs to be greater than or equal to 30° and less than or equal to 60°, so as to ensure that the air in the turbulence structure 103 during radial ventilation Under the action, more flow to the higher temperature motor parts.
  • the height of the spoiler structure 103 does not exceed half of the height of the supporting rib 102 of the ventilation slot.
  • the ventilation slot plate 101 includes a flow area and a connection area.
  • the flow area is an area for fixing the spoiler structure 10
  • the connection area is an area for connecting an adjacent stator core 20.
  • the projected area of the spoiler structure 103 on the ventilation slot plate 101 does not exceed 1/3 of the area of the flow area.
  • the projected area of the spoiler structure 103 is determined by the length a of the spoiler structure 103 and the spoiler structure 103 and the ventilation slot plate 101 The shortest distance b on the long side is guaranteed.
  • the height of the spoiler structure 103 should not be too high, and the area should not be too large, otherwise it will cause excessive wind resistance and require more energy to be consumed.
  • the distance d between the two adjacent turbulence structures 103 in the length direction of the ventilation slot plate 101 is usually 8-10 times the length a of the turbulence structure 103. This is to ensure that the interference effect of the turbulence structure 103 on the fluid continues. That is to ensure that when the interference effect of the previous turbulence structure 103 on the fluid is about to disappear, the latter turbulence structure 103 continues to interfere with the fluid, and the interference effect of the turbulence structure 103 on the fluid will not disappear.
  • the spoiler structure 103 is generally integrally formed with the ventilation slot plate 101, or welded and fixed on the flow area of the ventilation slot plate 101.
  • the shape of the spoiler structure 103 needs to have a spoiler function and be easy to shape, usually a rectangular spoiler structure 1031, a triangular spoiler structure 1032, an inverted triangular spoiler structure 1033, and a streamlined spoiler structure 1034 (such as an airfoil spoiler structure) )
  • These column structures, the cross section of the column is rectangular, triangular or streamlined.
  • the shape of the spoiler structure 103 in this example is not limited to the above four shapes, and only needs to ensure that the shape of the spoiler structure 103 has a spoiler effect and is easy to form.
  • the triangular spoiler structure 1032 can reduce the pressure loss by increasing the flow area; the streamlined spoiler structure 1034 can increase the flow At the same time, it makes the air better fit the boundary of the structure, delays the separation of the flow, and reduces the pressure loss.
  • the entire motor ventilation slot structure includes the ventilation slot support structure 10, the stator core 20, the winding 30 and the slot wedges 40.
  • the stator core 20 is formed by stacking silicon steel sheets in the axial direction, and the winding 30 is fixed on the stator core 20 by a slot wedge 40.
  • the side of the stator core 20 away from the winding 30 is provided with threaded holes, and the side of the ventilation slot support structure 10 is also provided with threaded holes on the side away from the winding 30.
  • the threaded holes of the stator core 20 and the ventilation slot support structure 10 have the same hole diameter.
  • the supporting structure 10 is fixed between the two stator cores 20 by bolts.
  • the turbulence structure 103 disturbs the air, increases the turbulence intensity of the air, destroys the formation of the air boundary layer, and guides the air to flow more to the winding 30 with higher temperature at the edge. , The mixing between the air in the edge area and the air in the middle area is enhanced, and the narrow passage between the turbulence structure 103 and the winding 30 locally accelerates the air, which improves the heat exchange effect.
  • the perturbation structure 103 also increases the heat exchange area in the channel, increases the heat exchange between the air and the solid heating components, and enhances the heat exchange between the air and the stator core 20 and the winding 30, while enhancing the heat exchange effect. Make the heat exchange between the components more fully and evenly. The air then flows out through the side away from the winding 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本发明公开了一种通风槽支撑结构及包括其的电机通风槽结构,所述通风槽支撑结构包括通风槽板、通风槽支撑筋和扰流结构,所述通风槽支撑筋固定于所述通风槽板上,所述扰流结构用于形成所述通风槽板上的空气扰动,且所述扰流结构固定于所述通风槽板上。本发明有效解决了现有技术中冷却介质无法与绕组和定子铁心充分换热而导致各部件之间温度梯度较大的缺陷,当空气流经所述通风槽时,所述扰流结构对空气起到扰动作用,引导空气更多地流向温度较高的部件,并且增大了换热面积,在增强换热效果的同时使各部件之间的换热更加充分均匀,减小各部件之间的温度差。

Description

通风槽支撑结构及包括其的电机通风槽结构
本申请要求申请日为2019年3月13日的中国专利申请CN201910188279.3的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种通风槽支撑结构及包括其的电机通风槽结构。
背景技术
电机温升过高会加速电机绝缘老化,电机局部温度梯度过大也会导致电机产生局部应力,可能会造成电机的永久机械损伤。因此,电机的冷却效果直接影响着其使用寿命,改进冷却技术对保证电机的可靠性起着关键作用。目前,径向通风方式是一种在电机上应用广泛的冷却方式,一种常见的电机内部冷却空气流动路径为冷却空气流经绕组端部,进入气隙,从定子铁心内部的径向通风槽对绕组和定子铁心进行冷却。
现有的电机的径向通风结构中冷却空气在流过通风槽的平整表面时,介质无法与定子绕组和定子铁心进行充分换热,冷却介质利用率不高。另一方面,定子绕组和定子铁心的发热量不同,对于定子尺寸较大的电机,往往在各个部件之间和部件上存在较大的温度梯度,并产生局部热点效应,进一步导致过大的局部形变和局部绝缘寿命衰减。
综上,现有技术中的通风槽支撑结构及包括其的电机通风槽结构具有冷却介质无法与绕组和定子铁心充分换热而导致各部件之间温度梯度较大的缺陷。
发明内容
本发明要解决的技术问题是为了克服现有技术中冷却介质无法与绕组 和定子铁心充分换热而导致各部件之间温度梯度较大的缺陷,提供一种通风槽支撑结构及包括其的电机通风槽结构。
本发明是通过下述技术方案来解决上述技术问题:
一种通风槽支撑结构,其特点在于,所述通风槽支撑结构包括通风槽板、通风槽支撑筋和扰流结构,所述通风槽支撑筋固定于所述通风槽板上,所述扰流结构用于形成所述通风槽板上的空气扰动,且所述扰流结构固定于所述通风槽板上。
在本方案中,当空气流经通风槽板表面时,扰流结构对空气进行扰动,增加了空气的湍流强度,破坏了空气边界层的形成,引导空气更多地流向边缘处温度更高的电机部件,增强了边缘区域空气和中间区域空气间的混合,扰动结构还增加了通道中的换热面积,加大了空气和固体发热部件间的换热量,在增强换热效果的同时使各部件之间的换热更加充分均匀。
较佳地,所述扰流结构为柱体,所述柱体的横截面为矩形、三角形或流线形。
在本方案中,扰流结构的形状能够起到扰流作用而且易于加工。
较佳地,沿所述通风槽板的长度方向,所述扰流结构靠近槽楔的一端到所述通风槽支撑筋的距离为L 1;沿所述通风槽板的长度方向,所述扰流结构远离所述槽楔的一端到所述通风槽支撑筋的距离为L 2,且L 1<L 2,所述扰流结构的长度方向与所述通风槽支撑筋长度方向的夹角为锐角。
在本方案中,扰流结构引导空气更多的流向温度更高的部件。
较佳地,所述锐角大于等于30°且小于等于60°。
较佳地,所述扰流结构的高度不超过所述通风槽支撑筋的高度的一半。
在本方案中,扰流结构不易过高,否则会导致风阻过大,需要消耗更多能量。
较佳地,所述通风槽板包括过流区域和连接区域,所述过流区域为用于固定所述扰流结构的区域,所述连接区域为用于连接一相邻的定子铁心的区 域。
较佳地,所述扰流结构在所述通风槽板上的投影面积不超过所述过流区域的面积的1/3。
在本方案中,扰流结构面积不易过大,否则会导致风阻过大,需要消耗更多能量。
较佳地,沿所述通风槽板的长度方向,相邻的两个所述扰流结构的距离为所述扰流结构的长度的8-10倍。
在本方案中,相邻的两个扰流结构的距离是为了保证扰流结构对流体的干扰作用能够持续进行,也就是为了保证前一个扰流结构对流体的干扰作用即将消失时,后一个扰流结构继续对流体起到干扰作用,不会出现扰流结构对流体的干扰作用消失的情况。
较佳地,所述扰流结构与所述通风槽板一体成型,或所述扰流结构焊接固定于所述通风槽板上。
较佳地,所述通风槽支撑筋焊接固定于所述通风槽板上。
一种电机通风槽结构,其特点在于,所述电机通风槽结构包括定子铁心、绕组和如上述的通风槽支撑结构,所述绕组固定于所述定子铁心上,所述通风槽支撑结构通过固定件固定于两段所述定子铁心之间。
较佳地,所述定子铁心远离所述绕组一侧设有螺纹孔,所述通风槽支撑结构远离所述绕组一侧设有螺纹孔,且所述定子铁心螺纹孔与所述风槽支撑结构螺纹孔的孔径相同。
较佳地,所述定子铁心由硅钢片沿轴向堆叠而成。
本发明的积极进步效果在于:本发明通过在通风槽支撑筋的两侧设置扰流结构,能够有效抑制流动阻力的增加,同时加强了空气扰动和湍流程度,增大了固体部件之间的换热面积,并使更多的冷却空气流向受热更高的绕组,在增强换热效果的同时使各部件之间的换热更加充分均匀,有效克服了现有技术中冷却介质无法与绕组和定子铁心充分换热而导致各部件之间温度梯 度较大的缺陷。在同等条件下,绕组温度能够降低5~10℃,温升降低就可以把电机做成更小的尺寸,在节约空间的同时也能降低材料成本,提升产品的经济效益和竞争力。此外,扰流结构位于通风槽支撑筋两侧的结构形式具有生产加工的难度低、成本低的优势,同时扰流结构具体形状和尺寸参数的优化具有很强的灵活性。
附图说明
图1为本发明一较佳实施例的通风槽支撑结构及包括其的电机通风槽结构的结构示意图。
图2为图1中通风槽支撑结构A部分的结构放大图。
图3为本发明一较佳实施例的通风槽支撑结构及包括其的电机通风槽结构的径向剖面示意图。
图4为本发明一较佳实施例的通风槽支撑结构。
图5为本发明一较佳实施例的矩形扰流结构的结构示意图。
图6为本发明一较佳实施例的三角形扰流结构的结构示意图。
图7为本发明一较佳实施例的倒三角形扰流结构的结构示意图。
图8为本发明一较佳实施例的流线形扰流结构的结构示意图。
附图标记说明:
10通风槽支撑结构
101通风槽板
102通风槽支撑筋
103扰流结构
1031矩形扰流结构
1032三角形扰流结构
1033倒三角形扰流结构
1034流线形扰流结构
20定子铁心
30绕组
40槽楔
具体实施方式
下面举个较佳实施例,并结合附图来更清楚完整地说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
如图1-2所示,本发明提供一种通风槽支撑结构10,其包括通风槽板101、通风槽支撑筋102和扰流结构103,通风槽支撑筋102通过焊接的方式固定在通风槽板101上,扰流结构103是为了形成通风槽板101上的空气扰动,且扰流结构103固定在通风槽板101上。
如图3-4所示,沿通风槽板101的长度方向上,扰流结构103靠近槽楔40的一端到通风槽支撑筋102的距离为L 1;沿通风槽板101的长度方向上,扰流结构103远离槽楔40的一端到通风槽支撑筋102的距离为L 2,L 1<L 2。扰流结构103的长度方向与通风槽支撑筋102长度方向的夹角为锐角α,且锐角α需要大于等于30°且小于等于60°,这样才能保证径向通风时空气在扰流结构103的作用下,更多地流向温度较高的电机部件。
扰流结构103的高度不超过通风槽支撑筋102的高度的一半。通风槽板101包括过流区域和连接区域,过流区域为用于固定扰流结构10的区域,连接区域为用于连接一相邻的定子铁心20的区域。扰流结构103在通风槽板101上的投影面积不超过过流区域的面积的1/3,扰流结构103的投影面积由扰流结构103的长度a和扰流结构103与通风槽板101长边的最短距离b保证。扰流结构103的高度不宜过高,且面积不易过大,否则会导致风阻过大,需要消耗更多能量。通风槽板101的长度方向上相邻的两个扰流结构103的距离d通常选取扰流结构103长度a的8-10倍,这是为了保证扰流结构103 对流体的干扰作用持续进行,也就是为了保证前一个扰流结构103对流体的干扰作用即将消失时,后一个扰流结构103继续对流体起到干扰作用,不会出现扰流结构103对流体的干扰作用消失的情况。
如图5-8所示,扰流结构103一般与通风槽板101一体成型,或者焊接固定在通风槽板101的过流区域上。扰流结构103的形状需要具有扰流功能并且易于成型,通常采用矩形扰流结构1031、三角形扰流结构1032、倒三角形扰流结构1033、流线形扰流结构1034(如翼型扰流结构)这些柱体结构,柱体的横截面为矩形、三角形或流线形。本实例的扰流结构103的形状不局限于上述四种形状,只需保证扰流结构103的形状具有扰流作用及易于成型即可。这些柱体结构在保证增强换热效果的同时,还可以有效降低压力损失,其中,三角形扰流结构1032可以通过增大过流面积来降低压力损失;流线型扰流结构1034可以在增大过流面积的同时,使空气与该结构的边界更好的贴合,延迟流动的分离,进而降低压力损失。
如图1和图3所示,整个电机通风槽结构包括通风槽支撑结构10、定子铁心20、绕组30和槽楔40。定子铁心20由硅钢片沿轴向堆叠而成,绕组30通过槽楔40固定在定子铁心20上。定子铁心20远离绕组30的一侧设有螺纹孔,通风槽支撑结构10远离绕组30一侧也设有螺纹孔,而且定子铁心20螺纹孔与通风槽支撑结构10螺纹孔的孔径相同,通风槽支撑结构10通过螺栓固定在两段定子铁心20之间。
空气从靠近绕组30的一侧进入通风槽,扰流结构103对空气进行扰动,增加了空气的湍流强度,破坏了空气边界层的形成,引导空气更多地流向边缘处温度更高的绕组30,增强了边缘区域空气和中间区域空气间的混合,扰流结构103与绕组30之间的狭窄通道对空气进行了局部加速,提高了换热效果。扰动结构103还增加了通道中的换热面积,加大了空气和固体发热部件间的换热量,增强了空气和定子铁心20与绕组30之间的换热,在增强换热效果的同时使各部件之间的换热更加充分均匀。空气后经远离绕组30的 一侧流出。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (13)

  1. 一种通风槽支撑结构,其特征在于,所述通风槽支撑结构包括通风槽板、通风槽支撑筋和扰流结构,所述通风槽支撑筋固定于所述通风槽板上,所述扰流结构用于形成所述通风槽板上的空气扰动,且所述扰流结构固定于所述通风槽板上。
  2. 如权利要求1所述的通风槽支撑结构,其特征在于,所述扰流结构为柱体,所述柱体的横截面为矩形、三角形或流线形。
  3. 如权利要求1或2所述的通风槽支撑结构,其特征在于,沿所述通风槽板的长度方向,所述扰流结构靠近槽楔的一端到所述通风槽支撑筋的距离为L 1;沿所述通风槽板的长度方向,所述扰流结构远离所述槽楔的一端到所述通风槽支撑筋的距离为L 2,且L 1<L 2,所述扰流结构的长度方向与所述通风槽支撑筋长度方向的夹角为锐角。
  4. 如权利要求3所述的通风槽支撑结构,其特征在于,所述锐角大于等于30°且小于等于60°。
  5. 如权利要求1-4中至少一项所述的通风槽支撑结构,其特征在于,所述扰流结构的高度不超过所述通风槽支撑筋的高度的一半。
  6. 如权利要求1-5中至少一项所述的通风槽支撑结构,其特征在于,所述通风槽板包括过流区域和连接区域,所述过流区域为用于固定所述扰流结构的区域,所述连接区域为用于连接一相邻的定子铁心的区域。
  7. 如权利要求6所述的通风槽支撑结构,其特征在于,所述扰流结构在所述通风槽板上的投影面积不超过所述过流区域的面积的1/3。
  8. 如权利要求1-7中至少一项所述的通风槽支撑结构,其特征在于,沿所述通风槽板的长度方向,相邻的两个所述扰流结构的距离为所述扰流结构的长度的8-10倍。
  9. 如权利要求1-8中至少一项述的通风槽支撑结构,其特征在于,所 述扰流结构与所述通风槽板一体成型,或所述扰流结构焊接固定于所述通风槽板上。
  10. 如权利要求1-9中至少一项所述的通风槽支撑结构,其特征在于,所述通风槽支撑筋焊接固定于所述通风槽板上。
  11. 一种电机通风槽结构,其特征在于,所述电机通风槽结构包括定子铁心、绕组和如权利要求1-10中任意一项所述的通风槽支撑结构,所述绕组固定于所述定子铁心上,所述通风槽支撑结构通过固定件固定于两段所述定子铁心之间。
  12. 如权利要求11所述的电机通风槽结构,其特征在于,所述定子铁心远离所述绕组一侧设有螺纹孔,所述通风槽支撑结构远离所述绕组一侧设有螺纹孔,且所述定子铁心螺纹孔与所述风槽支撑结构螺纹孔的孔径相同。
  13. 如权利要求11或12所述的电机通风槽结构,其特征在于,所述定子铁心由硅钢片沿轴向堆叠而成。
PCT/CN2020/078973 2019-03-13 2020-03-12 通风槽支撑结构及包括其的电机通风槽结构 WO2020182186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910188279.3A CN109831042B (zh) 2019-03-13 2019-03-13 通风槽支撑结构及包括其的电机通风槽结构
CN201910188279.3 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020182186A1 true WO2020182186A1 (zh) 2020-09-17

Family

ID=66869154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078973 WO2020182186A1 (zh) 2019-03-13 2020-03-12 通风槽支撑结构及包括其的电机通风槽结构

Country Status (2)

Country Link
CN (1) CN109831042B (zh)
WO (1) WO2020182186A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109831042B (zh) * 2019-03-13 2020-07-28 浙江大学 通风槽支撑结构及包括其的电机通风槽结构
CN110581628A (zh) * 2019-08-12 2019-12-17 江苏中车电机有限公司 大型永磁直驱风力发电机铁心通风槽限位工装及限位工艺
US11411448B2 (en) 2019-09-03 2022-08-09 Hamilton Sundstrand Corporation Motor stator core design with integral cooling duct within teeth
CN112769294B (zh) * 2021-04-07 2021-07-20 天津市松正电动汽车技术股份有限公司 一种油冷扁线电机散热结构及电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029253A1 (en) * 2005-08-06 2007-02-08 Microhellix Systems Gmbh Electrical heating module for air flow heating, in particular for heating and ventilation of seats
CN203774904U (zh) * 2014-01-20 2014-08-13 东方电气集团东方电机有限公司 一种扰流式定子通风沟结构
CN109831042A (zh) * 2019-03-13 2019-05-31 浙江大学 通风槽支撑结构及包括其的电机通风槽结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566635A (en) * 1979-06-25 1981-01-23 Toshiba Corp Iron core of rotary electric machine
CN100589308C (zh) * 2007-07-02 2010-02-10 中国船舶重工集团公司第七一二研究所 一种径向通风冷却电机
CN202737597U (zh) * 2012-08-28 2013-02-13 南京汽轮电机(集团)有限责任公司 发电机定子通风槽板及其加工模具
CN203734396U (zh) * 2014-01-20 2014-07-23 东方电气集团东方电机有限公司 一种发电机定子通风沟结构
CN203774903U (zh) * 2014-01-20 2014-08-13 东方电气集团东方电机有限公司 一种多通风口的发电机定子通风沟结构
CN104539071B (zh) * 2014-12-26 2017-11-21 北京金风科创风电设备有限公司 通风槽钢、其制造方法、通风结构及电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029253A1 (en) * 2005-08-06 2007-02-08 Microhellix Systems Gmbh Electrical heating module for air flow heating, in particular for heating and ventilation of seats
CN203774904U (zh) * 2014-01-20 2014-08-13 东方电气集团东方电机有限公司 一种扰流式定子通风沟结构
CN109831042A (zh) * 2019-03-13 2019-05-31 浙江大学 通风槽支撑结构及包括其的电机通风槽结构

Also Published As

Publication number Publication date
CN109831042A (zh) 2019-05-31
CN109831042B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2020182186A1 (zh) 通风槽支撑结构及包括其的电机通风槽结构
WO2016201877A1 (zh) 电机径向通风冷却结构
CN105680602B (zh) 一种便于流体流动的电机
KR20170018008A (ko) 모터에 사용되는 고정자, 모터 및 모터의 환기 냉각 방법
JP4942605B2 (ja) 三相用誘導電器
JP2007306689A (ja) 回転電機
WO2021104002A1 (zh) 一种涡轮叶片尾缘曲线式排气劈缝结构
TWI401705B (zh) 變壓器
JP2014155314A (ja) 回転電機
CN106026450A (zh) 具有水冷式定子和内部风扇式转子的汽轮发电机冷却系统
CN105939070A (zh) 一种利于散热的抽风式汽轮发电机定子
CN204559258U (zh) 用于提高定子端部铁心冷却效果的汽轮发电机
CN109936227B (zh) 风力发电机
KR101719061B1 (ko) 통풍 홈형강, 그 제조 방법, 통풍 구조 및 모터
CN109951024B (zh) 定子及包括其的电机
CN201887971U (zh) 一种提高散热性的电磁线盘和提高散热性的电磁炉
CN114374287B (zh) 一种凸极电机转子空内冷通风结构组件
KR101752055B1 (ko) 통풍 홈형강, 그 제조 방법, 통풍 구조 및 모터
CN104949395A (zh) 一种热泵型微通道换热器
CN218214920U (zh) 散热装置
CN116667601B (zh) 一种带有轴流内风扇的电机内风路设计
WO2021027136A1 (zh) 一种电机用无焊接通风槽板
JP7229059B2 (ja) 静止誘導電器
CN219321142U (zh) 一种变压器调压线圈结构
CN215528729U (zh) 螺旋翘片式多匝绕组冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20771091

Country of ref document: EP

Kind code of ref document: A1