WO2020181953A1 - 散热方法、散热装置、和机柜 - Google Patents

散热方法、散热装置、和机柜 Download PDF

Info

Publication number
WO2020181953A1
WO2020181953A1 PCT/CN2020/075161 CN2020075161W WO2020181953A1 WO 2020181953 A1 WO2020181953 A1 WO 2020181953A1 CN 2020075161 W CN2020075161 W CN 2020075161W WO 2020181953 A1 WO2020181953 A1 WO 2020181953A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heat dissipation
server
liquid cooling
water pumps
Prior art date
Application number
PCT/CN2020/075161
Other languages
English (en)
French (fr)
Inventor
姚希栋
孙晓光
卢冬明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20768884.7A priority Critical patent/EP3927126A4/en
Publication of WO2020181953A1 publication Critical patent/WO2020181953A1/zh
Priority to US17/475,088 priority patent/US20210410336A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20781Liquid cooling without phase change within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control

Definitions

  • the embodiments of the present application relate to the field of server technology, and in particular, to a heat dissipation method, a heat dissipation device, and a cabinet.
  • the data center uses cabinets to place servers.
  • the servers can be installed in the cabinets along a preset installation direction.
  • Each cabinet can provide power and switching equipment for multiple servers in the cabinet.
  • the present application provides a heat dissipation method, a heat dissipation device, and a cabinet, which are used to reduce the size restriction on the cabinet while meeting the heat dissipation requirements of the server.
  • the present application provides a cabinet, which includes a body with a plurality of installation slots provided on the body, and the server can enter the installation slots along a preset installation direction.
  • the cabinet also includes a heat dissipation device, which is used to dissipate heat from the components of the server.
  • the heat dissipation device is arranged on at least one side of the fuselage along the installation direction, and the heat dissipation device is connected to the components of the server.
  • the installation direction is along the front and rear direction of the fuselage, that is, the heat dissipation device can be arranged on the front side and/or the rear side of the fuselage.
  • a heat dissipation device is provided on at least one side of the fuselage along the server installation direction, that is, the heat dissipation device is arranged on the front and/or rear side of the fuselage, so as to dissipate heat from the servers in the fuselage through the heat dissipation device. It can effectively use the space reserved between the adjacent front and rear rows of cabinets, and reduce the space occupation in the left and right directions or up and down directions in the fuselage, thereby reducing the size restrictions on the cabinet itself and the equipment in the cabinet.
  • the installation slot has a front notch for the server to enter, and the heat dissipation device can be arranged on the back side of the fuselage away from the front notch to reduce the space occupation in the left and right directions or up and down directions in the fuselage.
  • the size restriction on the cabinet itself and the equipment in the cabinet is reduced, and it is convenient for operators to maintain the servers and other equipment in the fuselage from the front side of the fuselage, which also improves the convenience of maintaining the servers and other equipment.
  • the rear side of the fuselage away from the front notch is provided with a rear opening, and the heat dissipation device can be installed at the rear opening of the fuselage. In this way, the heat dissipation device can be directly maintained at the rear opening of the fuselage. , Without disassembling the heat sink, thereby improving the convenience of maintaining the heat sink.
  • the heat dissipation device includes a liquid cooling unit, and the liquid cooling unit is in communication with the liquid cooling component on the server, so that the liquid cooling unit provides a lower temperature cooling liquid for the liquid cooling component, and provides an effective The outflowing reflux liquid with higher temperature is processed, so as to realize liquid cooling of the devices on the server.
  • the liquid cooling element can be installed on the surface of the first type of device with higher power consumption on the server. In this way, the heat generated by the first type of device is transferred to the inside of the liquid cooling element through the surface of the liquid cooling element, and then the liquid flowing inside the liquid cooling element will The heat is conducted out of the first type of devices to improve the heat dissipation effect of the devices on the server.
  • the liquid cooling unit may include: a cooling liquid distribution unit CDU.
  • the liquid cooling element on the surface of the first type device may include a liquid cooling plate, so that the liquid cooling element and the first type device have a larger contact area, and the heat dissipation of the first type device is improved. effect.
  • the area of the liquid cooling plate is greater than or equal to the area of the first type of device, so as to further increase the contact area with the first type of device and improve the heat dissipation effect for the first type of device.
  • the first type of device may include a central processing unit.
  • the heat dissipation device further includes a liquid distribution pipeline connected between the liquid cooling unit and the liquid cooling component, and the liquid distribution pipeline is used to cool the liquid cooling unit at a lower temperature.
  • the liquid is distributed to the liquid-cooled parts of each server, and it is also used to condense the high-temperature return liquid from the liquid-cooled parts of each server into the liquid-cooling unit, so as to realize the liquid-cooled channel and liquid-cooling of the liquid-cooled parts on each server Connectivity of the unit.
  • the liquid distribution pipeline is provided with floating liquid cooling joints for communicating with the liquid cooling components on each server, or each server is respectively provided with a floating liquid cooling joint for communicating with the liquid distribution pipeline,
  • the server and the dispensing pipeline may have a fault tolerance range, that is, a fit tolerance, in three dimensions, and the fault tolerance range, that is, a fit tolerance may be ⁇ 2 mm.
  • the liquid separation pipeline and the liquid cooling unit are located on the same side of the fuselage to facilitate the communication between the liquid separation pipeline and the liquid cooling unit.
  • the liquid separation pipeline can be integrated with the liquid cooling unit to improve integration, simplify the assembly process and help reduce liquid leakage.
  • the liquid cooling unit in the heat sink may include: a first heat exchanger, an inner circulation passage, and an outer circulation passage.
  • the inner circulation passage is in communication with the liquid cooling component on the server, and the heat exchanger can be used for the inner circulation.
  • the circulation passage exchanges heat with the outer circulation passage to cool down the liquid in the inner circulation passage, so that the cooling liquid in the inner circulation passage can continuously liquid-cool the devices on the server.
  • the heat dissipation device further includes multiple water pumps for providing power for the flow of liquid between the liquid cooling unit and the liquid cooling element; optionally, multiple water pumps may be provided in the liquid cooling unit.
  • a controller may be provided in the liquid cooling unit, and multiple water pumps may be electrically connected to the controller, so that the controller can control the working state of each water pump, so as to improve the flexibility of the heat sink.
  • the controller can be used to set multiple water pumps to the first working state with a relatively large speed when the total power value of the servers in the cabinet is detected to exceed the first threshold to improve heat dissipation efficiency; When the total power value is less than the first threshold, the multiple water pumps are set to a second working state with a relatively low rotation speed, so as to dissipate heat and save energy.
  • a temperature sensor is provided in the liquid cooling unit, and the temperature sensor is electrically connected to the controller of the liquid cooling unit; the temperature sensor is used to detect the water inlet end of the inner circulation passage or the water outlet end of the outer circulation passage in the liquid cooling unit. Liquid temperature; the controller is used to control the working status of the water pumps in the liquid cooling unit according to the liquid temperature detected by the temperature sensor; the controller is used to set the multiple pumps to the first work with a relatively large speed when the liquid temperature exceeds the second threshold The controller is used to set the plurality of water pumps to a second working state with a relatively low speed when the liquid temperature is less than the second threshold, so as to save energy while dissipating heat.
  • the controller of the liquid cooling unit is used to set the multiple water pumps in the liquid cooling unit to a load sharing mode, so as to help ensure heat dissipation efficiency.
  • multiple water pumps work in load sharing mode, multiple water pumps share the work of liquid flowing through multiple servers.
  • different thresholds can be preset to control the speed of multiple water pumps, thereby effectively controlling the first type in the server The device dissipates heat.
  • the controller of the liquid cooling unit is used to set multiple water pumps in the liquid cooling unit in the active/standby mode, so that when a water pump fails, other water pumps can take over its work, reducing the need for the entire cabinet.
  • the influence of the middle server improves maintenance efficiency.
  • some of the multiple water pumps are in the active state, and the remaining pumps are in the standby state; the controller can be used to control the standby pump to work when the active pump is in an abnormal state.
  • the heat dissipation device further includes an air-liquid unit, and the air-liquid unit and the fan on the server are respectively arranged on both sides of the fuselage along the installation direction, so that the air-liquid unit and the fan of the server can work together.
  • the fan on the front side of the server blows the hot air in the fuselage to the air-liquid unit, and the liquid in the air-liquid unit exchanges heat with the hot air to form cold air discharge.
  • the exhaust air of each rack server can be reduced to the data center.
  • the temperature in the computer room reduces the impact on other cabinet servers around it, thereby helping to reduce the number of cabinets in the data center computer room and reduce costs.
  • the air-liquid unit includes at least one of the following: an air-liquid heat exchanger, a finned radiator, and a heat dissipation pipe.
  • the second type of devices may include internal memory with lower power consumption.
  • the air-liquid unit includes a plurality of air-liquid units, and the plurality of air-liquid units are symmetrically distributed with respect to the liquid cooling unit to improve the uniformity of heat dissipation.
  • the air-liquid unit and the liquid-cooling unit are integrated to improve the integration of the heat sink and simplify assembly.
  • the cabinet further includes a cable path, which is used to communicate and connect each server with a corresponding switch.
  • the cable path can be formed by using bundled cables.
  • the bundled cables can be extended from top to bottom so that the bundled cables can be connected to each server separately and connected to switches and other equipment, which helps reduce the number of cables in the fuselage.
  • the quantity and simplified cable layout are beneficial to reduce the interference of the cable channel to other paths or lines or pipelines, thereby helping to avoid problems such as difficulty in maintenance caused by the excessive number of cables.
  • the cable channel and the heat dissipation device are located on the same side of the fuselage, such as the rear side of the fuselage.
  • the cable path is provided with floating signal connectors for connecting with each server, or each server is provided with floating signal connectors for connecting with the cable path.
  • the cabinet further includes: a power supply path, which is used to provide electrical energy to each server, so as to simplify the wiring in the fuselage.
  • the power supply path can be formed by power supply copper bars, which can be matched with the server at any position.
  • the power supply path and the heat dissipation device are located on the same side of the fuselage, such as the rear side of the fuselage. In this way, when the equipment in the cabinet is maintained, it is convenient to operate from the front side of the cabinet, and the disassembly of the power supply path on the rear side of the fuselage is reduced, and the convenience of maintenance is improved.
  • each server is provided with a floating power connector for connecting with the cable channel, so as to improve the reliability of the connection between the server and the cable channel.
  • the cable channel, power supply channel, and liquid distribution pipeline are arranged side by side along the direction perpendicular to the installation direction and parallel to the server, so that the cable channel, power supply channel, and liquid distribution pipeline are independent of each other. .
  • At least one fixed beam is provided on the fuselage, the fixed beam is perpendicular to the installation direction and parallel to the server, and the cable channel, the power supply channel, and the liquid pipe in the heat sink are all fixed on the fixed beam
  • the upper part is used to facilitate the coplanarity of the cable channel, power supply channel, and liquid distribution pipeline with each server, so as to ensure the reliability of the cooperation between the server and the cable channel, power supply channel, and liquid distribution pipeline.
  • a power supply module is provided in the body, and the power supply module supplies power to each server through the power supply path; the power supply module includes at least one of the following: a power supply module, a battery module that can be installed in the installation slot, to enrich the power supply mode .
  • the present application also provides a heat dissipation method, which is applied to a cabinet, the cabinet includes a fuselage and a heat dissipation device; the fuselage is provided with a plurality of installation slots for the server to enter along a preset installation direction.
  • the heat dissipation device is arranged on at least one side of the body along the installation direction; and the heat dissipation device is connected to the components of the server.
  • the method includes: controlling the heat dissipating device to start the liquid cooling mode to liquid-cool the first-type devices on the server; controlling the heat dissipating device to start the air cooling mode to start the air cooling mode on the server
  • the second-class devices are air-cooled.
  • the present application controls the heat dissipation device arranged on at least one side of the fuselage along the server installation direction to realize air cooling and/or liquid cooling of the server, and can also effectively use the space reserved between the two adjacent rows of cabinets. , And reduce the space occupation in the left and right directions or up and down directions in the fuselage, thereby reducing the restrictions on the size of the cabinet itself and the equipment in the cabinet.
  • a plurality of water pumps are provided in the heat dissipation device; the method further includes: obtaining a total value of power consumption of the servers in the cabinet, and comparing the total value of power consumption with a first threshold; If the total power value exceeds the first threshold, the multiple water pumps are set to the first working state with a relatively large speed to improve the heat dissipation efficiency; if the total power value is less than the first threshold, the multiple water pumps Set to a second working state with a relatively low rotation speed to save energy while dissipating heat; wherein, the rotation speed of the water pump working in the first working state is greater than the rotation speed of the water pump working in the second working state .
  • the heat dissipation device includes multiple water pumps
  • the heat dissipation method further includes: controlling the multiple water pumps to enter a load sharing mode, so that the multiple water pumps work together, so as to ensure heat dissipation efficiency .
  • multiple water pumps work in load sharing mode, multiple water pumps share the work of liquid flowing through multiple servers.
  • different thresholds can be preset to control the speed of multiple water pumps, thereby effectively controlling the first type in the server The device dissipates heat.
  • the multiple water pumps are controlled to enter the load active/standby mode, so that when the active water pump is in an abnormal state, the standby water pump is started. In this way, when a water pump fails, other water pumps can take over its work, reducing the impact on the servers in the entire cabinet and improving maintenance efficiency.
  • the heat dissipation device is provided with multiple water pumps; the heat dissipation method further includes: obtaining the liquid temperature at the water inlet end of the inner circulation path or the water outlet end of the outer circulation path in the liquid cooling unit of the heat dissipation device, and The liquid temperature is compared with the second threshold; if the liquid temperature exceeds the second threshold, the multiple water pumps are set to the first working state with a relatively large speed to improve the heat dissipation efficiency; if the liquid temperature is less than the first
  • the second threshold is to set a plurality of the water pumps in a second working state with a relatively low rotation speed, so as to dissipate heat while saving energy; wherein the rotation speed of the water pump working in the first working state is greater than that of the water pump working Rotation speed in the second working state.
  • the present application also provides a heat sink, which is applied in a cabinet, and includes: a first control module, configured to control the heat sink to start a liquid cooling mode, so as to perform liquid cooling on the first-type devices on the servers in the cabinet;
  • the second control module controls the heat dissipating device to start the air cooling mode, so as to perform air cooling on the second-type devices on the server.
  • the first control module is further configured to: obtain the total power consumption value of the server in the cabinet, and compare the total power consumption value with a first threshold; if the total power value exceeds If the total power value is less than the first threshold, set the plurality of water pumps to the second working state; wherein, the water pumps are working in the first working state.
  • the rotation speed of a working state is greater than the rotation speed of the water pump working in the second working state.
  • the first control module is further configured to: control the multiple water pumps to enter a load sharing mode, so that the multiple water pumps work together.
  • the first control module is further configured to: control the multiple water pumps to enter the load active/standby mode, so as to start the standby water pump when the active water pump is in an abnormal state.
  • the first control module is further used to obtain the liquid temperature at the water inlet end of the inner circulation channel or the water outlet end of the outer circulation channel in the liquid cooling unit of the heat sink, and compare the liquid temperature with the second threshold value. Compare; if the liquid temperature exceeds the second threshold, set multiple water pumps to the first working state; if the liquid temperature is less than the second threshold, set multiple water pumps to the second working state; wherein, The rotation speed of the water pump working in the first working state is greater than the rotation speed of the water pump working in the second working state.
  • the heat dissipation device provided on at least one side of the fuselage along the server installation direction can not only dissipate the heat of each server in the fuselage, but also can effectively use the space reserved between the two adjacent rows of cabinets. Occupy the space in the left and right directions or up and down directions in the fuselage, thereby reducing the size restrictions on the cabinet itself and the equipment in the cabinet.
  • the present application also provides a heat sink, which is applied to a cabinet, and includes: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to execute the executable instructions to implement the foregoing Any one of the methods.
  • the heat dissipation device provided on at least one side of the fuselage along the server installation direction can not only dissipate the heat of each server in the fuselage, but also can effectively use the space reserved between the two adjacent rows of cabinets. Occupy the space in the left and right directions or up and down directions in the fuselage, thereby reducing the size restrictions on the cabinet itself and the equipment in the cabinet.
  • Figure 1 is an exploded schematic diagram of a cabinet provided by an embodiment of the application.
  • Figure 2 is a rear view of a cabinet provided by an embodiment of the application.
  • Figure 3 is a top view of a cabinet provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a liquid cooling unit in a cabinet provided by an embodiment of the application.
  • FIG. 5 is a rear view of the cabinet provided by an embodiment of the application when the liquid cooling unit and the air-liquid unit are not installed;
  • Figure 6 is a top view of the cabinet provided by an embodiment of the application when the liquid cooling unit and the air-liquid unit are not installed;
  • FIG. 7 is a front view of the cabinet provided by an embodiment of the application when the liquid cooling unit and the air-liquid unit are not installed;
  • FIG. 8 is a schematic flowchart of a heat dissipation method provided by an embodiment of the application.
  • FIG. 9 is a structural block diagram of a heat dissipation device provided by an embodiment of the application.
  • FIG. 10 is a structural block diagram of a heat dissipation device provided by another embodiment of the application.
  • connection In the embodiments of this application, unless otherwise clearly specified and limited, the terms “installation”, “connection”, “fixed”, “electrical connection”, “communication connection” and other terms should be understood in a broad sense; for example, “connected” "For example, it can be a fixed connection, a detachable connection, or an integrated unit; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction between two elements.
  • connection can be a fixed connection, a detachable connection, or an integrated unit; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction between two elements.
  • the end of the fuselage facing the supporting surface such as the ground is the lower end (or bottom end), and the end of the fuselage facing away from the supporting surface such as the ground is the upper end.
  • the side of the fuselage facing the operator installing the server is the front side, and the side of the fuselage opposite to the front side is the back side (or back side); the remaining two sides are the left and right sides respectively.
  • left and right directions may be used as the length direction of the cabinet
  • front and rear directions may be used as the width direction of the cabinet
  • up and down directions may be used as the height direction of the cabinet.
  • multiple servers are usually installed in the data center computer room to meet the demand for data processing capabilities.
  • Multiple cabinet servers are usually arranged side by side and close to each other along the length direction, that is, the left and right directions, so that the arrangement of the cabinet servers is compact and regular.
  • cooling devices such as water distribution components, coolant distribution units (CDU), and air-liquid heat exchangers are usually integrated in the cabinet, and water distribution components, liquid-cooled CDU, Air-liquid heat exchangers and other heat dissipation devices are usually installed on the left, right or top of the cabinet, not only occupying the effective space in the cabinet, but also causing the size of the cabinet itself and the equipment in the cabinet to be limited, and during maintenance, usually The entire cabinet needs to be shut down to remove the heat sink from the cabinet.
  • CDU coolant distribution units
  • air-liquid heat exchangers are usually installed on the left, right or top of the cabinet, not only occupying the effective space in the cabinet, but also causing the size of the cabinet itself and the equipment in the cabinet to be limited, and during maintenance, usually The entire cabinet needs to be shut down to remove the heat sink from the cabinet.
  • This embodiment provides a cabinet, which, on the basis of effectively dissipating heat from the servers in the cabinet, reduces the space occupied by the cabinet by the heat dissipation device, and is easy to maintain.
  • the cabinet 1 shown in FIGS. 1 to 3 includes a body 11 and a heat dissipation device 13.
  • the fuselage 11 can be supported on a supporting surface such as the ground, and the fuselage 11 is used to carry equipment such as server switches and servers 15; for example, the fuselage 11 is provided with a plurality of installation slots 111 for installing the servers 15 along the The preset installation direction is installed in the installation groove 111.
  • the heat dissipation device 13 is used to dissipate heat for each server 15; the heat dissipation device 13 is arranged on one side of the body 11.
  • the multiple installation slots 111 provided on the fuselage 11 can be sequentially distributed from top to bottom, that is, multiple installation slots 111 can be stacked on top of each other; in this way, multiple servers 15 can also be arranged sequentially from top to bottom, that is, A plurality of servers 15 may also be stacked one above the other.
  • the height of each installation slot 111 can be set by a size defined by a standard organization.
  • the height of each installation slot 111 can be set according to the unit (u) defined by the American Electronics Industry Association. 1u is equal to 44.45 millimeters.
  • the front side of the mounting slot 111 may have a front notch communicating with the space outside the body 11, so that the server 15 can enter the mounting slot 111 from the front notch until it reaches its preset installation position. In this way, the server 15 can gradually enter the installation slot 111 of the fuselage 11 from front to back; that is, the installation direction of the server 15 is from front to back as shown in FIG. 1.
  • the server 15 when the server 15 arrives or is at its preset installation position, the server 15 can be installed in the installation slot 111 through conventional connection methods such as bonding, welding, clamping, and fastening, so as to help ensure that the server 15 is in the cabinet.
  • connection methods such as bonding, welding, clamping, and fastening, so as to help ensure that the server 15 is in the cabinet.
  • the reliability of electrical connections or communication connections to other devices for example, switches).
  • the server 15 may be detachably installed in the installation slot 111 through conventional detachable connection methods such as snap connection and fastening connection, so as to facilitate the disassembly of the server 15 when the server 15 is maintained.
  • conventional detachable connection methods such as snap connection and fastening connection
  • the installation method of the server 15 is not limited to this, as long as the server 15 can be reliably fixed at its preset installation position after the server 15 reaches its preset installation position.
  • the heat dissipating device 13 is mainly used to dissipate the heat of the servers 15 in the fuselage 11, for example, the heat may be dissipated to the servers 15 by at least one of the following heat dissipation methods: air cooling, liquid cooling or air-liquid mixing.
  • the heat dissipation device 13 can be extended from top to bottom to facilitate uniform heat dissipation of the servers 15 stacked one above the other.
  • the heat dissipation device 13 may be arranged on at least one side of the body 11 along the installation direction, where at least one side of the body 11 along the installation direction refers to the front or rear side of the body 11; that is, the heat dissipation device 13 may be arranged on The front side or the back side of the body 11.
  • the heat dissipation device 13 may be provided on the front side of the fuselage 11; at this time, the heat dissipation device 13 may be detachably installed on the front side of the fuselage 11 through conventional detachable connection methods such as snap connection and fastening connection. Therefore, when the heat dissipation device 13 is maintained, the heat dissipation device 13 can be easily detached from the body 11 by express delivery, which improves the convenience of maintenance of the heat dissipation device 13.
  • the heat dissipating device 13 may be arranged on the rear side of the fuselage 11, so when the server 15 and other equipment need to be maintained, the server 15 can be taken out directly from the front notch of the installation slot 111 without the need to remove the heat sink. 13 is removed from the fuselage 11, thereby improving the convenience of maintaining the server 15 and other equipment.
  • the heat dissipation device 13 can be detachably installed on the front side of the fuselage 11 through conventional detachable connection methods such as snap connection and fastening connection, so that when the heat dissipation device 13 is maintained, it can be easily delivered.
  • the heat dissipation device 13 is detached from the body 11, which improves the convenience of maintenance of the heat dissipation device 13.
  • a heat dissipation device 13 is provided on at least one side of the fuselage 11 along the installation direction of the server 15, that is, the heat dissipation device 13 is provided on the front and/or rear side of the fuselage 11 to pass the heat dissipation device. 13 Heat dissipation of each server 15 in the fuselage 11, and can also effectively use the space reserved between the two adjacent rows of cabinets, and reduce the space occupation in the left and right or up and down directions in the fuselage 11, thereby reducing the need for cabinets. Limits on the size of itself and the equipment in the cabinet.
  • the rear side of the body 11 facing away from the front notch is provided with a rear opening 112, and the heat dissipation device 13 is installed at the rear opening 112 of the body 11.
  • the heat dissipation device 13 is installed at the rear opening 112 of the body 11.
  • arranging the heat sink 13 exposed on the rear side of the body 11 not only reduces the occupation of effective space in the body 11, but also facilitates the heat dissipation of the heat sink 13 itself, and facilitates the air outside the body 11 to enter the body 11
  • Heat dissipation of the equipment in the fuselage 11 in addition, the heat dissipation device 13 can be directly maintained at the rear opening 112 of the fuselage 11 without disassembling the heat dissipation device 13, thereby further improving the maintenance of the heat dissipation device 13 The convenience.
  • the heat dissipating device 13 includes a liquid cooling unit 131, the liquid cooling unit 131 is in communication with the liquid cooling element 152 on the server 15, and the liquid cooling element 152 is provided on the surface of the first type device on the server 15 to prevent the The device is liquid cooled.
  • the first-type devices on the server 15 refer to devices with higher power consumption.
  • the liquid cooling element 152 is provided with a liquid cooling channel through which liquid can pass.
  • the liquid cooling channel can communicate with the liquid cooling unit 131 through a hose, so that The liquid cooling unit 131 provides a cooling liquid with a lower temperature for the liquid cooling element 152 and processes the reflux liquid with a higher temperature flowing out of the liquid cooling element 152.
  • the liquid cooling element 152 may include a liquid cooling plate.
  • the liquid cooling plate is plate-shaped and its area is greater than or equal to the area of the first type of device so as to have a larger contact area with the first type of device.
  • the generated heat is conducted to the inside of the liquid cooling plate through the surface of the liquid cooling plate, and then the heat is transferred out of the first type device through the liquid flowing inside the liquid cooling plate, thereby dissipating the first type device.
  • the surface of each first type device can be provided with a liquid cooling plate; when the server 15 is provided with multiple liquid cooling plates, the multiple liquid cooling plates can be connected in series through a hose to simplify the liquid passage and simplify the structure of the server 15 .
  • liquid-cooling plates used by multiple first-type devices.
  • one liquid-cooling plate can be used to cover the surface of multiple first-type devices.
  • heat dissipation it is also possible to cover the surface of each first-type device with a liquid cooling plate to dissipate heat.
  • the liquid channel in this embodiment refers to the channel in the cabinet for liquid to flow, including the liquid channel in the liquid cooling element 152, the channel in the liquid distribution pipe 133, and the hoses along with each channel, etc. .
  • the heat sink 13 may further include a liquid distribution pipe 133 connected between the liquid cooling unit 131 and the liquid cooling element 152, In order to connect the liquid cooling channel of the liquid cooling element 152 on each server 15 with the liquid cooling unit 131; that is, the liquid cooling element 152 on each server 15 is respectively connected to the liquid distribution pipe 133, and is connected to the liquid cooling unit 133 via the liquid cooling unit 133.
  • the liquid cooling unit 131 is connected; that is, the liquid distribution pipe 133 can distribute the cooling liquid with a lower temperature provided by the liquid cooling unit 131 to the liquid cooling components 152 on each server 15, and the liquid distribution pipe 133 can also distribute the cooling liquid from each server 15
  • the high-temperature return liquid flowing out of the liquid cooling element 152 of the server 15 flows into the liquid cooling unit 131; therefore, it is no longer necessary to connect the liquid cooling element 152 of each server 15 to the liquid cooling unit 131 through a hose, which is beneficial to reduce the amount of liquid in the channel.
  • the flexible hose helps simplify the liquid passage.
  • FIG. 3 takes a component liquid pipeline 133 as an example.
  • the liquid separation pipeline 133 includes a liquid inlet tube 133a and a liquid outlet tube 133b.
  • the liquid inlet tube 133a and the liquid outlet tube 133b are arranged side by side, and the liquid inlet tube 133a is used to distribute the lower temperature cooling liquid provided by the liquid cooling unit 131 to the liquid cooling parts 152 on each server 15, and the outlet pipe 133b will flow the higher temperature return liquid from the liquid cooling parts 152 of each server 15 Join the liquid cooling unit 131.
  • the night inlet pipe 133a and the liquid outlet pipe 133b can be respectively connected with the liquid cooling unit 131 through a hose.
  • the liquid distribution pipeline 133 is provided with a floating liquid cooling joint 154 for communicating with the liquid cooling element 152 on each server 15 respectively, or each server 15 is provided with a floating liquid cooling joint 154 for communicating with the liquid distribution pipeline 133.
  • the cold connector 154 allows the server 15 to have a certain error tolerance range, that is, the fit tolerance, when connected to the liquid distribution pipe 133, thereby helping to improve the reliability of the connection between the server 15 and the liquid distribution pipe 133.
  • the floating liquid-cooled connector 154 can be set based on the performance of the elastic deformation of the spring.
  • springs can be provided in the up and down, front and rear, and left and right directions along the body 11, so that the server 15 and the liquid distribution pipe 133 are in three
  • Each dimension has a tolerance range, that is, a fit tolerance, and the tolerance range, that is, a fit tolerance can be ⁇ 2 mm.
  • the specific structure of the floating liquid-cooled joint 154 is not limited here, and the conventional settings in the field can be used specifically, which will not be repeated here.
  • a sealing structure such as a sealing ring, a sealant, and a waterproof boss may be provided at the connection to help avoid liquid leakage.
  • the liquid distribution pipe 133 and the liquid cooling unit 131 are located on the same side of the fuselage 11, for example, the liquid distribution pipe 133 and the liquid cooling unit 131 are both located on the rear side of the fuselage 11 to facilitate the liquid distribution pipe 133.
  • the connection with the liquid cooling unit 131 further simplifies the liquid passage.
  • liquid separation pipeline 133 can also be integrated with the liquid cooling unit 131 to simplify the assembly process and help reduce liquid leakage.
  • the liquid cooling unit 131 may include a first heat exchanger 131c, an inner circulation passage 131a and an outer circulation passage 131b, and the inner circulation passage 131a and the server
  • the liquid cooling element 152 on 15 is in communication, and the first heat exchanger 131c can provide heat exchange between the inner circulation passage 131a and the outer circulation passage 131b, so as to cool the liquid in the inner circulation passage 131a.
  • the liquid-cooled unit 131 may include a liquid-cooled CDU, and the structure of the liquid-cooled CDU may adopt conventional settings in the art.
  • the first heat exchanger 131c is mainly used to provide a place for heat exchange between the inner circulation passage 131a and the outer circulation passage 131b.
  • the water outlet end of the inner circulation passage 131a is communicated with the liquid inlet pipe 133a in the liquid distribution pipe 133 to provide the cooling liquid of lower temperature after heat exchange with the outer circulation passage 131b to the liquid cooling parts 152 of each server 15.
  • the water inlet end of the internal circulation passage 131a can be connected with the liquid outlet pipe 133b of the liquid distribution pipe 133, so as to merge the high-temperature reflux liquid flowing from the liquid cooling parts 152 of the servers 15 into the first heat exchanger 131c.
  • the middle and outer circulation passages 131b exchange heat.
  • the water inlet end of the outer circulation path 131b can be connected to a water source capable of supplying relatively low-temperature liquids, such as a water tower; the water outlet end of the outer circulation path 131b can be connected to a water tower and other equipment capable of recovering relatively high-temperature liquids to Cool the liquid with relatively high temperature.
  • the first heat exchanger 131c may include a first channel and a second channel, the first channel and the second channel are arranged on the wall, that is, a partition may be provided before the first channel and the second channel, and the partition may have Materials with good thermal conductivity, such as metal materials; among them, the first channel can be connected to the inner circulation passage 131a, and the second channel can be connected to the outer circulation passage 131b; the higher temperature liquid returning from the liquid cooling component can be circulated from the inner
  • the water inlet end of the passage 131a enters, and when it passes through the first passage, it can contact the liquid in the outer circulation passage 131b in the second passage through the partition plate to transfer its heat to the liquid in the outer circulation passage 131b and cool down
  • the subsequent liquid can be supplied to the liquid cooling element from the water outlet end of the internal circulation passage 131a, so as to dissipate the first type of device.
  • a water pump 134 is further provided in the heat sink 13, and the water pump 134 is used to provide power for the flow of liquid between the liquid cooling unit 131 and the liquid cooling element 152.
  • the water pump 134 can be arranged in the internal circulation passage 131a of the liquid cooling unit 131, or the water pump 134 can be arranged between the liquid distribution pipe 133 and the liquid cooling unit 131, as long as it can be liquid between the liquid cooling unit 131 and the liquid cooling unit 131.
  • the flow between 152 can provide power.
  • the water pump 134 may be arranged in the inner circulation passage 131a of the liquid cooling unit 131, such as close to the water outlet end of the inner circulation passage 131a, to ensure the flow rate of the cooling liquid.
  • the water pump 134 can be integrated with the first heat exchanger 131c, etc., to improve integration and facilitate assembly.
  • the liquid cooling unit 131 further includes a controller 131d
  • the water pump 134 includes multiple
  • the multiple water pumps 134 are electrically connected to the controller 131d
  • the controller 131d is used to control the working status of each water pump 134 to improve the operation of the heat sink 1 Flexibility.
  • the controller 131d can be arranged in the liquid cooling unit 131 to facilitate its electrical connection with the water pump 134 and further improve the degree of integration.
  • the controller 131d can specifically use a processor to implement the functions of the controller.
  • the processor can be a central processing unit (CPU), a microprocessor, a digital signal processor (Digital Signal Processing, DSP), and a microcontroller (microcontroller). Unit, MCU), or artificial intelligence processor or other computing devices that run software.
  • Each type of processor may include one or more cores for executing software instructions for calculation or processing.
  • the processor can also be implemented by an application-specific integrated circuit (ASIC) or a programmable logic device (PLD).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the PLD can be a complex programmable logical device (CPLD) , Field-Programmable Gate Array (FPGA), Generic Array Logic (GAL) or any combination thereof.
  • CPLD complex programmable logical device
  • FPGA Field-Programmable Gate Array
  • GAL Generic Array Logic
  • the controller 131d is used to control the opening and closing of the water pumps 134, the flow rate of the output liquid at the output end, and other working conditions.
  • the controller 131d can synchronously control the working state of each water pump 134, or synchronously control the working state of a part of the water pump 134, or separately control the working state of each water pump 134.
  • the cabinet 1 also includes a sensor, which is used to send the power consumption information of each node to the controller 131d, and the controller 131d dynamically adjusts each pump in the liquid cooling unit 131 according to the power consumption of each node in the cabinet 134 working status.
  • the controller 131d can control the water pump 134 to work in the first working state, that is, the first mode, and when the total power consumption of each node in the entire cabinet is When it is less than the first threshold, the controller 131d can control the water pump 134 to work in the second working state, that is, the second mode, wherein the power generated by the water pump 134 in the first mode is higher than that in the second mode, that is, the power in the first mode.
  • the water pump 134 controls the speed of the liquid flowing through the surface of the first type of device higher than that in the second mode.
  • the pump 134 controls the speed of the liquid flowing through the surface of the first type of device. That is to say, the speed of the pump 134 in the first mode is faster, so Take away more heat.
  • a temperature sensor may also be provided in the liquid cooling unit 131, and the temperature sensor may be electrically connected to the controller 131d.
  • the temperature sensor may be provided at the water inlet end of the inner circulation passage 131a to detect the water inlet of the inner circulation passage 131a.
  • the controller 131d can control the working state of each water pump 134 according to the liquid temperature detected by the temperature sensor.
  • the temperature sensor can also be arranged at the water outlet end of the outer circulation passage 131b to detect the liquid temperature at the water outlet end of the outer circulation passage 131b.
  • the controller 131d can control the water pump 134 to work in the first mode, and when the detected liquid temperature is less than the second threshold, the controller 131d can control the water pump 134 to work at The second mode, in which the power generated by the water pump 134 in the first mode is higher than that in the second mode, that is, the water pump 134 in the first mode controls the speed of the liquid flowing through the surface of the first type of device to be higher than the water pump in the second mode 134 controls the speed of the liquid flowing through the surface of the first type of device, that is, the speed of the water pump 134 in the first mode is faster, which in turn can take away more heat.
  • the controller 131d can also control the working status of the water pump 134 through different task sharing modes.
  • the multiple water pumps 134 work in the load sharing mode
  • the water pumps share the work of liquid flowing through multiple servers.
  • different thresholds can be preset to control the rotation speed of the multiple water pumps, so as to effectively dissipate the first-type devices in the server.
  • multiple water pumps 134 work in the active/standby mode
  • only one or more water pumps in the active state are responsible for the work of the liquid flowing through the multiple servers.
  • the pump in the active state fails, the pump in the standby state will take over.
  • the heat dissipation process ensures effective heat dissipation of the server.
  • the maintenance capability of the liquid cooling unit is improved.
  • a water pump fails other water pumps can take over its work, reducing the impact on the servers in the entire cabinet. Improved maintenance efficiency.
  • some of the water pumps 134 in the plurality of water pumps 134 are the main water pumps, that is, the main water pump, and the remaining water pumps 134 are standby water pumps, that is, the auxiliary water pumps.
  • the cabinet 1 may also include a detection unit, which is used to electrically connect with the controller 131d; the detection unit is used to detect the working parameters of the main water pump, such as the flow rate of the output liquid, to determine whether the main water pump is in an abnormal state; the controller 131d also uses After it is determined that the main water pump is in an abnormal state, the auxiliary water pump is controlled to start, and a corresponding prompt signal is generated at the same time, so that the prompt device sends out visual and/or audible prompts according to the prompt signal to promptly remind the staff.
  • the prompt device can be an indicator light, a display screen, a buzzer, etc.
  • the auxiliary water pump can be started to avoid the shutdown of the whole machine and to ensure the heat dissipation effect of the server 15 and other equipment.
  • the heat dissipation device 13 may also include an air-liquid unit 132.
  • the air-liquid unit 132 and the fan 157 on the server 15 are respectively arranged on The fuselage 11 is along the two sides of the installation direction, so that the air-liquid unit 132 air-cools the second-type devices without the liquid cooling element 152, such as the internal storage 153 on the server 15, and the like.
  • the air-liquid unit 132 can work with the fan 157 of the server 15 itself, that is, the fan 157 on the front side of the server 15 blows the hot air in the fuselage 11 to the air-liquid unit 132, and the liquid in the air-liquid unit 132 heats up with the hot air. Exchanging to form cold air exhaust, in this way, can reduce the influence of the exhaust air of each cabinet on the temperature in the data center computer room, and reduce the impact on other cabinet servers around it, thereby helping to reduce other heat dissipation devices in the data center computer room such as air conditioners Etc. to reduce costs.
  • the air-liquid unit 132 may adopt a partition type heat exchanger, which may include at least one of the following: an air-liquid heat exchanger, a finned radiator, and a heat pipe.
  • a partition type heat exchanger which may include at least one of the following: an air-liquid heat exchanger, a finned radiator, and a heat pipe.
  • the structure of the air-liquid heat exchanger, the finned radiator, and the radiating pipe can be conventionally arranged in the field, which will not be repeated here in this embodiment.
  • the air-liquid unit 132 may include multiple air-liquid units 132, and the multiple air-liquid units 132 are symmetrically distributed with respect to the liquid cooling unit 131.
  • the multiple air-liquid units 132 can use the same type of radiator, or different types of radiators.
  • the air-liquid unit 132 can be integrated with the liquid cooling unit 131 to improve the integration of the heat sink 1.
  • the liquid cooling unit 131 is used as the cooling liquid distribution unit CDU as an example.
  • the cooling liquid distribution unit extends in the left and right directions, and the cooling liquid distribution unit corresponds to the air duct in the fuselage 11 Fins or radiating pipes can be provided in the area of, to exchange heat with the hot air in the fuselage 11 through the liquid of the coolant distribution unit itself, to achieve the purpose of air cooling.
  • the cabinet 1 further includes a cable channel 19, the cable channel 19 and the heat sink 13 are located on the same side of the body 11, and the cable channel 19 is used to connect each server 15 with Corresponding switch communication connection.
  • the cable path 19 is formed by a bundled cable, and the bundled cable can be extended from top to bottom, so that the bundled cable is connected to each server 15 and connected to switches and other equipment.
  • this embodiment eliminates the need to connect the respective cables of each server 15 to each switch, which is beneficial to reduce the number of cables in the body 11, simplify the cable layout, and reduce the cable path 19 Interference to other paths or lines or pipelines, thereby helping to avoid problems such as difficulty in maintenance caused by the excessive number of cables.
  • the cable channel 19 is provided with a floating signal connector 156 for connecting with each server 15 respectively, or each server 15 is provided with a floating signal connector 156 for connecting with the cable channel 19 respectively.
  • the floating signal connector 156 is provided on one of the cable passage 19 and the server 15, the other is provided with a blind plug that matches the floating signal connector 156; and the cable passage 19, the floating type Both the signal connector 156 and the blind plug can meet the demand for high-speed signal transmission.
  • the floating signal connector 156 can be set based on the performance of spring elastic deformation.
  • springs can be provided in the up and down, front and rear, and left and right directions along the body 11, so that the server 15 and the cable channel 1919 are in three All dimensions have a tolerance range, that is, a fit tolerance, and the tolerance range, that is, a fit tolerance can be ⁇ 2 mm.
  • the specific structure of the floating signal connector 156 is not limited here, and the conventional settings in the field can be used specifically, which will not be repeated here.
  • the cabinet 1 further includes: a power supply path 17, the power supply path 17 and the heat dissipation device 13 are located on the same side of the body 11, and the power supply path 17 is used to provide electrical energy to each server 15.
  • the power supply path 17 may include power supply copper bars, and the power supply copper bars may extend in the up and down direction, so as to cooperate with each server 15 and can cooperate with the server 15 at any position.
  • Each server 15 is respectively provided with a floating power connector 155 for connecting with a cable supply channel, so that when the server 15 is installed, a certain fault tolerance range, that is, a matching tolerance, can be provided to facilitate the installation of the server 15.
  • the floating power connector 155 can be set based on the performance of elastic deformation of the spring, for example, springs can be provided in the up and down, front and rear, and left and right directions along the body 11, so that the server 15 is fault-tolerant in all three dimensions.
  • the range is the fit tolerance, and the fault tolerance range, that is, the fit tolerance can be ⁇ 2 mm.
  • the specific structure of the floating power connector 155 is not limited here, and the conventional settings in the field can be used specifically, and will not be repeated here.
  • the cable channel 19, the power supply channel 17, and the liquid distribution pipe 133 in the heat sink 13 can be arranged side by side in a direction perpendicular to the installation direction and parallel to the server 15; that is, the cable The passage 19, the power supply passage 17, and the liquid distribution pipe 133 can be distributed side by side from left to right.
  • the arrangement sequence of the cable passage 19, the power supply passage 17 and the liquid distribution pipeline 133 is not specifically limited in this embodiment, and can be set according to actual needs.
  • the position of the power supply path 17 can be set according to the position of the output port of the power supply module in the body 11.
  • At least one fixed beam 115 is provided on the fuselage 11, and the fixed beam 115 is perpendicular to the installation direction and is arranged parallel to the server 15.
  • the cable channel 19, the power supply channel 17 and the liquid distribution pipe 133 in the heat sink 13 are all arranged Fixed on the fixed beam 115 to facilitate the accuracy of the relative positions of the cable channel 19, the power supply channel 17, and the heat sink 13, that is, to facilitate the cable channel 19, the power supply channel 17, and the liquid distribution line 133 with each server 15
  • the matching positions are coplanar, so as to ensure the reliability of the cooperation of the server 15 with the cable channel 19, the power supply channel 17 and the liquid distribution pipeline 133.
  • each fixed beam 115 is horizontally arranged with a server 15 to ensure that each server 15 can be connected to the cable channel 19, the power supply channel 17 and the heat dissipation device 13 through the fixed beam.
  • a power supply module is provided in the body 11, and the power supply module supplies power to each server 15 through the power supply path 17; the power supply module includes at least one of the following: a power supply module 114 and a battery module 113 that can be installed in the installation slot 111.
  • the power module 114 can be fixed in the fuselage 11 by fastening, snapping, and bonding; the battery module 113 can be installed in the mounting slot 111 of the fuselage 11. At this time, the battery can be set according to actual needs. The number of modules 113.
  • the cabinet 1 provided in this embodiment can meet the heat dissipation requirements of the server 15 and other equipment by providing the heat dissipation device 13.
  • the heat sink 13, the cable passage 19, and the power supply passage 17 are arranged on the rear side of the fuselage 11, not only the occupation of the effective space in the fuselage 11 is reduced, but the cost to the fuselage 11 itself and the equipment in the fuselage 11 is reduced.
  • the size limitation reduces the obstruction of the equipment in the fuselage 11 by cables and the like when the equipment in the fuselage 11 is maintained, which is beneficial to improve the convenience of maintaining the equipment in the fuselage 11.
  • the rear opening 112 of the body 11 provides an operation space for the maintenance of the heat sink 13, etc.
  • the device 13 is overhauled, it is not necessary to disassemble the heat sink 13, which is beneficial to avoid the shutdown of the whole machine.
  • the working status of the water pump 134 such as the flow rate of the output liquid of the water pump 134, the number of starts, etc.
  • the working parameters of the body 11 such as temperature and power
  • multiple water pumps 134 can be used as backups for each other, so that when the main water pump is abnormal, the auxiliary water pump (that is, the standby water pump) can be started in time, thereby further helping to avoid the shutdown of the whole machine.
  • This embodiment also provides a heat dissipation method, which can be used for the heat dissipation device in any of the foregoing embodiments, and it can have the same or corresponding technical effects as the foregoing heat dissipation device.
  • the heat dissipation method includes:
  • the liquid cooling unit in the heat dissipation device may be in a working state, and its specific working process may be similar to the description of the foregoing embodiment, and will not be repeated here.
  • the heat dissipation method may further include: detecting the power and/or temperature in the fuselage, and adjusting the water pump in the heat dissipation device to accelerate the liquid flow rate according to the detected power and/or temperature to improve the heat dissipation efficiency, Meet the heat dissipation needs. For example, when the power and/or temperature in the fuselage is high, the speed of the water pump is increased to increase the flow rate of the liquid flowing through the liquid cooling plate to improve the heat dissipation efficiency; the power and/or temperature in the fuselage is relatively high. When it is low, reduce the speed of the water pump to reduce the flow rate of the liquid flowing through the liquid cooling plate to reduce the heat dissipation efficiency. While meeting the heat dissipation demand, it can also save energy and reduce consumption.
  • the number of pumps to be started or the flow rate of the liquid output from each pump can be controlled according to the detected power and/or temperature; for example, when the power and/or temperature in the machine is high, the pump can be added In order to improve the heat dissipation efficiency and meet the heat dissipation requirements; when the power and/or temperature in the fuselage is low, reduce the number of pump startups to reduce the heat dissipation efficiency. While meeting the heat dissipation requirements, it can also save energy and reduce consumption. .
  • the total power consumption of the servers in the cabinet may be obtained, and the total power consumption may be compared with the first threshold; if the total power exceeds the first threshold, the multiple water pumps are set to the first working state; if If the total power value is less than the first threshold value, the multiple water pumps are set to the second working state; wherein the rotation speed of the water pump working in the first working state is greater than the rotation speed of the water pump working in the second working state.
  • the liquid temperature at the water inlet end of the inner circulation channel or the water outlet end of the outer circulation channel in the liquid cooling unit of the heat sink can be obtained, and the liquid temperature is compared with a second threshold; if the liquid temperature exceeds the second threshold, multiple The water pump is set to the first working state; if the liquid temperature is less than the second threshold, the plurality of water pumps are set to the second working state; wherein the rotation speed of the water pump working in the first working state is greater than the rotation speed of the water pump working in the second working state.
  • the heat dissipation device can also be controlled to enter the active/standby mode, and the working process can be similar to the foregoing, and will not be repeated here.
  • some of the water pumps can be set as main water pumps, and the rest are auxiliary water pumps; the working parameters of the main water pump can also be detected to determine whether the main water pump is in an abnormal state according to the working parameters of the main water pump; if the main water pump is determined In an abnormal state, the auxiliary water pump is controlled to start. In this way, when the main water pump is in an abnormal state due to a failure or other reasons, the auxiliary water pump can also be started to help avoid the shutdown of the whole machine and to ensure the heat dissipation effect of the server and other equipment.
  • the heat dissipation device can also be controlled to enter the load sharing mode, and its working process can be similar to the foregoing, and will not be repeated here.
  • a prompt signal can also be generated so as to be able to issue visual and/or auditory prompts according to the prompt signal to promptly remind the staff.
  • the air-liquid unit in the heat sink and the fan of the server may be in working state, and the specific working process may be similar to the description of the foregoing embodiment, and will not be repeated here.
  • the heat dissipation method may further include: detecting the power and/or temperature in the body; and adjusting the rotation speed of the fan on the server according to the detected power and/or temperature to adjust the air cooling efficiency. For example, when the power and/or temperature in the fuselage is high, the fan speed is increased to improve air cooling efficiency, that is, heat dissipation efficiency; when the power and/or temperature in the fuselage is low, the fan speed is reduced to Reduce the heat dissipation efficiency, while meeting the heat dissipation demand, it can also save energy and reduce consumption.
  • the flow rate of the liquid in the air-liquid unit can be adjusted according to the detected power and/or temperature to adapt to the speed of the fan.
  • step S101 and step S102 can be executed at the same time, or step S101 is executed first, then step S102 is executed, or step S102, Step S101 is executed again.
  • an embodiment of the present application also provides a heat sink, which is applied in a cabinet, and includes: a first control module 141, configured to control the heat sink to start the liquid cooling mode, so as to control the first type on the server in the cabinet The device is liquid-cooled; the second control module 142 is used to control the heat dissipation device to start the air-cooling mode to perform air-cooling of the second-type devices on the server.
  • the first control module 141 is further configured to: obtain the total value of power consumption of the servers in the cabinet, and compare the total value of power consumption with a first threshold; if the total value of power exceeds the first threshold, then Set multiple water pumps to the first working state; if the total power value is less than the first threshold, set multiple water pumps to the second working state; wherein the speed of the water pump working in the first working state is greater than that of the water pump working in the second working state ⁇ rpm ⁇
  • the first control module 141 is further configured to: control multiple water pumps to enter the load sharing mode, so that the multiple water pumps work together.
  • the first control module 141 is further configured to: control multiple water pumps to enter the load active/standby mode, so as to start the standby water pump when the active water pump is in an abnormal state.
  • the first control module 141 is further configured to: obtain the liquid temperature at the water inlet end of the inner circulation passage or the water outlet end of the outer circulation passage in the liquid cooling unit of the heat sink, and compare the liquid temperature with a second threshold; If the liquid temperature exceeds the second threshold, set the multiple water pumps to the first working state; if the liquid temperature is less than the second threshold, set the multiple water pumps to the second working state; where the water pump works at the speed of the first working state It is greater than the rotation speed of the water pump in the second working state.
  • an embodiment of the present application also provides a heat sink, which is applied to a cabinet, and includes: a processor 146; a memory 147 for storing executable instructions of the processor; wherein the processor 146 is configured to execute Execute instructions to achieve any of the steps described above.

Abstract

本申请涉及服务器技术领域,尤其涉及一种散热方法、散热装置和机柜,用以在满足服务器散热需求的情况下,减少对机柜的尺寸限制。其中,所述机柜,包括:机身,所述机身上设置有多个可供服务器沿预设安装方向进入的安装槽;散热装置,所述散热装置用于对服务器的器件进行散热,所述散热装置设置在所述机身沿所述安装方向的至少一侧;且所述散热装置与所述服务器的器件相连,以对机身中各服务器进行散热,且还能够有效利用相邻前后两排机柜之间预留的空间,而减少对机身内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制。

Description

散热方法、散热装置、和机柜 技术领域
本申请实施例涉及服务器技术领域,尤其涉及一种散热方法、散热装置和机柜。
背景技术
随着计算机领域的技术发展,部署大规模服务器的数据中心越来越多。数据中心利用机柜放置服务器,服务器可沿预设安装方向安装至机柜中,每个机柜可以为该机柜内的多个服务器提供电能和交换设备。
目前,由于高度集成化的大功耗芯片越来越多地被应用到服务器中,服务器运行过程中产生的热量越来越大,导致服务器散热的需求也越来越高。而且,随着数据中心中服务器的数据处理量增大,数据中心产生的热量越来越多,数据中心所在机房的温度也越来越高,传统的散热方法通常采用空调或风扇控制机房的温度,服务器采用风冷或液冷方式对其服务器内器件进行散热,但是,上述方法增加了成本,而且,为了配合服务器的散热方案还需要更改机柜的尺寸。因此,如何在满足服务器散热需求的情况下,减少对机柜的尺寸限制就成了业界亟需解决的问题之一。
发明内容
本申请提供一种散热方法、散热装置和机柜,用以在满足服务器散热需求的情况下,减少对机柜的尺寸限制。
本申请提供一种机柜,包括:机身,机身上设置有多个安装槽,服务器可沿预设的安装方向进入安装槽。机柜还包括散热装置,散热装置用于对服务器的器件进行散热,散热装置设置在机身沿安装方向的至少一侧,且散热装置与服务器的器件相连。其中,设置安装方向是沿机身的前后方向,也即散热装置可设置在机身的前侧和/或后侧。
本申请通过在机身沿服务器安装方向的至少一侧设置散热装置,也即将散热装置设置在机身的前侧和/或后侧,以通过散热装置对机身中各服务器进行散热,且还能够有效利用相邻前后两排机柜之间预留的空间,而减少对机身内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制。
在一种可能实现方式中,安装槽具有可供服务器进入的前槽口,散热装置可设置在机身背离前槽口的后侧,以减少对机身内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制,且便于作业人员从机身的前侧对机身内的服务器等设备进行维护,也即提高了对服务器等设备的维护的便利性。
在一种可能实现方式中,机身背离前槽口的后侧设置有后开口,散热装置可安装在机身的后开口处,如此,可直接在机身的后开口处对散热装置进行维护,而无需再将散热装置进行拆卸,从而提高了对散热装置维护的便利性。
在一种可能实现方式中,散热装置包括液冷单元,液冷单元与服务器上的液冷件连通,以使得液冷单元为液冷件提供温度较低的冷却液体,并对从液冷件流出的温度较高的回流液体进行处理,从而实现对服务器上器件的液冷。液冷件可设置在服务器上功耗较大的第一类器件的表面,如此,第一类器件产生的热量通过液冷件表面传导至液冷件内部,再通过液冷件内部流动液体将热量传导出第一类器件外部,以提高对服务器上器件的散热效果。可选地,液冷单元可包括:冷却液分配单元CDU。
在一种可能实现方式中,第一类器件表面的液冷件可包括液冷板,以使得液冷件与第一类器件之间具有较大的接触面积,提高对第一类器件的散热效果。可选地,液冷板的面积大于或等于第一类器件的面积,以进一步增大与第一类器件的接触面积,提高对第一类器件的散热效果。可选地,第一类器件可包括中央处理器。
在一种可能实现方式中,散热装置还包括分液管路,分液管路连接在液冷单元与液冷件之间,分液管路用于将液冷单元提供的温度较低的冷却液体分配给各服务器的液冷件,还用于将从各服务器液冷件上流出的温度较高的回流液体汇入液冷单元,从而实现各服务器上液冷件的液冷通道与液冷单元的连通。该实现方式中,无需再将各服务器的液冷件分别通过软管与液冷单元连接,利于减少机柜中的软管,减少对其它通路或者线路的干扰或干涉。
可选地,分液管路上设置有分别用于与各服务器上液冷件连通的浮动式液冷接头,或者,各服务器上分别设置有用于与分液管路连通的浮动式液冷接头,以使得服务器与分液管路连接时,具有一定的容错范围也即配合公差,从而利于提高服务器与分液管路的连接可靠性。其中,服务器与分液管路可在三个维度上均具有容错范围也即配合公差,容错范围也即配合公差可以为±2毫米。
可选地,分液管路与液冷单元位于机身的同侧,以便于分液管路与液冷单元的连通。其中,分液管路可与液冷单元一体设置,以提高集成度、简化装配过程且利于减少液体泄漏。
在一种可能实现方式中,散热装置中的液冷单元可包括:第一换热器、内循环通路及外循环通路,内循环通路与服务器上的液冷件连通,换热器可供内循环通路与外循环通路热交换,以对内循环通路中的液体降温,使得内循环通路中的冷却液体能够持续地对服务器上的器件进行液冷。
在一种可能实现方式中,散热装置还包括用于为液体在液冷单元与液冷件之间的流动提供动力的多个水泵;可选地,多个水泵可以设置在液冷单元中。液冷单元中可设置有控制器,多个水泵可与控制器电连接,以使控制器能够控制各水泵的工作状态,以提高散热装置的灵活性。控制器可用于在检测到机柜中服务器的功率总值超过第一阈值时,将多个水泵设置为转速相对较大的第一工作状态,以提高散热效率;用于在检测到机柜中服务器的功率总值小于第一阈值时,将多个水泵设置为转速相对较低的第二工作状态,以在散热的同时还能节能。
在一种可能实现方式中,液冷单元中设置有温度传感器,温度传感器与液冷单元的控制器电连接;温度传感器用于检测液冷单元中内循环通路进水端或者外循环通路出水端的液体温度;控制器用于根据温度传感器检测的液体温度控制液冷单元内各水泵的工作状态;控制器用于在液体温度超过第二阈值上,将多个水泵设置为转速相对 较大的第一工作状态,以提高散热效率;控制器用于在液体温度小于第二阈值,将多个水泵设置为转速相对较低的第二工作状态,以在散热的同时还能节能。
在一种可能实现方式中,液冷单元的控制器用于将液冷单元中的多个水泵设置为负载分担模式,以利于保证散热效率。当多个水泵工作在负载分担模式时,多个水泵共同承担流经多个服务器的液体的工作,具体实现时,可以预设不同阈值控制多个水泵的转速,进而有效对服务器内第一类器件进行散热。
在一种可能实现方式中,液冷单元的控制器用于将液冷单元中的多个水泵设置为主备模式,以在有水泵出现故障时,可以通过其他水泵接管其工作,减少对整个机柜中服务器的影响,提升了维护效率。其中,多个水泵中的部分水泵为主用状态的水泵,其余部分水泵为备用状态的水泵;控制器可用于在主用状态的水泵处于异常状态时,控制备用状态的水泵于工作。
在一种可能实现方式中,散热装置还包括风液单元,风液单元与服务器上的风扇分别设置在机身沿安装方向的两侧,以便于风液单元与服务器自身的风扇配合工作。如此,服务器前侧的风扇将机身内的热风吹向风液单元,风液单元中的液体将与热风进行热交换从而形成冷风排出,如此,能降低各机柜式服务器的排风对数据中心机房内的温度的影响,降低对其周围的其它柜式服务器的影响,从而利于减少数据中心机房内的机柜,降低成本。可选地,风液单元包括如下至少一种:风液换热器、翅片式散热器、散热管。第二类器件可包括功耗较低的内存储器等。
在一种可能实现方式中,风液单元包括多个,多个风液单元相对于液冷单元对称分布,以提高散热均匀性。可选地,风液单元与液冷单元一体设置,以提高散热装置的集成度,简化装配。
在一种可能实现方式中,机柜还包括:线缆通路,线缆通路用于将各服务器与相应的交换机通信连接。线缆通路可采用集束化线缆形成,集束化线缆可从上往下延伸设置,以便于集束化线缆分别与各服务器连接,且与交换机等设备连接,利于减少机身内的线缆数量、简化线缆的布局,利于减少线缆通道对其它通路或者线路或者管路的干扰,从而利于避免线缆数量过多导致的维修困难等问题。
在一种可能实现方式中,线缆通路与散热装置位于机身的同侧,如机身的后侧。通过将线缆通道设置在机身的后侧,如此,在对机柜内的设备进行维护时,便于从机柜的前侧操作,而减少对机身后侧的线缆通道等的拆卸,提高维护的便利性。
在一种可能实现方式中,线缆通路上设置有分别用于与各服务器连接的浮动式信号连接器,或者,各服务器上分别设置有用于与线缆通路连接的浮动式信号连接器。如此设置,服务器与线缆通道连接时,可具有一定的容错范围也即配合公差,从而利于提高服务器与线缆通道的连接可靠性。
在一种可能实现方式中,机柜还包括:供电通路,供电通路用于将电能提供给各服务器,以简化机身内的线路。供电通路可由供电铜条形成,在其任意位置均可与服务器配合。
在一种可能实现方式中,供电通路与散热装置位于机身的同侧,如机身的后侧。如此,在对机柜内的设备进行维护时,便于从机柜的前侧操作,而减少对机身后侧的供电通路等的拆卸,提高维护的便利性。
在一种可能实现方式中,各服务器上分别设置有用于与线供通道连接的浮动式电源连接器,以利于提高服务器与线缆通道的连接可靠性。。
在一种可能实现方式中,线缆通路、供电通路及分液管路,沿与安装方向垂直且与服务器平行的方向并排设置,以便于线缆通路、供电通路及分液管路相互独立设置。
在一种可能实现方式中,机身上设置有至少一个固定梁,固定梁与安装方向垂直且与服务器平行设置,线缆通路、供电通路及散热装置中的分液管路均固定在固定梁上,以利于线缆通路、供电通路及分液管路与各服务器的配合处共面,从而利于保证服务器与线缆通道、供电通路及分液管路配合的可靠性。
在一种可能实现方式中,机身中设置有供电模块,供电模块通过供电通路为各服务器供电;供电模块包括如下至少一种:电源模块、可安装于安装槽的电池模块,以丰富供电模式。
本申请还提供一种散热方法,应用于机柜中,所述机柜包括机身及散热装置;所述机身上设置有多个可供服务器沿预设安装方向进入的安装槽所述散热装置用于对服务器的器件进行散热,所述散热装置设置在所述机身沿所述安装方向的至少一侧;且所述散热装置与所述服务器的器件相连。其中,所述方法包括:控制所述散热装置启动液冷模式,以对所述服务器上的第一类器件进行液冷;控制所述散热装置启动风冷模式,以对所述服务器上的第二类器件进行风冷。
本申请通过控制设置在机身沿服务器安装方向的至少一侧的散热装置,以实现对服务器进行风冷和/或液冷,且还能够有效利用相邻前后两排机柜之间预留的空间,而减少对机身内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制。
在一种可能实现方式中,所述散热装置中设置有多个水泵;所述方法还包括:获取机柜中服务器的功耗总值,且将所述功耗总值与第一阈值进行比较;若所述功率总值超过第一阈值,则将多个水泵设置为转速相对较大的第一工作状态,以提高散热效率;若所述功率总值小于第一阈值,将多个所述水泵设置为转速相对较低的第二工作状态,以在散热的同时还能节能;其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
在一种可能实现方式中,所述散热装置包括多个水泵,所述散热方法还包括:控制所述多个水泵进入负载分担模式,以使所述多个水泵共同工作,以利于保证散热效率。当多个水泵工作在负载分担模式时,多个水泵共同承担流经多个服务器的液体的工作,具体实现时,可以预设不同阈值控制多个水泵的转速,进而有效对服务器内第一类器件进行散热。
在一种可能实现方式中,控制所述多个水泵进入负载主备模式,以在主用状态的水泵处于异常状态时,启动备用状态的水泵。如此,在有水泵出现故障时,可以通过其他水泵接管其工作,减少对整个机柜中服务器的影响,提升了维护效率。
在一种可能实现方式中,所述散热装置中设置有多个水泵;所述散热方法还包括:获取散热装置的液冷单元中内循环通路进水端或者外循环通路出水端的液体温度,将所述液体温度与第二阈值进行比较;若所述液体温度超过第二阈值,则将多个水泵设置为转速相对较大的第一工作状态,以提高散热效率;若所述液体温度小于第二阈值, 将多个所述水泵设置为转速相对较低的第二工作状态,以在散热的同时还能节能;其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
本申请还提供一种散热装置,应用于机柜中,包括:第一控制模块,用于控制所述散热装置启动液冷模式,以对所述机柜中服务器上的第一类器件进行液冷;第二控制模块,控制所述散热装置启动风冷模式,以对所述服务器上的第二类器件进行风冷。
在一种可能实现方式中,所述第一控制模块还用于:获取机柜中服务器的功耗总值,且将所述功耗总值与第一阈值进行比较;若所述功率总值超过第一阈值,则将多个水泵设置为第一工作状态;若所述功率总值小于第一阈值,将多个所述水泵设置为第二工作状态;其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
在一种可能实现方式中,所述第一控制模块还用于:控制所述多个水泵进入负载分担模式,以使所述多个水泵共同工作。
在一种可能实现方式中,所述第一控制模块还用于:控制所述多个水泵进入负载主备模式,以在主用状态的水泵处于异常状态时,启动备用状态的水泵。
在一种可能实现方式中,所述第一控制模块还用于:获取散热装置的液冷单元中内循环通路进水端或者外循环通路出水端的液体温度,将所述液体温度与第二阈值进行比较;若所述液体温度超过第二阈值,则将多个水泵设置为第一工作状态;若所述液体温度小于第二阈值,将多个所述水泵设置为第二工作状态;其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
本申请通过设置在机身沿服务器安装方向的至少一侧的散热装置,既能够对机身中各服务器进行散热,且还能够有效利用相邻前后两排机柜之间预留的空间,而减少对机身内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制。
本申请还提供一种散热装置,应用于机柜中,包括:处理器;用于存储所述处理器可执行指令的存储器;其中,所述处理器被配置为执行所述可执行指令以实现前述任一项所述的方法。
本申请通过设置在机身沿服务器安装方向的至少一侧的散热装置,既能够对机身中各服务器进行散热,且还能够有效利用相邻前后两排机柜之间预留的空间,而减少对机身内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制。
附图说明
图1为本申请实施例提供的机柜的分解示意图;
图2为本申请实施例提供的机柜的后视图;
图3为本申请实施例提供的机柜的俯视图;
图4为本申请实施例提供的机柜中液冷单元的结构示意图;
图5为本申请实施例提供的机柜未安装液冷单元及风液单元时的后视图;
图6为本申请实施例提供的机柜未安装液冷单元及风液单元时的俯视图;
图7为本申请实施例提供的机柜未安装液冷单元及风液单元时的前视图;
图8为本申请实施例提供的散热方法的流程示意图;
图9为本申请一实施例提供的散热装置的结构框图;
图10为本申请另一实施例提供的散热装置的结构框图。
具体实施方式
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“连接”、“固定”、“电连接”、“通信连接”等术语应做广义理解;例如,以“连接”为例,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请实施例中,为便于清楚地描述,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或者相似项进行区分,本领域技术人员可以理解“第一”、“第二”并不对数量和次序进行限定。
另外,本申请实施例中,为便于叙述的明了,不妨以机柜正常工作时,机身朝向地面等支撑面的一端为下端(或者底端),则机身背离地面等支撑面的一端为上端;不妨以机身朝向安装服务器的作业人员的一侧为前侧,机身上与前侧相对的则为后侧(或者背侧);剩余两侧则分别为左侧和右侧。
其中,“上”、“下”、“前”、“后”“左”、“右”等的用语,是用于描述各个结构在附图中的相对位置关系,仅为便于叙述的明了,而非用以限定本申请可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本申请实施例可实施的范畴。
此外,不妨以左右方向作为机柜的长度方向,以前后方向作为机柜的宽度方向,以上下方向作为机柜的高度方向。
目前,数据中心机房内通常设置有多个服务器,以满足对数据处理能力的需求。多个柜式服务器通常沿长度方向也即左右方向并排且紧靠设置,以使得柜式服务器的排布紧凑且规整。相邻两排柜式服务器之间通常预留有一定空间,也即沿前后方向或者柜式服务器的宽度方向,相邻的两柜式服务器之间具有预设的间距,以便于作业人员从柜式服务器的前侧操作服务器或者观察柜式服务器的情况。
传统技术中,为满足服务器的散热需求,通常在机柜内集成分水组件、冷却液分配单元(coolant distribution unit,CDU)、风液换热器等散热装置,且分水组件、液冷CDU、风液换热器等散热装置通常设置在机柜内部的左侧、右侧或者顶端,不仅占用了机柜内的有效空间,还导致机柜本身及机柜内设备的尺寸受限,且在维护时,通常需要整柜停机以将散热装置从机柜内拆除。
本实施例提供一种机柜,在有效对机柜内服务器散热的基础上,又减少了散热装置所占用机柜的空间,且易于维护。
请参照图1至图3;其中,图中的箭头A所指的方向为上,箭头R所指的方向为右,箭头F所指的方向为前,箭头I用于示意服务器的安装方向。若以从前往后看的方向为主视方向,则图2为后视图,图3为俯视图。
图1至图3示出的机柜1,包括:机身11及散热装置13。机身11可支撑在地面等支撑面上,机身11用于承载服务器交换机、服务器15等设备;例如,机身11上设置有多个用于安装服务器15的安装槽111,服务器15可沿预设安装方向安装至安装槽111中。散热装置13用于对各服务器15进行散热;散热装置13设置在机身11的一侧。
机身11上设置的多个安装槽111,可从上往下依次分布,也即多个安装槽111可上下层叠设置;如此,多个服务器15也可从上往下依次排布,也即多个服务器15也可上下层叠设置。
作为一个可能的实施例,每个安装槽111的高度可以采用标准组织定义的大小设置,例如,按照美国电子工业协会定义的单元(unit,u)为单位设置每个安装槽位111的高度,1u等于44.45毫米。
安装槽111的前侧可具有与机身11外的空间连通的前槽口,以使服务器15可从前槽口处进入安装槽111,直至到达其预设的安装位置。如此,服务器15可由前至后逐渐进入机身11的安装槽111中;也就是说,服务器15的安装方向是由图1所示的由前向后的方向。
其中,服务器15到达或者位于其预设的安装位置时,服务器15可通过粘接、焊接、卡接、紧固连接等常规的连接方式安装在安装槽111中,以利于保证服务器15与机柜中的其它设备(例如,交换机)电连接或者通信连接的可靠性。
可选地,服务器15可通过卡接、紧固连接等常规的可拆卸连接方式可拆卸地安装在安装槽111中,以在对服务器15进行维护时,便于服务器15的拆卸。
当然,服务器15的安装方式并不限于此,只要在服务器15到达其预设的安装位置后,能够将服务器15可靠地固定在其预设的安装位置即可。
散热装置13主要用于对机身11中的各服务器15进行散热,例如可通过如下至少一种散热方式对各服务器15进行散热:风冷、液冷或风液混合。
散热装置13可从上往下延伸设置,以利于对上下层叠设置的各服务器15均匀散热。散热装置13可以设置在机身11沿安装方向的至少一侧,其中,机身11沿安装方向的至少一侧,是指机身11的前侧或者后侧;也即散热装置13可以设置在机身11的前侧或者后侧。
在一些实施例中,散热装置13可设置机身11的前侧;此时,散热装置13可通过卡接、紧固连接等常规的可拆卸连接方式可拆卸地安装机身11的前侧,以在对散热装置13进行维护时,能够方便快递地将散热装置13从机身11上拆卸下来,提高了对散热装置13维护的便利性。
在一些实施例中,散热装置13可以设置在机身11的后侧,如此在需要对服务器15等设备进行维护时,服务器15可直接从安装槽111的前槽口取出,而无需将散热装置13从机身11上拆下,从而提高了对服务器15等设备的维护的便利性。
此外,本示例中,散热装置13可通过卡接、紧固连接等常规的可拆卸连接方式可拆卸地安装机身11的前侧,以在对散热装置13进行维护时,能够方便快递地将散热装置13从机身11上拆卸下来,提高了对散热装置13维护的便利性。
本实施例提供的机柜1,通过在机身11沿服务器15安装方向的至少一侧设置散 热装置13,也即将散热装置13设置在机身11的前侧和/或后侧,以通过散热装置13对机身11中各服务器15进行散热,且还能够有效利用相邻前后两排机柜之间预留的空间,而减少对机身11内左右方向或者上下方向的空间占用,从而减少对机柜本身及机柜内设备尺寸的限制。
可选地,机身11背离前槽口的后侧设置有后开口112,散热装置13安装在机身11的后开口112处。如此,将散热装置13裸露设置在机身11的后侧,不仅减少对机身11内有效空间的占用,还利于散热装置13自身的散热,且利于机身11外部的空气进入机身11内对机身11内的设备进行散热,此外,还可直接在机身11的后开口112处对散热装置13进行维护,而无需再将散热装置13进行拆卸,从而进一步提高了对散热装置13维护的便利性。
可选地,散热装置13包括液冷单元131,液冷单元131与服务器15上的液冷件152连通,液冷件152设置在服务器15上的第一类器件的表面,以对第一类器件进行液冷。
其中,服务器15上第一类器件是指功耗较大的器件,例如,图3所示的处理器151,也即处理器151等第一类器件的温度较高,对散热要求较高,因此,可在第一类器件的表面如上表面设置液冷件152,液冷件152中设置有可供液体通过的液冷通道,液冷通道可通过软管与液冷单元131连通,以使得液冷单元131为液冷件152提供温度较低的冷却液体,并对从液冷件152流出的温度较高的回流液体进行处理。
示例性地,液冷件152可以包括液冷板,液冷板呈板状且其面积大于或等于第一类器件的面积,以与第一类器件具有较大的接触面积,第一类器件产生的热量通过液冷板表面传导至液冷板内部,再通过液冷板内部流动液体将热量传导出第一类器件外部,从而对第一类器件进行散热。其中,各第一类器件的表面均可设置有液冷板;当服务器15设有多个液冷板时,多个液冷板可通过软管串联,以简化液体通道,简化服务器15的结构。
值得说明的是,本申请实施例对于多个第一类器件所使用的液冷板的数量并不做限制,具体实施时,可以利用一个液冷板覆盖在多个第一类器件表面对其进行散热,也可以每个第一类器件表面覆盖一个液冷板对其进行散热。
可以理解的是:本实施例中的液体通道是指机柜中可供液体流动的通道,包括液冷件152中的液体通道、分液管路133中的通道、以及连同各通道的软管等。
为进一步简化液体通路,减少液体通路对其它通路或者线路的干扰或干涉,散热装置13还可包括分液管路133,分液管路133连接在液冷单元131与液冷件152之间,以将各服务器15上液冷件152的液冷通道与液冷单元131连通;也即各服务器15上的液冷件152均分别与分液管路133连通,以经分液管路133与液冷单元131连通;也即分液管路133可将液冷单元131提供的温度较低的冷却液体分配给各服务器15上的液冷件152,且分液管路133还能够将从各服务器15液冷件152上流出的温度较高的回流液体汇入液冷单元131;从而无需再将各服务器15的液冷件152分别通过软管与液冷单元131连接,利于减少液体通道中的软管,利于简化液体通路。
示例性地,图3以一组分液管路133为例进行说明,分液管路133包括进液管133a和出液管133b,进液管133a和出液管133b并排设置,进液管133a用于将液冷单元 131提供的温度较低的冷却液体分配给各服务器15上的液冷件152,出液管133b将从各服务器15液冷件152上流出的温度较高的回流液体汇入液冷单元131。其中,进夜管133a和出液管133b可分别通过软管与液冷单元131连通。
分液管路133上设置有分别用于与各服务器15上液冷件152连通的浮动式液冷接头154,或者,各服务器15上分别设置有用于与分液管路133连通的浮动式液冷接头154,以使得服务器15与分液管路133连接时,具有一定的容错范围也即配合公差,从而利于提高服务器15与分液管路133的连接可靠性。
示例性地,浮动式液冷接头154可基于弹簧弹性形变的性能设置,例如可在沿机身11上下、前后、左右的方向均设置有弹簧,以使得服务器15与分液管路133在三个维度上均具有容错范围也即配合公差,容错范围也即配合公差可以为±2毫米。其中,本实施例此处对于浮动式液冷接头154的具体结构不做限定,具体可采用本领域的常规设置,此处不再赘述。
可以理解的是:在服务器15通过浮动式液冷接头154与分液管路133连接时,在连接处可设置有密封圈、密封胶、防水凸台等密封结构,以利于避免液体泄漏。
可选地,分液管路133与液冷单元131位于机身11的同侧,例如,分液管路133与液冷单元131均位于机身11的后侧,以便于分液管路133与液冷单元131的连通,从而进一步简化液体通道。
此外,分液管路133还可与液冷单元131一体设置,以简化装配过程且利于减少液体泄漏。
可选地,如图4所示(图中箭头用于示意液体的流向),液冷单元131可以包括第一换热器131c、内循环通路131a及外循环通路131b,内循环通路131a与服务器15上的液冷件152连通,第一换热器131c可供内循环通路131a与外循环通路131b热交换,以对内循环通路131a中的液体降温。例如,液冷单元131可包括液冷CDU,液冷CDU的结构可采用本领域的常规设置。
第一换热器131c主要用于为内循环通路131a及外循环通路131b进行热交换提供场所。内循环通路131a的出水端与分液管路133中的进液管133a连通,以将与外循环通路131b热交换之后的、温度较低的冷却液体提供给各服务器15的液冷件152。内循环通路131a的进水端可与分液管路133的出液管133b连通,以将各服务器15液冷件152上流出的温度较高的回流液体汇入并在第一换热器131c中与外循环通路131b热交换。
其中,外循环通路131b的进水端可与水塔等能够提供温度相对较低的液体的水源连接;外循环通路131b的出水端可与水塔等能够回收温度相对较高的液体的设备连接,以对温度相对较高的液体进行冷却等处理。
示例性地,第一换热器131c可以包括第一通道及第二通道,第一通道与第二通道间壁设置,也即第一通道与第二通道之前可设置有隔板,隔板可由具有良好导热性能的材料如金属材料制成;其中,第一通道可以内循环通路131a相连,第二通道可与外循环通路131b相连;液冷件中回流出的温度较高的液体可从内循环通路131a的进水端进入,且在通过第一通道时,可通过隔板与第二通道中外循环通路131b中的液体传热接触,以将其热量传导至外循环通路131b中的液体,降温之后的液体可从内循环通 路131a的出水端并提供给液冷件,以对第一类器件进行散热。
可选地,散热装置13中还设置有水泵134,水泵134用于为液体在液冷单元131与液冷件152之间的流动提供动力。水泵134可以设置在液冷单元131的内循环通路131a中,或者,水泵134可以设置在分液管路133与液冷单元131之间,只要其能够为液体在液冷单元131与液冷件152之间的流动提供动力即可。
可选地,水泵134可以设置在液冷单元131的内循环通路131a中,如靠近内循环通路131a的出水端设置,以保证冷却液体的流速。其中,水泵134可与第一换热器131c等集成设置,以提高集成度,便于装配。
可选地,液冷单元131还包括控制器131d,水泵134包括多个,多个水泵134与控制器131d电连接,控制器131d用于控制各水泵134的工作状态,以提高散热装置1工作的灵活性。其中,控制器131d可设置在液冷单元131中,以便于其与水泵134的电连接,且进一步提高集成度。控制器131d具体可以利用处理器实现控制器的功能,该处理器可以中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(Digital Signal Processing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种处理器可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器还可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD)实现,上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
在机柜1的工作过程中,控制器131d用于控制各水泵134的启闭、输出端输出液体的流速等工作状态。控制器131d可同步控制各水泵134的工作状态,或者同步控制部分水泵134的工作状态,或者分别控制各水泵134的工作状态。
作为一个可能的实施例,机柜1中还包括传感器,传感器用于将各节点的功耗信息发送给控制器131d,控制器131d根据机柜内各个节点的功耗动态调整液冷单元131中各水泵134的工作状态。当整个机柜中各个节点的功耗总值大于或等于第一阈值时,控制器131d可以控制水泵134工作在第一工作状态也即第一模式,而当整个机柜中各个节点的功耗总值小于第一阈值时,控制器131d可以控制水泵134工作在第二工作状态也即第二模式,其中,水泵134处于第一模式时所产生的动力高于第二模式,即处于第一模式的水泵134控制流过第一类器件表面的液体速度高于处于第二模式的水泵134控制流过第一类器件表面的液体速度,也就是说,第一模式的水泵134转速更快,进而可以带走更多热量。
作为一个可能的实施例,液冷单元131中还可以设置有温度传感器,温度传感与控制器131d电连接,温度传感器可设置在内循环通路131a进水端,以检测内循环通路131a进水端的液体温度,控制器131d可根据温度传感器检测的液体温度控制各水泵134的工作状态。当然,温度传感器也可设置在外循环通路131b的出水端,以检测外循环通路131b的出水端的液体温度。
当检测到的液体温度大于或等于第二阈值时,控制器131d可以控制d水泵134工作在第一模式,而当检测到的液体温度小于第二阈值时,控制器131d可以控制水泵 134工作在第二模式,其中,水泵134处于第一模式时所产生的动力高于第二模式,即处于第一模式的水泵134控制流过第一类器件表面的液体速度高于处于第二模式的水泵134控制流过第一类器件表面的液体速度,也就是说,第一模式的水泵134转速更快,进而可以带走更多热量。
可选的,当液冷单元131中存在多个水泵134时,控制器131d还可以通过不同任务分担模式控制水泵134的工作状态,例如,当多个水泵134工作在负载分担模式时,多个水泵共同承担流经多个服务器的液体的工作,具体实施例时,可以预设不同阈值控制多个水泵的转速,进而有效对服务器内第一类器件进行散热。当多个水泵134工作在主备模式时,仅一个或多个主用状态的水泵负责承担流经多个服务器的液体的工作,当主用状态的水泵出现故障时,由备用状态的水泵接替其散热处理流程,保证对服务器有效散热。通过上述不同工作模式的设置,在有效保证服务器散热的基础上,提升了液冷单元的维护能力,当有水泵出现故障是,可以通过其他水泵接管其工作,减少对整个机柜中服务器的影响,提升了维护效率。
作为一个可能的实施例,多个水泵134中的部分水泵134为主用状态的水泵也即主水泵,其余部分水泵134为备用状态的水泵也即辅助水泵。机柜1还可包括检测单元,检测单元用于与控制器131d电连接;检测单元用于检测主水泵的工作参数如输出液体的流速等,以判断主水泵是否处于异常状态;控制器131d还用于在确定在主水泵处于异常状态之后,控制辅助水泵启动,同时生成相应的提示信号,以使提示设备根据该提示信号发出视觉提示和/或听觉提示,及时提醒工作人员。其中,提示设备可以为指示灯、显示屏、蜂鸣器等。
如此,通过设置主水泵及辅助水泵,在主水泵由于故障等原因处于异常状态时,还可启动辅助水泵,以利于避免整机停机的现象,且能够保证对服务器15等设备的散热效果。
作为一个可能的实施例,为了提升机柜的散热效率,散热装置13除了包括液冷单元131外,散热装置13还可以包括风液单元132,风液单元132与服务器15上的风扇157分别设置在机身11沿安装方向的两侧,以使风液单元132对经过服务器15上的内存储器153等未设置液冷件152的第二类器件进行风冷。
风液单元132可与服务器15自身的风扇157配合工作,也即服务器15前侧的风扇157将机身11内的热风吹向风液单元132,风液单元132中的液体将与热风进行热交换从而形成冷风排出,如此,能降低各机柜的排风对数据中心机房内的温度的影响,降低对其周围的其它柜式服务器的影响,从而利于减少数据中心机房内的其它散热装置如空调等,以降低成本。
示例性地,风液单元132可以采用间壁式换热器,可包括如下至少一种:风液换热器、翅片式散热器、散热管。其中,风液换热器、翅片式散热器、散热管的结构可采用本领域的常规设置,本实施例此处不再赘述。
为进一步提高散热效果,风液单元132可以包括多个,多个风液单元132相对于液冷单元131对称分布。多个风液单元132可采用同种类的散热器,也可以采用不同种类的散热器。
在一些实施例中,风液单元132可与液冷单元131一体设置,以提高散热装置1 的集成度。为便于描述,本申请的以下实施例中以液冷单元131为冷却液分配单元CDU为例,冷却液分配单元沿左右方向延伸设置,且冷却液分配单元的与机身11内风道相对应的区域可设置有翅片或者散热管,以通过冷却液分配单元自身的液体与机身11内的热风进行热交换,达到风冷的目的。
可选地,如图5至图7所示,机柜1还包括:线缆通路19,线缆通路19与散热装置13位于机身11的同侧,线缆通路19用于将各服务器15与相应的交换机通信连接。
线缆通路19采用集束化线缆形成,集束化线缆可从上往下延伸设置,以便于集束化线缆分别与各服务器15连接,且与交换机等设备连接。
通过设置统一的线缆通路19,本实施例无需再将各服务器15的分别线缆与各交换机连接,利于减少机身11内的线缆数量、简化线缆的布局,利于减少线缆通路19对其它通路或者线路或者管路的干扰,从而利于避免线缆数量过多导致的维修困难等问题。
通过将线缆通路19与散热装置13均设置在机身11的后侧,如此,在对服务器内的设备进行维护时,便于从机柜的前侧操作,而减少对机身11后侧的线缆通路19、散热装置13等的拆卸,提高维护的便利性。
可选地,线缆通路19上设置有分别用于与各服务器15连接的浮动式信号连接器156,或者,各服务器15上分别设置有用于与线缆通路19连接的浮动式信号连接器156。其中,在线缆通路19与服务器15中的一个上设置浮动式信号连接器156时,另一个上则设置有与浮动式信号连接器156匹配的盲插插头;且线缆通路19、浮动式信号连接器156及盲插插头均能满足信号高速传输的需求。
如此设置,服务器15与线缆通路19连接时,可具有一定的容错范围也即配合公差,从而利于提高服务器15与线缆通路19的连接可靠性。
示例性地,浮动式信号连接器156可基于弹簧弹性形变的性能设置,例如可在沿机身11上下、前后、左右的方向均设置有弹簧,以使得服务器15与线缆通路1919在三个维度上均具有容错范围也即配合公差,容错范围也即配合公差可以为±2毫米。其中,本实施例此处对于浮动式信号连接器156的具体结构不做限定,具体可采用本领域的常规设置,此处不再赘述。
可选地,机柜1还包括:供电通路17,供电通路17与散热装置13位于机身11的同侧,供电通路17用于将电能提供给各服务器15。
通过将供电通路17与散热装置13均设置在机身11的后侧,如此,在对服务器内的设备进行维护时,便于从机柜的前侧操作,而减少对机身11后侧的供电通路17、散热装置13等的拆卸,提高维护的便利性。
其中,供电通路17可包括供电铜条,供电铜条可沿上下方向延伸设置,以便于与各服务器15配合,且在其任意位置均可与服务器15配合。
各服务器15上分别设置有用于与线供通道连接的浮动式电源连接器155,以在安装服务器15时,可具有一定的容错范围也即配合公差,从而利于服务器15的安装。
示例性地,浮动式电源连接器155可基于弹簧弹性形变的性能设置,例如可在沿机身11上下、前后、左右的方向均设置有弹簧,以使得服务器15在三个维度上均具 有容错范围也即配合公差,容错范围也即配合公差可以为±2毫米。其中,本实施例此处对于浮动式电源连接器155的具体结构不做限定,具体可采用本领域的常规设置,此处不再赘述。
本实施例中,可以理解的是:线缆通路19、供电通路17及散热装置13中的分液管路133,可沿与安装方向垂直且与服务器15平行的方向并排设置;也即线缆通路19、供电通路17及分液管路133可从左至右并排分布。
其中,线缆通路19、供电通路17及分液管路133的排布次序,本实施例不做具体限定,具体可根据实际需要进行设置。例如,供电通路17的设置位置可根据机身11内供电模块输出端口的位置设置。
可选地,机身11上设置有至少一个固定梁115,固定梁115与安装方向垂直且与服务器15平行设置,线缆通路19、供电通路17及散热装置13中的分液管路133均固定在固定梁115上,以利于线缆通路19、供电通路17及散热装置13的相对位置的精确性,也即利于线缆通路19、供电通路17及分液管路133与各服务器15的配合处共面,从而利于保证服务器15与线缆通路19、供电通路17及分液管路133配合的可靠性。具体实施时,每个固定梁115均与一个服务器15水平设置,以保证每个服务器15均可以通过固定梁连接至线缆通路19、供电通路17及散热装置13。
可选地,机身11中设置有供电模块,供电模块通过供电通路17为各服务器15供电;供电模块包括如下至少一种:电源模块114、可安装于安装槽111的电池模块113。其中,电源模块114可通过紧固连接、卡接、粘接等连接方式固定在机身11中;电池模块113可安装在机身11的安装槽111中,此时,可根据实际需要设置电池模块113的数量。
本实施例提供的机柜1,通过设置散热装置13,既能满足服务器15等设备的散热需求。通过将散热装置13、线缆通路19、供电通路17设置在机身11的后侧,不仅减少了对机身11内有效空间的占用,减少了对机身11本身及机身11内设备的尺寸限制,在对机身11内设备维护时,减少了线缆等对机身11内设备的遮挡,利于提高对机身11内设备维护的便利性。通过将散热装置13、线缆通路19、供电通路17设置在机身11的后开口112处,机身11的后开口112为对散热装置13等的维护提供了操作空间,因此,在对散热装置13等进行检修时,无需对散热装置13等进行拆卸,利于避免整机停机现象。
此外,通过设置多个水泵134,且能够根据机身11内的工作参数如温度、功率动态地调整水泵134的工作状态如水泵134输出液体的流速、启动数量等,以提高散热装置1的灵活性。且多个水泵134可以互为主备,以在主水泵出现异常时,及时启动辅助水泵(也即备用水泵),从而进一步利于避免整机停机现象。
本实施例还提供一种散热方法,该散热方法可用于上述任一实施例中的散热装置,其可具有与前述散热装置相同或者相应的技术效果。请参照图8,该散热方法包括:
S101、控制散热装置启动液冷模式,以对服务器上的第一类器件进行液冷;
在液冷模式下散热装置中的液冷单元可处于工作状态,其具体的工作过程可与前述实施例的描述类似,此处不再赘述。
关于步骤S101中的液冷模式,散热方法还可包括:检测机身内的功率和/或温度, 根据检测的功率和/或温度,调整散热装置中水泵加速液体的流速,以提高散热效率,满足散热需求。例如,在机身内的功率和/或温度较高时,增大水泵转速以使得流经液冷板的液体的流速增大,以提高散热效率;在机身内的功率和/或温度较低时,降低水泵的转速以使得流经液冷板的液体的流速减小,以降低散热效率,在满足散热需求的同时,还能节能减耗。
当水泵为多个时,还可根据检测的功率和/或温度,控制启动水泵的数量或者控制各水泵输出液体的流速;例如,在机身内的功率和/或温度较高时,增加水泵的启动数量,以提高散热效率,满足散热需求;在机身内的功率和/或温度较低时,减少水泵的启动数量,以降低散热效率,在满足散热需求的同时,还能节能减耗。
示例性地,可获取机柜中服务器的功耗总值,且将功耗总值与第一阈值进行比较;若功率总值超过第一阈值,则将多个水泵设置为第一工作状态;若功率总值小于第一阈值,将多个水泵设置为第二工作状态;其中,水泵工作在第一工作状态的转速大于水泵工作在第二工作状态的转速。
示例性地,可获取散热装置的液冷单元中内循环通路进水端或者外循环通路出水端的液体温度,将液体温度与第二阈值进行比较;若液体温度超过第二阈值,则将多个水泵设置为第一工作状态;若液体温度小于第二阈值,将多个水泵设置为第二工作状态;其中,水泵工作在第一工作状态的转速大于水泵工作在第二工作状态的转速。
可选的,还可控制散热装置进入主备模式,其工作过程可与前述类似,此处不再赘述。当水泵为多个时,可以设置部分水泵为主水泵,其余部分水泵为辅助水泵;还可检测主水泵的工作参数,以根据主水泵的工作参数判断主水泵是否处于异常状态;若确定主水泵处于异常状态,则控制辅助水泵启动。如此,在主水泵由于故障等原因处于异常状态时,还可启动辅助水泵,以利于避免整机停机的现象,且能够保证对服务器等设备的散热效果。另外,还可控制散热装置进入负载分担模式,其工作过程可与前述类似,此处不再赘述。
此外,在确定主水泵处于异常状态之后,还可生成提示信号,以能够根据该提示信号发出视觉提示和/或听觉提示,及时提醒工作人员。
S102、控制散热装置启动风冷模式,以对服务器上的第二类器件进行液冷。
在风冷模式下散热装置中的风液单元以及服务器的风扇可处于工作状态,其具体的工作过程可与前述实施例的描述类似,此处不再赘述。
关于步骤S102中的风冷模式,散热方法还可包括:检测机身内的功率和/或温度;根据检测的功率和/或温度,调整服务器上风扇的转速,以调整风冷效率。例如,在机身内的功率和/或温度较高时,增大风扇转速,以提高风冷效率也即散热效率;在机身内的功率和/或温度较低时,降低风扇转速,以降低散热效率,在满足散热需求的同时,还能节能减耗。当然,在还可根据检测的功率和/或温度,调整风液单元中液体的流速,以适配风扇的转速。
另外,需要说明的是:本实施例并不限定步骤S101及步骤S102的执行顺序,步骤S101及步骤S102可同时执行,或者,先执行步骤S101、再执行步骤S102,或者,先执行步骤S102、再执行步骤S101。
如图9所示,本申请实施例还提供一种散热装置,应用于机柜中,包括:第一控 制模块141,用于控制散热装置启动液冷模式,以对机柜中服务器上的第一类器件进行液冷;第二控制模块142,用于控制散热装置启动风冷模式,以对服务器上的第二类器件进行风冷。
在一种可能实现方式中,第一控制模块141还用于:获取机柜中服务器的功耗总值,且将功耗总值与第一阈值进行比较;若功率总值超过第一阈值,则将多个水泵设置为第一工作状态;若功率总值小于第一阈值,将多个水泵设置为第二工作状态;其中,水泵工作在第一工作状态的转速大于水泵工作在第二工作状态的转速。
在一种可能实现方式中,第一控制模块141还用于:控制多个水泵进入负载分担模式,以使多个水泵共同工作。
在一种可能实现方式中,第一控制模块141还用于:控制多个水泵进入负载主备模式,以在主用状态的水泵处于异常状态时,启动备用状态的水泵。
在一种可能实现方式中,第一控制模块141还用于:获取散热装置的液冷单元中内循环通路进水端或者外循环通路出水端的液体温度,将液体温度与第二阈值进行比较;若液体温度超过第二阈值,则将多个水泵设置为第一工作状态;若液体温度小于第二阈值,将多个水泵设置为第二工作状态;其中,水泵工作在第一工作状态的转速大于水泵工作在第二工作状态的转速。
如图10所示,本申请实施例还提供一种散热装置,应用于机柜中,包括:处理器146;用于存储处理器可执行指令的存储器147;其中,处理器146被配置为执行可执行指令以实现前述任一项的步骤。
在以上描述中,参考术语"一个实施例"、"一些实施例"、"示例"、"具体"、或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (21)

  1. 一种机柜,其特征在于,包括:机身,所述机身上设置有多个可供服务器沿预设安装方向进入的安装槽;散热装置,所述散热装置用于对服务器的器件进行散热,所述散热装置设置在所述机身沿所述安装方向的至少一侧;且所述散热装置与所述服务器的器件相连。
  2. 根据权利要求1所述的机柜,其特征在于,所述安装槽具有可供所述服务器进入的前槽口;所述机身背离所述前槽口的后侧设置有后开口,所述散热装置安装在所述机身的后开口处。
  3. 根据权利要求1所述的机柜,其特征在于,所述散热装置包括液冷单元,所述液冷单元与所述服务器上的液冷件连通,所述液冷件设置在服务器上的第一类器件的表面,以对所述第一类器件进行液冷。
  4. 根据权利要求3所述的机柜,其特征在于,所述液冷件包括液冷板;和/或,所述第一类器件包括中央处理器。
  5. 根据权利要求3所述的机柜,其特征在于,所述散热装置还包括分液管路,所述分液管路连接在所述液冷单元与液冷件之间,以将各服务器上液冷件的液冷通道与所述液冷单元连通。
  6. 根据权利要求3所述的机柜,其特征在于,所述液冷单元包括:第一换热器、内循环通路及外循环通路,所述内循环通路与所述服务器上的液冷件连通,所述换热器可供所述内循环通路与外循环通路热交换,以对所述内循环通路中的液体降温。
  7. 根据权利要求3所述的机柜,其特征在于,所述液冷单元还包括多个水泵,所述水泵用于为液体在所述液冷单元与液冷件之间的流动提供动力;所述液冷单元还包括控制器,所述控制器与所述多个水泵电连接,所述控制器用于控制各水泵的工作状态;
    所述控制器用于在检测到所述机柜中服务器的功率总值超过第一阈值时,将多个所述水泵设置为第一工作状态;
    所述控制器用于在检测到所述机柜中服务器的功率总值小于第一阈值时,将多个所述水泵设置为第二工作状态;
    其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
  8. 根据权利要求3所述的机柜,其特征在于,还包括温度传感器,所述温度传感器设置在所述液冷单元中,所述温度传感器与所述液冷单元的控制器电连接;所述温度传感器用于检测所述液冷单元中内循环通路进水端或者外循环通路出水端的液体温度;所述控制器用于根据所述温度传感器检测的液体温度控制所述液冷单元内各水泵的工作状态;
    所述控制器用于在所述液体温度超过第二阈值上,将多个水泵设置为第一工作状态;
    所述控制器用于在所述液体温度小于第二阈值,将多个所述水泵设置为第二工作状态;
    其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工 作状态的转速。
  9. 根据权利要求3所述的机柜,其特征在于,所述液冷单元的控制器用于将所述液冷单元中的所述多个水泵设置为负载分担模式或主备模式;
    其中,所述多个水泵工作在负载分担模式时,所述控制器用于控制所述多个水泵共同工作;
    所述多个水泵工作在主备模式时,所述控制器用于在主用状态的水泵处于异常状态时,控制备用状态的水泵于工作。
  10. 根据权利要求3所述的机柜,其特征在于,所述散热装置还包括风液单元,所述风液单元与所述服务器上的风扇分别设置在所述机身沿所述安装方向的两侧,以使所述风液单元对经过所述服务器上的第二类器件进行风冷。
  11. 根据权利要求10所述的机柜,其特征在于,所述风液单元包括如下至少一种:风液换热器、翅片式散热器、散热管;所述风液单元包括多个,多个所述风液单元相对于所述液冷单元对称分布。
  12. 根据权利要求1所述的散热装置,其特征在于,还包括:线缆通路及供电通路,所述线缆通路、供电通路与所述散热装置位于所述机身的同侧,所述线缆通路用于将各服务器与相应的交换机通信连接,所述供电通路用于将供电模块的电能提供给各服务器。
  13. 根据权利要求12所述的散热装置,其特征在于,所述机身上设置有至少一个固定梁,所述固定梁与所述安装方向垂直且与所述服务器平行设置;所述线缆通路、供电通路及散热装置中的分液管路均垂直所述固定梁设置,且所述线缆通路、供电通路及散热装置中的分液管路均固定在所述固定梁上。
  14. 一种散热方法,其特征在于,应用于机柜中,所述机柜包括机身及散热装置;所述机身上设置有多个可供服务器沿预设安装方向进入的安装槽所述散热装置用于对服务器的器件进行散热,所述散热装置设置在所述机身沿所述安装方向的至少一侧;且所述散热装置与所述服务器的器件相连;所述方法包括:
    控制所述散热装置启动液冷模式,以对所述服务器上的第一类器件进行液冷;
    控制所述散热装置启动风冷模式,以对所述服务器上的第二类器件进行风冷。
  15. 根据权利要求14所述的散热方法,其特征在于,所述散热装置中设置有多个水泵;所述方法还包括:
    获取机柜中服务器的功耗总值,且将所述功耗总值与第一阈值进行比较;
    若所述功率总值超过第一阈值,则将多个水泵设置为第一工作状态;
    若所述功率总值小于第一阈值,将多个所述水泵设置为第二工作状态;
    其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
  16. 根据权利要求15所述的散热方法,其特征在于,所述散热装置包括多个水泵,所述散热方法还包括:
    控制所述多个水泵进入负载分担模式,以使所述多个水泵共同工作。
  17. 根据权利要求15所述的散热方法,其特征在于,控制所述多个水泵进入负载主备模式,以在主用状态的水泵处于异常状态时,启动备用状态的水泵。
  18. 根据权利要求15所述的散热方法,其特征在于,所述散热装置中设置有多个水泵;所述散热方法还包括:
    获取散热装置的液冷单元中内循环通路进水端或者外循环通路出水端的液体温度,将所述液体温度与第二阈值进行比较;
    若所述液体温度超过第二阈值,则将多个水泵设置为第一工作状态;
    若所述液体温度小于第二阈值,将多个所述水泵设置为第二工作状态;
    其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
  19. 一种散热装置,应用于机柜,其特征在于,包括:
    第一控制模块,用于控制所述散热装置启动液冷模式,以对所述机柜中服务器上的第一类器件进行液冷;
    第二控制模块,控制所述散热装置启动风冷模式,以对所述服务器上的第二类器件进行风冷。
  20. 根据权利要求19所述的散热装置,其特征在于,所述第一控制模块还用于:
    获取机柜中服务器的功耗总值,且将所述功耗总值与第一阈值进行比较;若所述功率总值超过第一阈值,则将多个水泵设置为第一工作状态;若所述功率总值小于第一阈值,将多个所述水泵设置为第二工作状态;其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速;
    控制所述多个水泵进入负载分担模式,以使所述多个水泵共同工作;
    控制所述多个水泵进入负载主备模式,以在主用状态的水泵处于异常状态时,启动备用状态的水泵;
    获取散热装置的液冷单元中内循环通路进水端或者外循环通路出水端的液体温度,将所述液体温度与第二阈值进行比较;若所述液体温度超过第二阈值,则将多个水泵设置为第一工作状态;若所述液体温度小于第二阈值,将多个所述水泵设置为第二工作状态;其中,所述水泵工作在所述第一工作状态的转速大于所述水泵工作在所述第二工作状态的转速。
  21. 一种散热装置,其特征在于,包括:处理器,用于存储所述处理器可执行指令的存储器;其中,所述处理器被配置为执行所述可执行指令以实现如权利要求14-18任一项所述的方法。
PCT/CN2020/075161 2019-03-14 2020-02-14 散热方法、散热装置、和机柜 WO2020181953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20768884.7A EP3927126A4 (en) 2019-03-14 2020-02-14 HEAT REMOVAL METHOD, HEAT REMOVAL DEVICE AND SERVER CABINET
US17/475,088 US20210410336A1 (en) 2019-03-14 2021-09-14 Heat dissipation method, heat dissipation apparatus, and cabinet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910195013.1 2019-03-14
CN201910195013.1A CN110062560B (zh) 2019-03-14 2019-03-14 散热方法、散热装置、和机柜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/475,088 Continuation US20210410336A1 (en) 2019-03-14 2021-09-14 Heat dissipation method, heat dissipation apparatus, and cabinet

Publications (1)

Publication Number Publication Date
WO2020181953A1 true WO2020181953A1 (zh) 2020-09-17

Family

ID=67316104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075161 WO2020181953A1 (zh) 2019-03-14 2020-02-14 散热方法、散热装置、和机柜

Country Status (4)

Country Link
US (1) US20210410336A1 (zh)
EP (1) EP3927126A4 (zh)
CN (3) CN114531826A (zh)
WO (1) WO2020181953A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930084A (zh) * 2021-01-22 2021-06-08 苏州浪潮智能科技有限公司 一种服务器机柜及其散热方法
CN116528573A (zh) * 2023-06-29 2023-08-01 湖南奥通智能研究院有限公司 一种具有快速散热功能的伺服驱动器及其控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531826A (zh) * 2019-03-14 2022-05-24 华为技术有限公司 散热方法、散热装置、和机柜
CN110662405A (zh) * 2019-10-27 2020-01-07 深圳市禾望电气股份有限公司 水冷散热系统及其控制方法
US11452241B2 (en) * 2019-11-18 2022-09-20 Liquidcool Solutions, Inc. Liquid submersion cooled server module assemblies and server systems that include the server module assemblies
CN110958813A (zh) * 2019-12-09 2020-04-03 华南理工大学 一种服务器用的水冷风冷双降温器及控制方法
CN112203481A (zh) * 2020-10-30 2021-01-08 上海德衡数据科技有限公司 集装箱模块预制化数据中心
TWI815096B (zh) * 2021-03-17 2023-09-11 尼得科超眾科技股份有限公司 液冷迴路散熱裝置及其散熱系統
CN113382589A (zh) * 2021-05-08 2021-09-10 山东英信计算机技术有限公司 一种便于扩展的服务器机柜
CN115933067A (zh) * 2021-08-24 2023-04-07 中兴通讯股份有限公司 具有光互连功能的电设备、cpo数据处理模块及通信机柜
US11871547B2 (en) 2021-09-02 2024-01-09 Baidu Usa Llc Two phase system for enclosure systems
US11910575B2 (en) * 2021-09-02 2024-02-20 Baidu Usa Llc Rack systems and packaging for servers
CN115877927A (zh) * 2021-09-27 2023-03-31 华为技术有限公司 一种散热装置及服务器
CN114760819B (zh) * 2022-04-19 2023-11-17 苏州浪潮智能科技有限公司 一种服务器机柜冷却装置、冷却方法及服务器机柜装置
CN117311459A (zh) * 2022-06-21 2023-12-29 超聚变数字技术有限公司 电子设备及服务器
CN116914578A (zh) * 2023-08-12 2023-10-20 湖南硕珈科技发展有限公司 一种电力柜散热除尘系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277967A1 (en) * 2007-04-16 2011-11-17 Stephen Samuel Fried Liquid cooled condensers for loop heat pipe like enclosure cooling
CN204948593U (zh) * 2015-08-12 2016-01-06 河北瑞发汽车散热器有限公司 服务器机柜水冷散热装置
CN205378479U (zh) * 2016-02-02 2016-07-06 浪潮电子信息产业股份有限公司 一种服务器机柜水冷系统
CN107960049A (zh) * 2017-12-29 2018-04-24 华南理工大学 一种液冷、风冷散热结合的智能服务器机柜及其控制方法
CN108235655A (zh) * 2017-12-29 2018-06-29 华南理工大学 一种采用液冷散热的易插拔的服务器机柜
CN207652877U (zh) * 2017-11-23 2018-07-24 维谛技术有限公司 液冷服务器的散热系统
CN110062560A (zh) * 2019-03-14 2019-07-26 华为技术有限公司 散热方法、散热装置、和机柜

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611432B2 (en) * 2001-01-26 2003-08-26 Dell Products L.P. Docking bracket for rack-mounted computing modules
US6822862B2 (en) * 2002-11-15 2004-11-23 Saint Song Corp. Apparatus and method for heat sink
US9141139B2 (en) * 2012-04-10 2015-09-22 Arnouse Digital Devices Corp. Mobile data center
US8077462B2 (en) * 2009-09-02 2011-12-13 International Business Machines Corporation Stress relieved hose routing to liquid-cooled electronics rack door
CN102467203A (zh) * 2010-11-12 2012-05-23 英业达股份有限公司 服务器机柜
CN102129274B (zh) * 2010-12-28 2014-09-17 华为技术有限公司 服务器、服务器组件及控制风扇转速方法
US8817474B2 (en) * 2011-10-31 2014-08-26 International Business Machines Corporation Multi-rack assembly with shared cooling unit
CN103179836A (zh) * 2011-12-24 2013-06-26 鸿富锦精密工业(深圳)有限公司 服务器及其机架
CN103313578A (zh) * 2012-03-15 2013-09-18 鸿富锦精密工业(深圳)有限公司 服务器机柜
US9879926B2 (en) * 2012-06-20 2018-01-30 International Business Machines Corporation Controlled cooling of an electronic system for reduced energy consumption
WO2015073122A1 (en) * 2013-11-14 2015-05-21 Parker-Hannifin Corporation System and method for controlling fluid flow and temperature within a pumped two-phase cooling distribution unit
CN104320953B (zh) * 2014-09-19 2017-02-22 中国移动通信集团广东有限公司 一种二次水环路服务器机柜散热系统
US20160120059A1 (en) * 2014-10-27 2016-04-28 Ebullient, Llc Two-phase cooling system
CN104754924B (zh) * 2015-03-31 2016-02-03 广东申菱环境系统股份有限公司 液冷装置和辅助散热装置结合的服务器散热系统
WO2016174732A1 (ja) * 2015-04-28 2016-11-03 株式会社日立製作所 情報機器及び情報機器ブレード
US10146231B2 (en) * 2015-12-21 2018-12-04 Dell Products, L.P. Liquid flow control based upon energy balance and fan speed for controlling exhaust air temperature
CN105764306B (zh) * 2016-04-08 2018-03-06 华为技术有限公司 盲插歧管系统和液冷系统
CN207836045U (zh) * 2017-12-29 2018-09-07 华南理工大学 一种单通道气冷、液冷串联的服务器机柜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277967A1 (en) * 2007-04-16 2011-11-17 Stephen Samuel Fried Liquid cooled condensers for loop heat pipe like enclosure cooling
CN204948593U (zh) * 2015-08-12 2016-01-06 河北瑞发汽车散热器有限公司 服务器机柜水冷散热装置
CN205378479U (zh) * 2016-02-02 2016-07-06 浪潮电子信息产业股份有限公司 一种服务器机柜水冷系统
CN207652877U (zh) * 2017-11-23 2018-07-24 维谛技术有限公司 液冷服务器的散热系统
CN107960049A (zh) * 2017-12-29 2018-04-24 华南理工大学 一种液冷、风冷散热结合的智能服务器机柜及其控制方法
CN108235655A (zh) * 2017-12-29 2018-06-29 华南理工大学 一种采用液冷散热的易插拔的服务器机柜
CN110062560A (zh) * 2019-03-14 2019-07-26 华为技术有限公司 散热方法、散热装置、和机柜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3927126A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930084A (zh) * 2021-01-22 2021-06-08 苏州浪潮智能科技有限公司 一种服务器机柜及其散热方法
CN112930084B (zh) * 2021-01-22 2022-11-29 苏州浪潮智能科技有限公司 一种服务器机柜及其散热方法
CN116528573A (zh) * 2023-06-29 2023-08-01 湖南奥通智能研究院有限公司 一种具有快速散热功能的伺服驱动器及其控制方法
CN116528573B (zh) * 2023-06-29 2023-09-12 湖南奥通智能研究院有限公司 一种具有快速散热功能的伺服驱动器及其控制方法

Also Published As

Publication number Publication date
CN110062560A (zh) 2019-07-26
CN114531826A (zh) 2022-05-24
EP3927126A1 (en) 2021-12-22
CN110062560B (zh) 2022-02-25
EP3927126A4 (en) 2022-04-13
US20210410336A1 (en) 2021-12-30
CN114667033A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2020181953A1 (zh) 散热方法、散热装置、和机柜
JP5756573B2 (ja) 別々に回転自在なマニホルド区域を有する冷却材マニホルド
US8583290B2 (en) Cooling system and method minimizing power consumption in cooling liquid-cooled electronics racks
US8208258B2 (en) System and method for facilitating parallel cooling of liquid-cooled electronics racks
US9313931B2 (en) Multi-level redundant cooling method for continuous cooling of an electronic system(s)
US20170177041A1 (en) Information handling system having fluid manifold with embedded heat exchanger system
TW201419994A (zh) 電子設備及安裝於該電子設備中的冷卻模組
CN104054407A (zh) 用于服务器的冷却系统
CN108235655B (zh) 一种采用液冷散热的易插拔的服务器机柜
WO2019037309A1 (zh) 一种冷却装置及液冷散热系统
WO2022057744A1 (zh) 一种节点及电子设备
WO2021258837A1 (zh) 液冷散热装置、液冷数据处理设备以及均温方法
KR101282780B1 (ko) 독립 다상 인버터의 냉각장치
CN210075867U (zh) 液冷变频器系统
US20210100135A1 (en) Data center airflow management
CN218336875U (zh) 液冷换热系统及数据中心
CN217064362U (zh) 边缘端网络设备的冷却系统
TW201947350A (zh) 用於機櫃伺服器的液冷系統
CN110147152B (zh) 一种集成液冷散热系统智能调节的机箱
CN209299654U (zh) 压缩机测试设备及控制器散热装置
CN113727589A (zh) 水冷散热装置
CN103137579B (zh) 水冷散热基板
US20190227606A1 (en) Liquid coolant supply
WO2014173101A1 (zh) 通信设备的散热系统
CN218352963U (zh) 分类散热系统及数据中心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020768884

Country of ref document: EP

Effective date: 20210914