WO2020181678A1 - 基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法 - Google Patents

基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法 Download PDF

Info

Publication number
WO2020181678A1
WO2020181678A1 PCT/CN2019/092430 CN2019092430W WO2020181678A1 WO 2020181678 A1 WO2020181678 A1 WO 2020181678A1 CN 2019092430 W CN2019092430 W CN 2019092430W WO 2020181678 A1 WO2020181678 A1 WO 2020181678A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
scheme
heater
steam
temperature
Prior art date
Application number
PCT/CN2019/092430
Other languages
English (en)
French (fr)
Inventor
赵永亮
严俊杰
刘明
种道彤
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US16/753,328 priority Critical patent/US11146069B2/en
Publication of WO2020181678A1 publication Critical patent/WO2020181678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49219Compensation temperature, thermal displacement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Definitions

  • the invention belongs to the technical field of thermal power control of thermal power plants, and specifically relates to a thermal system based on coal-fired units. Modified optimization control method for primary frequency modulation.
  • any method that can quickly release the heat storage of the unit and convert it into output can be used as a means of primary frequency adjustment.
  • Existing adjustment schemes include main steam valve adjustment, high-heat extraction steam adjustment, low-heat extraction steam adjustment, cooling water adjustment, and heating network energy storage adjustment.
  • the unit itself is in the process of transient operation, so the current adjustment plan is directly selected according to the steady-state adjustment ability, which is easy to cause insufficient adjustment ability and cannot realize automatic control. Therefore, starting from the nature of the operating characteristics of the transient process, it provides strategic and data guidance for the primary frequency regulation control of coal-fired units, and aims to fundamentally improve the flexibility of coal-fired units in variable load.
  • the present invention solves the problem that various thermal system adjustment schemes in the transient process of coal-fired units cannot achieve accurate and automatic participation in primary frequency regulation control, and provides a thermal system based on coal-fired units.
  • Modified primary frequency modulation optimization control method which can accumulate the state before and after the action of the thermal system adjustment scheme The amount of change can accurately determine the adjustment ability and economy of various adjustment schemes, so as to effectively select a reasonable scheme to participate in a frequency modulation in the transient process, and quickly and effectively ensure the stability of the grid frequency.
  • the modified primary frequency modulation optimization control method is based on the storage of various thermal equipment in the thermal system of coal-fired units in different transient processes. Determine the optimal primary frequency modulation control scheme suitable for the current state, and modify the primary frequency modulation control logic; the specific steps are as follows:
  • Ex s,i , Ex m,i and Ex w,i are the steam storage of thermal equipment i respectively Amount, storage of metal heating surface Value and water storage Quantity, kJ; M s , M m and M w are the steam quality, the metal heating surface quality and the feed water quality in the thermal equipment i respectively, kg; T 0 is the ambient temperature, K; u 0 is the ambient temperature, environment Thermodynamic energy corresponding to pressure, kJ/kg; s 0 is the entropy value corresponding to ambient temperature and pressure, kJ/(kg ⁇ K); u(P s,i ,T s,i ) is steam pressure P s ,i and steam temperature T s,i calculated steam thermodynamic energy, kJ/kg; s(P s,i ,T s,i ) is steam calculated by steam pressure P s,i and steam temperature T s,i Entropy value, kJ/(kg ⁇ K); C m is the specific heat capacity
  • the configuration adjustment of the thermal system of coal-fired units for primary frequency regulation includes: high heat extraction steam throttling scheme, high heat feed water bypass scheme, low heat extraction steam throttling scheme and low heat condensate throttling scheme; transient operation
  • various adjustment schemes participate in the storage of the initial state of frequency modulation.
  • the amount is the storage of the thermal equipment contained in each corresponding subsystem Sum of amount:
  • Ex j, i, a is the initial state a when the j type thermal system adjustment scheme corresponds to the storage of the i-th thermal equipment of the subsystem Quantity, kJ; N is the number of thermal equipment contained in the corresponding subsystem of the type j thermal system adjustment scheme;
  • the steam pressure in each high-pressure heater at the end of the primary frequency adjustment is the deaerator inlet drain pressure
  • the steam temperature is the deaerator inlet drain pressure corresponding to the saturated steam temperature
  • the feed water temperature is the feed water temperature.
  • the outlet temperature of the water pump, the feed water pressure is the outlet pressure of the feed water pump, and the temperature of the metal heating surface is consistent with the steam temperature;
  • the steam pressure in each high-pressure heater at the end of the primary frequency adjustment is the corresponding extraction port pressure
  • the steam temperature is the corresponding extraction port pressure corresponding to the saturated steam temperature
  • the feedwater temperature is the feedwater pump outlet temperature
  • the feed water pressure is the outlet pressure of the feed water pump
  • the metal heating surface temperature is consistent with the steam temperature
  • the steam pressure in each low-pressure heater at the end of the primary frequency adjustment is the condenser inlet drain pressure
  • the steam temperature is the condenser inlet drain pressure corresponding to the saturated steam temperature
  • the condensate temperature is The outlet temperature of the condensate pump
  • the condensate pressure is the outlet pressure of the condensate pump
  • the temperature of the metal heating surface is consistent with the steam temperature
  • the steam pressure in each low-pressure heater at the end of the primary frequency adjustment is the corresponding extraction port pressure
  • the steam temperature is the corresponding extraction port pressure and the saturated steam temperature
  • the condensate temperature is the condensate pump Outlet temperature
  • condensate pressure is the outlet pressure of the condensate pump
  • the metal heating surface temperature is consistent with the steam temperature
  • Ex j, i, b is the end state b when the type j thermal system adjustment scheme corresponds to the storage of the i-th thermal equipment of the subsystem Quantity, kJ; N is the number of thermal equipment contained in the corresponding subsystem of the type j thermal system adjustment scheme;
  • ⁇ Ex j
  • , where j 1, 2, 3, 4; corresponding to high-heater extraction steam throttling scheme, high-heat feedwater bypass scheme, and low-heat extraction steam throttling scheme And low-heat condensate throttling scheme;
  • T j is the time required for a frequency modulation, which is 60s according to the power grid assessment requirements
  • ⁇ P j is the maximum power output of the adjustment scheme of the type j thermal system, kW; Is the average storage when the adjustment scheme of type j thermal system is applied The rate of change, kW; ⁇ j is the storage for the adjustment scheme of the type j thermal system Conversion efficiency;
  • the optimal primary frequency modulation control scheme that is adapted to the current state is generated as k, and its corresponding storage
  • the conversion efficiency ⁇ k should be selected from the four thermal system adjustment schemes.
  • ⁇ k max ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ⁇ ;
  • the high-pressure heater extraction steam regulation plan involves the high-pressure heater extraction pipe valve to participate in the primary frequency regulation control, and the high-pressure heater feedwater bypass plan is to heat the high pressure
  • the bypass pipeline valve of the heater participates in the primary frequency modulation control.
  • the low-heat extraction steam throttling scheme involves the low-pressure heater extraction pipe valve participating in the primary frequency modulation control.
  • the low-pressure heater condensate throttling scheme involves the low-pressure heater pipeline valve.
  • ⁇ old is the valve opening corresponding to the initial moment
  • the high-pressure heater extraction steam throttling scheme and the high-pressure heater feedwater bypass scheme utilize the storage system of the high-pressure heater in the primary frequency regulation.
  • the high-pressure heater sub-system includes all high-pressure heaters, high-pressure cylinders, medium-pressure cylinders and connecting pipes; the low-heat extraction steam throttling scheme and the low-heat condensate throttling scheme use the storage of the low-heat heater in a frequency regulation
  • the low-pressure sub-system includes all low-pressure heaters, low-pressure cylinders, deaerators and connecting pipes.
  • the speed regulation variability ⁇ suitable for various thermal system regulation schemes is 1%-4%.
  • the present invention has the following advantages:
  • the present invention dynamically tracks the storage capacity of each thermal system of a coal-fired unit
  • the amount of change improves the prediction accuracy of the actual effects of various thermal system adjustment programs, adapts to the primary frequency modulation control of different transient processes, and can greatly improve the operational flexibility of the coal-fired generator set during the transient process.
  • the invention can realize automatic control, is simple and easy to operate, and has low investment.
  • Figure 1 is a control logic diagram of various thermal system adjustment schemes participating in a frequency modulation.
  • Figure 2 shows the additional power output and storage of four thermal system adjustment schemes involved in one frequency modulation Change rate change curve.
  • Process 1 The grid frequency deviation signal is detected by the measuring equipment and the digital-to-analog conversion is completed, and then the processed signal is transmitted to the speed control
  • Process 2 The speed regulator converts the frequency signal into a power regulation signal (including parameter settings such as frequency modulation dead zone and speed regulation unequal rate), and sends the signal to the PID controller
  • Process 3 PID controller
  • the input deviation signal is converted into a valve adjustment signal and sent to the valve execution unit
  • Process 4 The valve execution unit generates a valve displacement change signal, which acts on the corresponding valve.
  • the new control logic introduced in the present invention includes, as shown in Figure 1, process 5: send the frequency deviation signal to the processing unit f 1 (x); process 6: convert the maximum frequency signal into maximum power in f 1 (x) The adjustment signal is sent to the comparison selector; Process 7: The pressure signals measured by the pressure sensors in the thermal system are sent to the processing unit f 2 (x); Process 8: The temperature sensors in the thermal system are measured The temperature signal is sent to the processing unit f 2 (x); process 9: In f 2 (x), through the temperature and pressure data of various parts of the thermal system, the storage of different equipment in real-time state The physical property query of the water working substance can be loaded into the processing unit f 2 (x) through the embedded data table or the fitting formula; Process 10: In f 3 (x), according to the real-time storage of different equipment And calculate the thermal system’s storage The change is converted into the maximum power output of various thermal system adjustment schemes, and the result is sent to the comparison selector; Process 11: The required maximum power adjustment signal obtained through process 6 and each adjustment
  • Figure 2 shows the additional power output and storage during the adjustment process of the four thermal systems.
  • the change curve of the rate of change, at 30s, the four adjustment schemes are implemented. It can be seen that: The decrease in the rate of change is consistent with the increase in the output power in real time, and there is a one-to-one correspondence between data changes, which is also the theoretical basis for the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明公开了一种基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法,通过实时对燃煤机组各部分热力系统的工质和金属壁面的温度和压力进行测量和记录,进而换算成热力系统的蓄㶲量;在瞬态运行过程中,根据各类热力系统调节方案作用前后的蓄㶲变化量,进而获得各方案的最大功率输出量;之后,通过与当前频率调节所需的最大功率调节量对比,即可选择出最优的一次调频控制方案,并对一次调频控制逻辑进行修正,从而高效准确地参与一次调频控制,维持电网频率快速稳定;本发明提高了各类热力系统调节方案实际效果的判断准确性,减少了一次调频方案选择的盲目性,进而可以大幅度地提升燃煤发电机组瞬态过程的运行灵活性。

Description

基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法 技术领域
本发明属于火电厂热工控制技术领域,具体涉及一种基于燃煤机组热力系统蓄
Figure PCTCN2019092430-appb-000002
修正的一次调频优化控制方法。
背景技术
随着能源短缺、环境污染和气候变迁等问题日益突显,各国可再生能源利用比例逐年攀升,然而可再生能源大都具有间歇性和波动性,易受到环境条件的影响,对电力系统的安全稳定性造成巨大冲击,故需要提升电网灵活性。对于短期的电网调节,主要是指一次调频,即对小范围内频繁变动的负荷进行调整以及在电网出现事故的情况下,快速调整发电机组的出力,抑制电网频率的进一步恶化。燃煤发电机组因为其容量大、功率可控、不受地域的限制等优点,已广泛地参与到电网运行灵活性调节中。从燃煤机组本身出发,凡是能够迅速释放机组蓄热并转化为出力的方法均可以作为一次调频的手段。现有的调节方案包括主汽阀调节、高加抽汽调节、低加抽汽调节、冷却水调节、热网储能调节等。但是机组本身处在瞬态运行过程中,所以直接根据稳态调节能力选取当时的调节方案,易造成调节能力不足现象,且无法实现自动控制。因此,从瞬态过程运行特性的本质出发,为燃煤机组一次调频控制提供策略和数据上的指导,旨在从根本上提高燃煤机组变负荷灵活性。
发明内容
本发明正是解决燃煤机组瞬态过程各类热力系统调整方案无法实现准确且自动参与一次调频控制的问题,提供一种基于燃煤机组热力系统蓄
Figure PCTCN2019092430-appb-000003
修正的一次调频优化控制方法,该方法可以根据热力系统调节方案作用前后状态的蓄
Figure PCTCN2019092430-appb-000004
变化量,准确判断各类调节方案的调节能力和经济性,从而有效地选择合理的方案参与到瞬态过程中的一次调频中,迅速有效保证电网频率稳定。
本发明解决其技术问题采用的技术方案是:
一种基于燃煤机组热力系统蓄
Figure PCTCN2019092430-appb-000005
修正的一次调频优化控制方法,根据不同瞬态过程燃煤机组热力系统各个热力设备的蓄
Figure PCTCN2019092430-appb-000006
量大小,确定适合当前状态的最优一次调频控制方案,并对一次调频控制逻辑进行修正;具体步骤如下:
(一)获取燃煤机组热力系统各个热力设备的实时蓄
Figure PCTCN2019092430-appb-000007
通过压力传感器获得燃煤机组热力系统各个热力设备的工质压力,通过温度传感器得到燃煤机组热力系统各个热力设备的工质和金属受热面的温度,进而查水和蒸汽性质计算表求取各个热力设备在任意状态的蓄
Figure PCTCN2019092430-appb-000008
量,包含工质和金属受热面部分,对于编号i的热力设备:
Ex s,i=M s·[u(P s,i,T s,i)-u 0-T 0·(s(P s,i,T s,i)-s 0)]
Ex m,i=M m·C m[T m,i-T 0-T 0·ln(T m,i/T 0)]
Ex w,i=M w·[u(P w,i,T w,i)-u 0-T 0·(s(P w,i,T w,i)-s 0)]
Ex i=Ex s,i+Ex m,i+Ex w,i
式中:Ex s,i、Ex m,i和Ex w,i分别为热力设备i的蒸汽的蓄
Figure PCTCN2019092430-appb-000009
量、金属受热面的蓄
Figure PCTCN2019092430-appb-000010
值和给水的蓄
Figure PCTCN2019092430-appb-000011
量,kJ;M s、M m和M w分别为热力设备i内的蒸汽的质量、金属受热面的质量和给水的质量,kg;T 0为环境温度,K;u 0为环境温度、环境压力对应下的热力学能,kJ/kg;s 0为环境温度、环境压力对应下的熵值,kJ/(kg·K);u(P s,i,T s,i)为蒸汽压力P s,i和蒸汽温度T s,i计算得到的蒸汽热力学能,kJ/kg;s(P s,i,T s,i)为蒸汽压力P s,i和蒸汽温度T s,i计算得到的蒸汽熵值,kJ/(kg·K);C m为加热器金属受热面的比热容,kJ/(kg·K);T m,i为加热器金属受热面的平均温度,K;u(P w,i,T w,i)为给水压力P w,i和给水温度T w,i计算得到的给水热力学能,kJ/kg;s(P w,i,T w,i)为给水压力P w,i和给水温度T w,i计算得到的给水熵值,kJ/(kg·K);
(二)获得燃煤机组各类热力系统调节方案的最大功率输出量
燃煤机组热力系统构型调节用于一次调频的方案包括:高加抽汽节流方 案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;瞬态运行过程中,各类调节方案参与一次调频初始状态的蓄
Figure PCTCN2019092430-appb-000012
量为各对应子系统所含热力设备的蓄
Figure PCTCN2019092430-appb-000013
量之和:
初始状态a时j类热力系统调节方案对应子系统的总蓄
Figure PCTCN2019092430-appb-000014
量Ex j,a
Figure PCTCN2019092430-appb-000015
其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
式中:Ex j,i,a为初始状态a时j类热力系统调节方案对应子系统第i个热力设备的蓄
Figure PCTCN2019092430-appb-000016
量,kJ;N为j类热力系统调节方案对应子系统所含热力设备数;
不同热力系统调节方案中,根据如下原则获得一次调频结束状态时的各热力设备温度和压力值:
针对高加抽汽节流方案即j=1,一次调频结束时刻各高压加热器内蒸汽压力为除氧器进口疏水压力,蒸汽温度为除氧器进口疏水压力对应饱和蒸汽温度,给水温度为给水泵出口温度,给水压力为给水泵出口压力,金属受热面温度与蒸汽温度一致;
针对高加给水旁路方案即j=2,一次调频结束时刻各高压加热器内蒸汽压力为对应抽汽口压力,蒸汽温度为对应抽汽口压力对应饱和蒸汽温度,给水温度为给水泵出口温度,给水压力为给水泵出口压力,金属受热面温度与蒸汽温度一致;
针对低加抽汽节流方案即j=3,一次调频结束时刻各低压加热器内蒸汽压力为凝汽器进口疏水压力,蒸汽温度为凝汽器进口疏水压力对应饱和蒸汽温度,凝结水温度为凝结水泵出口温度,凝结水压力为凝结水泵出口压力,金属受热面温度与蒸汽温度一致;
针对低加凝结水节流方案即j=4,一次调频结束时刻各低压加热器内蒸汽压力为对应抽汽口压力,蒸汽温度为对应抽汽口压力对应饱和蒸汽温度,凝结水温度为凝结水泵出口温度,凝结水压力为凝结水泵出口压力,金属受热面温度与蒸汽温度一致;
之后,即得到经过j类热力系统调节方案作用后最终对应子系统能达到的总蓄
Figure PCTCN2019092430-appb-000017
量Ex j,b为:
Figure PCTCN2019092430-appb-000018
其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
式中:Ex j,i,b为结束状态b时j类热力系统调节方案对应子系统第i个热力设备的蓄
Figure PCTCN2019092430-appb-000019
量,kJ;N为j类热力系统调节方案对应子系统所含热力设备数;
则j类热力系统调节方案作用时的蓄
Figure PCTCN2019092430-appb-000020
变化量ΔEx j为:
ΔEx j=|Ex j,a-Ex j,b|,其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
进而,j类热力系统调节方案作用时的平均蓄
Figure PCTCN2019092430-appb-000021
变化率
Figure PCTCN2019092430-appb-000022
为:
Figure PCTCN2019092430-appb-000023
其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
式中:T j为一次调频所需时间,按照电网考核要求,取60s;
j类热力系统调节方案的平均蓄
Figure PCTCN2019092430-appb-000024
变化率与最大功率输出量存在一一对应关系:
Figure PCTCN2019092430-appb-000025
其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
式中:ΔP j为j类热力系统调节方案的最大功率输出量,kW;
Figure PCTCN2019092430-appb-000026
为j类热力系统调节方案作用时的平均蓄
Figure PCTCN2019092430-appb-000027
变化率,kW;η j为j类热力系统调节方案的蓄
Figure PCTCN2019092430-appb-000028
转化效率;
(三)产生适应当前运行状态的最优一次调频控制方案
根据当前状态的电网频率偏差
Figure PCTCN2019092430-appb-000029
和当前燃煤机组的调速不等率δ获取当前频率调节所需的最大功率调节量ΔP:
ΔP=f 1(Δf)=Δf/δ
将四种调节方案作用时的最大功率输出量ΔP j与当前频率调节所需的最大功率调节量ΔP进行对比,需要满足如下条件:
ΔP j≥ΔP,其中j从1,2,3,4中选择;
在满足上述条件的调节方案中,产生适应当前状态且最优一次调频控制方案为k,其对应的蓄
Figure PCTCN2019092430-appb-000030
转化效率η k应取四种热力系统调节方案的蓄
Figure PCTCN2019092430-appb-000031
转化效率的最大值,即满足如下条件:
η k=max{η 1234};
(四)产生对应最优一次调频方案的一次调频控制逻辑
将上述确定的最优一次调频方案投入到一次调频控制逻辑中,其中高加抽汽调节方案是将高压加热器抽汽管道阀门参与到一次调频控制中,高加给水旁路方案是将高压加热器旁路管道阀门参与到一次调频控制中,低加抽汽节流方案是将低压加热器抽汽管道阀门参与到一次调频控制中,低加凝结水节流方案是将低压加热器管道阀门参与到一次调频控制中;
进而,根据一次调频频率差在PID控制器中获得的调节输出量Δμ PID,叠加到上述最优方案对应的控制阀门上,产生阀门的最新开度μ new
μ new=μ old+Δμ PID
式中:μ old为初始时刻对应的阀门开度;
最终,形成将最优一次调频方案投入一次调频的闭环优化控制逻辑。
优选的,四种热力系统调节方案中,高加抽汽节流方案和高加给水旁路方案在一次调频中利用高加子系统的蓄
Figure PCTCN2019092430-appb-000032
高加子系统包括所有的高压加热器、高压缸、中压缸和连接管道;低加抽汽节流方案和低加凝结水节流方案在一次调频中利用低加子系统的蓄
Figure PCTCN2019092430-appb-000033
低加子系统包括所有的低加加热器、低压缸、除氧器和连接管道。
优选的,高加抽汽节流方案和低加抽汽节流方案中抽汽管道上采用电动调节阀,而高加给水旁路方案和低加凝结水节流方案中加热器管道上采用汽动调节阀。
优选的,各类热力系统调节方案中蓄
Figure PCTCN2019092430-appb-000034
转换系数η j的取值如下表所列;
Figure PCTCN2019092430-appb-000035
优选的,适用于各类热力系统调节方案的调速不等率δ取值为1%-4%。
和现有技术相比较,本发明具有如下优点:
1、本发明从功率快速响应的本质原因出发,动态跟踪燃煤机组各热力系统的蓄
Figure PCTCN2019092430-appb-000036
变化量,提高了各类热力系统调整方案实际效果的预测准确性,适应不同瞬态过程的一次调频控制,可以大幅度地提高燃煤发电机组瞬态过程的运行灵活性。
2、本发明可实现自动控制,简单易操作,投资低。
附图说明
图1为各类热力系统调整方案参与一次调频的控制逻辑图。
图2为四种热力系统调整方案参与一次调频的附加功率输出量和蓄
Figure PCTCN2019092430-appb-000037
变化率变化曲线。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
当燃煤机组一次调频投入运行时,常规基本控制逻辑为,如图1所示,过程1:电网频率偏差信号被测量设备检测到并完成数模转化,之后将处理后的信号传输到达调速器;过程2:调速器中将频率信号转化为功率调节信号(包括调频死区和调速不等率等参数设置),并将信号送到PID控制器中;过程3:PID控制器中将输入偏差信号转化为阀门调节信号,送到阀门执行单元;过程4:阀门执行单元产生阀门位移变化信号,作用于对应阀门。
本发明引入新的控制逻辑包括,如图1所示,过程5:将频率偏差信号送到处理单元f 1(x);过程6:在f 1(x)中将最大频率信号转化为最大功率调节量信号,送至比较选择器中;过程7:将热力系统各处的压力传感器测量得到 的压力信号送入处理单元f 2(x);过程8:将热力系统各处的温度传感器测量得到的温度信号送入处理单元f 2(x);过程9:在f 2(x)中,通过热力系统各处温度和压力数据,获得实时状态下不同设备的蓄
Figure PCTCN2019092430-appb-000038
量,其中水工质的物性查询可以通过嵌入数据表或者拟合公式加载到处理单元f 2(x);过程10:在f 3(x)中,根据实时不同设备的蓄
Figure PCTCN2019092430-appb-000039
量,计算热力系统调节方案作用前后各热力子系统的蓄
Figure PCTCN2019092430-appb-000040
变化量,再转化为各类热力系统调节方案的最大功率输出量,将结果送到比较选择器中;过程11:通过过程6得到的所需最大功率调节量信号与过程10得到的各调节方案的最大功率输出量在比较选择器中进行选择判断,最终产生符合当前运行状态的最优一次调频控制方案信号,送到阀门执行单元中,并将选择好的一次调频控制方案信号转化为对应方案的阀门控制信号。
如图2所示为四种热力系统调节过程中的附加功率输出量和蓄
Figure PCTCN2019092430-appb-000041
变化率的变化曲线,在30s时,四种调节方案开始执行。可以看出:蓄
Figure PCTCN2019092430-appb-000042
变化率降低与输出功率增加量实时保持一致,且数据变化存在一一对应关系,这也是本发明能够实现的理论依据。

Claims (5)

  1. 一种基于燃煤机组热力系统蓄
    Figure PCTCN2019092430-appb-100001
    修正的一次调频优化控制方法,其特征在于,根据不同瞬态过程燃煤机组热力系统各个热力设备的蓄
    Figure PCTCN2019092430-appb-100002
    量大小,确定适合当前状态的最优一次调频控制方案,并对一次调频控制逻辑进行修正;具体步骤如下:
    (一)获取燃煤机组热力系统各个热力设备的实时蓄
    Figure PCTCN2019092430-appb-100003
    通过压力传感器获得燃煤机组热力系统各个热力设备的工质压力,通过温度传感器得到燃煤机组热力系统各个热力设备的工质和金属受热面的温度,进而查水和蒸汽性质计算表求取各个热力设备在任意状态的蓄
    Figure PCTCN2019092430-appb-100004
    量,包含工质和金属受热面部分,对于编号i的热力设备:
    Ex s,i=M s·[u(P s,i,T s,i)-u 0-T 0·(s(P s,i,T s,i)-s 0)]
    Ex m,i=M m·C m[T m,i-T 0-T 0·ln(T m,i/T 0)]
    Ex w,i=M w·[u(P w,i,T w,i)-u 0-T 0·(s(P w,i,T w,i)-s 0)]
    Ex i=Ex s,i+Ex m,i+Ex w,i
    式中:Ex s,i、Ex m,i和Ex w,i分别为热力设备i的蒸汽的蓄
    Figure PCTCN2019092430-appb-100005
    量、金属受热面的蓄
    Figure PCTCN2019092430-appb-100006
    值和给水的蓄
    Figure PCTCN2019092430-appb-100007
    量,kJ;M s、M m和M w分别为热力设备i内的蒸汽的质量、金属受热面的质量和给水的质量,kg;T 0为环境温度,K;u 0为环境温度、环境压力对应下的热力学能,kJ/kg;s 0为环境温度、环境压力对应下的熵值,kJ/(kg·K);u(P s,i,T s,i)为蒸汽压力P s,i和蒸汽温度T s,i计算得到的蒸汽热力学能,kJ/kg;s(P s,i,T s,i)为蒸汽压力P s,i和蒸汽温度T s,i计算得到的蒸汽熵值,kJ/(kg·K);C m为加热器金属受热面的比热容,kJ/(kg·K);T m,i为加热器金属受热面的平均温度,K;u(P w,i,T w,i)为给水压力P w,i和给水温度T w,i计算得到的给水热力学能,kJ/kg;s(P w,i,T w,i)为给水压力P w,i和给水温度T w,i计算得到的给水熵值,kJ/(kg·K);
    (二)获得燃煤机组各类热力系统调节方案的最大功率输出量
    燃煤机组热力系统构型调节用于一次调频的方案包括:高加抽汽节流方 案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;瞬态运行过程中,各类调节方案参与一次调频初始状态的蓄
    Figure PCTCN2019092430-appb-100008
    量为各对应子系统所含热力设备的蓄
    Figure PCTCN2019092430-appb-100009
    量之和:
    初始状态a时j类热力系统调节方案对应子系统的总蓄
    Figure PCTCN2019092430-appb-100010
    量Ex j,a
    Figure PCTCN2019092430-appb-100011
    其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
    式中:Ex j,i,a为初始状态a时j类热力系统调节方案对应子系统第i个热力设备的蓄
    Figure PCTCN2019092430-appb-100012
    量,kJ;N为j类热力系统调节方案对应子系统所含热力设备数;
    不同热力系统调节方案中,根据如下原则获得一次调频结束状态时的各热力设备温度和压力值:
    针对高加抽汽节流方案即j=1,一次调频结束时刻各高压加热器内蒸汽压力为除氧器进口疏水压力,蒸汽温度为除氧器进口疏水压力对应饱和蒸汽温度,给水温度为给水泵出口温度,给水压力为给水泵出口压力,金属受热面温度与蒸汽温度一致;
    针对高加给水旁路方案即j=2,一次调频结束时刻各高压加热器内蒸汽压力为对应抽汽口压力,蒸汽温度为对应抽汽口压力对应饱和蒸汽温度,给水温度为给水泵出口温度,给水压力为给水泵出口压力,金属受热面温度与蒸汽温度一致;
    针对低加抽汽节流方案即j=3,一次调频结束时刻各低压加热器内蒸汽压力为凝汽器进口疏水压力,蒸汽温度为凝汽器进口疏水压力对应饱和蒸汽温度,凝结水温度为凝结水泵出口温度,凝结水压力为凝结水泵出口压力,金属受热面温度与蒸汽温度一致;
    针对低加凝结水节流方案即j=4,一次调频结束时刻各低压加热器内蒸汽压力为对应抽汽口压力,蒸汽温度为对应抽汽口压力对应饱和蒸汽温度,凝结水温度为凝结水泵出口温度,凝结水压力为凝结水泵出口压力,金属受热面温度与蒸汽温度一致;
    之后,即得到经过j类热力系统调节方案作用后最终对应子系统能达到的总蓄
    Figure PCTCN2019092430-appb-100013
    量Ex j,b为:
    Figure PCTCN2019092430-appb-100014
    其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
    式中:Ex j,i,b为结束状态b时j类热力系统调节方案对应子系统第i个热力设备的蓄
    Figure PCTCN2019092430-appb-100015
    量,kJ;N为j类热力系统调节方案对应子系统所含热力设备数;
    则j类热力系统调节方案作用时的蓄
    Figure PCTCN2019092430-appb-100016
    变化量ΔExj为:
    ΔEx j=|Ex j,a-Ex j,b|,其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
    进而,j类热力系统调节方案作用时的平均蓄
    Figure PCTCN2019092430-appb-100017
    变化率
    Figure PCTCN2019092430-appb-100018
    为:
    Figure PCTCN2019092430-appb-100019
    其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
    式中:T j为一次调频所需时间,按照电网考核要求,取60s;
    j类热力系统调节方案的平均蓄
    Figure PCTCN2019092430-appb-100020
    变化率与最大功率输出量存在一一对应关系:
    Figure PCTCN2019092430-appb-100021
    其中j=1,2,3,4;分别对应高加抽汽节流方案、高加给水旁路方案、低加抽汽节流方案和低加凝结水节流方案;
    式中:ΔP j为j类热力系统调节方案的最大功率输出量,kW;
    Figure PCTCN2019092430-appb-100022
    为j类热力系统调节方案作用时的平均蓄
    Figure PCTCN2019092430-appb-100023
    变化率,kW;η j为j类热力系统调节方案的蓄
    Figure PCTCN2019092430-appb-100024
    转化效率;
    (三)产生适应当前运行状态的最优一次调频控制方案
    根据当前状态的电网频率偏差
    Figure PCTCN2019092430-appb-100025
    和当前燃煤机组的调速不等率δ获取当前频率调节所需的最大功率调节量ΔP:
    ΔP=f 1(Δf)=Δf/δ
    将四种调节方案作用时的最大功率输出量ΔP j与当前频率调节所需的最大功率调节量ΔP进行对比,需要满足如下条件:
    ΔP j≥ΔP,其中j从1,2,3,4中选择;
    在满足上述条件的调节方案中,产生适应当前状态且最优一次调频控制方案为k,其对应的蓄
    Figure PCTCN2019092430-appb-100026
    转化效率η k应取四种热力系统调节方案的蓄
    Figure PCTCN2019092430-appb-100027
    转化效率的最大值,即满足如下条件:
    η k=max{η 1234};
    (四)产生对应最优一次调频方案的一次调频控制逻辑
    将上述确定的最优一次调频方案投入到一次调频控制逻辑中,其中高加抽汽调节方案是将高压加热器抽汽管道阀门参与到一次调频控制中,高加给水旁路方案是将高压加热器旁路管道阀门参与到一次调频控制中,低加抽汽节流方案是将低压加热器抽汽管道阀门参与到一次调频控制中,低加凝结水节流方案是将低压加热器管道阀门参与到一次调频控制中;
    进而,根据一次调频频率差在PID控制器中获得的调节输出量Δμ PID,叠加到上述最优方案对应的控制阀门上,产生阀门的最新开度μ new
    μ new=μ old+Δμ PID
    式中:μ old为初始时刻对应的阀门开度;
    最终,形成将最优一次调频方案投入一次调频的闭环优化控制逻辑。
  2. 根据权利要求1所述的一种基于燃煤机组热力系统蓄
    Figure PCTCN2019092430-appb-100028
    修正的一次调频优化控制方法,其特征在于,四种热力系统调节方案中,高加抽汽节流方案和高加给水旁路方案在一次调频中利用高加子系统的蓄
    Figure PCTCN2019092430-appb-100029
    高加子系统包括所有的高压加热器、高压缸、中压缸和连接管道;低加抽汽节流方案和低加凝结水节流方案在一次调频中利用低加子系统的蓄
    Figure PCTCN2019092430-appb-100030
    低加子系统包括所有的低加加热器、低压缸、除氧器和连接管道。
  3. 根据权利要求2所述的一种基于燃煤机组热力系统蓄
    Figure PCTCN2019092430-appb-100031
    修正的一次调频优化控制方法,其特征在于,高加抽汽节流方案和低加抽汽节流方案中抽汽管道上采用电动调节阀,而高加给水旁路方案和低加凝结水节流方案中加热器管道上采用汽动调节阀。
  4. 根据权利要求1所述的一种基于燃煤机组热力系统蓄
    Figure PCTCN2019092430-appb-100032
    修正的一次调频优化控制方法,其特征在于,各类热力系统调节方案中蓄
    Figure PCTCN2019092430-appb-100033
    转换系数η j的取值如下表所列;
    Figure PCTCN2019092430-appb-100034
  5. 根据权利要求1所述的一种基于燃煤机组热力系统蓄
    Figure PCTCN2019092430-appb-100035
    修正的一次调频优化控制方法,其特征在于,适用于各类热力系统调节方案的调速不等率δ取值为1%-4%。
PCT/CN2019/092430 2019-03-13 2019-06-22 基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法 WO2020181678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/753,328 US11146069B2 (en) 2019-03-13 2019-06-22 Optimized control method for primary frequency regulation based on exergy storage correction of thermodynamic system of coal-fired unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910189043.1 2019-03-13
CN201910189043.1A CN110011330B (zh) 2019-03-13 2019-03-13 基于燃煤机组热力系统蓄*修正的一次调频优化控制方法

Publications (1)

Publication Number Publication Date
WO2020181678A1 true WO2020181678A1 (zh) 2020-09-17

Family

ID=67166960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092430 WO2020181678A1 (zh) 2019-03-13 2019-06-22 基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法

Country Status (3)

Country Link
US (1) US11146069B2 (zh)
CN (1) CN110011330B (zh)
WO (1) WO2020181678A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362204A (zh) * 2021-11-04 2022-04-15 国网湖北省电力有限公司恩施供电公司 一种基于多元化手段的电力系统紧急低频控制方法
CN114825484A (zh) * 2022-06-29 2022-07-29 西安热工研究院有限公司 一种基于火电电力电子变压器储能的调频系统及方法
CN116667383A (zh) * 2023-05-30 2023-08-29 中国电力工程顾问集团有限公司 一种热泵与低加耦合的火电机组调频系统及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327624B (zh) * 2020-11-06 2021-12-28 西安交通大学 一种燃煤机组调峰运行方法
CN113325713B (zh) * 2021-06-07 2023-01-24 西安热工研究院有限公司 采用匹配抽汽外供技术的供热机组最佳运行方式确定方法
CN113746113B (zh) * 2021-08-03 2024-03-19 广东大唐国际潮州发电有限责任公司 一种基于分频的火储联合调频系统
CN113756895B (zh) * 2021-08-16 2022-08-05 西安交通大学 一种通过凝结水节流提升燃煤机组灵活性的控制方法
CN113708389B (zh) * 2021-09-10 2023-08-04 国网湖南省电力有限公司 基于实际功率响应的风电场一次调频模型参数辨识方法及系统
CN114483235B (zh) * 2021-12-28 2023-09-15 杭州华电能源工程有限公司 一种由抽凝切换为低压缸零出力的供热系统及其工作方法
CN114934823B (zh) * 2022-04-25 2024-02-13 国网河北能源技术服务有限公司 一种抽凝供热机组供热抽汽流量与最小技术出力特性关系的确定方法
CN114922706B (zh) * 2022-04-25 2024-02-13 国网河北能源技术服务有限公司 一种抽凝供热机组低压缸零出力运行方式下最小技术出力特性的确定方法
CN115324675A (zh) * 2022-07-25 2022-11-11 广西电网有限责任公司电力科学研究院 火电机组基于变频凝结水泵调节电网频率的控制方法
CN115622088A (zh) * 2022-12-16 2023-01-17 华北电力科学研究院有限责任公司 基于积分电量的一次调频闭环处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275508A (zh) * 2015-11-06 2016-01-27 国网河南省电力公司电力科学研究院 一种基于功率值计算的汽轮机流量曲线辨识及优化方法
CN105826936A (zh) * 2016-05-06 2016-08-03 上海明华电力技术工程有限公司 一种针对电网大频差的火电机组智能一次调频控制方法
CN106527131A (zh) * 2016-10-27 2017-03-22 哈尔滨工业大学 用于锅炉、汽轮机和电网一次调频分析协调控制模型

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090747A2 (en) * 2001-05-07 2002-11-14 Battelle Memorial Institute Heat energy utilization system
NZ573217A (en) * 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
BRPI0711325A2 (pt) * 2006-05-05 2011-08-30 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch sistema de controle para a conversão de um estoque de alimentação carbonáceo em gás
JP5547659B2 (ja) * 2007-02-27 2014-07-16 プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ、シャフハウゼン ブランチ 加工原料/チャー変換とガス改質を伴うガス化方式
US20120245753A1 (en) * 2010-05-07 2012-09-27 Forbes Jr Joseph W System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management to compensate for an over-generation condition
US20160370819A1 (en) * 2007-08-28 2016-12-22 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US8196395B2 (en) * 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US9321640B2 (en) * 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
DE102011004277A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betrieb eines direkt beheizten, solarthermischen Dampferzeugers
US9563215B2 (en) * 2012-07-14 2017-02-07 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
WO2014152403A2 (en) * 2013-03-15 2014-09-25 Mcalister Technologies, Llc Methods for joule-thompson cooling and heating of combustion chamber events and associated systems and apparatus
CN103713569B (zh) * 2013-12-26 2016-04-27 西安西热控制技术有限公司 一种火电机组滑压优化调节系统及调节方法
CN104775860A (zh) * 2015-04-09 2015-07-15 中国东方电气集团有限公司 一种提高亚临界燃煤机组热网可靠性的系统
US10126810B2 (en) * 2015-09-29 2018-11-13 Emerson Process Management Power & Water Solutions, Inc. Method for controlling power generation unit to desired output as specified by load demand signal by using modified control signal
CN106247312A (zh) * 2016-08-30 2016-12-21 山东电力工程咨询院有限公司 一种超超临界机组二次再热双机回热无除氧器热力系统
CN111727347A (zh) * 2017-09-11 2020-09-29 艾罗创新公司 改进基于固体燃料燃烧过程的反馈控制的动态热释放计算

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275508A (zh) * 2015-11-06 2016-01-27 国网河南省电力公司电力科学研究院 一种基于功率值计算的汽轮机流量曲线辨识及优化方法
CN105826936A (zh) * 2016-05-06 2016-08-03 上海明华电力技术工程有限公司 一种针对电网大频差的火电机组智能一次调频控制方法
CN106527131A (zh) * 2016-10-27 2017-03-22 哈尔滨工业大学 用于锅炉、汽轮机和电网一次调频分析协调控制模型

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362204A (zh) * 2021-11-04 2022-04-15 国网湖北省电力有限公司恩施供电公司 一种基于多元化手段的电力系统紧急低频控制方法
CN114825484A (zh) * 2022-06-29 2022-07-29 西安热工研究院有限公司 一种基于火电电力电子变压器储能的调频系统及方法
CN114825484B (zh) * 2022-06-29 2022-09-30 西安热工研究院有限公司 一种基于火电电力电子变压器储能的调频系统及方法
CN116667383A (zh) * 2023-05-30 2023-08-29 中国电力工程顾问集团有限公司 一种热泵与低加耦合的火电机组调频系统及方法
CN116667383B (zh) * 2023-05-30 2023-11-14 中国电力工程顾问集团有限公司 一种热泵与低加耦合的火电机组调频系统及方法

Also Published As

Publication number Publication date
US20210218247A1 (en) 2021-07-15
CN110011330A (zh) 2019-07-12
US11146069B2 (en) 2021-10-12
CN110011330B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2020181678A1 (zh) 基于燃煤机组热力系统蓄㶲修正的一次调频优化控制方法
US11236633B2 (en) Solar aided coal-fired power generation system participating in primary frequency regulation and control method thereof
CN108661725B (zh) 一种供热抽汽机组自整调节系统与控制方法
CN102787870B (zh) 一种提高供热机组一次调频能力的方法
CN104501421B (zh) 一种变频双级压缩热泵热水器的控制方法
CN104763485B (zh) 一种补热型超高压/亚临界背压供热机组热力系统
CN105787211A (zh) 针对燃气透平劣化的联合循环余热锅炉压力调整方法
CN105652663B (zh) 一种基于负荷区判别的滑压曲线深度优化的方法
CN109377018A (zh) 供热机组调峰能力评估方法
CN110005488B (zh) 一种高背压供热系统节能优化方法
CN110207098A (zh) 考虑锅炉金属蓄热的二次再热机组蒸汽温度控制方法
CN110991877A (zh) 供热机组采用低压缸切缸灵活性改造后供热及调峰能力改善评估方法
CN105202519A (zh) 供热机组调频调峰全工况协调控制方法
CN109780529B (zh) 一种基于末端电热泵混水供热的生物质热电联产运行方法
CN109812800B (zh) 燃煤机组高压加热器抽汽节流参与的再热汽温控制方法
CN114963298B (zh) 一种蒸汽管网储能在线定量计算方法和系统
CN105201573B (zh) 一种背压机供热、储能系统及其供热储能方法
CN111622814B (zh) 一种基于实时在线运行数据的汽轮机低压缸节能运行控制方法及系统
CN105804819A (zh) 一种提高烧结余热回收量及发电系统运行稳定性的调控方法
CN106884689B (zh) 一种小型抽汽式供热汽轮机排汽降湿的方法
CN112836419B (zh) 一种热源分流式余热发电系统及其粒子群优化控制方法
CN211454379U (zh) 汽轮机用冷凝器热井液位控制系统
JP5804748B2 (ja) 蒸気送気システム及び蒸気送気方法
CN101201159B (zh) 带可调节闪蒸系统的余热发电方法及余热发电系统
CN217978756U (zh) 超临界煤气锅炉及其煤气供给管路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918649

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918649

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19918649

Country of ref document: EP

Kind code of ref document: A1