WO2020179585A1 - 電気化学キャパシタ - Google Patents

電気化学キャパシタ Download PDF

Info

Publication number
WO2020179585A1
WO2020179585A1 PCT/JP2020/007852 JP2020007852W WO2020179585A1 WO 2020179585 A1 WO2020179585 A1 WO 2020179585A1 JP 2020007852 W JP2020007852 W JP 2020007852W WO 2020179585 A1 WO2020179585 A1 WO 2020179585A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
cathode
electrochemical capacitor
anode
conductive polymer
Prior art date
Application number
PCT/JP2020/007852
Other languages
English (en)
French (fr)
Inventor
一太朗 岡村
紙透 浩幸
裕一 本田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020179585A1 publication Critical patent/WO2020179585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrochemical capacitor, and more particularly to an electrochemical capacitor in which a cathode and an anode are arranged apart from each other in an electrolytic solution.
  • An electrochemical capacitor is a capacitor that uses a capacity that is developed due to a physicochemical reaction between an electrode (electrode active material) and an ion (electrolyte ion) in an electrolytic solution, and is a device that stores electrical energy (electric storage).
  • a metal oxide, a layered material (or an intercalation compound), or the like is used as an electrode active material, and a reaction involving exchange of electrons between an electrode and an ion in an electrolytic solution (for example, an electrode active material).
  • the one in which the capacitance (pseudo-capacitance) is generated by the change in the oxidation number of the metal element constituting the is called “pseudocapacitor” or “redox capacitor”.
  • MXene is a kind of so-called two-dimensional material, and is a layered material having a form of a plurality of layers as described later, and each layer is M n+1 X n (wherein M is at least one kind of a third material). , 4, 5, 6 and 7 metals, where X is a carbon atom and / or a nitrogen atom and n is 1, 2 or 3), and each X is in an octahedral array of M. It is a material having a crystal lattice located at, and having a terminating (or modifying) T such as a hydroxyl group, a fluorine atom, an oxygen atom and a hydrogen atom on the surface of each layer.
  • an electrochemical capacitor using a conductive polymer material as the electrode active material is also known.
  • the conductive polymer material is a polymer material that exhibits conductivity through the ⁇ -conjugation of the molecule by doping with a chemical species as a dopant and injecting a carrier. It is known that an electrochemical capacitor used as an anode and a cathode by doping and dedoping electrolyte ions as a dopant exhibits excellent energy density (see Patent Document 2 and Non-Patent Document 2).
  • the energy of the electrochemical capacitor is generally the specific capacity C of the electrode active material (more specifically, the capacity per unit mass of the electrode active material (F/g) or the capacity per unit volume of the electrode active material (F/cm 3 )). , hereinafter, these are collectively referred to as “specific capacity” in the present specification) and a voltage limited by the operating potential range V (hereinafter, also referred to as “potential window”) of the electrolytic solution. Since the energy density of the electrochemical capacitor is calculated by 1/2 ⁇ CV 2 , the voltage contribution is large.
  • the electrode active material used in the electrochemical capacitor is mainly a material such as activated charcoal that uses the principle of an electric double layer (hereinafter also referred to as "EDL" (Electric Double Layer)) by adsorption and desorption of electrolyte ions on the surface of the electrode active material.
  • EDL Electric Double Layer
  • materials such as MXene or conductive polymers that utilize the simulated capacitance of the electrode active material and the electrolyte ions are known. Since the material of the electrode active material that utilizes the pseudo capacitance utilizes the entire bulk of the substance, the capacitance is generally larger than that of the capacitor that utilizes the EDL.
  • the electrolytic solutions used in the electrochemical capacitors are mainly aqueous electrolytes (electrolytes in which the electrolyte is dissolved in an aqueous solvent) and non-aqueous electrolytes (electrolytes or ions in which the electrolyte is dissolved in a non-aqueous solvent).
  • aqueous electrolytes electrolytes in which the electrolyte is dissolved in an aqueous solvent
  • non-aqueous electrolytes electrolytes or ions in which the electrolyte is dissolved in a non-aqueous solvent.
  • Liquid electrolyte Liquid electrolyte
  • the non-aqueous electrolyte has an advantage that the potential window can be widened, and is advantageous for energy storage.
  • an electrochemical capacitor generally has a configuration in which a cathode and an anode are connected in series, the overall capacitance value is limited by the capacitance on the electrode side, which has a smaller capacitance value. Therefore, in constructing the cell, it is necessary to increase the electrode weight on the electrode side having a small capacitance or reduce the electrode weight on the electrode side having a large capacitance, so that the charge amounts of both electrodes are made equal to each other. This leads to a decrease in energy density per volume. Therefore, balancing the capacitance of the cathode and anode is a very important design factor. Further, the potential window is not determined only by the characteristics of the electrolytic solution, and the factors affected by the mutual relationship with the electrode are large, and the combination of the electrode and the electrolytic solution is also a very important design element.
  • Non-Patent Document 1 discloses an electrochemical capacitor of a non-aqueous electrolyte solution using MXene as an electrode active material for both the anode and the cathode.
  • the electrochemical capacitor of the non-aqueous electrolyte solution has an advantage that a wide potential window can be obtained, and specifically, a potential window of about 3 V or more can be obtained.
  • MXene is used as a cathode electrode active material, it can be used up to a voltage range of about 2.6 V, has a large capacity, and can obtain a large amount of energy.
  • MXene when used as the electrode active material of the anode, it can be used only up to a voltage range of about 1.2 V due to the oxidation of the MXene material itself, and the capacitance itself is also used as the electrode active material of the cathode. Significantly reduced in comparison. It is assumed that this is because ions do not develop a pseudo capacity with MXene on the anode side. Therefore, the electrochemical capacitor described in Non-Patent Document 1 has a problem that the capacitance balance between the anode and the cathode becomes poor and the volumetric energy density becomes small.
  • Non-Patent Document 2 discloses the characteristics of an electrochemical capacitor in which a conductive polymer material, specifically polyaniline, is used as both an anode and a cathode electrode. Since the conductive polymer material accumulates charges in bulk, a large capacitance can be obtained in the capacitor. However, the conductive polymer material has a narrow usable voltage range of about 1.0 V, and the electrochemical capacitor described in Non-Patent Document 2 has a narrow operating voltage range, resulting in a problem of low energy density.
  • a conductive polymer material specifically polyaniline
  • MXene is used as an electrode active material for the cathode
  • activated carbon is used as the electrode active material for the other electrode
  • a non-aqueous solvent and an electrolyte that generates protons in the non-aqueous solvent are used.
  • An electrochemical capacitor using a non-aqueous electrolyte containing is disclosed.
  • the voltage range of the anode can be expanded to about 2.0 V, but since the capacity of the activated carbon itself is small, it is necessary to increase the amount of the anode to ensure capacity balance, and as a result, the volume energy density is increased. There is a problem that becomes smaller.
  • a conductive polymer material is used as the electrode active material of the cathode (positive electrode), and lithium titanate (Li X Ti Y O 4 , hereinafter also referred to as "LTO") is used as the electrode active material of the anode (negative electrode).
  • LTO lithium titanate
  • an asymmetrical non-aqueous electrolyte secondary battery containing a The energy density can be improved by using different electrode active materials and making them asymmetrical.
  • the LTO material that is the electrode active material on the anode (negative electrode) side has a problem that it is difficult to obtain sufficient power characteristics because the LTO material develops a capacity by a storage mechanism of insertion and desorption of Li ions into the LTO crystal. ..
  • the present invention relates to an electrochemical capacitor in which a cathode and an anode are separately arranged in an electrolyte, and MXene is used as an electrode active material of the cathode, and a novel electrochemical capacitor capable of achieving a sufficiently large energy density.
  • the purpose is to provide.
  • an electrochemical capacitor having a cathode and an anode spaced apart in an electrolyte comprising:
  • the cathode is a layered material including a plurality of layers as an electrode active material, each layer having the following formula: M n + 1 X n (Wherein M is at least one Group 3, 4, 5, 6, 7 metal, X is a carbon atom, a nitrogen atom or a combination thereof, n is 1, 2 or 3)
  • M is at least one Group 3, 4, 5, 6, 7 metal
  • X is a carbon atom, a nitrogen atom or a combination thereof, n is 1, 2 or 3
  • the anode contains a ⁇ -conjugated conductive polymer material as an electrode active material
  • the electrolytic solution contains ions that function as a dopant for the conductive polymer material
  • Electrochemical capacitors are provided.
  • the formula M n + 1 X n can be any one selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C.
  • the conductive polymer material may comprise one or more selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyfuran, polyphenylene and polyindole and derivatives thereof.
  • the electrolytic solution is a tetrafluoroborate ion, a bis (trifluoromethanesulfonyl) imide ion, a bis (fluorosulfonyl) imide ion, a trifluoromethanesulfonate ion, a hexafluorophosphate ion, a bis (pentafluoro). It may contain one or more selected from the group consisting of ethanesulfonyl) imide ion, sulfonic acid ion, perchlorate ion and halogen ion.
  • the electrolytic solution may include a solvent containing one or more selected from the group consisting of propylene carbonate, ethylene carbonate, diethyl carbonate and gamma butyrolactone, or a solvent containing water.
  • MXene is used as an electrode active material of a cathode
  • a ⁇ -conjugated conductive polymer is used as an electrode active material of an anode.
  • a sufficiently large energy density can be achieved by using the material to balance capacity in the cathode and anode cells in an asymmetrical configuration and the electrolyte contains ions that act as dopants for the conducting polymer material.
  • a novel electrochemical capacitor can be provided.
  • FIG. 1 is a schematic cross-sectional view illustrating an electrochemical capacitor according to an embodiment of the present invention.
  • FIG. 5 is a schematic schematic cross-sectional view showing MXene, a layered material that can be used for an electrochemical capacitor in one embodiment of the present invention.
  • the electrochemical capacitor 20 of the present embodiment has a configuration in which the cathode 15a and the anode 15b are arranged apart from each other in the electrolytic solution 13.
  • the cathode 15a and the anode 15b are electrically connected to the terminals A and B, respectively, and can function as electrodes.
  • the cathode 15a and the anode 15b are separated from each other in any suitable container (or cell) 11 with, for example, a separator 17 (though not essential in this embodiment) in the electrolytic solution 13. Can be arranged.
  • any appropriate member can be used as long as it does not hinder the movement of the dopant ions in the electrolytic solution 13, and for example, a porous film of polyolefin such as polypropylene or polytetrafluoroethylene can be used.
  • the material of the container 11 is not particularly limited, and may be, for example, a metal such as stainless steel, a resin such as polytetrafluoroethylene, or any other suitable material.
  • the container 11 may be closed or open, and the empty size may or may not be present in the container 11.
  • the cathode 15a and the anode 15b are arranged apart from each other in any suitable form other than the illustrated form, such as being laminated and wound in the container 11 with the separator 17 interposed therebetween. May be.
  • the cathode 15a contains a predetermined layered material including a plurality of layers as an electrode active material.
  • the electrode active material refers to a material that exchanges electrons with the dopant ions in the electrolytic solution 13.
  • a predetermined layered material that can be used in this embodiment is MXene, defined as follows: A layered material containing multiple layers, each layer having the following formula: M n + 1 X n (In the formula, M is at least one Group 3, 4, 5, 6, 7 metal, so-called early transition metals such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and It may contain at least one selected from the group consisting of Mn.
  • X is a carbon atom, a nitrogen atom or a combination thereof, n is 1, 2 or 3) A group consisting of hydroxyl groups, fluorine atoms, oxygen atoms and hydrogen atoms on at least one of the two opposing surfaces of each layer, each X having a crystal lattice located in an octahedral array of M.
  • a layered material having at least one modification or termination T selected from the following also referred to as “M n+1 X n T s ”, s is an arbitrary number, and x is conventionally used instead of s. Sometimes).
  • Such MXene can be obtained by selectively etching A atoms from the MAX phase.
  • the MAX phase has the following formula: M n+1 AX n (In the formula, M, X and n are as described above, A is at least one Group 12, 13, 14, 15, 16 element, usually a Group A element, typically IIIA.
  • Group IVA and Group IVA may comprise at least one selected from the group consisting of Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, S and Cd, preferably Al) And a crystal structure in which each X has a crystal lattice located in an octahedral array of M, and a layer composed of A atoms is located between the layers represented by M n+1 X n.
  • M n+1 X n a crystal lattice located in an octahedral array of M
  • a layer composed of A atoms is located between the layers represented by M n+1 X n.
  • a atomic layer a layer of A atoms
  • an etching solution usually, an aqueous solution of fluorinated acid is used
  • Hydroxyl groups, fluorine atoms, oxygen atoms, hydrogen atoms, etc. present in (but not limited to) are modified to terminate such surfaces.
  • M can be titanium or vanadium and X can be a carbon or nitrogen atom.
  • X can be a carbon or nitrogen atom.
  • the MAX phase is Ti 3 AlC 2 and MXene is Ti 3 C 2 T s .
  • MXene may contain a relatively small amount of residual A atom, for example, 10% by mass or less with respect to the original A atom.
  • the MXene 10 thus obtained has a M n+1 X n layer 1a, 1b, 1c modified or terminated with a surface modification or termination T 3a, 5a, 3b, 5b, 3c, 5c.
  • It can be a layered material having two or more MXene layers 7a, 7b, 7c (also expressed as "M n + 1 X n T s ", where s is an arbitrary number) (three layers in the figure).
  • MXene layers 7a, 7b, 7c also expressed as "M n + 1 X n T s ", where s is an arbitrary number
  • the MXene 10 is a laminated body (multilayered structure) in which a plurality of MXene layers are separated from each other even if the plurality of MXene layers are individually separated and exist (single layer structure). Or may be a mixture thereof.
  • MXene can be an aggregate (also referred to as particles, powder or flakes) of individual MXene layers (single layers) and / or laminates of MXene layers.
  • two adjacent MXene layers eg, 7a and 7b, 7b and 7c
  • each layer of MXene is, for example, 0.8 nm or more and 5 nm or less, particularly 0.8 nm or more and 3 nm or less. (Mainly, it may vary depending on the number of M atomic layers contained in each layer), the maximum dimension in a plane parallel to the layer (two-dimensional sheet surface) is, for example, 0.1 ⁇ m or more and 200 ⁇ m or less, particularly 1 ⁇ m or more and 40 ⁇ m or less. ..
  • the interlayer distance or void size, indicated by d in FIG.
  • the thickness in the stacking direction is, for example, 0.1 ⁇ m or more. It is 200 ⁇ m or less, particularly 1 ⁇ m or more and 40 ⁇ m or less, and the maximum dimension in a plane (two-dimensional sheet surface) perpendicular to the stacking direction is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, particularly 1 ⁇ m or more and 20 ⁇ m or less.
  • These dimensions are determined as number average dimensions (for example, at least 40 number averages) based on scanning electron microscope (SEM) or transmission electron microscope (TEM) photographs.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the interlayer distance the X-ray diffraction method may be used, and the lattice plane spacing may be obtained from the Flag equation.
  • the cathode 15a may be substantially composed of only MXene, which is an electrode active material, or may be composed by adding a binder or the like to the cathode 15a.
  • the binder may be typically a resin, and for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber and the like may be used.
  • the anode 15b may include any suitable ⁇ -conjugated conductive polymer material that can function as the counter electrode of the cathode 15a as an electrode active material.
  • a ⁇ -conjugated conductive polymer material has delocalized electron orbitals ( ⁇ orbitals) as double bonds in the molecule, and exhibits conductivity through the structure of this ⁇ -conjugated system. Refers to a polymer material that is used. A higher energy density per volume can be achieved by using a conductive polymer material having a large density of 0.3 g / cm 3 or more, and more particularly 0.5 g / cm 3 or more.
  • conductive polymer materials have a ⁇ -conjugated system, such as polyaniline, polypyrrole, polythiophene, polyfuran, polyphenylene, polyindole, polyacetylene, polyselenophen, polyisothianaften, polyphenylene sulfide, and polyphenylene.
  • a ⁇ -conjugated system such as polyaniline, polypyrrole, polythiophene, polyfuran, polyphenylene, polyindole, polyacetylene, polyselenophen, polyisothianaften, polyphenylene sulfide, and polyphenylene.
  • the conductive polymer material contains one or more selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyfuran, polyphenylene and polyindole and derivatives thereof.
  • polyaniline and polyaniline derivatives are preferred because they have a large electrochemical capacity and can obtain greater energy.
  • a conductive polymer material from these factors according to desired characteristics from factors such as oxidation-reduction capacity, electric conductivity, stable operating voltage range, and density, the energy density per volume can be increased. Can be achieved.
  • Two or more types of conductive polymer materials may be used in combination.
  • the conductive polymer material may be synthesized by adding an oxidizing agent to the monomer and polymerizing it, or by electrolytically oxidizing the monomer in an acidic aqueous solution.
  • polyaniline can be synthesized by oxidizing an aniline monomer in an aqueous solution together with an oxidizing agent such as ammonium peroxodisulfate, manganese dioxide, or hydrogen peroxide.
  • an oxidizing agent such as ammonium peroxodisulfate, manganese dioxide, or hydrogen peroxide.
  • the conductive polymer material may be polymerized and synthesized by adding a chemical species serving as a dopant together with an oxidizing agent, or may be polymerized and synthesized by adding an oxidizing agent which also serves as a dopant.
  • a polyaniline film having conductivity can be obtained by polymerizing it with an oxidizing agent that also has a role of a dopant such as tetrafluoroboric acid.
  • the conductive polymer material is included as the electrode active material of the anode, it is not always necessary to synthesize it with the dopant.
  • the anode 15b may be substantially composed of only a conductive polymer material which is an electrode active material, or may be composed of a conductive auxiliary agent, a binder or the like added thereto.
  • the conductive polymer material exhibits conductivity by being doped, but the conductivity of the electrode may change depending on the state of doping. Therefore, it is also effective to use a conductive additive together.
  • a carbon material having conductivity is preferably used.
  • the carbon material for example, at least one selected from the group consisting of acetylene black, furnace black, ketjen black, graphite and carbon nanotubes can be used.
  • the binder may be typically a resin, and for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber and the like may be used.
  • the cathode 15a and the anode 15b may be formed independently of each other in the form of a free-standing film or in the form of a film and/or a film on a current collector (not shown). Any suitable conductive material may be used for the current collector, but it may be made of, for example, stainless steel, aluminum, an aluminum alloy, or the like.
  • the electrolytic solution 13 contains ions (hereinafter, also referred to as “dopant ions”) that function as dopants for the conductive polymer material.
  • the ion is not particularly limited, and examples thereof include tetrafluoroborate ion, bis(trifluoromethanesulfonyl)imide ion, bis(fluorosulfonyl)imide ion, trifluoromethanesulfonate ion, hexafluorophosphate ion, bis(pentafluoroethanesulfonyl).
  • the electrolytic solution 13 may be either a non-aqueous electrolytic solution or an aqueous electrolytic solution.
  • the electrolytic solution 13 need not contain a solvent as long as it contains the dopant ions as described above.
  • the solvent may be either a non-aqueous solvent or an aqueous solvent.
  • the non-aqueous solvent may include, for example, one or more selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC) and gamma butyrolactone (gBL). That is, these non-aqueous solvents may be included in combination.
  • the aqueous solvent may include, for example, water and a sulfuric acid aqueous solution.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • gBL gamma butyrolactone
  • Li-BF 4 lithium borofluoride
  • PC propylene carbonate
  • Nonaqueous electrolysis containing bis(trifluoromethanesulfonyl)imide lithium (Li-) as the electrolyte (that is, the bis(trifluoromethanesulfonyl)imide ion (TFSI anion) as the dopant ion) and propylene carbonate (PC) as the solvent liquid.
  • Li-BF 4 lithium borofluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Li-TFSI Bis(trifluoromethanesulfonyl)imide lithium
  • TFSI anion bis(trifluoromethanesulfonyl)imide ion
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Li-FSI Bis (fluorosulfonyl) imide lithium
  • the dopant ion is a bis (fluorosulfonyl) imide ion (FSI anion)
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Lithium trifluoromethanesulfonate Li-CF 3 SO 3 ) as an electrolyte (that is, the dopant ion is trifluoromethanesulfonate ion (CF 3 SO 3 anion)
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Li-PF 6 Lithium hexafluorophosphate (Li-PF 6 ) (that is, the hexafluorophosphate ion (PF 6 anion) as the dopant ion) is used as the electrolyte, and ethylene carbonate (EC) and diethyl carbonate (DEC) are used as the solvent.
  • Li-BF 4 lithium borofluoride
  • gBL gammabutyrolactone
  • Li-TFSI bis(trifluoromethanesulfonyl)imide lithium
  • gBL gammabutyrolactone
  • Non-aqueous electrolyte solution containing bis(fluorosulfonyl)imide lithium (Li-FSI) that is, bis(fluorosulfonyl)imide ion (FSI anion) as a dopant ion) as an electrolyte and gammabutyrolactone (gBL) as a solvent .
  • Non-containing lithium trifluoromethanesulfonate (Li—CF 3 SO 3 ) that is, the dopant ion is trifluoromethanesulfonate ion (CF 3 SO 3 anion)) as an electrolyte and gamma-butyrolactone (gBL) as a solvent.
  • Aqueous electrolyte A non-aqueous electrolytic solution containing lithium hexafluorophosphate (Li—PF 6 ) as an electrolyte (that is, a hexafluorophosphate ion (PF 6 anion) as a dopant ion) and gamma-butyrolactone (gBL) as a solvent.
  • Li—PF 6 lithium hexafluorophosphate
  • gBL gamma-butyrolactone
  • An aqueous electrolytic solution containing sulfuric acid (H 2 SO 4 ) as an electrolyte that is, a dopant ion is a sulfonic acid ion (SO 4 anion)
  • water a solvent
  • Li-BF 4 lithium borofluoride
  • BF 4 anion tetrafluoroborate ion
  • H 2 SO 4 sulfuric acid aqueous solution
  • the present inventors have found that when MXene is used as the electrode active material of the cathode of the electrochemical capacitor, a conductive polymer material is used as the electrode active material of the anode, and an ionic species capable of performing doping and dedoping in the electrolytic solution. It has been found that the inclusion of the element makes the potential window on the cathode side wide and also increases the specific capacity. Furthermore, according to the asymmetrical configuration of the cathode and the anode, it is possible to properly secure the capacitance balance between both electrodes, the potential potential window that can be used as a cell of an electrochemical capacitor is wide, and the specific capacitance is large.
  • an electrochemical capacitor that can achieve sufficiently large values for energy density and power density, especially for energy density.
  • a sufficiently large energy density is about five times or more the energy density achieved when activated carbon, which is a conventional material, is used for both the cathode and the anode.
  • the molar concentrations of the dopant ion and the electrolyte in the electrolytic solution 13 are not particularly limited. Those skilled in the art can appropriately adjust the molar concentration.
  • the electrolytic solution 13 contains ethylene carbonate (EC) and diethyl carbonate (DEC) as solvents
  • the blending ratio such as the volume ratio thereof is not particularly limited. It is possible to appropriately adjust to a suitable blending ratio.
  • the electrolytic solution 13 may contain a relatively small amount of any suitable additive in addition to ions functioning as a dopant of the conductive polymer material.
  • the terminals A and B of the electrochemical capacitor 20 can be connected to a load for charging.
  • the dopant ion (dopant anion) in the electrolytic solution 13 is attracted to the anode 15b and attracted to the conductive polymer material of the anode 15b for doping.
  • the cations in the electrolytic solution 13 are attracted to the cathode 15a and to MXene, which is the electrode active material of the cathode 15a.
  • the terminals A and B of the electrochemical capacitor 20 can be connected to a power source for discharging.
  • the dopant ions attracted to the anode 15b during charging are dedoped from the conductive polymer material, and move away from the anode 15b during discharging.
  • the cations attracted to the cathode 15a during charging move in a direction away from the cathode 15a during discharging.
  • MXene is used as the electrode active material of the cathode 15a
  • the conductive polymer material is used as the electrode active material of the anode 15b.
  • a sufficiently large energy density can be achieved by using an electrolyte solution containing ions that function as dopants for the.
  • the energy density can be, for example, about 57.5 Wh / L.
  • MXene has larger voids between layers than oxide-based materials such as MnO 2 .
  • the present invention is not bound by any theory, but in the present invention, MXene is used as the electrode active material of the cathode, and a ⁇ -conjugated conductive polymer material is used as the electrode active material of the anode to form an asymmetrical structure. It can be understood that a sufficiently large energy density can be obtained because the electrochemical capacitor of (1) has a capacity balance between the cathode and the anode, and the electrolyte contains ions that function as a dopant of the conductive polymer material. Furthermore, MXene has higher conductivity than MnO 2 . Therefore, compared with MnO 2 , MXene easily exchanges electrons with ions during charge/discharge of the capacitor, resulting in a large capacity.
  • the electrochemical capacitor of this embodiment can also exhibit a sufficiently large power density.
  • the power density can be about 10.2 kW / L.
  • MXene having a high conductivity exceeding 1,000 S/cm (1,000 S/cm). It should be noted that the conductivity exceeding cm is higher than that of activated carbon (conductivity of about 300 S/cm) or graphene (conductivity of 500 to 1,000 S/cm) that can be used in the conventional electrochemical capacitor).
  • the above formula M n + 1 X n is any one selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C.
  • MXene is used as the electrode active material of the cathode.
  • the specific volume is less likely to decrease even if the electrode thickness is increased to some extent, and preferably a large capacity can be secured, as compared with the case where MnO 2 is used. Therefore, the electrode thickness can be increased. It can be increased, for example, 3 ⁇ m or more, particularly 5 ⁇ m or more, and the upper limit is not particularly limited, but typically 50 ⁇ m or less.
  • the cathode electrode active material by using MXene as the cathode electrode active material, a sufficiently large specific capacity, particularly a capacity per unit mass of the electrode active material, can be achieved.
  • the volume (F / g) per unit mass of the electrode active material (MXene) is, for example, 150 F / g or more, more preferably 200 F / g or more, and the upper limit is not particularly limited, but is typically 500 F / g or less. can do.
  • the capacity per unit mass of the electrode active material of the anode changes depending on the type of the ⁇ -conjugated conductive polymer material contained as the electrode active material.
  • the electrochemical capacitor of the present embodiment can obtain a larger energy density.
  • the capacity of the electrode active material (conductive polymer material) per unit mass is, for example, 350 F / g or more, preferably 500 F / g or more.
  • the upper limit is not particularly limited, but can be typically 650 F/g or less.
  • a cathode is used in an electrolytic solution of an electrochemical capacitor using a non-aqueous electrolytic solution containing lithium borofluoride (Li-BF 4 ) (that is, the dopant ion is tetrafluoroborate ion) and propylene carbonate (PC) as a solvent.
  • Li-BF 4 lithium borofluoride
  • PC propylene carbonate
  • Is 0.5 g / cm 3 the energy density can be 87.5 Wh / L, which can be a sufficiently large energy density.
  • the density of the anode is 1.0 g / cm 3
  • the energy density can be 155.6 Wh / L, which is a very large value.
  • Example 1 The electrochemical capacitor was assembled as follows, the energy density and the power density were measured, and the capacitor characteristics were evaluated.
  • MXene electrode ⁇ Cathode (MXene electrode) First, in the same manner as in Example 1 of Patent Document 1, to obtain a flexible freestanding film consisting essentially Ti 3 C 2 T s. Next, the Ti 3 C 2 T s free standing film thus obtained was punched into a circle having a diameter of 5 mm to obtain a MXene (Ti 3 C 2 T s ) electrode (cathode). The thickness of the obtained MXene electrode was 3.0 ⁇ m, and the specific gravity was 2.1 g / cm 3 .
  • ⁇ Anode (conductive polymer material electrode) First, polyaniline (leukoemeraldine base) powder (manufactured by Sigma Aldrich, product number 53670), conductive carbon powder (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka Black) with a polyaniline mass ratio of 10 wt% as a conductive auxiliary agent, and polyaniline mass. After mixing with 2 wt% of carboxymethyl cellulose, water was added so that the solid content concentration would be 40% by mass, and the mixture was stirred for 15 minutes with a rotation mixer. Then, a defoaming operation was performed to obtain a polymer slurry.
  • polyaniline (leukoemeraldine base) powder manufactured by Sigma Aldrich, product number 53670
  • conductive carbon powder manufactured by Denki Kagaku Kogyo Co., Ltd., Denka Black
  • the obtained slurry was adjusted to a coating thickness of 30 ⁇ m using a tabletop automatic coating device and applied onto carbon paper of 15 ⁇ m. Then, after leaving at room temperature for 60 minutes, it was dried at a temperature of 100° C. and punched into a circle having a diameter of 5 mm to prepare a conductive polymer material electrode (anode).
  • the thickness of the anode layer excluding carbon paper was 20 ⁇ m, and the specific gravity was 0.5 g / cm 3 .
  • a separator film was prepared by processing a commercially available separator (CELGARD3501 (trade name) manufactured by CELGARD) into a diameter of 12 mm.
  • -Electrolyte solution PC (manufactured by Sigma Aldrich, product number 310328) is mixed with 1 mol / L of electrolyte Li-BF 4 (manufactured by Sigma Aldrich, product number 224767) (that is, the dopant ion is BF 4 anion).
  • a Swagelok tube joint (Swagelok, Bored-Through Union Tee, product number SS-810-3BT, SUS316) is used for the cell body, and ferrules (made by Swagelok, product numbers SS-810-3BT, SUS316) are used for each of the two facing openings.
  • Swagelok, PTFE Ferrule Set, product number T-810-SET, made of polytetrafluoroethylene) and lead-out electrode (12 mm diameter, 40 mm long SUS316 round bar) are used in combination, and the remaining opening is made of rubber.
  • a cell was formed by sealing with a stopper.
  • the MXene electrode and the conductive polymer material electrode prepared as described above are made to face each other as a cathode and an anode, respectively, inside the cell body.
  • a separator film is sandwiched between the two electrodes, and a lead-out electrode equipped with a ferrule is inserted and fitted through each of the two facing openings of the cell body until it comes into contact with both electrodes, and the cell body is filled with an electrolytic solution.
  • the remaining opening was sealed with a rubber stopper to assemble an electrochemical capacitor for evaluating an electricity storage device.
  • the specific capacitance (capacity per unit mass) (F / g) and the potential window (V) were measured by cyclic voltammetry measurement described later, respectively.
  • the capacitance per unit mass of the cathode (MXene electrode) is 193 F / g
  • the potential window is 2.2 V
  • the capacitance per unit mass of the anode (conductive polymer material electrode) is 480 (F / g)
  • the potential window is 0. It was 0.8V. Based on these measured values, the capacitance balance of each electrode was taken into consideration, and the above-mentioned thickness was set to prepare the electrodes.
  • Example 2 Example 1 except that the electrolyte of the electrolytic solution was 1 mol/L (total basis) of Li-TFSI (that is, the dopant ion was bis(trifluoromethanesulfonyl)imide ion) (Sigma Aldrich, product number 544094). An electrochemical capacitor was prepared and evaluated by the same method.
  • the capacitance balance of each electrode between the cathode (MXene electrode) and the anode (conductive polymer material electrode) changed, so the cathode (MXene)
  • the thickness of the electrode) was 3 ⁇ m
  • the thickness of the cathode (MXene electrode) was 15 ⁇ m.
  • the assembly of the electrochemical capacitor is the same as in Example 1.
  • the sweep rate was set in the same manner as in Example 1, and the energy density and power density were measured and calculated as capacitor characteristics. As a result, as shown in Table 1 below, the cell energy was 3.0 V, the volume energy density was 57.5 Wh/L, and the volume power density was 10.2 kW/L.
  • the specific capacitance (capacity per unit mass) (F / g) and potential window (V) of the cathode (MXene electrode) and the anode (conductive polymer material electrode) in Example 2 are each per unit mass of the cathode.
  • the capacity was 193 F/g
  • the potential window was 2.2 V
  • the capacity per unit mass of the anode (conductive polymer electrode) was 480 F/g
  • the potential window was 0.8 V.
  • Example 1 An electrochemical capacitor was assembled in the same manner as in Example 2 except that activated carbon electrodes were used as both the cathode and the anode.
  • the activated carbon electrode consists of activated carbon (Kurare Co., Ltd., YP-50), carbon black (manufactured by Sigma Aldrich) as a conductive auxiliary agent, and a 60 wt% aqueous solution of polytetrafluoroethylene (manufactured by Sigma Aldrich) as a binder.
  • the mixture was mixed at a ratio of 75:15:10 and was formed into a film with a roll.
  • Activated carbon has generally been found to be equal in capacity to the potential windows of the anode and cathode, respectively.
  • activated carbon electrodes having a relatively close mass were used for the anode and the cathode (that is, the mass balance between the cathode and the anode was close to 1:1).
  • the diameter of the activated carbon electrodes of the anode and the cathode was 5 mm, and the thickness was 260 ⁇ m.
  • the mass of the anode was 2.217 mg and the mass of the cathode was 2.220 mg.
  • the density of each electrode was 0.43 g / cm 3 .
  • the sweep rate was set by the same method as in Example 1, and the energy density and power density were measured and calculated as capacitor characteristics. As a result, as shown in Table 1 below, the volume energy density was 9.5 Wh / L and the volume power density was 8.5 kW / L at a cell voltage of 2.5 V.
  • Example 2 An electrochemical capacitor was assembled in the same manner as in Example 2 except that the MXene electrode prepared in Example 1 was used as both the cathode and the anode.
  • the specific capacity (capacity per unit mass) (F/g) and potential window (V) when MXene was used for the cathode and the anode were 193 F/g and the capacity per unit mass, respectively.
  • the potential window was 2.2 V
  • the capacitance per unit mass of the anode was 30 F / g
  • the potential window was 1.0 V. Therefore, in order to adjust the balance between the anode and the cathode, an electrode was formed so that the thickness of the cathode was 3 ⁇ m and the thickness of the anode was 30 ⁇ m, and the measurement was performed.
  • the sweep rate was set by the same method as in Example 1, and the energy density and power density were measured and calculated as capacitor characteristics. As a result, as shown in Table 1 below, the volume energy density was 30.4 Wh / L and the volume power density was 4.5 kW / L at a cell voltage of 3.2 V.
  • Example 2 and Comparative Examples 1 and 2 use the same components of the electrolytic solution (Li-TFSI and PC), but compared with Comparative Example 1 and Comparative Example 2.
  • Example 2 higher energy density and higher power density could be obtained.
  • both electrodes which are currently the mainstream in Comparative Example 1, have achieved an energy density five times or more that of a capacitor made of activated carbon.
  • Example 2 it is considered that the difference is due to the difference in the dopant ions doped in the conductive polymer material.
  • BF 4 person when using an anion (tetrafluoroborate) is greater energy density about 12% than when using TFSI anion (bis (pentafluoroethanesulfonyl) imide ion) is obtained. It is estimated that for a more towards the small BF 4 anion ionic diameter doping amount of the conductive polymer material increases.
  • the transition metal atoms (Ti, V, etc.) in MXene change the valence of the atom itself in accordance with the movement of electrons, thereby accumulating charges, and
  • a charge storage effect due to valence change occurs, and a more sufficient capacity can be obtained.
  • electrochemical capacitors can achieve sufficiently high energy densities and high power densities.
  • the cathode and the anode used in the electrochemical capacitor have an asymmetrical structure, MXene having a large capacity is used for the cathode, and a conductive polymer material having a large capacity is also used for the anode. It depends. As a result, the efficiency of cell balance between the cathode and the anode can be improved, and an electrochemical capacitor having a particularly high energy density can be realized.
  • an electrochemical capacitor in which a cathode and an anode are separately arranged in an electrolytic solution, MXene is used as an electrode active material of the cathode, and a ⁇ -conjugated conductive polymer is used as the electrode active material of the anode.
  • a material capable of achieving a sufficiently large energy density by balancing the capacity of the cathode and the anode in an asymmetrical configuration and containing ions that act as dopants for the conducting polymer material It is possible to provide various electrochemical capacitors.
  • the electrochemical capacitor of the present disclosure can be widely used in various fields such as an electricity storage device, but is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、カソードの電極活物質にMXeneを使用し、十分に大きいエネルギー密度を達成し得る新規な電気化学キャパシタを提供することを目的とする。電気化学キャパシタであって、カソードが電極活物質として複数の層を含み、各層が式:Mn+1(式中Mは少なくとも1種の第3、4、5、6、7族金属、Xは炭素原子、窒素原子またはそれらの組み合わせ、nは1、2または3)で表され、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、アノードが電極活物質としてπ共役系の導電性高分子材料を含み、電解液が導電性高分子材料のドーパントとして機能するイオンを含む。

Description

電気化学キャパシタ
 本発明は、電気化学キャパシタに関し、より詳細には、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタに関する。
 電気化学キャパシタは、電極(電極活物質)と電解液中のイオン(電解質イオン)との間での物理化学反応に起因して発現する容量を利用したキャパシタであり、電気エネルギーを蓄えるデバイス(蓄電デバイス)として使用可能である。電気化学キャパシタのうち、電極活物質に金属酸化物や層状材料(またはインターカレーション化合物)等を利用し、電極と電解液中のイオンとの間で電子の授受を伴う反応(例えば電極活物質を構成している金属元素の酸化数変化)が生じることにより容量(疑似容量)が発現するものは「シュードキャパシタ」や「レドックスキャパシタ」等と呼ばれている。
 かかる電気化学キャパシタ(特にシュードキャパシタ)として、従来、電極活物質にMXeneを使用または含有した電気化学キャパシタが知られている(非特許文献1および特許文献1参照)。MXeneは、いわゆる二次元材料の1種であり、後述するように、複数の層の形態を有する層状材料であって、各層は、Mn+1(式中、Mは少なくとも1種の第3、4、5、6、7族金属であり、Xは炭素原子および/または窒素原子であり、nは1、2または3である)で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の表面に、例えば水酸基、フッ素原子、酸素原子および水素原子等の終端(または修飾)Tを有する材料である。
 一方、電極活物質に導電性高分子材料を利用した電気化学キャパシタも知られている。導電性高分子材料は、ドーパントとなる化学種をドーピングさせて、キャリアを注入することによって、分子の持つπ共役を通して導電性を発現する高分子材料である。電解液イオンをドーパントとしてドープおよび脱ドープをさせることによってアノードおよびカソードとして利用した電気化学キャパシタは、優れたエネルギー密度を示すことが知られている(特許文献2および非特許文献2参照)。
国際公開第2018/066549号 特開2015-144073号公報
Y. Dall'Agnese et al., "Capacitance of two-demensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes", Journal of Power Sources 306 (2016) 510-515 D. Belanger et al., "Caracterization and Long-Term Performance of Polyaniline-Based Electrochemical Capacitors", Journal of The Electrochemical Society, 147 (8) 2923-2929 (2000)
 電気化学キャパシタのエネルギーは、一般的に、電極活物質の持つ比容量C(より詳細には電極活物質単位質量あたり容量(F/g)または電極活物質単位体積あたり容量(F/cm)、以下、本明細書においてこれらを総称して「比容量」とも言う)と、電解液の動作電位範囲V(以下、「電位窓」ともいう)で制限される電圧とで決定される。電気化学キャパシタのエネルギー密度は、1/2×CVで計算されるため、電圧の寄与は大きい。
 電気化学キャパシタに利用される電極活物質は、主に、電極活物質表面の電解質イオン吸脱着による電気二重層(以下「EDL」(Electric Double Layer)ともいう)原理を利用する活性炭のような材料、および電極活物質と電解質イオンとの疑似容量を利用するMXeneまたは導電性高分子のような材料が知られている。疑似容量を利用する電極活物質の材料は、物質のバルク全体を利用するため、EDLを利用するキャパシタよりも一般に容量が大きくなる。
 また、電気化学キャパシタに利用される電解液として、主に、水系電解液(電解質を水溶媒に溶解させた電解液)と非水電解液(電解質を非水溶媒に溶解させた電解液またはイオン液体から成る電解液)とが知られている。水系電解液の場合、水の電位窓が1.23Vであるため、水の電気分解を生じないように水系キャパシタの動作電圧は1.2V以下に制限される。他方、非水電解液は電位窓が広く取れる利点があり、エネルギーの蓄積に有利である。
 電気化学キャパシタは、一般的に、カソードとアノードの直列接続の構成になるため、全体の容量値は、容量値がより小さい電極側の容量で律速された容量になる。このため、セルを構成するにあたって、容量の小さい電極側の電極重量を増やす、または容量の大きい電極側の電極重量を減らすことによって、両極の電荷量を一致させる必要があり、結果的にキャパシタの体積当たりのエネルギー密度の低下につながる。従って、カソードとアノードの容量のバランスをとることは非常に重要な設計要素となる。また、電位窓も電解液の特性のみで決定されるわけではなく、電極との相互関係に影響される要素が大きく、電極と電解液との組み合わせも非常に重要な設計要素となっている。
 非特許文献1には、アノードおよびカソードのいずれにも電極活物質としてMXeneを使用した非水系電解液の電気化学キャパシタが開示されている。前述したとおり、非水系電解液の電気化学キャパシタは、電位窓が広く取れ、具体的には約3V以上の電位窓を取り得るという利点がある。MXeneをカソードの電極活物質として使用した場合、最大約2.6Vの電圧範囲までの利用が可能であり、容量も大きく、大きなエネルギーが得られる。しかしながら、MXeneをアノードの電極活物質として使用した場合、MXeneの材料自体の酸化により、最大約1.2Vの電圧範囲までしか利用できず、また容量自体もカソードの電極活物質として使用した場合に較べて大きく減少する。これは、アノード側ではイオンがMXeneとの間で疑似容量を発現しないためと想定される。このため、非特許文献1に記載の電気化学キャパシタでは、アノードとカソードとの容量バランスが悪くなり、体積エネルギー密度が小さくなるという問題がある。
 非特許文献2には、導電性高分子材料、具体的にはポリアニリンをアノードおよびカソードの両方の電極として使用した電気化学キャパシタの特性について開示されている。導電性高分子材料は、バルクで電荷を蓄積するため、キャパシタにおいて大きな容量が得られる。しかしながら、導電性高分子材料は利用できる電圧範囲が約1.0V程度と狭く、非特許文献2に記載の電気化学キャパシタは動作電圧範囲が狭くなるため、エネルギー密度が小さくなるという課題がある。
 近年、カソードとアノードとで異なった電極活物質を使用する非対称形の電気化学キャパシタが提唱されている。カソードとアノードの電極活物質の材料を適宜組み合わせることによって、大きい容量と電位窓が確保でき、大きいエネルギー密度を得ることが可能になる。
 特許文献1には、カソードに電極活物質としてMXeneを使用し、もう一方の電極には電極活物質として活性炭を使用し、かつ、非水溶媒と、該非水溶媒中でプロトンを生じる電解質とを含む非水電解液を使用した電気化学キャパシタが開示されている。この場合アノードの電圧範囲を約2.0Vまで広げられることが可能であるが、活性炭自体の容量が小さいので、容量バランスを確保するため、アノードの量を増やす必要があり、結果として体積エネルギー密度が小さくなるという課題がある。
 特許文献2には、カソード(正極)の電極活物質として導電性高分子材料を、アノード(負極)の電極活物質としてチタン酸リチウム(LiTi、以下、「LTO」ともいう)を含ませた非対称形の非水電解液二次電池が開示されている。異なった電極活物質を使用して非対称形にすることにより、エネルギー密度の向上を可能としている。しかしながら、アノード(負極)側の電極活物質であるLTO材料は、LiイオンのLTO結晶への挿入および脱離の蓄電メカニズムで容量を発現するため、十分なパワー特性が得られにくいという課題がある。
 本発明は、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、カソードの電極活物質にMXeneを使用し、十分に大きいエネルギー密度を達成し得る新規な電気化学キャパシタを提供することを目的とする。
 本開示の1つの要旨によれば、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、
 前記カソードが、電極活物質として、複数の層を含む層状材料であって、各層が、以下の式:
  Mn+1
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1、2または3である)
で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、
 前記アノードが、電極活物質として、π共役系の導電性高分子材料を含み、
 前記電解液が、前記導電性高分子材料のドーパントとして機能するイオンを含む、
電気化学キャパシタが提供される。
 本開示の1つの態様において、前記式Mn+1が、Ti、TiCおよびVCからなる群より選択されるいずれかであり得る。
 本開示の1つの態様において、前記導電性高分子材料は、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、ポリフェニレンおよびポリインドールならびにそれらの誘導体からなる群より選択される1以上を含み得る。
 本開示の1つの態様において、前記電解液が、テトラフルオロホウ酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、トリフルオロメタンスルホナートイオン、ヘキサフルオロリン酸イオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、スルホン酸イオン、過塩素酸イオンおよびハロゲンイオンからなる群より選択される1以上を含み得る。
 本開示の1つの態様において、前記電解液が、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネートおよびガンマブチロラクトンからなる群より選択される1以上を含む溶媒、または、水を含む溶媒を含み得る。
 本発明によれば、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタにおいて、カソードの電極活物質にMXeneを使用し、アノードの電極活物質にπ共役系の導電性高分子材料を使用して非対称形の構成においてカソードとアノードのセルにおける容量バランスをとり、かつ電解液が導電性高分子材料のドーパントとして機能するイオンを含むことによって、十分に大きいエネルギー密度を達成し得る新規な電気化学キャパシタを提供することができる。
本発明の1つの実施形態における電気化学キャパシタを説明する概略模式断面図である。 本発明の1つの実施形態における電気化学キャパシタに利用可能な層状材料であるMXeneを示す概略模式断面図である。
 本発明の電気化学キャパシタの実施形態について以下に詳述するが、本発明はかかる実施形態に限定されるものではない。
 図1を参照して、本実施形態の電気化学キャパシタ20は、カソード15aおよびアノード15bが電解液13中に離間して配置された構成を有する。カソード15aおよびアノード15bは、それぞれ端子A、Bに電気的に接続され、電極として機能し得る。図示する態様において、カソード15aおよびアノード15bは、任意の適切な容器(またはセル)11内において、電解液13中に、例えば(本実施形態に必須ではないが)セパレータ17を挟んで、互いに離間して配置され得る。セパレータ17は、電解液13中のドーパントイオンの移動を妨げない限り、任意の適切な部材が使用可能であり、例えばポリプロピレン、ポリテトラフルオロエチレン等のポリオレフィンの多孔質膜等が使用され得る。容器11の材質は特に限定されず、例えば、ステンレス鋼等の金属や、ポリテトラフルオロエチレン等の樹脂、その他任意の適切な材料であってよい。容器11は密閉されていても開放されていてもよく、容器11内に空寸が存在していても存在していなくてもよい。なお、カソード15aおよびアノード15bは、容器11内において、セパレータ17をそれらの間に挟んで積層されて巻回されている等、図示する形態以外の任意の適切な形態で互いに離間して配置されていてもよい。
 カソード15aが、電極活物質として、複数の層を含む所定の層状材料を含む。電極活物質とは、電解液13中のドーパントイオンとの間で電子の授受を行う物質を言う。
 本実施形態において使用可能な所定の層状材料はMXeneであり、次のように規定される:
 複数の層を含む層状材料であって、各層が、以下の式:
  Mn+1
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、いわゆる早期遷移金属、例えばSc、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびMnからなる群より選択される少なくとも1種を含み得、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1、2または3である)
 で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料(これは「Mn+1」とも表され、sは任意の数であり、従来、sに代えてxが使用されることもある)。
 かかるMXeneは、MAX相からA原子を選択的にエッチングすることにより得ることができる。MAX相は、以下の式:
  Mn+1AX
 (式中、M、Xおよびnは、上記の通りであり、Aは、少なくとも1種の第12、13、14、15、16族元素であり、通常はA族元素、代表的にはIIIA族およびIVA族であり、より詳細にはAl、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、SおよびCdからなる群より選択される少なくとも1種を含み得、好ましくはAlである)
 で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、Mn+1で表される層の間に、A原子により構成される層が位置した結晶構造を有する。MAX相は、概略的には、n+1層のM原子の層の各間にX原子の層が1層ずつ配置され(これらを合わせて「Mn+1層」とも称する)、n+1番目のM原子の層の次の層としてA原子の層(「A原子層」)が配置された繰り返し単位を有する。MAX相からA原子が選択的にエッチングされることにより、A原子層が除去されて、露出したMn+1層の表面にエッチング液(通常、含フッ素酸の水溶液が使用されるがこれに限定されない)中に存在する水酸基、フッ素原子、酸素原子および水素原子等が修飾して、かかる表面を終端する。
 代表的には、上記の式において、Mがチタンまたはバナジウムであり、Xが炭素原子または窒素原子であり得る。例えば、MAX相は、TiAlCであり、MXeneは、Tiである。
 なお、本発明において、MXeneは、残留するA原子を比較的少量、例えば元のA原子に対して10質量%以下で含んでいてもよい。
 図2に模式的に示すように、このようにして得られるMXene10は、Mn+1層1a、1b、1cが修飾または終端T 3a、5a、3b、5b、3c、5cで表面修飾または終端されたMXene層7a、7b、7c(これは「Mn+1」とも表され、sは任意の数である)を2つ以上有する層状材料であり得る(図中、3つの層を例示的に示しているが、これに限定されない)。MXene10は、かかる複数のMXene層が個々に分離されて存在するもの(単層構造体)であっても、複数のMXene層が互いに離間して積層された積層体(多層構造体)であっても、それらの混合物であってもよい。MXeneは、個々のMXene層(単層)および/またはMXene層の積層体の集合体(粒子、粉末またはフレークとも称され得る)であり得る。積層体である場合、隣接する2つのMXene層(例えば7aと7b、7bと7c)は、必ずしも完全に離間していなくてもよく、部分的に接触していてもよい。
 本実施形態を限定するものではないが、MXeneの各層(上記のMXene層7a、7b、7cに相当する)の厚さは、例えば0.8nm以上5nm以下、特に0.8nm以上3nm以下であり(主に、各層に含まれるM原子層の数により異なり得る)、層に平行な平面(二次元シート面)内における最大寸法は、例えば0.1μm以上200μm以下、特に1μm以上40μm以下である。MXeneが積層体である場合、個々の積層体について、層間距離(または空隙寸法、図1中にdにて示す)は、例えば0.8nm以上10nm以下、特に0.8nm以上5nm以下、より特に約1nmであり、層の総数は、2以上であればよいが、例えば50以上100,000以下、特に1,000以上20,000以下であり、積層方向の厚さは、例えば0.1μm以上200μm以下、特に1μm以上40μm以下であり、積層方向に垂直な平面(二次元シート面)内における最大寸法は、例えば0.1μm以上100μm以下、特に1μm以上20μm以下である。なお、これら寸法は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)写真に基づく数平均寸法(例えば少なくとも40個の数平均)として求められる。また、層間距離についてはX線回折法を用い、格子面間隔をフラッグの式より求めても良い。
 カソード15aは、電極活物質であるMXeneのみから実質的に構成されていても、これにバインダ等が添加されて構成されていてもよい。バインダは、代表的には樹脂であり得、例えばポリテトラフルオロエチレン、ポリビニリデンフルオライド、スチレンブタジエンゴム等からなる群より選択される少なくとも1種を使用し得る。
 アノード15bは、上記カソード15aの対向電極として機能し得る任意の適切なπ共役系の導電性高分子材料を電極活物質として含むものであればよい。π共役系の導電性高分子材料とは、非局在化した電子軌道(π軌道)を二重結合として分子内に有しているものであり、このπ共役系の構造を通して導電性を発現する高分子材料をいう。導電性高分子材料は、特に0.3g/cm以上、より特に0.5g/cm以上の大きい密度を有するものを使用することで、より大きい体積あたりのエネルギー密度を達成し得る。例えば、これらに限定されないが、導電性高分子材料はπ共役系を有するもので、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、ポリフェニレン、ポリインドール、ポリアセチレン、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアズレン、ポリ(3,4-エチレンジオキシチオフェン)等や、これらの種々の誘導体が挙げられる。特に好ましくは、導電性高分子材料は、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、ポリフェニレンおよびポリインドールならびにそれらの誘導体からなる群より選択される1以上を含む。これらのうち、電気化学的容量が大きくより大きいエネルギーを得ることができるため、ポリアニリンおよびポリアニリンの誘導体が好ましい。例えばこれらの中から、酸化還元容量、電気伝導率、安定動作電圧範囲および密度等の因子から所望する特性に合わせて適宜導電性高分子材料を選択することによって、より大きい体積あたりのエネルギー密度を達成することができる。導電性高分子材料は、2種類以上組み合わせて用いてもよい。
 導電性高分子材料は、モノマーに酸化剤を加えて重合させることによって合成してもよく、またはモノマーを酸性水溶液中で電解酸化させることによって合成してもよい。例えば、ポリアニリンは、アニリンモノマーを、ペルオキソ二硫酸アンモニウム、二酸化マンガン、過酸化水素等の酸化剤と共に水溶液中で酸化させることによって合成することができる。また、モノマーを塩酸や硫酸等の酸性水溶液中で電解酸化させることによって、集電体表面に均質なポリアニリン膜を形成させる方法もある。さらに、導電性高分子材料は、酸化剤と共にドーパントとなる化学種も加えて重合および合成してもよく、またはドーパントの役割も有する酸化剤を加えて重合および合成してもよい。例えば、導電性高分子材料としてポリアニリンを合成する場合、テトラフルオロホウ酸のようなドーパントの役割も有する酸化剤と共に重合させることで導電性を有するポリアニリン膜が得られる。ただし、本実施形態ではアノードの電極活物質として導電性高分子材料を含むため、必ずしもドーパントと共に合成しなくてもよい。
 アノード15bは、電極活物質である導電性高分子材料のみから実質的に構成されていても、これに導電助剤やバインダ等が添加されて構成されていてもよい。導電性高分子材料はドーピングされることで導電性を発現するが、ドープの状態により電極の導電性が変化する場合がある。そのため、導電助剤を併用することも有効である。導電助剤としては、好ましくは導電性を有するカーボン材料が使用される。カーボン材料としては、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、黒鉛およびカーボンナノチューブからなる群より選択される少なくとも1種を使用し得る。バインダは、代表的には樹脂であり得、例えばポリテトラフルオロエチレン、ポリビニリデンフルオライド、スチレンブタジエンゴム等からなる群より選択される少なくとも1種を使用し得る。
 カソード15aおよびアノード15bは、互いに独立して、フリースタンディングフィルムの形態であっても、集電体(図示せず)の上にフィルムおよび/または膜の形態で形成されていてもよい。集電体には、任意の適切な導電性材料を使用してよいが、例えばステンレス鋼、アルミ、アルミ合金等から構成され得る。
 電解液13は、導電性高分子材料のドーパントとして機能するイオン(以下、「ドーパントイオン」ともいう)を含む。該イオンは、特に限定されないが、例えば、テトラフルオロホウ酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、トリフルオロメタンスルホナートイオン、ヘキサフルオロリン酸イオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、スルホン酸イオン、過塩素酸イオンおよびハロゲンイオンからなる群より選択される1種以上であり得る。このようなイオン種が含まれていれば、電解液13は、非水系電解液および水系電解液のいずれであってもよい。
 電解液13は、上述したようなドーパントイオンを含んでいれば、溶媒を含まなくてもよい。溶媒を含む場合、溶媒は、非水系溶媒および水系溶媒のいずれであってもよい。非水系溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)およびガンマブチロラクトン(gBL)からなる群より選択される1以上を含み得る。即ち、これらの非水系溶媒を組み合わせて含んでも構わない。水系溶媒としては、例えば、水および硫酸水溶液を含み得る。特に、本開示の電気化学キャパシタにおいて、電解液13が溶媒としてプロピレンカーボネート(PC)を含む場合、とりわけ大きいエネルギー密度を得ることができるため、好ましい。
 溶媒を含む電解液13としては、例えば、以下のような組み合わせの具体例を挙げることができる。
 (1)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (2)電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-)(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSIアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (3)電解質としてビス(フルオロスルホニル)イミドリチウム(Li-FSI)(即ち、ドーパントイオンがビス(フルオロスルホニル)イミドイオン(FSIアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (4)電解質としてトリフルオロメタンスルホン酸リチウム(Li-CFSO)(即ち、ドーパントイオンがトリフルオロメタンスルホナートイオン(CFSOアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (5)電解質としてヘキサフルオロリン酸リチウム(Li-PF)(即ち、ドーパントイオンがヘキサフルオロリン酸イオン(PFアニオン))と、溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液。
 (6)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (7)電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-TFSI)(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSIアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (8)電解質としてビス(フルオロスルホニル)イミドリチウム(Li-FSI)(即ち、ドーパントイオンがビス(フルオロスルホニル)イミドイオン(FSIアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (9)電解質としてトリフルオロメタンスルホン酸リチウム(Li-CFSO)(即ち、ドーパントイオンがトリフルオロメタンスルホナートイオン(CFSOアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (10)電解質としてヘキサフルオロリン酸リチウム(Li-PF)(即ち、ドーパントイオンがヘキサフルオロリン酸イオン(PFアニオン))と、溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)とを含む非水系電解液。
 (11)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (12)電解質としてビス(トリフルオロメタンスルホニル)イミドリチウム(Li-TFSI)(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン(TFSIアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (13)電解質としてビス(フルオロスルホニル)イミドリチウム(Li-FSI)(即ち、ドーパントイオンがビス(フルオロスルホニル)イミドイオン(FSIアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (14)電解質としてトリフルオロメタンスルホン酸リチウム(Li-CFSO)(即ち、ドーパントイオンがトリフルオロメタンスルホナートイオン(CFSOアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (15)電解質としてヘキサフルオロリン酸リチウム(Li-PF)(即ち、ドーパントイオンがヘキサフルオロリン酸イオン(PFアニオン))と、溶媒としてガンマブチロラクトン(gBL)とを含む非水系電解液。
 (16)電解質として硫酸(HSO)(即ち、ドーパントイオンがスルホン酸イオン(SOアニオン))と、溶媒として水とを含む水系電解液。
 (17)電解質としてホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン(BFアニオン))と、溶媒として硫酸水溶液(HSO)とを含む水系電解液。
 本発明者らは、電気化学キャパシタのカソードの電極活物質にMXeneを使用した場合、アノードの電極活物質に導電性高分子材料を使用して、電解液にドープおよび脱ドープを行い得るイオン種を含ませることによって、カソード側の電位窓が広く、かつ比容量も大きくなるということを見出した。さらには、かかる非対称形なカソードとアノードとの構成によると、両電極の容量バランスを適切に確保することが可能になり、電気化学キャパシタのセルとして使用可電位窓も広く、かつ比容量も大きくすることができるため、エネルギー密度およびパワー密度について、特にエネルギー密度について十分に大きい値を達成し得る電気化学キャパシタを得ることができる。ここで、十分に大きいエネルギー密度とは、カソードおよびアノードの両方に従来材料である活性炭を用いた場合に達成されるエネルギー密度の約5倍以上である。
 電解液13におけるドーパントイオンおよび電解質のモル濃度は、特に限定されない。当業者であれば、好適なモル濃度に適宜調整することが可能である。電解液13が溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを含む場合、その体積比等の配合比率も特に限定されない。好適な配合比率に適宜調整することが可能である。例えば、EC:DEC=3:7の体積比とすることができる。
 電解液13は、導電性高分子材料のドーパントとして機能するイオンのほか、任意の適切な添加剤を比較的少量で含んでいてもよい。
 かかる電気化学キャパシタ20の端子A、Bを負荷に接続して、充電を行い得る。このとき、電解液13中のドーパントイオン(ドーパントアニオン)は、アノード15bに引き寄せられ、アノード15bの導電性高分子材料に誘引されドーピングされる。一方、電解液13中のカチオンは、カソード15aに引き寄せられ、カソード15aの電極活物質であるMXeneに誘引される。また、電気化学キャパシタ20の端子A、Bを電源に接続して、放電を行い得る。このとき、充電時にアノード15bに誘引されていたドーパントイオンは導電性高分子材料から脱ドープし、放電時にはアノード15bから離れる方向に移動する。一方、充電時にカソード15aに誘引されていたカチオンが、放電時にはカソード15aから離れる方向に移動する。
 本実施形態の電気化学キャパシタによれば、カソード15aの電極活物質にMXeneを使用し、さらにはアノード15bの電極活物質に導電性高分子材料を使用して、電解液として導電性高分子材料のドーパントとして機能するイオンを含む電解液を使用することによって、十分に大きいエネルギー密度を達成することができる。本実施形態の電気化学キャパシタのキャパシタ特性を掃引速度1mV/sで評価した場合、エネルギー密度は、例えば57.5Wh/L程度であり得る。
 MXeneは、MnO等の酸化物系材料に比較して、層間の空隙が大きい。そして、本発明はいかなる理論によっても拘束されないが、本発明においてカソードの電極活物質にMXeneを使用し、アノードの電極活物質にπ共役系の導電性高分子材料を使用して非対称形の構成の電気化学キャパシタとし、カソードとアノードとの容量バランスをとり、かつ電解液に導電性高分子材料のドーパントとして機能するイオンを含ませたため、十分に大きいエネルギー密度が得られるものと理解され得る。さらには、MXeneは、MnOと比べて、導電率が高い。従って、MXeneは、MnOと比べて、キャパシタの充電放電時にイオンと電子授受をしやすいため、結果として容量が大きくなる。
 本実施形態の電気化学キャパシタは、十分に大きいパワー密度をも示し得る。本実施形態の電気化学キャパシタのキャパシタ特性を掃引速度10mV/sで評価した場合、パワー密度は、10.2kW/L程度であり得る。
 本実施形態を限定するものではないが、より高いパワー密度を得るためには、MXeneのなかでも、1,000S/cmを超える高い電導率を示すMXeneを使用することが好ましい(1,000S/cmを超える電導率は、従来の電気化学キャパシタに使われ得る活性炭(電導率300S/cm程度)やグラフェン(電導率500~1,000S/cm)に比べて高いことに留意されたい)。1,000S/cmを超える高い電導率を示すMXeneとしては、上記の式Mn+1が、Ti、TiCおよびVCからなる群より選択されるいずれかであるMXene(より具体的には、Ti、TiCTおよびVCTからなる群より選択されるいずれか)が挙げられ、これらは1,000S/cmを超え、10,000S/cm以下の範囲の導電率を示し得る。
 本実施形態の電気化学キャパシタにおいては、カソードの電極活物質にMXeneを使用している。MXeneを使用する場合、MnOを使用する場合に比べて、電極厚さをある程度大きくしても比容量が低下し難く、好ましくは大容量を確保することができ、よって、電極厚さをより大きくすることができ、例えば3μm以上、特に5μm以上で、上限は特に限定されないが代表的には50μm以下とすることができる。
 本実施形態の電気化学キャパシタにおいては、MXeneをカソードの電極活物質に用いることによって、十分に大きい比容量、特に電極活物質単位質量あたり容量を達成することができる。電極活物質(MXene)の単位質量あたり容量(F/g)は、例えば150F/g以上、さらに好ましくは200F/g以上であり、上限は特に限定されないが、代表的には500F/g以下とすることができる。
 アノードの電極活物質の単位質量あたり容量は、電極活物質として含まれるπ共役系の導電性高分子材料の種類に応じて変化する。より大きい比容量、特に電極活物質単位質量あたり容量を有することで、本実施形態の電気化学キャパシタがより大きいエネルギー密度を得ることができる。例えば、π共役系の導電性高分子材料としてポリアニリンを使用した場合、電極活物質(導電性高分子材料)の単位質量あたり容量は、例えば、350F/g以上、好ましくは500F/g以上であり、上限は特に限定されないが代表的には650F/g以下とすることができる。
 例えば、電気化学キャパシタの電解液にホウフッ化リチウム(Li-BF)(即ち、ドーパントイオンがテトラフルオロホウ酸イオン)と溶媒としてプロピレンカーボネート(PC)とを含む非水系電解液を用いて、カソードの容量が200F/g、電位窓が2.6V、密度(MXene)が2.5g/cmであり、アノードの容量が500F/g、電位窓が0.8V、密度(導電性高分子材料)が0.5g/cmである場合、エネルギー密度は、87.5Wh/Lとなり得、十分大きなエネルギー密度となり得る。さらに、アノードの密度が1.0g/cmである以外は同条件の場合、エネルギー密度は、155.6Wh/Lとなり得、非常に大きな値が得られ得る。
 (実施例1)
 以下のようにして電気化学キャパシタを組み立てて、エネルギー密度およびパワー密度を測定して、キャパシタ特性を評価した。
 ・カソード(MXene電極)
 まず、特許文献1の実施例1と同様にして、Tiから実質的になる可撓性のフリースタンディングフィルムを得た。次に、これにより得られたTiのフリースタンディングフィルムを直径5mmの円形に打ち抜いて、MXene(Ti)電極(カソード)を得た。得られたMXene電極の厚さは3.0μmであり、比重は2.1g/cmであった。
 ・アノード(導電性高分子材料電極)
 まず、ポリアニリン(ロイコエメラルジン塩基)粉末(Sigma Aldrich社製、製品番号530670)に、導電助剤としてポリアニリン質量比10wt%の導電性カーボン粉末(電気化学工業社製、デンカブラック)と、ポリアニリン質量比2wt%のカルボキシメチルセルロースとを混ぜ合わせた後、固形分濃度が40質量%となるように水を添加し、自公転ミキサーで15分間撹拌した。その後、脱泡操作を行ってポリマースラリーとした。得られたスラリーを、卓上型自動塗工装置を用いて塗工厚さを30μmに調整し、15μmのカーボンペーパ上に塗布した。その後、室温で60分間放置した後、温度100℃で乾燥し、直径5mmの円形に打ち抜いて導電性高分子材料電極(アノード)を作製した。カーボンペーパを除いたアノード層の厚さは20μmであり、比重は0.5g/cmであった。
 ・セパレータ
 市販のセパレータ(CELGARD社製、CELGARD3501(商品名))を直径12mmに加工したセパレータ膜を準備した。
 ・電解液
 溶媒であるPC(Sigma Aldrich社製、製品番号310328)に電解質であるLi-BF(Sigma Aldrich社製、製品番号224767)(即ち、ドーパントイオンがBFアニオン)を1モル/L(全体基準)のモル濃度で混合してなる混合物を電解液として準備した。
 ・電気化学キャパシタの組み立て
 セルボディにSwagelokチューブ継手(Swagelok社製、Bored-Through Union Tee、製品番号SS-810-3BT、SUS316製)を用い、その互いに対向する2つの開口部のそれぞれに、フェルール(Swagelok社製、PTFE Ferrule Set、製品番号T-810-SET、ポリテトラフルオロエチレン製)および引き出し電極(直径12mm、長さ40mmのSUS316製丸棒)を組み合わせて使用し、残りの開口部をゴム栓で封止して、セルを構成するものとした。グローブボックス(O濃度およびHO濃度ともに0.1ppm以下)内で、セルボディの内部に、上記の通り準備したMXene電極および導電性高分子材料電極をそれぞれカソードおよびアノードとして互いに対向させ、これらの間にセパレータ膜を挟んで配置し、セルボディの互いに対向する2つの開口部のそれぞれから、フェルールを装着した引き出し電極を両電極と接触するまで挿入して嵌め、電解液をセルボディに充填し、残りの開口部をゴム栓で封止して、蓄電デバイス評価用の電気化学キャパシタを組み立てた。
 カソード(MXene電極)およびアノード(導電性高分子材料電極)は、各々、後述するサイクリックボルタンメトリー測定により比容量(単位質量あたり容量)(F/g)と電位窓(V)とを測定した。カソード(MXene電極)の単位質量あたり容量は193F/g、電位窓は2.2Vであり、アノード(導電性高分子材料電極)の単位質量あたり容量は480(F/g)、電位窓は0.8Vであった。これらの測定値をベースにして、各電極の容量バランスを考慮し、上述した厚さを設定して電極の作成を行った。
 ・キャパシタ特性評価
 上記で組み立てた電気化学キャパシタに外部電極を接続し、Bio-Logic Science Instruments SAS社製の電気化学計測装置VMP3およびソフトウェア EC-Lab V11.12を用いて、掃引速度を1mV/sおよび10mV/sに設定して、サイクリックボルタンメトリー測定から充放電容量を算出した。算出は、充放電サイクルを5回繰り返した後の測定値を使用して行った。エネルギー密度は掃引速度1mV/s、パワー密度は掃引速度10mV/sの測定時から算出した。その結果、後の表1に示すように、セル電圧3.0Vで体積エネルギー密度は70.5Wh/L、体積パワー密度は15.5kW/Lであった。
 この結果は、アノードおよびカソードの両方に電極密度が0.5g/cm程度である従来公知の活性炭を使用し、同様の電解液を使用し、かつ同様の定電流充放電の条件で測定する場合と比較すると、大きいエネルギー密度および大きいパワー密度、特に十分に大きいエネルギー密度を得ていることが、当業者に公知の技術に基づいて理解可能である。
 (実施例2)
 電解液の電解質を1モル/L(全体基準)のLi-TFSI(即ち、ドーパントイオンがビス(トリフルオロメタンスルホニル)イミドイオン)(Sigma Aldrich社製、製品番号544094)とした以外は、実施例1と同様の方法で電気化学キャパシタを作製し評価した。電解液の組成(電解質:Li-TFSI、溶媒:PC)を変えた影響によって、カソード(MXene電極)とアノード(導電性高分子材料電極)との各電極の容量バランスが変わったため、カソード(MXene電極)の厚さは3μm、カソード(MXene電極)の厚さは15μmとした。電気化学キャパシタの組み立てについては、実施例1と同様である。実施例1と同様の方法で、掃引速度を設定し、キャパシタ特性としてエネルギー密度およびパワー密度を測定、算出した。その結果、後の表1に示すように、セル電圧3.0Vで体積エネルギー密度は57.5Wh/L、体積パワー密度は10.2kW/Lであった。
 なお、実施例2におけるカソード(MXene電極)およびアノード(導電性高分子材料電極)の比容量(単位質量あたり容量)(F/g)および電位窓(V)は、各々、カソードの単位質量あたり容量は193F/g、電位窓は2.2Vであり、アノード(導電性高分子電極)の単位質量あたり容量は480F/g、電位窓は0.8Vであった。
 (比較例1)
 カソードおよびアノードの両方として活性炭電極を用いたこと以外は、実施例2と同様にして、電気化学キャパシタを組み立てた。活性炭電極は、活性炭(株式会社クラレ製、YP-50)と、導電助剤としてカーボンブラック(Sigma Aldrich社製)と、バインダとしてポリテトラフルオロエチレン60wt%水溶液(Sigma Aldrich社製)とを、質量比75:15:10で混合し、ロールにてフィルム状に成形して作製した。活性炭は、一般に、アノードおよびカソードの各々の電位窓と容量が等しいことが分かっている。そのため、比較的近い質量の活性炭電極をアノードおよびカソードに用いた(即ち、カソードとアノードとのマスバランスが1:1に近い。)。アノードおよびカソードの活性炭電極の直径は5mmとし、厚さは260μmとした。アノードの質量は2.217mgであり、カソードの質量は2.202mgであった。各々の電極の密度は、0.43g/cmであった。
 実施例1と同様の方法で、掃引速度を設定し、キャパシタ特性としてエネルギー密度およびパワー密度を測定、算出した。その結果、後の表1に示すように、セル電圧2.5Vで体積エネルギー密度は9.5Wh/L、体積パワー密度は8.5kW/Lであった。
 (比較例2)
 カソードおよびアノードの両方として実施例1で作製したMXene電極を用いたこと以外は、実施例2と同様にして、電気化学キャパシタを組み立てた。事前の測定にて、MXeneをカソードおよびアノードに使用した場合の比容量(単位質量あたり容量)(F/g)および電位窓(V)は、各々、カソードの単位質量あたり容量は193F/g、電位窓は2.2Vであり、アノードの単位質量あたり容量は30F/g、電位窓は1.0Vであった。このため、アノードとカソードとのバランスを調整するために、カソードの厚さが3μm、アノードの厚さが30μmになるように電極を作成し測定を行った。
 実施例1と同様の方法で、掃引速度を設定し、キャパシタ特性としてエネルギー密度およびパワー密度を測定、算出した。その結果、後の表1に示すように、セル電圧3.2Vで体積エネルギー密度は30.4Wh/L、体積パワー密度は4.5kW/Lであった。
Figure JPOXMLDOC01-appb-T000001
 表1から理解されるように、実施例2と比較例1および比較例2は同じ成分の電解液(Li-TFSIおよびPC)を用いているが、比較例1および比較例2に比べて実施例2の方が、より大きいエネルギー密度およびより大きいパワー密度を得ることができた。特に、エネルギー密度については、顕著に大きい値を得ることができた。具体的には、比較例1における現行主流となっている両電極が活性炭であるキャパシタに対し5倍以上のエネルギー密度を実現していることがわかる。また、実施例2と比較例2からアノードに導電性高分子材料を使用して非対称形の電気化学キャパシタとすることにより、約2倍のエネルギー密度が実現できていると言える。
 また、実施例1と実施例2の比較においては導電性高分子材料にドープするドーパントイオンの違いによるものと考えられる。BFアニオン(テトラフルオロホウ酸イオン)を使用した場合の方が、TFSIアニオン(ビス(ペンタフルオロエタンスルホニル)イミドイオン)を使用した場合より12%程大きいエネルギー密度が得られている。これは、よりイオン径の小さいBFアニオンの方が導電性高分子材料へのドープ量が大きくなるためと推定される。
 さらに、本実施例の結果から、MXene電極をカソードとし、導電性高分子材料電極をアノードとすると、以下の表2のドーパントイオン(アニオン)(およびカチオン)ならびに溶媒の組み合わせの電気化学キャパシタについても、実施例1および実施例2と同様に、より大きいエネルギー密度およびより大きいパワー密度、特に顕著に大きいエネルギー密度を得ることができることが想定される。なお、アノードの電極活物質としての導電性高分子材料についても、実施例で使用されたポリアニリンだけでなく、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリフェニレンおよびポリインドールならびにポリアニリンも含めたそれらの誘導体等のπ共役系の導電性高分子材料についても同程度の効果を発揮し得るということは、当業者であれば理解できるだろう。
Figure JPOXMLDOC01-appb-T000002
 このように、本発明によると、カソードにMXeneを用いることによって、電子の移動に伴いMXene中の遷移金属原子(Ti、V等)が原子自身の価数を変化させることで電荷を貯め、アノードに導電性高分子材料を用いることによって得られる容量に加えて、価数変化による電荷貯蔵効果が発生し、より十分な容量を得ることが可能となる。その結果、かかる電気化学キャパシタは、十分に大きいエネルギー密度および大きいパワー密度を達成することができる。このような効果を達成し得るのは、電気化学キャパシタに用いられるカソードとアノードの構成を非対称形とし、カソードに容量の大きいMXeneを、かつアノードにも容量の大きい導電性高分子材料を使用したことによる。これによりカソードおよびアノードのセルバランスの効率化が実現でき、特に高エネルギー密度を有する電気化学キャパシタが実現可能になる。
 本開示によれば、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタにおいて、カソードの電極活物質にMXeneを使用し、アノードの電極活物質にπ共役系の導電性高分子材料を使用して非対称形の構成においてカソードとアノードとの容量バランスをとり、かつ電解液が導電性高分子材料のドーパントとして機能するイオンを含むことによって、十分に大きいエネルギー密度を達成し得る新規な電気化学キャパシタを提供することができる。本開示の電気化学キャパシタは、蓄電デバイス等として幅広く様々な分野に利用可能であるが、これに限定されない。
 本願は、2019年3月1日付けで日本国にて出願された特願2019-037359に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
  1a、1b、1c Mn+1
  3a、5a、3b、5b、3c、5c 修飾または終端T
  7a、7b、7c MXene層
  10 MXene(層状材料)
  11 容器(セル)
  13 非水電解液
  15a カソード
  15b アノード
  17 セパレータ
  20 電気化学キャパシタ
  A、B 端子

Claims (5)

  1.  カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、
     前記カソードが、電極活物質として、複数の層を含む層状材料であって、各層が、以下の式:
      Mn+1
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1、2または3である)
    で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、
     前記アノードが、電極活物質として、π共役系の導電性高分子材料を含み、
     前記電解液が、前記導電性高分子材料のドーパントとして機能するイオンを含む、
    電気化学キャパシタ。
  2.  前記式Mn+1が、Ti、TiCおよびVCからなる群より選択されるいずれかである、請求項1に記載の電気化学キャパシタ。
  3.  前記導電性高分子材料は、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、ポリフェニレンおよびポリインドールならびにそれらの誘導体からなる群より選択される1以上を含む、請求項1または2に記載の電気化学キャパシタ。
  4.  前記電解液が、テトラフルオロホウ酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、トリフルオロメタンスルホナートイオン、ヘキサフルオロリン酸イオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、スルホン酸イオン、過塩素酸イオンおよびハロゲンイオンからなる群より選択される1以上を含む、請求項1~3のいずれか1項に記載の電気化学キャパシタ。
  5.  前記電解液が、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネートおよびガンマブチロラクトンからなる群より選択される1以上を含む溶媒、または、水を含む溶媒を含む、請求項1~4のいずれか1項に記載の電気化学キャパシタ。
PCT/JP2020/007852 2019-03-01 2020-02-26 電気化学キャパシタ WO2020179585A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037359 2019-03-01
JP2019-037359 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179585A1 true WO2020179585A1 (ja) 2020-09-10

Family

ID=72337791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007852 WO2020179585A1 (ja) 2019-03-01 2020-02-26 電気化学キャパシタ

Country Status (1)

Country Link
WO (1) WO2020179585A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763551A (zh) * 2020-12-29 2021-05-07 电子科技大学 基于复合材料阻塞效应的二氧化氮传感器及其制备方法
CN113506686A (zh) * 2021-06-07 2021-10-15 中国科学院半导体研究所 一种热充电型电容器及其制备方法
CN113913952A (zh) * 2021-09-29 2022-01-11 北京航空航天大学 一种三明治结构的聚酰亚胺基电磁屏蔽薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010682A (ja) * 2006-06-29 2008-01-17 Equos Research Co Ltd 非対称型キャパシタ
JP2014123641A (ja) * 2012-12-21 2014-07-03 Taiyo Yuden Co Ltd 電気化学デバイス
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
WO2018124042A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 電気化学デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010682A (ja) * 2006-06-29 2008-01-17 Equos Research Co Ltd 非対称型キャパシタ
JP2014123641A (ja) * 2012-12-21 2014-07-03 Taiyo Yuden Co Ltd 電気化学デバイス
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
WO2018124042A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 電気化学デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763551A (zh) * 2020-12-29 2021-05-07 电子科技大学 基于复合材料阻塞效应的二氧化氮传感器及其制备方法
CN113506686A (zh) * 2021-06-07 2021-10-15 中国科学院半导体研究所 一种热充电型电容器及其制备方法
CN113913952A (zh) * 2021-09-29 2022-01-11 北京航空航天大学 一种三明治结构的聚酰亚胺基电磁屏蔽薄膜及其制备方法

Similar Documents

Publication Publication Date Title
US10217571B2 (en) High energy density hybrid pseudocapacitors and method of making and using the same
US8057937B2 (en) Hybrid battery
US11551878B2 (en) Electricity storage device
WO2020179585A1 (ja) 電気化学キャパシタ
WO2018066549A1 (ja) 電気化学キャパシタ
Samantaray et al. Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review
JP5637858B2 (ja) 電気二重層キャパシタ
JP6827232B2 (ja) 水系二次電池
CN108604683B (zh) 电化学设备用正极活性物质、电化学设备用正极和电化学设备、以及电化学设备用正极活性物质的制造方法
JPH11144732A (ja) 電池用複合電極とその製造方法
JP2009205918A (ja) 蓄電デバイス
JP5892490B2 (ja) 硫黄系二次電池
JP6061066B2 (ja) 電気化学キャパシタ
JP2009021449A (ja) 電解液を蓄電に利用する新規エネルギー貯蔵デバイス
JP2014007117A (ja) Li系二次電池
WO2021124958A1 (ja) 電気化学キャパシタ
JP2000030710A (ja) ポリマー二次電池およびその製造方法
JPWO2019216219A1 (ja) 電気化学デバイスおよびその製造方法
US20080199778A1 (en) Electrode for secondary batteries and method for making same, and secondary batteries using the electrode
WO2020004173A1 (ja) 電気化学キャパシタ
Kumar et al. Sodium Polymer Electrolytes: A Review
JP3538185B2 (ja) インドール系化合物を用いた二次電池及びキャパシタ
JP2012028366A (ja) 蓄電デバイス
US20130095376A1 (en) Electrode active material for secondary battery and secondary battery
US20210233719A1 (en) Electrochemical capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP