WO2020181680A1 - 参与一次调频的太阳能辅助燃煤发电系统及其控制方法 - Google Patents

参与一次调频的太阳能辅助燃煤发电系统及其控制方法 Download PDF

Info

Publication number
WO2020181680A1
WO2020181680A1 PCT/CN2019/092432 CN2019092432W WO2020181680A1 WO 2020181680 A1 WO2020181680 A1 WO 2020181680A1 CN 2019092432 W CN2019092432 W CN 2019092432W WO 2020181680 A1 WO2020181680 A1 WO 2020181680A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass
temperature
low
condensate
adjustment
Prior art date
Application number
PCT/CN2019/092432
Other languages
English (en)
French (fr)
Inventor
严俊杰
赵永亮
刘明
种道彤
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US17/279,569 priority Critical patent/US11236633B2/en
Publication of WO2020181680A1 publication Critical patent/WO2020181680A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/16Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged otherwise than in the boiler furnace, fire tubes, or flue ways
    • F22D1/18Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged otherwise than in the boiler furnace, fire tubes, or flue ways and heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/50Feed-water heaters, i.e. economisers or like preheaters incorporating thermal de-aeration of feed-water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • F22D11/06Arrangements of feed-water pumps for returning condensate to boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/34Applications of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention belongs to the technical field of thermal power control of thermal power plants, and specifically relates to a solar auxiliary coal-fired power generation system participating in primary frequency modulation and a control method thereof.
  • complementary power generation is an effective way to promote energy saving and emission reduction and develop large-scale solar thermal utilization technology.
  • different collectors have different operating temperature ranges, which can be used to heat water or steam at different locations. Therefore, making full use of the respective advantages of coal-fired units and solar heat collection technology can provide strategic and data guidance for the primary frequency control of coal-fired units, thereby fundamentally improving the transient process flexibility of solar-powered complementary coal-fired units.
  • the present invention just solves the problem that the thermal system adjustment method is used to participate in the primary frequency regulation in the transient process of the pure coal-fired unit, which will inevitably sacrifice the economy of the unit and cause the thermal system to deviate from the economic operation state.
  • the invention can make full use of the heat storage characteristics of different devices in the steam turbine system and the solar thermal collector, through parameter and operation matching, select a suitable method to participate in the primary frequency modulation control, and quickly and effectively ensure the stability of the grid frequency.
  • a solar-assisted coal-fired power generation system that participates in primary frequency regulation, including boiler 1, steam turbine 2 connected to the outlet of boiler 1, and high-pressure cylinder extraction port, medium-pressure cylinder extraction port, low-pressure cylinder extraction port and low-pressure cylinder row with steam turbine 2
  • the high-pressure heater 3, the deaerator 4, the low-pressure heater 5 and the condenser 6 are respectively connected to the steam ports.
  • the system also includes a high-heat feedwater bypass regulation system and a low-heat condensate bypass regulation system, which can realize two types
  • the primary frequency modulation schemes are the high feedwater bypass regulation scheme and the low feed condensate bypass regulation scheme:
  • the feedwater at the outlet of the deaerator 4 is boosted by the feedwater pump 8 and divided into two paths, one of which passes through the high-pressure heater 3 and After the feedwater valve 7 enters the boiler 1, the other feedwater passes through the feedwater bypass valve 11, enters the high-pressure bypass heat exchanger 12, and then merges into the boiler 1.
  • the heat exchange working medium of the high-pressure bypass heat exchanger 12 passes through After the high-pressure bypass pump 13 boosts the pressure, it enters the first collector 14 to absorb the solar energy, and then enters the high-pressure bypass heat exchanger 12 to transfer heat to the feedwater; in the primary frequency regulation, it is adjusted by the feedwater bypass valve 11 , To realize the rapid change of the power of steam turbine 2 to ensure the requirement of a frequency modulation;
  • the condensate at the outlet of the condenser 6 enters the condensate pump 10 to increase the pressure, and is divided into two paths, one of which is heated by low pressure
  • the deaerator 5 and the deaerator inlet valve 9 enter the deaerator 4.
  • the other condensate passes through the condensate bypass valve 15, and then enters the low-heat bypass heat exchanger 16 and then is collected into the deaerator 4; at the same time, the low-heat After the heat exchange working fluid of the bypass heat exchanger 16 is boosted by the low heat bypass pump 17, it enters the second heat collector 18 to absorb the solar energy, and then enters the low heat bypass heat exchanger 16 to transfer heat to the condensed water; In the primary frequency regulation, the condensate bypass valve 15 is adjusted to realize the rapid change of the power of the steam turbine 2 to ensure the requirement of primary frequency regulation.
  • the feedwater bypass valve 11 and the condensate bypass valve 15 both adopt steam-actuated regulating valves; in the high-heat feedwater bypass regulating system, the first collector 14 adopts a medium-temperature trough collector, and the heat conduction working medium is selected as heat conduction Oil; In the low-addition condensate water bypass adjustment system, the second collector 18 selects a medium and low temperature flat plate collector, and the heat-conducting working medium is heat-conducting oil or water.
  • the logic of primary frequency modulation control and heater outlet temperature control is formulated according to the operating characteristics of the solar-assisted coal-fired power generation system; the details are as follows:
  • the maximum frequency adjustment ⁇ f max required for a frequency adjustment is obtained, and then the required maximum power adjustment ⁇ P max is converted into the required maximum power adjustment ⁇ P max through the set speed unequal rate ⁇ of the unit.
  • the maximum power adjustment ⁇ P LPH,max of the low-heat condensate bypass adjustment scheme determines the maximum power adjustment ⁇ P LPH,max of the low-heat condensate bypass adjustment scheme, and compare it with the current required maximum power adjustment ⁇ P max , if ⁇ P max > ⁇ P LPH ,max , the high feedwater bypass adjustment scheme is used to participate in the primary frequency modulation; if ⁇ P max ⁇ P LPH,max , the low heat condensate bypass adjustment scheme is used to participate in the primary frequency modulation;
  • the adjustment plan to participate in the primary frequency modulation After determining the adjustment plan to participate in the primary frequency modulation, obtain the real-time frequency value f pv according to the grid operation status, compare it with the stable frequency value f sp required by the grid, and obtain the frequency deviation ⁇ f. The frequency deviation is parameterized in the governor Then, the power adjustment amount ⁇ P is obtained, and the parameter setting includes the frequency modulation dead zone and the speed unequal rate:
  • ⁇ old is the valve opening corresponding to the initial moment
  • the outlet water temperature control logic is: First, the temperature sensor is used to obtain the temperature T f,pv when the feedwater enters the boiler 1, and the temperature setting value T f,sp of the feedwater enters the boiler 1 Make a comparison to obtain the temperature deviation ⁇ T 1 ; use the temperature sensor to obtain the temperature T s,pv when the working fluid of the first collector 14 enters the high and bypass heat exchanger 12, and the temperature T s,pv is compared with that of the first collector 14 The temperature setting value T s,sp of the heat exchanger 12 is compared to obtain the temperature deviation ⁇ T 2 , and the two temperature deviations are accumulated to obtain the total temperature deviation ⁇ T h :
  • ⁇ T h ⁇ T 1 + ⁇ T 2 ;
  • the total temperature deviation ⁇ T h is calculated in the PID controller to obtain the direct control command ⁇ h of the high-pressure bypass pump 13:
  • ⁇ h f( ⁇ T h );
  • ⁇ h,old is the high-pressure bypass pump 13 speed corresponding to the initial moment
  • the outlet water temperature control logic is: first use the temperature sensor to obtain the temperature T c,pv when the condensate enters the deaerator 4, and the temperature of the condensate enters the deaerator 4
  • the set value T c,sp is compared to obtain the temperature deviation ⁇ T 3
  • the temperature T o,pv when the working fluid of the second heat collector 18 enters the low and bypass heat exchanger 16 is obtained by the temperature sensor, which is compared with the second heat collector
  • the temperature setting value T o,sp of the 18 working fluid inlet low and bypass heat exchanger 16 is compared to obtain the temperature deviation ⁇ T 4 , and the two temperature deviations are accumulated to obtain the total temperature deviation ⁇ T d :
  • ⁇ T d ⁇ T 3 + ⁇ T 4 ;
  • the total temperature deviation ⁇ T d is calculated in the PID controller to obtain the direct control command ⁇ d of the low plus bypass pump 17:
  • ⁇ d f( ⁇ T d );
  • valve 15 control command ⁇ d the feedforward signal command of the low plus bypass pump 17 is generated by the function generator which is
  • ⁇ d,old is the speed of the low plus bypass pump 17 corresponding to the initial moment.
  • the high-pass bypass pump 13 in the high-pass feedwater bypass regulation system and the low-pass bypass pump 17 in the low-feed condensate bypass regulation system both adopt variable speed pumps, which can feed water into the boiler 1 and condensate in real time.
  • the temperature of the inlet deaerator is adjusted to ensure that the temperature of the feed water entering the boiler and the temperature of the condensate entering the deaerator have the smallest deviation from the set value.
  • the present invention has the following advantages:
  • the present invention makes full use of the heat storage inside the steam turbine and the collector pipes, participates in the primary frequency modulation through the configuration adjustment of the thermal system, meets the requirements of rapid power response, and uses the large inertia and temperature control of the collector to ensure the heater outlet Temperature, reduce irreversible loss, so as to achieve a higher economy on the basis of greatly improving the flexibility of the frequency regulation operation of the coal-fired generator set in the transient process.
  • the invention can realize automatic control, is simple and easy to operate, and has low investment.
  • Figure 1 shows the configuration of a solar-assisted coal-fired power generation system that participates in primary frequency modulation.
  • Figure 2 shows the primary frequency modulation control logic of the solar-assisted coal-fired power generation system.
  • Figure 3 shows the temperature control logic when the solar-assisted coal-fired power generation system participates in the primary frequency regulation, in which: Figure 3 (a) the temperature control logic in the high-heat feedwater bypass regulation scheme; (b) the temperature control in the low-heat condensate bypass regulation scheme logic.
  • Figure 1 shows a solar-assisted coal-fired power generation system that participates in primary frequency modulation. It includes boiler 1, steam turbine 2 connected to the outlet of boiler 1, and high-pressure cylinder extraction port, medium-pressure cylinder extraction port, and low-pressure cylinder extraction port of steam turbine 2.
  • the high pressure heater 3, deaerator 4, low pressure heater 5 and condenser 6 connected to the steam port and the exhaust port of the low pressure cylinder respectively.
  • the system also includes a high feed water bypass regulation system and a low feed condensate bypass regulation The system can realize two primary frequency regulation schemes, namely the high feedwater bypass regulation scheme and the low feed condensate bypass regulation scheme:
  • the feedwater at the outlet of the deaerator 4 is boosted by the feedwater pump 8 and divided into two paths, one of which passes through the high-pressure heater 3 and After the feedwater valve 7 enters the boiler 1, the other feedwater passes through the feedwater bypass valve 11, enters the high-pressure bypass heat exchanger 12, and then merges into the boiler 1.
  • the heat exchange working medium of the high-pressure bypass heat exchanger 12 passes through After the high-pressure bypass pump 13 boosts the pressure, it enters the first collector 14 to absorb the solar energy, and then enters the high-pressure bypass heat exchanger 12 to transfer heat to the feedwater; in the primary frequency regulation, it is adjusted by the feedwater bypass valve 11 , To realize the rapid change of the power of steam turbine 2 to ensure the requirement of a frequency modulation;
  • the condensate at the outlet of the condenser 6 enters the condensate pump 10 to increase the pressure, and is divided into two paths, one of which is heated by low pressure
  • the deaerator 5 and the deaerator inlet valve 9 enter the deaerator 4.
  • the other condensate passes through the condensate bypass valve 15, and then enters the low-heat bypass heat exchanger 16 and then is collected into the deaerator 4; at the same time, the low-heat After the heat exchange working fluid of the bypass heat exchanger 16 is boosted by the low heat bypass pump 17, it enters the second heat collector 18 to absorb the solar energy, and then enters the low heat bypass heat exchanger 16 to transfer heat to the condensed water; In the primary frequency regulation, the condensate bypass valve 15 is adjusted to realize the rapid change of the power of the steam turbine 2 to ensure the requirement of primary frequency regulation.
  • FIG. 2 shows the primary frequency modulation control logic of the solar-assisted coal-fired power generation system.
  • process 1 Determine the current maximum frequency deviation according to the primary frequency modulation command of the power grid, and transmit it to the processing unit f 1 (x);
  • Process 2 The processing unit f 1 (x) transmits the required maximum power adjustment amount to In the comparator;
  • process 3 judge according to the conditions in the comparator, if the condition is satisfied, select the high-pressure feedwater bypass adjustment scheme to participate in the primary frequency modulation control;
  • process 4 judge according to the conditions in the comparator, the condition is not established, select low-pressure condensation
  • the water bypass adjustment scheme participates in the primary frequency modulation control;
  • Process 5 Send the grid frequency setting value to the deviation calculator;
  • Process 6 Measure the current frequency, and transmit the processed signal to the deviation calculator;
  • Process 7 Transmit the grid frequency deviation signal to the governor;
  • Process 8 Transform the frequency signal into a power regulation signal in the governor, including parameter settings such as frequency modulation dead zone and speed regulation une
  • Figure 3(a) shows the temperature control logic when the solar-assisted coal-fired power generation system high-pressure feedwater bypass adjustment scheme participates in a frequency adjustment.
  • process 1 send the feed water into the boiler 1 temperature setting value to the deviation device ⁇ 1;
  • process 2 send the measured current value of the feed water into the boiler 1 temperature to the deviation device ⁇ 1;
  • process 3 generate a feed water deviation signal, And transfer it to the accumulator ⁇ 1;
  • process 4 send the working fluid into the high and bypass heat exchanger 12 temperature setting value to the deviation ⁇ 2;
  • process 5 the measured working fluid into the high and bypass The current value of the temperature of the heat exchanger 12 is sent to the deviation ⁇ 2;
  • Process 6 Generates a heat transfer oil deviation signal and transmits it to the accumulator ⁇ 1;
  • Process 7 Sends the accumulated deviation to the PID controller 1;
  • Process 8 sends the accumulated deviation to the PID controller converts the input deviation signal into the adjustment signal of the high-pressure bypass pump 13 and sends
  • FIG. 3(b) shows the temperature control logic when the solar-assisted coal-fired power generation system low-added condensate bypass regulation scheme participates in the primary frequency regulation.
  • Process 12 Send the condensed water into the deaerator 4 temperature setting value to the deviation ⁇ 3;
  • Process 13 Send the measured current value of the condensate water into the deaerator 4 to the deviation ⁇ 3;
  • Process 14 Generate a condensate deviation signal and transmit it to the accumulator ⁇ 3;
  • Process 15 Send the working fluid into the low and bypass heat exchanger 16 temperature setting value to the deviation ⁇ 4;
  • Process 16 The measured value The current value of the temperature of the working fluid into the low and bypass heat exchanger 16 is sent to the deviation ⁇ 4;
  • Process 17 The heat conduction working fluid deviation signal is generated and transmitted to the accumulator ⁇ 3;
  • Process 18 The accumulated deviation is sent to In PID controller 2;
  • Process 19 In the PID controller, the input deviation signal is converted into a low-plus bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Water Supply & Treatment (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明公开了参与一次调频的太阳能辅助燃煤发电系统及其控制方法,通过中低温集热器与燃煤机组耦合,提出了高加给水旁路和低级凝结水旁路两种调节方案参与一次调频的系统构型;制定了一次调频控制逻辑,从而高效准确地参与到一次调频控制中,维持电网频率快速稳定;制定了热力系统工质出口温度的控制逻辑,通过调节集热器换热工质的流量保证各段温度在一次调频过程中稳定;本发明方法利用汽轮机系统和太阳能集热器的参数和运行匹配,增强了一次调频过程准确性和有效性;通过不同集热器不同温度区间的合理利用,降低了不可逆性,进一步提高各类热力系统调整方案的经济性;最终可以大幅度地提高互补发电机组瞬态过程运行灵活性。

Description

参与一次调频的太阳能辅助燃煤发电系统及其控制方法 技术领域
本发明属于火电厂热工控制技术领域,具体涉及参与一次调频的太阳能辅助燃煤发电系统及其控制方法。
背景技术
随着能源短缺、环境污染和气候变迁等问题日益突显,各国可再生能源利用比例逐年攀升,然而可再生能源大都具有间歇性和波动性,易受到环境条件的影响,对电力系统的安全稳定性造成巨大冲击,故需要提升电网灵活性。对于短期的电网调节,主要是指一次调频,即对小范围内频繁变动的负荷进行调整以及在电网出现事故的情况下,快速调整发电机组的出力,抑制电网频率的进一步恶化。燃煤机组其容量大、功率可控、不受地域的限制等优点,已广泛地参与到电网运行灵活性调节中,现有调节方法中高加抽汽调节、低加抽汽调节可以充分利用汽轮机侧的储热对频率进行快速调节,但导致加热器出口温度严重不足,造成除氧器和锅炉效率大幅度降低,经济性较差。受到集热温度的制约,单纯槽式太阳能热发电效率很低,并且存在能量输入不稳定、占地面积大、发电成本高等缺点,而利用太阳能集热技术与化石燃料进行互补发电是解决单一太阳能热发电效率低、成本高的有效方法。在我国太阳能热发电技术发展的近中期阶段,互补发电是一种促进节能减排,发展规模化太阳能热利用技术的有效途型。在太阳能互补发电系统中,不同集热器具有不同工作温度区间,可以用来加热不同位置的水工质或者蒸汽。因此,充分利用燃煤机组和太阳能集热技术的各自优势,可以为燃煤机组一次调频控制提供策略和数据上的指导,进而从根本上提高太阳能互补燃煤机组的瞬态过程灵活性。
发明内容
本发明正是解决单纯燃煤机组瞬态过程利用热力系统调节方法参与一次 调频,必然以牺牲机组经济性为前提,造成热力系统偏离经济运行状态的问题。该发明可以充分利用汽轮机系统和太阳能集热器中不同设备的储热特性,通过参数和运行匹配,选择合适的方法参与到一次调频控制中,迅速有效保证电网频率稳定。
本发明解决其技术问题采用的技术方案是:
参与一次调频的太阳能辅助燃煤发电系统,包括锅炉1,与锅炉1出口连接的汽轮机2,与汽轮机2的高压缸抽汽口、中压缸抽汽口、低压缸抽汽口和低压缸排汽口分别连接的高压加热器3、除氧器4、低压加热器5和凝汽器6,该系统还包括高加给水旁路调节系统和低加凝结水旁路调节系统,能实现两种一次调频方案,分别是高加给水旁路调节方案和低加凝结水旁路调节方案:
1)高加给水旁路调节系统实现的高加给水旁路调节方案中,所述除氧器4出口的给水经过给水泵8升压后分为两路,其中一路给水经过高压加热器3和给水阀7后进入锅炉1,另一路给水经过给水旁路阀11后,进入高加旁路换热器12后汇集进入锅炉1;同时,高加旁路换热器12的换热工质经过高加旁路泵13升压后,进入第一集热器14吸收得到的太阳能,之后进入高加旁路换热器12向给水传递热量;在参与一次调频中,通过给水旁路阀11调节,实现汽轮机2功率快速变化,保证一次调频的要求;
2)低加凝结水旁路调节系统实现的低加凝结水旁路调节方案中,所述凝汽器6出口的凝结水进入凝结水泵10升压后,分两路,一路凝结水经过低压加热器5和除氧器进水阀9进入除氧器4,另一路凝结水经过凝结水旁路阀15后,进入低加旁路换热器16后汇集到除氧器4;同时,低加旁路换热器16换热工质经过低加旁路泵17升压后,进入第二集热器18吸收得到的太阳能,之后进入低加旁路换热器16向凝结水传递热量;参与一次调频中,通过凝结水旁路阀15调节,实现汽轮机2功率快速变化,保证一次调频的要求。
优选的,给水旁路阀11和凝结水旁路阀15均采用汽动调节阀;高加给水旁路调节系统中,第一集热器14采用中温槽式集热器,导热工质选取导热 油;低加凝结水旁路调节系统中,第二集热器18选取中低温平板集热器,导热工质选导热油或者水。
所述的参与一次调频的太阳能辅助燃煤发电系统的控制方法,根据太阳能辅助燃煤发电系统运行特点,制定一次调频控制和加热器出口温度控制逻辑;具体如下:
1)制定一次调频控制逻辑
根据电网运行状态,获得需要进行一次调频时的最大频率调节量Δf max,之后通过机组设定的调速不等率δ转化成所需最大功率调节量ΔP max,即:
ΔP max=f 1(Δf max)=Δf max
根据太阳能辅助燃煤发电系统实际运行状态,确定采用低加凝结水旁路调节方案的最大功率调节量ΔP LPH,max,并与当前所需最大功率调节量ΔP max对比,如果ΔP max>ΔP LPH,max,则采用高加给水旁路调节方案参与一次调频;如果ΔP max≤ΔP LPH,max,则采用低加凝结水旁路调节方案参与一次调频;
确定好参与一次调频的调节方案后,根据电网运行状态,获得实时频率值f pv,与电网所需稳定频率值f sp进行对比,获得频率偏差Δf,频率偏差在调速器中进行参数设定后,获得功率调节量ΔP,所述参数设定包括调频死区和调速不等率:
ΔP=f 2(Δf)
将该功率调节量ΔP在PID控制器中获得的调节输出量Δμ,叠加到高加给水旁路调节方案和低加凝结水旁路调节方案对应的控制阀门上,产生阀门的最新开度μ new
μ new=μ old+Δμ
式中:μ old为初始时刻对应的阀门开度;
最终形成将最优方案投入一次调频的闭环优化控制逻辑;
2)制定高加加热器和低加加热器出口水温控制逻辑
对于采用高加给水旁路调节方案参与一次调频,其出口水温控制逻辑为: 首先利用温度传感器获得给水进锅炉1时温度T f,pv,与给水进锅炉1的温度设定值T f,sp进行对比,获得温度偏差ΔT 1;利用温度传感器获得第一集热器14工质进高加旁路换热器12时温度T s,pv,与第一集热器14工质进高加旁路换热器12的温度设定值T s,sp进行对比,获得温度偏差ΔT 2,将两个温度偏差累加获得总的温度偏差ΔT h
ΔT h=ΔT 1+ΔT 2
该总的温度偏差ΔT h在PID控制器中运算,获得高加旁路泵13的直接控制指令Δψ h
Δψ h=f(ΔT h);
由于集热器管道较差,热惯性较大,因此需要将一次调频快速指令对各段温度控制进行前馈修正,将高加给水旁路调节方案一次调频控制逻辑中得到的给水旁路阀11控制指令Δμ h,通过函数发生器产生高加旁路泵13前馈信号指令
Figure PCTCN2019092432-appb-000001
Figure PCTCN2019092432-appb-000002
最终,将直接控制指令Δψ h和前馈信号指令
Figure PCTCN2019092432-appb-000003
叠加到高加旁路泵13上,产生该泵的最新转速指令σ h,new
Figure PCTCN2019092432-appb-000004
式中:σ h,old为初始时刻对应的高加旁路泵13转速;
对于采用低加凝结水旁路调节方案参与一次调频,其出口水温控制逻辑为:首先利用温度传感器获得凝结水进除氧器4时温度T c,pv,与凝结水进除氧器4的温度设定值T c,sp进行对比,获得温度偏差ΔT 3;利用温度传感器获得第二集热器18工质进低加旁路换热器16时温度T o,pv,与第二集热器18工质进低加旁路换热器16的温度设定值T o,sp进行对比,获得温度偏差ΔT 4,将两个温度偏差累加获得总的温度偏差ΔT d
ΔT d=ΔT 3+ΔT 4
该总的温度偏差ΔT d在PID控制器中运算,获得低加旁路泵17的直接控 制指令Δψ d
Δψ d=f(ΔT d);
由于集热器管道较差,热惯性较大,因此需要将一次调频快速指令对各段温度控制进行前馈修正,将低加凝结水旁路调节方案一次调频控制逻辑中得到的凝结水旁路阀15控制指令Δμ d,通过函数发生器产生低加旁路泵17前馈信号指令
Figure PCTCN2019092432-appb-000005
Figure PCTCN2019092432-appb-000006
最终,将直接控制指令Δψ d和前馈信号指令
Figure PCTCN2019092432-appb-000007
叠加到低加旁路泵17上,产生该泵的最新转速指令σ d,new
Figure PCTCN2019092432-appb-000008
式中:σ d,old为初始时刻对应的低加旁路泵17转速。
优选的,高加给水旁路调节系统中的高加旁路泵13和低加凝结水旁路调节系统中的低加旁路泵17均采用变速泵,可实时对给水进锅炉1和凝结水进除氧器的温度进行调控,保证给水进锅炉的温度和凝结水进除氧器的温度与设定值偏差最小。
和现有技术相比较,本发明具有如下优点:
1、本发明充分利用了汽轮机内部和集热器管道的储热,通过热力系统构型调整参与一次调频,满足功率快速响应的要求,利用集热器大惯性和温度控制,保证了加热器出口温度,减少不可逆损失,从而实现经济性较高的基础上大幅度地提高燃煤发电机组瞬态过程的调频运行灵活性。
2、本发明可实现自动控制,简单易操作,投资低。
附图说明
图1为参与一次调频的太阳能辅助燃煤发电系统构型。
图2为太阳能辅助燃煤发电系统的一次调频控制逻辑。
图3为太阳能辅助燃煤发电系统参与一次调频时温度控制逻辑,其中:图3(a)高加给水旁路调节方案中温度控制逻辑;(b)低加凝结水旁路调节方案中温度控制逻辑。
具体实施方式
下面结合附图对本发明进一步说明。
如图1所示为参与一次调频的太阳能辅助燃煤发电系统,包括锅炉1,与锅炉1出口连接的汽轮机2,与汽轮机2的高压缸抽汽口、中压缸抽汽口、低压缸抽汽口和低压缸排汽口分别连接的高压加热器3、除氧器4、低压加热器5和凝汽器6,该系统还包括高加给水旁路调节系统和低加凝结水旁路调节系统,能实现两种一次调频方案,分别是高加给水旁路调节方案和低加凝结水旁路调节方案:
1)高加给水旁路调节系统实现的高加给水旁路调节方案中,所述除氧器4出口的给水经过给水泵8升压后分为两路,其中一路给水经过高压加热器3和给水阀7后进入锅炉1,另一路给水经过给水旁路阀11后,进入高加旁路换热器12后汇集进入锅炉1;同时,高加旁路换热器12的换热工质经过高加旁路泵13升压后,进入第一集热器14吸收得到的太阳能,之后进入高加旁路换热器12向给水传递热量;在参与一次调频中,通过给水旁路阀11调节,实现汽轮机2功率快速变化,保证一次调频的要求;
2)低加凝结水旁路调节系统实现的低加凝结水旁路调节方案中,所述凝汽器6出口的凝结水进入凝结水泵10升压后,分两路,一路凝结水经过低压加热器5和除氧器进水阀9进入除氧器4,另一路凝结水经过凝结水旁路阀15后,进入低加旁路换热器16后汇集到除氧器4;同时,低加旁路换热器16换热工质经过低加旁路泵17升压后,进入第二集热器18吸收得到的太阳能,之后进入低加旁路换热器16向凝结水传递热量;参与一次调频中,通过凝结水旁路阀15调节,实现汽轮机2功率快速变化,保证一次调频的要求。
如图2所示为太阳能辅助燃煤发电系统的一次调频控制逻辑。其中,过 程1:根据电网一次调频指令,确定当前最大频率偏差,将其传送到处理单元f 1(x);过程2:处理单元f 1(x)将得到的所需最大功率调节量传输到比较器中;过程3:在比较器中根据条件进行判断,条件成立选择高加给水旁路调节方案参与一次调频控制中;过程4:在比较器中根据条件进行判断,条件不成立选择低加凝结水旁路调节方案参与一次调频控制中;过程5:将电网频率设定值送到偏差计算器中;过程6:测量得到当前频率,并将处理后的信号传输到达偏差计算器中;过程7:将电网频率偏差信号传输到调速器中;过程8:调速器中将频率信号转化为功率调节信号,包括调频死区和调速不等率等参数设置,并将信号送到PID控制器中;过程9:PID控制器中将输入偏差信号转化为阀门调节信号,送到给水旁路阀门执行单元;过程10:PID控制器中将输入偏差信号转化为阀门调节信号,送到凝结水旁路阀门执行单元。
如图3(a)所示为太阳能辅助燃煤发电系统高加给水旁路调节方案参与一次调频时温度控制逻辑。包括,过程1:将给水进锅炉1温度设定值送到偏差器Δ1中;过程2:将测量得到的给水进锅炉1温度当前值送到偏差器Δ1中;过程3:产生给水偏差信号,并将其传输到累加器∑1中;过程4:将工质进高加旁路换热器12温度设定值送到偏差器Δ2中;过程5:将测量得到的工质进高加旁路换热器12温度当前值送到偏差器Δ2中;过程6:产生导热油偏差信号,并将其传输到累加器∑1中;过程7:将累计偏差送到PID控制器1中;过程8:PID控制器中将输入偏差信号转化为高加旁路泵13调节信号,送到累加器∑2中;过程9:将一次调频的给水旁路阀11控制指令传输到处理单元f 1(x);过程10:在f 1(x)中将阀门控制指令转化为高加旁路泵13前馈控制指令,送至累加器∑2中;过程11:将累加器∑2产生的最终高加旁路泵13控制指令送到高加旁路泵13中,对高加旁路泵13转速进行控制。如图3(b)所示为太阳能辅助燃煤发电系统低加凝结水旁路调节方案参与一次调频时温度控制逻辑。过程12:将凝结水进除氧器4温度设定值送到偏差器Δ3中;过程13:将测量得到的凝结水进除氧器4的温度当前值送到偏差器Δ3 中;过程14:产生凝结水偏差信号,并将其传输到累加器∑3中;过程15:将工质进低加旁路换热器16温度设定值送到偏差器Δ4中;过程16:将测量得到的工质进低加旁路换热器16温度当前值送到偏差器Δ4中;过程17:产生导热工质偏差信号,并将其传输到累加器∑3中;过程18:将累计偏差送到PID控制器2中;过程19:PID控制器中将输入偏差信号转化为低加旁路泵17调节信号,送到累加器∑4中;过程20:将一次调频的凝结水旁路阀15控制指令传输到处理单元f 2(x);过程21:在f 2(x)中将阀门控制指令转化为低加旁路泵17前馈控制指令,送至累加器∑2中;过程22:将累加器∑4产生的最终低加旁路泵控制17指令送到低加旁路泵17中,对低加旁路泵17转速进行控制。

Claims (4)

  1. 参与一次调频的太阳能辅助燃煤发电系统,包括锅炉(1),与锅炉(1)出口连接的汽轮机(2),与汽轮机(2)的高压缸抽汽口、中压缸抽汽口、低压缸抽汽口和低压缸排汽口分别连接的高压加热器(3)、除氧器(4)、低压加热器(5)和凝汽器(6),其特征在于:该系统还包括高加给水旁路调节系统和低加凝结水旁路调节系统,能实现两种一次调频方案,分别是高加给水旁路调节方案和低加凝结水旁路调节方案:
    1)高加给水旁路调节系统实现的高加给水旁路调节方案中,所述除氧器(4)出口的给水经过给水泵(8)升压后分为两路,其中一路给水经过高压加热器(3)和给水阀(7)后进入锅炉(1),另一路给水经过给水旁路阀(11)后,进入高加旁路换热器(12)后汇集进入锅炉(1);同时,高加旁路换热器(12)的换热工质经过高加旁路泵(13)升压后,进入第一集热器(14)吸收得到的太阳能,之后进入高加旁路换热器(12)向给水传递热量;在参与一次调频中,通过给水旁路阀(11)调节,实现汽轮机(2)功率快速变化,保证一次调频的要求;
    2)低加凝结水旁路调节系统实现的低加凝结水旁路调节方案中,所述凝汽器(6)出口的凝结水进入凝结水泵(10)升压后,分两路,一路凝结水经过低压加热器(5)和除氧器进水阀(9)进入除氧器(4),另一路凝结水经过凝结水旁路阀(15)后,进入低加旁路换热器(16)后汇集到除氧器(4);同时,低加旁路换热器(16)换热工质经过低加旁路泵(17)升压后,进入第二集热器(18)吸收得到的太阳能,之后进入低加旁路换热器(16)向凝结水传递热量;参与一次调频中,通过凝结水旁路阀(15)调节,实现汽轮机(2)功率快速变化,保证一次调频的要求。
  2. 根据权利要求1所述的参与一次调频的太阳能辅助燃煤发电系统,其特征在于:给水旁路阀(11)和凝结水旁路阀(15)均采用汽动调节阀;高加给水旁路调节系统中,第一集热器(14)采用中温槽式集热器,导热工质 选取导热油;低加凝结水旁路调节系统中,第二集热器(18)选取中低温平板集热器,导热工质选导热油或者水。
  3. 一种如权利要求1所述的参与一次调频的太阳能辅助燃煤发电系统的控制方法,其特征在于:根据太阳能辅助燃煤发电系统运行特点,制定一次调频控制和加热器出口温度控制逻辑;具体如下:
    1)制定一次调频控制逻辑
    根据电网运行状态,获得需要进行一次调频时的最大频率调节量Δf max,之后通过机组设定的调速不等率δ转化成所需最大功率调节量ΔP max,即:
    ΔP max=f 1(Δf max)=Δf max
    根据太阳能辅助燃煤发电系统实际运行状态,确定采用低加凝结水旁路调节方案的最大功率调节量ΔP LPH,max,并与当前所需最大功率调节量ΔP max对比,如果ΔP max>ΔP LPH,max,则采用高加给水旁路调节方案参与一次调频;如果ΔP max≤ΔP LPH,max,则采用低加凝结水旁路调节方案参与一次调频;
    确定好参与一次调频的调节方案后,根据电网运行状态,获得实时频率值f pv,与电网所需稳定频率值f sp进行对比,获得频率偏差Δf,频率偏差在调速器中进行参数设定后,获得功率调节量ΔP,所述参数设定包括调频死区和调速不等率:
    ΔP=f 2(Δf)
    将该功率调节量ΔP在PID控制器中获得的调节输出量Δμ,叠加到高加给水旁路调节方案和低加凝结水旁路调节方案对应的控制阀门上,产生阀门的最新开度μ new
    μ new=μ old+Δμ
    式中:μ old为初始时刻对应的阀门开度;
    最终形成将最优方案投入一次调频的闭环优化控制逻辑;
    2)制定高加加热器和低加加热器出口水温控制逻辑
    对于采用高加给水旁路调节方案参与一次调频,其出口水温控制逻辑为: 首先利用温度传感器获得给水进锅炉(1)时温度T f,pv,与给水进锅炉(1)的温度设定值T f,sp进行对比,获得温度偏差ΔT 1;利用温度传感器获得第一集热器(14)工质进高加旁路换热器(12)时温度T s,pv,与第一集热器(14)工质进高加旁路换热器(12)的温度设定值T s,sp进行对比,获得温度偏差ΔT 2,将两个温度偏差累加获得总的温度偏差ΔT h
    ΔT h=ΔT 1+ΔT 2
    该总的温度偏差ΔT h在PID控制器中运算,获得高加旁路泵(13)的直接控制指令Δψ h
    Δψ h=f(ΔT h);
    同时,由于集热器管道较差,热惯性较大,因此需要将一次调频快速指令对各段温度控制进行前馈修正,将高加给水旁路调节方案一次调频控制逻辑中得到的给水旁路阀(11)控制指令Δμ h,通过函数发生器产生高加旁路泵(13)前馈信号指令
    Figure PCTCN2019092432-appb-100001
    Figure PCTCN2019092432-appb-100002
    最终,将直接控制指令Δψ h和前馈信号指令
    Figure PCTCN2019092432-appb-100003
    叠加到高加旁路泵(13)上,产生该泵的最新转速指令σ h,new
    Figure PCTCN2019092432-appb-100004
    式中:σ h,old为初始时刻对应的高加旁路泵(13)转速;
    对于采用低加凝结水旁路调节方案参与一次调频,其出口水温控制逻辑为:首先利用温度传感器获得凝结水进除氧器(4)时温度T c,pv,与凝结水进除氧器(4)的温度设定值T c,sp进行对比,获得温度偏差ΔT 3;利用温度传感器获得第二集热器(18)工质进低加旁路换热器(16)时温度T o,pv,与第二集热器(18)工质进低加旁路换热器(16)的温度设定值T o,sp进行对比,获得温度偏差ΔT 4,将两个温度偏差累加获得总的温度偏差ΔT d
    ΔT d=ΔT 3+ΔT 4
    该总的温度偏差ΔT d在PID控制器中运算,获得低加旁路泵(17)的直 接控制指令Δψ d
    Δψ d=f(ΔT d);
    同时,由于集热器管道较差,热惯性较大,因此需要将一次调频快速指令对各段温度控制进行前馈修正,将低加凝结水旁路调节方案一次调频控制逻辑中得到的凝结水旁路阀(15)控制指令Δμ d,通过函数发生器产生低加旁路泵(17)前馈信号指令
    Figure PCTCN2019092432-appb-100005
    Figure PCTCN2019092432-appb-100006
    最终,将直接控制指令Δψ d和前馈信号指令
    Figure PCTCN2019092432-appb-100007
    叠加到低加旁路泵(17)上,产生该泵的最新转速指令σ d,new
    Figure PCTCN2019092432-appb-100008
    式中:σ d,old为初始时刻对应的低加旁路泵(17)转速。
  4. 根据权利要求3所述的控制方法,其特征在于:高加给水旁路调节系统中的高加旁路泵(13)和低加凝结水旁路调节系统中的低加旁路泵(17)均采用变速泵,可实时对给水进锅炉(1)和凝结水进除氧器的温度进行调控,保证给水进锅炉的温度和凝结水进除氧器的温度与设定值偏差最小。
PCT/CN2019/092432 2019-03-13 2019-06-22 参与一次调频的太阳能辅助燃煤发电系统及其控制方法 WO2020181680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/279,569 US11236633B2 (en) 2019-03-13 2019-06-22 Solar aided coal-fired power generation system participating in primary frequency regulation and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910189573.6A CN109812796B (zh) 2019-03-13 2019-03-13 参与一次调频的太阳能辅助燃煤发电系统及其控制方法
CN201910189573.6 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020181680A1 true WO2020181680A1 (zh) 2020-09-17

Family

ID=66608867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092432 WO2020181680A1 (zh) 2019-03-13 2019-06-22 参与一次调频的太阳能辅助燃煤发电系统及其控制方法

Country Status (3)

Country Link
US (1) US11236633B2 (zh)
CN (1) CN109812796B (zh)
WO (1) WO2020181680A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113090539A (zh) * 2021-04-08 2021-07-09 西安热工研究院有限公司 一种基于双馈系统的空冷机组一次调频电动给水系统
CN113107878A (zh) * 2021-04-08 2021-07-13 西安热工研究院有限公司 一种基于双馈系统的湿冷机组一次调频电动引风机系统
CN115622081A (zh) * 2022-11-09 2023-01-17 深能智慧能源科技有限公司 一种新能源配储调频方法及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109958593B (zh) * 2019-03-11 2020-06-02 西安交通大学 一种太阳能燃煤耦合灵活发电系统及运行方法
CN109812796B (zh) * 2019-03-13 2020-06-02 西安交通大学 参与一次调频的太阳能辅助燃煤发电系统及其控制方法
CN110212552B (zh) * 2019-06-11 2021-01-22 中国神华能源股份有限公司 火力发电机组一次调频的控制方法及系统
CN110397479A (zh) * 2019-07-18 2019-11-01 西安西热节能技术有限公司 一种多变量协同调频调峰系统及方法
CN110486096A (zh) * 2019-08-08 2019-11-22 大唐郓城发电有限公司 一种高灵活性二次再热机组调峰热力系统及方法
CN111241711B (zh) * 2020-02-19 2021-12-28 西安交通大学 一种光煤互补系统变工况的光电转换效率寻优控制方法
CN112066354A (zh) * 2020-09-07 2020-12-11 上海明华电力科技有限公司 基于火电机组调频资源协同梯级利用的一次调频控制方法
CN112327624B (zh) * 2020-11-06 2021-12-28 西安交通大学 一种燃煤机组调峰运行方法
CN113865118A (zh) * 2021-09-15 2021-12-31 吉林省电力科学研究院有限公司 一种光能接入燃煤机组及光煤能量互补负荷调节方法
CN114198274B (zh) * 2021-12-14 2023-06-23 西安交通大学 一种基于昼夜温差-辐射冷却的温差发电系统及方法
CN114776405B (zh) * 2022-04-11 2024-01-26 华北电力科学研究院有限责任公司 一种热电联产机组的供热保护控制方法及装置
CN115324674B (zh) * 2022-07-25 2024-06-14 广西电网有限责任公司电力科学研究院 一种火电机组变频凝结水泵参与电网频率调节的系统
CN115324675B (zh) * 2022-07-25 2024-06-14 广西电网有限责任公司电力科学研究院 火电机组基于变频凝结水泵调节电网频率的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201738958U (zh) * 2010-07-20 2011-02-09 华北电力大学(保定) 一种可再生能源辅助燃煤的混合发电系统
CN102758746A (zh) * 2012-06-30 2012-10-31 华北电力大学(保定) 太阳能集热器辅助燃煤机组耦合发电系统
CN202659432U (zh) * 2012-06-30 2013-01-09 华北电力大学(保定) 玻璃罩真空式槽式太阳能集热器辅助燃煤机组的耦合发电系统
CN104307308A (zh) * 2014-10-26 2015-01-28 华北电力大学(保定) 一种利用光伏辅助燃煤机组脱碳的工艺系统
CN205825455U (zh) * 2016-05-09 2016-12-21 华北电力大学 一种多模式下运行的太阳能辅助燃煤机组混合发电系统
US20170314466A1 (en) * 2016-04-29 2017-11-02 King Fahd University Of Petroleum And Minerals Solar assisted gas turbine desalination and carbon capture system
CN109812796A (zh) * 2019-03-13 2019-05-28 西安交通大学 参与一次调频的太阳能辅助燃煤发电系统及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069674A (en) * 1977-01-14 1978-01-24 Warren Glenn B Power plant
US7640746B2 (en) * 2005-05-27 2010-01-05 Markon Technologies, LLC Method and system integrating solar heat into a regenerative rankine steam cycle
CN101260815B (zh) * 2008-04-24 2010-06-02 华北电力大学 抛物面槽式太阳能集热器辅助燃煤锅炉的混合热发电系统
DE102009056707A1 (de) * 2009-04-18 2010-10-21 Alstom Technology Ltd. Dampfkraftwerk mit Solarkollektoren
WO2011124408A2 (de) * 2010-03-30 2011-10-13 Siemens Aktiengesellschaft Solarthermisches kraftwerk mit indirekter verdampfung und verfahren zum betrieb eines solchen solarthermischen kraftwerks
CN102454440B (zh) * 2010-10-20 2015-04-22 中国科学院工程热物理研究所 板槽结合的太阳能与火电站互补发电系统
CN103115445B (zh) * 2013-02-05 2014-09-24 中盈长江国际新能源投资有限公司 太阳能自动均热聚热管、槽式组件、热发电系统和工艺
CN103452600B (zh) * 2013-08-06 2015-06-17 中国能源建设集团广东省电力设计研究院有限公司 回热侧间接调节的汽轮机发电系统及其一次调频方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201738958U (zh) * 2010-07-20 2011-02-09 华北电力大学(保定) 一种可再生能源辅助燃煤的混合发电系统
CN102758746A (zh) * 2012-06-30 2012-10-31 华北电力大学(保定) 太阳能集热器辅助燃煤机组耦合发电系统
CN202659432U (zh) * 2012-06-30 2013-01-09 华北电力大学(保定) 玻璃罩真空式槽式太阳能集热器辅助燃煤机组的耦合发电系统
CN104307308A (zh) * 2014-10-26 2015-01-28 华北电力大学(保定) 一种利用光伏辅助燃煤机组脱碳的工艺系统
US20170314466A1 (en) * 2016-04-29 2017-11-02 King Fahd University Of Petroleum And Minerals Solar assisted gas turbine desalination and carbon capture system
CN205825455U (zh) * 2016-05-09 2016-12-21 华北电力大学 一种多模式下运行的太阳能辅助燃煤机组混合发电系统
CN109812796A (zh) * 2019-03-13 2019-05-28 西安交通大学 参与一次调频的太阳能辅助燃煤发电系统及其控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113090539A (zh) * 2021-04-08 2021-07-09 西安热工研究院有限公司 一种基于双馈系统的空冷机组一次调频电动给水系统
CN113107878A (zh) * 2021-04-08 2021-07-13 西安热工研究院有限公司 一种基于双馈系统的湿冷机组一次调频电动引风机系统
CN113090539B (zh) * 2021-04-08 2022-12-16 西安热工研究院有限公司 一种基于双馈系统的空冷机组一次调频电动给水系统
CN113107878B (zh) * 2021-04-08 2022-12-20 西安热工研究院有限公司 一种基于双馈系统的湿冷机组一次调频电动引风机系统
CN115622081A (zh) * 2022-11-09 2023-01-17 深能智慧能源科技有限公司 一种新能源配储调频方法及系统

Also Published As

Publication number Publication date
CN109812796A (zh) 2019-05-28
US20210310365A1 (en) 2021-10-07
US11236633B2 (en) 2022-02-01
CN109812796B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020181680A1 (zh) 参与一次调频的太阳能辅助燃煤发电系统及其控制方法
WO2020181678A1 (zh) 基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法
WO2020181675A1 (zh) 一种灵活燃煤发电系统及运行方法
WO2020181677A1 (zh) 一种太阳能燃煤耦合灵活发电系统及运行方法
CN110863870B (zh) 一种基于高压加热回路的斜温层储热调峰系统及调峰方法
CN105697075A (zh) 增设无再热中压汽轮机的抽凝供热系统
CN113586185B (zh) 一种燃煤锅炉烟气与蒸汽联合储热深度调峰系统及运行方法
WO2021238321A1 (zh) 一种构型自适应高效灵活清洁燃煤发电系统及运行方法
CN112611010B (zh) 一种多热源热电联产机组发电负荷灵活调节系统的调节方法
CN109026237B (zh) 一种有机工质动力循环发电系统协调控制系统及方法
CN110761859B (zh) 一种基于低压加热回路的斜温层储热调峰系统及调峰方法
CN107702086B (zh) 一种利用熔融盐储热的调峰系统及方法
CN109780529B (zh) 一种基于末端电热泵混水供热的生物质热电联产运行方法
CN209147060U (zh) 一种供电机组深度调峰系统
CN104315496A (zh) 基于等温差原理的锅炉排烟余热回收系统
CN209877073U (zh) 一种螺杆膨胀机与热泵综合应用的供暖装置
CN109113818A (zh) 一种增强电厂灵活性热力系统
CN109139400B (zh) 基于辐照变化改变集成模式的太阳能热互补联合循环系统
CN203810382U (zh) 超超临界机组可切换式二次再热蒸汽面式减温器系统
CN108980616B (zh) 一种针对间歇性用汽用户的长距离工业供汽系统
CN216950586U (zh) 一种利用余锅余热进行天然气预加热系统
CN113623032B (zh) 一种燃煤锅炉烟气储热发电一体化系统及运行方法
CN213775467U (zh) 具有多个液压调节阀的热电解耦系统
CN111622814B (zh) 一种基于实时在线运行数据的汽轮机低压缸节能运行控制方法及系统
CN210569359U (zh) 一种基于吸收式热泵和有机朗肯循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919521

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19919521

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19919521

Country of ref document: EP

Kind code of ref document: A1