WO2020179169A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2020179169A1
WO2020179169A1 PCT/JP2019/048329 JP2019048329W WO2020179169A1 WO 2020179169 A1 WO2020179169 A1 WO 2020179169A1 JP 2019048329 W JP2019048329 W JP 2019048329W WO 2020179169 A1 WO2020179169 A1 WO 2020179169A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
shoulder
center
tire
land portion
Prior art date
Application number
PCT/JP2019/048329
Other languages
French (fr)
Japanese (ja)
Inventor
真宜 榎本
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112019006559.9T priority Critical patent/DE112019006559T5/en
Priority to CN201980093274.0A priority patent/CN113597379B/en
Publication of WO2020179169A1 publication Critical patent/WO2020179169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/039Continuous ribs provided at the shoulder portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface

Definitions

  • the present invention relates to a pneumatic tire, and more specifically to a pneumatic tire capable of achieving both dry performance and wet performance of the tire.
  • the conventional pneumatic tire has both dry performance and wet performance of the tire because the land part has non-penetrating lug grooves and sipes.
  • the technique described in Patent Document 1 is known.
  • the purpose of this invention is to provide a pneumatic tire that can achieve both dry performance and wet performance of the tire.
  • a pneumatic tire according to the present invention has a center main groove and a shoulder main groove extending in the tire circumferential direction, and a center land portion and a shoulder defined by the center main groove and the shoulder main groove.
  • a pneumatic tire comprising a land portion, wherein the shoulder land portion has a circumferential narrow groove continuously extending in the tire circumferential direction, and the one end portion opens to the tire ground contact end and the other end.
  • Part has a first shoulder groove that ends in the shoulder land portion, and a second shoulder groove that opens in the shoulder main groove at one end and ends in the shoulder land portion at the other end.
  • the first shoulder groove has a groove width of 1.5 [mm] or more and 4.0 [mm] or less, does not intersect the circumferential narrow groove, and the second shoulder groove is 0. It has a groove width of 6 [mm] or more and 1.2 [mm] or less and intersects with the circumferential narrow groove.
  • the shoulder land portion has the circumferential narrow grooves continuously extending in the tire circumferential direction, and therefore the tire circumferential direction has a discontinuous circumferential narrow groove.
  • the first shoulder groove does not intersect the circumferential narrow groove, so that the dry performance of the tire is ensured as compared with the configuration in which the first shoulder groove intersects the circumferential narrow groove.
  • the narrow second shoulder groove intersects the circumferential narrow groove, so that the dry performance of the tire is ensured, and at the same time, the wet performance and the snow performance of the tire are improved.
  • FIG. 1 is a cross-sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the tread surface of the pneumatic tire shown in FIG.
  • FIG. 3 is an enlarged view showing the tread of the pneumatic tire shown in FIG.
  • FIG. 4 is an enlarged plan view showing the groove unit in the center land portion shown in FIG.
  • FIG. 5 is a sectional view in the groove depth direction showing the groove unit of the center land portion shown in FIG.
  • FIG. 6 is an enlarged plan view showing the groove unit of the shoulder land portion described in FIG.
  • FIG. 7 is a sectional view in the groove depth direction showing the groove unit of the shoulder land portion shown in FIG.
  • FIG. 1 is a cross-sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the tread surface of the pneumatic tire shown in FIG.
  • FIG. 3 is an enlarged view
  • FIG. 8 is a chart showing results of performance tests of pneumatic tires according to the embodiment of the present invention.
  • FIG. 9 is an explanatory view showing a test tire of a conventional example.
  • FIG. 10 is an explanatory view showing a test tire of a comparative example.
  • FIG. 1 is a cross-sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • the figure shows a cross-sectional view of one side region in the tire radial direction. Further, the figure shows a radial tire for a passenger car as an example of a pneumatic tire.
  • the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown).
  • Reference numeral CL is a tire equatorial plane, and refers to a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis.
  • the tire width direction means a direction parallel to the tire rotation axis
  • the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and has a pair of bead cores 11 and 11, a pair of bead fillers 12 and 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. , A pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the pair of bead cores 11, 11 are annular members formed by bundling a plurality of bead wires, and form the cores of the left and right bead parts.
  • the pair of bead fillers 12, 12 are respectively arranged on the outer circumferences of the pair of bead cores 11, 11 in the tire radial direction to form a bead portion.
  • the carcass layer 13 has a single-layer structure composed of one carcass ply or a multilayer structure formed by laminating a plurality of carcass plies, and is bridged in a toroidal shape between the left and right bead cores 11, 11 to form a skeleton of the tire. Constitute. Further, both ends of the carcass layer 13 are rolled back and locked to the outside in the tire width direction so as to surround the bead core 11 and the bead filler 12.
  • the carcass ply of the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber and rolling the carcass cord. It has a carcass angle of not less than [deg] and not more than 95 [deg] (defined as an inclination angle in the longitudinal direction of the carcass cord with respect to the tire circumferential direction).
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer circumference of the carcass layer 13.
  • the pair of intersecting belts 141 and 142 are formed by coating a plurality of belt cords made of steel or an organic fiber material with coated rubber and rolling the belt cords, and have an absolute value of a belt angle of 20 [deg] or more and 55 [deg] or less. Have.
  • the pair of crossing belts 141 and 142 have differently signed belt angles (defined as inclination angles in the longitudinal direction of the belt cord with respect to the tire circumferential direction), and the longitudinal directions of the belt cords intersect each other. (So-called cross-ply structure).
  • the belt cover 143 is formed by coating a belt cord made of steel or an organic fiber material with coating rubber, and has a belt angle of 0 [deg] or more and 10 [deg] or less in absolute value. Further, the belt cover 143 is, for example, a strip material formed by coating one or a plurality of belt cords with coated rubber, and the strip material is applied a plurality of times in the tire circumferential direction with respect to the outer peripheral surfaces of the cross belts 141 and 142. And it is composed by winding it in a spiral shape. Further, the belt cover 143 is arranged so as to cover the entire areas of the cross belts 141 and 142.
  • the tread rubber 15 is arranged on the tire radial outer periphery of the carcass layer 13 and the belt layer 14 to form a tread portion of the tire.
  • the pair of sidewall rubbers 16 and 16 are arranged on the tire width direction outer side of the carcass layer 13 to form left and right sidewall portions.
  • the pair of rim cushion rubbers 17, 17 are respectively arranged on the tire radial direction inner sides of the rewound portions of the left and right bead cores 11, 11 and the carcass layer 13 and configure contact surfaces of the left and right bead portions with respect to the rim flange.
  • FIG. 2 is a plan view showing the tread surface of the pneumatic tire shown in FIG. The figure shows the tread pattern of an all-season tire.
  • the tire circumferential direction means the direction around the tire rotation axis.
  • reference numeral T is a tire ground contact end.
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 divided into these circumferential main grooves 21 and 22. 32 is provided on the tread surface.
  • the left and right circumferential main grooves 22, 22 on the outermost side in the tire width direction are defined as shoulder main grooves, and the other circumferential main groove 21 between these circumferential main grooves 22, 22 is defined as the center. Defined as a main groove.
  • the left and right land portions 32, 32 on the outermost side in the tire width direction are defined as shoulder land portions, and the other land portions 31, 31 between these land portions 32, 32 are defined as center land portions. ..
  • an area on the inner side in the tire width direction bounded by the left and right shoulder main grooves 22, 22 is defined as a center area, and an area on the outer side in the tire width direction is defined as a shoulder area.
  • the main groove is a groove that is required to display a wear indicator specified in JATMA, and has a groove width of 4.0 [mm] or more and a groove depth of 7.5 [mm] or more.
  • Groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening when the tire is mounted on the specified rim and the specified internal pressure is filled up.
  • the groove width is based on the intersection point between the tread surface and the extension line of the groove wall. Be measured.
  • the groove width is measured with the center line of the amplitude of the groove wall as a reference.
  • the groove depth is measured as the maximum value of the distance from the tread tread to the groove bottom when the tire is attached to the specified rim and the specified internal pressure is filled and no load is applied. Further, in a configuration in which the groove has a partial uneven portion or a sipe on the groove bottom, the groove depth is measured excluding these.
  • “Regulated rim” means “applicable rim” specified by JATMA, “Design Rim” specified by TRA, or “Measuring Rim” specified by ETRTO.
  • the specified internal pressure means the "maximum air pressure” specified in JATTA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “INFLATION PRESSURES” specified in ETRTO.
  • the specified load refers to the "maximum load capacity" specified in JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
  • the specified internal pressure is an air pressure of 180 [kPa] and the specified load is 88[%] of the maximum load capacity.
  • a single center main groove 21 and a pair of shoulder main grooves 22, 22 are arranged symmetrically with respect to the tire equatorial plane CL. Further, the center main groove 21 is arranged on the tire equatorial plane CL.
  • the circumferential main grooves 21 and 22 define four rows of land portions 31 and 32.
  • the present invention is not limited to this, and four or more circumferential main grooves may be arranged, or the circumferential main grooves may be asymmetrical about the tire equatorial plane CL (not shown). Further, the land portion may be located on the tire equatorial plane CL (not shown) by disposing one circumferential main groove at a position deviated from the tire equatorial plane CL.
  • the circumferential main grooves 21 and 22 have a straight shape.
  • the present invention is not limited to this, and the circumferential main grooves 21 and 22 may have a zigzag shape or a wavy shape having an amplitude in the tire width direction (not shown).
  • the pneumatic tire 1 has a tread pattern that is symmetrical with respect to the left and right with a point on the tire equatorial plane CL as the center.
  • the pneumatic tire 1 is not limited to this, and may have, for example, a tread pattern that is bilaterally symmetric with respect to the tire equatorial plane CL or a tread pattern that is asymmetrical to the left and right, and the directionality in the tire rotation direction may be set. It may have a tread pattern (not shown).
  • FIG. 3 is an enlarged view showing the tread of the pneumatic tire shown in FIG.
  • the figure shows one side region of the tread with the tire equatorial plane CL as a boundary.
  • 4 and 5 are an enlarged plan view (FIG. 4) and a sectional view in the groove depth direction (FIG. 5) showing the groove unit of the center land portion shown in FIG. Further, FIG. 5 shows a sectional view in the groove depth direction along the first center groove 41 and the third center groove 43 of the groove unit 4ce.
  • the center land portion 31 includes a plurality of sets of groove units 4ce.
  • the groove unit 4ce is composed of a first center groove 41, a second center groove 42, and a third center groove 43 as one set. Further, a plurality of sets of groove units 4ce are arranged at predetermined intervals in the tire circumferential direction. The wet performance of the tire is ensured by these center grooves 41 to 43.
  • the first center groove 41, the second center groove 42, and the third center groove 43 are arranged without intersecting each other. That is, the three center grooves 41 to 43 are separated from each other and do not communicate with each other. Therefore, the center land portion 31 is not divided by the center grooves 41 to 43 of the groove unit 4ce and has a tread surface continuous in the tire circumferential direction. As a result, the rigidity of the center land portion 31 is secured, and the steering stability performance of the tire on a dry road surface is improved.
  • first center groove 41, the second center groove 42, and the third center groove 43 radially extend at an arrangement interval of 90 [deg] or more and 150 [deg] or less.
  • angle ⁇ formed by the first center groove 41 and the second center groove 42, the angle ⁇ formed by the second center groove 42 and the third center groove 43, the third center groove 43, and the first center groove 41. are both in the range of 90 [deg] or more and 150 [deg] or less. Further, it is preferable that the angles ⁇ to ⁇ are in the range of 105 [deg] or more and 135 [deg] or less.
  • the center grooves 41 to 43 of the groove unit 4ce are radially arranged at a predetermined interval, so that the rigidity of the center land portion 31 can be appropriately adjusted as compared with the configuration in which the center grooves 41 to 43 are unevenly distributed. As a result, the dry performance of the tire is efficiently improved.
  • grooves or sipes are arranged in a region (not shown) surrounding the outer periphery of the groove unit 4ce, specifically, in a triangular region connecting the ends of the three center grooves 41 to 43.
  • the land portion 31 has a continuous tread.
  • the rigidity of the center land portion 31 is efficiently secured, and the dry performance of the tire is efficiently improved.
  • the snow performance of the tire is improved.
  • the angle formed by adjacent grooves is defined as the angle formed by each virtual line connecting both ends of the groove.
  • the first center groove 41 is a lug groove having a groove width Wg1 (see FIG. 4) of 1.5 [mm] or more and 4.0 [mm] or less, and extends mainly in the tire width direction.
  • the groove width Wg1 of the first center groove 41 is preferably in the range of 1.7 [mm] ⁇ Wg1 ⁇ 2.5 [mm].
  • the first center groove 41 is opened at the tire ground contact surface to exert a drainage action and an edge action, thereby enhancing the wet performance and snow performance of the tire.
  • the first center groove 41 has a semi-closed structure which opens at the shoulder main groove 22 at one end and ends in the center land portion 31 at the other end. By opening the first center groove 41 in the shoulder main groove 22, the drainage action and snow performance of the first center groove 41 are improved.
  • the tire ground contact surface is the surface of the tire and the flat plate when the tire is mounted on the specified rim, a specified internal pressure is applied, and the tire is placed vertically to the plate in a stationary state and a load corresponding to the specified load is applied. Defined as a contact patch.
  • the second center groove 42 is a narrow groove or sipe having a groove width of 0.6 [mm] or more and 1.2 [mm] or less, and extends mainly in the tire circumferential direction. Further, it is preferable that the second center groove 42 has a groove width Wg2 of less than 1.0 [mm] and is a sipe that closes at the tire ground contact surface.
  • the second center groove 42 enhances the wet performance of the tire due to the water absorption effect on the wet road surface. Further, the second center groove 42 increases the adsorbing action on the road surface on snow and the road surface on ice, and improves the snow performance and the on-ice performance of the tire.
  • the second center groove 42 has a closed structure in which the left and right ends terminate in the center land portion 31. Since the second center groove 42 extending in the tire circumferential direction has a groove width narrower than that of the first center groove 41, the rigidity of the center land portion 31 is properly secured and the dryness of the tire is improved. ..
  • the narrow groove and sipe are distinguished by the fact that the narrow groove opens at the tire contact surface and the sipe closes at the tire contact surface.
  • the third center groove 43 is a lug groove, a narrow groove, or a sipe having a groove width Wg3 of 0.6 [mm] or more and 2.0 [mm] or less, and extends mainly in the tire width direction.
  • the third center groove 43 has a semi-closed structure that opens at the center main groove 21 at one end and ends in the center land portion 31 at the other end. Further, the third center groove 43 extends from the inside of the center land portion 31 to a different side with respect to the first center groove 41 and opens to the center main groove 21 on the tire equatorial plane CL side of the center land portion 31. ..
  • the groove width Wg1 of the first center groove 41, the groove width Wg2 of the second center groove 42, and the groove width Wg3 of the third center groove 43 have a relationship of Wg2 ⁇ Wg1 and Wg3 ⁇ Wg1. That is, the groove width Wg1 of the first center groove 41, which is a lug groove, is the widest. As a result, the function of the first center groove 41 as a lug groove is effectively exhibited, and the wet performance of the tire is improved.
  • the groove width Wg2 of the second center groove 42, and the groove width Wg1 of the first center groove 41 and the groove width Wg3 of the third center groove 43 have a relationship of Wg2 ⁇ Wg3 and Wg2 ⁇ Wg1. That is, the groove width Wg2 of the second center groove 42 extending mainly in the tire circumferential direction is the narrowest. Further, it is preferable that the difference between the groove widths Wg1 to Wg3 is 0.1 [mm] or more. As a result, the rigidity of the center land portion 31 is ensured, and the dry performance of the tire is ensured.
  • the second center groove 42 and the third center groove 43 are narrow grooves or sipes having groove widths Wg2 and Wg3 of 1.2 [mm] or less, and the grooves of the first center groove 41.
  • the groove widths Wg2 and Wg3 are narrower than the width Wg1.
  • Such a configuration is preferable in that the rigidity of the center land portion 31 is secured and the dry performance of the tire is improved.
  • the inclination angle ⁇ 1 of the first center groove 41 with respect to the tire circumferential direction is preferably in the range of 30 [deg] ⁇ 1 ⁇ 60 [deg], and 40 [deg] ⁇ 1 ⁇ 50 [deg ] Is more preferable. Thereby, the drainage action of the first center groove 41 is improved, and the function of the first center groove 41 as a lug groove is ensured.
  • the inclination angle ⁇ 2 of the second center groove 42 with respect to the tire circumferential direction is preferably in the range of 0 [deg] ⁇ 2 ⁇ 30 [deg], and in the range of 0 [deg] ⁇ 2 ⁇ 20 [deg]. More preferably.
  • the second center groove 42 may be inclined toward the first center groove 41 side from the central portion of the groove unit 4ce toward the peripheral portion (see FIG. 4), or conversely, the third center groove 43 side. It may be tilted to (not shown).
  • the groove inclination angle is an angle formed by each virtual line connecting both ends of the groove and the tire circumferential direction, and is defined in the range of 0 [deg] to 90 [deg].
  • the inclination angle ⁇ 2 of the second center groove 42 with respect to the tire circumferential direction, the inclination angle ⁇ 1 of the first center groove 41 with respect to the tire circumferential direction, and the inclination angle ⁇ 3 of the third center groove 43 with respect to the tire circumferential direction are ⁇ 2 ⁇ 1. And, there is a relationship of ⁇ 2 ⁇ 3. That is, the second center groove 42 extends mainly in the tire circumferential direction, and as a result, the other grooves 41, 43 mainly extend in the tire width direction due to the restrictions of the arrangement intervals angles ⁇ , ⁇ , ⁇ . Exists.
  • the first center groove 41, the second center groove 42, and the third center groove 43 have their end portions opposed to each other at the central portion of the center land portion 31, and are radially centered around this position. It is postponed. Further, the first center groove 41 is inclined at an inclination angle ⁇ 1 with respect to the tire circumferential direction and opens to the shoulder main groove 22 on the outer side in the tire width direction (see FIG. 3 ). Further, the third center groove 43 is inclined in the opposite direction to the first center groove 41 at an inclination angle ⁇ 2 and opens to the center main groove 21 on the tire equatorial plane CL side.
  • the first center groove 41 and the third center groove 43 are arranged in a V-shape that is convex in the tire circumferential direction.
  • the second center groove 42 extends in the V-shaped convex direction of the first center groove 41 and the third center groove 43 at an inclination angle ⁇ 2.
  • the second center groove 42 extends in the tire circumferential direction at the center of the center land portion 31, and the first center groove 41 and the third center groove 43 extend in the tire width direction with the second center groove 42 as the center. It extends to the left and right.
  • two other second center grooves 42 and third center grooves 43 are arranged close to one first center groove 41.
  • the distance Da between the first center groove 41 and the second center groove 42 and the distance Db between the first center groove 41 and the third center groove 43 are 1.0 [mm] ⁇ Da ⁇ 5.
  • the relationship is 0.0 [mm] and 1.0 [mm] ⁇ Db ⁇ 5.0 [mm].
  • the range of the distance Dc (dimension symbols omitted in the drawing) between the second center groove 42 and the third center groove 43 is not particularly limited, but is 1.0 [mm] ⁇ like the other distances Da and Db. It is preferable that Dc ⁇ 5.0 [mm].
  • the distance between adjacent grooves is measured as the distance between the tread treads.
  • the three center grooves 41 to 43 have their terminations facing each other at the center of the center land portion 31, and extend radially around this position.
  • the first center groove 41 and the second center groove 42 are arranged apart from each other in the tire circumferential direction and do not overlap each other in the tire circumferential direction.
  • the first center groove 41 and the second center groove 42 are closest to each other at the end portions of the grooves 41, 42 in the center land portion 31. Therefore, the distance Da between the adjacent grooves 41 and 42 is measured as the distance between the end portions of the grooves 41 and 42.
  • first center groove 41 and the third center groove 43 are arranged apart from each other in the tire width direction and do not overlap each other in the tire width direction. Further, the first center groove 41 and the third center groove 43 are closest to each other at the end portions of the grooves 41 and 42 in the center land portion 31. Therefore, the distance Db between the adjacent center grooves 41 and 43 is measured as the distance between the end portions of the center grooves 41 and 43.
  • the first center groove 41 and the second center groove 42 and the third center groove 43 are arranged at mutually different positions in the tire circumferential direction or the tire width direction. It is preferable in that the action can be efficiently obtained.
  • the second center groove 42 and both the first center groove 41 and the third center groove 43 are separated from each other in the tire circumferential direction and do not overlap in the tire circumferential direction. Further, the third center groove 43 and the first center groove 41 and the second center groove 42 are separated from each other in the tire width direction and do not overlap in the tire width direction. Such a configuration is preferable in that the functions of the second center groove 42 and the third center groove 43 can be efficiently obtained.
  • first center groove 41 and the third center groove 43 are inclined in different directions in the tire circumferential direction, and are arranged so as to overlap each other in the tire circumferential direction.
  • the angle ⁇ formed by the first center groove 41 and the third center groove 43 is in the range of 90 [deg] or more and 150 [deg] or less, the first center groove 41 is in the tire circumferential direction.
  • the first center groove 41 and the third center groove 43 necessarily have the above positional relationship.
  • the second center groove 42 is inclined toward the first center groove 41, so that the second center groove 42 and the first center groove 41 overlap each other in the tire width direction, while the second center groove 42 and the first center groove 41 overlap each other.
  • the second center groove 42 and the third center groove 43 do not overlap each other in the tire width direction.
  • the present invention is not limited to this, and the second center groove 42 and the third center groove 43 may overlap each other in the tire width direction by inclining the second center groove 42 toward the third center groove 43 side. (Not shown).
  • the extending length L1 of the first center groove 41 in the tire width direction and the width Wce of the center land portion 31 may have a relationship of 0.40 ⁇ L1/Wce ⁇ 0.80. It is preferable to have a relationship of 0.50 ⁇ L1 / Wce ⁇ 0.70. As a result, the extending length L1 of the first center groove 41 is optimized.
  • the extension length L2 of the second center groove 42 in the tire circumferential direction and the width Wce of the center land portion 31 have a relationship of 0.20 ⁇ L2/Wce ⁇ 0.50, and 0.20 ⁇ . It is more preferable to have a relationship of L2 / Wce ⁇ 0.30. As a result, the extending length L2 of the second center groove 42 is optimized.
  • the extension length L3 of the third center groove 43 in the tire width direction is not particularly limited, but the extension length L1 of the first center groove 41 and the first center groove described above are not particularly limited. It is restricted by the relationship between the angle ⁇ formed by 41 and the third center groove 43 and the distance Db between the first center groove 41 and the third center groove 43.
  • the extension lengths L1 and L3 of the first center groove 41 and the third center groove 43 are measured as the distance in the tire width direction between the terminal ends of the grooves 41 and 43 and the openings for the center main groove 21 and the shoulder main groove 22. Will be done.
  • the extension length L2 of the second center groove 42 is measured as the distance between both ends of the groove 42 in the tire circumferential direction.
  • the width of the land area is measured as the width of the ground contact area of the land area when the tire is mounted on the specified rim, the specified internal pressure is applied, and there is no load.
  • each of the center grooves 41 to 43 of the groove unit 4ce all have a straight shape.
  • each of the center grooves 41 to 43 may have an arc shape, a wave shape, a zigzag shape, etc. (not shown).
  • the second center groove 42 or the third center groove 43 may be a sipe having a zigzag shape.
  • the groove depth Hm of the center main groove 22 and the groove depth H1 of the first center groove 41 have a relationship of 0.50 ⁇ H1/Hm ⁇ 0.90. Further, the groove depth H1 of the first center groove 41, the groove depth H2 of the second center groove 42, and the groove depth H3 of the third center groove 43 have a relationship of H2 ⁇ H1 and H3 ⁇ H1. Therefore, the groove depth H1 of the first center groove 41 is the deepest as compared with the other grooves 42 and 43. As a result, the groove depth H1 of the first center groove 41 is optimized.
  • the groove depth Hm of the center main groove 22 and the groove depth H2 of the second center groove 42 have a relationship of 0.20 ⁇ H2/Hm ⁇ 0.50. Further, the groove depth H2 of the second center groove 42, the groove depth H1 of the first center groove 41, and the groove depth H3 of the third center groove 43 have a relationship of H2 ⁇ H3 and H2 ⁇ H1. Therefore, the groove depth H2 of the second center groove 42 is the shallowest as compared with the other grooves 41 and 43. Further, the groove depth H2 of the second center groove 42 is preferably in the range of 1.5 [mm] ⁇ H2. As a result, the shallowest groove depth H2 of the second center groove 42 is properly secured.
  • FIG. 6 and 7 are an enlarged plan view (FIG. 6) and a sectional view in the groove depth direction (FIG. 7) showing the groove unit of the shoulder land portion shown in FIG. Further, FIG. 7 shows a cross-sectional view in the groove depth direction along the first shoulder groove 44 and the second shoulder groove 45.
  • the shoulder land portion 32 includes a circumferential narrow groove 23 and first to third shoulder grooves 44 to 46.
  • the circumferential narrow groove 23 is a narrow groove continuously extending in the tire circumferential direction, and extends parallel to the tire circumferential direction with respect to the tire circumferential direction.
  • the circumferential narrow groove 23 has a groove width Wgs that is sufficiently narrower than the shoulder main groove 22 (see FIG. 3 ). Further, it is preferable that the groove width Wgs of the circumferential narrow groove 23 has a relationship of 0.10 ⁇ Wgs/Wgm ⁇ 0.40 with respect to the groove width Wgm of the shoulder main groove 22. Further, it is preferable that the groove width Wgs of the circumferential narrow groove 23 is in the range of 1.0 [mm] ⁇ Wgs ⁇ 4.0 [mm].
  • the groove depth Hs of the circumferential narrow groove 23 (see FIG. 7) has a relationship of 0.30 ⁇ Hs / Hm ⁇ 0.70 with respect to the groove depth Hm of the shoulder main groove 22.
  • the groove width Wgs and the groove depth Hs of the circumferential narrow groove 23 are optimized.
  • the distance Ds from the edge portion of the shoulder land portion 32 on the shoulder main groove 22 side to the groove center line of the circumferential narrow groove 23 is 0.10 ⁇ Ds with respect to the width Wsh of the shoulder land portion 32.
  • /Wsh ⁇ 0.40 is preferable, and 0.15 ⁇ Ds/Wsh ⁇ 0.30 is more preferable.
  • the shoulder land portion 32 does not include any other circumferential narrow groove in the area between the circumferential narrow groove 23 and the tire ground contact end T. Therefore, the shoulder land portion 32 has a wide tread surface continuous in the tire width direction, in which the region between the circumferential narrow groove 23 and the tire ground contact end T is not divided by other circumferential fine grooves.
  • the other circumferential narrow groove is a narrow groove having an inclination angle of 0 [deg] or more and 20 [deg] or less with respect to the tire circumferential direction and a groove width of 4.0 [mm] or less. Defined.
  • the tire ground contact end T is a contact surface between the tire and the flat plate when the tire is attached to a specified rim and a specified internal pressure is applied, and the tire is placed perpendicular to the plate in a stationary state and a load corresponding to the specified load is applied. Is defined as the maximum width position in the tire axial direction.
  • the shoulder land portion 32 since the shoulder land portion 32 includes the circumferential narrow groove 23 that continuously extends in the tire circumferential direction, the shoulder land portion 32 includes the circumferential narrow groove that is discontinuous in the tire circumferential direction (see FIG. 9 described later). Compared with, the drainage property of the shoulder land portion 32 and the edge component in the tire width direction are increased. This improves the wet performance and snow performance of the tire.
  • the first shoulder groove 44 is a lug groove having a semi-closed structure, opens at the tire ground contact end T at one end, extends in the tire width direction, and extends inside the shoulder land portion 32 at the other end. Terminate with. Further, the end portion of the first shoulder groove 44 is in the region between the circumferential narrow groove 23 and the tire ground contact end T, and therefore the first shoulder groove 44 does not intersect the circumferential narrow groove 23.
  • the first shoulder groove 44 has a groove width Wg4 (see FIG. 6) of 1.5 [mm] or more and 4.0 [mm] or less. Further, the groove depth H4 of the first shoulder groove 44 (see FIG. 7) has a relationship of 0.50 ⁇ H4 / Hm ⁇ 0.90 with respect to the groove depth Hm of the shoulder main groove 22. Further, as shown in FIG. 7, the groove depth H4 of the first shoulder groove 44 is deeper than the groove depth of the circumferential narrow groove 23.
  • the extending length L4 of the first shoulder groove 44 in the ground contact surface of the shoulder land portion 32 is 0.30 ⁇ L4/Wsh ⁇ 0.50 with respect to the width Wsh of the shoulder land portion 32. It is preferable to have a relationship, and it is more preferable to have a relationship of 0.35 ⁇ L4/Wsh ⁇ 0.45.
  • the inclination angle ⁇ 4 of the first shoulder groove 44 with respect to the tire circumferential direction is in the range of 50 [deg] ⁇ 4 ⁇ 88 [deg].
  • the distance Ds of the circumferential narrow groove 23 and the extension length L4 of the first shoulder groove 44 are 0.40 ⁇ (Wsh ⁇ Ds ⁇ L4)/Wsh with respect to the width Wsh of the shoulder land portion. It is preferable to have a relationship of 0.45 ⁇ (Wsh ⁇ Ds ⁇ L4)/Wsh. Thereby, the distance from the end portion of the first shoulder groove 44 to the circumferential narrow groove 23 is properly secured.
  • the upper limit of the ratio (Wsh-Ds-L4)/Wsh is not particularly limited, but is limited by the range of the distance Ds and the extension length L4.
  • the width Wce of the center region and the width Wsh of the shoulder land portion 32 are in the range of 20% to 50% with respect to the tire ground contact width TW (see FIG. 2). As a result, the widths Wce and Wsh of the land portions 31 and 32 are optimized.
  • the tire ground contact width TW is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim, a specified internal pressure is applied, and the tire is placed vertically on the plate in a stationary state and a load corresponding to the specified load is applied. Is measured as the maximum linear distance in the tire axial direction.
  • the second shoulder groove 45 is a sipe or a narrow groove having a semi-closed structure, opens at the shoulder main groove 22 at one end, extends in the tire width direction, and has a shoulder land at the other end. It ends in the part 32.
  • the terminal end portion of the second shoulder groove 45 is in the region between the circumferential narrow groove 23 and the tire ground contact end T, and therefore the second shoulder groove 45 intersects the circumferential narrow groove 23.
  • the narrow second shoulder groove 45 intersects the circumferential narrow groove 23 to suppress the decrease in rigidity of the shoulder land portion 32, and the shoulder main groove 22 to the first shoulder groove 44. Drainage and edge components in the tire circumferential direction are ensured in the area up to the end. As a result, the dry performance of the tire is ensured, and at the same time, the wet performance and the snow performance of the tire are improved.
  • the second shoulder groove 45 has a groove width Wg5 (see FIG. 6) of 0.6 [mm] or more and 1.2 [mm] or less.
  • the groove depth H5 of the second shoulder groove 45 (see FIG. 7) has a relationship of 0.30 ⁇ H5/Hm ⁇ 0.70 with respect to the groove depth Hm of the shoulder main groove 22. Further, as shown in FIG. 7, the groove depth H5 of the second shoulder groove 45 is deeper than the groove depth of the circumferential narrow groove 23 and shallower than the groove depth H4 of the first shoulder groove 44.
  • the second shoulder groove 45 is a sipe that closes when the tire touches the ground.
  • the rigidity of the shoulder land portion 32 when the tire touches the ground particularly the rigidity of the fine ribs (reference numerals omitted in the drawing) divided into the circumferential narrow groove 23 and the shoulder main groove 22 is ensured.
  • the second shoulder groove 45 has a linear shape.
  • the second shoulder groove 45 may have a gentle arc shape (not shown).
  • the second shoulder groove 45 is arranged so as to be separated from the first shoulder groove 44 in the tire width direction and not to overlap in the tire width direction.
  • the distance Dc between the second shoulder groove 45 and the first shoulder groove 44 is in the range of 1.0 [mm] ⁇ Dc ⁇ 5.0 [mm].
  • the extension length of the second shoulder groove 45 in the tire width direction is not particularly limited, but the distance Dc and the extension length L4 of the first shoulder groove 44 are the same. Constrained by relationships.
  • the second shoulder groove 45 is arranged apart from the first shoulder groove 44, a ventilation path in the vulcanization molding process of the tire is secured, and vulcanization failure of the tire is suppressed. .. Further, since the second shoulder groove 45 is arranged close to the first shoulder groove 44, the drainage property of the shoulder land portion 32 is improved.
  • the inclination angle ⁇ 5 of the second shoulder groove 45 with respect to the tire circumferential direction is preferably in the range of 30 [deg] ⁇ 5 ⁇ 60 [deg], and 40 [deg] ⁇ 5 ⁇ 50 [deg ] Is more preferable. Further, the inclination angle ⁇ 5 of the second shoulder groove 45 has a relationship of ⁇ 5 ⁇ 4 with respect to the inclination angle ⁇ 4 of the first shoulder groove 44.
  • the first shoulder groove 44 and the second shoulder groove 45 are inclined in directions opposite to each other with respect to the tire circumferential direction.
  • the steering stability performance (particularly turning performance) of the tire is improved as compared with the configuration in which the first shoulder groove 44 and the second shoulder groove 45 are inclined in the same direction.
  • the angle ⁇ formed by the first shoulder groove 44 and the second shoulder groove 45 is preferably in the range of 120 [deg] ⁇ ⁇ ⁇ 160 [deg], and 130 [deg] ⁇ ⁇ ⁇ 150 [deg]. More preferably in the range.
  • the third shoulder groove 46 is a sipe or narrow groove having a semi-closed structure, which opens to the tire ground contact end T at one end, extends in the tire width direction, and has a shoulder land portion at the other end. Terminate within 32. Further, the end portion of the third shoulder groove 46 is in the region between the circumferential narrow groove 23 and the tire ground contact end T, and therefore the third shoulder groove 46 does not intersect the circumferential narrow groove 23. Further, the third shoulder groove 46 has a groove width of 0.6 [mm] or more and 2.0 [mm] or less (dimension symbols omitted in the drawing). Further, the groove depth of the third shoulder groove 46 (the dimension symbol is omitted in the drawing) is in the range of 30% or more and 60% or less with respect to the groove depth Hm of the shoulder main groove 22.
  • the extension length L6 of the third shoulder groove 46 in the ground contact surface of the shoulder land portion 32 is 0.35 ⁇ L6/Wsh ⁇ 0.65 with respect to the width Wsh of the shoulder land portion 32. It is preferable to have a relationship, and it is more preferable to have a relationship of 0.40 ⁇ L6/Wsh ⁇ 0.60. It is preferable that the extension length L6 of the third shoulder groove 46 has a relationship of 1.10 ⁇ L6/L4 ⁇ 1.25 with respect to the extension length L4 of the first shoulder groove 44.
  • the inclination angle ⁇ 6 of the third shoulder groove 46 with respect to the tire circumferential direction is in the range of 50 [deg] ⁇ ⁇ 6 ⁇ 88 [deg]. Further, it is preferable that the inclination angle ⁇ 4 of the first shoulder groove 44 is within the range of ⁇ 10 [deg] ⁇ 6 ⁇ 4 ⁇ 10 [deg]. Therefore, the third shoulder groove 46 is arranged substantially parallel to the first shoulder groove 44.
  • the first center groove 41 of the center land portion 31 is arranged offset from the first shoulder groove 44 of the shoulder land portion 32 in the tire circumferential direction. Specifically, when the first center groove 41 of the center land portion 31 and the first shoulder groove 44 of the shoulder land portion 32 are projected and viewed in the tire width direction, they are arranged so as not to overlap each other. .. As a result, the pattern noise caused by the arrangement of the relatively wide grooves 41 and 44 is reduced, and the noise performance of the tire is improved.
  • the second shoulder groove 45 of the shoulder land portion 32 extends along the extension line of the groove center line of the first center groove 41 of the center land portion 31. Specifically, the second shoulder groove 45 is inclined in the same direction with respect to the first center groove 41, and the second shoulder groove 45 is arranged substantially parallel to the first center groove 41. Further, the distance Dp of the second shoulder groove 45 with respect to the extension line of the groove center line of the first center groove 41 is 0 ⁇ Dp / Wg1 ⁇ 2 with respect to the groove width Wg1 (see FIG. 4) of the first center groove 41. It has a relationship of 00.
  • the first center groove 41 and the second shoulder groove 45 have a linear shape, but not limited to this, they may have an arc shape (not shown).
  • the pneumatic tire 1 includes the center main groove 21 and the shoulder main groove 22 extending in the tire circumferential direction, and the center land portion 31 and the shoulder defined by the center main groove 21 and the shoulder main groove 22. It is provided with a land portion 32 (see FIG. 2).
  • the shoulder land portion 32 has a circumferential narrow groove 23 continuously extending in the tire circumferential direction, and the shoulder land portion 32 opens at the tire ground contact end T at one end and inside the shoulder land portion 32 at the other end.
  • a second shoulder groove 45 that opens into the shoulder main groove 22 at one end and ends in the shoulder land portion 32 at the other end (see FIG. 6). ).
  • the first shoulder groove 44 has a groove width Wg4 of 1.5 [mm] or more and 4.0 [mm] or less and does not intersect the circumferential narrow groove 23.
  • the second shoulder groove 45 has a groove width Wg5 of 0.6 [mm] or more and 1.2 [mm] or less and intersects the circumferential narrow groove 23.
  • the shoulder land portion 32 is provided with a circumferential fine groove 23 extending continuously in the tire circumferential direction, and thus is provided with a circumferential fine groove discontinuous in the tire circumferential direction (FIG. 9 described later).
  • the drainage property of the shoulder land portion 32 and the edge component in the tire width direction are increased.
  • the first shoulder groove 44 does not intersect with the circumferential narrow groove 23, so that the first shoulder groove 44 intersects with the circumferential narrow groove 23 (see FIG. 10 described later).
  • the rigidity of the shoulder land portion 32 is secured. This has the advantage of ensuring the dry performance of the tire.
  • the narrow second shoulder groove 45 intersects with the circumferential narrow groove 23, so that the rigidity reduction of the shoulder land portion 32 is suppressed and the shoulder main groove 22 to the first shoulder groove 44 are changed.
  • the drainage property and the edge component in the tire circumferential direction in the region up to the terminal end are secured.
  • the dry performance of the tire is secured, and at the same time, the wet performance and snow performance of the tire are improved.
  • the groove width Wgs of the circumferential narrow groove 23 has a relationship of 0.10 ⁇ Wgs/Wgm ⁇ 0.40 with respect to the groove width Wgm of the shoulder main groove 22 (see FIG. 3). ).
  • the lower limit ensures the function of the circumferential narrow groove 23, and the upper limit ensures the rigidity of the shoulder land portion 32.
  • the groove depth Hs of the circumferential narrow groove 23 has a relationship of 0.30 ⁇ Hs / Hm ⁇ 0.70 with respect to the groove depth Hm of the shoulder main groove 22 (FIG. 7).
  • the lower limit ensures the function of the circumferential narrow groove 23, and the upper limit ensures the rigidity of the shoulder land portion 32.
  • the distance Ds from the edge portion of the shoulder land portion 32 on the shoulder main groove 22 side to the groove center line of the circumferential narrow groove 23 is relative to the width Wsh of the ground contact area of the shoulder land portion 32. 0.10 ⁇ Ds/Wsh ⁇ 0.40 (see FIG. 6).
  • the shoulder land portion 32 does not have any other circumferential narrow groove in the region between the circumferential narrow groove 23 and the tire ground contact end T (see FIG. 3 ). This has the advantage of ensuring the rigidity of the shoulder land portion 32.
  • the extending length L4 of the first shoulder groove 44 in the ground contact surface of the shoulder land portion 32 is 0.30 ⁇ L4 / with respect to the width Wsh of the ground contact region of the shoulder land portion 32. It has a relationship of Wsh ⁇ 0.50 (see FIG. 6).
  • the lower limit secures the drainage action of the first shoulder groove 44
  • the upper limit has an advantage that the rigidity reduction of the shoulder land portion 32 due to the excessive extension length L4 of the first shoulder groove 44 is suppressed. is there.
  • the width Wsh of the shoulder land portion 32 has a relationship of 0.15 ⁇ Wsh/TW ⁇ 0.35 with respect to the tire ground contact width TW (see FIG. 2). This has an advantage that the width Wsh of the shoulder land portion 32 is optimized.
  • the inclination angle ⁇ 4 of the first shoulder groove 44 with respect to the tire circumferential direction is in the range of 50 [deg] ⁇ 4 ⁇ 85 [deg] (see FIG. 6).
  • the second shoulder groove 45 is arranged apart from the first shoulder groove 44 in the tire width direction. With such a configuration, the second shoulder groove 45 is arranged apart from the first shoulder groove 44, so that an air passage is secured in the tire vulcanization molding step, and vulcanization failure of the tire is suppressed. There is.
  • the distance Dc between the second shoulder groove 45 and the first shoulder groove 44 is in the range of 1.0 [mm] ⁇ Dc ⁇ 5.0 [mm].
  • the distance Dc between the second shoulder groove 45 and the first shoulder groove 44 is optimized.
  • the second shoulder groove 45 is arranged close to the first shoulder groove 44, so that the drainage property of the shoulder land portion 32 is improved.
  • the first shoulder groove 44 and the second shoulder groove 45 are inclined in the directions opposite to each other with respect to the tire circumferential direction (see FIG. 6).
  • Such a configuration has an advantage that steering stability performance (particularly turning performance) of the tire is improved as compared with a configuration in which the first shoulder groove 44 and the second shoulder groove 45 are inclined in the same direction.
  • the inclination angle ⁇ 5 of the second shoulder groove 45 with respect to the tire circumferential direction is in the range of 30 [deg] ⁇ 5 ⁇ 60 [deg]. This has an advantage that the inclination angle ⁇ 5 of the second shoulder groove 45 is optimized.
  • the angle ⁇ formed by the first shoulder groove 44 and the second shoulder groove 45 is in the range of 90 [deg] ⁇ 150 [deg]. This has the advantage that the angle ⁇ formed by the first shoulder groove 44 and the second shoulder groove 45 is optimized.
  • the shoulder land portion 32 includes the third shoulder groove 46 arranged between the adjacent first shoulder grooves 44, 44 (see FIG. 6). Further, the extension length L6 of the third shoulder groove 46 in the tire ground contact plane has a relationship of 1.10 ⁇ L6/L4 ⁇ 1.25 with respect to the extension length L4 of the first shoulder groove 44. With such a configuration, the edge component of the shoulder land portion 32 is increased by the third shoulder groove 46, and there is an advantage that the snow performance of the tire is improved.
  • the center land portion 31 includes a plurality of sets of groove units 4ce each including the first center groove 41, the second center groove 42, and the third center groove 43 as one set (FIG. 2). reference). Further, the first center groove 41, the second center groove 42, and the third center groove 43 are arranged without intersecting each other and are radially arranged at an arrangement interval ⁇ , ⁇ , ⁇ of 90 [deg] or more and 150 [deg] or less. (See FIG. 4). In addition, the first center groove 41 has a groove width Wg1 of 1.5 [mm] or more and 4.0 [mm] or less, and opens at the shoulder main groove 22 at one end and at the other end. Ends in the center land portion 31.
  • the wet performance of the tire is ensured by the groove unit 4ce including a set of three center grooves 41 to 43. Further, (2) since the center grooves 41 to 43 are arranged without intersecting with each other, the rigidity of the center land portion 31 is secured and the dry performance of the tire is secured. Further, (3) since the center grooves 41 to 43 radially extend at the arrangement intervals ⁇ , ⁇ , ⁇ of 90 [deg] or more and 150 [deg] or less, compared with the configuration in which the center grooves 41 to 43 are unevenly distributed. The rigidity of the center land portion 31 is efficiently ensured, and the dry performance of the tire is efficiently improved.
  • the first center groove 41 is a lug groove, the drainage of the land portions 31 and 32 is ensured, and the wet performance of the tire is ensured. With these, there is an advantage that the wet performance and the dry performance of the tire are compatible with each other.
  • FIG. 8 is a chart showing the results of a performance test of the pneumatic tire according to the embodiment of the present invention.
  • 9 and 10 are explanatory views showing test tires of a conventional example (FIG. 9) and a comparative example (FIG. 10). These figures show tread plan views of the center land portion and the shoulder land portion in the tire one side region.
  • test tire with a tire size of 185/60R15 is mounted on a rim with a rim size of 15 ⁇ 6J, and the inner pressure of the front wheels 240 [kPa] and the rear wheels 230 [kPa] and the maximum load specified by JATMA are applied to the test tire.
  • test vehicle runs on a test course on a dry road surface with a flat peripheral circuit at 60 [km/h] to 100 [km/h]. Then, the test driver performs a sensory evaluation on the steerability during lane change and cornering and the stability during straight running. This evaluation is performed by index evaluation using the conventional example as a reference (100), and the larger the value, the more preferable. Further, if the value is 98 or more, it can be said that the dry steering stability performance is properly secured.
  • the test vehicle runs on a predetermined handling course on a snowy road at a speed of 40 [km/h], and the test driver performs a sensory evaluation on steering stability.
  • This evaluation is performed by index evaluation using the conventional example as a reference (100), and the larger the value, the more preferable.
  • the test tire of the embodiment has the configurations shown in FIGS. 1 to 3, has a plurality of sets of groove units 4ce composed of three center grooves 41 to 43 in which the center land portion 31 is radially arranged, and has a shoulder land portion.
  • 32 has a circumferential narrow groove 23 and first to third shoulder grooves 44 to 46.
  • the groove width Wgm of the shoulder main groove 22 is 9.3 [mm]
  • the groove depth Hm is 7.0 [mm].
  • the groove width Wgs of the circumferential narrow groove 23 is 1.5 [mm]
  • the groove depth Hs is 3.5 [mm].
  • the groove width Wg4 of the first shoulder groove 44 is 3.8 [mm]
  • the groove depth H4 is 5.0 [mm]
  • the inclination angle ⁇ 4 is 86 [deg].
  • the groove width Wg5 of the second shoulder groove 45 is 0.8 [mm]
  • the groove depth H5 is 3.5 [mm]
  • the inclination angle ⁇ 5 is 54 [deg].
  • the groove width Wg6 of the third shoulder groove 46 is 0.8 [mm]
  • the groove depth H6 is 5.0 [mm]
  • the inclination angle ⁇ 6 is 86 [deg].
  • the first shoulder groove 44 and the second shoulder groove 45 are separated from each other, and the distance Dc is 1.0 [mm].
  • the test tire of the conventional example has the configuration of FIG. 9 and differs from the test tire of Example 1 in that the circumferential narrow groove 23 (FIG. 3) is a sipe discontinuous in the tire circumferential direction. ..
  • the test tire of the comparative example has the configuration of FIG. 10, and differs from the test tire of Example 1 in that the circumferential narrow groove 23 intersects the first shoulder groove 44.
  • test tires of the examples have both wet performance of the tires and snow performance and dry performance.

Abstract

In this pneumatic tire 1, a shoulder land portion 32 is provided with: a circumferential fine groove 23 that extends continuously in a tire circumferential direction; a first shoulder groove 44 of which one end is open on a tire tread end T and another end terminates in the shoulder land portion 32; and a second shoulder groove 45 of which one end is open on a shoulder major groove 22 and another end terminates in the shoulder land portion 32. The first shoulder groove 44 has a groove width Wg4 of at least 1.5 [mm] and no greater than 4.0 [mm] and does not intersect with the circumferential fine groove 23. The second shoulder groove 45 has a groove width Wg5 of at least 0.6 [mm] and no greater than 1.2 [mm] and intersects with the circumferential fine groove 23.

Description

空気入りタイヤPneumatic tires
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤのドライ性能とウェット性能とを両立できる空気入りタイヤに関する。 The present invention relates to a pneumatic tire, and more specifically to a pneumatic tire capable of achieving both dry performance and wet performance of the tire.
 従来の空気入りタイヤは、陸部が非貫通のラグ溝およびサイプを備えることにより、タイヤのドライ性能とウェット性能とを両立している。かかる構成を採用する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。  The conventional pneumatic tire has both dry performance and wet performance of the tire because the land part has non-penetrating lug grooves and sipes. As a conventional pneumatic tire adopting such a configuration, the technique described in Patent Document 1 is known.
特開2017-52327号公報Japanese Unexamined Patent Publication No. 2017-52327
 この発明は、タイヤのドライ性能とウェット性能とを両立できる空気入りタイヤを提供することを目的とする。 The purpose of this invention is to provide a pneumatic tire that can achieve both dry performance and wet performance of the tire.
 上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に延在するセンター主溝およびショルダー主溝と、前記センター主溝および前記ショルダー主溝に区画されたセンター陸部およびショルダー陸部とを備える空気入りタイヤであって、前記ショルダー陸部が、タイヤ周方向に連続して延在する周方向細溝と、一方の端部にてタイヤ接地端に開口すると共に他方の端部にて前記ショルダー陸部内で終端する第一ショルダー溝と、一方の端部にて前記ショルダー主溝に開口すると共に他方の端部にて前記ショルダー陸部内で終端する第二ショルダー溝とを備え、前記第一ショルダー溝が、1.5[mm]以上4.0[mm]以下の溝幅を有すると共に前記周方向細溝に対して交差せず、且つ、前記第二ショルダー溝が、0.6[mm]以上1.2[mm]以下の溝幅を有すると共に前記周方向細溝に対して交差することを特徴とする。 To achieve the above object, a pneumatic tire according to the present invention has a center main groove and a shoulder main groove extending in the tire circumferential direction, and a center land portion and a shoulder defined by the center main groove and the shoulder main groove. A pneumatic tire comprising a land portion, wherein the shoulder land portion has a circumferential narrow groove continuously extending in the tire circumferential direction, and the one end portion opens to the tire ground contact end and the other end. Part has a first shoulder groove that ends in the shoulder land portion, and a second shoulder groove that opens in the shoulder main groove at one end and ends in the shoulder land portion at the other end. The first shoulder groove has a groove width of 1.5 [mm] or more and 4.0 [mm] or less, does not intersect the circumferential narrow groove, and the second shoulder groove is 0. It has a groove width of 6 [mm] or more and 1.2 [mm] or less and intersects with the circumferential narrow groove.
 この発明にかかる空気入りタイヤによれば、(1)ショルダー陸部がタイヤ周方向に連続して延在する周方向細溝を備えるので、タイヤ周方向に不連続な周方向細溝を備える構成と比較して、タイヤのウェット性能およびスノー性能が向上する利点がある。また、(2)第一ショルダー溝が周方向細溝に対して交差しないので、第一ショルダー溝が周方向細溝に対して交差する構成と比較して、タイヤのドライ性能が確保される利点がある。さらに、(3)幅狭な第二ショルダー溝が周方向細溝に対して交差することにより、タイヤのドライ性能が確保され、同時に、タイヤのウェット性能およびスノー性能が向上する利点がある。 According to the pneumatic tire of the present invention, (1) the shoulder land portion has the circumferential narrow grooves continuously extending in the tire circumferential direction, and therefore the tire circumferential direction has a discontinuous circumferential narrow groove. Compared with, there is an advantage that the wet performance and snow performance of the tire are improved. Further, (2) the first shoulder groove does not intersect the circumferential narrow groove, so that the dry performance of the tire is ensured as compared with the configuration in which the first shoulder groove intersects the circumferential narrow groove. There is. Further, (3) the narrow second shoulder groove intersects the circumferential narrow groove, so that the dry performance of the tire is ensured, and at the same time, the wet performance and the snow performance of the tire are improved.
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。FIG. 1 is a cross-sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。FIG. 2 is a plan view showing the tread surface of the pneumatic tire shown in FIG. 図3は、図2に記載した空気入りタイヤのトレッドを示す拡大図である。FIG. 3 is an enlarged view showing the tread of the pneumatic tire shown in FIG. 図4は、図3に記載したセンター陸部の溝ユニットを示す拡大平面図である。FIG. 4 is an enlarged plan view showing the groove unit in the center land portion shown in FIG. 図5は、図3に記載したセンター陸部の溝ユニットを示す溝深さ方向の断面図である。FIG. 5 is a sectional view in the groove depth direction showing the groove unit of the center land portion shown in FIG. 図6は、図3に記載したショルダー陸部の溝ユニットを示す拡大平面図である。FIG. 6 is an enlarged plan view showing the groove unit of the shoulder land portion described in FIG. 図7は、図3に記載したショルダー陸部の溝ユニットを示す溝深さ方向の断面図である。FIG. 7 is a sectional view in the groove depth direction showing the groove unit of the shoulder land portion shown in FIG. 図8は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。FIG. 8 is a chart showing results of performance tests of pneumatic tires according to the embodiment of the present invention. 図9は、従来例の試験タイヤを示す説明図である。FIG. 9 is an explanatory view showing a test tire of a conventional example. 図10は、比較例の試験タイヤを示す説明図である。FIG. 10 is an explanatory view showing a test tire of a comparative example.
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. Further, the constituent elements of this embodiment include those that can be replaced and are self-evident while maintaining the sameness of the invention. Further, a plurality of modified examples described in this embodiment can be arbitrarily combined within the scope obvious to those skilled in the art.
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、空気入りタイヤの一例として、乗用車用ラジアルタイヤを示している。
[Pneumatic tires]
FIG. 1 is a cross-sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. The figure shows a cross-sectional view of one side region in the tire radial direction. Further, the figure shows a radial tire for a passenger car as an example of a pneumatic tire.
 同図において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。 In the figure, the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown). Reference numeral CL is a tire equatorial plane, and refers to a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis. The tire width direction means a direction parallel to the tire rotation axis, and the tire radial direction means a direction perpendicular to the tire rotation axis.
 空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。 The pneumatic tire 1 has an annular structure centered on the tire rotation axis, and has a pair of bead cores 11 and 11, a pair of bead fillers 12 and 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. , A pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
 一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を構成する。 The pair of bead cores 11, 11 are annular members formed by bundling a plurality of bead wires, and form the cores of the left and right bead parts. The pair of bead fillers 12, 12 are respectively arranged on the outer circumferences of the pair of bead cores 11, 11 in the tire radial direction to form a bead portion.
 カーカス層13は、1枚のカーカスプライから成る単層構造あるいは複数のカーカスプライを積層して成る多層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13のカーカスプライは、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの長手方向の傾斜角として定義される)を有する。 The carcass layer 13 has a single-layer structure composed of one carcass ply or a multilayer structure formed by laminating a plurality of carcass plies, and is bridged in a toroidal shape between the left and right bead cores 11, 11 to form a skeleton of the tire. Constitute. Further, both ends of the carcass layer 13 are rolled back and locked to the outside in the tire width direction so as to surround the bead core 11 and the bead filler 12. The carcass ply of the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber and rolling the carcass cord. It has a carcass angle of not less than [deg] and not more than 95 [deg] (defined as an inclination angle in the longitudinal direction of the carcass cord with respect to the tire circumferential direction).
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上55[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの長手方向の傾斜角として定義される)を有し、ベルトコードの長手方向を相互に交差させて積層される(いわゆるクロスプライ構造)。ベルトカバー143は、スチールあるいは有機繊維材から成るベルトコードをコートゴムで被覆して構成され、絶対値で0[deg]以上10[deg]以下のベルト角度を有する。また、ベルトカバー143は、例えば、1本あるいは複数本のベルトコードをコートゴムで被覆して成るストリップ材であり、このストリップ材を交差ベルト141、142の外周面に対してタイヤ周方向に複数回かつ螺旋状に巻き付けて構成される。また、ベルトカバー143は、交差ベルト141、142の全域を覆って配置される。 The belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer circumference of the carcass layer 13. The pair of intersecting belts 141 and 142 are formed by coating a plurality of belt cords made of steel or an organic fiber material with coated rubber and rolling the belt cords, and have an absolute value of a belt angle of 20 [deg] or more and 55 [deg] or less. Have. Further, the pair of crossing belts 141 and 142 have differently signed belt angles (defined as inclination angles in the longitudinal direction of the belt cord with respect to the tire circumferential direction), and the longitudinal directions of the belt cords intersect each other. (So-called cross-ply structure). The belt cover 143 is formed by coating a belt cord made of steel or an organic fiber material with coating rubber, and has a belt angle of 0 [deg] or more and 10 [deg] or less in absolute value. Further, the belt cover 143 is, for example, a strip material formed by coating one or a plurality of belt cords with coated rubber, and the strip material is applied a plurality of times in the tire circumferential direction with respect to the outer peripheral surfaces of the cross belts 141 and 142. And it is composed by winding it in a spiral shape. Further, the belt cover 143 is arranged so as to cover the entire areas of the cross belts 141 and 142.
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側にそれぞれ配置されて、リムフランジに対する左右のビード部の接触面を構成する。 The tread rubber 15 is arranged on the tire radial outer periphery of the carcass layer 13 and the belt layer 14 to form a tread portion of the tire. The pair of sidewall rubbers 16 and 16 are arranged on the tire width direction outer side of the carcass layer 13 to form left and right sidewall portions. The pair of rim cushion rubbers 17, 17 are respectively arranged on the tire radial direction inner sides of the rewound portions of the left and right bead cores 11, 11 and the carcass layer 13 and configure contact surfaces of the left and right bead portions with respect to the rim flange.
[トレッドパターン]
 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。同図は、オールシーズン用タイヤのトレッドパターンを示している。同図において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
[Tread pattern]
FIG. 2 is a plan view showing the tread surface of the pneumatic tire shown in FIG. The figure shows the tread pattern of an all-season tire. In the figure, the tire circumferential direction means the direction around the tire rotation axis. Further, reference numeral T is a tire ground contact end.
 図2に示すように、空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画された複数の陸部31、32とをトレッド面に備える。 As shown in FIG. 2, the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 divided into these circumferential main grooves 21 and 22. 32 is provided on the tread surface.
 ここでは、タイヤ幅方向の最も外側にある左右の周方向主溝22、22をショルダー主溝として定義し、これらの周方向主溝22、22の間にある他の周方向主溝21をセンター主溝として定義する。また、タイヤ幅方向の最も外側にある左右の陸部32、32をショルダー陸部として定義し、これらの陸部32、32の間にある他の陸部31、31をセンター陸部として定義する。また、左右のショルダー主溝22、22を境界とするタイヤ幅方向内側の領域をセンター領域として定義し、タイヤ幅方向外側の領域をショルダー領域として定義する。 Here, the left and right circumferential main grooves 22, 22 on the outermost side in the tire width direction are defined as shoulder main grooves, and the other circumferential main groove 21 between these circumferential main grooves 22, 22 is defined as the center. Defined as a main groove. Further, the left and right land portions 32, 32 on the outermost side in the tire width direction are defined as shoulder land portions, and the other land portions 31, 31 between these land portions 32, 32 are defined as center land portions. .. Further, an area on the inner side in the tire width direction bounded by the left and right shoulder main grooves 22, 22 is defined as a center area, and an area on the outer side in the tire width direction is defined as a shoulder area.
 主溝とは、JATMAに規定されるウェアインジケータの表示義務を有する溝であり、4.0[mm]以上の溝幅および7.5[mm]以上の溝深さを有する。 The main groove is a groove that is required to display a wear indicator specified in JATMA, and has a groove width of 4.0 [mm] or more and a groove depth of 7.5 [mm] or more.
 溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における左右の溝壁の距離の最大値として測定される。陸部が切欠部や面取部をエッジ部に有する構成では、溝長さ方向を法線方向とする断面視にて、トレッド踏面と溝壁の延長線との交点を基準として、溝幅が測定される。また、溝がタイヤ周方向にジグザグ状あるいは波状に延在する構成では、溝壁の振幅の中心線を基準として、溝幅が測定される。 Groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening when the tire is mounted on the specified rim and the specified internal pressure is filled up. In the configuration in which the land portion has the cutout portion or the chamfered portion at the edge portion, in the cross-sectional view with the groove length direction as the normal direction, the groove width is based on the intersection point between the tread surface and the extension line of the groove wall. Be measured. Further, in the configuration in which the groove extends in the zigzag shape or the wavy shape in the tire circumferential direction, the groove width is measured with the center line of the amplitude of the groove wall as a reference.
 溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離の最大値として測定される。また、溝が部分的な凹凸部やサイプを溝底に有する構成では、これらを除外して溝深さが測定される。 The groove depth is measured as the maximum value of the distance from the tread tread to the groove bottom when the tire is attached to the specified rim and the specified internal pressure is filled and no load is applied. Further, in a configuration in which the groove has a partial uneven portion or a sipe on the groove bottom, the groove depth is measured excluding these.
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。 “Regulated rim” means “applicable rim” specified by JATMA, “Design Rim” specified by TRA, or “Measuring Rim” specified by ETRTO. The specified internal pressure means the "maximum air pressure" specified in JATTA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified in TRA, or "INFLATION PRESSURES" specified in ETRTO. In addition, the specified load refers to the "maximum load capacity" specified in JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified in TRA, or "LOAD CAPACITY" specified in ETRTO. However, in JATMA, in the case of tires for passenger cars, the specified internal pressure is an air pressure of 180 [kPa] and the specified load is 88[%] of the maximum load capacity.
 例えば、図2の構成では、単一のセンター主溝21と一対のショルダー主溝22、22とが、タイヤ赤道面CLを中心として、左右対称に配置されている。また、センター主溝21が、タイヤ赤道面CL上に配置されている。また、これらの周方向主溝21、22により、4列の陸部31、32が区画されている。 For example, in the configuration of FIG. 2, a single center main groove 21 and a pair of shoulder main grooves 22, 22 are arranged symmetrically with respect to the tire equatorial plane CL. Further, the center main groove 21 is arranged on the tire equatorial plane CL. The circumferential main grooves 21 and 22 define four rows of land portions 31 and 32.
 しかし、これに限らず、4本以上の周方向主溝が配置されても良いし、周方向主溝がタイヤ赤道面CLを中心として左右非対称に配置されても良い(図示省略)。また、1つの周方向主溝がタイヤ赤道面CLから外れた位置に配置されることにより、陸部がタイヤ赤道面CL上に位置しても良い(図示省略)。 However, the present invention is not limited to this, and four or more circumferential main grooves may be arranged, or the circumferential main grooves may be asymmetrical about the tire equatorial plane CL (not shown). Further, the land portion may be located on the tire equatorial plane CL (not shown) by disposing one circumferential main groove at a position deviated from the tire equatorial plane CL.
 また、図2の構成では、周方向主溝21、22が、ストレート形状を有している。しかし、これに限らず、周方向主溝21、22が、タイヤ幅方向に振幅を有するジグザグ形状あるいは波状形状を有しても良い(図示省略)。 Also, in the configuration of FIG. 2, the circumferential main grooves 21 and 22 have a straight shape. However, the present invention is not limited to this, and the circumferential main grooves 21 and 22 may have a zigzag shape or a wavy shape having an amplitude in the tire width direction (not shown).
 また、図2の構成では、空気入りタイヤ1が、タイヤ赤道面CL上の点を中心とする左右点対称なトレッドパターンを有している。しかし、これに限らず、空気入りタイヤ1が、例えば、タイヤ赤道面CLを中心とする左右線対称なトレッドパターンあるいは左右非対称なトレッドパターンを有しても良いし、タイヤ回転方向に方向性を有するトレッドパターンを有しても良い(図示省略)。 Further, in the configuration of FIG. 2, the pneumatic tire 1 has a tread pattern that is symmetrical with respect to the left and right with a point on the tire equatorial plane CL as the center. However, the pneumatic tire 1 is not limited to this, and may have, for example, a tread pattern that is bilaterally symmetric with respect to the tire equatorial plane CL or a tread pattern that is asymmetrical to the left and right, and the directionality in the tire rotation direction may be set. It may have a tread pattern (not shown).
[センター陸部の溝ユニット]
 図3は、図2に記載した空気入りタイヤのトレッドを示す拡大図である。同図は、タイヤ赤道面CLを境界とするトレッドの片側領域を示している。図4および図5は、図3に記載したセンター陸部の溝ユニットを示す拡大平面図(図4)および溝深さ方向の断面図(図5)である。また、図5は、溝ユニット4ceの第一センター溝41および第三センター溝43に沿った溝深さ方向の断面図を示している。
[Groove unit in the center land area]
FIG. 3 is an enlarged view showing the tread of the pneumatic tire shown in FIG. The figure shows one side region of the tread with the tire equatorial plane CL as a boundary. 4 and 5 are an enlarged plan view (FIG. 4) and a sectional view in the groove depth direction (FIG. 5) showing the groove unit of the center land portion shown in FIG. Further, FIG. 5 shows a sectional view in the groove depth direction along the first center groove 41 and the third center groove 43 of the groove unit 4ce.
 図3に示すように、センター陸部31は、複数組の溝ユニット4ceを備える。溝ユニット4ceは、第一センター溝41、第二センター溝42および第三センター溝43を一組として構成される。また、複数組の溝ユニット4ceが、タイヤ周方向に所定間隔で配置される。これらのセンター溝41~43により、タイヤのウェット性能が確保される。 As shown in FIG. 3, the center land portion 31 includes a plurality of sets of groove units 4ce. The groove unit 4ce is composed of a first center groove 41, a second center groove 42, and a third center groove 43 as one set. Further, a plurality of sets of groove units 4ce are arranged at predetermined intervals in the tire circumferential direction. The wet performance of the tire is ensured by these center grooves 41 to 43.
 また、図4に示すように、第一センター溝41、第二センター溝42および第三センター溝43が、相互に交差することなく配置される。すなわち、3本のセンター溝41~43が相互に離間しており、連通していない。このため、センター陸部31が、溝ユニット4ceのセンター溝41~43により分断されておらず、タイヤ周方向に連続した踏面を備える。これにより、センター陸部31の剛性が確保されて、ドライ路面でのタイヤの操縦安定性能が向上する。 Further, as shown in FIG. 4, the first center groove 41, the second center groove 42, and the third center groove 43 are arranged without intersecting each other. That is, the three center grooves 41 to 43 are separated from each other and do not communicate with each other. Therefore, the center land portion 31 is not divided by the center grooves 41 to 43 of the groove unit 4ce and has a tread surface continuous in the tire circumferential direction. As a result, the rigidity of the center land portion 31 is secured, and the steering stability performance of the tire on a dry road surface is improved.
 また、第一センター溝41、第二センター溝42および第三センター溝43が、90[deg]以上150[deg]以下の配置間隔で放射状に延在する。具体的には、第一センター溝41および第二センター溝42のなす角αと、第二センター溝42および第三センター溝43のなす角βと、第三センター溝43および第一センター溝41のなす角γとが、いずれも90[deg]以上150[deg]以下の範囲にある。また、角度α~γが、105[deg]以上135[deg]以下の範囲にあることが好ましい。このように、溝ユニット4ceのセンター溝41~43が所定間隔をあけて放射状に配置されることにより、センター溝41~43が偏在する構成と比較して、センター陸部31の剛性が適正に確保されてタイヤのドライ性能が効率的に向上する。 Also, the first center groove 41, the second center groove 42, and the third center groove 43 radially extend at an arrangement interval of 90 [deg] or more and 150 [deg] or less. Specifically, the angle α formed by the first center groove 41 and the second center groove 42, the angle β formed by the second center groove 42 and the third center groove 43, the third center groove 43, and the first center groove 41. Are both in the range of 90 [deg] or more and 150 [deg] or less. Further, it is preferable that the angles α to γ are in the range of 105 [deg] or more and 135 [deg] or less. As described above, the center grooves 41 to 43 of the groove unit 4ce are radially arranged at a predetermined interval, so that the rigidity of the center land portion 31 can be appropriately adjusted as compared with the configuration in which the center grooves 41 to 43 are unevenly distributed. As a result, the dry performance of the tire is efficiently improved.
 また、溝ユニット4ceの外周を囲んだ領域(図示省略)、具体的には、3本のセンター溝41~43の端部を結ぶ三角形の領域には、他の溝あるいはサイプが配置されておらず、陸部31が連続した踏面を有する。これにより、センター陸部31の剛性が効率的に確保されてタイヤのドライ性能が効率的に向上する。また、タイヤのスノー性能が向上する。 Other grooves or sipes are arranged in a region (not shown) surrounding the outer periphery of the groove unit 4ce, specifically, in a triangular region connecting the ends of the three center grooves 41 to 43. Instead, the land portion 31 has a continuous tread. As a result, the rigidity of the center land portion 31 is efficiently secured, and the dry performance of the tire is efficiently improved. In addition, the snow performance of the tire is improved.
 隣り合う溝のなす角は、溝の両端部を結んだ各仮想線のなす角として定義される。 The angle formed by adjacent grooves is defined as the angle formed by each virtual line connecting both ends of the groove.
 第一センター溝41は、1.5[mm]以上4.0[mm]以下の溝幅Wg1(図4参照)を有するラグ溝であり、主としてタイヤ幅方向に延在する。また、第一センター溝41の溝幅Wg1が、1.7[mm]≦Wg1≦2.5[mm]の範囲にあることが好ましい。また、第一センター溝41は、タイヤ接地面で開口して排水作用およびエッジ作用を発揮することにより、タイヤのウェット性能およびスノー性能を高める。また、第一センター溝41は、一方の端部にてショルダー主溝22に開口し、他方の端部にてセンター陸部31内で終端するセミクローズド構造を有する。第一センター溝41がショルダー主溝22に開口することより、第一センター溝41の排水作用およびスノー性能が向上する。 The first center groove 41 is a lug groove having a groove width Wg1 (see FIG. 4) of 1.5 [mm] or more and 4.0 [mm] or less, and extends mainly in the tire width direction. The groove width Wg1 of the first center groove 41 is preferably in the range of 1.7 [mm]≦Wg1≦2.5 [mm]. Further, the first center groove 41 is opened at the tire ground contact surface to exert a drainage action and an edge action, thereby enhancing the wet performance and snow performance of the tire. Further, the first center groove 41 has a semi-closed structure which opens at the shoulder main groove 22 at one end and ends in the center land portion 31 at the other end. By opening the first center groove 41 in the shoulder main groove 22, the drainage action and snow performance of the first center groove 41 are improved.
 タイヤ接地面は、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面として定義される。 The tire ground contact surface is the surface of the tire and the flat plate when the tire is mounted on the specified rim, a specified internal pressure is applied, and the tire is placed vertically to the plate in a stationary state and a load corresponding to the specified load is applied. Defined as a contact patch.
 第二センター溝42は、0.6[mm]以上1.2[mm]以下の溝幅を有する細溝あるいはサイプであり、主としてタイヤ周方向に延在する。また、第二センター溝42が、1.0[mm]未満の溝幅Wg2を有してタイヤ接地面で閉塞するサイプあることが好ましい。また、第二センター溝42は、ウェット路面での吸水作用により、タイヤのウェット性能を高める。また、第二センター溝42により、雪上路面および氷上路面に対する吸着作用が増加して、タイヤのスノー性能および氷上性能が高まる。また、第二センター溝42は、左右の端部にてセンター陸部31内で終端するクローズド構造を有する。タイヤ周方向に延在する第二センター溝42が、第一センター溝41と比較して狭い溝幅を有することにより、センター陸部31の剛性が適正に確保されてタイヤのドライ性が向上する。 The second center groove 42 is a narrow groove or sipe having a groove width of 0.6 [mm] or more and 1.2 [mm] or less, and extends mainly in the tire circumferential direction. Further, it is preferable that the second center groove 42 has a groove width Wg2 of less than 1.0 [mm] and is a sipe that closes at the tire ground contact surface. In addition, the second center groove 42 enhances the wet performance of the tire due to the water absorption effect on the wet road surface. Further, the second center groove 42 increases the adsorbing action on the road surface on snow and the road surface on ice, and improves the snow performance and the on-ice performance of the tire. Further, the second center groove 42 has a closed structure in which the left and right ends terminate in the center land portion 31. Since the second center groove 42 extending in the tire circumferential direction has a groove width narrower than that of the first center groove 41, the rigidity of the center land portion 31 is properly secured and the dryness of the tire is improved. ..
 細溝とサイプとは、細溝がタイヤ接地面にて開口し、サイプがタイヤ接地面で閉塞する点で区別される。  The narrow groove and sipe are distinguished by the fact that the narrow groove opens at the tire contact surface and the sipe closes at the tire contact surface.
 第三センター溝43は、0.6[mm]以上2.0[mm]以下の溝幅Wg3を有するラグ溝、細溝あるいはサイプであり、主としてタイヤ幅方向に延在する。また、第三センター溝43は、一方の端部にてセンター主溝21に開口し、他方の端部にてセンター陸部31内で終端するセミクローズド構造を有する。また、第三センター溝43が、センター陸部31の内部から第一センター溝41に対して異なる側に延在して、センター陸部31のタイヤ赤道面CL側のセンター主溝21に開口する。 The third center groove 43 is a lug groove, a narrow groove, or a sipe having a groove width Wg3 of 0.6 [mm] or more and 2.0 [mm] or less, and extends mainly in the tire width direction. The third center groove 43 has a semi-closed structure that opens at the center main groove 21 at one end and ends in the center land portion 31 at the other end. Further, the third center groove 43 extends from the inside of the center land portion 31 to a different side with respect to the first center groove 41 and opens to the center main groove 21 on the tire equatorial plane CL side of the center land portion 31. ..
 また、第一センター溝41の溝幅Wg1と、第二センター溝42の溝幅Wg2および第三センター溝43の溝幅Wg3とが、Wg2<Wg1かつWg3<Wg1の関係を有する。すなわち、ラグ溝である第一センター溝41の溝幅Wg1が最も広い。これにより、第一センター溝41のラグ溝としての機能が有効に発揮されて、タイヤのウェット性能が向上する。 The groove width Wg1 of the first center groove 41, the groove width Wg2 of the second center groove 42, and the groove width Wg3 of the third center groove 43 have a relationship of Wg2<Wg1 and Wg3<Wg1. That is, the groove width Wg1 of the first center groove 41, which is a lug groove, is the widest. As a result, the function of the first center groove 41 as a lug groove is effectively exhibited, and the wet performance of the tire is improved.
 一方で、第二センター溝42の溝幅Wg2と、第一センター溝41の溝幅Wg1および第三センター溝43の溝幅Wg3とが、Wg2<Wg3かつWg2<Wg1の関係を有する。すなわち、主としてタイヤ周方向に延在する第二センター溝42の溝幅Wg2が最も狭い。また、溝幅Wg1~Wg3の差が、0.1[mm]以上あることが好ましい。これにより、センター陸部31の剛性が確保されて、タイヤのドライ性能が確保される。 On the other hand, the groove width Wg2 of the second center groove 42, and the groove width Wg1 of the first center groove 41 and the groove width Wg3 of the third center groove 43 have a relationship of Wg2<Wg3 and Wg2<Wg1. That is, the groove width Wg2 of the second center groove 42 extending mainly in the tire circumferential direction is the narrowest. Further, it is preferable that the difference between the groove widths Wg1 to Wg3 is 0.1 [mm] or more. As a result, the rigidity of the center land portion 31 is ensured, and the dry performance of the tire is ensured.
 例えば、図4の構成では、第二センター溝42および第三センター溝43が、1.2[mm]以下の溝幅Wg2、Wg3を有する細溝あるいはサイプであり、第一センター溝41の溝幅Wg1よりも狭い溝幅Wg2、Wg3を有する。かかる構成では、センター陸部31の剛性が確保されてタイヤのドライ性能が向上する点で好ましい。 For example, in the configuration of FIG. 4, the second center groove 42 and the third center groove 43 are narrow grooves or sipes having groove widths Wg2 and Wg3 of 1.2 [mm] or less, and the grooves of the first center groove 41. The groove widths Wg2 and Wg3 are narrower than the width Wg1. Such a configuration is preferable in that the rigidity of the center land portion 31 is secured and the dry performance of the tire is improved.
 また、図4において、第一センター溝41のタイヤ周方向に対する傾斜角θ1が、30[deg]≦θ1≦60[deg]の範囲にあることが好ましく、40[deg]≦θ1≦50[deg]の範囲にあることがより好ましい。これにより、第一センター溝41の排水作用が向上して、第一センター溝41のラグ溝としての機能が確保される。 Further, in FIG. 4, the inclination angle θ1 of the first center groove 41 with respect to the tire circumferential direction is preferably in the range of 30 [deg]≦θ1≦60 [deg], and 40 [deg]≦θ1≦50 [deg ] Is more preferable. Thereby, the drainage action of the first center groove 41 is improved, and the function of the first center groove 41 as a lug groove is ensured.
 また、第二センター溝42のタイヤ周方向に対する傾斜角θ2が、0[deg]≦θ2≦30[deg]の範囲にあることが好ましく、0[deg]≦θ2≦20[deg]の範囲にあることがより好ましい。このとき、第二センター溝42が、溝ユニット4ceの中央部から周辺部に向かって第一センター溝41側に傾斜しても良いし(図4参照)、逆に、第三センター溝43側に傾斜しても良い(図示省略)。 The inclination angle θ2 of the second center groove 42 with respect to the tire circumferential direction is preferably in the range of 0 [deg]≦θ2≦30 [deg], and in the range of 0 [deg]≦θ2≦20 [deg]. More preferably. At this time, the second center groove 42 may be inclined toward the first center groove 41 side from the central portion of the groove unit 4ce toward the peripheral portion (see FIG. 4), or conversely, the third center groove 43 side. It may be tilted to (not shown).
 溝の傾斜角は、溝の両端部を結んだ各仮想線とタイヤ周方向とのなす角であり、0[deg]以上90[deg]以下の範囲で定義される。 The groove inclination angle is an angle formed by each virtual line connecting both ends of the groove and the tire circumferential direction, and is defined in the range of 0 [deg] to 90 [deg].
 また、第二センター溝42のタイヤ周方向に対する傾斜角θ2と、第一センター溝41のタイヤ周方向に対する傾斜角θ1および第三センター溝43のタイヤ周方向に対する傾斜角θ3とが、θ2<θ1かつθ2<θ3の関係を有する。すなわち、第二センター溝42が主としてタイヤ周方向に延在し、その結果として、他の溝41、43が、上記配置間隔の角度α、β、γの制約を受けて主としてタイヤ幅方向に延在する。 The inclination angle θ2 of the second center groove 42 with respect to the tire circumferential direction, the inclination angle θ1 of the first center groove 41 with respect to the tire circumferential direction, and the inclination angle θ3 of the third center groove 43 with respect to the tire circumferential direction are θ2<θ1. And, there is a relationship of θ2<θ3. That is, the second center groove 42 extends mainly in the tire circumferential direction, and as a result, the other grooves 41, 43 mainly extend in the tire width direction due to the restrictions of the arrangement intervals angles α, β, γ. Exists.
 例えば、図4の構成では、第一センター溝41、第二センター溝42および第三センター溝43がセンター陸部31の中央部で終端部を相互に対向させ、この位置を中心として放射状にそれぞれ延在している。また、第一センター溝41が、タイヤ周方向に対して傾斜角θ1で傾斜して、タイヤ幅方向外側(図3参照)にあるショルダー主溝22に開口している。また、第三センター溝43が、第一センター溝41に対して逆方向に傾斜角θ2で傾斜して、タイヤ赤道面CL側にあるセンター主溝21に開口している。このため、第一センター溝41および第三センター溝43が、タイヤ周方向に凸となるV字形状に配置されている。また、第二センター溝42が、第一センター溝41および第三センター溝43のV字形状の凸方向に傾斜角θ2で延在している。これにより、第二センター溝42がセンター陸部31の中央部でタイヤ周方向に延在して、第一センター溝41および第三センター溝43が第二センター溝42を中心としてタイヤ幅方向の左右に延在している。 For example, in the configuration of FIG. 4, the first center groove 41, the second center groove 42, and the third center groove 43 have their end portions opposed to each other at the central portion of the center land portion 31, and are radially centered around this position. It is postponed. Further, the first center groove 41 is inclined at an inclination angle θ1 with respect to the tire circumferential direction and opens to the shoulder main groove 22 on the outer side in the tire width direction (see FIG. 3 ). Further, the third center groove 43 is inclined in the opposite direction to the first center groove 41 at an inclination angle θ2 and opens to the center main groove 21 on the tire equatorial plane CL side. Therefore, the first center groove 41 and the third center groove 43 are arranged in a V-shape that is convex in the tire circumferential direction. The second center groove 42 extends in the V-shaped convex direction of the first center groove 41 and the third center groove 43 at an inclination angle θ2. As a result, the second center groove 42 extends in the tire circumferential direction at the center of the center land portion 31, and the first center groove 41 and the third center groove 43 extend in the tire width direction with the second center groove 42 as the center. It extends to the left and right.
 また、図4に示すように、1本の第一センター溝41に対して、他の2本の第二センター溝42および第三センター溝43が近接して配置される。具体的には、第一センター溝41と第二センター溝42との距離Da、ならびに、第一センター溝41と第三センター溝43との距離Dbが、1.0[mm]≦Da≦5.0[mm]かつ1.0[mm]≦Db≦5.0[mm]の関係を有する。第二センター溝42と第三センター溝43との距離Dc(図中の寸法記号省略)の範囲は、特に限定がないが、他の距離Da、Dbと同様に、1.0[mm]≦Dc≦5.0[mm]の範囲にあることが好ましい。 Further, as shown in FIG. 4, two other second center grooves 42 and third center grooves 43 are arranged close to one first center groove 41. Specifically, the distance Da between the first center groove 41 and the second center groove 42 and the distance Db between the first center groove 41 and the third center groove 43 are 1.0 [mm]≦Da≦5. The relationship is 0.0 [mm] and 1.0 [mm]≦Db≦5.0 [mm]. The range of the distance Dc (dimension symbols omitted in the drawing) between the second center groove 42 and the third center groove 43 is not particularly limited, but is 1.0 [mm] ≦ like the other distances Da and Db. It is preferable that Dc≦5.0 [mm].
 隣り合う溝の距離は、トレッド踏面の距離として測定される。 The distance between adjacent grooves is measured as the distance between the tread treads.
 例えば、図4の構成では、上記のように3本のセンター溝41~43が、センター陸部31の中央部で終端部を相互に対向させ、この位置を中心として放射状にそれぞれ延在している。また、第一センター溝41と第二センター溝42とが、タイヤ周方向に相互に離間して配置され、タイヤ周方向に相互にオーバーラップしていない。また、第一センター溝41と第二センター溝42とが、センター陸部31内における各溝41、42の終端部で最も近接している。このため、隣り合う溝41、42の距離Daが、溝41、42の終端部間の距離として測定される。 For example, in the configuration of FIG. 4, as described above, the three center grooves 41 to 43 have their terminations facing each other at the center of the center land portion 31, and extend radially around this position. There is. In addition, the first center groove 41 and the second center groove 42 are arranged apart from each other in the tire circumferential direction and do not overlap each other in the tire circumferential direction. Further, the first center groove 41 and the second center groove 42 are closest to each other at the end portions of the grooves 41, 42 in the center land portion 31. Therefore, the distance Da between the adjacent grooves 41 and 42 is measured as the distance between the end portions of the grooves 41 and 42.
 また、第一センター溝41と第三センター溝43とが、タイヤ幅方向に相互に離間して配置され、タイヤ幅方向に相互にオーバーラップしていない。また、第一センター溝41と第三センター溝43とが、センター陸部31内における各溝41、42の終端部で最も近接している。このため、隣り合うセンター溝41、43の距離Dbが、センター溝41、43の終端部間の距離として測定される。上記の構成では、第一センター溝41と、第二センター溝42および第三センター溝43とがタイヤ周方向あるいはタイヤ幅方向の相互に異なる位置に配置されるので、各センター溝41~43の作用を効率的に得られる点で好ましい。 Also, the first center groove 41 and the third center groove 43 are arranged apart from each other in the tire width direction and do not overlap each other in the tire width direction. Further, the first center groove 41 and the third center groove 43 are closest to each other at the end portions of the grooves 41 and 42 in the center land portion 31. Therefore, the distance Db between the adjacent center grooves 41 and 43 is measured as the distance between the end portions of the center grooves 41 and 43. In the above configuration, the first center groove 41 and the second center groove 42 and the third center groove 43 are arranged at mutually different positions in the tire circumferential direction or the tire width direction. It is preferable in that the action can be efficiently obtained.
 また、第二センター溝42と、第一センター溝41および第三センター溝43の双方とが、タイヤ周方向に相互に離間して、タイヤ周方向にオーバーラップしていない。また、第三センター溝43と、第一センター溝41および第二センター溝42とが、タイヤ幅方向に相互に離間して、タイヤ幅方向にオーバーラップしていない。かかる構成では、第二センター溝42および第三センター溝43の作用を効率的に得られる点で好ましい。 Also, the second center groove 42 and both the first center groove 41 and the third center groove 43 are separated from each other in the tire circumferential direction and do not overlap in the tire circumferential direction. Further, the third center groove 43 and the first center groove 41 and the second center groove 42 are separated from each other in the tire width direction and do not overlap in the tire width direction. Such a configuration is preferable in that the functions of the second center groove 42 and the third center groove 43 can be efficiently obtained.
 さらに、第一センター溝41と第三センター溝43とが、タイヤ周方向の相互に異なる方向に傾斜し、また、タイヤ周方向に相互にオーバーラップして配置される。上記のように、第一センター溝41と第三センター溝43とのなす角γが90[deg]以上150[deg]以下の範囲にあるため、第一センター溝41がタイヤ周方向に対して所定角度θ1で傾斜することにより、第一センター溝41と第三センター溝43とが必然的に上記の位置関係を有する。 Further, the first center groove 41 and the third center groove 43 are inclined in different directions in the tire circumferential direction, and are arranged so as to overlap each other in the tire circumferential direction. As described above, since the angle γ formed by the first center groove 41 and the third center groove 43 is in the range of 90 [deg] or more and 150 [deg] or less, the first center groove 41 is in the tire circumferential direction. By inclining at the predetermined angle θ1, the first center groove 41 and the third center groove 43 necessarily have the above positional relationship.
 また、図4の構成では、第二センター溝42が第一センター溝41側に傾斜することにより、第二センター溝42と第一センター溝41とがタイヤ幅方向に相互にオーバーラップし、一方で、第二センター溝42と第三センター溝43とがタイヤ幅方向に相互にオーバーラップしていない。しかし、これに限らず、第二センター溝42が第三センター溝43側に傾斜することにより、第二センター溝42と第三センター溝43とがタイヤ幅方向に相互にオーバーラップしても良い(図示省略)。 Further, in the configuration of FIG. 4, the second center groove 42 is inclined toward the first center groove 41, so that the second center groove 42 and the first center groove 41 overlap each other in the tire width direction, while the second center groove 42 and the first center groove 41 overlap each other. The second center groove 42 and the third center groove 43 do not overlap each other in the tire width direction. However, the present invention is not limited to this, and the second center groove 42 and the third center groove 43 may overlap each other in the tire width direction by inclining the second center groove 42 toward the third center groove 43 side. (Not shown).
 また、図4において、第一センター溝41のタイヤ幅方向の延在長さL1と、センター陸部31の幅Wceとが、0.40≦L1/Wce≦0.80の関係を有することが好ましく、0.50≦L1/Wce≦0.70の関係を有することがより好ましい。これにより、第一センター溝41の延在長さL1が適正化される。 Further, in FIG. 4, the extending length L1 of the first center groove 41 in the tire width direction and the width Wce of the center land portion 31 may have a relationship of 0.40≦L1/Wce≦0.80. It is preferable to have a relationship of 0.50 ≦ L1 / Wce ≦ 0.70. As a result, the extending length L1 of the first center groove 41 is optimized.
 第二センター溝42のタイヤ周方向の延在長さL2と、センター陸部31の幅Wceとが、0.20≦L2/Wce≦0.50の関係を有することが好ましく、0.20≦L2/Wce≦0.30の関係を有することがより好ましい。これにより、第二センター溝42の延在長さL2が適正化される。 It is preferable that the extension length L2 of the second center groove 42 in the tire circumferential direction and the width Wce of the center land portion 31 have a relationship of 0.20≦L2/Wce≦0.50, and 0.20≦. It is more preferable to have a relationship of L2 / Wce ≦ 0.30. As a result, the extending length L2 of the second center groove 42 is optimized.
 なお、第三センター溝43のタイヤ幅方向の延在長さL3(図中の符号省略)は、特に限定がないが、上記した第一センター溝41の延在長さL1、第一センター溝41と第三センター溝43とのなす角γ、ならびに、第一センター溝41と第三センター溝43との距離Dbとの関係により制約を受ける。 The extension length L3 of the third center groove 43 in the tire width direction (reference numeral omitted in the drawing) is not particularly limited, but the extension length L1 of the first center groove 41 and the first center groove described above are not particularly limited. It is restricted by the relationship between the angle γ formed by 41 and the third center groove 43 and the distance Db between the first center groove 41 and the third center groove 43.
 第一センター溝41および第三センター溝43の延在長さL1、L3は、溝41、43の終端部とセンター主溝21およびショルダー主溝22に対する開口部とのタイヤ幅方向の距離として測定される。また、第二センター溝42の延在長さL2は、溝42の両終端部のタイヤ周方向の距離として測定される。 The extension lengths L1 and L3 of the first center groove 41 and the third center groove 43 are measured as the distance in the tire width direction between the terminal ends of the grooves 41 and 43 and the openings for the center main groove 21 and the shoulder main groove 22. Will be done. The extension length L2 of the second center groove 42 is measured as the distance between both ends of the groove 42 in the tire circumferential direction.
 陸部の幅は、タイヤが規定リムに装着されて規定内圧を付与されると共に無負荷状態としたときの陸部の接地領域の幅として、測定される。 The width of the land area is measured as the width of the ground contact area of the land area when the tire is mounted on the specified rim, the specified internal pressure is applied, and there is no load.
 なお、図4の構成では、溝ユニット4ceのセンター溝41~43が、いずれもストレート形状を有している。しかし、これに限らず、各センター溝41~43が、円弧形状、波状形状、ジグザグ形状などを任意に有しても良い(図示省略)。例えば、第二センター溝42あるいは第三センター溝43が、ジグザグ形状を有するサイプであっても良い。 In the configuration of FIG. 4, the center grooves 41 to 43 of the groove unit 4ce all have a straight shape. However, the present invention is not limited to this, and each of the center grooves 41 to 43 may have an arc shape, a wave shape, a zigzag shape, etc. (not shown). For example, the second center groove 42 or the third center groove 43 may be a sipe having a zigzag shape.
 また、図5において、センター主溝22の溝深さHmと、第一センター溝41の溝深さH1とが、0.50≦H1/Hm≦0.90の関係を有する。また、第一センター溝41の溝深さH1と、第二センター溝42の溝深さH2および第三センター溝43の溝深さH3とが、H2<H1かつH3<H1の関係を有する。したがって、第一センター溝41の溝深さH1が、他の溝42、43と比較して最も深い。これにより、第一センター溝41の溝深さH1が適正化される。 Further, in FIG. 5, the groove depth Hm of the center main groove 22 and the groove depth H1 of the first center groove 41 have a relationship of 0.50≦H1/Hm≦0.90. Further, the groove depth H1 of the first center groove 41, the groove depth H2 of the second center groove 42, and the groove depth H3 of the third center groove 43 have a relationship of H2<H1 and H3<H1. Therefore, the groove depth H1 of the first center groove 41 is the deepest as compared with the other grooves 42 and 43. As a result, the groove depth H1 of the first center groove 41 is optimized.
 また、センター主溝22の溝深さHmと、第二センター溝42の溝深さH2とが、0.20≦H2/Hm≦0.50の関係を有する。また、第二センター溝42の溝深さH2と、第一センター溝41の溝深さH1および第三センター溝43の溝深さH3とが、H2<H3かつH2<H1の関係を有する。したがって、第二センター溝42の溝深さH2が、他の溝41、43と比較して最も浅い。また、第二センター溝42の溝深さH2が、1.5[mm]≦H2の範囲にあることが好ましい。これにより、最も浅い第二センター溝42の溝深さH2が適正に確保される。 Further, the groove depth Hm of the center main groove 22 and the groove depth H2 of the second center groove 42 have a relationship of 0.20≦H2/Hm≦0.50. Further, the groove depth H2 of the second center groove 42, the groove depth H1 of the first center groove 41, and the groove depth H3 of the third center groove 43 have a relationship of H2 <H3 and H2 <H1. Therefore, the groove depth H2 of the second center groove 42 is the shallowest as compared with the other grooves 41 and 43. Further, the groove depth H2 of the second center groove 42 is preferably in the range of 1.5 [mm]≦H2. As a result, the shallowest groove depth H2 of the second center groove 42 is properly secured.
[ショルダー陸部の溝ユニット]
 図6および図7は、図3に記載したショルダー陸部の溝ユニットを示す拡大平面図(図6)および溝深さ方向の断面図(図7)である。また、図7は、第一ショルダー溝44および第二ショルダー溝45に沿った溝深さ方向の断面図を示している。
[Shoulder land groove unit]
6 and 7 are an enlarged plan view (FIG. 6) and a sectional view in the groove depth direction (FIG. 7) showing the groove unit of the shoulder land portion shown in FIG. Further, FIG. 7 shows a cross-sectional view in the groove depth direction along the first shoulder groove 44 and the second shoulder groove 45.
 図3に示すように、ショルダー陸部32は、周方向細溝23と、第一~第三のショルダー溝44~46とを備える。 As shown in FIG. 3, the shoulder land portion 32 includes a circumferential narrow groove 23 and first to third shoulder grooves 44 to 46.
 周方向細溝23は、タイヤ周方向に連続的して延在する細溝であり、タイヤ周方向に対してタイヤ周方向に対して平行に延在する。また、周方向細溝23は、ショルダー主溝22に対して十分に狭い溝幅Wgsを有する(図3参照)。また、周方向細溝23の溝幅Wgsが、ショルダー主溝22の溝幅Wgmに対して0.10≦Wgs/Wgm≦0.40の関係を有することが好ましい。また、周方向細溝23の溝幅Wgsが1.0[mm]≦Wgs≦4.0[mm]の範囲にあることが好ましい。また、周方向細溝23の溝深さHs(図7参照)が、ショルダー主溝22の溝深さHmに対して0.30≦Hs/Hm≦0.70の関係を有することが好ましい。これにより、周方向細溝23の溝幅Wgsおよび溝深さHsが適正化される。 The circumferential narrow groove 23 is a narrow groove continuously extending in the tire circumferential direction, and extends parallel to the tire circumferential direction with respect to the tire circumferential direction. The circumferential narrow groove 23 has a groove width Wgs that is sufficiently narrower than the shoulder main groove 22 (see FIG. 3 ). Further, it is preferable that the groove width Wgs of the circumferential narrow groove 23 has a relationship of 0.10≦Wgs/Wgm≦0.40 with respect to the groove width Wgm of the shoulder main groove 22. Further, it is preferable that the groove width Wgs of the circumferential narrow groove 23 is in the range of 1.0 [mm]≦Wgs≦4.0 [mm]. Further, it is preferable that the groove depth Hs of the circumferential narrow groove 23 (see FIG. 7) has a relationship of 0.30 ≦ Hs / Hm ≦ 0.70 with respect to the groove depth Hm of the shoulder main groove 22. As a result, the groove width Wgs and the groove depth Hs of the circumferential narrow groove 23 are optimized.
 また、図6において、ショルダー陸部32のショルダー主溝22側のエッジ部から周方向細溝23の溝中心線までの距離Dsが、ショルダー陸部32の幅Wshに対して0.10≦Ds/Wsh≦0.40の関係を有することが好ましく、0.15≦Ds/Wsh≦0.30の関係を有することがより好ましい。 Further, in FIG. 6, the distance Ds from the edge portion of the shoulder land portion 32 on the shoulder main groove 22 side to the groove center line of the circumferential narrow groove 23 is 0.10≦Ds with respect to the width Wsh of the shoulder land portion 32. /Wsh≦0.40 is preferable, and 0.15≦Ds/Wsh≦0.30 is more preferable.
 また、図3の構成では、ショルダー陸部32が、周方向細溝23とタイヤ接地端Tとの間の領域に他の周方向細溝を備えていない。このため、ショルダー陸部32が、周方向細溝23とタイヤ接地端Tとの間の領域が、他の周方向細溝により区画されておらず、タイヤ幅方向に連続した幅広な踏面を有している。なお、他の周方向細溝は、タイヤ周方向に対して0[deg]以上20[deg]以下の傾斜角を有し、且つ、4.0[mm]以下の溝幅を有する細溝として定義される。 In the configuration of FIG. 3, the shoulder land portion 32 does not include any other circumferential narrow groove in the area between the circumferential narrow groove 23 and the tire ground contact end T. Therefore, the shoulder land portion 32 has a wide tread surface continuous in the tire width direction, in which the region between the circumferential narrow groove 23 and the tire ground contact end T is not divided by other circumferential fine grooves. doing. In addition, the other circumferential narrow groove is a narrow groove having an inclination angle of 0 [deg] or more and 20 [deg] or less with respect to the tire circumferential direction and a groove width of 4.0 [mm] or less. Defined.
 タイヤ接地端Tは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を加えたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置として定義される。 The tire ground contact end T is a contact surface between the tire and the flat plate when the tire is attached to a specified rim and a specified internal pressure is applied, and the tire is placed perpendicular to the plate in a stationary state and a load corresponding to the specified load is applied. Is defined as the maximum width position in the tire axial direction.
 上記の構成では、ショルダー陸部32がタイヤ周方向に連続して延在する周方向細溝23を備えるので、タイヤ周方向に不連続な周方向細溝を備える構成(後述する図9参照)と比較して、ショルダー陸部32の排水性およびタイヤ幅方向へのエッジ成分が増加する。これにより、タイヤのウェット性能およびスノー性能が向上する。 In the above configuration, since the shoulder land portion 32 includes the circumferential narrow groove 23 that continuously extends in the tire circumferential direction, the shoulder land portion 32 includes the circumferential narrow groove that is discontinuous in the tire circumferential direction (see FIG. 9 described later). Compared with, the drainage property of the shoulder land portion 32 and the edge component in the tire width direction are increased. This improves the wet performance and snow performance of the tire.
 第一ショルダー溝44は、セミクローズド構造を有するラグ溝であり、一方の端部にてタイヤ接地端Tに開口し、タイヤ幅方向に延在して他方の端部にてショルダー陸部32内で終端する。また、第一ショルダー溝44の終端部が周方向細溝23とタイヤ接地端Tとの間の領域にあり、したがって、第一ショルダー溝44が周方向細溝23に対して交差しない。 The first shoulder groove 44 is a lug groove having a semi-closed structure, opens at the tire ground contact end T at one end, extends in the tire width direction, and extends inside the shoulder land portion 32 at the other end. Terminate with. Further, the end portion of the first shoulder groove 44 is in the region between the circumferential narrow groove 23 and the tire ground contact end T, and therefore the first shoulder groove 44 does not intersect the circumferential narrow groove 23.
 上記の構成では、第一ショルダー溝44が周方向細溝23に対して交差しないので、第一ショルダー溝44が周方向細溝23に対して交差する構成(後述する図10参照)と比較して、ショルダー陸部32の剛性が確保される。これにより、タイヤのドライ性能が確保される。 In the above configuration, since the first shoulder groove 44 does not intersect the circumferential narrow groove 23, a comparison is made with the configuration in which the first shoulder groove 44 intersects the circumferential narrow groove 23 (see FIG. 10 described later). Thus, the rigidity of the shoulder land portion 32 is secured. This ensures the dry performance of the tire.
 また、第一ショルダー溝44が、1.5[mm]以上4.0[mm]以下の溝幅Wg4(図6参照)を有する。また、第一ショルダー溝44の溝深さH4(図7参照)が、ショルダー主溝22の溝深さHmに対して0.50≦H4/Hm≦0.90の関係を有する。また、図7に示すように、第一ショルダー溝44の溝深さH4が、周方向細溝23の溝深さよりも深い。 Further, the first shoulder groove 44 has a groove width Wg4 (see FIG. 6) of 1.5 [mm] or more and 4.0 [mm] or less. Further, the groove depth H4 of the first shoulder groove 44 (see FIG. 7) has a relationship of 0.50 ≦ H4 / Hm ≦ 0.90 with respect to the groove depth Hm of the shoulder main groove 22. Further, as shown in FIG. 7, the groove depth H4 of the first shoulder groove 44 is deeper than the groove depth of the circumferential narrow groove 23.
 また、図6において、ショルダー陸部32の接地面内における第一ショルダー溝44の延在長さL4が、ショルダー陸部32の幅Wshに対して0.30≦L4/Wsh≦0.50の関係を有することが好ましく、0.35≦L4/Wsh≦0.45の関係を有することがより好ましい。また、第一ショルダー溝44のタイヤ周方向に対する傾斜角θ4が、50[deg]≦θ4≦88[deg]の範囲にある。 Further, in FIG. 6, the extending length L4 of the first shoulder groove 44 in the ground contact surface of the shoulder land portion 32 is 0.30≦L4/Wsh≦0.50 with respect to the width Wsh of the shoulder land portion 32. It is preferable to have a relationship, and it is more preferable to have a relationship of 0.35≦L4/Wsh≦0.45. The inclination angle θ4 of the first shoulder groove 44 with respect to the tire circumferential direction is in the range of 50 [deg]≦θ4≦88 [deg].
 また、図6において、周方向細溝23の距離Dsおよび第一ショルダー溝44の延在長さL4が、ショルダー陸部の幅Wshに対して0.40≦(Wsh-Ds-L4)/Wshの関係を有することが好ましく、0.45≦(Wsh-Ds-L4)/Wshの関係を有することがより好ましい。これにより、第一ショルダー溝44の終端部から周方向細溝23までの距離が適正に確保される。比(Wsh-Ds-L4)/Wshの上限は、特に限定がないが、距離Dsおよび延在長さL4の範囲により制約を受ける。 Further, in FIG. 6, the distance Ds of the circumferential narrow groove 23 and the extension length L4 of the first shoulder groove 44 are 0.40≦(Wsh−Ds−L4)/Wsh with respect to the width Wsh of the shoulder land portion. It is preferable to have a relationship of 0.45≦(Wsh−Ds−L4)/Wsh. Thereby, the distance from the end portion of the first shoulder groove 44 to the circumferential narrow groove 23 is properly secured. The upper limit of the ratio (Wsh-Ds-L4)/Wsh is not particularly limited, but is limited by the range of the distance Ds and the extension length L4.
 また、センター領域の幅Wceおよびショルダー陸部32の幅Wshが、タイヤ接地幅TWに対して20[%]以上50[%]以下の範囲にある(図2参照)。これにより、各陸部31、32の幅Wce、幅Wshが適正化される。 The width Wce of the center region and the width Wsh of the shoulder land portion 32 are in the range of 20% to 50% with respect to the tire ground contact width TW (see FIG. 2). As a result, the widths Wce and Wsh of the land portions 31 and 32 are optimized.
 タイヤ接地幅TWは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を付与したときのタイヤと平板との接触面におけるタイヤ軸方向の最大直線距離として測定される。 The tire ground contact width TW is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim, a specified internal pressure is applied, and the tire is placed vertically on the plate in a stationary state and a load corresponding to the specified load is applied. Is measured as the maximum linear distance in the tire axial direction.
 第二ショルダー溝45は、セミクローズド構造を有するサイプあるいは細溝であり、一方の端部にてショルダー主溝22に開口し、タイヤ幅方向に延在して、他方の端部にてショルダー陸部32内で終端する。また、第二ショルダー溝45の終端部が周方向細溝23とタイヤ接地端Tとの間の領域にあり、したがって、第二ショルダー溝45が周方向細溝23に対して交差する。 The second shoulder groove 45 is a sipe or a narrow groove having a semi-closed structure, opens at the shoulder main groove 22 at one end, extends in the tire width direction, and has a shoulder land at the other end. It ends in the part 32. In addition, the terminal end portion of the second shoulder groove 45 is in the region between the circumferential narrow groove 23 and the tire ground contact end T, and therefore the second shoulder groove 45 intersects the circumferential narrow groove 23.
 上記の構成では、幅狭な第二ショルダー溝45が周方向細溝23に対して交差することにより、ショルダー陸部32の剛性低下を抑制しつつ、ショルダー主溝22から第一ショルダー溝44の終端部までの領域における排水性およびタイヤ周方向へのエッジ成分が確保される。これにより、タイヤのドライ性能が確保され、同時に、タイヤのウェット性能およびスノー性能が向上する。 In the above configuration, the narrow second shoulder groove 45 intersects the circumferential narrow groove 23 to suppress the decrease in rigidity of the shoulder land portion 32, and the shoulder main groove 22 to the first shoulder groove 44. Drainage and edge components in the tire circumferential direction are ensured in the area up to the end. As a result, the dry performance of the tire is ensured, and at the same time, the wet performance and the snow performance of the tire are improved.
 また、第二ショルダー溝45が、0.6[mm]以上1.2[mm]以下の溝幅Wg5(図6参照)を有する。また、第二ショルダー溝45の溝深さH5(図7参照)が、ショルダー主溝22の溝深さHmに対して0.30≦H5/Hm≦0.70の関係を有する。また、図7に示すように、第二ショルダー溝45の溝深さH5が、周方向細溝23の溝深さよりも深く、第一ショルダー溝44の溝深さH4よりも浅い。 Further, the second shoulder groove 45 has a groove width Wg5 (see FIG. 6) of 0.6 [mm] or more and 1.2 [mm] or less. The groove depth H5 of the second shoulder groove 45 (see FIG. 7) has a relationship of 0.30≦H5/Hm≦0.70 with respect to the groove depth Hm of the shoulder main groove 22. Further, as shown in FIG. 7, the groove depth H5 of the second shoulder groove 45 is deeper than the groove depth of the circumferential narrow groove 23 and shallower than the groove depth H4 of the first shoulder groove 44.
 また、第二ショルダー溝45が、タイヤ接地時に閉塞するサイプであることが好ましい。これにより、タイヤ接地時におけるショルダー陸部32の剛性、特に周方向細溝23とショルダー主溝22とに区画された細リブ(図中の符号省略)の剛性が確保される。 Further, it is preferable that the second shoulder groove 45 is a sipe that closes when the tire touches the ground. As a result, the rigidity of the shoulder land portion 32 when the tire touches the ground, particularly the rigidity of the fine ribs (reference numerals omitted in the drawing) divided into the circumferential narrow groove 23 and the shoulder main groove 22 is ensured.
 また、図6の構成では、第二ショルダー溝45が直線形状を有している。しかし、これに限らず、第二ショルダー溝45が緩やかな円弧形状を有しても良い(図示省略)。 Further, in the configuration of FIG. 6, the second shoulder groove 45 has a linear shape. However, not limited to this, the second shoulder groove 45 may have a gentle arc shape (not shown).
 また、図6に示すように、第二ショルダー溝45が、第一ショルダー溝44に対してタイヤ幅方向に離間し、またタイヤ幅方向にオーバーラップしないように、配置される。また、第二ショルダー溝45と第一ショルダー溝44との距離Dcが、1.0[mm]≦Dc≦5.0[mm]の範囲にある。なお、第二ショルダー溝45のタイヤ幅方向への延在長さ(図中の寸法記号省略)は、特に限定がないが、上記距離Dcと第一ショルダー溝44の延在長さL4との関係により制約を受ける。 Further, as shown in FIG. 6, the second shoulder groove 45 is arranged so as to be separated from the first shoulder groove 44 in the tire width direction and not to overlap in the tire width direction. The distance Dc between the second shoulder groove 45 and the first shoulder groove 44 is in the range of 1.0 [mm]≦Dc≦5.0 [mm]. The extension length of the second shoulder groove 45 in the tire width direction (dimension symbols omitted in the drawing) is not particularly limited, but the distance Dc and the extension length L4 of the first shoulder groove 44 are the same. Constrained by relationships.
 上記の構成では、第二ショルダー溝45が第一ショルダー溝44に対して離間して配置されるので、タイヤの加硫成形工程における通気経路が確保されて、タイヤの加硫故障が抑制される。また、第二ショルダー溝45が第一ショルダー溝44に近接して配置されるのでショルダー陸部32の排水性が向上する。 In the above configuration, since the second shoulder groove 45 is arranged apart from the first shoulder groove 44, a ventilation path in the vulcanization molding process of the tire is secured, and vulcanization failure of the tire is suppressed. .. Further, since the second shoulder groove 45 is arranged close to the first shoulder groove 44, the drainage property of the shoulder land portion 32 is improved.
 また、図6において、第二ショルダー溝45のタイヤ周方向に対する傾斜角θ5が、30[deg]≦θ5≦60[deg]の範囲にあることが好ましく、40[deg]≦θ5≦50[deg]の範囲にあることがより好ましい。また、第二ショルダー溝45の傾斜角θ5が、第一ショルダー溝44の傾斜角θ4に対してθ5<θ4の関係を有する。 Further, in FIG. 6, the inclination angle θ5 of the second shoulder groove 45 with respect to the tire circumferential direction is preferably in the range of 30 [deg]≦θ5≦60 [deg], and 40 [deg]≦θ5≦50 [deg ] Is more preferable. Further, the inclination angle θ5 of the second shoulder groove 45 has a relationship of θ5<θ4 with respect to the inclination angle θ4 of the first shoulder groove 44.
 また、図6に示すように、第一ショルダー溝44と第二ショルダー溝45とが、タイヤ周方向に対して相互に逆方向に傾斜する。かかる構成では、第一ショルダー溝44と第二ショルダー溝45とが同一方向に傾斜する構成と比較して、タイヤの操縦安定性能(特に旋回性能)が向上する。また、第一ショルダー溝44および第二ショルダー溝45のなす角δが、120[deg]≦δ≦160[deg]の範囲にあることが好ましく、130[deg]≦δ≦150[deg]の範囲にあることがより好ましい。 Further, as shown in FIG. 6, the first shoulder groove 44 and the second shoulder groove 45 are inclined in directions opposite to each other with respect to the tire circumferential direction. In such a configuration, the steering stability performance (particularly turning performance) of the tire is improved as compared with the configuration in which the first shoulder groove 44 and the second shoulder groove 45 are inclined in the same direction. Further, the angle δ formed by the first shoulder groove 44 and the second shoulder groove 45 is preferably in the range of 120 [deg] ≤ δ ≤ 160 [deg], and 130 [deg] ≤ δ ≤ 150 [deg]. More preferably in the range.
 第三ショルダー溝46は、セミクローズド構造を有するサイプあるいは細溝であり、一方の端部にてタイヤ接地端Tに開口し、タイヤ幅方向に延在して他方の端部にてショルダー陸部32内で終端する。また、第三ショルダー溝46の終端部が周方向細溝23とタイヤ接地端Tとの間の領域にあり、したがって、第三ショルダー溝46が周方向細溝23に対して交差しない。また、第三ショルダー溝46が、0.6[mm]以上2.0[mm]以下の溝幅(図中の寸法記号省略)を有する。また、第三ショルダー溝46の溝深さ(図中の寸法記号省略)が、ショルダー主溝22の溝深さHmに対して30[%]以上60[%]以下の範囲にある。 The third shoulder groove 46 is a sipe or narrow groove having a semi-closed structure, which opens to the tire ground contact end T at one end, extends in the tire width direction, and has a shoulder land portion at the other end. Terminate within 32. Further, the end portion of the third shoulder groove 46 is in the region between the circumferential narrow groove 23 and the tire ground contact end T, and therefore the third shoulder groove 46 does not intersect the circumferential narrow groove 23. Further, the third shoulder groove 46 has a groove width of 0.6 [mm] or more and 2.0 [mm] or less (dimension symbols omitted in the drawing). Further, the groove depth of the third shoulder groove 46 (the dimension symbol is omitted in the drawing) is in the range of 30% or more and 60% or less with respect to the groove depth Hm of the shoulder main groove 22.
 また、図6において、ショルダー陸部32の接地面内における第三ショルダー溝46の延在長さL6が、ショルダー陸部32の幅Wshに対して0.35≦L6/Wsh≦0.65の関係を有することが好ましく、0.40≦L6/Wsh≦0.60の関係を有することがより好ましい。第三ショルダー溝46の延在長さL6が、第一ショルダー溝44の延在長さL4に対して1.10≦L6/L4≦1.25の関係を有することが好ましい。 Further, in FIG. 6, the extension length L6 of the third shoulder groove 46 in the ground contact surface of the shoulder land portion 32 is 0.35≦L6/Wsh≦0.65 with respect to the width Wsh of the shoulder land portion 32. It is preferable to have a relationship, and it is more preferable to have a relationship of 0.40≦L6/Wsh≦0.60. It is preferable that the extension length L6 of the third shoulder groove 46 has a relationship of 1.10≦L6/L4≦1.25 with respect to the extension length L4 of the first shoulder groove 44.
 また、第三ショルダー溝46のタイヤ周方向に対する傾斜角θ6が、50[deg]≦θ6≦88[deg]の範囲にある。また、第一ショルダー溝44の傾斜角θ4に対して-10[deg]≦θ6-θ4≦10[deg]の範囲にあることが好ましい。したがって、第三ショルダー溝46が第一ショルダー溝44に対して略平行に配置される。 Further, the inclination angle θ6 of the third shoulder groove 46 with respect to the tire circumferential direction is in the range of 50 [deg] ≤ θ6 ≤ 88 [deg]. Further, it is preferable that the inclination angle θ4 of the first shoulder groove 44 is within the range of −10 [deg]≦θ6−θ4≦10 [deg]. Therefore, the third shoulder groove 46 is arranged substantially parallel to the first shoulder groove 44.
 また、図3において、センター陸部31の第一センター溝41が、ショルダー陸部32の第一ショルダー溝44に対してタイヤ周方向にオフセットして配置される。具体的には、センター陸部31の第一センター溝41とショルダー陸部32の第一ショルダー溝44とをタイヤ幅方向に投影視したときに、両者が相互にオーバーラップしないように配列される。これにより、比較的幅広な溝41、44の配置に起因するパターンノイズが低減されて、タイヤの騒音性能が向上する。 Further, in FIG. 3, the first center groove 41 of the center land portion 31 is arranged offset from the first shoulder groove 44 of the shoulder land portion 32 in the tire circumferential direction. Specifically, when the first center groove 41 of the center land portion 31 and the first shoulder groove 44 of the shoulder land portion 32 are projected and viewed in the tire width direction, they are arranged so as not to overlap each other. .. As a result, the pattern noise caused by the arrangement of the relatively wide grooves 41 and 44 is reduced, and the noise performance of the tire is improved.
 また、図3に示すように、ショルダー陸部32の第二ショルダー溝45が、センター陸部31の第一センター溝41の溝中心線の延長線に沿って延在する。具体的には、第二ショルダー溝45が第一センター溝41に対して同一方向に傾斜し、また、第二ショルダー溝45が第一センター溝41に対して略平行に配置される。また、第一センター溝41の溝中心線の延長線に対する第二ショルダー溝45の距離Dpが、第一センター溝41の溝幅Wg1(図4参照)に対して0≦Dp/Wg1≦2.00の関係を有する。これにより、タイヤ転動時にて、センター陸部31の第一センター溝41からショルダー陸部32の第三センター溝43への排水性が向上して、タイヤのウェット性能が向上する。なお、図3の構成では、第一センター溝41および第二ショルダー溝45が直線形状を有するが、これに限らず、これらが円弧形状を有しても良い(図示省略)。 Further, as shown in FIG. 3, the second shoulder groove 45 of the shoulder land portion 32 extends along the extension line of the groove center line of the first center groove 41 of the center land portion 31. Specifically, the second shoulder groove 45 is inclined in the same direction with respect to the first center groove 41, and the second shoulder groove 45 is arranged substantially parallel to the first center groove 41. Further, the distance Dp of the second shoulder groove 45 with respect to the extension line of the groove center line of the first center groove 41 is 0≤Dp / Wg1≤2 with respect to the groove width Wg1 (see FIG. 4) of the first center groove 41. It has a relationship of 00. As a result, when the tire rolls, the drainage property from the first center groove 41 of the center land portion 31 to the third center groove 43 of the shoulder land portion 32 is improved, and the wet performance of the tire is improved. In addition, in the configuration of FIG. 3, the first center groove 41 and the second shoulder groove 45 have a linear shape, but not limited to this, they may have an arc shape (not shown).
[効果]
 以上説明したように、この空気入りタイヤ1は、タイヤ周方向に延在するセンター主溝21およびショルダー主溝22と、センター主溝21およびショルダー主溝22に区画されたセンター陸部31およびショルダー陸部32とを備える(図2参照)。また、ショルダー陸部32が、タイヤ周方向に連続して延在する周方向細溝23と、一方の端部にてタイヤ接地端Tに開口すると共に他方の端部にてショルダー陸部32内で終端する第一ショルダー溝44と、一方の端部にてショルダー主溝22に開口すると共に他方の端部にてショルダー陸部32内で終端する第二ショルダー溝45とを備える(図6参照)。また、第一ショルダー溝44が、1.5[mm]以上4.0[mm]以下の溝幅Wg4を有すると共に周方向細溝23に対して交差しない。また、第二ショルダー溝45が、0.6[mm]以上1.2[mm]以下の溝幅Wg5を有すると共に周方向細溝23に対して交差する。
[effect]
As described above, the pneumatic tire 1 includes the center main groove 21 and the shoulder main groove 22 extending in the tire circumferential direction, and the center land portion 31 and the shoulder defined by the center main groove 21 and the shoulder main groove 22. It is provided with a land portion 32 (see FIG. 2). In addition, the shoulder land portion 32 has a circumferential narrow groove 23 continuously extending in the tire circumferential direction, and the shoulder land portion 32 opens at the tire ground contact end T at one end and inside the shoulder land portion 32 at the other end. And a second shoulder groove 45 that opens into the shoulder main groove 22 at one end and ends in the shoulder land portion 32 at the other end (see FIG. 6). ). The first shoulder groove 44 has a groove width Wg4 of 1.5 [mm] or more and 4.0 [mm] or less and does not intersect the circumferential narrow groove 23. Further, the second shoulder groove 45 has a groove width Wg5 of 0.6 [mm] or more and 1.2 [mm] or less and intersects the circumferential narrow groove 23.
 かかる構成では、(1)ショルダー陸部32がタイヤ周方向に連続して延在する周方向細溝23を備えるので、タイヤ周方向に不連続な周方向細溝を備える構成(後述する図9参照)と比較して、ショルダー陸部32の排水性およびタイヤ幅方向へのエッジ成分が増加する。これにより、タイヤのウェット性能およびスノー性能が向上する利点がある。また、(2)第一ショルダー溝44が周方向細溝23に対して交差しないので、第一ショルダー溝44が周方向細溝23に対して交差する構成(後述する図10参照)と比較して、ショルダー陸部32の剛性が確保される。これにより、タイヤのドライ性能が確保される利点がある。さらに、(3)幅狭な第二ショルダー溝45が周方向細溝23に対して交差することにより、ショルダー陸部32の剛性低下を抑制しつつ、ショルダー主溝22から第一ショルダー溝44の終端部までの領域における排水性およびタイヤ周方向へのエッジ成分が確保される。これにより、タイヤのドライ性能が確保され、同時に、タイヤのウェット性能およびスノー性能が向上する利点がある。 In such a configuration, (1) the shoulder land portion 32 is provided with a circumferential fine groove 23 extending continuously in the tire circumferential direction, and thus is provided with a circumferential fine groove discontinuous in the tire circumferential direction (FIG. 9 described later). Compared with the reference), the drainage property of the shoulder land portion 32 and the edge component in the tire width direction are increased. This has the advantage of improving the wet performance and snow performance of the tire. Further, (2) the first shoulder groove 44 does not intersect with the circumferential narrow groove 23, so that the first shoulder groove 44 intersects with the circumferential narrow groove 23 (see FIG. 10 described later). Thus, the rigidity of the shoulder land portion 32 is secured. This has the advantage of ensuring the dry performance of the tire. Further, (3) the narrow second shoulder groove 45 intersects with the circumferential narrow groove 23, so that the rigidity reduction of the shoulder land portion 32 is suppressed and the shoulder main groove 22 to the first shoulder groove 44 are changed. The drainage property and the edge component in the tire circumferential direction in the region up to the terminal end are secured. As a result, the dry performance of the tire is secured, and at the same time, the wet performance and snow performance of the tire are improved.
 また、この空気入りタイヤ1では、周方向細溝23の溝幅Wgsが、ショルダー主溝22の溝幅Wgmに対して0.10≦Wgs/Wgm≦0.40の関係を有する(図3参照)。上記下限により、周方向細溝23の機能が確保され、上記上限により、ショルダー陸部32の剛性が確保される利点がある。 Further, in the pneumatic tire 1, the groove width Wgs of the circumferential narrow groove 23 has a relationship of 0.10≦Wgs/Wgm≦0.40 with respect to the groove width Wgm of the shoulder main groove 22 (see FIG. 3). ). The lower limit ensures the function of the circumferential narrow groove 23, and the upper limit ensures the rigidity of the shoulder land portion 32.
 また、この空気入りタイヤ1では、周方向細溝23の溝深さHsが、ショルダー主溝22の溝深さHmに対して0.30≦Hs/Hm≦0.70の関係を有する(図7参照)。上記下限により、周方向細溝23の機能が確保され、上記上限により、ショルダー陸部32の剛性が確保される利点がある。 Further, in the pneumatic tire 1, the groove depth Hs of the circumferential narrow groove 23 has a relationship of 0.30 ≦ Hs / Hm ≦ 0.70 with respect to the groove depth Hm of the shoulder main groove 22 (FIG. 7). The lower limit ensures the function of the circumferential narrow groove 23, and the upper limit ensures the rigidity of the shoulder land portion 32.
 また、この空気入りタイヤ1では、ショルダー陸部32のショルダー主溝22側のエッジ部から周方向細溝23の溝中心線までの距離Dsが、ショルダー陸部32の接地領域の幅Wshに対して0.10≦Ds/Wsh≦0.40の関係を有する(図6参照)。上記下限により、周方向細溝23とショルダー主溝22との間に区画された細リブ(図中の符号省略)の剛性が確保され、上記上限により、周方向細溝23と第一ショルダー溝44とが接近することに起因するショルダー陸部32の剛性低下が抑制される利点がある。 Further, in the pneumatic tire 1, the distance Ds from the edge portion of the shoulder land portion 32 on the shoulder main groove 22 side to the groove center line of the circumferential narrow groove 23 is relative to the width Wsh of the ground contact area of the shoulder land portion 32. 0.10≦Ds/Wsh≦0.40 (see FIG. 6). By the above lower limit, the rigidity of the thin ribs (reference numeral omitted in the figure) partitioned between the circumferential narrow groove 23 and the shoulder main groove 22 is secured, and by the above upper limit, the circumferential narrow groove 23 and the first shoulder groove are secured. There is an advantage that the reduction in rigidity of the shoulder land portion 32 due to the approach of the shoulder land portion 44 is suppressed.
 また、この空気入りタイヤ1では、ショルダー陸部32が、周方向細溝23とタイヤ接地端Tとの間の領域に他の周方向細溝を備えていない(図3参照)。これにより、ショルダー陸部32の剛性が確保される利点がある。 Further, in the pneumatic tire 1, the shoulder land portion 32 does not have any other circumferential narrow groove in the region between the circumferential narrow groove 23 and the tire ground contact end T (see FIG. 3 ). This has the advantage of ensuring the rigidity of the shoulder land portion 32.
 また、この空気入りタイヤ1では、ショルダー陸部32の接地面内における第一ショルダー溝44の延在長さL4が、ショルダー陸部32の接地領域の幅Wshに対して0.30≦L4/Wsh≦0.50の関係を有する(図6参照)。上記下限により、第一ショルダー溝44による排水作用が確保され、上記上限により、第一ショルダー溝44の延在長さL4が過大となる起因するショルダー陸部32の剛性低下が抑制される利点がある。 Further, in the pneumatic tire 1, the extending length L4 of the first shoulder groove 44 in the ground contact surface of the shoulder land portion 32 is 0.30 ≦ L4 / with respect to the width Wsh of the ground contact region of the shoulder land portion 32. It has a relationship of Wsh≦0.50 (see FIG. 6). The lower limit secures the drainage action of the first shoulder groove 44, and the upper limit has an advantage that the rigidity reduction of the shoulder land portion 32 due to the excessive extension length L4 of the first shoulder groove 44 is suppressed. is there.
 また、この空気入りタイヤ1では、ショルダー陸部32の幅Wshが、タイヤ接地幅TWに対して0.15≦Wsh/TW≦0.35の関係を有する(図2参照)。これにより、ショルダー陸部32の幅Wshが適正化される利点がある。 Further, in the pneumatic tire 1, the width Wsh of the shoulder land portion 32 has a relationship of 0.15≦Wsh/TW≦0.35 with respect to the tire ground contact width TW (see FIG. 2). This has an advantage that the width Wsh of the shoulder land portion 32 is optimized.
 また、この空気入りタイヤ1では、第一ショルダー溝44のタイヤ周方向に対する傾斜角θ4が、50[deg]≦θ4≦85[deg]の範囲にある(図6参照)。これにより、第一ショルダー溝44の傾斜角θ4が適正化される利点がある。 Further, in the pneumatic tire 1, the inclination angle θ4 of the first shoulder groove 44 with respect to the tire circumferential direction is in the range of 50 [deg]≦θ4≦85 [deg] (see FIG. 6). Thereby, there is an advantage that the inclination angle θ4 of the first shoulder groove 44 is optimized.
 また、この空気入りタイヤ1では、第二ショルダー溝45が、第一ショルダー溝44に対してタイヤ幅方向に離間して配置される。かかる構成では、第二ショルダー溝45が第一ショルダー溝44に対して離間して配置されるので、タイヤの加硫成形工程における通気経路が確保されて、タイヤの加硫故障が抑制される利点がある。 Further, in the pneumatic tire 1, the second shoulder groove 45 is arranged apart from the first shoulder groove 44 in the tire width direction. With such a configuration, the second shoulder groove 45 is arranged apart from the first shoulder groove 44, so that an air passage is secured in the tire vulcanization molding step, and vulcanization failure of the tire is suppressed. There is.
 また、この空気入りタイヤ1では、第二ショルダー溝45と第一ショルダー溝44との距離Dcが、1.0[mm]≦Dc≦5.0[mm]の範囲にある。これにより、第二ショルダー溝45と第一ショルダー溝44との距離Dcが適正化される利点がある。特に、上記上限により、第二ショルダー溝45が第一ショルダー溝44に近接して配置されるのでショルダー陸部32の排水性が向上する。 Further, in the pneumatic tire 1, the distance Dc between the second shoulder groove 45 and the first shoulder groove 44 is in the range of 1.0 [mm]≦Dc≦5.0 [mm]. Thereby, there is an advantage that the distance Dc between the second shoulder groove 45 and the first shoulder groove 44 is optimized. In particular, due to the above upper limit, the second shoulder groove 45 is arranged close to the first shoulder groove 44, so that the drainage property of the shoulder land portion 32 is improved.
 また、この空気入りタイヤ1では、第一ショルダー溝44と第二ショルダー溝45とが、タイヤ周方向に対して相互に逆方向に傾斜する(図6参照)。かかる構成では、第一ショルダー溝44と第二ショルダー溝45とが同一方向に傾斜する構成と比較して、タイヤの操縦安定性能(特に旋回性能)が向上する利点がある。 Further, in the pneumatic tire 1, the first shoulder groove 44 and the second shoulder groove 45 are inclined in the directions opposite to each other with respect to the tire circumferential direction (see FIG. 6). Such a configuration has an advantage that steering stability performance (particularly turning performance) of the tire is improved as compared with a configuration in which the first shoulder groove 44 and the second shoulder groove 45 are inclined in the same direction.
 また、この空気入りタイヤ1では、第二ショルダー溝45のタイヤ周方向に対する傾斜角θ5が、30[deg]≦θ5≦60[deg]の範囲にある。これにより、第二ショルダー溝45の傾斜角θ5が適正化される利点がある。 Further, in the pneumatic tire 1, the inclination angle θ5 of the second shoulder groove 45 with respect to the tire circumferential direction is in the range of 30 [deg]≦θ5≦60 [deg]. This has an advantage that the inclination angle θ5 of the second shoulder groove 45 is optimized.
 また、この空気入りタイヤ1では、第一ショルダー溝44および第二ショルダー溝45のなす角γが、90[deg]≦γ≦150[deg]の範囲にある。これにより、第一ショルダー溝44および第二ショルダー溝45のなす角γが適正化される利点がある。 Further, in the pneumatic tire 1, the angle γ formed by the first shoulder groove 44 and the second shoulder groove 45 is in the range of 90 [deg]≦γ≦150 [deg]. This has the advantage that the angle γ formed by the first shoulder groove 44 and the second shoulder groove 45 is optimized.
 また、この空気入りタイヤ1では、ショルダー陸部32が、隣り合う第一ショルダー溝44、44の間に配置された第三ショルダー溝46を備える(図6参照)。また、タイヤ接地面内における第三ショルダー溝46の延在長さL6が、第一ショルダー溝44の延在長さL4に対して1.10≦L6/L4≦1.25の関係を有する。かかる構成では、第三ショルダー溝46によりショルダー陸部32のエッジ成分が増加して、タイヤのスノー性能が向上する利点がある。 Further, in the pneumatic tire 1, the shoulder land portion 32 includes the third shoulder groove 46 arranged between the adjacent first shoulder grooves 44, 44 (see FIG. 6). Further, the extension length L6 of the third shoulder groove 46 in the tire ground contact plane has a relationship of 1.10≦L6/L4≦1.25 with respect to the extension length L4 of the first shoulder groove 44. With such a configuration, the edge component of the shoulder land portion 32 is increased by the third shoulder groove 46, and there is an advantage that the snow performance of the tire is improved.
 また、この空気入りタイヤ1では、センター陸部31が、第一センター溝41、第二センター溝42および第三センター溝43を一組として構成された複数組の溝ユニット4ceを備える(図2参照)。また、第一センター溝41、第二センター溝42および第三センター溝43が、相互に交差することなく配置されて90[deg]以上150[deg]以下の配置間隔α、β、γで放射状に延在する(図4参照)。また、第一センター溝41が、1.5[mm]以上4.0[mm]以下の溝幅Wg1を有し、一方の端部にてショルダー主溝22に開口すると共に他方の端部にてセンター陸部31内で終端する。 Further, in the pneumatic tire 1, the center land portion 31 includes a plurality of sets of groove units 4ce each including the first center groove 41, the second center groove 42, and the third center groove 43 as one set (FIG. 2). reference). Further, the first center groove 41, the second center groove 42, and the third center groove 43 are arranged without intersecting each other and are radially arranged at an arrangement interval α, β, γ of 90 [deg] or more and 150 [deg] or less. (See FIG. 4). In addition, the first center groove 41 has a groove width Wg1 of 1.5 [mm] or more and 4.0 [mm] or less, and opens at the shoulder main groove 22 at one end and at the other end. Ends in the center land portion 31.
 かかる構成では、(1)3本のセンター溝41~43を一組とする溝ユニット4ceにより、タイヤのウェット性能が確保される。また、(2)センター溝41~43が相互に交差することなく配置されるので、センター陸部31の剛性が確保されて、タイヤのドライ性能が確保される。また、(3)センター溝41~43が90[deg]以上150[deg]以下の配置間隔α、β、γで放射状に延在するので、センター溝41~43が偏在する構成と比較して、センター陸部31の剛性が効率的に確保されてタイヤのドライ性能が効率的に向上する。また、(4)第一センター溝41がラグ溝であることにより、陸部31、32の排水性が確保されて、タイヤのウェット性能が確保される。これらにより、タイヤのウェット性能とドライ性能が両立する利点がある。 With such a configuration, (1) the wet performance of the tire is ensured by the groove unit 4ce including a set of three center grooves 41 to 43. Further, (2) since the center grooves 41 to 43 are arranged without intersecting with each other, the rigidity of the center land portion 31 is secured and the dry performance of the tire is secured. Further, (3) since the center grooves 41 to 43 radially extend at the arrangement intervals α, β, γ of 90 [deg] or more and 150 [deg] or less, compared with the configuration in which the center grooves 41 to 43 are unevenly distributed. The rigidity of the center land portion 31 is efficiently ensured, and the dry performance of the tire is efficiently improved. (4) Since the first center groove 41 is a lug groove, the drainage of the land portions 31 and 32 is ensured, and the wet performance of the tire is ensured. With these, there is an advantage that the wet performance and the dry performance of the tire are compatible with each other.
 図8は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。図9および図10は、従来例(図9)および比較例(図10)の試験タイヤを示す説明図である。これらの図は、タイヤ片側領域におけるセンター陸部およびショルダー陸部のトレッド平面図を示している。 FIG. 8 is a chart showing the results of a performance test of the pneumatic tire according to the embodiment of the present invention. 9 and 10 are explanatory views showing test tires of a conventional example (FIG. 9) and a comparative example (FIG. 10). These figures show tread plan views of the center land portion and the shoulder land portion in the tire one side region.
 この性能試験では、複数種類の試験タイヤについて、(1)ドライ操縦安定性能、(2)ウェット制動性能および(3)スノー操縦安定性能に関する評価が行われた。また、タイヤサイズ185/60R15の試験タイヤがリムサイズ15×6Jのリムに組み付けられ、この試験タイヤに前輪240[kPa]、後輪230[kPa]の内圧およびJATMA規定の最大負荷が付与される。 In this performance test, several types of test tires were evaluated for (1) dry steering stability performance, (2) wet braking performance, and (3) snow steering stability performance. Further, a test tire with a tire size of 185/60R15 is mounted on a rim with a rim size of 15×6J, and the inner pressure of the front wheels 240 [kPa] and the rear wheels 230 [kPa] and the maximum load specified by JATMA are applied to the test tire.
 (1)ドライ操縦安定性能に関する評価では、試験車両が平坦な周回路を有するドライ路面のテストコースを60[km/h]~100[km/h]で走行する。そして、テストドライバーがレーチェンジ時およびコーナリング時における操舵性ならびに直進時における安定性について官能評価を行う。この評価は従来例を基準(100)とした指数評価により行われ、その数値が大きいほど好ましい。また、数値が98以上であれば、ドライ操縦安定性能が適正に確保されているといえる。 (1) In the evaluation of dry steering stability performance, the test vehicle runs on a test course on a dry road surface with a flat peripheral circuit at 60 [km/h] to 100 [km/h]. Then, the test driver performs a sensory evaluation on the steerability during lane change and cornering and the stability during straight running. This evaluation is performed by index evaluation using the conventional example as a reference (100), and the larger the value, the more preferable. Further, if the value is 98 or more, it can be said that the dry steering stability performance is properly secured.
 (2)ウェット制動性能に関する評価では、試験車両が水深1[mm]で散水したアスファルト路を走行し、初速度40[km/h]からの制動距離が測定される。そして、測定結果に基づいて従来例を基準(100)とした指数評価が行われる。評価は、その数値が大きいほど好ましい。 (2) In the evaluation of wet braking performance, the test vehicle travels on an asphalt road sprinkled with water at a depth of 1 [mm], and the braking distance from an initial speed of 40 [km / h] is measured. Then, based on the measurement result, index evaluation is performed with the conventional example as a reference (100). The larger the value, the more preferable the evaluation.
 (3)スノー操縦安定性能に関する評価では、試験車両が雪路である所定のハンドリングコースを速度40[km/h]で走行して、テストドライバーが操縦安定性に関する官能評価を行う。この評価は従来例を基準(100)とした指数評価により行われ、その数値が大きいほど好ましい。 (3) In the evaluation on snow steering stability performance, the test vehicle runs on a predetermined handling course on a snowy road at a speed of 40 [km/h], and the test driver performs a sensory evaluation on steering stability. This evaluation is performed by index evaluation using the conventional example as a reference (100), and the larger the value, the more preferable.
 実施例の試験タイヤは、図1~図3の構成を備え、センター陸部31が放射状に配置された3本のセンター溝41~43から成る複数組の溝ユニット4ceを有し、ショルダー陸部32が周方向細溝23および第一~第三のショルダー溝44~46を有する。また、センター陸部31の幅WceがWce=20[mm]であり、ショルダー陸部32の幅WshがWsh=30.0[mm]である。また、ショルダー主溝22の溝幅Wgmが9.3[mm]であり、溝深さHmが7.0[mm]である。周方向細溝23の溝幅Wgsが1.5[mm]であり、溝深さHsが3.5[mm]である。また、第一ショルダー溝44の溝幅Wg4が3.8[mm]であり、溝深さH4が5.0[mm]であり、傾斜角θ4が86[deg]である。また、第二ショルダー溝45の溝幅Wg5が0.8[mm]であり、溝深さH5が3.5[mm]であり、傾斜角θ5が54[deg]である。また、また、第三ショルダー溝46の溝幅Wg6が0.8[mm]であり、溝深さH6が5.0[mm]であり、傾斜角θ6が86[deg]である。また、第一ショルダー溝44と第二ショルダー溝45とが相互に離間しており、その距離Dcが1.0[mm]である。 The test tire of the embodiment has the configurations shown in FIGS. 1 to 3, has a plurality of sets of groove units 4ce composed of three center grooves 41 to 43 in which the center land portion 31 is radially arranged, and has a shoulder land portion. 32 has a circumferential narrow groove 23 and first to third shoulder grooves 44 to 46. The width Wce of the center land portion 31 is Wce=20 [mm], and the width Wsh of the shoulder land portion 32 is Wsh=30.0 [mm]. Further, the groove width Wgm of the shoulder main groove 22 is 9.3 [mm], and the groove depth Hm is 7.0 [mm]. The groove width Wgs of the circumferential narrow groove 23 is 1.5 [mm], and the groove depth Hs is 3.5 [mm]. Further, the groove width Wg4 of the first shoulder groove 44 is 3.8 [mm], the groove depth H4 is 5.0 [mm], and the inclination angle θ4 is 86 [deg]. The groove width Wg5 of the second shoulder groove 45 is 0.8 [mm], the groove depth H5 is 3.5 [mm], and the inclination angle θ5 is 54 [deg]. Further, the groove width Wg6 of the third shoulder groove 46 is 0.8 [mm], the groove depth H6 is 5.0 [mm], and the inclination angle θ6 is 86 [deg]. Further, the first shoulder groove 44 and the second shoulder groove 45 are separated from each other, and the distance Dc is 1.0 [mm].
 従来例の試験タイヤは、図9の構成を備え、実施例1の試験タイヤと比較して、周方向細溝23(図3)がタイヤ周方向に不連続なサイプである点で相異する。比較例の試験タイヤは、図10の構成を備え、実施例1の試験タイヤと比較して、周方向細溝23が第一ショルダー溝44に交差する点で相異する。 The test tire of the conventional example has the configuration of FIG. 9 and differs from the test tire of Example 1 in that the circumferential narrow groove 23 (FIG. 3) is a sipe discontinuous in the tire circumferential direction. .. The test tire of the comparative example has the configuration of FIG. 10, and differs from the test tire of Example 1 in that the circumferential narrow groove 23 intersects the first shoulder groove 44.
 試験結果に示すように、実施例の試験タイヤでは、タイヤのウェット性能およびスノー性能とドライ性能とが両立することが分かる。 As shown in the test results, it can be seen that the test tires of the examples have both wet performance of the tires and snow performance and dry performance.
 1 空気入りタイヤ、11 ビードコア、12 ビードフィラー、13 カーカス層、14 ベルト層、141、142 交差ベルト、143 ベルトカバー、15 トレッドゴム、16 サイドウォールゴム、17 リムクッションゴム、21 センター主溝、22 ショルダー主溝、23 周方向細溝、31 センター主溝、32 ショルダー陸部、4ce 溝ユニット、41 第一センター溝、42 第二センター溝、43 第三センター溝、44 第一ショルダー溝、45 第二ショルダー溝、46 第三ショルダー溝 1 pneumatic tire, 11 bead core, 12 bead filler, 13 carcass layer, 14 belt layer, 141, 142 cross belt, 143 belt cover, 15 tread rubber, 16 sidewall rubber, 17 rim cushion rubber, 21 center main groove, 22 Shoulder main groove, 23 circumferential narrow groove, 31 center main groove, 32 shoulder land portion, 4ce groove unit, 41 first center groove, 42 second center groove, 43 third center groove, 44 first shoulder groove, 45th Two shoulder groove, 46 third shoulder groove

Claims (15)

  1.  タイヤ周方向に延在するセンター主溝およびショルダー主溝と、前記センター主溝および前記ショルダー主溝に区画されたセンター陸部およびショルダー陸部とを備える空気入りタイヤであって、
     前記ショルダー陸部が、タイヤ周方向に連続して延在する周方向細溝と、一方の端部にてタイヤ接地端に開口すると共に他方の端部にて前記ショルダー陸部内で終端する第一ショルダー溝と、一方の端部にて前記ショルダー主溝に開口すると共に他方の端部にて前記ショルダー陸部内で終端する第二ショルダー溝とを備え、
     前記第一ショルダー溝が、1.5[mm]以上4.0[mm]以下の溝幅を有すると共に前記周方向細溝に対して交差せず、且つ、
     前記第二ショルダー溝が、0.6[mm]以上1.2[mm]以下の溝幅を有すると共に前記周方向細溝に対して交差することを特徴とする空気入りタイヤ。
    A pneumatic tire comprising a center main groove and a shoulder main groove extending in the tire circumferential direction, and a center land portion and a shoulder land portion defined by the center main groove and the shoulder main groove,
    The shoulder land portion is a circumferential narrow groove that extends continuously in the tire circumferential direction, and a first end that opens at the tire ground contact end at one end and terminates in the shoulder land portion at the other end. A shoulder groove and a second shoulder groove that opens at the shoulder main groove at one end and ends in the shoulder land portion at the other end,
    The first shoulder groove has a groove width of 1.5 [mm] or more and 4.0 [mm] or less, does not intersect with the circumferential narrow groove, and
    The pneumatic tire, wherein the second shoulder groove has a groove width of 0.6 [mm] or more and 1.2 [mm] or less and intersects with the circumferential narrow groove.
  2.  前記周方向細溝の溝幅Wgsが、前記ショルダー主溝の溝幅Wgmに対して0.10≦Wgs/Wgm≦0.40の関係を有する請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the groove width Wgs of the circumferential narrow groove has a relationship of 0.10≦Wgs/Wgm≦0.40 with respect to the groove width Wgm of the shoulder main groove.
  3.  前記周方向細溝の溝深さHsが、前記ショルダー主溝の溝深さHmに対して0.30≦Hs/Hm≦0.70の関係を有する請求項1または2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein the groove depth Hs of the circumferential narrow groove has a relationship of 0.30 ≦ Hs / Hm ≦ 0.70 with respect to the groove depth Hm of the shoulder main groove. ..
  4.  前記ショルダー陸部の前記ショルダー主溝側のエッジ部から前記周方向細溝の溝中心線までの距離Dsが、前記ショルダー陸部の接地領域の幅Wshに対して0.10≦Ds/Wsh≦0.40の関係を有する請求項1~3のいずれか一つに記載の空気入りタイヤ。 The distance Ds from the edge portion of the shoulder land portion on the shoulder main groove side to the groove center line of the circumferential narrow groove is 0.10 ≦ Ds / Wsh ≦ with respect to the width Wsh of the ground contact region of the shoulder land portion. The pneumatic tire according to any one of claims 1 to 3, which has a relationship of 0.40.
  5.  前記ショルダー陸部が、前記周方向細溝とタイヤ接地端との間の領域に他の周方向細溝を備えていない請求項1~4のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein the shoulder land portion is not provided with another circumferential narrow groove in a region between the circumferential narrow groove and the tire ground contact end.
  6.  前記ショルダー陸部の接地面内における前記第一ショルダー溝の延在長さL4が、前記ショルダー陸部の接地領域の幅Wshに対して0.30≦L4/Wsh≦0.50の関係を有する請求項1~5のいずれか一つに記載の空気入りタイヤ。 The extending length L4 of the first shoulder groove in the ground contact surface of the shoulder land portion has a relationship of 0.30 ≦ L4 / Wsh ≦ 0.50 with respect to the width Wsh of the ground contact region of the shoulder land portion. The pneumatic tire according to any one of claims 1 to 5.
  7.  前記ショルダー陸部の接地領域の幅Wshが、タイヤ接地幅TWに対して0.15≦Wsh/TW≦0.35の関係を有する請求項1~6のいずれか一つに記載の空気入りタイヤ。 7. The pneumatic tire according to claim 1, wherein the width Wsh of the ground contact area of the shoulder land portion has a relationship of 0.15≦Wsh/TW≦0.35 with respect to the tire ground contact width TW. ..
  8.  前記第一ショルダー溝のタイヤ周方向に対する傾斜角θ4が、50[deg]≦θ4≦88[deg]の範囲にある請求項1~7のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 7, wherein the inclination angle θ4 of the first shoulder groove with respect to the tire circumferential direction is in the range of 50 [deg] ≤ θ4 ≤ 88 [deg].
  9.  前記第二ショルダー溝が、前記第一ショルダー溝に対してタイヤ幅方向に離間して配置される請求項1~8のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 8, wherein the second shoulder groove is arranged apart from the first shoulder groove in the tire width direction.
  10.  前記第二ショルダー溝と前記第一ショルダー溝との距離Dcが、1.0[mm]≦Dc≦5.0[mm]の範囲にある請求項9に記載の空気入りタイヤ。 The pneumatic tire according to claim 9, wherein a distance Dc between the second shoulder groove and the first shoulder groove is in a range of 1.0 [mm]≦Dc≦5.0 [mm].
  11.  前記第一ショルダー溝と前記第二ショルダー溝とが、タイヤ周方向に対して相互に逆方向に傾斜する請求項1~10のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 10, wherein the first shoulder groove and the second shoulder groove are inclined in opposite directions with respect to the tire circumferential direction.
  12.  前記第二ショルダー溝のタイヤ周方向に対する傾斜角θ5が、30[deg]≦θ5≦60[deg]の範囲にある請求項11に記載の空気入りタイヤ。 The pneumatic tire according to claim 11, wherein the inclination angle θ5 of the second shoulder groove with respect to the tire circumferential direction is in the range of 30 [deg] ≤ θ5 ≤ 60 [deg].
  13.  前記第一ショルダー溝および前記第二ショルダー溝のなす角γが、90[deg]≦γ≦150[deg]の範囲にある請求項1~12のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, wherein the angle γ formed by the first shoulder groove and the second shoulder groove is in the range of 90 [deg] ≤ γ ≤ 150 [deg].
  14.  前記ショルダー陸部が、隣り合う前記第一ショルダー溝の間に配置された第三ショルダー溝を備え、且つ、タイヤ接地面内における前記第三ショルダー溝の延在長さL6が、前記第一ショルダー溝の延在長さL4に対して1.10≦L6/L4≦1.25の関係を有する請求項1~13のいずれか一つに記載の空気入りタイヤ。 The shoulder land portion includes a third shoulder groove arranged between the adjacent first shoulder grooves, and the extending length L6 of the third shoulder groove in the tire contact patch is the first shoulder. The pneumatic tire according to any one of claims 1 to 13, which has a relationship of 1.10 ≦ L6 / L4 ≦ 1.25 with respect to the extending length L4 of the groove.
  15.  前記センター陸部が、第一センター溝、第二センター溝および第三センター溝を一組として構成された複数組の溝ユニットを備え、
     前記第一センター溝、前記第二センター溝および前記第三センター溝が、相互に交差することなく配置されて90[deg]以上150[deg]以下の配置間隔で放射状に延在し、且つ、
     前記第一センター溝が、1.5[mm]以上4.0[mm]以下の溝幅を有し、一方の端部にて前記ショルダー主溝に開口すると共に他方の端部にて前記センター陸部内で終端する請求項1~14のいずれか一つに記載の空気入りタイヤ。
    The center land portion includes a plurality of sets of groove units composed of a first center groove, a second center groove, and a third center groove.
    The first center groove, the second center groove, and the third center groove are arranged without intersecting with each other and extend radially at an arrangement interval of 90 [deg] or more and 150 [deg] or less, and
    The first center groove has a groove width of 1.5 [mm] or more and 4.0 [mm] or less, and opens at the shoulder main groove at one end and the center at the other end. The pneumatic tire according to any one of claims 1 to 14, which is terminated in the land portion.
PCT/JP2019/048329 2019-03-01 2019-12-10 Pneumatic tire WO2020179169A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019006559.9T DE112019006559T5 (en) 2019-03-01 2019-12-10 tire
CN201980093274.0A CN113597379B (en) 2019-03-01 2019-12-10 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-037777 2019-03-01
JP2019037777A JP7205307B2 (en) 2019-03-01 2019-03-01 pneumatic tire

Publications (1)

Publication Number Publication Date
WO2020179169A1 true WO2020179169A1 (en) 2020-09-10

Family

ID=72279791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048329 WO2020179169A1 (en) 2019-03-01 2019-12-10 Pneumatic tire

Country Status (4)

Country Link
JP (1) JP7205307B2 (en)
CN (1) CN113597379B (en)
DE (1) DE112019006559T5 (en)
WO (1) WO2020179169A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171478A (en) * 2011-02-21 2012-09-10 Bridgestone Corp Pneumatic tire
JP2015013606A (en) * 2013-07-05 2015-01-22 住友ゴム工業株式会社 Pneumatic tire
JP2017052327A (en) * 2015-09-07 2017-03-16 横浜ゴム株式会社 Pneumatic tire
JP2017088114A (en) * 2015-11-17 2017-05-25 横浜ゴム株式会社 Pneumatic tire
JP2017170939A (en) * 2016-03-18 2017-09-28 住友ゴム工業株式会社 Pneumatic tire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010442A (en) * 2011-06-29 2013-01-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP5413500B2 (en) * 2012-02-02 2014-02-12 横浜ゴム株式会社 Pneumatic tire
JP5894556B2 (en) * 2013-04-18 2016-03-30 住友ゴム工業株式会社 Pneumatic tire
US10603961B2 (en) * 2014-10-07 2020-03-31 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP6446980B2 (en) * 2014-10-09 2019-01-09 横浜ゴム株式会社 Pneumatic tire
JP2017007641A (en) * 2015-06-17 2017-01-12 横浜ゴム株式会社 Pneumatic tire
JP6724314B2 (en) * 2015-09-04 2020-07-15 横浜ゴム株式会社 Pneumatic tire
JP6790443B2 (en) * 2016-05-10 2020-11-25 横浜ゴム株式会社 Pneumatic tires
JP2018020689A (en) * 2016-08-04 2018-02-08 横浜ゴム株式会社 Pneumatic tire
JP2018043553A (en) * 2016-09-12 2018-03-22 横浜ゴム株式会社 Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171478A (en) * 2011-02-21 2012-09-10 Bridgestone Corp Pneumatic tire
JP2015013606A (en) * 2013-07-05 2015-01-22 住友ゴム工業株式会社 Pneumatic tire
JP2017052327A (en) * 2015-09-07 2017-03-16 横浜ゴム株式会社 Pneumatic tire
JP2017088114A (en) * 2015-11-17 2017-05-25 横浜ゴム株式会社 Pneumatic tire
JP2017170939A (en) * 2016-03-18 2017-09-28 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2020138703A (en) 2020-09-03
JP7205307B2 (en) 2023-01-17
CN113597379B (en) 2024-02-13
CN113597379A (en) 2021-11-02
DE112019006559T5 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6414245B2 (en) Pneumatic tire
JP2016074256A (en) Pneumatic tire
JP7147354B2 (en) pneumatic tire
JP2017065625A (en) Pneumatic tire
WO2018151111A1 (en) Pneumatic tire
JP6724317B2 (en) Pneumatic tire
US11872848B2 (en) Pneumatic tire
JP7115132B2 (en) pneumatic tire
US20200406684A1 (en) Pneumatic Tire
CN114746292B (en) Tire with a tire body
WO2020217964A1 (en) Pneumatic tire
JP7115077B2 (en) pneumatic tire
WO2020179169A1 (en) Pneumatic tire
JP7059782B2 (en) Pneumatic tires
JP7069793B2 (en) Pneumatic tires
JP7069792B2 (en) Pneumatic tires
WO2019150855A1 (en) Pneumatic tire
CN114786966B (en) Tire with a tire body
CN114829163B (en) Tire with a tire body
WO2021100669A1 (en) Pneumatic tire
JP7293840B2 (en) pneumatic tire
JP7306122B2 (en) pneumatic tire
US20200406685A1 (en) Pneumatic Tire
JP6825252B2 (en) Pneumatic tires
JP2021014186A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918152

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918152

Country of ref document: EP

Kind code of ref document: A1