WO2020178887A1 - Working machine - Google Patents

Working machine Download PDF

Info

Publication number
WO2020178887A1
WO2020178887A1 PCT/JP2019/008035 JP2019008035W WO2020178887A1 WO 2020178887 A1 WO2020178887 A1 WO 2020178887A1 JP 2019008035 W JP2019008035 W JP 2019008035W WO 2020178887 A1 WO2020178887 A1 WO 2020178887A1
Authority
WO
WIPO (PCT)
Prior art keywords
image processing
work
mounting
area
component
Prior art date
Application number
PCT/JP2019/008035
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 健二
一也 小谷
雅史 天野
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2019/008035 priority Critical patent/WO2020178887A1/en
Priority to JP2021503244A priority patent/JP7231706B2/en
Publication of WO2020178887A1 publication Critical patent/WO2020178887A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a working machine.
  • Patent Document 1 discloses a component mounting machine as a working machine. In a mounting process for mounting a component on a substrate, the component mounting machine recognizes a plurality of supplied components by image processing, collects the components by a holding member such as a suction nozzle, and mounts the component at a mounting position on the substrate.
  • the image processing may include one that is heavy and takes a long time.
  • the image processing that takes a long time is adopted, there is a concern that the image processing affects the time required for the mounting processing.
  • the present specification efficiently executes the image processing for recognizing the supply state of a plurality of works supplied in an irregular posture and the mechanical operation of the work head to reduce the time required for a predetermined work using the works. It is an object to provide a working machine that can do the work.
  • the present specification describes a work supply device that supplies a plurality of works to a supply area in an irregular posture, and an image that recognizes the supply state of one or more works included in a plurality of partial areas set in the supply area.
  • An image processing unit that executes a process for each of the plurality of partial areas, a work head that collects the work from the partial area, and a work head that performs a predetermined work operation using the collected work, and an image processing unit.
  • the sampling operation by the working head is controlled based on the result, and the image processing for the partial area for performing the sampling operation by the working head or the subsequent sampling operation during execution of the working operation is performed in parallel.
  • a work machine including a control device that is executed.
  • FIG. 1 It is a schematic diagram which shows the structure of the component mounting machine (working machine) in embodiment. It is a side view which shows a part of mounting head (working head) typically. It is an enlarged view which shows the 1st aspect of the component supply device (work supply device) and a partial area. It is an enlarged view which shows the 2nd mode of a component supply apparatus (work supply apparatus) and a partial area. It is an enlarged view which shows the 3rd aspect of a component supply device (work supply device) and a partial area. It is a flowchart which shows the production process of a board
  • the work machine collects the work supplied from the work supply device by the work head and executes a predetermined work operation.
  • the above-described work operation may include, for example, a work of assembling a work on an object or a work of aligning the work with respect to the object.
  • a mode in which the working machine is a component mounting machine used for production of board products is illustrated.
  • the working machine will be described as a “component mounting machine”, the work as a “component”, the work supply device as a “component mounting machine”, the work head as a “mounting head”, and a predetermined work operation as a “mounting operation”.
  • the component mounting machine 1 executes a mounting process for mounting a component on a board.
  • the horizontal direction is the left-right direction of the component mounting machine 1 and the X direction is the horizontal direction orthogonal to the X direction
  • the front-back direction of the component mounting machine 1 is the Y direction.
  • the vertical direction (the front-back direction in FIG. 1) orthogonal to each other is defined as the Z direction.
  • the component mounting machine 1 includes a board transfer device 10 that transfers a board 90 in the X direction.
  • the substrate transfer device 10 is composed of a belt conveyor or the like.
  • the substrate transfer device 10 sequentially transfers the substrate 90 in the transfer direction and positions the substrate 90 at a predetermined position in the machine.
  • the board transfer device 10 carries out the board 90 from the component mounting machine 1 after the mounting process is completed.
  • the component mounting machine 1 includes a component supply device 20 that supplies a component 91 (see FIG. 2) mounted on the substrate 90.
  • the component supply device 20 includes a tape feeder 22 and a bulk feeder 60 set in a plurality of slots 21.
  • the tape feeder 22 feeds and moves a carrier tape containing a large number of components 91, and supplies the components 91 in a collectable manner.
  • the bulk feeder 60 has a stocker 61 and a conveyor 62.
  • the stocker 61 accommodates a plurality of components 91 used for a predetermined work.
  • the stocker 61 accommodates a plurality of components 91 in a bulk state (a state in which loose components 91 are gathered).
  • An openable and closable opening is provided at the bottom of the stocker 61.
  • the bulk feeder 60 supplies the parts 91 by opening and closing the opening of the stocker 61. Accordingly, the bulk feeder 60 of the component supply device 20 supplies the plurality of components 91 to the supply area As in an irregular posture.
  • the bulk feeder 60 can adjust the supply amount of the components 91 by, for example, the time for which the opening state of the opening of the stocker 61 is maintained.
  • the conveyor 62 conveys a plurality of components 91 from the stocker 61 to the movable range Rm of the mounting head 33 (see FIG. 3, etc.).
  • the conveyor 62 has a conveyor belt that rolls along the transport path with a plurality of components 91 placed thereon.
  • the stocker 61 is provided above one end of the conveyor 62.
  • the above “supply area As” corresponds to an area that supports the component 91 in the transport path of the conveyor 62.
  • the bulk feeder 60 can adjust the moving amount and moving speed of the component 91 by changing the driving state of the conveyor 62, for example.
  • the component mounter 1 includes a component transfer device 30 that transfers the component 91 supplied by the component supply device 20 onto the substrate 90.
  • the component transfer device 30 is mounted by transferring the component 91 to a predetermined mounting position on the board 90 carried into the machine by the board transfer device 10.
  • the component transfer device 30 moves the moving table 32 in the horizontal direction (X direction and Y direction) by the head driving unit 31 which is a linear motion mechanism.
  • the mounting head 33 is interchangeably fixed to the moving table 32 by a clamp member (not shown).
  • the mounting head 33 supports one or a plurality of holding members that hold the parts 91 supplied by the parts supply device 20 so as to be able to move up and down.
  • the mounting head 33 performs a collecting operation for collecting the component 91 and a mounting operation for mounting the collected component 91 on the board 90.
  • the mounting head 33 has eight holding members.
  • a suction nozzle 34 (see FIG. 2) that sucks and holds the component 91 by the supplied negative pressure air, a chuck that clamps and holds the component 91, or the like can be adopted.
  • the component mounter 1 includes a component camera 41 that captures an image of the component 91 held by the holding member (suction nozzle 34) from below.
  • the component mounter 1 includes a substrate camera 42 that captures an image of the substrate mark Mc attached to the substrate 90.
  • the component camera 41 and the substrate camera 42 are digital type having an image pickup element such as CMOS.
  • the component camera 41 and the board camera 42 perform imaging based on a control signal input from the outside, and send out the image data acquired by the imaging.
  • the board camera 42 is fixed to the moving table 32 so that the optical axis faces downward in the Z direction, and is provided so as to be integrally movable with the mounting head 33 as the moving table 32 moves.
  • the board camera 42 is also used for imaging the supply area As in which the plurality of components 91 are supplied by the bulk feeder 60.
  • the image data acquired by the above imaging is used for the recognition process of the supply state of the component 91 in the supply area As.
  • the component mounting machine 1 includes a control device 50 that executes a mounting process for mounting the component 91 on the board 90.
  • the control device 50 mainly includes a CPU, various memories, and a control circuit.
  • the control device 50 controls the operation of the mounting head 33 based on information output from various sensors, measured values, the result of image processing, a control program that specifies the mounting position on the substrate 90, and the like. As a result, the position and angle of the suction nozzle 34 supported by the mounting head 33 are controlled.
  • the control device 50 has an image processing unit 51.
  • the image processing unit 51 executes image processing for recognizing the supply states of the plurality of components 91 included in the supply area As.
  • the control device 50 controls the sampling operation of the mounting head 33 based on the result of the image processing by the image processing unit 51.
  • the control device 50 acquires image data by imaging with the board camera 42 after moving the board camera 42 above the supply area As. Then, the image processing unit 51 recognizes the position and orientation of the component 91 as the supply state based on the above image data.
  • the above image processing may include processing in which the load such as super-resolution processing described later is relatively high and the required time is long.
  • the image processing may affect the required time of the mounting process if the collecting operation of the mounting head 33 cannot be started until the result of the image processing is obtained.
  • the number of the components 91 exceeding the number of components that is, the number of the suction nozzles 34
  • the number of the components 91 whose state is recognized by the image processing greatly exceeds the number of the suction nozzles 34, and the number of the components 91 exceeding the required number is increased.
  • Image processing for recognizing the supply state is being executed.
  • the component mounting machine 1 of the present embodiment efficiently performs image processing for recognizing the supply state of the plurality of components 91 supplied in an irregular posture and mechanical operation (collecting operation and mounting operation) of the mounting head 33.
  • a configuration is adopted that can be executed to reduce the time required for the mounting process.
  • the image processing unit 51 executes image processing for each of the plurality of partial areas Ap for recognizing the supply state of one or more components 91 included in the plurality of partial areas Ap set in the supply area As.
  • the plurality of partial areas Ap set in the supply area As are set so that the target of image processing does not cover the supply area As or the entire field of view of the camera.
  • the appropriate number of parts 91 included in each partial area Ap differs depending on the image processing to be executed and the kind of parts.
  • the plurality of partial areas Ap are set, for example, by the following three modes.
  • the plurality of partial areas Ap are formed by dividing the entire overlapping area Ar into which the supply area As and the movable range Rm of the mounting head 33 overlap. Each is set. At this time, the number of sections of the overlapping area Ar may be two or more. Further, the partial area Ap may be 2 or more in both the X direction and the Y direction. The area including all the partial areas Ap is the overlapping area Ar or more.
  • each of the plurality of partial areas Ap is set to have the same area, and is included in each of the partial areas Ap based on the statistics of the variation of the parts 91.
  • the numbers of the components 91 may be appropriately set to be the same.
  • the dimensions of the parts 91 are taken into consideration so that the parts 91 located at the boundary portion are not excluded from the state recognition targets in the image processing targeting any of the partial areas Ap. It is set to overlap each other.
  • the first aspect of the above partial area Ap is a fixed type that does not fluctuate even in different image data regardless of the number of parts 91 in the supply area As and the supply state. According to such a mode, the target area for image processing is always constant, so that the difference between the required times can be reduced. As a result, the accuracy of estimating the total required time is improved and the manageability is improved.
  • the process of setting the partial area Ap can be simplified as compared with a variation formula that varies the shape of the partial area Ap for each different image data.
  • the plurality of partial areas Ap are set so as to include, as shown in FIG. 4, the parts 91 that are equal to or less than the number of the suction nozzles 34 in the supply area As. As a result, the number of parts that can start the collecting operation is secured in each partial area Ap.
  • the partial area Ap of the second aspect is formed in a predetermined shape such as a minimum rectangular shape that includes the required number of components 91.
  • the control device 50 counts the number of the components 91 in the Y direction with respect to the image data acquired by the image pickup by the substrate camera 42, for example, and a plurality of parts are ensured so that the required number is secured.
  • the partial area Ap of the second aspect is a variable type in which the position and shape are different for each acquired image data, whereas the partial area Ap of the first aspect is a fixed type. With such a configuration, it is possible to efficiently recognize the supply state of the parts 91 required for a series of collection operations.
  • the plurality of partial area Aps are set so as to include one component 91 of the supply area As, as shown in FIG. That is, the partial area Ap of the third aspect is formed in a predetermined shape such as a minimum rectangular shape in which only one component 91 is included.
  • the shapes of the plurality of partial areas Ap may be the same shape that secures an area considering the shape of the component 91.
  • the control device 50 searches for the component 91 in the Y direction with respect to the image data acquired by, for example, the image pickup by the substrate camera 42, and locates at the approximate center position of the detected multiple components 91.
  • Each partial area Ap is set.
  • the partial area Ap of the third aspect is a variable type whose position is different for each acquired image data. According to such a configuration, the area of each partial area Ap can be made relatively small, which is particularly useful when the image processing includes a process in which the load increases according to the area.
  • the image processing by the image processing unit 51 includes super-resolution processing.
  • the super-resolution processing is a process of acquiring high-resolution data having a higher resolution than the original image data based on a plurality of image data acquired by imaging a plurality of times.
  • the image processing unit 51 of the present embodiment employs multi-frame type super-resolution processing.
  • the image processing unit 51 executes the super-resolution processing by using a plurality of pieces of image data acquired by imaging at the imaging positions where the relative positions of the substrate camera 42 with respect to the imaging target component 91 are different from each other as original image data.
  • the image processing by the image processing unit 51 includes state recognition processing.
  • the state recognition process acquires the position and orientation of the component 91 in the partial area Ap as the supply state based on the high-resolution data acquired by the previously executed super-resolution process.
  • the control device 50 enables the collecting operation of the mounting head 33 corresponding to the supply of the components 91 in the bulk state by the bulk feeder 60.
  • the control device 50 has a mark processing unit 52.
  • the mark processing unit 52 executes the mark processing to acquire the position of the substrate 90 positioned inside the machine. Specifically, the mark processing unit 52 first moves the substrate camera 42 to a position where the substrate mark Mc of the substrate 90 positioned inside the machine can be imaged. At this time, although the position of the substrate 90 may include some error, the substrate camera 42 is moved so that the substrate mark Mc is within the camera field of view of the substrate camera 42.
  • the mark processing unit 52 then acquires image data by capturing an image of the substrate mark Mc with the substrate camera 42.
  • the mark processing unit 52 executes the mark processing for acquiring the position of the substrate based on the acquired image data. Specifically, the mark processing unit 52 acquires the position of the board 90 based on the reference coordinates of the board 90 calculated from the board mark Mc included in the image data and the position coordinates of the board camera 42 at the time of imaging. To do.
  • the substrate transfer apparatus 10 executes a process of loading the substrate 90 (S10).
  • the board 90 is carried into the machine and positioned at a predetermined position in the machine.
  • the control device 50 executes a mounting process for mounting the component 91 on the board 90 (S50).
  • the control device 50 executes the unloading process of the substrate 90 (S60). As a result, the substrate 90 is unclamped, and the substrate 90 is carried out of the machine.
  • the control device 50 performs the image processing for the partial area Ap that performs the sampling operation by the mounting head 33 or the subsequent sampling operation during the execution of the mounting operation.
  • the pick-and-place cycle (hereinafter, “PP cycle”) including the collecting operation and the mounting operation by the mounting head 33 and the mounting processing (S50) that executes the image processing in parallel are performed by the following two modes, for example. Will be executed.
  • the control device 50 causes the current PP cycle and the image processing for the partial area Ap that performs the sampling operation in the next PP cycle to be executed in parallel. ..
  • two partial areas Ap, a first partial area Ap1 and a second partial area Ap2 are set in the supply area As where the bulk feeder 60 supplies a plurality of components 91. It will be described as a thing.
  • the control device 50 first executes the imaging process (S20) of the supply area As as shown in FIG. Specifically, the control device 50 determines whether or not acquisition of image data for the supply area As is necessary (S21). When the supply state of the plurality of components 91 in the supply area As has changed (S21: Yes), the control device 50 changes the image, for example, when the bulk feeder 60 supplies the component 91 to the supply area As additionally. Data acquisition processing is executed (S22).
  • the control device 50 acquires the plurality of image data used in the multi-frame super-resolution process included in the subsequent image process (S40).
  • the movement and the imaging are repeated a specified number of times.
  • Each of the plurality of image data acquired thereby includes the entire area of the overlapping area Ar that overlaps with the movable range Rm of the mounting head 33 in the supply area As. That is, each of the plurality of image data includes both the first partial area Ap1 and the second partial area Ap2.
  • the control device 50 After the previous imaging process (S20), when only the number of the components 91 collected by the sampling operation is reduced and the positions of the other components 91 are not changed (S21: No), the control device 50 causes the image data to be displayed. The acquisition process (S22) is omitted. Subsequently, the control device 50 is mounted on the board 90 in the number of the components 91 of which the states are recognized among the components 91 in the supply area As (hereinafter, “remaining number Nf”) and this PP cycle (S30). The number of parts 91 of the same type (hereinafter, "the number of mounted parts Np") is compared (S25).
  • the supply state of the number of the components 91 exceeding the maximum number of the components 91 that can be collected in one PP cycle (S30) can be recognized. Therefore, even after the previous PP cycle (S30) is finished, the components 91 in the supply area As may include those whose state is recognized.
  • the number of parts 91 whose state is recognized is the remaining number Nf.
  • image processing (S40) is executed to acquire the supply state of the component 91 in the supply area As before executing the PP cycle (S30). To do. Further, when the image data acquisition process (S22) is executed, the remaining number Nf is reset to 0, so that the image process (S40) is executed in the same manner. The result of the image processing (S40) is used for the sampling operation (S31) in this PP cycle (S30).
  • the image processing (S40) performs the sampling operation (S31) in the current PP cycle (S30). ) Is performed for the first partial area Ap1.
  • the image processing unit 51 executes the super-resolution processing on a part of the plurality of image data acquired in S20 corresponding to the first partial area Ap1 (S41). As a result, the image processing unit 51 acquires high-resolution data, a part of which has a higher resolution than the original image data.
  • the image processing unit 51 executes a state recognition process based on the high resolution data (S42). Thereby, the image processing unit 51 acquires the position and orientation of the component 91 in the first partial area Ap1 as the supply state. Further, the image processing unit 51 counts the number of the parts 91 whose state is recognized in the state recognition process (S42), and inputs the remaining number Nf as an initial value.
  • the control device 50 executes the PP cycle (S30) and the image processing (S40) in parallel.
  • the result of the above image processing (S40) is used for the collection operation (S31) in the next PP cycle (S30) instead of the current PP cycle (S30). That is, the image processing (S40) executed in parallel targets the second partial area Ap2 in which the collection operation (S31) is performed in the PP cycle (S30) from the next time onward.
  • the image processing unit 51 executes super-resolution processing on a part of the plurality of image data acquired in S20, which corresponds to the second partial area Ap2 (S41). As a result, the image processing unit 51 acquires high-resolution data, a part of which has a higher resolution than the original image data. Subsequently, the image processing unit 51 executes a state recognition process based on the high resolution data (S42). Thereby, the image processing unit 51 acquires the position and orientation of the component 91 in the second partial area Ap2 as the supply state.
  • the mounting operation (S33) in the PP cycle (S30) may include a process of recognizing the holding state of the component 91 based on the image data acquired by imaging the component camera 41 or the head camera unit (not shown). is there.
  • the image processing unit 51 In the PP cycle (S30) and the image processing (S40) that are executed in parallel as described above, the image processing unit 51 counts the number of the parts 91 whose states are newly recognized in the state recognition processing (S42), and Is added to the remaining number Nf. Further, the image processing unit 51 subtracts the number of mounted Np from the current remaining number Nf with the execution of the PP cycle (S30) this time. When all PP cycles (S30) are not completed (S51: No), the control device 50 repeats the above-described processing (S20, S30, S40) multiple times.
  • the imaging process (S20) is executed. Then, the image processing (S40) for one partial area Ap is executed before the PP cycle (S30), and the image processing (S40) for the other partial area Ap is parallel to the PP cycle (S30). Is executed.
  • the control device 50 ends the mounting process (S50) when all the PP cycles (S30) are completed (S51: Yes).
  • the control device 50 separates a collecting operation for collecting the part 91 from the partial area Ap for which the image processing has been completed in the current PP cycle and an unexecuted collecting operation.
  • the image processing targeting the partial area Ap is executed in parallel.
  • the control device 50 first executes the imaging process (S20) of the supply area As, as shown in FIG.
  • the state recognition processing (S145) is executed in which the result is used in the sampling operation (S131) of the next PP cycle (S130). Therefore, there may be a partial area Ap including the part 91 whose state has already been recognized after the last PP cycle (S130) is completed.
  • the control device 50 sets the partial area Ap (S126) and the PP cycle (S130). The image processing (S40) before the execution of is executed.
  • the number of the components 91 is counted in the Y direction with respect to one of the plurality of image data acquired in the imaging process (S20), and a plurality of parts 91 are obtained so that the necessary number is secured.
  • the partial area Ap of is set.
  • the required number is set to, for example, half of the maximum number of parts 91 that can be collected by the mounting head 33 in one PP cycle (S130).
  • a plurality of partial areas Ap that is, a first partial area Ap1, a second partial area Ap2, a third partial area Ap3,... are set in the supply area As.
  • the partial area Ap setting process (S126) is similarly executed because the plurality of partial areas Ap used in the past have been reset.
  • the image processing (S40) performs the current PP cycle (S130).
  • the first partial area Ap1 in which a part of the sampling operation (S31) is performed is targeted.
  • the control device 50 causes the PP cycle (S130) and the image processing (S140) to be executed in parallel.
  • the result of the above image processing (S140) is used for the collection operation (S131) in the current PP cycle (S130) and the next PP cycle (S130). That is, in the image processing (S140) executed in parallel, the second partial area Ap2 for performing the unexecuted sampling operation (S131) and the third partial area for performing the sampling operation (S131) in the next PP cycle (S130).
  • the target is Ap3.
  • the image processing unit 51 executes the super-resolution processing on a part of the plurality of image data acquired in S20 corresponding to the second partial area Ap2 (S141). As a result, the image processing unit 51 acquires high-resolution data, a part of which has a higher resolution than the original image data. Subsequently, the image processing unit 51 executes a state recognition process based on the high resolution data (S142). Thereby, the image processing unit 51 acquires the position and orientation of the component 91 in the second partial area Ap2 as the supply state.
  • control device 50 determines whether or not the number of times of performing the sampling operation (S131) for the first partial area Ap1 has reached half of the number Np of attachments in the PP cycle (S130) (S132). As a result, the collection operation (S131) is repeated, and the half of the mounting number Np of the components 91 are collected. Subsequently, the control device 50 collects half of the number Np of mounted parts 91, and collects the second partial area Ap2 after the state recognition processing (S142) for the second partial area Ap2 is completed. The operation (S133) is executed.
  • the image processing unit 51 causes the image processing unit 51 to set the plurality of partial areas set in the setting processing (S126) of the partial area Ap. It is determined whether or not there is an Ap that is not the target of the state recognition processing (S143).
  • the image processing unit 51 When there is a partial area Ap (for example, the third partial area Ap3) for which the state recognition processing has not been executed (S143: Yes), the image processing unit 51 performs super-resolution processing (S144) on the third partial area Ap3 and State recognition processing (S145) is executed. The result of this state recognition processing (S145) is used for the first half sampling operation (S131) in the next PP cycle (S130). When all PP cycles (S130) are not completed (S51: No), the control device 50 repeats the above-mentioned processing (S20, S40, S130, S140) multiple times.
  • the image data acquisition process (S22) is not necessary in the imaging process (S20) (S21: No). Then, when there is a partial area Ap that has already undergone the state recognition process (S145) (S125: Yes), the image process (S140) is omitted.
  • the imaging process (S20) is executed.
  • the partial area Ap setting process (S126) is executed again, and the image process (S40) for one partial area Ap is executed before the PP cycle (S130).
  • the image processing (S140) for the other partial area Ap is executed in parallel with the PP cycle (S130).
  • the control device 50 ends the mounting process (S50) when all the PP cycles (S130) are completed (S51: Yes).
  • the PP cycle (S30, S130) and the image processing (S40, S140) are executed in parallel.
  • the state recognition process (S42) needs to be executed before the first PP cycle (S30, S130). That is, the first PP cycle (S30, S130) cannot be started until the first state recognition process (S42) is completed.
  • control device 50 may execute the image processing (S40) including the initial state recognition processing (S42) and the mark processing by the mark processing unit 52 in parallel. Specifically, as shown in FIG. 9, the control device 50 executes the loading process of the substrate 90 (S10) and the imaging process of the supply area As (S120) in parallel. That is, while the substrate transfer apparatus 10 is carrying in and positioning the substrate 90 (S11), the substrate camera 42 is moved above the supply area As to execute the imaging process (S120).
  • the mark processing unit 52 moves the substrate camera 42 to a position where the substrate mark Mc of the substrate 90 can be imaged, and acquires image data by imaging the substrate camera 42 (S12).
  • the mark processing unit 52 acquires the position of the substrate 90 based on the acquired image data (S13).
  • the image processing unit 51 executes the image processing (S240) in parallel with the mark processing (S12, S13).
  • the above image processing (S240) targets one of a plurality of partial areas Ap when the fixed partial area Ap is adopted as exemplified in the first aspect of the mounting processing.
  • the partial area Ap setting processing (S126) is executed first, One of the plurality of partial areas Ap thus set is targeted.
  • three or more partial areas Ap may be set and the image processing may be sequentially executed in parallel with the PP cycle.
  • a plurality of partial areas Ap are set so as to include half of the number Np of mountings, but may be less than half of the number Np of mountings.
  • one component 91 may be included.
  • each of the plurality of partial areas Ap is set to include one component 91
  • the second mode of the mounting process is performed by grouping by half the number Np of mounted parts of the plurality of partial areas Ap.
  • the component mounting machine 1 of the embodiment controls the sampling operation (S31, S131, S133) by the mounting head 33 based on the result of the image processing (S40, S140, S240), and controls the mounting head 33.
  • the control device 50 is provided for executing in parallel the image processing (S40, S140) for the partial area Ap for the next and subsequent sampling operations during the execution of the sampling operation or the mounting operation (S33, S135).
  • the image processing includes the super-resolution processing.
  • the resolution of the high resolution data to be generated may be set according to the type and size of the component 91 supplied by the component supply device 20. Along with this, the number of image data acquired in the image capturing process changes. Further, when the dimensions of the supplied component 91 are sufficiently secured, the super-resolution processing in the image processing may be omitted.
  • the board camera 42 is also used to acquire image data for the supply area As in image processing.
  • the component mounting machine 1 can apply various cameras as long as the supply area As can be imaged.
  • a head camera unit integrally provided on the mounting head 33 or a dedicated camera provided on the component supply device 20 may be provided.
  • the dedicated camera may be arranged below the supply area As as well as above the supply area As.
  • the supply area As corresponds to the support surface of the transparent support base on which the plurality of parts 91 are supplied in an irregular posture by the parts supply device 20.
  • a moving device for moving the dedicated camera relative to the supply area As is required. The moving device moves at least one of the dedicated camera and the support base.
  • the bulk feeder 60 of the parts supply device 20 may be provided with a vibration device that applies vibration or the like when the supplied parts 91 overlap or are in contact with each other.
  • the control device 50 performs the same process as when the bulk feeder 60 additionally supplies the component 91 to the supply area As, as illustrated in the embodiment. It can be dealt with by doing.
  • the holding member that holds the component 91 is the suction nozzle 34 that holds the component 91 by suction with negative pressure air.
  • the holding member may be a chuck that holds the component 91 by a plurality of claws that can be opened and closed, or an electromagnet that holds the component 91 by magnetic force. Even in such a configuration, the same effect as that of the embodiment can be obtained.
  • the working machine is a component mounting machine.
  • the working machine may employ a mode different from that of the component mounting machine that mounts a component on the board. That is, the work machine may collect the work supplied by the work supply device by the work head and perform various predetermined works using the collected work.
  • the above-mentioned predetermined work includes a work of screwing a bolt or the like as a work to the target object, a work of assembling the work to the target object, a work of aligning the parts as the work on a placement tray or the like.
  • the work head performs a collecting operation for collecting a work from a plurality of partial areas Ap set in the supply area As and a predetermined work operation using the collected work.
  • the control device 50 concurrently executes the image processing for the partial area Ap that performs the subsequent sampling operation during the sampling operation by the working head or the execution of the working operation.
  • the working machine has the same effect as the configuration illustrated in the embodiment.

Abstract

Provided is a working machine comprising: a workpiece supply device that supplies a plurality of workpieces in irregular posture to a supply area; and a control device that controls collecting operation by a work head on the basis of a result of image processing and makes image processing targeting a partial area in which next and succeeding collecting operation is performed executed in parallel with execution of the collecting operation or working operation by the work head.

Description

作業機Work machine
 本発明は、作業機に関するものである。 The present invention relates to a working machine.
 作業機は、例えば製品の生産ラインにおいてワークを用いた組み立て作業などに用いられる。作業機のワーク供給装置には、複数のワークを不規則な姿勢で供給するものがある。特許文献1には、作業機としての部品装着機が開示されている。部品装着機は、基板に部品を装着する装着処理において、供給された複数の部品を画像処理により認識して、吸着ノズルなどの保持部材により採取するとともに基板上の装着位置に部品を装着する。 The work machine is used, for example, for assembly work using a work in a product production line. Some work supply devices of work machines supply a plurality of works in an irregular posture. Patent Document 1 discloses a component mounting machine as a working machine. In a mounting process for mounting a component on a substrate, the component mounting machine recognizes a plurality of supplied components by image processing, collects the components by a holding member such as a suction nozzle, and mounts the component at a mounting position on the substrate.
特開2011-023500号公報JP, 2011-023500, A
 上記のような構成では、保持部材を支持する装着ヘッドが動作する前に、画像処理によって部品の供給状態を認識する必要がある。しかしながら、画像処理には、負荷が高く所要時間が長くなるものが含まれ得る。所要時間が長い画像処理を採用した場合に、画像処理が装着処理の所要時間に影響することが懸念される。 With the above configuration, it is necessary to recognize the supply state of components by image processing before the mounting head that supports the holding member operates. However, the image processing may include one that is heavy and takes a long time. When the image processing that takes a long time is adopted, there is a concern that the image processing affects the time required for the mounting processing.
 本明細書は、不規則な姿勢で供給される複数のワークの供給状態を認識する画像処理と作業ヘッドの機械動作を効率的に実行し、ワークを用いた所定作業の所要時間の短縮を図ることができる作業機を提供することを目的とする。 The present specification efficiently executes the image processing for recognizing the supply state of a plurality of works supplied in an irregular posture and the mechanical operation of the work head to reduce the time required for a predetermined work using the works. It is an object to provide a working machine that can do the work.
 本明細書は、不規則な姿勢で複数のワークを供給エリアに供給するワーク供給装置と、前記供給エリアに設定される複数の部分エリアに含まれる1以上の前記ワークの供給状態を認識する画像処理を複数の前記部分エリアごとに実行する画像処理部と、前記部分エリアから前記ワークを採取する採取動作、および採取した前記ワークを用いた所定の作業動作を行う作業ヘッドと、前記画像処理の結果に基づいて前記作業ヘッドによる前記採取動作を制御し、前記作業ヘッドによる前記採取動作または前記作業動作の実行中に次回以降の前記採取動作を行う前記部分エリアを対象とした前記画像処理を並列して実行させる制御装置と、を備える作業機を開示する。 The present specification describes a work supply device that supplies a plurality of works to a supply area in an irregular posture, and an image that recognizes the supply state of one or more works included in a plurality of partial areas set in the supply area. An image processing unit that executes a process for each of the plurality of partial areas, a work head that collects the work from the partial area, and a work head that performs a predetermined work operation using the collected work, and an image processing unit. The sampling operation by the working head is controlled based on the result, and the image processing for the partial area for performing the sampling operation by the working head or the subsequent sampling operation during execution of the working operation is performed in parallel. Disclosed is a work machine including a control device that is executed.
 このような構成によると、作業ヘッドの採取動作または作業動作の実行中に次回以降の採取動作に必要となる画像処理を並列して実行させる。これにより、作業ヘッドの動作と画像処理が重複し、作業ヘッドの機械動作を効率的に実行できる。また、全体としてワークを用いた所定作業の所要時間の短縮を図ることができる。 With this configuration, the image processing required for the next and subsequent sampling operations is executed in parallel while the work head sampling operation or the working operation is being executed. Thereby, the operation of the work head and the image processing overlap, and the mechanical operation of the work head can be efficiently executed. In addition, it is possible to shorten the time required for the predetermined work using the work as a whole.
実施形態における部品装着機(作業機)の構成を示す模式図である。It is a schematic diagram which shows the structure of the component mounting machine (working machine) in embodiment. 装着ヘッド(作業ヘッド)の一部を模式的に示す側面図である。It is a side view which shows a part of mounting head (working head) typically. 部品供給装置(ワーク供給装置)および部分エリアの第一態様を示す拡大図である。It is an enlarged view which shows the 1st aspect of the component supply device (work supply device) and a partial area. 部品供給装置(ワーク供給装置)および部分エリアの第二態様を示す拡大図である。It is an enlarged view which shows the 2nd mode of a component supply apparatus (work supply apparatus) and a partial area. 部品供給装置(ワーク供給装置)および部分エリアの第三態様を示す拡大図である。It is an enlarged view which shows the 3rd aspect of a component supply device (work supply device) and a partial area. 基板製品の生産処理を示すフローチャートである。It is a flowchart which shows the production process of a board|substrate product. 装着処理の第一態様を示すフローチャートである。It is a flow chart which shows the 1st mode of mounting processing. 装着処理の第二態様を示すフローチャートである。It is a flow chart which shows the second mode of mounting processing. 基板の搬入処理を示すフローチャートである。7 is a flowchart showing a substrate loading process.
 1.作業機の概要
 以下、作業機を具体化した実施形態について図面を参照して説明する。作業機は、ワーク供給装置から供給されるワークを作業ヘッドにより採取し、所定の作業動作を実行する。上記の作業動作には、例えば対象物にワークを組み付けたり、対象物に対してワークを整列させたりする作業が含まれ得る。本実施形態では、作業機が基板製品の生産に用いられる部品装着機である態様を例示する。以下では、作業機を「部品装着機」、ワークを「部品」、ワーク供給装置を「部品装着機」、作業ヘッドを「装着ヘッド」、所定の作業動作を「装着動作」として説明する。
1. Outline of Working Machine An embodiment of the working machine will be described below with reference to the drawings. The work machine collects the work supplied from the work supply device by the work head and executes a predetermined work operation. The above-described work operation may include, for example, a work of assembling a work on an object or a work of aligning the work with respect to the object. In this embodiment, a mode in which the working machine is a component mounting machine used for production of board products is illustrated. In the following description, the working machine will be described as a “component mounting machine”, the work as a “component”, the work supply device as a “component mounting machine”, the work head as a “mounting head”, and a predetermined work operation as a “mounting operation”.
 2.部品装着機1の構成
 部品装着機1は、基板に部品を装着する装着処理を実行する。以下の説明において、水平方向であって部品装着機1の左右方向をX方向とし、X方向に直交する水平方向であって部品装着機1の前後方向をY方向とし、X方向およびY方向に直交する鉛直方向(図1の前後方向)をZ方向とする。
2. Configuration of Component Mounting Machine 1 The component mounting machine 1 executes a mounting process for mounting a component on a board. In the following description, the horizontal direction is the left-right direction of the component mounting machine 1 and the X direction is the horizontal direction orthogonal to the X direction, and the front-back direction of the component mounting machine 1 is the Y direction. The vertical direction (the front-back direction in FIG. 1) orthogonal to each other is defined as the Z direction.
 部品装着機1は、図1に示すように、基板90をX方向に搬送する基板搬送装置10を備える。基板搬送装置10は、ベルトコンベアなどにより構成される。基板搬送装置10は、基板90を搬送方向へと順次搬送するとともに、基板90を機内の所定位置に位置決めする。基板搬送装置10は、装着処理が終了した後に、基板90を部品装着機1の機外に搬出する。 As shown in FIG. 1, the component mounting machine 1 includes a board transfer device 10 that transfers a board 90 in the X direction. The substrate transfer device 10 is composed of a belt conveyor or the like. The substrate transfer device 10 sequentially transfers the substrate 90 in the transfer direction and positions the substrate 90 at a predetermined position in the machine. The board transfer device 10 carries out the board 90 from the component mounting machine 1 after the mounting process is completed.
 部品装着機1は、基板90に装着される部品91(図2を参照)を供給する部品供給装置20を備える。本実施形態において、部品供給装置20は、複数のスロット21にセットされたテープフィーダ22およびバルクフィーダ60を備える。テープフィーダ22は、多数の部品91が収納されたキャリアテープを送り移動させて、部品91を採取可能に供給する。 The component mounting machine 1 includes a component supply device 20 that supplies a component 91 (see FIG. 2) mounted on the substrate 90. In the present embodiment, the component supply device 20 includes a tape feeder 22 and a bulk feeder 60 set in a plurality of slots 21. The tape feeder 22 feeds and moves a carrier tape containing a large number of components 91, and supplies the components 91 in a collectable manner.
 バルクフィーダ60は、ストッカ61およびコンベア62を有する。ストッカ61は、所定作業に用いられる複数の部品91を収容する。本実施形態において、ストッカ61は、複数の部品91をバルク状態(ばらの部品91が集合した状態)で収容する。ストッカ61の下部には、開閉可能な開口部が設けられる。 The bulk feeder 60 has a stocker 61 and a conveyor 62. The stocker 61 accommodates a plurality of components 91 used for a predetermined work. In this embodiment, the stocker 61 accommodates a plurality of components 91 in a bulk state (a state in which loose components 91 are gathered). An openable and closable opening is provided at the bottom of the stocker 61.
 バルクフィーダ60は、ストッカ61の開口部を開閉することにより、部品91を供給する。これにより、部品供給装置20のバルクフィーダ60は、不規則な姿勢で複数の部品91を供給エリアAsに供給する。バルクフィーダ60は、例えばストッカ61の開口部の開口状態を維持する時間によって、部品91の供給量を調整することができる。 The bulk feeder 60 supplies the parts 91 by opening and closing the opening of the stocker 61. Accordingly, the bulk feeder 60 of the component supply device 20 supplies the plurality of components 91 to the supply area As in an irregular posture. The bulk feeder 60 can adjust the supply amount of the components 91 by, for example, the time for which the opening state of the opening of the stocker 61 is maintained.
 コンベア62は、ストッカ61から装着ヘッド33の可動範囲Rm(図3などを参照)まで複数の部品91を搬送する。コンベア62は、複数の部品91が載置された状態で搬送路に沿って輪転するコンベアベルトを有する。ストッカ61は、コンベア62の一端の上部に設けられる。本実施形態において、上記の「供給エリアAs」は、コンベア62の搬送路において部品91を支持するエリアに相当する。バルクフィーダ60は、例えばコンベア62の駆動状態を変動させることによって、部品91の移動量および移動速度を調整することができる。 The conveyor 62 conveys a plurality of components 91 from the stocker 61 to the movable range Rm of the mounting head 33 (see FIG. 3, etc.). The conveyor 62 has a conveyor belt that rolls along the transport path with a plurality of components 91 placed thereon. The stocker 61 is provided above one end of the conveyor 62. In the present embodiment, the above “supply area As” corresponds to an area that supports the component 91 in the transport path of the conveyor 62. The bulk feeder 60 can adjust the moving amount and moving speed of the component 91 by changing the driving state of the conveyor 62, for example.
 部品装着機1は、部品供給装置20により供給された部品91を基板90に移載する部品移載装置30を備える。部品移載装置30は、基板搬送装置10により機内に搬入された基板90における所定の装着位置に部品91を移載することにより装着する。本実施形態において、部品移載装置30は、直動機構であるヘッド駆動部31により移動台32を水平方向(X方向およびY方向)に移動させる。移動台32には、図示しないクランプ部材により装着ヘッド33が交換可能に固定される。 The component mounter 1 includes a component transfer device 30 that transfers the component 91 supplied by the component supply device 20 onto the substrate 90. The component transfer device 30 is mounted by transferring the component 91 to a predetermined mounting position on the board 90 carried into the machine by the board transfer device 10. In the present embodiment, the component transfer device 30 moves the moving table 32 in the horizontal direction (X direction and Y direction) by the head driving unit 31 which is a linear motion mechanism. The mounting head 33 is interchangeably fixed to the moving table 32 by a clamp member (not shown).
 装着ヘッド33は、図2に示すように、部品供給装置20により供給される部品91を保持する1または複数の保持部材を昇降可能に支持する。装着ヘッド33は、部品91を採取する採取動作、および採取した部品91を基板90に装着する装着動作を行う。本実施形態において、装着ヘッド33は、8つの保持部材を有する。上記の保持部材としては、例えば供給される負圧エアにより部品91を吸着して保持する吸着ノズル34(図2を参照)や、部品91をクランプして保持するチャックなどが採用され得る。 As shown in FIG. 2, the mounting head 33 supports one or a plurality of holding members that hold the parts 91 supplied by the parts supply device 20 so as to be able to move up and down. The mounting head 33 performs a collecting operation for collecting the component 91 and a mounting operation for mounting the collected component 91 on the board 90. In the present embodiment, the mounting head 33 has eight holding members. As the holding member, for example, a suction nozzle 34 (see FIG. 2) that sucks and holds the component 91 by the supplied negative pressure air, a chuck that clamps and holds the component 91, or the like can be adopted.
 部品装着機1は、保持部材(吸着ノズル34)に保持された部品91を下方から撮像する部品カメラ41を備える。部品装着機1は、基板90に付された基板マークMcを撮像する基板カメラ42を備える。部品カメラ41および基板カメラ42は、CMOSなどの撮像素子を有するデジタル式である。部品カメラ41および基板カメラ42は、外部から入力する制御信号に基づいて撮像を行い、当該撮像により取得した画像データを送出する。 The component mounter 1 includes a component camera 41 that captures an image of the component 91 held by the holding member (suction nozzle 34) from below. The component mounter 1 includes a substrate camera 42 that captures an image of the substrate mark Mc attached to the substrate 90. The component camera 41 and the substrate camera 42 are digital type having an image pickup element such as CMOS. The component camera 41 and the board camera 42 perform imaging based on a control signal input from the outside, and send out the image data acquired by the imaging.
 基板カメラ42は、光軸がZ方向の下向きとなるように移動台32に固定され、移動台32の移動に伴って装着ヘッド33と一体的に移動可能に設けられる。本実施形態において、基板カメラ42は、バルクフィーダ60により複数の部品91を供給される供給エリアAsの撮像に兼用される。上記の撮像により取得された画像データは、供給エリアAsにおける部品91の供給状態の認識処理に用いられる。 The board camera 42 is fixed to the moving table 32 so that the optical axis faces downward in the Z direction, and is provided so as to be integrally movable with the mounting head 33 as the moving table 32 moves. In the present embodiment, the board camera 42 is also used for imaging the supply area As in which the plurality of components 91 are supplied by the bulk feeder 60. The image data acquired by the above imaging is used for the recognition process of the supply state of the component 91 in the supply area As.
 部品装着機1は、基板90に部品91を装着する装着処理を実行する制御装置50を備える。制御装置50は、主として、CPUや各種メモリ、制御回路により構成される。制御装置50は、装着処理において、各種センサから出力される情報や測定値、画像処理の結果、基板90上の装着位置を指定する制御プログラムなどに基づいて、装着ヘッド33の動作を制御する。これにより、装着ヘッド33に支持された吸着ノズル34の位置および角度が制御される。 The component mounting machine 1 includes a control device 50 that executes a mounting process for mounting the component 91 on the board 90. The control device 50 mainly includes a CPU, various memories, and a control circuit. In the mounting process, the control device 50 controls the operation of the mounting head 33 based on information output from various sensors, measured values, the result of image processing, a control program that specifies the mounting position on the substrate 90, and the like. As a result, the position and angle of the suction nozzle 34 supported by the mounting head 33 are controlled.
 本実施形態において、制御装置50は、画像処理部51を有する。画像処理部51は、供給エリアAsに含まれる複数の部品91の供給状態を認識する画像処理を実行する。ここで、部品供給装置20のバルクフィーダ60により部品91が供給されると、図3に示すように、供給エリアAsには複数の部品91が不規則な姿勢で位置する。そこで、制御装置50は、画像処理部51による画像処理の結果に基づいて装着ヘッド33の採取動作を制御する。 In this embodiment, the control device 50 has an image processing unit 51. The image processing unit 51 executes image processing for recognizing the supply states of the plurality of components 91 included in the supply area As. Here, when the parts 91 are supplied by the bulk feeder 60 of the parts supply device 20, as shown in FIG. 3, a plurality of parts 91 are located in the supply area As in an irregular posture. Therefore, the control device 50 controls the sampling operation of the mounting head 33 based on the result of the image processing by the image processing unit 51.
 具体的には、制御装置50は、基板カメラ42を供給エリアAsの上方に移動させた後に、基板カメラ42による撮像により画像データを取得する。そして、画像処理部51は、上記の画像データに基づいて、部品91の位置および姿勢を供給状態として認識する。なお、上記の画像処理には、後述する超解像処理などの負荷が比較的高く所要時間が長くなるものが含まれ得る。所要時間が長い画像処理を採用した場合に、画像処理の結果を得られるまで装着ヘッド33の採取動作を開始できないと画像処理が装着処理の所要時間に影響し得る。 Specifically, the control device 50 acquires image data by imaging with the board camera 42 after moving the board camera 42 above the supply area As. Then, the image processing unit 51 recognizes the position and orientation of the component 91 as the supply state based on the above image data. Note that the above image processing may include processing in which the load such as super-resolution processing described later is relatively high and the required time is long. When the image processing with a long required time is adopted, the image processing may affect the required time of the mounting process if the collecting operation of the mounting head 33 cannot be started until the result of the image processing is obtained.
 ここで、バルクフィーダ60による部品91の供給処理では、装着ヘッド33が同時に保持可能な部品数(即ち、吸着ノズル34の数)を超える数の部品91が供給エリアAsに供給され得る。そうすると、例えば基板カメラ42のカメラ視野に供給エリアAsの全域が収まる場合には、画像処理により状態認識される部品91の数が吸着ノズル34の数を大きく上回り、必要数を超えた部品91の供給状態を認識する画像処理が実行されていることになる。 Here, in the supply processing of the components 91 by the bulk feeder 60, the number of the components 91 exceeding the number of components (that is, the number of the suction nozzles 34) that the mounting head 33 can hold simultaneously can be supplied to the supply area As. Then, for example, when the entire supply area As falls within the camera field of view of the board camera 42, the number of the components 91 whose state is recognized by the image processing greatly exceeds the number of the suction nozzles 34, and the number of the components 91 exceeding the required number is increased. Image processing for recognizing the supply state is being executed.
 そこで、本実施形態の部品装着機1は、不規則な姿勢で供給される複数の部品91の供給状態を認識する画像処理と装着ヘッド33の機械動作(採取動作および装着動作)を効率的に実行し、装着処理の所要時間の短縮を図ることができる構成を採用する。具体的には、画像処理部51は、供給エリアAsに設定される複数の部分エリアApに含まれる1以上の部品91の供給状態を認識する画像処理を複数の部分エリアApごとに実行する。 Therefore, the component mounting machine 1 of the present embodiment efficiently performs image processing for recognizing the supply state of the plurality of components 91 supplied in an irregular posture and mechanical operation (collecting operation and mounting operation) of the mounting head 33. A configuration is adopted that can be executed to reduce the time required for the mounting process. Specifically, the image processing unit 51 executes image processing for each of the plurality of partial areas Ap for recognizing the supply state of one or more components 91 included in the plurality of partial areas Ap set in the supply area As.
 ここで、供給エリアAsに設定される複数の部分エリアApは、画像処理の対象が供給エリアAsまたはカメラ視野の全域とならないように設定される。それぞれの部分エリアApに含まれる部品91の数は、実行される画像処理や部品種によって適正な数が異なる。複数の部分エリアApは、例えば下記の3つの態様により設定される。 Here, the plurality of partial areas Ap set in the supply area As are set so that the target of image processing does not cover the supply area As or the entire field of view of the camera. The appropriate number of parts 91 included in each partial area Ap differs depending on the image processing to be executed and the kind of parts. The plurality of partial areas Ap are set, for example, by the following three modes.
 部分エリアApの第一態様において、複数の部分エリアApは、図3に示すように、供給エリアAsと装着ヘッド33の可動範囲Rmとが重複する重複エリアArの全域を複数に区画することによりそれぞれ設定される。このとき、重複エリアArの区画数は、2以上であればよい。また、部分エリアApは、X方向およびY方向ともに2以上であってもよい。全ての部分エリアApを包含するエリアは、重複エリアAr以上となる。 In the first aspect of the partial area Ap, as shown in FIG. 3, the plurality of partial areas Ap are formed by dividing the entire overlapping area Ar into which the supply area As and the movable range Rm of the mounting head 33 overlap. Each is set. At this time, the number of sections of the overlapping area Ar may be two or more. Further, the partial area Ap may be 2 or more in both the X direction and the Y direction. The area including all the partial areas Ap is the overlapping area Ar or more.
 部分エリアApの第一態様において、複数の部分エリアApのそれぞれは、同一の面積となるように設定される他に、部品91のばらつきの統計に基づいてそれぞれの部分エリアApの内部に含まれる部品91の数が同程度になるように適宜されてもよい。また、複数の部分エリアApのそれぞれは、境界部分に位置する部品91がいずれの部分エリアApを対象とした画像処理において状態認識の対象から外れないように、例えば部品91の寸法を加味して互いに重複するように設定される。 In the first aspect of the partial areas Ap, each of the plurality of partial areas Ap is set to have the same area, and is included in each of the partial areas Ap based on the statistics of the variation of the parts 91. The numbers of the components 91 may be appropriately set to be the same. In addition, for each of the plurality of partial areas Ap, for example, the dimensions of the parts 91 are taken into consideration so that the parts 91 located at the boundary portion are not excluded from the state recognition targets in the image processing targeting any of the partial areas Ap. It is set to overlap each other.
 上記の部分エリアApの第一態様は、供給エリアAsにおける部品91の数や供給状態によらず、異なる画像データにおいても変動しない固定式である。このような態様によると、画像処理の対象エリアが常に一定となるためそれぞれの所要時間の差を小さくできる。これにより、全体の所要時間の推定精度が向上し、管理性が向上する。また、異なる画像データごとに部分エリアApの形状を変動させる変動式と比較して、部分エリアApを設定する処理を簡易にできる。 The first aspect of the above partial area Ap is a fixed type that does not fluctuate even in different image data regardless of the number of parts 91 in the supply area As and the supply state. According to such a mode, the target area for image processing is always constant, so that the difference between the required times can be reduced. As a result, the accuracy of estimating the total required time is improved and the manageability is improved. In addition, the process of setting the partial area Ap can be simplified as compared with a variation formula that varies the shape of the partial area Ap for each different image data.
 部分エリアApの第二態様において、複数の部分エリアApは、図4に示すように、供給エリアAsのうち吸着ノズル34の数以下の部品91が含まれるようにそれぞれ設定される。これにより、採取動作を開始可能な部品数がそれぞれの部分エリアApにおいて確保されることになる。なお、第二態様の部分エリアApは、必要数の部品91が包含される最小の矩形状などの所定形状に形成される。 In the second aspect of the partial areas Ap, the plurality of partial areas Ap are set so as to include, as shown in FIG. 4, the parts 91 that are equal to or less than the number of the suction nozzles 34 in the supply area As. As a result, the number of parts that can start the collecting operation is secured in each partial area Ap. The partial area Ap of the second aspect is formed in a predetermined shape such as a minimum rectangular shape that includes the required number of components 91.
 部分エリアApの第二態様において、制御装置50は、例えば基板カメラ42の撮像により取得した画像データに対してY方向に部品91の数をカウントし、必要数が確保されるように複数の部分エリアApを設定する。このように、第二態様の部分エリアApは、第一態様の部分エリアApが固定式であったのに対して、取得した画像データごとに位置および形状が異なる変動型である。このような構成によると、一連で実行される採取動作に必要な分の部品91について効率的に供給状態を認識できる。 In the second aspect of the partial area Ap, the control device 50 counts the number of the components 91 in the Y direction with respect to the image data acquired by the image pickup by the substrate camera 42, for example, and a plurality of parts are ensured so that the required number is secured. Set the area Ap. As described above, the partial area Ap of the second aspect is a variable type in which the position and shape are different for each acquired image data, whereas the partial area Ap of the first aspect is a fixed type. With such a configuration, it is possible to efficiently recognize the supply state of the parts 91 required for a series of collection operations.
 部分エリアApの第三態様において、複数の部分エリアApは、図5に示すように、供給エリアAsのうち部品91が一つ含まれるようにそれぞれ設定される。つまり、第三態様の部分エリアApは、内部に部品91が一つだけ包含される最小の矩形状などの所定形状に形成される。複数の部分エリアApのそれぞれの形状は、部品91の形状を加味した面積を確保した同一の形状としてもよい。 In the third aspect of the partial area Ap, the plurality of partial area Aps are set so as to include one component 91 of the supply area As, as shown in FIG. That is, the partial area Ap of the third aspect is formed in a predetermined shape such as a minimum rectangular shape in which only one component 91 is included. The shapes of the plurality of partial areas Ap may be the same shape that secures an area considering the shape of the component 91.
 部分エリアApの第三態様において、制御装置50は、例えば基板カメラ42の撮像により取得した画像データに対してY方向に部品91を探索し、検出された複数の部品91の概ねの中心位置に部分エリアApをそれぞれ設定する。このように、第三態様の部分エリアApは、取得した画像データごとに位置が異なる変動型である。このような構成によると、個々の部分エリアApの面積を比較的小さくできるので、画像処理に面積に応じて負荷が増大する処理が含まれる場合に特に有用である。 In the third aspect of the partial area Ap, the control device 50 searches for the component 91 in the Y direction with respect to the image data acquired by, for example, the image pickup by the substrate camera 42, and locates at the approximate center position of the detected multiple components 91. Each partial area Ap is set. As described above, the partial area Ap of the third aspect is a variable type whose position is different for each acquired image data. According to such a configuration, the area of each partial area Ap can be made relatively small, which is particularly useful when the image processing includes a process in which the load increases according to the area.
 また、本実施形態において、画像処理部51による画像処理には、超解像処理が含まれる。超解像処理は、複数回に亘る撮像により取得された複数の画像データに基づいて、元の画像データよりも解像度が高められた高解像度データを取得する処理である。本実施形態の画像処理部51は、マルチフレーム型の超解像処理を採用する。画像処理部51は、撮像対象の部品91に対する基板カメラ42の相対位置が互いに異なる撮像位置における撮像により取得した複数の画像データを元の画像データとして超解像処理を実行する。 Further, in the present embodiment, the image processing by the image processing unit 51 includes super-resolution processing. The super-resolution processing is a process of acquiring high-resolution data having a higher resolution than the original image data based on a plurality of image data acquired by imaging a plurality of times. The image processing unit 51 of the present embodiment employs multi-frame type super-resolution processing. The image processing unit 51 executes the super-resolution processing by using a plurality of pieces of image data acquired by imaging at the imaging positions where the relative positions of the substrate camera 42 with respect to the imaging target component 91 are different from each other as original image data.
 本実施形態において、画像処理部51による画像処理には、状態認識処理が含まれる。状態認識処理は、先に実行された超解像処理により取得された高解像度データに基づいて、部分エリアApにおける部品91の位置および姿勢を供給状態として取得する。このような構成により、制御装置50は、バルクフィーダ60によるバルク状態での部品91の供給に対応した装着ヘッド33の採取動作を可能としている。 In the present embodiment, the image processing by the image processing unit 51 includes state recognition processing. The state recognition process acquires the position and orientation of the component 91 in the partial area Ap as the supply state based on the high-resolution data acquired by the previously executed super-resolution process. With such a configuration, the control device 50 enables the collecting operation of the mounting head 33 corresponding to the supply of the components 91 in the bulk state by the bulk feeder 60.
 本実施形態において、制御装置50は、マーク処理部52を有する。マーク処理部52は、機内に位置決めされた基板90の位置を取得するマーク処理を実行する。詳細には、マーク処理部52は、先ず機内に位置決めされた基板90の基板マークMcを撮像可能な位置に基板カメラ42を移動させる。このとき、基板90の位置にはある程度の誤差が含まれ得るが、基板マークMcが基板カメラ42のカメラ視野に収まるように基板カメラ42が移動される。 In this embodiment, the control device 50 has a mark processing unit 52. The mark processing unit 52 executes the mark processing to acquire the position of the substrate 90 positioned inside the machine. Specifically, the mark processing unit 52 first moves the substrate camera 42 to a position where the substrate mark Mc of the substrate 90 positioned inside the machine can be imaged. At this time, although the position of the substrate 90 may include some error, the substrate camera 42 is moved so that the substrate mark Mc is within the camera field of view of the substrate camera 42.
 マーク処理部52は、次に基板マークMcを撮像対象とした基板カメラ42の撮像により画像データを取得する。マーク処理部52は、取得した画像データに基づいて基板の位置を取得するマーク処理を実行する。具体的には、マーク処理部52は、画像データに含まれる基板マークMcから算出される基板90の基準座標と、撮像時における基板カメラ42の位置座標とに基づいて、基板90の位置を取得する。 The mark processing unit 52 then acquires image data by capturing an image of the substrate mark Mc with the substrate camera 42. The mark processing unit 52 executes the mark processing for acquiring the position of the substrate based on the acquired image data. Specifically, the mark processing unit 52 acquires the position of the board 90 based on the reference coordinates of the board 90 calculated from the board mark Mc included in the image data and the position coordinates of the board camera 42 at the time of imaging. To do.
 3.部品装着機1による生産処理
 部品装着機1による基板製品の生産処理について図6を参照して説明する。先ず、基板搬送装置10は、基板90の搬入処理を実行する(S10)。これにより、機内に基板90が搬入されるとともに、機内の所定位置に位置決めされる。続いて、制御装置50は、基板90に部品91を装着する装着処理を実行する(S50)。制御装置50は、装着処理(S50)が終了した後に、基板90の搬出処理を実行する(S60)。これにより、基板90がアンクランプされ、機外に基板90が搬出される。
3. Production Processing by Component Mounting Machine 1 The production processing of board products by the component mounting machine 1 will be described with reference to FIG. First, the substrate transfer apparatus 10 executes a process of loading the substrate 90 (S10). As a result, the board 90 is carried into the machine and positioned at a predetermined position in the machine. Subsequently, the control device 50 executes a mounting process for mounting the component 91 on the board 90 (S50). After the mounting process (S50) is completed, the control device 50 executes the unloading process of the substrate 90 (S60). As a result, the substrate 90 is unclamped, and the substrate 90 is carried out of the machine.
 ここで、制御装置50は、装着処理(S50)の効率化を図るために、装着ヘッド33による採取動作または装着動作の実行中に次回以降の採取動作を行う部分エリアApを対象とした画像処理を並列して実行させる。上記のように、装着ヘッド33による採取動作および装着動作を含むピックアンドプレースサイクル(以下、「PPサイクル」)と画像処理を並列に実行する装着処理(S50)は、例えば下記の2つの態様により実行される。 Here, in order to improve the efficiency of the mounting process (S50), the control device 50 performs the image processing for the partial area Ap that performs the sampling operation by the mounting head 33 or the subsequent sampling operation during the execution of the mounting operation. Are executed in parallel. As described above, the pick-and-place cycle (hereinafter, “PP cycle”) including the collecting operation and the mounting operation by the mounting head 33 and the mounting processing (S50) that executes the image processing in parallel are performed by the following two modes, for example. Will be executed.
 3-1.装着処理の第一態様
 装着処理の第一態様において、制御装置50は、今回のPPサイクルと、次回のPPサイクルにおいて採取動作を行う部分エリアApを対象とした画像処理とを並列して実行させる。ここで、バルクフィーダ60により複数の部品91が供給される供給エリアAsには、図3に示すように、2つの部分エリアApである第一部分エリアAp1および第二部分エリアAp2が設定されているものとして説明する。
3-1. First Mode of Mounting Process In the first mode of the mounting process, the control device 50 causes the current PP cycle and the image processing for the partial area Ap that performs the sampling operation in the next PP cycle to be executed in parallel. .. Here, as shown in FIG. 3, two partial areas Ap, a first partial area Ap1 and a second partial area Ap2, are set in the supply area As where the bulk feeder 60 supplies a plurality of components 91. It will be described as a thing.
 装着処理の第一態様において、制御装置50は、図7に示すように、先ず供給エリアAsの撮像処理(S20)を実行する。詳細には、制御装置50は、供給エリアAsを対象とした画像データの取得の要否を判定する(S21)。制御装置50は、例えばバルクフィーダ60による供給エリアAsへの部品91の追加供給がされるなど、供給エリアAsにおける複数の部品91の供給状態に変動があった場合に(S21:Yes)、画像データの取得処理を実行する(S22)。 In the first aspect of the mounting process, the control device 50 first executes the imaging process (S20) of the supply area As as shown in FIG. Specifically, the control device 50 determines whether or not acquisition of image data for the supply area As is necessary (S21). When the supply state of the plurality of components 91 in the supply area As has changed (S21: Yes), the control device 50 changes the image, for example, when the bulk feeder 60 supplies the component 91 to the supply area As additionally. Data acquisition processing is executed (S22).
 画像データの取得処理(S22)において、制御装置50は、後の画像処理(S40)に含まれるマルチフレーム型の超解像処理に用いられる複数の画像データを取得するために、基板カメラ42の移動および撮像を規定回数に亘って繰り返す。これにより取得された複数の画像データのそれぞれには、供給エリアAsのうち装着ヘッド33の可動範囲Rmと重複する重複エリアArの全域が含まれる。つまり、複数の画像データのそれぞれには、第一部分エリアAp1および第二部分エリアAp2がともに含まれている。 In the image data acquisition process (S22), the control device 50 acquires the plurality of image data used in the multi-frame super-resolution process included in the subsequent image process (S40). The movement and the imaging are repeated a specified number of times. Each of the plurality of image data acquired thereby includes the entire area of the overlapping area Ar that overlaps with the movable range Rm of the mounting head 33 in the supply area As. That is, each of the plurality of image data includes both the first partial area Ap1 and the second partial area Ap2.
 前回の撮像処理(S20)の後に、採取動作により採取された部品91が減少したのみで他の部品91の位置などに変化がない場合には(S21:No)、制御装置50は、画像データの取得処理(S22)を省略する。続いて、制御装置50は、供給エリアAsにある部品91のうち状態認識された部品91の数(以下、「残数Nf」)と、今回のPPサイクル(S30)で基板90に装着される同種の部品91の数(以下、「装着数Np」)とを比較する(S25)。 After the previous imaging process (S20), when only the number of the components 91 collected by the sampling operation is reduced and the positions of the other components 91 are not changed (S21: No), the control device 50 causes the image data to be displayed. The acquisition process (S22) is omitted. Subsequently, the control device 50 is mounted on the board 90 in the number of the components 91 of which the states are recognized among the components 91 in the supply area As (hereinafter, “remaining number Nf”) and this PP cycle (S30). The number of parts 91 of the same type (hereinafter, "the number of mounted parts Np") is compared (S25).
 ここで、後述する状態認識処理(S42)では、1回のPPサイクル(S30)で採取可能な部品91の最大数を超えた数の部品91の供給状態が認識され得る。そのため、前回のPPサイクル(S30)を終えた後でも供給エリアAsにある部品91には状態認識されたものが含まれることがある。その状態認識された部品91の数が残数Nfである。 Here, in the state recognition process (S42) described later, the supply state of the number of the components 91 exceeding the maximum number of the components 91 that can be collected in one PP cycle (S30) can be recognized. Therefore, even after the previous PP cycle (S30) is finished, the components 91 in the supply area As may include those whose state is recognized. The number of parts 91 whose state is recognized is the remaining number Nf.
 残数Nfが装着数Npより小さい場合には(S25:No)、PPサイクル(S30)を実行する前に、供給エリアAsにおける部品91の供給状態を取得するために画像処理(S40)を実行する。また、画像データの取得処理(S22)を実行した場合には、残数Nfはリセットされて0となるため、同様に画像処理(S40)が実行される。画像処理(S40)の結果は、今回のPPサイクル(S30)における採取動作(S31)に用いられる。 When the remaining number Nf is smaller than the mounted number Np (S25: No), image processing (S40) is executed to acquire the supply state of the component 91 in the supply area As before executing the PP cycle (S30). To do. Further, when the image data acquisition process (S22) is executed, the remaining number Nf is reset to 0, so that the image process (S40) is executed in the same manner. The result of the image processing (S40) is used for the sampling operation (S31) in this PP cycle (S30).
 ここで、今回のPPサイクル(S30)において採取動作(S31)を行う部分エリアApが第一部分エリアAp1である場合に、画像処理(S40)は、今回のPPサイクル(S30)において採取動作(S31)を行う第一部分エリアAp1を対象とする。詳細には、画像処理部51は、S20にて取得された複数の画像データのうち第一部分エリアAp1に対応する一部を対象として超解像処理を実行する(S41)。これにより、画像処理部51は、一部のみが元の画像データより解像度が高められた高解像度データを取得する。 Here, when the partial area Ap performing the sampling operation (S31) in the current PP cycle (S30) is the first partial area Ap1, the image processing (S40) performs the sampling operation (S31) in the current PP cycle (S30). ) Is performed for the first partial area Ap1. Specifically, the image processing unit 51 executes the super-resolution processing on a part of the plurality of image data acquired in S20 corresponding to the first partial area Ap1 (S41). As a result, the image processing unit 51 acquires high-resolution data, a part of which has a higher resolution than the original image data.
 続いて、画像処理部51は、高解像度データに基づいて、状態認識処理を実行する(S42)。これにより、画像処理部51は、第一部分エリアAp1における部品91の位置および姿勢を供給状態として取得する。また、画像処理部51は、状態認識処理(S42)において状態認識された部品91の数をカウントし、残数Nfの初期値として入力する。 Subsequently, the image processing unit 51 executes a state recognition process based on the high resolution data (S42). Thereby, the image processing unit 51 acquires the position and orientation of the component 91 in the first partial area Ap1 as the supply state. Further, the image processing unit 51 counts the number of the parts 91 whose state is recognized in the state recognition process (S42), and inputs the remaining number Nf as an initial value.
 続いて、制御装置50は、PPサイクル(S30)および画像処理(S40)を並列して実行させる。ここで、上記の画像処理(S40)の結果は、今回のPPサイクル(S30)ではなく次回のPPサイクル(S30)における採取動作(S31)に用いられる。つまり、並列に実行される画像処理(S40)は、次回以降のPPサイクル(S30)において採取動作(S31)を行う第二部分エリアAp2を対象とする。 Subsequently, the control device 50 executes the PP cycle (S30) and the image processing (S40) in parallel. Here, the result of the above image processing (S40) is used for the collection operation (S31) in the next PP cycle (S30) instead of the current PP cycle (S30). That is, the image processing (S40) executed in parallel targets the second partial area Ap2 in which the collection operation (S31) is performed in the PP cycle (S30) from the next time onward.
 詳細には、画像処理部51は、S20にて取得された複数の画像データのうち第二部分エリアAp2に対応する一部を対象として超解像処理を実行する(S41)。これにより、画像処理部51は、一部のみが元の画像データより解像度が高められた高解像度データを取得する。続いて、画像処理部51は、高解像度データに基づいて、状態認識処理を実行する(S42)。これにより、画像処理部51は、第二部分エリアAp2における部品91の位置および姿勢を供給状態として取得する。 Specifically, the image processing unit 51 executes super-resolution processing on a part of the plurality of image data acquired in S20, which corresponds to the second partial area Ap2 (S41). As a result, the image processing unit 51 acquires high-resolution data, a part of which has a higher resolution than the original image data. Subsequently, the image processing unit 51 executes a state recognition process based on the high resolution data (S42). Thereby, the image processing unit 51 acquires the position and orientation of the component 91 in the second partial area Ap2 as the supply state.
 また、PPサイクル(S30)において、採取動作(S31)の実行回数および装着動作(S33)の実行回数が装着数Npに達したかが判定される(S32,S34)。これにより、装着数Npの部品91が採取されるとともに基板90に装着される。なお、PPサイクル(S30)の装着動作(S33)には、部品カメラ41またはヘッドカメラユニット(図示しない)の撮像により取得された画像データに基づく部品91の保持状態の認識処理が含まれることがある。 Also, in the PP cycle (S30), it is determined whether the number of times the sampling operation (S31) is executed and the number of times the mounting operation (S33) is executed have reached the number of mountings Np (S32, S34). As a result, the number Np of mounted components 91 are collected and mounted on the substrate 90. It should be noted that the mounting operation (S33) in the PP cycle (S30) may include a process of recognizing the holding state of the component 91 based on the image data acquired by imaging the component camera 41 or the head camera unit (not shown). is there.
 上記のように並列に実行されるPPサイクル(S30)および画像処理(S40)において、画像処理部51は、状態認識処理(S42)において新たに状態認識された部品91の数をカウントし、現在の残数Nfに加算する。また、画像処理部51は、今回のPPサイクル(S30)の実行に伴って、現在の残数Nfから装着数Npを減算する。制御装置50は、全てのPPサイクル(S30)が終了しない場合に(S51:No)、上記の処理(S20,S30,S40)を複数回に亘って繰り返す。 In the PP cycle (S30) and the image processing (S40) that are executed in parallel as described above, the image processing unit 51 counts the number of the parts 91 whose states are newly recognized in the state recognition processing (S42), and Is added to the remaining number Nf. Further, the image processing unit 51 subtracts the number of mounted Np from the current remaining number Nf with the execution of the PP cycle (S30) this time. When all PP cycles (S30) are not completed (S51: No), the control device 50 repeats the above-described processing (S20, S30, S40) multiple times.
 2回目以降において、例えばバルクフィーダ60による供給エリアAsへの部品91の追加供給がなければ、撮像処理(S20)において画像データの取得処理(S22)が不要と判定される(S21:No)。そして、状態認識された部品91の残数Nfが今回のPPサイクル(S30)の装着数Np以上の場合に(S25:No)、画像処理(S40)が省略される。 After the second time, if there is no additional supply of the component 91 to the supply area As by the bulk feeder 60, it is determined that the image data acquisition process (S22) is not necessary in the imaging process (S20) (S21: No). Then, when the remaining number Nf of the components 91 of which the state is recognized is equal to or larger than the number Np of mountings in the current PP cycle (S30) (S25: No), the image processing (S40) is omitted.
 また、バルクフィーダ60による供給エリアAsへの部品91の追加供給がなされると、撮像処理(S20)が実行される。そして、一方の部分エリアApを対象とした画像処理(S40)がPPサイクル(S30)の前に実行され、他方の部分エリアApを対象とした画像処理(S40)がPPサイクル(S30)と並列して実行される。制御装置50は、全てのPPサイクル(S30)が終了した場合に(S51:Yes)、装着処理(S50)を終了する。 Further, when the bulk feeder 60 additionally supplies the parts 91 to the supply area As, the imaging process (S20) is executed. Then, the image processing (S40) for one partial area Ap is executed before the PP cycle (S30), and the image processing (S40) for the other partial area Ap is parallel to the PP cycle (S30). Is executed. The control device 50 ends the mounting process (S50) when all the PP cycles (S30) are completed (S51: Yes).
 3-2.装着処理の第二態様
 装着処理の第二態様において、制御装置50は、今回のPPサイクルにおいて画像処理が終了した部分エリアApから部品91を採取する採取動作と、未実行の採取動作を行う別の部分エリアApを対象とした画像処理とを並列して実行させる。装着処理の第二態様において、制御装置50は、図8に示すように、先ず供給エリアAsの撮像処理(S20)を実行する。
3-2. Second Mode of Mounting Process In the second mode of mounting process, the control device 50 separates a collecting operation for collecting the part 91 from the partial area Ap for which the image processing has been completed in the current PP cycle and an unexecuted collecting operation. The image processing targeting the partial area Ap is executed in parallel. In the second aspect of the mounting process, the control device 50 first executes the imaging process (S20) of the supply area As, as shown in FIG.
 ここで、後述する画像処理(S140)では、次回のPPサイクル(S130)の採取動作(S131)に結果が用いられる状態認識処理(S145)が実行される。そのため、前回のPPサイクル(S130)を終えた後に、既に状態認識された部品91を含む部分エリアApがある場合がある。制御装置50は、上記のように既に状態認識処理(S145)を実行された部分エリアApがない場合には(S125:No)、部分エリアApの設定処理(S126)、およびPPサイクル(S130)の実行前の画像処理(S40)を実行する。 Here, in the image processing (S140) described later, the state recognition processing (S145) is executed in which the result is used in the sampling operation (S131) of the next PP cycle (S130). Therefore, there may be a partial area Ap including the part 91 whose state has already been recognized after the last PP cycle (S130) is completed. When there is no partial area Ap for which the state recognition process (S145) has already been executed as described above (S125: No), the control device 50 sets the partial area Ap (S126) and the PP cycle (S130). The image processing (S40) before the execution of is executed.
 部分エリアApの設定処理(S126)では、撮像処理(S20)において取得された複数の画像データの一つに対してY方向に部品91の数をカウントし、必要数が確保されるように複数の部分エリアApを設定する。ここでは、上記の必要数は、例えば装着ヘッド33が1回のPPサイクル(S130)において採取可能な部品91の最大数の半数に設定される。これにより、供給エリアAsには、図4に示すように、複数の部分エリアApである第一部分エリアAp1、第二部分エリアAp2、第三部分エリアAp3、・・・が設定される。 In the setting process (S126) of the partial area Ap, the number of the components 91 is counted in the Y direction with respect to one of the plurality of image data acquired in the imaging process (S20), and a plurality of parts 91 are obtained so that the necessary number is secured. The partial area Ap of is set. Here, the required number is set to, for example, half of the maximum number of parts 91 that can be collected by the mounting head 33 in one PP cycle (S130). As a result, a plurality of partial areas Ap, that is, a first partial area Ap1, a second partial area Ap2, a third partial area Ap3,... Are set in the supply area As.
 また、画像データの取得処理(S22)を実行した場合には、過去に使用された複数の部分エリアApがリセットされているため、同様に部分エリアApの設定処理(S126)が実行される。ここで、今回のPPサイクル(S130)において採取動作(S131)を行う部分エリアApが第一部分エリアAp1および第二部分エリアAp2である場合に、画像処理(S40)は、今回のPPサイクル(S130)において一部の採取動作(S31)を行う第一部分エリアAp1を対象とする。 When the image data acquisition process (S22) is executed, the partial area Ap setting process (S126) is similarly executed because the plurality of partial areas Ap used in the past have been reset. Here, when the partial area Ap performing the sampling operation (S131) in the current PP cycle (S130) is the first partial area Ap1 and the second partial area Ap2, the image processing (S40) performs the current PP cycle (S130). ), the first partial area Ap1 in which a part of the sampling operation (S31) is performed is targeted.
 続いて、制御装置50は、PPサイクル(S130)および画像処理(S140)を並列して実行させる。ここで、上記の画像処理(S140)の結果は、今回のPPサイクル(S130)および次回のPPサイクル(S130)における採取動作(S131)に用いられる。つまり、並列に実行される画像処理(S140)は、未実行の採取動作(S131)を行う第二部分エリアAp2と、次回のPPサイクル(S130)において採取動作(S131)を行う第三部分エリアAp3を対象とする。 Subsequently, the control device 50 causes the PP cycle (S130) and the image processing (S140) to be executed in parallel. Here, the result of the above image processing (S140) is used for the collection operation (S131) in the current PP cycle (S130) and the next PP cycle (S130). That is, in the image processing (S140) executed in parallel, the second partial area Ap2 for performing the unexecuted sampling operation (S131) and the third partial area for performing the sampling operation (S131) in the next PP cycle (S130). The target is Ap3.
 詳細には、画像処理部51は、S20にて取得された複数の画像データのうち第二部分エリアAp2に対応する一部を対象として超解像処理を実行する(S141)。これにより、画像処理部51は、一部のみが元の画像データより解像度が高められた高解像度データを取得する。続いて、画像処理部51は、高解像度データに基づいて、状態認識処理を実行する(S142)。これにより、画像処理部51は、第二部分エリアAp2における部品91の位置および姿勢を供給状態として取得する。 Specifically, the image processing unit 51 executes the super-resolution processing on a part of the plurality of image data acquired in S20 corresponding to the second partial area Ap2 (S141). As a result, the image processing unit 51 acquires high-resolution data, a part of which has a higher resolution than the original image data. Subsequently, the image processing unit 51 executes a state recognition process based on the high resolution data (S142). Thereby, the image processing unit 51 acquires the position and orientation of the component 91 in the second partial area Ap2 as the supply state.
 また、制御装置50は、PPサイクル(S130)において、第一部分エリアAp1を対象とした採取動作(S131)の実行回数が装着数Npの半分に達したかを判定する(S132)。これにより、採取動作(S131)が繰り返され、装着数Npの半分の部品91が採取される。続いて、制御装置50は、装着数Npの半分の部品91の採取、および第二部分エリアAp2を対処とした状態認識処理(S142)が終了した後に、第二部分エリアAp2を対象とした採取動作(S133)を実行する。 Further, the control device 50 determines whether or not the number of times of performing the sampling operation (S131) for the first partial area Ap1 has reached half of the number Np of attachments in the PP cycle (S130) (S132). As a result, the collection operation (S131) is repeated, and the half of the mounting number Np of the components 91 are collected. Subsequently, the control device 50 collects half of the number Np of mounted parts 91, and collects the second partial area Ap2 after the state recognition processing (S142) for the second partial area Ap2 is completed. The operation (S133) is executed.
 以降のPPサイクル(S130)において、採取動作(S131,S133)の実行回数および装着動作(S135)の実行回数が装着数Npに達したかが判定される(S134,S136)。これにより、装着数Npの部品91が採取されるとともに基板90に装着される。また、採取動作(S133)および装着動作(S135)に並列して実行される画像処理(S140)において、画像処理部51は、部分エリアApの設定処理(S126)において設定された複数の部分エリアApのうち状態認識処理の対象とされていないものがあるか否かを判定する(S143)。 In the subsequent PP cycle (S130), it is determined whether the number of executions of the collection operation (S131, S133) and the number of execution of the mounting operation (S135) have reached the mounting number Np (S134, S136). As a result, the number Np of mounted components 91 are collected and mounted on the substrate 90. Further, in the image processing (S140) executed in parallel with the collecting operation (S133) and the mounting operation (S135), the image processing unit 51 causes the image processing unit 51 to set the plurality of partial areas set in the setting processing (S126) of the partial area Ap. It is determined whether or not there is an Ap that is not the target of the state recognition processing (S143).
 画像処理部51は、状態認識処理が未実行の部分エリアAp(例えば、第三部分エリアAp3)がある場合に(S143:Yes)、この第三部分エリアAp3に対する超解像処理(S144)および状態認識処理(S145)を実行する。この状態認識処理(S145)の結果は、次回のPPサイクル(S130)における前半の採取動作(S131)に用いられる。制御装置50は、全てのPPサイクル(S130)が終了しない場合に(S51:No)、上記の処理(S20,S40,S130,S140)を複数回に亘って繰り返す。 When there is a partial area Ap (for example, the third partial area Ap3) for which the state recognition processing has not been executed (S143: Yes), the image processing unit 51 performs super-resolution processing (S144) on the third partial area Ap3 and State recognition processing (S145) is executed. The result of this state recognition processing (S145) is used for the first half sampling operation (S131) in the next PP cycle (S130). When all PP cycles (S130) are not completed (S51: No), the control device 50 repeats the above-mentioned processing (S20, S40, S130, S140) multiple times.
 2回目以降において、例えばバルクフィーダ60による供給エリアAsへの部品91の追加供給がなければ、撮像処理(S20)において画像データの取得処理(S22)が不要と判定される(S21:No)。そして、既に状態認識処理(S145)をされた部分エリアApがある場合に(S125:Yes)、画像処理(S140)が省略される。 After the second time, if there is no additional supply of the component 91 to the supply area As by the bulk feeder 60, it is determined that the image data acquisition process (S22) is not necessary in the imaging process (S20) (S21: No). Then, when there is a partial area Ap that has already undergone the state recognition process (S145) (S125: Yes), the image process (S140) is omitted.
 また、バルクフィーダ60による供給エリアAsへの部品91の追加供給がなされると、撮像処理(S20)が実行される。そして、部分エリアApの設定処理(S126)が再度実行されるとともに、一つの部分エリアApに対する画像処理(S40)がPPサイクル(S130)の前に実行される。その後に、他の部分エリアApに対する画像処理(S140)がPPサイクル(S130)と並列して実行される。制御装置50は、全てのPPサイクル(S130)が終了した場合に(S51:Yes)、装着処理(S50)を終了する。 Further, when the bulk feeder 60 additionally supplies the parts 91 to the supply area As, the imaging process (S20) is executed. Then, the partial area Ap setting process (S126) is executed again, and the image process (S40) for one partial area Ap is executed before the PP cycle (S130). After that, the image processing (S140) for the other partial area Ap is executed in parallel with the PP cycle (S130). The control device 50 ends the mounting process (S50) when all the PP cycles (S130) are completed (S51: Yes).
 3-3.装着処理のその他の態様
 上記のような装着処理の第一態様および第二態様によると、PPサイクル(S30,S130)と画像処理(S40,S140)が並列して実行される。何れの装着処理(S50)において、例えば基板90が機内に搬入された直後の状態では、1回目のPPサイクル(S30,S130)の前に状態認識処理(S42)が実行される必要が生じる。つまり、1回目のPPサイクル(S30,S130)は、最初の状態認識処理(S42)が終了するまで開始できない。
3-3. Other Aspects of Mounting Process According to the first and second aspects of the mounting process as described above, the PP cycle (S30, S130) and the image processing (S40, S140) are executed in parallel. In any mounting process (S50), for example, in a state immediately after the substrate 90 is loaded into the machine, the state recognition process (S42) needs to be executed before the first PP cycle (S30, S130). That is, the first PP cycle (S30, S130) cannot be started until the first state recognition process (S42) is completed.
 これに対して、制御装置50は、最初の状態認識処理(S42)を含む画像処理(S40)と、マーク処理部52によるマーク処理とを並列に実行させるようにしてもよい。具体的には、制御装置50は、図9に示すように、基板90の搬入処理(S10)と、供給エリアAsの撮像処理(S120)とを並列に実行する。つまり、基板搬送装置10が基板90の搬入および位置決め(S11)を行っている期間に、基板カメラ42を供給エリアAsの上方に移動させて撮像処理を実行する(S120)。 On the other hand, the control device 50 may execute the image processing (S40) including the initial state recognition processing (S42) and the mark processing by the mark processing unit 52 in parallel. Specifically, as shown in FIG. 9, the control device 50 executes the loading process of the substrate 90 (S10) and the imaging process of the supply area As (S120) in parallel. That is, while the substrate transfer apparatus 10 is carrying in and positioning the substrate 90 (S11), the substrate camera 42 is moved above the supply area As to execute the imaging process (S120).
 次に、マーク処理部52は、基板90の基板マークMcを撮像可能な位置に基板カメラ42を移動させ、基板カメラ42の撮像により画像データを取得する(S12)。マーク処理部52は、取得した画像データに基づいて基板90の位置を取得する(S13)。画像処理部51は、上記のマーク処理(S12,S13)に並列して、画像処理(S240)を実行する。 Next, the mark processing unit 52 moves the substrate camera 42 to a position where the substrate mark Mc of the substrate 90 can be imaged, and acquires image data by imaging the substrate camera 42 (S12). The mark processing unit 52 acquires the position of the substrate 90 based on the acquired image data (S13). The image processing unit 51 executes the image processing (S240) in parallel with the mark processing (S12, S13).
 上記の画像処理(S240)は、例えば装着処理の第一態様にて例示したように固定型の部分エリアApを採用する場合には、複数の部分エリアApの一つを対象とする。また、画像処理(S240)は、例えば装着処理の第二態様にて例示したように変動型の部分エリアApを採用する場合には、部分エリアApの設定処理(S126)が先に実行され、これにより設定された複数の部分エリアApの一つを対象とする。 The above image processing (S240) targets one of a plurality of partial areas Ap when the fixed partial area Ap is adopted as exemplified in the first aspect of the mounting processing. In the image processing (S240), for example, when the variable partial area Ap is adopted as exemplified in the second aspect of the mounting processing, the partial area Ap setting processing (S126) is executed first, One of the plurality of partial areas Ap thus set is targeted.
 また、装着処理の第一態様にて例示した固定型の部分エリアApについては、3以上の部分エリアApが設定され、PPサイクルに並列して画像処理が順次実行されるようにしてもよい。また、装着処理の第二態様にて例示した変動型の部分エリアApについては、装着数Npの半数が含まれるように複数の部分エリアApを設定したが、装着数Npの半分未満としてもよいし、図5に示すように、部品91が一つ含まれるようにしてもよい。 Further, with respect to the fixed type partial area Ap illustrated in the first aspect of the mounting process, three or more partial areas Ap may be set and the image processing may be sequentially executed in parallel with the PP cycle. Further, with respect to the variable partial areas Ap illustrated in the second mode of the mounting process, a plurality of partial areas Ap are set so as to include half of the number Np of mountings, but may be less than half of the number Np of mountings. However, as shown in FIG. 5, one component 91 may be included.
 なお、複数の部分エリアApのそれぞれが一つの部品91が含まれるように設定される態様においては、例えば複数の部分エリアApのうち装着数Npの半数でグルーピングすることにより装着処理の第二態様と同様に処理することが可能である。このような構成によると、例えば超解像処理のように処理負荷の高い画像処理が実行される範囲を狭くすることができる。 In the mode in which each of the plurality of partial areas Ap is set to include one component 91, for example, the second mode of the mounting process is performed by grouping by half the number Np of mounted parts of the plurality of partial areas Ap. Can be processed in the same manner as. With such a configuration, it is possible to narrow the range in which image processing having a high processing load such as super-resolution processing is executed.
 4.実施形態の構成による効果
 実施形態の部品装着機1は、画像処理(S40,S140,S240)の結果に基づいて装着ヘッド33による採取動作(S31,S131,S133)を制御し、装着ヘッド33による採取動作または装着動作(S33,S135)の実行中に次回以降の採取動作を行う部分エリアApを対象とした画像処理(S40,S140)を並列して実行させる制御装置50を備える。
4. Effects of the Configuration of the Embodiment The component mounting machine 1 of the embodiment controls the sampling operation (S31, S131, S133) by the mounting head 33 based on the result of the image processing (S40, S140, S240), and controls the mounting head 33. The control device 50 is provided for executing in parallel the image processing (S40, S140) for the partial area Ap for the next and subsequent sampling operations during the execution of the sampling operation or the mounting operation (S33, S135).
 このような構成によると、装着ヘッド33の採取動作(S31,S131,S133)または装着動作(S33,S135)の実行中に次回以降の採取動作に必要となる画像処理を並列して実行させる。これにより、装着ヘッド33の動作と画像処理(S40,S140)が重複し、装着ヘッド33の機械動作を効率的に実行できる。また、全体として装着処理(S50)の所要時間の短縮を図ることができる。 With such a configuration, image processing required for the next and subsequent sampling operations is executed in parallel while the sampling operation (S31, S131, S133) or the mounting operation (S33, S135) of the mounting head 33 is being executed. Thereby, the operation of the mounting head 33 and the image processing (S40, S140) overlap, and the mechanical operation of the mounting head 33 can be efficiently executed. In addition, the time required for the mounting process (S50) can be shortened as a whole.
 5.実施形態の変形態様
 5-1.画像処理について
 実施形態において、画像処理には、超解像処理が含まれる構成とした。画像処理における超解像処理は、部品供給装置20が供給する部品91の種類や寸法などに応じて、生成する高解像度データの解像度を設定してもよい。これに伴い、撮像処理において取得される画像データの数が変動する。また、供給する部品91の寸法が十分に確保されている場合には、画像処理における超解像処理を省略してもよい。
5. Modification of Embodiment 5-1. Regarding Image Processing In the embodiment, the image processing includes the super-resolution processing. In the super-resolution processing in the image processing, the resolution of the high resolution data to be generated may be set according to the type and size of the component 91 supplied by the component supply device 20. Along with this, the number of image data acquired in the image capturing process changes. Further, when the dimensions of the supplied component 91 are sufficiently secured, the super-resolution processing in the image processing may be omitted.
 実施形態において、画像処理において供給エリアAsを対象とした画像データの取得に基板カメラ42が兼用される構成とした。これに対して、部品装着機1は、供給エリアAsを撮像可能であれば、種々のカメラを適用できる。例えば、装着ヘッド33に一体的に設けられたヘッドカメラユニットや、部品供給装置20に設けられた専用カメラを備える構成としてもよい。 In the embodiment, the board camera 42 is also used to acquire image data for the supply area As in image processing. On the other hand, the component mounting machine 1 can apply various cameras as long as the supply area As can be imaged. For example, a head camera unit integrally provided on the mounting head 33 or a dedicated camera provided on the component supply device 20 may be provided.
 なお、上記の専用カメラは、供給エリアAsの上方に配置される他に、供給エリアAsの下方に配置される構成としてもよい。この場合に、例えば供給エリアAsは、部品供給装置20により複数の部品91が不規則な姿勢で供給される透明の支持台の支持面に相当する。また、専用カメラを備える構成において、実施形態にて例示したように画像処理に超解像処理が含まれる場合には、供給エリアAsに対して専用カメラを相対移動させる移動装置を要する。移動装置は、専用カメラおよび支持台の少なくとも一方を移動させる。 Note that the dedicated camera may be arranged below the supply area As as well as above the supply area As. In this case, for example, the supply area As corresponds to the support surface of the transparent support base on which the plurality of parts 91 are supplied in an irregular posture by the parts supply device 20. Further, in a configuration including a dedicated camera, when the image processing includes super-resolution processing as illustrated in the embodiment, a moving device for moving the dedicated camera relative to the supply area As is required. The moving device moves at least one of the dedicated camera and the support base.
 また、部品供給装置20のバルクフィーダ60は、供給した部品91が重なっていたり接触していたりする場合に、振動などを加える振動装置を備えてもよい。このような構成において、振動装置が動作した場合に、制御装置50は、実施形態にて例示したように、バルクフィーダ60による供給エリアAsへの部品91の追加供給がなされたときと同様の処理をすることにより対応することができる。 Further, the bulk feeder 60 of the parts supply device 20 may be provided with a vibration device that applies vibration or the like when the supplied parts 91 overlap or are in contact with each other. In such a configuration, when the vibrating device operates, the control device 50 performs the same process as when the bulk feeder 60 additionally supplies the component 91 to the supply area As, as illustrated in the embodiment. It can be dealt with by doing.
 5-2.保持部材について
 実施形態において、部品91を保持する保持部材は、負圧エアにより吸着して部品91を保持する吸着ノズル34である。これに対して、保持部材は、開閉可能な複数の爪により部品91を挟んで保持するチャックや、磁力により部品91を保持する電磁石などを採用し得る。このような構成においても実施形態と同様の効果を奏する。
5-2. Regarding Holding Member In the embodiment, the holding member that holds the component 91 is the suction nozzle 34 that holds the component 91 by suction with negative pressure air. On the other hand, the holding member may be a chuck that holds the component 91 by a plurality of claws that can be opened and closed, or an electromagnet that holds the component 91 by magnetic force. Even in such a configuration, the same effect as that of the embodiment can be obtained.
 5-3.作業機について
 実施形態において、作業機は、部品装着機である態様を例示した。これに対して、作業機は、基板に部品を装着する部品装着機と異なる態様を採用し得る。つまり、作業機は、ワーク供給装置により供給されるワークを作業ヘッドにより採取し、採取したワークを用いて種々の所定作業を行ってもよい。上記の所定作業には、対象物にワークとしてのボルトなどをねじ締めする作業、対象物にワークを組み付ける作業、配置用トレイなどにワークとしての部品を整列させる作業などが含まれる。
5-3. Working Machine In the embodiment, the working machine is a component mounting machine. On the other hand, the working machine may employ a mode different from that of the component mounting machine that mounts a component on the board. That is, the work machine may collect the work supplied by the work supply device by the work head and perform various predetermined works using the collected work. The above-mentioned predetermined work includes a work of screwing a bolt or the like as a work to the target object, a work of assembling the work to the target object, a work of aligning the parts as the work on a placement tray or the like.
 上記のような態様において、作業ヘッドは、供給エリアAsに設定される複数の部分エリアApからワークを採取する採取動作、および採取したワークを用いた所定の作業動作を行う。そして、制御装置50は、実施形態と同様に、作業ヘッドによる採取動作または作業動作の実行中に、次回以降の採取動作を行う部分エリアApを対象とした画像処理を並行して実行させる。これにより、作業機は、実施形態にて例示した構成と同様の効果を奏する。 In the above-described mode, the work head performs a collecting operation for collecting a work from a plurality of partial areas Ap set in the supply area As and a predetermined work operation using the collected work. Then, similarly to the embodiment, the control device 50 concurrently executes the image processing for the partial area Ap that performs the subsequent sampling operation during the sampling operation by the working head or the execution of the working operation. As a result, the working machine has the same effect as the configuration illustrated in the embodiment.
 1:部品装着機(作業機)、 10:基板搬送装置、 20:部品供給装置(ワーク供給装置)、 60:バルクフィーダ、 30:部品移載装置、 33:装着ヘッド(作業ヘッド)、 34:吸着ノズル(保持部材)、 42:基板カメラ、 50:制御装置、 51:画像処理部、 52:マーク処理部、 90:基板、 91:部品(ワーク)、 Mc:基板マーク、 As:供給エリア、 Ap,Ap1,Ap2,Ap3:部分エリア、 Ar:重複エリア、 Rm:可動範囲 1: component mounting machine (working machine), 10: substrate transfer device, 20: component supply device (work supply device), 60: bulk feeder, 30: component transfer device, 33: mounting head (working head), 34: Adsorption nozzle (holding member), 42: substrate camera, 50: control device, 51: image processing unit, 52: mark processing unit, 90: substrate, 91: parts (work), Mc: substrate mark, As: supply area, Ap, Ap1, Ap2, Ap3: partial area, Ar: overlapping area, Rm: movable range

Claims (10)

  1.  不規則な姿勢で複数のワークを供給エリアに供給するワーク供給装置と、
     前記供給エリアに設定される複数の部分エリアに含まれる1以上の前記ワークの供給状態を認識する画像処理を複数の前記部分エリアごとに実行する画像処理部と、
     前記部分エリアから前記ワークを採取する採取動作、および採取した前記ワークを用いた所定の作業動作を行う作業ヘッドと、
     前記画像処理の結果に基づいて前記作業ヘッドによる前記採取動作を制御し、前記作業ヘッドによる前記採取動作または前記作業動作の実行中に次回以降の前記採取動作を行う前記部分エリアを対象とした前記画像処理を並列して実行させる制御装置と、
     を備える作業機。
    A work supply device that supplies a plurality of works to the supply area in an irregular posture,
    An image processing unit that executes image processing for recognizing the supply state of one or more workpieces included in a plurality of partial areas set in the supply area, for each of the plurality of partial areas,
    A work head that performs a collecting operation for collecting the work from the partial area, and a predetermined work operation using the collected work;
    The sampling operation by the working head is controlled based on the result of the image processing, and the partial area for performing the sampling operation by the working head or the next and subsequent sampling operations during execution of the working operation is targeted. A control device for executing image processing in parallel,
    Working machine equipped with.
  2.  前記画像処理には、複数回に亘る撮像により取得された複数の画像データに基づいて高解像度データを取得する超解像処理、および前記高解像度データに基づいて前記部分エリアにおける前記ワークの位置および姿勢を前記供給状態として取得する状態認識処理が含まれる、請求項1に記載の作業機。 In the image processing, super-resolution processing for acquiring high resolution data based on a plurality of image data acquired by imaging a plurality of times, and position of the work in the partial area based on the high resolution data and The work machine according to claim 1, further comprising a state recognition process of acquiring a posture as the supply state.
  3.  複数の前記部分エリアは、前記供給エリアと前記作業ヘッドの可動範囲とが重複する重複エリアの全域を複数に区画することによりそれぞれ設定される、請求項1または2に記載の作業機。 The work machine according to claim 1 or 2, wherein the plurality of partial areas are set by dividing an entire overlapping area where the supply area and the movable range of the work head overlap into a plurality of areas.
  4.  前記作業ヘッドは、前記ワークを保持する複数の保持部材を有し、
     複数の前記部分エリアは、前記供給エリアのうち前記保持部材の数以下の前記ワークが含まれるようにそれぞれ設定される、請求項1または2に記載の作業機。
    The working head has a plurality of holding members for holding the work,
    The work machine according to claim 1 or 2, wherein the plurality of partial areas are set such that the workpieces are equal to or less than the number of the holding members in the supply area.
  5.  複数の前記部分エリアは、前記供給エリアのうち前記ワークが一つ含まれるようにそれぞれ設定される、請求項1または2に記載の作業機。 The work machine according to claim 1 or 2, wherein each of the plurality of partial areas is set to include one of the works in the supply area.
  6.  前記作業機は、基板製品の生産に用いられる部品装着機であり、
     前記ワーク供給装置は、前記ワークとしての部品を供給する部品供給装置であり、
     前記作業ヘッドは、前記採取動作により採取した前記部品を基板に装着する前記作業動作としての装着動作を実行する行う装着ヘッドである、請求項1-5の何れか一項に記載の作業機。
    The working machine is a component mounting machine used for production of board products,
    The work supply device is a component supply device that supplies a component as the work,
    The working machine according to claim 1, wherein the working head is a mounting head that performs a mounting operation as the working operation of mounting the component collected by the collecting operation on a substrate.
  7.  前記制御装置は、前記装着ヘッドによる前記採取動作および前記装着動作を含むピックアンドプレースサイクル(以下、「PPサイクル」)を複数回に亘って繰り返す装着処理を実行し、前記装着処理において今回の前記PPサイクルと、次回以降の前記PPサイクルにおいて前記採取動作を行う前記部分エリアを対象とした前記画像処理とを並列して実行させる、請求項6に記載の作業機。 The control device executes a mounting process in which a pick-and-place cycle (hereinafter, “PP cycle”) including the collecting operation and the mounting operation by the mounting head is repeated a plurality of times, and in the mounting process, The working machine according to claim 6, wherein the PP cycle and the image processing for the partial area where the collecting operation is performed in the next and subsequent PP cycles are executed in parallel.
  8.  前記装着ヘッドは、前記部品を保持する複数の保持部材を有し、
     前記制御装置は、前記装着ヘッドによる前記採取動作および前記装着動作を含むピックアンドプレースサイクル(以下、「PPサイクル」)を複数回に亘って繰り返す装着処理を実行し、今回の前記PPサイクルにおいて前記画像処理が終了した前記部分エリアから前記部品を採取する前記採取動作と、未実行の前記採取動作を行う別の前記部分エリアを対象とした前記画像処理とを並列して実行させる、請求項6に記載の作業機。
    The mounting head has a plurality of holding members for holding the component,
    The control device executes a mounting process in which a pick-and-place cycle (hereinafter, “PP cycle”) including the collecting operation and the mounting operation by the mounting head is repeated a plurality of times, and in the PP cycle at this time, 7. The collecting operation for collecting the part from the partial area where the image processing is completed and the image processing for another partial area for which the unexecuted collecting operation is performed are executed in parallel. Working machine described in.
  9.  前記部品装着機は、前記装着ヘッドと一体的に移動可能に設けられ、前記基板に付された基板マークを撮像する基板カメラをさらに備え、
     前記基板カメラは、前記画像処理部による前記画像処理に用いられる画像データを取得するために前記供給エリアの撮像に兼用される、請求項6-8の何れか一項に記載の作業機。
    The component mounting machine is further provided so as to be movable integrally with the mounting head, and further includes a substrate camera which captures an image of a substrate mark attached to the substrate.
    9. The work machine according to claim 6, wherein the board camera is also used for imaging the supply area to acquire image data used for the image processing by the image processing unit.
  10.  前記部品装着機は、前記基板マークを撮像可能な位置に前記基板カメラを移動させるとともに、前記基板マークを撮像対象とした前記基板カメラの撮像により取得した画像データに基づいて前記基板の位置を取得するマーク処理を実行するマーク処理部をさらに備え、
     前記制御装置は、前記供給エリアを撮像対象とした前記基板カメラによる撮像により画像データを取得した後に、前記画像処理部による前記部分エリアを対象とした前記画像処理と、前記マーク処理部による前記マーク処理とを並列に実行させる、請求項9に記載の作業機。
    The component mounter moves the board camera to a position where the board mark can be imaged, and acquires the board position based on image data acquired by the board camera imaging the board mark. Further comprising a mark processing unit for executing the mark processing to
    The control device, after acquiring image data by image capturing by the substrate camera that targets the supply area, performs the image processing targeting the partial area by the image processing unit and the mark processing by the mark processing unit. The work machine according to claim 9, wherein processing is executed in parallel.
PCT/JP2019/008035 2019-03-01 2019-03-01 Working machine WO2020178887A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/008035 WO2020178887A1 (en) 2019-03-01 2019-03-01 Working machine
JP2021503244A JP7231706B2 (en) 2019-03-01 2019-03-01 work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008035 WO2020178887A1 (en) 2019-03-01 2019-03-01 Working machine

Publications (1)

Publication Number Publication Date
WO2020178887A1 true WO2020178887A1 (en) 2020-09-10

Family

ID=72337052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008035 WO2020178887A1 (en) 2019-03-01 2019-03-01 Working machine

Country Status (2)

Country Link
JP (1) JP7231706B2 (en)
WO (1) WO2020178887A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162918A1 (en) * 2021-01-29 2022-08-04 株式会社Fuji Component supply control system
WO2022190201A1 (en) * 2021-03-09 2022-09-15 株式会社Fuji Maintenance device
WO2023181342A1 (en) * 2022-03-25 2023-09-28 株式会社Fuji Component mounting machine and component mounting method
WO2023188107A1 (en) * 2022-03-30 2023-10-05 株式会社Fuji Component mounting machine and component mounting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167898A (en) * 1989-11-28 1991-07-19 Pioneer Electron Corp Component mounting apparatus by image recognition
JP2007035946A (en) * 2005-07-27 2007-02-08 Juki Corp Electronic component mounting apparatus
JP2008112931A (en) * 2006-10-31 2008-05-15 Hitachi High-Tech Instruments Co Ltd Electronic component mounter
JP2014049574A (en) * 2012-08-30 2014-03-17 Hitachi High-Tech Instruments Co Ltd Component mounting method, component mounting device, and program
JP2016219472A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Component extracting device, component extracting method and component mounting device
WO2017208325A1 (en) * 2016-05-31 2017-12-07 富士機械製造株式会社 Component supply system
JP2018037586A (en) * 2016-09-02 2018-03-08 富士機械製造株式会社 Mounting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167898A (en) * 1989-11-28 1991-07-19 Pioneer Electron Corp Component mounting apparatus by image recognition
JP2007035946A (en) * 2005-07-27 2007-02-08 Juki Corp Electronic component mounting apparatus
JP2008112931A (en) * 2006-10-31 2008-05-15 Hitachi High-Tech Instruments Co Ltd Electronic component mounter
JP2014049574A (en) * 2012-08-30 2014-03-17 Hitachi High-Tech Instruments Co Ltd Component mounting method, component mounting device, and program
JP2016219472A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Component extracting device, component extracting method and component mounting device
WO2017208325A1 (en) * 2016-05-31 2017-12-07 富士機械製造株式会社 Component supply system
JP2018037586A (en) * 2016-09-02 2018-03-08 富士機械製造株式会社 Mounting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162918A1 (en) * 2021-01-29 2022-08-04 株式会社Fuji Component supply control system
WO2022190201A1 (en) * 2021-03-09 2022-09-15 株式会社Fuji Maintenance device
JP7438450B2 (en) 2021-03-09 2024-02-26 株式会社Fuji maintenance equipment
WO2023181342A1 (en) * 2022-03-25 2023-09-28 株式会社Fuji Component mounting machine and component mounting method
WO2023188107A1 (en) * 2022-03-30 2023-10-05 株式会社Fuji Component mounting machine and component mounting method

Also Published As

Publication number Publication date
JP7231706B2 (en) 2023-03-01
JPWO2020178887A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020178887A1 (en) Working machine
JP6212134B2 (en) Assembly machine
WO2015136669A1 (en) Image processing device and substrate production system
JP6712260B2 (en) Mounting device, imaging processing method, and imaging unit
JP6528121B2 (en) Component picking apparatus, component picking method and component mounting apparatus
JP5212520B2 (en) Electronic component handler and handler
JPWO2019043892A1 (en) Component placement machine and component placement method
JP6528122B2 (en) Component picking apparatus, component picking method and component mounting apparatus
JP2003347794A (en) Method and apparatus for taking out electronic circuit component
WO2018134997A1 (en) Component mounting machine
JP6619305B2 (en) Component mounter, fiducial mark imaging method
JP2017216311A (en) Component mounting device and component mounting method
JP2013236011A (en) Component mounting device
JP6789602B2 (en) Mounting device
JP6715714B2 (en) Inspection support apparatus and inspection support method
JP6242478B2 (en) Component mounting device
JP3564191B2 (en) Positioning method and device for mounting machine
JP2008311487A (en) Component mounting apparatus
JP6792637B2 (en) How to install parts
JP6423193B2 (en) Mounting apparatus and mounting method
JP7026234B2 (en) Work support device and anti-board work machine
JP5522290B2 (en) Electronic component handler and handler
WO2024069756A1 (en) Component mounter and component mounting method
JP6985814B2 (en) Board work machine
JP6842946B2 (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918010

Country of ref document: EP

Kind code of ref document: A1