WO2020179387A1 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020179387A1
WO2020179387A1 PCT/JP2020/005382 JP2020005382W WO2020179387A1 WO 2020179387 A1 WO2020179387 A1 WO 2020179387A1 JP 2020005382 W JP2020005382 W JP 2020005382W WO 2020179387 A1 WO2020179387 A1 WO 2020179387A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
rolled steel
tempering
Prior art date
Application number
PCT/JP2020/005382
Other languages
English (en)
French (fr)
Inventor
絵里子 塚本
武 豊田
林 宏太郎
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080005669.3A priority Critical patent/CN112840046B/zh
Priority to JP2020530538A priority patent/JP6835294B2/ja
Publication of WO2020179387A1 publication Critical patent/WO2020179387A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot-rolled steel sheet and a method for manufacturing the same, and more specifically, to a hot-rolled steel sheet used for structural members such as automobiles, which has a high tensile strength of 1180 MPa or more and energy absorption capacity at the time of collision, and resistance to collision.
  • the present invention relates to a hot-rolled steel sheet having excellent hydrogen embrittlement and punching properties and a method for producing the same.
  • Patent Document 1 C: 0.10 to 0.25%, Si: 1.5% or less, Mn: 1.0 to 3.0%, P: 0.10% or less, and S: 0. It contains 005% or less, Al: 0.01 to 0.5%, N: 0.010% or less and V: 0.10 to 1.0%, and satisfies (10Mn + V) / C ⁇ 50, and the balance is It has a composition of Fe and unavoidable impurities, the volume ratio of the tempered martensite phase is 80% or more, and 1000 carbides / ⁇ m 3 or more containing V having a particle size of 20 nm or less are precipitated, and the particle size is 20 nm or less.
  • a high-strength hot-rolled steel sheet having an average grain size of carbides containing V of 10 nm or less is described. Further, in Patent Document 1, by utilizing V, which has not been actively used in the past for improving the performance of thin steel sheets for automobile structural members, the strength-ductility balance is excellent and the tensile strength is increased. It is stated that a high-strength hot-rolled steel sheet of 980 MPa or more can be obtained.
  • Patent Document 2 C: 0.10 to 0.25%, Si: 1.5% or less, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0. It contains 005% or less, Al: 0.01 to 0.5%, N: 0.010% or less and V: 0.10 to 1.0%, and satisfies (10Mn + V) / C ⁇ 50, and the balance is
  • a steel slab having a composition of Fe and unavoidable impurities is heated to 1000 ° C. or higher, rough-rolled to form a sheet bar, and then finish-rolled under the condition of tempering output side temperature: 800 ° C. or higher, and then finish-rolling is completed.
  • the average cooling rate is 20 ° C / s or higher, cooling to a temperature range of less than 400 ° C, winding, and then in a temperature range of 400 ° C or higher and Ac1 transformation point or lower, 11000-3000.
  • Patent Document 2 as in the case of Patent Document 1, strength-ductility is achieved by utilizing V, which has not been actively used in the past for improving the performance of thin steel sheets for automobile structural members. It is described that a high-strength hot-rolled steel sheet having an excellent balance and a tensile strength of 980 MPa or more can be obtained.
  • Hydrogen embrittlement cracking is a phenomenon in which a steel member under high stress under usage conditions suddenly breaks due to hydrogen that has entered the steel from the environment. It is generally known that hydrogen embrittlement cracking tends to occur as the strength of the steel sheet increases. It is considered that this is because the higher the strength of the steel sheet, the greater the stress remaining in the member after molding the steel sheet, and hydrogen is likely to accumulate in the concentrated portion of such residual stress.
  • Patent Document 3 in mass% (hereinafter, the same applies to chemical components), C: 0.03 to 0.30%, Si: 3.0% or less (including 0%), Mn: more than 0.1%. 2.8% or less, P: 0.1% or less, S: 0.005% or less, N: 0.01% or less, Al: 0.01 to 0.50%, V: 0.001 to 1.00 %,
  • the balance has a component composition consisting of iron and unavoidable impurities, the tempered martensite contains 50% or more (including 100%) in area ratio, and the balance has a structure made of ferrite.
  • the distribution state of the precipitates in the martensite is 20 or more per 1 ⁇ m 2 of the tempered martensite, and the precipitate containing V having a diameter of 20 nm or more equivalent to the circle is the tempered martensite.
  • High-strength cold-rolled steel sheets are described, characterized in that the number is 10 or less per 1 ⁇ m 2 sites. Further, in Patent Document 3, according to the above high-strength cold-rolled steel sheet in which the area ratio of tempered martensite and the distribution state of precipitates containing V precipitated in the tempered martensite are properly controlled, hydrogen embrittlement resistance is obtained. It is stated that it is possible to improve the elongation flangeability while ensuring the characteristics.
  • Patent Document 3 in addition to controlling the dispersed state of the precipitate containing V, the size and the number of the cementite particles precipitated in the martensite during tempering are controlled to improve the elongation and the stretch flangeability. It is stated that both can be improved.
  • JP 2006-183141 A JP, 2011-102434, A Japanese Unexamined Patent Publication No. 2010-018862
  • Patent Documents 1 and 2 describe a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa and an improved strength-ductility balance in relation to the energy absorption capacity at the time of collision, but an improvement in hydrogen embrittlement resistance. From this point of view, no sufficient consideration has been given. Therefore, in Patent Documents 1 and 2, there is still room for improvement in improving the characteristics of high-strength steel sheets, particularly high-strength steel sheets used for automobile members.
  • Patent Document 3 as described above, by appropriately controlling the area ratio of the tempered martensite and the distribution state of the V-containing precipitates precipitated in the tempered martensite, the hydrogen embrittlement resistance of the high-strength cold-rolled steel sheet. Although it is stated that the above can be ensured, no sufficient study has been made from the viewpoint of improving the punching property of the high-strength cold-rolled steel sheet.
  • the present invention provides a hot-rolled steel sheet having a high strength, particularly a high tensile strength of 1180 MPa or more and an excellent energy absorption capacity at the time of collision, hydrogen embrittlement resistance and punching ability, and a method for producing the same by a novel structure.
  • the purpose is to provide.
  • the present inventors examined the chemical composition and structure of the hot rolled steel sheet in order to achieve the above object.
  • the inventors of the present invention include tempered martensite in the steel sheet in an area ratio of 90% or more, and further control the Si content in the steel sheet within a predetermined range to obtain high strength, specifically 1180 MPa. It was found that the above tensile strength can be achieved.
  • it is effective to increase the yield strength or yield ratio of steel in order to enhance the energy absorption capacity in the event of an automobile collision. Can be made. Therefore, the present inventors further studied the structure of the hot-rolled steel sheet, controlled the Si/V ratio in the steel sheet within a predetermined range to precipitate V-containing carbide in the steel sheet, and appropriately control it.
  • the yield ratio of the obtained hot-rolled steel sheet is increased to improve the energy absorption capacity at the time of collision, and further, hydrogen embrittlement resistance and punching are performed.
  • the present invention has been completed by finding that it is possible to improve the sex.
  • the present invention has been completed based on the above findings, and is specifically as follows.
  • 90% or more of tempered martensite in area ratio Among the cementites contained in the tempered martensite, the content of cementite having a major axis of 400 nm or less and an aspect ratio of 3 to 5 is 70% or more.
  • Nb 0.01 to 0.10%
  • Ti 0.01 to 0.10%
  • B 0.0001 to 0.0050%
  • Cr 0.005 to 1.000%
  • Mo 0.005 to 0.500%
  • Cu 0.50 to 3.00%
  • Ni 0.25 to 1.50% Containing one or more of When one or two kinds of Cr and Mo are contained, the relationship that the contents of Cr, Mo and V satisfy the relationship of (2Cr + Mo) / 2V ⁇ 2.0.
  • a step of heating the slab having the chemical composition described in (1) or (2) above 1100° C. A hot rolling step including finish rolling of a heated slab, wherein the finish rolling end temperature is 850 to 1050 ° C.
  • a step of cooling the obtained steel sheet to 350 ° C. or lower at an average cooling rate of 40 ° C./sec or higher.
  • a method for producing a hot-rolled steel sheet which comprises a step of tempering over a time t (seconds) that satisfies the condition.
  • the present invention it is possible to obtain a hot-rolled steel sheet having a high tensile strength of 1180 MPa or more and excellent energy absorption ability at the time of collision, hydrogen embrittlement resistance and punching property.
  • ⁇ Hot-rolled steel sheet> The hot rolled steel sheet according to the embodiment of the present invention, in mass%, C: 0.15 to 0.30%, Si: 0.50 to 4.00%, Mn: 2.00 to 4.00%, P: 0.100% or less, S: 0.005% or less, Al: 0.010 to 0.500%, N: 0.010% or less, and V: 0.20 to 1.00% Containing Si, the Si/V ratio is 10.0 or less, and the balance has a chemical composition of Fe and impurities, 90% or more of tempered martensite in area ratio, Of the cementite contained in the tempered martensite, the content of cementite having a major axis of 400 nm or less and an aspect ratio of 3 to 5 is 70% or more,
  • the tempered martensite is characterized in that V-containing carbides having a circle-equivalent diameter of 8 to 15 nm are precipitated at a number density of 30/ ⁇ m 2 or more.
  • the present inventors have included tempered martensite in the steel sheet in an area ratio of 90% or more, and further controlled the Si content and the Si/V ratio in the steel sheet within a predetermined range.
  • a tensile strength of 1180 MPa or more is achieved in the obtained steel sheet.
  • the energy absorption capacity at the time of collision can be improved, and further, the hydrogen embrittlement resistance and punching property can be improved.
  • the V-containing carbide includes not only vanadium carbide (VC) but also a composite carbide of V and an element such as Nb or Ti, for example, a composite carbide such as (V,Ti)C. ..
  • tempered martensite is a structure obtained by heating and holding (ie, tempering) the martensite structure at an appropriate temperature to precipitate cementite, and the progress of tissue recovery by such tempering
  • the conditions are generally arranged by the following tempering parameter P with temperature and time as variables.
  • P (T+273) (log(t)+273)
  • T is the tempering temperature (° C.)
  • t is the tempering time (second).
  • the hardness after tempering can be generally expressed as a function of this tempering parameter P, and therefore it is possible to predict the hardness and tensile strength of the steel sheet after tempering from the tempering temperature and the tempering time.
  • the tensile strength generally decreases as the dislocation density in the structure decreases with the progress of tempering. Therefore, excessive tempering may not always be desirable from the standpoint of obtaining a high strength steel sheet.
  • the degree of progress of tempering greatly changes with the addition of alloying elements, and the tensile strength of a steel sheet can be improved by appropriately adding a specific alloying element even if the tempering parameter P is the same.
  • a carbide forming element and appropriately precipitating carbide in the tempered martensite it is possible to increase the yield ratio of the steel sheet and improve the energy absorption capacity at the time of collision.
  • V-containing carbides also function as hydrogen trap sites, and by using such carbides, it is possible to improve the hydrogen embrittlement resistance of the steel sheet.
  • the present inventors focused on Si as the above-mentioned alloying element and focused on V as the above-mentioned carbide-forming element, and examined the chemical composition and structure of the hot-rolled steel sheet.
  • the present inventors can delay the tempering by setting the Si content in the hot-rolled steel sheet to 0.50% or more. Therefore, even if the tempering parameter P is the same, the tensile strength of the hot-rolled steel sheet can be increased. We have found that it is possible to improve the strength. Further, the present inventors have found that the Si content in the hot-rolled steel sheet has a great influence on the precipitation driving force of the V-containing carbide in relation to the V content.
  • the present inventors slow the diffusion of V by performing tempering at a low temperature, so that coarsening of the V-containing carbide is suppressed, and as a result, the V-containing carbide is dispersed in a fine and large amount in the tempered martensite. It is possible to increase the yield ratio of the hot-rolled steel sheet and improve the energy absorption capacity at the time of collision by strengthening the particle dispersion by dispersing such fine V-containing carbide. It was found that the hydrogen embrittlement resistance of hot-rolled steel sheets can also be improved by using it as a hydrogen trap site.
  • the inventors of the present invention can suppress coarsening and spheroidization of cementite in tempered martensite by tempering at a low temperature as described above, and as a result, are minute and have a relatively high aspect ratio.
  • containing a relatively large amount of cementite in the tempered martensite more specifically, by containing 70% or more of the cementite contained in the tempered martensite having a major axis of 400 nm or less and an aspect ratio of 3 to 5 It was found that it becomes difficult for microcracks to enter during punching, and the punching property of the hot-rolled steel plate is improved.
  • the hot-rolled steel sheet having a high tensile strength of 1180 MPa or more and excellent energy absorption capacity at the time of collision, hydrogen embrittlement resistance, and punchability.
  • the hot-rolled steel sheet and the manufacturing method thereof according to the embodiment of the present invention will be described in more detail.
  • C is an essential element for ensuring the strength of the steel sheet. Since the required high strength cannot be obtained if it is less than 0.15%, the C content is set to 0.15% or more.
  • the C content may be 0.16% or more, 0.18% or more, or 0.20% or more.
  • the C content is made 0.30% or less.
  • the C content may be 0.28% or less, 0.26% or less, or 0.25% or less.
  • Si 0.50 to 4.00%, Si/V ratio: 10.0 or less
  • Si is an element having an effect of delaying tempering. If it is less than 0.50%, the required tempering delay effect cannot be obtained. Therefore, the Si content is set to 0.50% or more.
  • the Si content may be 0.60% or more, 0.80% or more, 1.00% or more, or 1.50% or more.
  • the Si content exceeds 4.00%, the workability is lowered, so the Si content is set to 4.00% or less.
  • the Si content may be 3.50% or less or 3.00% or less.
  • the Si/V ratio exceeds 10.0, the precipitation driving force of the V-containing carbide decreases, so the Si/V ratio is 10.0 or less.
  • the Si/V ratio may be 9.5 or less, 8.0 or less, 7.0 or less, or 6.0 or less.
  • the lower limit of the Si / V ratio is not particularly limited, but may be, for example, 0.5, 0.8 or 1.0.
  • Mn is a hardenable element. If it is less than 2.00%, the amount of martensite before tempering cannot be secured, and bainite transformation and pearlite transformation occur, and the amount of coarse cementite increases. Therefore, the Mn content may be 2.00% or more, and may be 2.10% or more, 2.20% or more, or 2.30% or more. On the other hand, if the Mn content exceeds 4.00%, cosegregation of P and S is promoted and the workability is significantly deteriorated. Therefore, the Mn content is set to 4.00% or less. The Mn content may be 3.50% or less, 3.00% or less, or 2.80% or less.
  • P 0.100% or less
  • the P content may be 0%, but excessive reduction causes a cost increase, so the P content is preferably 0.0001% or more.
  • S is an element that forms non-metal inclusions such as MnS in steel and causes a decrease in ductility of steel parts. Therefore, the S content is 0.005% or less, preferably 0.003% or less, and more preferably 0.002% or less.
  • Al acts as a deoxidizing agent and is preferably added in the deoxidizing step.
  • the Al content needs to be 0.010% or more.
  • the Al content may be 0.020% or more, 0.030% or more, or 0.040% or more.
  • the upper limit is set to 0.500% or less.
  • the Al content may be 0.400% or less, 0.300% or less, or 0.100% or less.
  • N 0.010% or less
  • N should be small because it contributes to workability deterioration and blow hole generation during welding. If it exceeds 0.010%, the workability deteriorates, so 0.010% is made the upper limit.
  • the N content may be 0.005% or less or 0.004% or less.
  • the N content may be 0%, but it is preferably 0.001% or more because excessive reduction causes an increase in cost.
  • V is an element effective in controlling the morphology of carbides.
  • V-containing carbide such as vanadium carbide (VC)
  • VC vanadium carbide
  • the V-containing carbide that is finely dispersed and precipitated strengthens the steel sheet by particle dispersion and enhances the yield strength and the yield ratio.
  • the precipitation amount of V-containing carbide is small and the improvement of hydrogen embrittlement resistance, yield strength and / or yield ratio is insufficient, so the lower limit is set to 0.20% or more.
  • the V content may be 0.25% or more, 0.30% or more, or 0.40% or more.
  • the upper limit is 1.00%.
  • the V content may be 0.80% or less, 0.70% or less, or 0.60% or less.
  • the basic composition of the hot-rolled steel sheet according to the embodiment of the present invention and the slab used for manufacturing the same is as described above. Further, the hot-rolled steel sheet and the slab may contain one or more of the following optional elements, if necessary. The optional element may not be contained, and the content in that case is 0%.
  • Nb and Ti are elements that are effective in controlling the morphology of carbides. Further, since Ti is preferentially bonded to N, when B is added to improve hardenability, Ti has an effect of suppressing the bonding of B to N. However, if too much is added, the solubility of V-carbide containing Nb and / or Ti is lower than that of VC, so that these are precipitated and coarsened in the hot rolling step and tempering step, resulting in a solid-dissolved carbon concentration. Therefore, fine V-containing carbide may not be obtained in some cases.
  • the Nb and Ti contents are 0.10% or less, respectively, and may be 0.08% or less or 0.05% or less.
  • the content of each may be more than 0%, but the lower limit of each content is preferably 0.01%.
  • B is an element that suppresses ferrite transformation by segregating to austenite grain boundaries in the heat treatment step.
  • the B content may be more than 0%, but from the viewpoint of obtaining a higher effect, the B content is preferably 0.0001% or more.
  • the B content exceeds 0.0050%, the ferrite transformation suppressing effect is saturated, so it is preferable to set 0.0050% as a substantial upper limit.
  • the B content may be 0.0030% or less or 0.0020% or less.
  • the Cr and Mo contents may each be more than 0%, but Cr: 0.005 to 1.000% and Mo: 0. 0% so that the value of (2Cr+Mo)/2V falls within the above range. It is preferable to select an appropriate Cr and Mo content from the range of 005 to 0.500%.
  • Cu 0.50 to 3.00%
  • the Cu content may be more than 0%, but is preferably 0.50% or more from the viewpoint of obtaining a higher effect.
  • the Cu content may be 0.80% or more or 1.00% or more.
  • the Cu content may be 3.00% or less, and may be 2.80% or less or 2.50% or less.
  • Ni is effective in preventing surface defects generated on the surface of the steel sheet when Cu is added, and can be contained if necessary when Cu is added.
  • the Ni content depends on the Cu content, and is preferably about half the Cu content, that is, about 0.25 to 1.50%.
  • the Ni content may be more than 0%, but from the viewpoint of obtaining a higher effect, it is preferably 0.25% or more, more preferably 0.30% or more or 0.50% or more. Further, the Ni content may be 1.40% or less or 1.20% or less.
  • the balance other than the above components is Fe and impurities.
  • Impurities are components that are mixed due to various factors in the manufacturing process, starting with raw materials such as ores and scraps when industrially manufacturing hot-rolled steel sheets, and the heat according to the embodiment of the present invention. It includes those which are not components intentionally added to the rolled steel sheet (so-called inevitable impurities).
  • the impurities are elements other than the components described above, and are contained in the hot-rolled steel sheet at such a level that the effect specific to the element does not affect the characteristics of the hot-rolled steel sheet according to the embodiment of the present invention. It also includes elements.
  • Martensite is a fine structure in which carbon and alloying elements are supersaturated as a solid solution and high-density dislocations are present.Nucleation sites of carbide are abundant, and when tempered, a large amount of carbide is dispersed and precipitated. It is an organization that can do it. Since a large amount of cementite and V-containing carbides can be precipitated with tissue recovery, the lower limit of tempered martensite is set to 90% or more in area ratio, for example, 95% or more, 96% or more, 97% or more, 98% in area ratio. The above may be 99% or more, or 100%.
  • the remaining structure other than tempered martensite may be 0%, but when the remaining structure exists, the remaining structure may be, for example, bainite, ferrite, pearlite, or the like.
  • the remaining structure may be, for example, 10% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less in terms of area ratio.
  • the content of cementite having a major axis of 400 nm or less and an aspect ratio of 3 to 5 is 70% or more.
  • the finer the cementite produced by tempering, the better the punching property, and the longer the shape, the better the suppression of crack growth. Therefore, the content of cementite having a major axis of 400 nm or less and an aspect ratio of 3 to 5 is 70% or more. It is preferably at least 75%, more preferably at least 80%.
  • the upper limit of the cementite content having a major axis of 400 nm or less and an aspect ratio of 3 to 5 is not particularly limited and may be 100%, but is generally 95% or less or 90% or less.
  • tempered martensite may contain cementite with an aspect ratio of more than 5, or may contain cementite with an aspect ratio of less than 3.
  • the aspect ratio refers to the ratio of the longest diameter (major diameter) of cementite to the longest diameter (minor diameter) of cementite orthogonal to it.
  • V-containing carbides with a circle-equivalent diameter of 8 to 15 nm are deposited in tempered martensite at a number density of 30 pieces / ⁇ m 2 or more]
  • a large amount of fine V-containing carbides are precipitated in the tempered martensite, and more specifically, V-containing carbides having a circle-equivalent diameter of 8 to 15 nm are precipitated at a number density of 30 pieces / ⁇ m 2 or more.
  • the substance serves as a resistance against the movement of mobile dislocations, and precipitation strengthening can be expressed to enhance the yield strength and yield ratio of the hot-rolled steel sheet and improve the energy absorption capacity at the time of collision.
  • V-containing carbides such as VC as well as composite carbides of Nb and / or Ti and V and V act as hydrogen trap sites, hot spreading by precipitating a large amount of the above-mentioned fine V-containing carbides.
  • the hydrogen embrittlement resistance of the steel sheet can also be improved.
  • the volume fraction of the V-containing carbide with respect to the matrix is the same, the larger the number, the finer the size of the V-containing carbide, the higher the yield strength and the yield ratio, and the better the hydrogen embrittlement resistance.
  • the hot-rolled steel sheet of the present embodiment contains 30 V-containing carbides having a circle-equivalent diameter of 8 to 15 nm in tempered martensite at a number density of 30 pieces / ⁇ m 2 or more.
  • the number density is preferably 32 pieces/ ⁇ m 2 or more, more preferably 35 pieces/ ⁇ m 2 or more.
  • the tempered martensite is identified by corroding the cross section in the plate thickness direction with the Nital reagent, and 1 ⁇ 8 to 3 ⁇ 8 thickness centered on the position of 1 ⁇ 4 of the plate thickness from the surface of the steel plate ( The range of 1/8 to 3/8) was observed with an electric field radiation scanning electron microscope (FE-SEM) at a magnification of 3000 times (viewing area: 1370 ⁇ m 2 ), and the position of cementite contained inside the tissue was observed. And the variants are observed.
  • FE-SEM electric field radiation scanning electron microscope
  • tempered martensite cementite is formed inside the martensite lath, but since there are two or more types of crystal orientation relationship between martensite lath and cementite, the generated cementite has a plurality of variants. By detecting the characteristics of these cementites, tempered martensite is identified and the area ratio is calculated.
  • the identification of cementite is performed by corroding the section in the plate thickness direction with a Nital reagent, and scanning the scanning electron microscope (1/8 to 3/8) from the surface of the steel plate to the center of the position of 1/4 of the plate thickness. It can be carried out by observing using a secondary electron image (10000 times, field of view area: 123 ⁇ m 2 ) by SEM). The region captured with bright contrast in the secondary electron image is defined as cementite, and all cementites in the field of view are measured, and the content of cementite having a major axis of 400 nm or less and an aspect ratio of 3 to 5 is measured.
  • the circle-converted diameter and number density of the V-containing carbide are determined as follows. First, an extracted replica sample of a circular region having a diameter of 3.0 mm at a position 1/4 from the surface of the steel plate was sampled at a magnification of 60,000 times (visual field area: 4.5 ⁇ m 2 ) using a transmission electron microscope (TEM). By observing the field of view, the area of each precipitate is calculated using an image analyzer for the precipitates in which V is detected by energy dispersive X-ray spectroscopy (EDX) in each field of view, and this is converted into a circle equivalent diameter.
  • EDX energy dispersive X-ray spectroscopy
  • the number of V-containing carbides having a circle-converted diameter of 8 nm or more and 15 nm or less is calculated, and the value is divided by the area of the observation visual field to obtain a value, and the number density of V-containing carbide in each visual field is calculated.
  • the arithmetic mean obtained is determined as the number density of V-containing carbides having a circle-equivalent diameter of 8 to 15 nm.
  • High tensile strength specifically, a tensile strength of 1180 MPa or more can be achieved.
  • the tensile strength is set to 1180 MPa or more in order to satisfy the demand for weight reduction of the vehicle body in an automobile.
  • the tensile strength is preferably 1200 MPa or more, more preferably 1300 MPa or more.
  • a method of manufacturing a hot-rolled steel sheet according to an embodiment of the present invention includes a step of heating a slab having the chemical composition described above to 1100° C. or higher, A hot rolling process including finish rolling the heated slab, wherein the finish rolling finish temperature is 850 to 1050° C.; A step of cooling the obtained steel sheet to 350 ° C. or lower at an average cooling rate of 40 ° C./sec or higher. The step of winding the steel sheet at a winding temperature of 350° C. or lower, and the tempering temperature T of more than 400° C.
  • the method is characterized by including a tempering step for a time t (seconds) that satisfies the condition.
  • the slab having the chemical composition described above is heated before hot rolling.
  • the heating temperature of the slab is set to 1100 ° C. or higher in order to sufficiently re-dissolve V-carbonitride and the like. If the heating temperature is less than 1100 ° C., V-containing carbides are precipitated and coarsened during hot rolling, and fine V-containing carbides cannot be precipitated at a desired number density, resulting in a sufficient yield ratio and a sufficient yield ratio. The hydrogen embrittlement resistance may not be obtained. Therefore, the heating temperature of the slab may be 1100 ° C. or higher, for example, 1150 ° C. or higher or 1200 ° C. or higher.
  • the upper limit of the heating temperature is not particularly specified, but generally it may be 1300 ° C. or lower or 1250 ° C. or lower.
  • the holding time at the heating temperature is not particularly limited, but generally, it is preferably 30 minutes or more in order to keep the temperature up to the center of the slab to a predetermined temperature, while suppressing excessive scale loss. 180 minutes or less is preferable, and 120 minutes or less is more preferable.
  • the slab used is preferably cast by the continuous casting method from the viewpoint of productivity, but may be produced by the ingot casting method or the thin slab casting method.
  • the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness and the like.
  • the rough rolling may be performed as long as a desired sheet bar size can be secured, and the conditions therefor are not particularly limited.
  • the finish temperature of finish rolling is 850° C. or higher and 1050° C. or lower. By setting the finishing temperature of finish rolling within the above range, precipitation of V-containing carbide immediately after finish rolling can be suppressed. On the other hand, when the heating temperature is less than 850° C., V-containing carbide is precipitated and coarsens during finish rolling, and it becomes impossible to precipitate fine V-containing carbide at a desired number density, resulting in sufficient yield. The ratio or hydrogen embrittlement resistance may not be obtained.
  • the heating temperature may be 900 ° C. or higher and / or 1000 ° C. or lower.
  • the hot rolled steel sheet obtained by finish rolling is then cooled in a cooling step.
  • This cooling is performed at an average cooling rate of 40 ° C./sec or higher up to 350 ° C. or lower. It is preferably 45° C./sec or more, more preferably 50° C./sec or more.
  • the average cooling rate is less than 40° C./sec, the desired tempered martensite area ratio may not be achieved in the final structure due to insufficient quenching.
  • V-containing carbides may precipitate during cooling, which may become coarse during tempering.
  • the upper limit of the average cooling rate is not particularly limited, it is preferably 1000° C./sec or less, more preferably 200° C./sec or less, and further preferably 100 in view of suppression of uneven cooling and equipment capacity. C/sec or less.
  • the winding temperature is 350°C or lower.
  • V can be brought into a solid solution state, and the precipitation of V-containing carbide in the coiling step can be suppressed.
  • the winding temperature is 350 ° C. or lower, preferably 300 ° C. or lower, more preferably 200 ° C. or lower, and even more preferably 100 ° C. or lower.
  • the lower limit of the winding temperature is not particularly limited, but may be about room temperature (about 25° C.) from the viewpoint of productivity.
  • the hot-rolled steel sheet is tempered at a temperature higher than 400° C. and lower than 480° C. to form tempered martensite and precipitate fine V-containing carbide in the tempered martensite.
  • the tempering temperature is 400 ° C.
  • the diffusion of V required for the precipitation of V-containing carbide does not occur sufficiently, and as a result, the V-containing carbide may not be sufficiently precipitated or may not be precipitated at all.
  • the tempering temperature is 480° C. or higher, cementite is coarsened, a desired aspect ratio cannot be obtained, and punchability may be deteriorated. Further, since the V-containing carbide becomes coarse, there is a possibility that fine V-containing carbides cannot be precipitated at a desired number density.
  • the tempering temperature may be 410 ° C. or higher or 420 ° C. or higher, and / or 470 ° C. or lower or 460 ° C. or lower.
  • T is the tempering temperature (° C.)
  • t is the tempering time (second).
  • the tempering parameter is 15,000 or less, the precipitation and growth of the V-containing carbide does not proceed sufficiently, and the particle dispersion strengthening and the function as the hydrogen trap site cannot be sufficiently obtained, so that the desired yield ratio and hydrogen resistance Brittleness may not be achieved.
  • the tempering parameter P is preferably 16000 or more, more preferably 16200 or more.
  • the hot-rolled steel sheet according to the embodiment of the present invention was manufactured under various conditions, and the mechanical properties of the obtained hot-rolled steel sheet were investigated.
  • a slab having the chemical composition shown in Table 1 was manufactured by the continuous casting method.
  • a hot-rolled steel sheet having a plate thickness of 2.5 mm was produced from these slabs under the heating, hot rolling, cooling, winding and tempering conditions shown in Table 2.
  • the rest other than the components shown in Table 1 are Fe and impurities.
  • the chemical composition of the sample collected from the produced hot-rolled steel sheet was equivalent to the chemical composition of the slab shown in Table 1.
  • TS tensile strength
  • YS yield strength
  • YR yield ratio
  • the circle-equivalent diameter and number density of the V-containing carbide were determined as follows. First, an extracted replica sample of a circular region having a diameter of 3.0 mm at a position 1/4 from the surface of the steel plate was sampled at a magnification of 60,000 times (visual field area: 4.5 ⁇ m 2 ) using a transmission electron microscope (TEM). For the precipitates in which V was detected by energy dispersive X-ray spectroscopy (EDX) in each field of view, the area of each precipitate was determined using an image analyzer and converted into a circle-converted diameter.
  • EDX energy dispersive X-ray spectroscopy
  • the number of V-containing carbides having a circle-converted diameter of 8 nm or more and 15 nm or less is calculated, and the value is divided by the area of the observation visual field to obtain a value, and the number density of V-containing carbide in each visual field is calculated.
  • the arithmetic mean obtained was determined as the number density of V-containing carbides having a circle-equivalent diameter of 8 to 15 nm.
  • Comparative Example 18 since the tempering temperature was 400° C. or lower, V diffusion necessary for precipitation of V-containing carbide such as VC did not occur, and V-containing carbide did not precipitate. Therefore, sufficient YR and hydrogen embrittlement resistance could not be obtained.
  • Comparative Example 20 since the tempering temperature was 480 ° C. or higher, cementite became coarse and a desired aspect ratio could not be obtained, and the punching property was lowered. Further, since the V-containing carbides became coarse, fine V-containing carbides could not be precipitated at a desired number density, and sufficient YR and hydrogen embrittlement resistance could not be obtained.
  • Comparative Example 26 since the tempering parameter was 15,000 or less, the precipitation and growth of the V-containing carbide such as VC did not proceed sufficiently and the particle dispersion strengthening and the function as the hydrogen trap site were not sufficiently obtained. And the hydrogen embrittlement resistance was lowered. In Comparative Example 28, since the tempering parameter was 17,000 or more, V-containing carbides such as VC were coarsened, and sufficient YR and hydrogen embrittlement resistance could not be obtained. In Comparative Example 30, since the heating temperature before hot rolling was lower than 1100 ° C., V-containing carbides were precipitated during hot rolling, and the V-containing carbides were coarsened by the subsequent heat treatment, so that sufficient YR and hydrogen embrittlement resistance were obtained. No brittleness was obtained.
  • Comparative Example 37 since the C content was low, the tensile strength TS was insufficient. In Comparative Example 38, since the Si content was low, there was no tempering delay effect and TS was insufficient. In Comparative Example 39, since the Mn content was low, quenching was not performed, the matrix phase dislocation density required for fine and large precipitation of V-containing carbide was not obtained, and sufficient YR and hydrogen embrittlement resistance were not obtained. In Comparative Example 40, since the Mn content was low, the matrix phase dislocation density required for the fine and large precipitation of V-containing carbide was not obtained, the cementite was coarsened, and sufficient YR and hydrogen embrittlement resistance were not obtained.
  • Comparative Example 41 since the Mn content was low and the tempering temperature was 480° C. or higher, the cementite was coarsened, the desired aspect ratio was not obtained, and the punchability was deteriorated. In addition, the matrix dislocation density required for the fine and large amount precipitation of V-containing carbides could not be obtained, and sufficient YR and hydrogen embrittlement resistance could not be obtained. In Comparative Example 42, since the V content was low, the precipitation amount of the V-containing carbide was small, and sufficient YR and hydrogen embrittlement resistance could not be obtained. In Comparative Example 43, since the V content was high, the V-containing carbide became coarse, and sufficient YR and hydrogen embrittlement resistance could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板およびその製造方法を開示する。本開示の熱延鋼板は、所定の化学組成を有し、面積率で焼戻しマルテンサイトを90%以上含有し、長径が400nm以下でアスペクト比が3~5のセメンタイトの含有量が70%以上であり、円換算直径8~15nmのV含有炭化物が30個/μm2以上の個数密度で析出している。本開示の製造方法は、スラブを1100℃以上に加熱する工程、仕上げ圧延の終了温度が850~1050℃である熱間圧延工程、350℃以下まで40℃/秒以上の平均冷却速度で冷却する工程、350℃以下で巻き取る工程、並びに400℃超480℃未満の焼戻し温度Tで15000<(T+273)×(log(t)+20)<17000を満たす時間t(秒)にわたって焼戻す工程を含む。

Description

熱延鋼板およびその製造方法
 本発明は、熱延鋼板およびその製造方法に関し、より詳しくは自動車等の構造部材に使用される熱延鋼板であって、引張強度が1180MPa以上の高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板およびその製造方法に関する。
 近年、自動車業界では、燃費向上の観点から車体の軽量化が求められている。一方で、衝突安全性に関する規制の強化により、車体骨格における補強部品の追加などが必要となり、重量の増加につながっている。車体の軽量化と衝突安全性を両立するためには、使用する鋼板の高強度化が有効な方法の一つであり、このような背景から高強度鋼板の開発が進められている。
 また、自動車業界では、車体の軽量化に加えて、耐衝突性能のさらなる改善が求められており、それゆえ衝突時のエネルギー吸収能に優れた高強度鋼板に対するニーズがある。例えば、強度-延性バランスが低い部材では、衝突時の破断に伴い衝撃吸収エネルギー量が著しく低下するという問題がある。
 特許文献1では、質量%でC:0.10~0.25%、Si:1.5%以下、Mn:1.0~3.0%、P:0.10%以下、S:0.005%以下、Al:0.01~0.5%、N:0.010%以下およびV:0.10~1.0%を含み、かつ(10Mn+V)/C≧50を満足し、残部はFeおよび不可避的不純物の組成になり、焼戻しマルテンサイト相の体積率が80%以上で、粒径:20nm以下のVを含む炭化物が1000個/μm3以上析出し、かつ該粒径:20nm以下のVを含む炭化物の平均粒径が10nm以下である高強度熱延鋼板が記載されている。また、特許文献1では、自動車構造部材用薄鋼板の高性能化には従来あまり積極的に利用されることがなかったVを活用することにより、強度-延性バランスに優れ、かつ引張強さが980MPa以上の高強度熱延鋼板を得ることができると記載されている。
 特許文献2では、質量%でC:0.10~0.25%、Si:1.5%以下、Mn:1.0~3.0%、P:0.10%以下、S:0.005%以下、Al:0.01~0.5%、N:0.010%以下およびV:0.10~1.0%を含み、かつ(10Mn+V)/C≧50を満足し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、1000℃以上に加熱後、粗圧延によりシートバーとし、ついで仕上げ圧延出側温度:800℃以上の条件で仕上げ圧延を施したのち、仕上げ圧延完了後3秒以内に、平均冷却速度:20℃/s以上の速度で、400℃未満の温度域まで冷却して、巻取り、ついで400℃以上、Ac1変態点以下の温度域において、11000-3000[%V]≦Tb(20+logt)≦15000-1000[%V](ここで、Tbは焼戻し温度(℃)、tは保持時間(s)、[%V]はVの含有量(質量%))を満足する条件で焼戻し処理を施すことを特徴とする高強度熱延鋼板の製造方法が記載されている。また、特許文献2では、特許文献1の場合と同様に、自動車構造部材用薄鋼板の高性能化には従来あまり積極的に利用されることがなかったVを活用することにより、強度-延性バランスに優れ、かつ引張強さが980MPa以上の高強度熱延鋼板を得ることができると記載されている。
 一方で、引張強度が980MPaまたはそれを超えるような高強度鋼板を自動車用部材として適用する場合には、一般的に、鋼板における水素脆化割れ(遅れ破壊などともいう)の問題を解決する必要がある。水素脆化割れとは、使用状況下において高い応力が作用している鋼部材が、環境から鋼中に侵入した水素に起因して突然破壊する現象である。一般に、水素脆化割れは、鋼板の強度が上昇するほど発生し易くなることが知られている。これは、鋼板の強度が高いほど、当該鋼板を成形した後の部材に残留する応力が増大し、このような残留応力の集中部に水素が集積し易いためと考えられている。
 特許文献3では、質量%で(以下、化学成分について同じ。)、C:0.03~0.30%、Si:3.0%以下(0%を含む)、Mn:0.1%超2.8%以下、P:0.1%以下、S:0.005%以下、N:0.01%以下、Al:0.01~0.50%、V:0.001~1.00%を含み、残部が鉄および不可避的不純物からなる成分組成を有し、焼戻しマルテンサイトが面積率で50%以上(100%を含む)を含み、残部がフェライトからなる組織を有し、前記焼戻しマルテンサイト中における析出物の分布状態が、円相当直径1~10nmの析出物は、前記焼戻しマルテンサイト1μm2当たり20個以上で、円相当直径20nm以上のVを含む析出物は、前記焼戻しマルテンサイト1μm2当たり10個以下であることを特徴とする高強度冷延鋼板が記載されている。また、特許文献3では、焼戻しマルテンサイトの面積率および該焼戻しマルテンサイト中に析出したVを含む析出物の分布状態を適正に制御した上記の高強度冷延鋼板によれば、耐水素脆化特性を確保しつつ、伸びフランジ性をも改善することが可能となると記載されている。さらに、特許文献3では、Vを含む析出物の分散状態の制御に加えて、焼戻しの際にマルテンサイト中に析出したセメンタイト粒子のサイズと存在数を制御することで、伸びと伸びフランジ性をともに向上させることができると記載されている。
特開2006-183141号公報 特開2011-102434号公報 特開2010-018862号公報
 特許文献1および2では、980MPaの引張強度を有し、衝突時のエネルギー吸収能に関連して強度-延性バランスが改善された高強度熱延鋼板について記載されているものの、耐水素脆性の向上という観点からは何ら十分な検討はなされていない。したがって、特許文献1および2では、高強度鋼板、特に自動車用部材に供される高強度鋼板の特性向上に関して依然として改善の余地があった。
 また、自動車部品などの加工では、プレス機械による打ち抜き工程が含まれることが多いが、とりわけ、高強度鋼板を打ち抜き加工する場合には、鋼板の高強度化に起因して打ち抜き端部において割れ(打ち抜き割れ)が発生し易いという問題がある。特許文献1および2では、高強度熱延鋼板の打ち抜き性を改善することについて検討がなされていない。
 特許文献3では、上記のとおり、焼戻しマルテンサイトの面積率および当該焼戻しマルテンサイト中に析出したV含有析出物の分布状態を適正に制御することで、高強度冷延鋼板の耐水素脆化特性を確保できることが記載されているものの、当該高強度冷延鋼板の打ち抜き性を改善するという観点からは何ら十分な検討はなされていない。
 そこで、本発明は、新規な構成により、高強度、特には引張強度が1180MPa以上の高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために、熱延鋼板の化学組成および組織について検討した。その結果、本発明者らは、鋼板中に焼戻しマルテンサイトを面積率で90%以上含有させ、さらに鋼板中のSi含有量を所定の範囲内に制御することで高強度、具体的には1180MPa以上の引張強度を達成できることを見出した。また、一般的に、自動車が衝突した際のエネルギー吸収能を高めるためには、鋼材の降伏強度または降伏比を高めることが有効であり、それにより少ない変形量でも効率よく衝突時のエネルギーを吸収させることができる。そこで、本発明者らは、熱延鋼板の組織についてさらに検討し、鋼板中のSi/V比を所定の範囲内に制御して当該鋼板中にV含有炭化物を析出させるとともにそれを適切に制御し、これに加えて焼戻しマルテンサイト中のセメンタイトを適切な形態に制御することで、得られる熱延鋼板の降伏比を高めて衝突時のエネルギー吸収能を向上させ、さらには耐水素脆性および打ち抜き性をも向上させることができることを見出し、本発明を完成させた。
 本発明は、上記の知見に基づき完成したものであり、具体的には下記のとおりである。
 (1)質量%で、
 C:0.15~0.30%、
 Si:0.50~4.00%、
 Mn:2.00~4.00%、
 P:0.100%以下、
 S:0.005%以下、
 Al:0.010~0.500%、
 N:0.010%以下、および
 V:0.20~1.00%
を含有し、Si/V比が10.0以下であり、残部がFeおよび不純物からなる化学組成を有し、
 面積率で焼戻しマルテンサイトを90%以上含有し、
 前記焼戻しマルテンサイト中に含まれるセメンタイトのうち、長径が400nm以下でアスペクト比が3~5のセメンタイトの含有量が70%以上であり、
 前記焼戻しマルテンサイト中に円換算直径8~15nmのV含有炭化物が30個/μm2以上の個数密度で析出していることを特徴とする、熱延鋼板。
 (2)さらに、質量%で、
 Nb:0.01~0.10%、
 Ti:0.01~0.10%、
 B:0.0001~0.0050%、
 Cr:0.005~1.000%、
 Mo:0.005~0.500%、
 Cu:0.50~3.00%、及び
 Ni:0.25~1.50%
の1種または2種以上を含有し、
 CrおよびMoの1種または2種を含有する場合は、Cr、MoおよびVの含有量が(2Cr+Mo)/2V≦2.0の関係を満足する、
 上記(1)に記載の熱延鋼板。
 (3)上記(1)又は(2)に記載の化学組成を有するスラブを1100℃以上に加熱する工程、
 加熱されたスラブを仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の終了温度が850~1050℃である熱間圧延工程、
 得られた鋼板を350℃以下まで40℃/秒以上の平均冷却速度で冷却する工程、
 前記鋼板を350℃以下の巻取温度で巻き取る工程、並びに
 前記鋼板を400℃超480℃未満の焼戻し温度Tで、下記式(1):
   15000<(T+273)×(log(t)+20)<17000 ・・(1)
を満たす時間t(秒)にわたって焼戻す工程
を含むことを特徴とする、熱延鋼板の製造方法。
 本発明によれば、引張強度が1180MPa以上の高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板を得ることができる。
<熱延鋼板>
 本発明の実施形態に係る熱延鋼板は、質量%で、
 C:0.15~0.30%、
 Si:0.50~4.00%、
 Mn:2.00~4.00%、
 P:0.100%以下、
 S:0.005%以下、
 Al:0.010~0.500%、
 N:0.010%以下、および
 V:0.20~1.00%
を含有し、Si/V比が10.0以下であり、残部がFeおよび不純物からなる化学組成を有し、
 面積率で焼戻しマルテンサイトを90%以上含有し、
 前記焼戻しマルテンサイト中に含まれるセメンタイトのうち、長径が400nm以下でアスペクト比が3~5のセメンタイトの含有量が70%以上であり、
 前記焼戻しマルテンサイト中に円換算直径8~15nmのV含有炭化物が30個/μm2以上の個数密度で析出していることを特徴としている。
 先に述べたとおり、本発明者らは、鋼板中に焼戻しマルテンサイトを面積率で90%以上含有させ、さらに鋼板中のSi含有量及びSi/V比を所定の範囲内に制御して当該鋼板中にV含有炭化物を析出させるとともにそれを適切に制御し、これに加えて上記焼戻しマルテンサイト中のセメンタイトを適切な形態に制御することで、得られる鋼板において1180MPa以上の引張強度を達成するとともに、衝突時のエネルギー吸収能を向上させ、さらには耐水素脆性および打ち抜き性をも向上させることができることを見出した。なお、本発明において、V含有炭化物とは、炭化バナジウム(VC)だけでなく、NbやTiなどの元素とVとの複合炭化物、例えば(V,Ti)Cといった複合炭化物も包含するものである。
 より詳しく説明すると、焼戻しマルテンサイトは、マルテンサイト組織を適切な温度で加熱および保持して(すなわち焼戻して)セメンタイトを析出させることにより得られる組織であるが、このような焼戻しによる組織回復の進行具合は温度および時間を変数とした下記焼戻しパラメータPで一般的に整理されている。
 P=(T+273)(log(t)+273)
 式中、Tは焼戻し温度(℃)であり、tは焼戻し時間(秒)である。焼戻し後の硬さはこの焼戻しパラメータPの関数として一般に表すことができ、それゆえ焼戻し温度および焼戻し時間から焼戻し後の鋼板の硬さや引張強度を予測することが可能である。
 ここで、焼戻しの進行とともに組織中の転位密度が小さくなることから、引張強度は一般に低下する。したがって、過度の焼戻しは高強度の鋼板を得るという観点からは必ずしも望ましくない場合がある。しかしながら、焼戻しの進行具合は合金元素の添加によっても大きく変化することが知られており、特定の合金元素を適切に添加することで同じ焼戻しパラメータPの値であっても鋼板の引張強度を向上させることが可能である。また、炭化物形成元素を添加して焼戻しマルテンサイト中に炭化物を適切に析出させることで、鋼板の降伏比を高めて衝突時のエネルギー吸収能を向上させることが可能である。数ある炭化物の中でも、特にV含有炭化物は水素トラップサイトとしても機能するため、このような炭化物を利用することで鋼板の耐水素脆性をも向上させることが可能となる。
 そこで、本発明者らは、上記の合金元素としてSiに着目しそして上記の炭化物形成元素としてVに着目して熱延鋼板の化学組成および組織について検討した。その結果、本発明者らは、熱延鋼板中のSi含有量を0.50%以上とすることで焼戻しを遅らせることができ、したがって同じ焼戻しパラメータPの値であっても熱延鋼板の引張強度を向上させることが可能となることを見出した。また、本発明者らは、熱延鋼板中のSi含有量がV含有量との関係でV含有炭化物の析出駆動力に大きく影響することを見出した。具体的には熱延鋼板中のSi/V比を10.0以下とすることでV含有炭化物を多く析出させることができるとともに、V含有炭化物を微細化することができることを見出した。さらに、本発明者らは、焼戻しを低温で行うことでVの拡散が遅くなるため、V含有炭化物の粗大化が抑制され、その結果として焼戻しマルテンサイト内にV含有炭化物を微細かつ多量に分散させることができ、このような微細なV含有炭化物の分散による粒子分散強化によって熱延鋼板の降伏比を高めて衝突時のエネルギー吸収能を向上させることができること、そして当該微細なV含有炭化物を水素トラップサイトとしても利用することで熱延鋼板の耐水素脆性についても向上させることができることを見出した。
 加えて、本発明者らは、上記のように低温で焼戻すことで焼戻しマルテンサイト中のセメンタイトの粗大化及び球状化を抑制することができ、その結果として微小でかつアスペクト比が比較的高いセメンタイトを焼戻しマルテンサイト中に比較的多く含有させること、より具体的には焼戻しマルテンサイト中に含まれるセメンタイトのうち長径が400nm以下でアスペクト比が3~5のセメンタイトを70%以上含有させることで、打ち抜き時に微小クラックが入りづらくなり、熱延鋼板の打ち抜き性が向上することを見出した。その結果として、本発明によれば、引張強度が1180MPa以上の高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板を提供することが可能となる。以下、本発明の実施形態に係る熱延鋼板およびその製造方法についてより詳しく説明する。
 まず、本発明の実施形態に係る熱延鋼板およびその製造に用いるスラブの化学組成について説明する。以下の説明において、熱延鋼板およびスラブに含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。
[C:0.15~0.30%]
 Cは、鋼板の強度確保のために必須の元素である。0.15%未満では所要の高強度が得られないため、C含有量は0.15%以上とする。C含有量は0.16%以上、0.18%以上または0.20%以上であってもよい。一方、0.30%を超えると、成形性や溶接性が低下するため、C含有量は0.30%以下とする。C含有量は0.28%以下、0.26%以下または0.25%以下であってもよい。
[Si:0.50~4.00%、Si/V比:10.0以下]
 Siは焼戻しを遅らせる効果がある元素である。0.50%未満では所要の焼戻し遅延効果が得られないため、Si含有量は0.50%以上とする。Si含有量は0.60%以上、0.80%以上、1.00%以上または1.50%以上であってもよい。一方、Si含有量が4.00%を超えると、加工性が低下するため、Si含有量は4.00%以下とする。Si含有量は、3.50%以下または3.00%以下であってもよい。また、Si/V比が10.0を超えると、V含有炭化物の析出駆動力が低下するため、Si/V比は10.0以下とする。Si/V比は9.5以下、8.0以下、7.0以下または6.0以下であってもよい。なお、Si/V比の下限値は、特に限定されないが、例えば0.5、0.8または1.0であってもよい。
[Mn:2.00~4.00%]
 Mnは焼入れ性元素である。2.00%未満では焼戻し処理前のマルテンサイト量を確保できず、ベイナイト変態やパーライト変態が起こり、粗大セメンタイト量が増加する。このため、Mn含有量は2.00%以上とし、2.10%以上、2.20%以上または2.30%以上であってもよい。一方、Mn含有量が4.00%を超えると、PやSの共偏析を助長し、加工性を著しく劣化させるため、Mn含有量は4.00%以下とする。Mn含有量は、3.50%以下、3.00%以下または2.80%以下であってもよい。
[P:0.100%以下]
 P含有量は低いほど好ましく、0.100%超含有すると、成形性や溶接性に悪影響を及ぼすとともに、疲労特性も低下させるため、0.100%以下とする。好ましくは0.050%以下、より好ましくは0.030%以下である。P含有量は0%であってもよいが、過剰な低減はコスト上昇を招くため、好ましくは0.0001%以上とする。
[S:0.005%以下]
 Sは、鋼中でMnS等の非金属介在物を生成し、鋼材部品の延性の低下を招く元素である。このため、S含有量は0.005%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下である。S含有量は少ないほど好ましく0%であってもよいが、精錬工程において極低化するためには、精錬に要する時間が多くなり、コストの大幅な増加を招く。このため、下限を好ましくは0.0001%以上または0.0005%以上とする。
[Al:0.010~0.500%]
 Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al含有量を0.010%以上にする必要がある。Al含有量は、0.020%以上、0.030%以上または0.040%以上であってもよい。一方、0.500%を超えると粗大なAl酸化物が生成し、冷間成形性の低下を引き起こす。このため、上限を0.500%以下とする。Al含有量は、0.400%以下、0.300%以下または0.100%以下であってもよい。
[N:0.010%以下]
 Nは、加工性劣化や溶接時のブローホール発生にも寄与するため少ない方が良い。0.010%を越えると加工性が劣化してくるので、0.010%を上限とする。N含有量は、0.005%以下または0.004%以下であってもよい。N含有量は0%であってもよいが、過剰な低減はコスト上昇を招くため、好ましくは0.001%以上とする。
[V:0.20~1.00%]
 Vは、炭化物の形態制御に有効な元素である。V含有炭化物、例えば炭化バナジウム(VC)は水素のトラップサイトとして作用し、鋼板の耐水素脆性の向上に役立つ。また、微細分散して析出したV含有炭化物は、鋼板を粒子分散強化し、降伏強度および降伏比を高める。本発明において、0.20%未満では、V含有炭化物の析出量が小さく、耐水素脆性、降伏強度および/または降伏比の向上が不十分であるため、下限を0.20%以上とする。V含有量は0.25%以上、0.30%以上または0.40%以上であってもよい。一方、Cと結合するV量は化学量論比によって定まるため、過剰なV含有量はコストの増加およびV含有炭化物の粗大化を招く。したがって、上限を1.00%とする。V含有量は、0.80%以下、0.70%以下または0.60%以下であってもよい。
 本発明の実施形態に係る熱延鋼板およびその製造に用いるスラブの基本成分組成は上記のとおりである。さらに当該熱延鋼板およびスラブは、必要に応じて、以下の任意元素の1種または2種以上を含有していてもよい。なお、任意元素は含有されなくても良く、その場合の含有量は0%である。
[Nb:0.01~0.10%、Ti:0.01~0.10%、B:0.0001~0.0050%の1種または2種以上]
 NbおよびTiは、Vと同様に炭化物の形態制御に有効な元素である。またTiは、Nと優先的に結合することにより、焼入れ性向上のためにBを添加する場合には、BのNとの結合を抑制する効果がある。しかし、多量に添加しすぎると、VCよりもNbおよび/またはTiを含んだV炭化物の方が溶解度が低いため、熱間圧延工程および焼戻し工程でこれらが析出して粗大化し、固溶炭素濃度を減らすため、微細なV含有炭化物が得られない場合がある。したがって、NbおよびTi含有量はそれぞれ0.10%以下とし、0.08%以下または0.05%以下であってもよい。一方、TiおよびNbを添加する場合には、各々の含有量を0%超としてもよいが、各々の含有量の下限値を0.01%とすることが好ましい。Bは、熱処理工程において、オーステナイトの粒界に偏析することにより、フェライト変態を抑制する元素である。B含有量は0%超であってもよいが、より高い効果を得る観点から、B含有量を0.0001%以上とすることが好ましい。一方、B含有量が0.0050%を超えると、フェライト変態抑制効果が飽和するので、0.0050%を実質的な上限とすることが好ましい。B含有量は、0.0030%以下または0.0020%以下であってもよい。
[Cr:0.005~1.000%、およびMo:0.005~0.500%の1種または2種を(2Cr+Mo)/2V≦2.0を満足する範囲で含有]
 CrおよびMoの1種または2種を含有する場合において、(2Cr+Mo)/2Vが2.0を超えるとV含有炭化物の組成がMoおよび/またはCrリッチになり、その結果、析出物が粗大化し易くなり、強度-延性バランスおよび耐溶接熱影響部軟化特性が低下する場合がある。(2Cr+Mo)/2Vの値は1.5以下であってもよく、1.0以下であってもよい。また、(2Cr+Mo)/2Vの値は0であってもよく、0.01以上であってもよい。なお、CrおよびMo含有量はそれぞれ0%超であってもよいが、(2Cr+Mo)/2Vの値が上記範囲内となるように、Cr:0.005~1.000%およびMo:0.005~0.500%の範囲から適切なCrおよびMo含有量を選択することが好ましい。
[Cu:0.50~3.00%]
 Cuは、焼戻し過程において、単独で析出し、強度上昇に有効に寄与する。また、V含有炭化物の微細析出を促進する。Cu含有量は0%超であってもよいが、より高い効果を得る観点から0.50%以上とすることが好ましい。Cu含有量は、0.80%以上または1.00%以上であってもよい。一方、Cu含有量が3.00%超となると、上記の効果が飽和するだけでなく、鋼板強度が顕著に増大し成形性の劣化を招く。このため、Cu含有量は3.00%以下とし、2.80%以下または2.50%以下であってもよい。
[Ni:0.25~1.50%]
 Niは、Cu添加時に鋼板表面に発生する表面欠陥の防止に有効であり、Cuを添加する場合に必要に応じて含有させることができる。その場合に、Ni含有量はCu含有量に依存し、およそCu含有量の半分程度、すなわち0.25~1.50%程度とすることが好ましい。Ni含有量は0%超であってもよいが、より高い効果を得る観点から0.25%以上とすることが好ましく、0.30%以上または0.50%以上とすることがより好ましい。また、Ni含有量は1.40%以下または1.20%以下であってもよい。
 本発明の実施形態に係る熱延鋼板において、上述成分以外の残部はFeおよび不純物からなる。不純物とは、熱延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明の実施形態に係る熱延鋼板に対して意図的に添加した成分でないもの(いわゆる不可避的不純物)を包含するものである。また、不純物とは、上で説明した成分以外の元素であって、当該元素特有の作用効果が本発明の実施形態に係る熱延鋼板の特性に影響しないレベルで当該熱延鋼板中に含まれる元素をも包含するものである。
 次に、本発明の実施形態に係る熱延鋼板の組織の限定理由について説明する。
[焼戻しマルテンサイト:90%以上]
 マルテンサイトは炭素および合金元素が過飽和に固溶し、また高密度の転位が存在した微細組織であり、炭化物の核生成サイトが豊富に存在し、焼戻した際に炭化物が多量に分散して析出できる組織である。組織回復とともにセメンタイトやV含有炭化物が多量に析出しうるために、焼戻しマルテンサイトの下限を面積率で90%以上とし、例えば、面積率で95%以上、96%以上、97%以上、98%以上、99%以上、または100%であってもよい。
 焼戻しマルテンサイト以外の残部組織は0%であってもよいが、残部組織が存在する場合には、当該残部組織は、例えばベイナイト、フェライト、パーライト等であってもよい。なお、残部組織は、例えば、面積率で10%以下、5%以下、4%以下、3%以下、2%以下、または1%以下であってもよい。
[焼戻しマルテンサイト中に含まれるセメンタイトのうち、長径が400nm以下でアスペクト比が3~5のセメンタイトの含有量が70%以上]
 焼戻しで生成するセメンタイトは微細であるほど、打ち抜き性に優れ、また細長い形状であれば、亀裂の進展抑制に優れる。したがって、長径が400nm以下で、アスペクト比が3~5のセメンタイト含有量が70%以上とする。好ましくは75%以上、さらに好ましくは80%以上とする。長径が400nm以下でアスペクト比が3~5のセメンタイト含有量の上限値は、特に限定されず100%であってもよいが、一般的には95%以下または90%以下である。本発明において、焼戻しマルテンサイト中にアスペクト比が5超のセメンタイトが含まれていてもよいし、アスペクト比が3未満のセメンタイトが含まれていてもよい。なお、本発明において、アスペクト比とは、セメンタイトの最も長い径(長径)とそれに直交するセメンタイトの径のうち最も長い径(短径)との比を言うものである。
[焼戻しマルテンサイト中に円換算直径8~15nmのV含有炭化物が30個/μm2以上の個数密度で析出]
 焼戻しマルテンサイト中に微細なV含有炭化物が多く析出すること、より具体的には円換算直径8~15nmのV含有炭化物が30個/μm2以上の個数密度で析出することで、これらの析出物が可動転位の運動に対する抵抗となり、析出強化を発現させて熱延鋼板の降伏強度および降伏比を高めて衝突時のエネルギー吸収能を向上させることができる。さらにまた、V含有炭化物、例えばVCだけでなく、Nbおよび/またはTi等とVとの複合炭化物も水素のトラップサイトとして作用するため、上記の微細なV含有炭化物を多く析出させることで熱延鋼板の耐水素脆性も向上させることができる。母相に対するV含有炭化物の体積率が同じ場合、数が多いほどV含有炭化物の大きさが微細になり降伏強度および降伏比が増加するとともに、耐水素脆性も向上する。これらの効果を得るため、本実施形態の熱延鋼板は、焼戻しマルテンサイト中に円換算直径8~15nmのV含有炭化物を30個/μm2以上の個数密度で含有する。上記の個数密度は、好ましくは32個/μm2以上、さらに好ましくは35個/μm2以上である。
[焼戻しマルテンサイトの同定方法および測定方法]
 焼戻しマルテンサイトの同定は、板厚方向断面をナイタール試薬により腐食し、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚(鋼板の表面から板厚の1/8~3/8の位置)の範囲を、電界放射型走査電子顕微鏡(FE-SEM)により3000倍の倍率(視野面積:1370μm)で観察し、組織の内部に含まれるセメンタイトの位置とバリアントとを観察することにより行う。具体的には、焼戻しマルテンサイトは、マルテンサイトラスの内部にセメンタイトが生成するが、マルテンサイトラスとセメンタイトとの結晶方位関係が2種類以上あるため、生成したセメンタイトは複数のバリアントを持つ。これらセメンタイトの特徴を検出することにより、焼戻しマルテンサイトを同定し、面積率を算出する。
[セメンタイトの同定方法および測定方法]
 またセメンタイトの同定は、板厚方向断面をナイタール試薬により腐食し、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲を、走査型電子顕微鏡(SEM)による2次電子像(10000倍、視野面積:123μm)を用いて観察することにより行うことができる。2次電子像で明るいコントラストで撮影された領域をセメンタイトとし、視野内のすべてのセメンタイトについて測定を行い、長径が400nm以下でアスペクト比が3~5のセメンタイトの含有量を測定する。
[V含有炭化物の円換算直径および個数密度の測定方法]
 V含有炭化物の円換算直径および個数密度は以下のようにして決定される。まず、鋼板表面から1/4位置における、直径3.0mmの円形領域の抽出レプリカサンプルを、透過型電子顕微鏡(TEM)を用いて6万倍の倍率(視野面積:4.5μm)で3視野観察し、各視野においてエネルギー分散型X線分光法(EDX)によりVが検出される析出物について、画像解析装置を用いて各析出物の面積を求め、これを円換算直径に換算する。次いで、当該円換算直径が8nm以上15nm以下のV含有炭化物の個数を算出してこれを観察視野の面積で除した値を求めて各視野におけるV含有炭化物の個数密度を算出し、これを上記の3視野で行い、得られた相加平均を円換算直径8~15nmのV含有炭化物の個数密度として決定する。
[機械特性]
 上記の化学組成および組織を有する熱延鋼板によれば、高い引張強度、具体的には1180MPa以上の引張強度を達成することができる。引張強度を1180MPa以上とするのは、自動車における車体の軽量化の要求を満足させるためである。引張強度は、好ましくは1200MPa以上であり、より好ましくは1300MPa以上である。
<熱延鋼板の製造方法>
 本発明の実施形態に係る熱延鋼板の製造方法は、上で説明した化学組成を有するスラブを1100℃以上に加熱する工程、
 加熱されたスラブを仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の終了温度が850~1050℃である熱間圧延工程、
 得られた鋼板を350℃以下まで40℃/秒以上の平均冷却速度で冷却する工程、
 前記鋼板を350℃以下の巻取温度で巻き取る工程、並びに
 前記鋼板を400℃超480℃未満の焼戻し温度Tで、下記式(1):
   15000<(T+273)×(log(t)+20)<17000 ・・(1)
を満たす時間t(秒)にわたって焼戻す工程
を含むことを特徴としている。
[スラブの加熱工程]
 まず、上で説明した化学組成を有するスラブが熱間圧延前に加熱される。スラブの加熱温度は、V炭窒化物等を十分に再固溶させるため、1100℃以上とする。加熱温度が1100℃未満であると、V含有炭化物が熱間圧延中に析出して粗大化し、微細なV含有炭化物を所望の個数密度で析出させることができなくなり、結果として十分な降伏比や耐水素脆性が得られなくなる場合がある。したがって、スラブの加熱温度は1100℃以上とし、例えば1150℃以上または1200℃以上であってもよい。加熱温度の上限値は特に規定しないが、一般的には1300℃以下または1250℃以下であってもよい。また、上記加熱温度での保持時間は、特に限定されないが、一般的にはスラブ中心部まで所定の温度にするため、30分以上とすることが好ましく、一方で過度のスケールロスを抑制するため、180分以下が好ましく、120分以下がより好ましい。なお、使用するスラブは、生産性の観点から連続鋳造法において鋳造することが好ましいが、造塊法または薄スラブ鋳造法によって製造してもよい。
[熱間圧延工程]
(粗圧延)
 本方法では、例えば、加熱されたスラブに対し、板厚調整等のために、仕上げ圧延の前に粗圧延を施してもよい。粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
(仕上げ圧延)
 仕上げ圧延の終了温度は850℃以上1050℃以下である。仕上げ圧延の終了温度を前記範囲内にすることにより、仕上げ圧延直後のV含有炭化物の析出を抑制することができる。一方で、加熱温度が850℃未満であると、V含有炭化物が仕上げ圧延中に析出して粗大化し、微細なV含有炭化物を所望の個数密度で析出させることができなくなり、結果として十分な降伏比や耐水素脆性が得られなくなる場合がある。例えば、加熱温度は900℃以上であってもよく、および/または1000℃以下であってもよい。
[冷却工程]
 仕上げ圧延によって得られた熱延鋼板は、次に冷却工程において冷却される。この冷却は、350℃以下まで40℃/秒以上の平均冷却速度で行われる。好ましくは45℃/秒以上、さらに好ましくは50℃/秒以上である。平均冷却速度を40℃/秒以上にすることにより、V含有炭化物の析出をより抑制することができる。一方、平均冷却速度が40℃/秒未満であると、十分に焼入れされないために最終組織において所望の焼戻しマルテンサイト面積率を達成できない場合がある。また、V含有炭化物が冷却時に析出し、これが焼戻しの際に粗大化する虞がある。さらには、十分な焼戻しマルテンサイト量が得られないために、V含有炭化物の核生成サイトも少なくなり、その結果、最終組織において所望のV含有炭化物の個数密度を達成できない場合がある。平均冷却速度の上限は特に限定されないが、冷却ムラの発生の抑制や設備能力を考慮すると、1000℃/秒以下であることが好ましく、より好ましくは200℃/秒以下であり、さらに好ましくは100℃/秒以下である。
[巻取工程]
 冷却工程の後、熱延鋼板を巻き取る。巻取温度は350℃以下とする。巻取温度を350℃以下にすることによって、Vを固溶状態とすることができ、巻取工程でのV含有炭化物の析出を抑制することができる。巻取温度が350℃を超えると、V含有炭化物が巻取圧延中に析出して焼戻しの際に粗大化し、微細なV含有炭化物を所望の個数密度で析出させることができなくなり、結果として十分な降伏比や耐水素脆性が得られなくなる場合がある。したがって、巻取温度は350℃以下とし、好ましくは300℃以下、より好ましくは200℃以下、さらにより好ましくは100℃以下である。巻取温度の下限値は特に限定されないが、生産性の観点から室温(約25℃)程度であってよい。
[焼戻し工程]
 巻取工程の後、熱延鋼板は400℃超480℃未満の温度で焼戻され、焼戻しマルテンサイトを形成するとともに、当該焼戻しマルテンサイト中に微細なV含有炭化物を析出させる。焼戻し温度を400℃超480℃未満にすることにより、微細なV含有炭化物を十分に析出させるとともに、セメンタイトの粗大化を抑制することができ、降伏強度、降伏比および耐水素脆性を増加させることができる。一方、焼戻し温度が400℃以下であると、V含有炭化物の析出に必要なVの拡散が十分に起こらず、結果としてV含有炭化物が十分に析出しないか又は全く析出しない場合がある。さらに、焼戻し温度が480℃以上であると、セメンタイトが粗大化して所望のアスペクト比が得られず、打ち抜き性が低下する虞がある。また、V含有炭化物が粗大化するため、微細なV含有炭化物を所望の個数密度で析出させることができなくなる虞がある。焼戻し温度は410℃以上もしくは420℃以上であってもよく、および/または470℃以下もしくは460℃以下であってもよい。
 さらに、焼戻し温度および焼戻し時間を変数とした下記焼戻しパラメータPを15000超17000未満とすることでV含有炭化物の核生成および成長を十分に進行させつつ、その粗大化を抑制することができる。
 P=(T+273)(log(t)+20)
 式中、Tは焼戻し温度(℃)であり、tは焼戻し時間(秒)である。一方、焼戻しパラメータが15000以下であると、V含有炭化物の析出および成長が十分に進行せず、粒子分散強化や水素トラップサイトとしての機能が十分に得られないため、所望の降伏比や耐水素脆性を達成することができない場合がある。また、焼戻しパラメータが17000以上であると、V含有炭化物が粗大化して微細なV含有炭化物を所望の個数密度で析出させることができなくなり、結果として十分な降伏比や耐水素脆性が得られなくなる場合がある。焼戻しパラメータPは、好ましくは16000以上、さらに好ましくは16200以上である。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 以下の実施例では、本発明の実施形態に係る熱延鋼板を種々の条件下で製造し、得られた熱延鋼板の機械特性について調べた。
 まず、連続鋳造法により表1に示す化学組成を有するスラブを製造した。次いで、これらのスラブから表2に示す加熱、熱間圧延、冷却、巻取および焼戻し条件により板厚2.5mmの熱延鋼板を製造した。なお、表1に示す成分以外の残部はFeおよび不純物である。また、製造した熱延鋼板から採取した試料を分析した化学組成は、表1に示すスラブの化学組成と同等であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[引張強度(TS)、降伏強度(YS)および降伏比(YR)の測定]
 このようにして得られた熱延鋼板から圧延方向に直角な方向からJIS5号引張試験片を採取し、JIS Z2241(2011)に準拠して引張試験を行い、引張強度(TS)および降伏強度(YS)を測定し、降伏比(YR)を算出した。なお、YRはYSをTSで除した値とした。
[V含有炭化物の円換算直径および個数密度の測定]
 V含有炭化物の円換算直径および個数密度は以下のようにして決定した。まず、鋼板表面から1/4位置における、直径3.0mmの円形領域の抽出レプリカサンプルを、透過型電子顕微鏡(TEM)を用いて6万倍の倍率(視野面積:4.5μm)で3視野観察し、各視野においてエネルギー分散型X線分光法(EDX)によりVが検出される析出物について、画像解析装置を用いて各析出物の面積を求め、これを円換算直径に換算した。次いで、当該円換算直径が8nm以上15nm以下のV含有炭化物の個数を算出してこれを観察視野の面積で除した値を求めて各視野におけるV含有炭化物の個数密度を算出し、これを上記の3視野で行い、得られた相加平均を円換算直径8~15nmのV含有炭化物の個数密度として決定した。
[打ち抜き性の評価]
 得られた熱延鋼板のサンプルを円盤上に打ち抜き加工し、光学顕微鏡にてせん断面を観察し、2次せん断面の有無を確認した。2次せん断面が生じなかったものを合格(○)、2次せん断面が生じたものを不合格(×)とした。
[耐水素脆性の評価]
 耐水素脆性を測定するにあたっては、上記の各熱延鋼板を板厚1.4mmに研削したうえで、幅6mm×長さ68mmの試験片を切り出し、四点曲げ試験にて降伏応力相当の歪を付与した後、pH3の塩酸に100h浸漬し、割れの発生有無で耐水素脆性を評価した。割れなかった熱延鋼板は合格(○)とし、割れた熱延鋼板は不合格(×)とした。
 TSが1180MPa以上であり、YRが87%以上であり、耐水素脆性および打ち抜き性の評価が○である場合を、高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板として評価した。結果を下表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例5は、仕上げ圧延の終了温度が850℃よりも低かったため、VC等のV含有炭化物が仕上げ圧延中に析出して粗大化し、円換算直径が8~15nmのV含有炭化物を所望の個数密度で析出させることができなかった。このため、十分なYRおよび耐水素脆性が得られなかった。比較例14は、仕上げ圧延後の平均冷却速度が40℃/秒より低かったため、十分に焼入れられず、最終組織で所望の焼戻しマルテンサイト面積率を達成できなかった。また、VC等のV含有炭化物が冷却時に析出して、焼戻し熱処理時に粗大化した。さらにこの熱処理時に焼戻しマルテンサイトを母相としないため、V含有炭化物の核生成サイトが少なく、最終組織において所望のV含有炭化物の個数密度を達成できなかった。したがって、十分なYRおよび耐水素脆性が得られなかった。比較例16は、巻取温度が350℃よりも高かったため、巻取時にベイナイト変態しながらVC等のV含有炭化物が析出し、その後の焼戻し熱処理時に粗大化した。したがって、最終組織において所望のV含有炭化物の個数密度を達成できず、十分なYRおよび耐水素脆性が得られなかった。さらに、巻取工程で生成したセメンタイトが大きかったため、打ち抜き性が劣化した。
 比較例18は、焼戻し温度が400℃以下であったため、VC等のV含有炭化物の析出に必要なVの拡散が起こらず、V含有炭化物が析出しなかった。したがって、十分なYRおよび耐水素脆性が得られなかった。比較例20は、焼戻し温度が480℃以上であったため、セメンタイトが粗大化して所望のアスペクト比が得られず、打ち抜き性が低下した。また、V含有炭化物が粗大化したため、微細なV含有炭化物を所望の個数密度で析出させることができず、十分なYRおよび耐水素脆性が得られなかった。比較例26は、焼戻しパラメータが15000以下であったため、VC等のV含有炭化物の析出および成長が十分に進行せず、粒子分散強化や水素トラップサイトとしての機能が十分に得られなかったため、YRおよび耐水素脆性が低下した。比較例28は、焼戻しパラメータが17000以上であったため、VC等のV含有炭化物が粗大化し、十分なYRおよび耐水素脆性が得られなかった。比較例30は、熱間圧延前の加熱温度が1100℃より低かったため、熱間圧延中にV含有炭化物が析出し、その後の熱処理で当該V含有炭化物が粗大化したため、十分なYRおよび耐水素脆性が得られなかった。
 比較例37は、C含有量が低かったため、引張強度TSが不足した。比較例38は、Si含有量が低かったため、焼戻しの遅れ効果がなく、TSが不足した。比較例39は、Mn含有量が低かったため、焼入れられず、V含有炭化物の微細多量析出に必要な母相転位密度が得られず、十分なYRおよび耐水素脆性が得られなかった。比較例40は、Mn含有量が低かったため、V含有炭化物の微細多量析出に必要な母相転位密度が得られずセメンタイトが粗大化し、十分なYRおよび耐水素脆性が得られなかった。比較例41は、Mn含有量が低く、焼き戻し温度が480℃以上であったため、セメンタイトが粗大化して所望のアスペクト比が得られず、打ち抜き性が低下した。また、V含有炭化物の微細多量析出に必要な母相転位密度が得られず、十分なYRおよび耐水素脆性が得られなかった。比較例42は、V含有量が低かったため、V含有炭化物の析出量が少なく、十分なYRおよび耐水素脆性が得られなかった。比較例43は、V含有量が高かったため、V含有炭化物が粗大化し、十分なYRおよび耐水素脆化性が得られなかった。比較例44は、Si/V比が高かったため、V含有炭化物の析出駆動力が下がり、微細なV含有炭化物を所望の個数密度で析出させることができず、十分なYRおよび耐水素脆性が得られなかった。
 これとは対照的に、本発明に係る全ての実施例において、熱延鋼板の化学組成および組織を適切に制御することにより、高強度でかつ衝突時のエネルギー吸収能、耐水素脆性および打ち抜き性に優れた熱延鋼板を得ることができた。

Claims (3)

  1.  質量%で、
     C:0.15~0.30%、
     Si:0.50~4.00%、
     Mn:2.00~4.00%、
     P:0.100%以下、
     S:0.005%以下、
     Al:0.010~0.500%、
     N:0.010%以下、および
     V:0.20~1.00%
    を含有し、Si/V比が10.0以下であり、残部がFeおよび不純物からなる化学組成を有し、
     面積率で焼戻しマルテンサイトを90%以上含有し、
     前記焼戻しマルテンサイト中に含まれるセメンタイトのうち、長径が400nm以下でアスペクト比が3~5のセメンタイトの含有量が70%以上であり、
     前記焼戻しマルテンサイト中に円換算直径8~15nmのV含有炭化物が30個/μm2以上の個数密度で析出していることを特徴とする、熱延鋼板。
  2.  さらに、質量%で、
     Nb:0.01~0.10%、
     Ti:0.01~0.10%以下、
     B:0.0001~0.0050%以下、
     Cr:0.005~1.000%、
     Mo:0.005~0.500%、
     Cu:0.50~3.00%、及び
     Ni:0.25~1.50%
    の1種または2種以上を含有し、
     CrおよびMoの1種または2種を含有する場合は、Cr、MoおよびVの含有量が(2Cr+Mo)/2V≦2.0の関係を満足する、
     請求項1に記載の熱延鋼板。
  3.  請求項1または2に記載の化学組成を有するスラブを1100℃以上に加熱する工程、
     加熱されたスラブを仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の終了温度が850~1050℃である熱間圧延工程、
     得られた鋼板を350℃以下まで40℃/秒以上の平均冷却速度で冷却する工程、
     前記鋼板を350℃以下の巻取温度で巻き取る工程、並びに
     前記鋼板を400℃超480℃未満の焼戻し温度Tで、下記式(1):
       15000<(T+273)×(log(t)+20)<17000 ・・(1)
    を満たす時間t(秒)にわたって焼戻す工程
     を含むことを特徴とする、熱延鋼板の製造方法。
PCT/JP2020/005382 2019-03-07 2020-02-12 熱延鋼板およびその製造方法 WO2020179387A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005669.3A CN112840046B (zh) 2019-03-07 2020-02-12 热轧钢板及其制造方法
JP2020530538A JP6835294B2 (ja) 2019-03-07 2020-02-12 熱延鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041341 2019-03-07
JP2019041341 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020179387A1 true WO2020179387A1 (ja) 2020-09-10

Family

ID=72338308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005382 WO2020179387A1 (ja) 2019-03-07 2020-02-12 熱延鋼板およびその製造方法

Country Status (3)

Country Link
JP (1) JP6835294B2 (ja)
CN (1) CN112840046B (ja)
WO (1) WO2020179387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135980A1 (ja) * 2022-01-14 2023-07-20 Jfeスチール株式会社 高強度鋼板およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117568703A (zh) * 2022-08-07 2024-02-20 宝山钢铁股份有限公司 一种优异抗低温脆性的热冲压部件及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183141A (ja) * 2004-11-30 2006-07-13 Jfe Steel Kk 高強度熱延鋼板およびその製造方法
JP2010018862A (ja) * 2008-07-11 2010-01-28 Kobe Steel Ltd 耐水素脆化特性および加工性に優れた高強度冷延鋼板
WO2014030663A1 (ja) * 2012-08-21 2014-02-27 新日鐵住金株式会社 鋼材
WO2017006563A1 (ja) * 2015-07-06 2017-01-12 Jfeスチール株式会社 高強度薄鋼板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065346A1 (ja) * 2011-11-01 2013-05-10 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
CN103882320B (zh) * 2012-12-21 2016-09-07 鞍钢股份有限公司 延伸凸缘性和点焊性优良的高强度冷轧钢板及其制造方法
PL3000905T3 (pl) * 2013-05-21 2020-04-30 Nippon Steel Corporation Blacha stalowa cienka walcowana na gorąco i sposób jej wytwarzania
JP6252713B1 (ja) * 2016-04-14 2017-12-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN109252107B (zh) * 2018-11-30 2021-01-19 湖南华菱湘潭钢铁有限公司 一种高平直度超高强钢的生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183141A (ja) * 2004-11-30 2006-07-13 Jfe Steel Kk 高強度熱延鋼板およびその製造方法
JP2010018862A (ja) * 2008-07-11 2010-01-28 Kobe Steel Ltd 耐水素脆化特性および加工性に優れた高強度冷延鋼板
WO2014030663A1 (ja) * 2012-08-21 2014-02-27 新日鐵住金株式会社 鋼材
WO2017006563A1 (ja) * 2015-07-06 2017-01-12 Jfeスチール株式会社 高強度薄鋼板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135980A1 (ja) * 2022-01-14 2023-07-20 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7359332B1 (ja) * 2022-01-14 2023-10-11 Jfeスチール株式会社 高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
JP6835294B2 (ja) 2021-02-24
JPWO2020179387A1 (ja) 2021-03-11
CN112840046B (zh) 2023-03-28
CN112840046A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
EP2554706B1 (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
KR100778264B1 (ko) 신장 특성 및 신장 플랜지 특성이 우수한 고장력열연강판과 그 제조방법
JP4855553B2 (ja) 高強度極厚h形鋼及びその製造方法
CA2941202A1 (en) Method for producing a high-strength flat steel product
WO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
WO2013132796A1 (ja) 高強度冷延鋼板及びその製造方法
WO2007111080A1 (ja) 極軟質高炭素熱延鋼板およびその製造方法
WO2014097559A1 (ja) 低降伏比高強度冷延鋼板およびその製造方法
CN111971407A (zh) 耐磨损钢及其制造方法
CN111094612B (zh) 热轧钢板及其制造方法
CN111133121B (zh) 热轧钢板及其制造方法
JP2011052295A (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP6468410B1 (ja) 熱延鋼板およびその製造方法
CN113383095A (zh) 热轧钢板及其制造方法
JP6816355B2 (ja) 熱延鋼板およびその製造方法
US11028456B2 (en) Electric resistance welded steel pipe for torsion beam
JP6835294B2 (ja) 熱延鋼板およびその製造方法
CN114829654B (zh) 热轧钢板
JP5483562B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
US20240002968A1 (en) Ultra-high strength cold rolled steel sheet having excellent bendability, and method of manufacturing same
JP7192818B2 (ja) 高強度鋼板およびその製造方法
JP7192819B2 (ja) 高強度鋼板およびその製造方法
JP5034296B2 (ja) 歪時効硬化特性に優れた熱延鋼板およびその製造方法
JP5532791B2 (ja) 高強度熱延鋼板およびその製造方法
WO2022149365A1 (ja) 鋼矢板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530538

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765962

Country of ref document: EP

Kind code of ref document: A1