WO2020178890A1 - レーザ加工装置及び方法 - Google Patents

レーザ加工装置及び方法 Download PDF

Info

Publication number
WO2020178890A1
WO2020178890A1 PCT/JP2019/008044 JP2019008044W WO2020178890A1 WO 2020178890 A1 WO2020178890 A1 WO 2020178890A1 JP 2019008044 W JP2019008044 W JP 2019008044W WO 2020178890 A1 WO2020178890 A1 WO 2020178890A1
Authority
WO
WIPO (PCT)
Prior art keywords
assist gas
gas
laser processing
nozzle
laser
Prior art date
Application number
PCT/JP2019/008044
Other languages
English (en)
French (fr)
Inventor
隆典 宮▲崎▼
響 山本
裕樹 村澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019006808.3T priority Critical patent/DE112019006808B4/de
Priority to PCT/JP2019/008044 priority patent/WO2020178890A1/ja
Priority to JP2019547168A priority patent/JP6685478B1/ja
Publication of WO2020178890A1 publication Critical patent/WO2020178890A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle

Definitions

  • the present invention relates to a laser processing apparatus and a laser processing method for processing a workpiece using laser light.
  • a laser processing device that processes a workpiece using an assist gas.
  • a combustible gas or an inert gas may be used as an assist gas in laser processing.
  • combustible gas it is used as a gas that assists the energy for processing the object with combustion energy.
  • inert gas it may be used as a gas that assists in the removal of the dross that is a melt generated during laser processing.
  • the assist gas purity if the assist gas purity is lowered, it may cause discoloration of the machined surface or the generation of dross. That is, the quality of the machined surface deteriorates.
  • an inert gas there is a possibility that the dross generated when the assist gas purity is lowered cannot be completely removed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing apparatus capable of improving the quality of a processed surface at the start of laser processing and capable of effectively removing dross. To do.
  • the present invention relates to a laser beam emitted from a laser oscillator, a first assist gas supplied from a first gas supply source, and a second gas supply source supplied from the second gas supply source.
  • a nozzle mechanism that guides the assist gas to the workpiece and a controller that controls the supply of the first and second assist gases are provided, and the nozzle mechanism processes the laser light and the first assist gas. It has an inner nozzle that guides the processed portion of the object, and an outer nozzle that is disposed around the inner nozzle and that guides the second assist gas to the periphery of the processed portion of the workpiece.
  • the control device controls the gas supply timing at the start of laser processing such that the supply timing of the first assist gas is earlier than the supply timing of the second assist gas, and the emission timing of the laser light is the first. It is controlled so that it is after the supply timing of the assist gas of 2.
  • the laser processing apparatus controls the supply timing of the first assist gas to be earlier than the supply timing of the second assist gas at the start of laser processing.
  • Sectional drawing which shows the nozzle mechanism which concerns on embodiment
  • Top view showing the nozzle mechanism according to the embodiment Flowchart at the start of laser processing according to the embodiment
  • FIG. 1 is a diagram schematically showing a configuration of a laser processing system 1 according to the first embodiment.
  • the laser processing system 1 includes a laser processing device 10, a first gas supply source 20 filled with a first assist gas, and a second gas supply source 30 filled with a second assist gas. I have it.
  • the laser processing device 10 processes a workpiece using laser light.
  • the portion of the workpiece processed by this laser light will be referred to as a processed portion.
  • dross generated during laser processing mainly dross generated coaxially with laser light, is removed by using the first assist gas.
  • the periphery of the first assist gas can be shielded by using the second assist gas to prevent the first assist gas from leaking to other than the processed portion, and the purity of the first assist gas can be prevented. Can be suppressed, so that the quality of the machined surface at the start of laser machining does not deteriorate. Further, during laser processing, a melt called dross is generated in the processed portion, but since the decrease in the purity of the first assist gas can be suppressed, the dross generated behind the traveling direction of the laser beam can be removed.
  • the laser processing apparatus 10 includes a laser oscillator 11 that emits a laser beam, a light propagation path 12 through which a laser beam emitted from the laser oscillator 11 passes, a table 13 on which a workpiece W is placed, and a table 13 that faces the table 13. And a laser head 14 that guides the laser light that has passed through the light propagation path 12 to the workpiece W.
  • the workpiece W is, for example, a plate made of metal, and examples of the metal are stainless steel, aluminum, or mild steel.
  • the laser processing apparatus 10 connects the first gas supply pipe 15 that guides the first assist gas from the first gas supply source 20 to the laser head 14 and the second assist gas from the second gas supply source 30.
  • the laser processing apparatus 10 further includes a control device 17 that controls the laser oscillator 11, the first gas supply source 20, and the second gas supply source 30, and a drive device 18.
  • the laser head 14 includes a light supply path 14a for guiding the laser light that has passed through the light propagation path 12 to the processing portion WO of the workpiece W.
  • the opening at the tip of the light supply path 14 a is provided near the center of the tip of the laser head 14.
  • a first gas supply pipe 15 is connected to the light supply passage 14a, and the light supply passage 14a guides the first assist gas supplied through the first gas supply pipe 15 to the processing section WO. It also serves as a first gas supply channel.
  • the laser head 14 also includes a second gas supply passage 14b to which a second gas supply pipe 16 is connected.
  • the second gas supply passage 14b is formed so as to surround the light supply passage 14a, and guides the second assist gas to the periphery of the processed portion WO.
  • the second assist gas is sprayed around the first assist gas and the second assist gas functions as a shield, so that the first assist gas can be prevented from leaking to other than the processed portion WO.
  • the laser oscillator 11, the first gas supply source 20, and the second gas supply source 30 are controlled by the control device 17 at the start of laser processing.
  • the time when the laser processing is started means the time when the laser processing device 10 is controlled by the control device 17 to start the laser processing after the laser processing device 10 is started. That is, the supply of the assist gas and the emission of the laser light are started after the laser processing is started.
  • the control device 17 controls the supply timing of the first assist gas to be earlier than the supply timing of the second assist gas, and sets the emission timing of the laser beam to the second assist. The control is performed so as to be after the gas supply timing.
  • the timing of supplying the assist gas refers to the timing of injecting the first and second assist gases from the nozzle mechanism 3.
  • the laser processing device 10 further includes a drive device 18 that receives a user instruction and drives the control device 17 according to the received instruction.
  • the drive device 18 also has a function of controlling the position of the laser head 14 according to a user's instruction.
  • FIG. 2 is a schematic cross-sectional view showing the internal structure of the laser head 14.
  • the laser head 14 includes a nozzle mechanism 3, an insulation part 4, and a processing head 5, and has a side-itch structure in which the insulation part 4 is sandwiched between the nozzle mechanism 3 and the processing head 5.
  • the nozzle mechanism 3 includes an inner nozzle 3a and an outer nozzle 3b.
  • Each of the inner nozzle 3a and the outer nozzle 3b has a shape close to a conical shape, the outer nozzle 3b is larger than the inner nozzle 3a, and the inner nozzle 3a is arranged inside the outer nozzle 3b.
  • the inner nozzle 3a constitutes a part of the light supply path 14a, and is supplied with the laser light L emitted from the laser oscillator 11 and the first gas supply source 20 through the first gas supply pipe 15.
  • the assist gas G1 of 1 is guided to the processing part WO of the workpiece W.
  • the outer nozzle 3b constitutes a part of the second gas supply pipe, is provided around the inner nozzle 3a, and the second assist gas is supplied from the second gas supply source 30 via the second gas supply pipe 16. Guide G2 around the processing part WO.
  • the processing head 5 is connected to the light propagation path 12, and a light supply path 14a through which the laser light L that has passed through the light propagation path 12 passes is formed substantially in the center in plan view.
  • the light supply path 14a communicates with the inner nozzle 3a via the insulation part 4. With this configuration, the laser light L guided to the laser head 14 is guided from the inner nozzle 3a to the processing portion WO through the light supply path 14a.
  • the processing head 5 is also formed with a gas supply path 51h (first rectifying section) to which the first gas supply pipe 15 is connected.
  • FIG. 3 shows a sectional view of the processing head 5 at the position shown by the dotted line in FIG.
  • a plurality of (eight) gas supply passages 51h are formed concentrically around the light supply passage 14a at equal intervals in a plan view, and are not connected to the connection side of the first gas supply pipe 15. It communicates with the light supply path 14a from the opposite side. As a result, the flow of the first assist gas G1 supplied through the first gas supply pipe 15 is adjusted and guided to the light supply path 14a.
  • the first assist gas G1 can be smoothly supplied to the processing portion WO of the workpiece W via the light supply path 14a.
  • the rectified first assist gas G1 is supplied in a circular cross-section, the quality of the processed surface can be improved regardless of the laser processing direction, and the dross can be efficiently removed.
  • Insulation parts 4 are nozzle tip parts and are used for nozzle height control.
  • the insulation part 4 in the embodiment has a function of rectifying the second assist gas G2 supplied from the second gas supply pipe 16 through the processing head 5.
  • the insulation part 4 has a cylindrical shape, and has a light supply path 14a and a plurality of gas supply paths 41h (second section) around the light supply path 14a. Rectifiers) are formed at approximately equal intervals.
  • the number of gas supply paths 41h is the same as the number of gas supply paths included in the outer nozzle 3b, and each gas supply path 41h communicates with the gas supply path included in the outer nozzle 3b. That is, as shown in FIG.
  • a plurality of (eight) gas supply passages 41h are formed concentrically in a plan view.
  • the second assist gas that has been supplied to the processing head 5 through the second gas supply pipe 16 is directly guided from each gas supply passage 41h to the gas supply passage that the outer nozzle 3b has. Become. That is, it is possible to smoothly guide the second assist gas to the periphery of the processed portion WO of the workpiece W without causing the second assist gas to stay.
  • the inner nozzle 3a of the nozzle mechanism 3 is formed along a direction substantially perpendicular to the processing surface WO of the workpiece W. More specifically, as shown in FIG. 6, the inner nozzle 3a is formed such that the inner diameter thereof widens from the side closer to the workpiece W to the side farther from the workpiece W in cross-sectional view.
  • the outer nozzle 3b is provided so as to surround the inner nozzle 3a. More specifically, as shown in FIG. 7, the outer nozzle 3b is provided with a plurality of concentric holes 32h around the inner nozzle 3a in plan view, and the insulation part 4 is provided with the holes 32h as described above. It has a function of guiding the second assist gas supplied through the gas supply path 41h to the periphery of the processing portion WO. Eight holes 32h of the outer nozzle 3b are formed in the example of FIG.
  • FIG. 8 is a flowchart showing the control of the control device 17 at the start of laser processing.
  • the control device 17 controls the first gas supply source 20 and supplies the first assist gas to the laser head 14 via the first gas supply pipe 15. (S101).
  • the control device 17 controls the first gas supply source 20 such that the supply pressure of the first assist gas is at least sufficient to remove the dross.
  • the control device 17 is a first gas supply source so that the supply pressure of the first assist gas becomes the pressure value based on a predetermined supply pressure value held in a memory (not shown). Control twenty.
  • the control device 17 controls the second gas supply source 30 to supply the second assist gas after a predetermined time (for example, 100 to 500 msec) has elapsed from the start of the first assist gas supply.
  • a predetermined time for example, 100 to 500 msec
  • the first assist gas has already been supplied at the above-mentioned pressure, so that the second assist gas blown around the processing portion WO is entrained in the first assist gas.
  • the surrounding of the first assist gas is shielded without being damaged. That is, the second assist gas is not mixed with the first assist gas. Therefore, the purity of the first assist gas does not decrease.
  • the control device 17 controls the laser oscillator 11 to emit the laser light L after a predetermined time (for example, 100 to 500 msec) has elapsed from the start of the second assist gas supply (S103).
  • a predetermined time for example, 100 to 500 msec
  • the laser light L is guided to the processing portion WO of the workpiece W via the inner nozzle 3a in the laser head 14, and laser processing is started.
  • the first assist gas and the second assist gas have already been supplied and the purity of the first assist gas has not decreased, the deterioration of the quality of the laser processed surface can be suppressed, and the laser processing can be performed.
  • the dross generated by the first assist gas can be effectively removed.
  • the time from the start of the first assist gas supply to the start of the second assist gas supply is determined by a plurality of parameters.
  • various laser processing such as gas pressure, gas supply amount, inner diameter of inner nozzle, inner diameter of outer nozzle, positional relationship between inner nozzle and outer nozzle, type of workpiece, type of assist gas, processing method, etc.
  • the optimum time is determined in consideration of the parameters.
  • the gas pressure is controlled so that the second assist gas is supplied so that the purity of the first assist gas does not decrease.
  • deterioration of the quality of the laser processed surface can be suppressed, and dross generated by laser processing can be more effectively removed.
  • FIG. 9 is a flowchart showing the control of the control device 17 at the end of laser processing.
  • the control device 17 controls the laser oscillator 11 to stop the emission of the laser beam L (S201).
  • the control device 17 controls the second gas supply source 30 to stop the second assist gas (S202) after the elapse of a predetermined time (for example, 100 to 500 msec), and then the first The gas supply source 20 is controlled so that the first assist gas is stopped after a predetermined time has passed (S203). ..
  • the second assist gas that should be shielded after the supply of the first assist gas G1 that is supplied at a pressure sufficient to remove dross.
  • the supply of G2 is started and the laser beam is emitted thereafter.
  • the supply of the laser beam L is stopped first, then the supply of the second assist gas is stopped, and then the supply of the first assist gas is stopped, so that the second assist The gas can be prevented from entering the inner nozzle, that is, the backflow of the second assist gas to the inner nozzle can be suppressed.
  • the gas supply is stopped after the dross generated by the irradiation of the laser beam L is completely removed, the dross does not remain, and the generated dross is wound up by the assist gas into the laser head 14. There is no such thing as an intrusion. Therefore, it is possible to prevent a reduction in processing accuracy.
  • the supply pressure of the first assist gas G1 is set to a pressure that is considered to be sufficient to remove dross is taken as an example.
  • the supply pressure of the first assist gas G1 may be set to an amount that is considered to be sufficient to remove dross.
  • the supply pressure of the second assist gas G2 may be higher than the supply pressure of the first assist gas G2, and by doing so, the first assist gas G1 is shielded by the second assist gas G2. Therefore, the purity of the first assist gas G1 can be suppressed from being lowered, and the first assist gas G1 can be efficiently supplied.
  • the configuration at the end of the laser processing the configuration in which both the first and second assist gases G2 are stopped at the same time after the emission of the laser light is stopped is taken as an example.
  • the second assist gas G2 may be stopped after stopping, or the first assist gas may be stopped after stopping the second assist gas.
  • FIG. 10 is a schematic view showing the vicinity of the tip of the nozzle mechanism 3 according to the second embodiment.
  • the nozzle mechanism 3 employs a configuration in which the tip of the inner nozzle 31 is retracted to the inside of the nozzle mechanism 3 (the tip of the nozzle mechanism is on the assist gas supply source side) with respect to the tip of the outer nozzle 32.
  • the state in which the first assist gas G1 is compressed by the second assist gas pressure in the vicinity of the processed portion WO in comparison with the configuration according to the first embodiment first assist gas G1 is supplied in a thinner state. It can be said that the purity of the first assist gas G1 is adjusted from the processing portion WO toward the radially outer side of the nozzle mechanism 3. As a result, deterioration of the quality of the laser processed surface can be suppressed, and the dross generated by the laser processing can be removed with higher accuracy.
  • laser processing may be performed using stainless steel as the workpiece W, nitrogen as the first assist gas, and air as the second assist gas, but this is due to air being mixed into the processed portion WO. It is necessary to prevent oxidative discoloration of the workpiece W.
  • the positional relationship between the inner nozzle 3a and the outer nozzle 3b of the nozzle mechanism 3 is adjusted as in the second embodiment, it is possible to suppress the mixing of nitrogen and air, so that the work portion WO is processed due to the inclusion of air. It is possible to prevent discoloration of the processed surface due to oxidation of the object W.
  • the processing may be performed using a gas mixed with air in order to suppress the generation of dross, but a dedicated gas generator for preparing a mixed gas is used. Is required. If the nozzle mechanism 3 is configured as in the second embodiment, the injection states of the first and second assist gases can be adjusted, so that it is not necessary to use a dedicated gas generator.
  • the processing conditions corresponding to various types of the workpiece W and the assist gas can be obtained. Adjustments can be made. Specifically, the above adjustment can be performed by setting d to 0 or more.
  • FIG. 11 shows the relationship between the diameter D1 of the inner nozzle 31 and the diameter D2 of the outer nozzle 32 of the nozzle mechanism 3 according to the third embodiment.
  • the diameter of the nozzle here means the inner diameter of the tip of the nozzle.
  • FIG. 11 schematically shows the nozzle mechanism 3 having the same D1 and D2.
  • FIG. 12 schematically shows the nozzle mechanism 3 in which D1 is smaller than D2.
  • the machining conditions corresponding to various workpieces W and assist gas can be adjusted as in the second embodiment. It can be carried out. Specifically, the above adjustment can be performed by setting D2 to D1 or more.
  • At least a part of the functions of the control device 17 included in the laser processing device 10 may be realized by a processor that executes a program stored in the memory.
  • the processor is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the part of the function of the control device 17 is realized by the processor, the part of the function is realized by the processor and the software, the firmware, or the combination of the software and the firmware.
  • Software or firmware is written as a program and stored in memory.
  • the processor realizes at least a part of the functions of the control device 17 by reading and executing the program stored in the memory.
  • the laser processing device 10 stores the program that results in the steps executed by at least a part of the control device 17.
  • the memory is, for example, non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory), or the like. It is a volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD (Digital Versatile Disk).
  • At least a part of the function of the control device 17 included in the laser processing device 10 according to the embodiment may be realized by a processing circuit.
  • the processing circuit is dedicated hardware.
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is there. Part of the control device 17 may be dedicated hardware that is separate from the rest.
  • a part of the plurality of functions may be realized by software or firmware, and the rest of the plurality of functions may be realized by dedicated hardware.
  • the plurality of functions of the control device 17 can be realized by hardware, software, firmware, or a combination thereof.
  • a part of the plurality of functions of the drive device 18 may be realized by a processor.
  • the laser processing device 10 is for storing a program in which the step corresponding to the part of the functions is to be executed as a result. It has a memory. At least a part of the constituent elements of the driving device 18 may be realized by a processing circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ加工装置は、レーザ発振器から出射されるレーザ光、及び第1のガス供給源から供給される第1のアシストガスを被加工物の加工部に導く内側ノズル、並びに内側ノズルの周囲に配置され、第2のアシストガスを加工部周囲に導く外側ノズルを備えるノズル機構と、レーザ加工開始時のガス供給タイミングを第1のアシストガスの供給タイミングが第2のアシストガスの供給タイミングより早くなるように制御し、レーザ光の出射タイミングを第2のアシストガスの供給タイミング以降となるように制御する制御装置とを備える。

Description

レーザ加工装置及び方法
 本発明は、レーザ光を用いて被加工物を加工するレーザ加工装置及びレーザ加工方法に関する。
 従来、アシストガスを用いて被加工物を加工するレーザ加工装置が知られている。レーザ加工においてアシストガスとしては、燃焼性ガスや不活性ガスが用いられることがある。燃焼性ガスの場合は被対象物の加工を行うためのエネルギーを燃焼エネルギーによりアシストするガスとして用いられる。また、不活性ガスの場合はレーザ加工時に発生する溶融物であるドロスの除去をアシストするガスとして用いられることがある。いずれの場合においても、レーザ加工における加工品質を高めるためにアシストガスの純度を高めて供給する必要がある。燃焼性ガスの場合は、アシストガス純度が低下すると加工面の変色を引き起こしたり、ドロスの発生を引き起こしたりする可能性がある。すなわち、加工面の品質が低下してしまう。また、不活性ガスの場合は、アシストガス純度が低下すると発生したドロスを除去しきれない可能性がある。
 上述の問題を解決するために、アシストガスと、当該アシストガスをシールドするシールドガスとを用いる装置が提案されている(例えば、特許文献1参照)。
特開2002-1570号公報
 しかしながら、特許文献1が開示している装置は、レーザ加工を開始する場合、アシストガスとシールドガスを同時に供給し始めた後にレーザ光を出射するようにしているため、レーザ加工開始時点においてアシストガスとシールドガスが混合し易い状態となっており、レーザ加工部周辺のアシストガス純度が低下する。その結果、レーザ加工時の加工面の品質が低下するという問題があった。また、効果的にドロスを除去できないという問題があった。
 本発明は、上記に鑑みてなされたものであって、レーザ加工開始時の加工面の品質を高めることができ、また効果的にドロスを除去することができるレーザ加工装置を得ることを目的とする。
 上記課題を解決するために、本発明は、レーザ発振器から出射されるレーザ光、第1のガス供給源から供給される第1のアシストガス及び第2のガス供給源から供給される第2のアシストガスを被加工物に導くノズル機構と、前記第1及び第2のアシストガスの供給を制御する制御装置とを備え、前記ノズル機構は、前記レーザ光及び前記第1のアシストガスを被加工物の加工部に導く内側ノズルと、前記内側ノズルの周囲に配置され、前記第2のアシストガスを前記被加工物の加工部周囲に導く外側ノズルを有する。前記制御装置は、レーザ加工開始時のガス供給タイミングを前記第1のアシストガスの供給タイミングが前記第2のアシストガスの供給タイミングより早くなるように制御し、前記レーザ光の出射タイミングを前記第2のアシストガスの供給タイミング以降となるように制御する。
 本発明に係るレーザ加工装置は、レーザ加工開始時において第1のアシストガスの供給タイミングを第2のアシストガスの供給タイミングよりも早くなるように制御する。これにより、第1のアシストガスの供給圧力のために、後から供給される第2のアシストガスが第1のアシストガスに巻き込まれることを回避できるため、第1のアシストガスの純度低下を防止できる。よって、レーザ加工開始時の加工面の品質を高めることが可能となる。また、アシストガスにより効果的にドロスを除去することが可能となる。
実施の形態に係るレーザ加工システムの構成を模式的に示す図 実施の形態に係るレーザヘッドの内部構成を模式的に示す図 実施の形態における図2の加工ヘッドのX-X断面相当図 実施の形態に係るインシュレーションパーツを示す斜視図 実施の形態に係るインシュレーションパーツを示す平面図 実施の形態に係るノズル機構を示す断面図 実施の形態に係るノズル機構を示す平面図 実施の形態に係るレーザ加工開始時のフローチャート 実施の形態に係るレーザ加工終了時のフローチャート 実施の形態2に係るレーザ加工装置における内側ノズルの先端と外側ノズルの先端との位置関係を模式的に示す図 実施の形態3に係るレーザ加工装置におけるノズル機構が有する内側ノズル径と外側ノズル径との関係を模式的に示す図 実施の形態に係るレーザ加工装置におけるノズル機構の先端と被加工物との位置及び内側ノズル径と外側ノズル径との関係を模式的に示す図
 以下、本発明の実施の形態に係るレーザ加工装置を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係るレーザ加工システム1の構成を模式的に示す図である。レーザ加工システム1は、レーザ加工装置10と、第1のアシストガスが充填されている第1のガス供給源20と、第2のアシストガスが充填されている第2のガス供給源30とを備えている。レーザ加工装置10は、レーザ光を用いて被加工物を加工する。以降、このレーザ光により加工される被加工物の部分を加工部と称する。このレーザ加工システム1では、第1のアシストガスを用いてレーザ加工時に発生するドロス、主にレーザ光と同軸上に発生するドロスを除去する。このレーザ加工システム1では、第2のアシストガスを用いて第1のアシストガスの周囲をシールドし第1のアシストガスが加工部以外に漏れるのを防ぐことができ、第1のアシストガスの純度の低下を抑制できるのでレーザ加工開始時の加工面の品質が低下しない。また、レーザ加工時には、加工部にドロスと呼ばれる溶融物が発生するが、第1のアシストガスの純度の低下を抑制できるのでレーザ光の進行方向後方に発生するドロスを除去することができる。
 より詳述する。レーザ加工装置10は、レーザ光を出射するレーザ発振器11と、レーザ発振器11から出射されたレーザ光が通る光伝搬路12と、被加工物Wを載置するテーブル13と、このテーブル13と対向する位置に設けられ、光伝搬路12を通ってきたレーザ光を被加工物Wに導くレーザヘッド14と、を備えている。被加工物Wは、例えば金属で形成された板であり、金属の例としては、ステンレス、アルミニウム又は軟鋼である。また、レーザ加工装置10は、第1のガス供給源20から第1のアシストガスをレーザヘッド14に導く第1のガス供給管15と、第2のガス供給源30から第2のアシストガスをレーザヘッド14に導く第2のガス供給管16とを備えている。レーザ加工装置10は、更に、レーザ発振器11、第1のガス供給源20及び第2のガス供給源30を制御する制御装置17、駆動装置18を備えている。
 レーザヘッド14は、光伝搬路12を通ってきたレーザ光を被加工物Wの加工部WOに導くための光供給路14aを備えている。光供給路14aの先端部の開口は、レーザヘッド14の先端部中央付近に設けられている。この光供給路14aには第1のガス供給管15が接続されており、光供給路14aは、第1のガス供給管15を介して供給される第1のアシストガスを加工部WOに導く第1のガス供給路としての役割も果たしている。レーザヘッド14は、また、第2のガス供給管16が接続された第2のガス供給路14bを備えている。第2のガス供給路14bは、光供給路14aを取り囲むように形成されており、第2のアシストガスを加工部WO周囲に導く。これにより、第1のアシストガスの周囲に第2のアシストガスが吹き付けられ第2のアシストガスがシールドとして機能するため、第1のアシストガスが加工部WO以外に漏れるのを防ぐことが出来る。
 このレーザ加工システム1では、レーザ加工開始時に、制御装置17により、レーザ発振器11、第1のガス供給源20及び第2のガス供給源30が制御される。レーザ加工開始時とは、レーザ加工装置10の起動後に、制御装置17によりレーザ加工装置10を制御してレーザ加工を開始する時点のことをいう。すなわち、レーザ加工開始時の後に、アシストガスの供給及びレーザ光の出射が開始される。実施の形態1では、制御装置17は、第1のアシストガスの供給タイミングを第2のアシストガスの供給タイミングよりも早くなるように制御すると共に、前記レーザ光の出射タイミングを前記第2のアシストガスの供給タイミング以降となるように制御する。このレーザ加工システム1においては、アシストガスを供給するタイミングとは、第1及び第2のアシストガスがノズル機構3から噴射されるタイミングのことを指す。
 これにより、第1のアシストガスの供給圧力のために、後から供給される第2のアシストガスが第1のアシストガスに巻き込まれることを回避できるため、第1のアシストガスの純度低下を防止できる。よって、レーザ加工開始時の加工面の品質を高めることができ、第1のアシストガスにより効果的にドロスを除去することができる。
 レーザ加工装置10は、ユーザの指示を受け付けて、受け付けた指示にしたがって制御装置17を駆動する駆動装置18を更に有する。駆動装置18は、ユーザの指示に従ってレーザヘッド14の位置を制御する機能も有する。
 図2は、レーザヘッド14の内部構成を示す概略断面図である。レーザヘッド14は、ノズル機構3、インシュレーションパーツ4及び加工ヘッド5を備えており、ノズル機構3と加工ヘッド5の間にインシュレーションパーツ4を挟んだサイドイッチ構造となっている。
 ノズル機構3には、内側ノズル3a及び外側ノズル3bが備えられている。内側ノズル3a及び外側ノズル3bの形状はいずれも、円錐形に近い形状であって、外側ノズル3bは内側ノズル3aより大きく、内側ノズル3aは外側ノズル3bの内部に配置される。内側ノズル3aは、光供給路14aの一部を構成し、レーザ発振器11から出射されるレーザ光L、及び第1のガス供給源20から第1のガス供給管15を介して供給される第1のアシストガスG1を被加工物Wの加工部WOに導く。外側ノズル3bは、第2のガス供給管の一部を構成し、内側ノズル3aの周囲に設けられ、第2のガス供給源30から第2のガス供給管16を介して第2のアシストガスG2を加工部WO周囲に導く。
 加工ヘッド5は、光伝搬路12に接続され、この光伝搬路12を通ってきたレーザ光Lが通る光供給路14aが平面視においてほぼ中央に形成されている。この光供給路14aは、インシュレーションパーツ4を介して内側ノズル3aに連通している。この構成により、レーザヘッド14に導かれたレーザ光Lは光供給路14aを通って内側ノズル3aから加工部WOに導かれるようになっている。
 加工ヘッド5には、また、第1のガス供給管15が接続されたガス供給路51h(第1整流部)が形成されている。図2における加工ヘッド5に点線で示した位置での断面図を図3に示す。ガス供給路51hは、図3に示すように、平面視において光供給路14aの周囲に同心円状に互いに等間隔で複数(8個)形成され、第1のガス供給管15の接続側とは反対側から光供給路14aに連通している。これにより、第1のガス供給管15を通って供給されてきた第1のアシストガスG1の流れが整えられて光供給路14aに導かれる。そのため、第1のアシストガスG1を、光供給路14aを介してスムーズに被加工物Wの加工部WOに供給することが可能となる。この構成により、整流された第1のアシストガスG1は断面円形形状で供給されるためレーザ加工方向によらず加工面の品質を高めることができ、効率的にドロスを除去することができる。
 インシュレーションパーツ4は、ノズル先端部品であり、ノズル高さ制御のため用いられる部品である。実施の形態におけるインシュレーションパーツ4は、第2のガス供給管16から加工ヘッド5を通って供給されてきた第2のアシストガスG2を整流する機能を有する。具体的には、インシュレーションパーツ4は、図4及び図5に示すように、円筒状のもので、光供給路14aと、その光供給路14aの周囲に複数のガス供給路41h(第2整流部)がほぼ等間隔で形成されている。ガス供給路41hの数は、外側ノズル3bが有するガス供給路の数と同数であり、各ガス供給路41hは外側ノズル3bが有するガス供給路とそれぞれ連通している。すなわち、ガス供給路41hは、図5に示すように、平面視において同心円状に複数(8個)形成されている。このように、インシュレーションパーツ4に整流機能を設けることでノズル機構3に整流機能を設ける必要がなくノズル機構3の構造を簡略化することができる。
 この構成により、第2のガス供給管16を通って加工ヘッド5に供給されてきた第2のアシストガスは、各ガス供給路41hから外側ノズル3bが有するガス供給路にそれぞれ直接導かれることになる。すなわち、第2のアシストガスを滞留させることなくスムーズに被加工物Wの加工部WO周辺に導くことが可能となる。
 ノズル機構3の内側ノズル3aは、被加工物Wの加工面WOに対してほぼ垂直方向に沿って形成されている。より詳細には、内側ノズル3aは、図6に示すように、断面視において被加工物Wに近い方から遠い方に向かって内径が広がるように形成されている。また、外側ノズル3bは、内側ノズル3aを取り囲むように設けられている。より詳細には、外側ノズル3bには、図7に示すように、平面視において内側ノズル3aの周囲に同心円状に複数の孔32hが形成されており、上述の通り、インシュレーションパーツ4が備えるガス供給路41hを通って供給されてくる第2のアシストガスを加工部WO周囲へ導く機能を有する。外側ノズル3bの孔32hは、図7の例では8個形成されている。
 この構成により、内側ノズル3aを通って供給されたレーザ光Lにより被加工物Wの加工部WOが加工され、図2に図示するように孔Hが開けられると、溶融物であるドロスDが発生する。一方、内側ノズル3aからはレーザ光供給前に既に第1のアシストガスが供給されているため、発生したドロスDは発生と同時に、図示するように孔Hの下方、すなわち被加工物Wの表面WN側から裏側WFに向かって吹き飛ばされる。このとき、第1のアシストガスの純度は低下していないことから、レーザ加工面の品質の低下を抑制でき、効果的にドロスDを除去することが可能となる。
 図8は、レーザ加工開始時における制御装置17の制御を示すフローチャートである。レーザ加工開始をユーザにより指示されると、制御装置17は、第1のガス供給源20を制御し、第1のアシストガスを、第1のガス供給管15を介してレーザヘッド14に供給する(S101)。この場合、制御装置17は、第1のアシストガスの供給圧力が少なくともドロスを除去するのに十分と考えられる圧力となるように第1のガス供給源20を制御する。具体的には、制御装置17は、メモリ(図示せず)に保持された所定の供給圧力値に基づき、第1のアシストガスの供給圧力が当該圧力値となるように第1のガス供給源20を制御する。
 次に、制御装置17は、第1のアシストガス供給開始から予め定められた時間(例えば、100~500msec)が経過した後に、第2のガス供給源30を制御し、第2のアシストガスを、第2のガス供給管16を介してレーザヘッド14に供給する(S102)。この第2のアシストガスが供給された時点では、第1のアシストガスは前記圧力で既に供給されているため、加工部WO周囲に吹き付けられた第2のアシストガスが第1のアシストガスに巻き込まれること無く、第1のアシストガスの周囲をシールドする。すなわち、第1のアシストガスに第2のアシストガスが混合することはない。そのため、第1のアシストガスの純度が低下することはない。
 次に、制御装置17は、第2のアシストガス供給開始から予め定められた時間(例えば、100~500msec)が経過した後に、レーザ発振器11を制御し、レーザ光Lを出射させる(S103)。これにより、レーザ光Lはレーザヘッド14内の内側ノズル3aを介して被加工物Wの加工部WOに導かれ、レーザ加工が開始される。このとき、第1のアシストガス及び第2のアシストガスは既に供給されており、かつ、第1のアシストガスの純度は低下していないため、レーザ加工面の品質の低下を抑制でき、レーザ加工により生成されるドロスを第1のアシストガスにより効果的に除去できる。
 ところで、第1のアシストガス供給開始から第2のアシストガス供給開始までの時間は、複数のパラメータにより決定される。具体的には、ガス圧力、ガス供給量、内側ノズルの内径、外側ノズルの内径、内側ノズルと外側ノズルの位置関係、被加工物の種類、アシストガスの種類、加工方法、など様々なレーザ加工パラメータを考慮して、最適な時間が決定される。上記時間を決定するに際しては例えば、第1のアシストガスの純度が低下しないように第2のアシストガスを供給するようにガス圧力を制御する。これにより、レーザ加工面の品質の低下を抑制でき、レーザ加工により生成されるドロスをさらに効果的に除去できる。これは、第2のアシストガス供給開始からレーザ光の出射開始までの時間も同様である。
 次に、レーザ加工終了時の制御装置17の制御について説明する。図9は、レーザ加工終了時における制御装置17の制御を示すフローチャートである。レーザ加工終了がユーザにより指示される、或いは予め定められたプログラムによりレーザ加工終了が命令されると、制御装置17は、レーザ発振器11を制御し、レーザ光Lの出射を停止させる(S201)。その後、制御装置17は、予め定められた時間(例えば、100~500msec)が経過した後に、第2のガス供給源30を制御し、第2のアシストガスを停止させ(S202)、第1のガス供給源20を制御し、予め定められた時間経過後に第1のアシストガスを停止させる(S203)。 
 以上のように、実施の形態1によれば、レーザ加工開始時に、ドロスを除去するのに十分な圧力で供給される第1のアシストガスG1の供給後にそれをシールドすべき第2のアシストガスG2の供給を開始し、その後にレーザ光を出射させるようにしている。これにより、第1のアシストガスG1の純度低下を防止でき、ドロスを効果的に除去できるため、加工面の品質を高めることが可能となる。
 また、レーザ加工終了時に、レーザ光Lの供給を先ず停止し、その後に第2のアシストガスの供給を停止し、その後に第1のアシストガスの供給を停止しているため、第2のアシストガスが内側ノズルへの侵入、すなわち、第2のアシストガスの内側ノズルへの逆流を抑制することができる。また、レーザ光Lの照射により発生したドロスを完全に除去した後にガスの供給が停止されることになるため、ドロスが残ることはなく、発生したドロスがアシストガスによって巻き上げられレーザヘッド14内部へ侵入するといったことがない。よって、加工精度の低下を防ぐことができる。
 なお、上記説明では、第1のアシストガスG1の供給圧力を、ドロスを除去するのに十分と考えられる圧力に設定する場合を例としている。しかし、例えば、第1のアシストガスG1の供給圧力でなく供給量を、ドロスを除去するのに十分と考えられる量に設定するようにしてもよい。また、第2のアシストガスG2の供給圧力を、第1のアシストガスG2の供給圧力よりも高圧にしてもよく、そうすることで第1のアシストガスG1を第2のアシストガスG2によりシールドすることができるため第1のアシストガスG1の純度低下を抑制し、効率的に第1のアシストガスG1の供給を行うことができる。
 また、上記説明では、レーザ加工終了時の構成として、レーザ光の出射停止後に第1及び第2のアシストガスG2を両方とも同時に停止させる構成を例としているが、例えば、第1のアシストガスを停止させた後に第2のアシストガスG2を停止させてもよく、第2のアシストガスを停止させた後に第1のアシストガスを停止させても良い。
実施の形態2
 図10は、実施の形態2に係るノズル機構3の先端部近傍を示す概略図である。このノズル機構3は、内側ノズル31の先端部が外側ノズル32の先端部よりもノズル機構3の内側(ノズル機構先端がアシストガスの供給源側)に後退した構成を採用している。言い換えれば、内側ノズル31の先端部と外側ノズル32の先端部との間の距離dが0以上となるような構成となっている。例えば、外側ノズルの先端部から内側ノズルの先端が10mm後退している場合は、d=10mmであり、外側ノズルの先端部から内側ノズルの先端が10mm前進している場合は、d=-10mmである。
 この構成により、図12に示すような実施の形態1に係るノズル機構3の構成(d=0)に比べて、第2のアシストガスによる第1のアシストガスG1をシールドする状態をより良く調整することができる。すなわち、図12に示す実施の形態1に係る構成では、第1及び第2のアシストガスG2が混合されにくい状態で第1のアシストガスG1が供給されるのに対し、図10に示す実施の形態2に係る構成では、第2のアシストガスG2が第1のアシストガスG1に近づいた位置でシールドする状態となっている。言い換えれば、実施の形態2に係る構成では、実施の形態1に係る構成と比べて加工部WO近傍における第2のアシストガス圧により第1のアシストガスG1を圧縮した状態(第1のアシストガスG1がより細い状態で供給されている)で噴射されている。これは、加工部WOからノズル機構3の径方向外側へ向かって第1のアシストガスG1の純度が調整されているともいえる。これにより、レーザ加工面の品質の低下を抑制でき、レーザ加工により発生するドロスの除去をより精度高く行うことができる。
 また、被加工物Wをステンレスとして、第1のアシストガスに窒素を用いて、第2のアシストガスに空気を用いてレーザ加工を行うことがあるが、空気が加工部WOに混入することによる被加工物Wの酸化変色を防止する必要がある。本実施の形態2のようにノズル機構3の内側ノズル3a及び外側ノズル3bの位置関係を調整すると、窒素と空気の混合を抑制することができるため加工部WOに空気が混入することによる被加工物Wの酸化による加工面の変色を防止することができる。
 また、被加工物を軟鋼としてレーザ加工を行う場合、ドロスの発生を抑制するために空気を混合したガスを用いて加工を行うことがあるが、混合ガスを用意するための専用のガス発生装置が必要となる。本実施の形態2のようにノズル機構3を構成すれば、第1及び第2のアシストガスの噴射状態を調整できるため、専用のガス発生装置を用いる必要がない。
 以上より、実施の形態2では、ノズル機構3における内側ノズル3a及び外側ノズル3bと被加工物表面との距離を調整することで種々の種類の被加工物Wやアシストガスに対応した加工条件の調整を行うことができる。具体的には、dを0以上とすることにより上記調整を行うことができる。
実施の形態3.
 図11は、実施の形態3に係るノズル機構3の内側ノズル31の径D1及び外側ノズル32の径D2の関係を示したものである。ここでいうノズルの径とは、ノズル先端部の内径のことをいう。図11は、D1とD2とが等しいノズル機構3を模式的に示したものである。また、図12では、D1がD2よりも小さいノズル機構3を模式的に示している。
 これにより、実施の形態2と同様、第2のアシストガスG2による第1のアシストガスG1をシールドする状態をより良く調整することができる。すなわち、図11に示す形態では、図12に示す形態と比べて加工部近傍における第1のアシストガスG1が第2のアシストガスG2により周囲から圧縮された状態(第1のアシストガスG1がより細い状態で供給されている)となっている。これは、加工部からノズル機構の径方向外側へ向かって第1のアシストガスG1の純度が調整されているともいえる。これにより、レーザ加工面の品質の低下を抑制でき、レーザ加工により発生するドロスの除去をより精度高く行うことができる。すなわち、本実施の形態3では、ノズル機構における内側ノズル径及び外側ノズル径の関係を調整することで実施の形態2と同様、種々の被加工物Wやアシストガスに対応した加工条件の調整を行うことができる。具体的には、D2をD1以上とすることにより上記調整を行うことができる。
 実施の形態に係るレーザ加工装置10が有する制御装置17の少なくとも一部の機能は、メモリに格納されるプログラムを実行するプロセッサによって実現されてもよい。プロセッサは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)である。
 制御装置17の少なくとも一部の機能がプロセッサによって実現される場合、当該一部の機能は、プロセッサと、ソフトウェア、ファームウェア、又は、ソフトウェア及びファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリに格納される。プロセッサは、メモリに記憶されたプログラムを読み出して実行することにより、制御装置17の少なくとも一部の機能を実現する。
 すなわち、制御装置17の少なくとも一部の機能がプロセッサによって実現される場合、レーザ加工装置10は、制御装置17の少なくとも一部によって実行されるステップが結果的に実行されることになるプログラムを格納するためのメモリを有する。メモリに格納されるプログラムは、制御装置17の少なくとも一部が実行する手順又は方法をコンピュータに実行させるものであるともいえる。
 メモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。
 実施の形態に係るレーザ加工装置10が有する制御装置17の機能の少なくとも一部は、処理回路によって実現されてもよい。
 処理回路は、専用のハードウェアである。処理回路は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。制御装置17の一部は、残部とは別個の専用のハードウェアであってもよい。
 制御装置17の複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、制御装置17の複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。
 駆動装置18が有する複数の機能の一部は、プロセッサによって実現されてもよい。駆動装置18が有する複数の機能の一部がプロセッサによって実現される場合、レーザ加工装置10は、当該一部の機能に対応するステップが結果的に実行されることになるプログラムを格納するためのメモリを有する。駆動装置18を構成する少なくとも一部の構成要素は、処理回路によって実現されてもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 1 レーザ加工システム、3 ノズル機構、4 インシュレーションパーツ、5 加工ヘッド、10 レーザ加工装置、11 レーザ発振器、12 光伝搬路、13 テーブル、15 第1ガス供給管、16 第2ガス供給管、17 制御装置、18 駆動装置、20 第1のガス供給源、30 第2のガス供給源、31 内側ノズル、32 外側ノズル、32h 孔、41h ガス供給路、51h ガス供給路、D ドロス、G1 第1のアシストガス、G2 第2のアシストガス、H 孔、L レーザ光、W 被加工物、WN 被加工物表面、WF 被加工物裏面

Claims (10)

  1.  レーザ発振器から出射されるレーザ光、及び第1のガス供給源から供給される第1のアシストガスを被加工物の加工部に導く内側ノズル、並びに前記内側ノズルの周囲に配置され、第2のガス供給源から供給される第2のアシストガスを前記加工部の周囲に導く外側ノズルを備えるノズル機構と、
     レーザ加工開始時のガス供給タイミングを前記第1のアシストガスの供給タイミングが前記第2のアシストガスの供給タイミングより早くなるように制御し、前記レーザ光の出射タイミングを前記第2のアシストガスの供給タイミング以降となるように制御する制御装置とを備えることを特徴とするレーザ加工装置。
  2.  前記制御装置は、レーザ加工終了時において前記レーザ光の出射停止後にアシストガスの供給を停止することを特徴とする請求項1に記載のレーザ加工装置。
  3.  前記制御装置は、前記加工部における第1のアシストガス純度の低下を抑制するようにレーザ加工パラメータに基づいて第1及び第2のアシストガスの圧力を制御することを特徴とする請求項1又は請求項2に記載のレーザ加工装置。
  4.  前記制御装置は、前記加工部における第1のアシストガス純度の低下を抑制するように第2のアシストガスの圧力を第1のアシストガスの圧力よりも高圧に制御することを特徴とする請求項1又は請求項2に記載のレーザ加工装置。
  5.  前記第1のガス供給源から前記ノズル機構までの間において前記第1のアシストガスの流れを整える第1整流部を備えることを特徴とする請求項1~請求項4のいずれか1項に記載のレーザ加工装置。
  6.  前記第2のガス供給源から前記ノズル機構までの間において前記第2のアシストガスの流れを整える第2整流部を備えることを特徴とする請求項1~請求項5のいずれか1項に記載のレーザ加工装置。
  7.  前記レーザ加工装置は、前記ノズル機構と接続されアシストガスを前記ノズル機構へ導くインシュレーションパーツを備え、
     前記インシュレーションパーツは前記第2整流部を備えることを特徴とする請求項6に記載のレーザ加工装置。
  8.  前記外側ノズルの先端を基準として前記アシストガスの供給源側へ前記内側ノズルが後退する方向を正とした場合に、前記内側ノズルの先端と前記外側ノズルの先端との間の距離dが0以上であることを特徴とする請求項1~請求項6のいずれか1項に記載のレーザ加工装置。
  9.  前記内側ノズルの径D1と、前記外側ノズルの径D2との関係がD2≧D1であることを特徴とする請求項1~請求項6のいずれか1項に記載のレーザ加工装置。
  10.  レーザ発振器から出射されるレーザ光、及び第1のガス供給源から供給される第1のアシストガスを被加工物の加工部に導く内側ノズル、並びに前記内側ノズルの周囲に配置され、第2のガス供給源から供給される第2のアシストガスを前記加工部の周囲に導く外側ノズルを備えるノズル機構と、前記アシストガスの供給を制御する制御装置とを備えるレーザ加工装置を用いたレーザ加工方法であって、
     前記制御装置によりレーザ加工開始時のガス供給タイミングを前記第1のアシストガスの供給タイミングが前記第2のアシストガスの供給タイミングより早くなるように制御するステップと、
     前記レーザ光の出射タイミングを前記第2のアシストガスの供給タイミング以降となるように制御するステップと、
     を備えることを特徴とするレーザ加工方法。
PCT/JP2019/008044 2019-03-01 2019-03-01 レーザ加工装置及び方法 WO2020178890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019006808.3T DE112019006808B4 (de) 2019-03-01 2019-03-01 Laserbearbeitungsvorrichtung und Verfahren
PCT/JP2019/008044 WO2020178890A1 (ja) 2019-03-01 2019-03-01 レーザ加工装置及び方法
JP2019547168A JP6685478B1 (ja) 2019-03-01 2019-03-01 レーザ加工装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008044 WO2020178890A1 (ja) 2019-03-01 2019-03-01 レーザ加工装置及び方法

Publications (1)

Publication Number Publication Date
WO2020178890A1 true WO2020178890A1 (ja) 2020-09-10

Family

ID=70286671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008044 WO2020178890A1 (ja) 2019-03-01 2019-03-01 レーザ加工装置及び方法

Country Status (3)

Country Link
JP (1) JP6685478B1 (ja)
DE (1) DE112019006808B4 (ja)
WO (1) WO2020178890A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171290A (ja) * 1986-11-04 1988-07-15 トルンプフ・ゲー・エム・ベー・ハー・ウント・コンパニイ レーザー加工機械
JPH11104879A (ja) * 1997-10-01 1999-04-20 Nkk Corp レーザ切断ノズルおよびレーザ切断方法
JP2001009582A (ja) * 1999-06-30 2001-01-16 Shibuya Kogyo Co Ltd レーザ加工装置
JP2002001570A (ja) * 2000-06-27 2002-01-08 Shibuya Kogyo Co Ltd レーザ加工方法およびその装置
JP2009039749A (ja) * 2007-08-08 2009-02-26 Mitsubishi Electric Corp レーザ加工装置およびレーザ加工方法
JP2011073014A (ja) * 2009-09-29 2011-04-14 Shibaura Mechatronics Corp レーザ加工方法およびレーザ加工装置
JP2013215801A (ja) * 2012-03-14 2013-10-24 Amada Co Ltd レーザ加工機の同軸ノズル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695788B1 (de) 2005-02-25 2011-04-06 TRUMPF Werkzeugmaschinen GmbH + Co. KG Verfahren zum Spülen von Leitungen und/oder Hohlräumen einer Laserbearbeitungsmaschine
JP6704029B2 (ja) 2018-10-26 2020-06-03 三菱重工業株式会社 加工用ノズルおよび加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171290A (ja) * 1986-11-04 1988-07-15 トルンプフ・ゲー・エム・ベー・ハー・ウント・コンパニイ レーザー加工機械
JPH11104879A (ja) * 1997-10-01 1999-04-20 Nkk Corp レーザ切断ノズルおよびレーザ切断方法
JP2001009582A (ja) * 1999-06-30 2001-01-16 Shibuya Kogyo Co Ltd レーザ加工装置
JP2002001570A (ja) * 2000-06-27 2002-01-08 Shibuya Kogyo Co Ltd レーザ加工方法およびその装置
JP2009039749A (ja) * 2007-08-08 2009-02-26 Mitsubishi Electric Corp レーザ加工装置およびレーザ加工方法
JP2011073014A (ja) * 2009-09-29 2011-04-14 Shibaura Mechatronics Corp レーザ加工方法およびレーザ加工装置
JP2013215801A (ja) * 2012-03-14 2013-10-24 Amada Co Ltd レーザ加工機の同軸ノズル

Also Published As

Publication number Publication date
JP6685478B1 (ja) 2020-04-22
DE112019006808B4 (de) 2022-11-17
DE112019006808T5 (de) 2021-11-18
JPWO2020178890A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP3268248B2 (ja) 複合溶接ヘッド
US6198070B1 (en) Laser beam machining method and laser beam machine
JP2000084686A (ja) レーザピアシング方法およびレーザ加工用ノズルおよびレーザ切断装置
JP6372797B2 (ja) レーザ溶接用ノズル
JP6167055B2 (ja) レーザノズル、レーザ加工装置、及びレーザ加工方法
JP2006142383A (ja) レーザ溶接装置
US6946618B2 (en) Underwater laser processing apparatus and underwater laser processing method
US20190240786A1 (en) Methods for cutting a workpiece using a laser beam
JP4199163B2 (ja) レーザ照射を伴うアーク溶接のアーク開始方法、該方法を行なう溶接装置及び制御装置
JP6685478B1 (ja) レーザ加工装置及び方法
JP6393555B2 (ja) レーザ加工機及びレーザ切断加工方法
JPH0679489A (ja) レーザ加工用トーチ
JP4848921B2 (ja) 複合溶接方法と複合溶接装置
WO2019221181A1 (ja) ハイブリッド溶接装置
JP6805710B2 (ja) レーザ溶接装置及びレーザ溶接方法
JP2013215755A (ja) レーザ溶接方法、重ね溶接継手、及びレーザ溶接装置
JP2020089898A (ja) レーザ溶接装置
JP3905732B2 (ja) レーザ加工ヘッド、これを用いるレーザ切断装置及びレーザ切断方法
JPH10225787A (ja) レーザ切断装置およびレーザ切断方法
JP2005081403A (ja) レーザ溶接装置及びその制御方法
US20190168342A1 (en) Devices, Methods, and Control Programs for Laser Welding Using Welding Wire
JPH05131288A (ja) レーザ溶接のサイドシールド用ノズル
JP5309890B2 (ja) 溶接装置及び溶接方法
WO2016031546A1 (ja) レーザ加工ヘッド及びレーザ加工機
JP2007061861A (ja) レーザ加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547168

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918194

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918194

Country of ref document: EP

Kind code of ref document: A1