WO2020178885A1 - 広角光学系及びそれを備えた撮像装置 - Google Patents

広角光学系及びそれを備えた撮像装置 Download PDF

Info

Publication number
WO2020178885A1
WO2020178885A1 PCT/JP2019/008033 JP2019008033W WO2020178885A1 WO 2020178885 A1 WO2020178885 A1 WO 2020178885A1 JP 2019008033 W JP2019008033 W JP 2019008033W WO 2020178885 A1 WO2020178885 A1 WO 2020178885A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
wide
lens group
image
Prior art date
Application number
PCT/JP2019/008033
Other languages
English (en)
French (fr)
Inventor
市川啓介
藤倉崇
三原伸一
内田佳宏
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2019/008033 priority Critical patent/WO2020178885A1/ja
Priority to CN201980056977.6A priority patent/CN112639568B/zh
Priority to JP2021503242A priority patent/JPWO2020178885A1/ja
Publication of WO2020178885A1 publication Critical patent/WO2020178885A1/ja
Priority to US17/189,353 priority patent/US20210255440A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a wide-angle optical system and an imaging device including the wide-angle optical system.
  • the objective optical system for endoscopes is known as an optical system with a wide angle of view.
  • a wide-angle optical system having an angle of view of more than 100 degrees is used as an objective optical system for an endoscope.
  • the optical system has high resolution, the depth of field will be narrower than the required observation depth. Therefore, it becomes difficult to observe the necessary observation depth in a focused state. For this reason, it has become necessary to provide the optical system with a function of adjusting the focal position.
  • An objective optical system for endoscopes whose focal position can be adjusted is known.
  • an inner focus is used for adjusting the focus position.
  • Actuators are provided around the optical system to perform inner focus.
  • the optical unit includes, for example, an optical system and an actuator.
  • the optical unit needs to be sealed. Further, the angle of view is 140° or more, and the size and output of the actuator are limited. Therefore, it is difficult to move the optical system by adjusting the focus position. A lightweight and space-saving inner focus is required.
  • Patent Document 1 An objective optical system for an endoscope using an inner focus is disclosed in Patent Document 1 and Patent Document 2.
  • the present invention has been made in view of such problems, and various aberrations are well corrected, and the outer diameter of a moving lens and the outer diameter of a lens located near the moving lens group are sufficiently small. It is an object of the present invention to provide a small wide-angle optical system and an imaging device using the same.
  • a wide-angle optical system comprises: A wide-angle optical system with a lens component,
  • the lens component has multiple optical surfaces and In the lens component, two optical surfaces are in contact with air, and at least one optical surface is a curved surface,
  • the second lens group moves from the first position to the second position, and the first position is the first lens group and the second lens group.
  • the third lens group has three or more lens components,
  • the three or more lens components include a first lens component and a second lens component, and the first lens component is the lens component located closest to the object side in the third lens group, and the second lens component
  • the component is a lens component located second from the object side in the third lens group,
  • the first lens component and the second lens component each have a positive refractive power, It is characterized in that the following conditional expression (1) is satisfied. 0.8 ⁇ f3L12/fL ⁇ 6.0 (1) here, f3L12 is a combined focal length of the first lens component and the second lens component, fL is the focal length of the wide-angle optical system at the first position, Is.
  • the imaging device of the present invention An optical system and an image pickup device arranged on the image plane,
  • the imaging device has an imaging surface, and converts an image formed on the imaging surface by the optical system into an electric signal,
  • the optical system is the wide-angle optical system described above.
  • a wide-angle optical system in which various aberrations are satisfactorily corrected and the outer diameter of a moving lens and the outer diameter of a lens located near a moving lens group are sufficiently small, and an imaging device using the same are provided. Can be provided.
  • FIG. 3 is a lens cross-sectional view of the wide-angle optical system of Example 1.
  • FIG. 7 is a lens cross-sectional view of the wide-angle optical system of Example 2.
  • FIG. 9 is a lens cross-sectional view of the wide-angle optical system of Example 3.
  • 9 is a lens cross-sectional view of the wide-angle optical system of Example 4.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 5.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 6.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 7.
  • 16 is a lens cross-sectional view of the wide-angle optical system of Example 8.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 9.
  • FIG. 20 is a lens cross-sectional view of the wide-angle optical system of Example 10.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 11.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 12.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 13.
  • FIG. 16 is a lens cross-sectional view of the wide-angle optical system of Example 14.
  • FIG. 7 is an aberration diagram of a wide-angle optical system of Example 1.
  • FIG. 9 is an aberration diagram of a wide-angle optical system of Example 2.
  • FIG. 9 is an aberration diagram of a wide-angle optical system of Example 3.
  • FIG. 7 is an aberration diagram of a wide-angle optical system of Example 1.
  • FIG. 9 is an aberration diagram of a wide-angle optical system of Example 2.
  • FIG. 9 is an
  • FIG. 10 is an aberration diagram of a wide-angle optical system of Example 4.
  • FIG. 16 is an aberration diagram of a wide-angle optical system of Example 5.
  • FIG. 13 is an aberration diagram of a wide-angle optical system of Example 6.
  • FIG. 19 is an aberration diagram of a wide-angle optical system of Example 7.
  • FIG. 19 is an aberration diagram of a wide-angle optical system of Example 8.
  • FIG. 16 is an aberration diagram of a wide-angle optical system of Example 9.
  • FIG. 19 is an aberration diagram of a wide-angle optical system of Example 10.
  • FIG. 19 is an aberration diagram of a wide-angle optical system of Example 11.
  • 19 is an aberration diagram of a wide-angle optical system of Example 12.
  • FIG. 16 is an aberration diagram of a wide-angle optical system of Example 13.
  • 19 is an aberration diagram of a wide-angle optical system of Example 14. It is a figure which shows the schematic structure of an endoscope system. It is a figure which shows the structure of the optical system of an endoscope. It is a figure which shows the structure of the optical system of an image pickup apparatus. It is a figure which shows the schematic structure of the image pickup apparatus. It is a figure which shows the positional relationship of an object, an objective optical system, and an optical path dividing element.
  • the wide-angle optical system of the present embodiment is a wide-angle optical system having a lens component, and the lens component has a plurality of optical surfaces.
  • the two optical surfaces are in contact with air and at least one.
  • One optical surface is a curved surface, and the first lens group having a negative refractive force, the second lens group having a positive refractive force, and the third lens group having a positive refractive force are sequentially arranged from the object side.
  • the second lens group moves from the first position to the second position, and the first position is the first lens group and the second lens.
  • the three or more lens components include a first lens component and a second lens component, and the first lens component is a lens component located closest to the object in the third lens group.
  • the second lens component is a lens component located second from the object side in the third lens group, and the first lens component and the second lens component each have a positive refractive force, and the following conditional expression ( It is characterized by satisfying 1).
  • the wide-angle optical system of the present embodiment relates to, for example, a wide-angle optical system having an angle of view of more than 100 degrees.
  • a wide-angle optical system having an angle of view of more than 100 degrees In recent years, with the advent of high-resolution monitors and the like, high image quality has been required for image quality during observation.
  • the wide-angle optical system of this embodiment is a wide-angle optical system that can meet such requirements.
  • the wide-angle optical system of this embodiment is an optical system that uses an inner focus. Therefore, the actuator is arranged around the inner focus lens.
  • the outer diameter of the entire optical system is small even if the actuator is arranged around the optical system.
  • the wide-angle optical system of the present embodiment is an optical system having a wide angle of view, but the light beam height is suppressed to a low value in a long range in the central portion of the optical system.
  • the wide-angle optical system of this embodiment is a wide-angle optical system having a lens component.
  • the lens component has a plurality of optical surfaces. In the lens component, two optical surfaces are in contact with air and at least one optical surface is a curved surface.
  • the lens component includes, for example, a single lens and a junction lens.
  • the lens and the parallel flat plate may be joined.
  • the optical surface in contact with one air is the lens surface
  • the optical surface in contact with the other air is a flat surface.
  • a lens component in which a single lens and a parallel flat plate are joined is regarded as a single lens.
  • the lens component in which the bonded lens and the parallel flat plate are bonded is regarded as a bonded lens.
  • plano-convex lens and the plano-concave lens may be joined.
  • the joint surface is a curved surface
  • the optical surface in contact with air is a flat surface.
  • the surface of the lens component on the object side is the optical surface located on the object side of the two optical surfaces that come into contact with air.
  • the image-side surface of the lens component is the optical surface located on the image-side of the two optical surfaces that come into contact with air.
  • the cemented surface is located between the object-side surface and the image-side surface.
  • the wide-angle optical system of the present embodiment includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power in order from the object side. Be prepared.
  • the second lens group moves from the first position toward the second position. This movement is a movement in the direction in which the distance between the first lens group and the second lens group increases, and a movement in the direction in which the distance between the second lens group and the third lens group decreases.
  • the first position is the position where the distance between the first lens group and the second lens group is minimized.
  • the second lens group is located closest to the object in the moving range. In the first position, it is possible to focus on an object located at a distant point.
  • the second position is the position where the distance between the second lens group and the third lens group is minimized. At the second position, the second lens group is located closest to the image side in the moving range. At the second position, the object located at the perigee can be focused.
  • the third lens group has three or more lens components.
  • the three or more lens components include a first lens component and a second lens component.
  • the first lens component is the lens component located closest to the object side in the third lens group.
  • the second lens component is a lens component located second from the object side in the third lens group.
  • the first lens component and the second lens component each have a positive refractive power. Further, the wide-angle optical system of this embodiment has an image-side lens component. As a result, it is possible to realize a wide-angle optical system having a wide viewing angle, good correction of aberrations within the adjustment range of the focus position, and high resolution. Further, since the optical system has a high resolution, it is possible to obtain a clear image according to the number of pixels even when an image pickup device having a large number of pixels is used.
  • the second lens group moves to adjust the focus position.
  • An actuator is used to move the second lens group.
  • the actuator is arranged near the second lens group or near the third lens group. Therefore, it is necessary to provide a space for arranging the actuator near the second lens group or near the third lens group.
  • predetermined range a wide range from the object side of the second lens group to the vicinity of the center of the third lens group.
  • conditional expression (1) it is possible to reduce the ray height within a predetermined range. Therefore, the outer diameter of the second lens group and the outer diameter of a part of the third lens group can be reduced. As a result, even if the actuator is arranged, the increase in the outer diameter of the optical unit can be suppressed.
  • the combined focal length of the first lens component and the second lens component By reducing the combined focal length of the first lens component and the second lens component, it is possible to keep the ray height low within a predetermined range. However, since the combined refractive power of the first lens component and the second lens component is increased, the aberration is increased. Therefore, it is preferable to appropriately set the combined focal length of the first lens component and the second lens component.
  • conditional expression (1) If the value exceeds the upper limit of the conditional expression (1), it becomes difficult to keep the ray height low within a predetermined range. When the value is less than the lower limit of the conditional expression (1), it becomes difficult to correct the spherical aberration and the coma.
  • conditional expression (1′) is satisfied instead of conditional expression (1).
  • conditional expression (1′′) is satisfied instead of conditional expression (1).
  • the wide-angle optical system of this embodiment may have an image-side lens component.
  • the image-side lens component is the lens component located closest to the image side among the plurality of lens components.
  • the image-side lens component is a single lens, and may be the lens component located closest to the image side among the plurality of lens components.
  • the image side lens component is the lens component located closest to the image side in the third lens group.
  • two or more divergent surfaces are arranged between the surface on the most object side of the first lens component and the surface on the most image side of the second lens component.
  • the third lens group includes three or more cemented surfaces, and that each of the three or more cemented surfaces has a refractive index difference value of 0.25 or more. .. here,
  • the refractive index difference is the difference between the object side refractive index and the image side refractive index
  • the refractive index on the object side is the refractive index of the medium located on the object side of the junction surface and adjacent to the junction surface with respect to the d-line.
  • the refractive index on the image side is the refractive index of the medium located on the image side of the joint surface and adjacent to the joint surface with respect to the d-line. Is.
  • the third lens group has four or more lens components, and has two or more cemented surfaces having a refractive index difference value of 0.25 or more.
  • the refractive index difference is the difference between the object side refractive index and the image side refractive index
  • the refractive index on the object side is the refractive index of the medium located on the object side of the junction surface and adjacent to the junction surface with respect to the d-line.
  • the refractive index on the image side is the refractive index of the medium located on the image side of the joint surface and adjacent to the joint surface with respect to the d-line.
  • the third lens group include three, four, or five lens components having a positive refractive power.
  • the cemented lens located closest to the image side in the third lens group has a positive lens and a negative lens in order from the object side.
  • the single lens group is disposed on the most image side of the third lens group, and the single lens group includes two single lenses or three single lenses. It is preferable that the cemented lens is disposed adjacent to the single lens group on the object side of, and the cemented lens has a positive lens and a negative lens in order from the object side.
  • one single lens is arranged on the most image side of the third lens group, the cemented lens is arranged adjacent to the single lens on the object side of the single lens, and the cemented lens is It is preferable to have a positive lens and a negative lens in order from the object side.
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (2).
  • R31F is the radius of curvature of the surface of the first lens component on the object side
  • fL is the focal length of the wide-angle optical system at the first position, Is.
  • Conditional expression (2) is a conditional expression that regulates the convergence of the most object-side surface of the third lens group.
  • the first lens component is located closest to the object in the third lens group. Therefore, the conditional expression (2) is a conditional expression that defines the convergence of the object-side surface of the first lens component.
  • the object side surface of the first lens component is located closest to the object side in the third lens group.
  • conditional expression (2) If the value exceeds the upper limit of conditional expression (2), spherical aberration and coma are likely to occur or the manufacturing error sensitivity is likely to increase. Even if an image sensor having a large number of pixels is used, it becomes difficult to obtain a clear image corresponding to the number of pixels. In addition, it becomes difficult to secure a desired back focus. If the value is less than the lower limit value of the conditional expression (2), the ray height becomes high. Therefore, when the wide-angle optical system of the present embodiment is used for the optical system of the endoscope, the diameter of the insertion portion becomes large.
  • conditional expression (2′) is satisfied instead of conditional expression (2). 0.07 ⁇ fL/R31F ⁇ 0.85 (2') Further, it is more preferable that the following conditional expression (2′′) is satisfied instead of conditional expression (2). 0.08 ⁇ fL/R31F ⁇ 0.75 (2”)
  • An optical system that satisfies the conditional expression (2) has a value smaller than the upper limit value. The smaller the value in the optical system, the easier it is to correct aberrations in the optical system or the easier it is to secure a desired back focus.
  • a preferable upper limit value can be set.
  • the upper limit value is preferably set to any of 0.60252, 0.55, 0.50 and 0.45. By doing so, good aberration correction can be performed.
  • conditional expression (2) is from 0.10 to 0.40. If priority is given to ensuring a low ray height in a predetermined range, 0.35 to 0.65 can be said to be the best range of the conditional expression (2).
  • Conditional expression (3) is a conditional expression that defines the refractive power of the cemented surface included in the third lens group. In the predetermined range, it is necessary to keep the light beam diameter small. On the other hand, it is also important to secure a paraxial amount, for example, a focal length or a back focus.
  • the lens component located on the object side in the third lens group has strong convergence.
  • the third lens group includes N bonding surfaces S Ni .
  • the joint surface S Ni has strong divergence. Therefore, the conditional expression (3) can be said to be a conditional expression that defines the divergence of light rays on the image side in a predetermined range.
  • conditional expression (3) is satisfied instead of conditional expression (3).
  • conditional expression (3) is satisfied instead of conditional expression (3).
  • conditional expression (3) is satisfied instead of conditional expression (3).
  • conditional expression (3) is satisfied instead of conditional expression (3).
  • conditional expression (3) is better to satisfy the following conditional expression (3 ") instead of the conditional expression (3).
  • conditional expression (3) is -0.75 ⁇ fL ⁇ P SNi ⁇ -0.1 (3”)
  • a preferable lower limit value can be set.
  • the lower limit is preferably any of -0.71861, -0.65, -0.60, and -0.55. By doing so, good aberration correction can be performed.
  • conditional expression (2) or conditional expression (3) it is possible to easily secure a low ray height in a predetermined range or a desired paraxial amount. It is better if both conditional expression (2) and conditional expression (3) are satisfied.
  • conditional expression (2) and conditional expression (3) are satisfied, it becomes difficult to correct astigmatism. Therefore, in the third lens group, it is also necessary to satisfactorily correct astigmatism.
  • n SNi and n SNi' represent the refractive index. More specifically, n SNi is located on the object side of the cemented surface S Ni, a and the refractive index at the d-line of the adjacent medium and the joining surface S Ni, n SNi 'is on the image side of the cemented surface S Ni The refractive index for the d-line of the medium located and adjacent to the bonding surface S Ni .
  • the third lens group has a bonded lens located on the image side most among the bonded lenses and a positive single lens located on the image side most, and is located on the image side most. It is preferable that the cemented lens located has a positive refractive power, and the positive single lens satisfies the following conditional expression (5). -2 ⁇ (R 3R1 +R 3R2 )/(R 3R1 -R 3R2 ) ⁇ 2 (5) here, R 3R1 is the radius of curvature of the object-side surface of the positive single lens, R 3R2 is the radius of curvature of the image-side surface of the positive single lens, Is.
  • the third lens group has a cemented lens located closest to the image side (hereinafter, referred to as “combined lens A”).
  • the cemented lens corresponds to the cemented lens A.
  • the cemented lens A When the optical system is divided into two parts, the object side and the image side, with the center of the optical system as the boundary, the cemented lens A is located on the image side. When it is important to secure an appropriate back focus, it is preferable that the cemented lens A has a positive refractive power.
  • the lens component closest to the image side be a positive single lens and that conditional expression (5) be satisfied. By doing so, the generation of astigmatism can be suppressed.
  • conditional expression (5′) is satisfied instead of conditional expression (5).
  • conditional expression (5) -1.5 ⁇ (R 3R1 +R 3R2 )/(R 3R1 -R 3R2 ) ⁇ 1.0
  • conditional expression (5′′) is satisfied instead of conditional expression (5).
  • the third lens group includes the cemented lens that is located closest to the image side among the cemented lenses and the positive single lens that is located closest to the image side. It is preferable that the cemented lens positioned has a negative refractive power, and the positive single lens satisfies the following conditional expression (6). -5 ⁇ ( 'R 3R1 +' R 3R2) / ( 'R 3R1 -'R 3R2) ⁇ 1 (6) here, 'R 3R1 is the radius of curvature of the object-side surface of the positive single lens, 'R 3R2 is the radius of curvature of the image-side surface of the positive single lens, Is.
  • shortening the total length of the optical system is more important than securing an appropriate back focus.
  • a large positive refractive power is required on the object side of the optical system, and thus a large negative refractive power is required on the image side.
  • the cemented lens A is located closest to the image side among the cemented lenses. Therefore, by making the refractive power of the cemented lens A negative, it is possible to obtain a large negative refractive power on the image side. However, in this case, astigmatism is likely to occur or the exit angle of off-axis rays is likely to be large.
  • the lens component located closest to the image side be a positive single lens and that conditional expression (6) be satisfied.
  • the positive single lens is arranged behind the cemented lens having the negative refractive power. Therefore, the increase in astigmatism can be offset, or the increase in the exit angle of off-axis rays can be offset.
  • the off-axis ray height is high in the lens component of the third lens group that is located closest to the image side. Therefore, if a cemented lens is used for this lens component, the thickness of the lens component tends to increase. As a result, it becomes difficult to secure a sufficient back focus or reduce the total length of the optical system.
  • conditional expression (6′) may be satisfied. -4.7 ⁇ ( 'R 3R1 +' R 3R2) / ( 'R 3R1 -'R 3R2) ⁇ 0.8 (6') Further, it is more preferable that the following conditional expression (6′′) is satisfied instead of conditional expression (6). -4.5 ⁇ ( 'R 3R1 +' R 3R2) / ( 'R 3R1 -'R 3R2) ⁇ 0.6 (6 ")
  • the cemented surface of the third lens group which is located closest to the image side, satisfies the following conditional expression (7). -2.0 ⁇ f L /r SNr ⁇ 1.5 (7) here, r SNr is the radius of curvature near the optical axis of the cemented surface located closest to the image side, fL is the focal length of the wide-angle optical system at the first position, Is.
  • the divergence of light rays is stronger on the image side within the predetermined range. If the divergence of light rays is stronger, the height of off-axis rays becomes relatively higher than the height of on-axis rays.
  • Astigmatism tends to increase as the height of off-axis rays increases.
  • the cemented surface of the third lens group which is located closest to the image side, has a concentric shape with respect to the pupil of the optical system.
  • conditional expression (7) If the value exceeds the upper limit of the conditional expression (7), it becomes difficult to correct astigmatism. If the value is less than the lower limit of conditional expression (7), it becomes difficult to correct spherical aberration.
  • conditional expression (7′) is satisfied instead of conditional expression (7).
  • conditional expression (7) -1.2 ⁇ f L /r SNr ⁇ 1.0 (7')
  • conditional expression (7′′) is satisfied instead of conditional expression (7).
  • conditional expression (7) -0.9 ⁇ f L /r SNr ⁇ 0.6 (7”)
  • the optical system satisfying the conditional expression (7) has a value smaller than the upper limit value. The smaller the value in the optical system, the easier it becomes to correct astigmatism in that optical system.
  • a preferable upper limit value can be set.
  • the upper limit value is preferably set to any of -0.32190, -0.35, -0.40 and -0.45. By doing so, astigmatism can be favorably corrected.
  • the positive lens is located on the object side of the cemented surface and the negative lens is located on the image side of the cemented surface.
  • an appropriate medium may be used as the medium used for the lens.
  • spherical aberration, coma, and astigmatism can be satisfactorily corrected, and chromatic aberration can be satisfactorily corrected by selecting an appropriate glass material for the lens.
  • the thickness of each lens is larger than the focal length of the optical system.
  • the medium of the lens component located on the object side and the medium of the lens component located on the image side can be appropriately set. As a result, it is possible to achieve both the correction of axial chromatic aberration and the correction of lateral chromatic aberration.
  • the third lens group has a plurality of positive lenses
  • the plurality of positive lenses has a first positive lens and a second positive lens
  • the first positive lens is Of the plurality of positive lenses
  • the second positive lens is the second positive lens positioned from the object side among the plurality of positive lenses. It is preferable to satisfy the expression (8). -70 ⁇ 31P - ⁇ 32P ⁇ 20 (8) here, ⁇ 31P is the Abbe number of the first positive lens, ⁇ 32P is the Abbe number of the second positive lens, Is.
  • Conditional expression (8) defines the relationship between the Abbe number of the first positive lens and the Abbe number of the second positive lens. When the conditional expression (8) is satisfied, it becomes easy to satisfy the design conditions of various optical systems in a state where the correction of the axial chromatic aberration and the correction of the lateral chromatic aberration are made compatible.
  • conditional expression (8′) is satisfied instead of conditional expression (8).
  • conditional expression (8′′) is satisfied instead of conditional expression (8).
  • An optical system that satisfies the conditional expression (8) has a value smaller than the upper limit value. The smaller the value in an optical system, the easier it is for the optical system to correct axial chromatic aberration and chromatic aberration of magnification.
  • conditional expression (8) a preferable upper limit value can be set.
  • the upper limit is preferably 0, -5.0, -10.0 or -15.0. By doing so, axial chromatic aberration and lateral chromatic aberration can be favorably corrected. Further, it can be said that ⁇ 60.0 to ⁇ 20.0 is the best range of the conditional expression (8).
  • the third lens group has a plurality of positive lenses, and the plurality of positive lenses include a first positive lens, a second positive lens, and a third positive lens.
  • the first positive lens is the positive lens located closest to the object side among the plurality of positive lenses
  • the second positive lens is the positive lens located second from the object side among the plurality of positive lenses.
  • the third positive lens is a positive lens located third from the object side among the plurality of positive lenses, and preferably satisfies the following conditional expression (9).
  • ⁇ 31P is the Abbe number of the first positive lens
  • ⁇ 32P is the Abbe number of the second positive lens
  • ⁇ 33P is the Abbe number of the third positive lens, Is.
  • Conditional expression (9) is a conditional expression that defines the relationship between the average value of the Abbe numbers of the first positive lens and the second positive lens, and the Abbe number of the third positive lens.
  • conditional expression (9′) is satisfied instead of conditional expression (9).
  • conditional expression (9′′) is satisfied instead of conditional expression (9).
  • a preferable lower limit value can be set.
  • the lower limit value is preferably set to any of -22.99, -15.0, -10.0, and -5.0. By doing so, axial chromatic aberration and lateral chromatic aberration can be favorably corrected. Further, it can be said that 0.0 to 40.0 is the best range of the conditional expression (9).
  • the third lens group has a plurality of negative lenses
  • the plurality of negative lenses has a first negative lens and a second negative lens
  • the first negative lens is Of the plurality of negative lenses
  • the second negative lens is the second negative lens located from the object side among the plurality of negative lenses. It is preferable to satisfy the formula (10). ⁇ 40 ⁇ 31N ⁇ 32N ⁇ 50 (10) here, ⁇ 31N is the Abbe number of the first negative lens, ⁇ 32N is the Abbe number of the second negative lens, Is.
  • Conditional expression (10) defines the relationship between the Abbe number of the first negative lens and the Abbe number of the second negative lens. When the conditional expression (10) is satisfied, it becomes easy to satisfy the design conditions of various optical systems in a state where the correction of the axial chromatic aberration and the correction of the lateral chromatic aberration are compatible with each other.
  • conditional expression (10′) is satisfied instead of conditional expression (10).
  • conditional expression (10′′) is satisfied instead of conditional expression (10).
  • conditional expression (10) a preferred lower limit value can be set.
  • the lower limit value is preferably set to any of -15.34, -12.0, -8.0, and -4.0. By doing so, axial chromatic aberration and lateral chromatic aberration can be favorably corrected. Further, it can be said that 0.0 to 20.0 is the best range of the conditional expression (10).
  • the third lens group includes one negative lens
  • the following conditional expression may be satisfied. -40 ⁇ N ⁇ 50 here, ⁇ N is the Abbe number of the negative lens, Is.
  • the third lens group is fixed when adjusting the focal position.
  • the manufacturing error sensitivity tends to be high with respect to aberration variation. If the manufacturing error sensitivity is high, the aberration varies greatly even if the manufacturing error is small. Therefore, it is preferable that the third lens group is fixed when adjusting the focal position.
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (11). -60 ⁇ (R21F+R21R)/(R21F-R21R) ⁇ 1 (11) here, R21F is the radius of curvature of the object-side surface of the given lens component, R21R is the radius of curvature of the image-side surface of the given lens component,
  • the predetermined lens component is a lens component located closest to the object side in the second lens group, Is.
  • the value exceeds the upper limit value of the conditional expression (11)
  • the fluctuation of spherical aberration or the fluctuation of astigmatism during focus position adjustment tends to be large.
  • the value is less than the lower limit value of the conditional expression (11)
  • deterioration of coma aberration and deterioration of astigmatism due to decentering are likely to occur.
  • the eccentricity is generated by the movement of the second lens group.
  • conditional expression (11) the following conditional expression (11′) may be satisfied. -40 ⁇ (R21F+R21R)/(R21F-R21R) ⁇ -1 (11') Further, it is more preferable that the following conditional expression (11′′) is satisfied instead of conditional expression (11). -30 ⁇ (R21F+R21R)/(R21F-R21R) ⁇ -2 (11")
  • An optical system that satisfies the conditional expression (11) has a value smaller than the upper limit value.
  • a preferable upper limit value can be set.
  • the upper limit is preferably 5.33106, 1.0, 0.0, or -1.0. Further, it can be said that the range from -15.0 to -2.0 is the best range of the conditional expression (11).
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (12). 0.2 ⁇ D21/fL ⁇ 3.0 (12) here, D21 is the distance on the optical axis between the most object-side surface and the most image-side surface of the second lens group, fL is the focal length of the wide-angle optical system at the first position, Is.
  • One of the controls is to suppress the fluctuation of spherical aberration or the fluctuation of astigmatism when adjusting the focus position.
  • the other control is suppression of deterioration of coma due to eccentricity or suppression of deterioration of astigmatism. Eccentricity is caused by the movement of the moving group when adjusting the focal position.
  • conditional expression (12) instead of conditional expression (12), the following conditional expression (12′) may be satisfied. 0.3 ⁇ D21 / fL ⁇ 2.5 (12') Further, it is better to satisfy the following conditional expression (12 ”) instead of the conditional expression (12). 0.4 ⁇ D21/fL ⁇ 2.0 (12”)
  • An optical system that satisfies the conditional expression (12) has a value larger than the lower limit value. The larger the value in the optical system, the easier it is for the optical system to achieve both of the above two suppressions.
  • a preferable lower limit value can be set.
  • the lower limit is preferably any of 0.54857, 0.56, 0.58 and 0.60. Further, it can be said that the range from 0.60 to 1.5 is the best range of the conditional expression (12).
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (13). 1.01 ⁇ 2F ⁇ 1.35 (13) here, ⁇ 2F is the magnification of the second lens group at the first position, Is.
  • focus sensitivity the focus movement amount with respect to the movement amount of the second lens group becomes too high.
  • stop accuracy the accuracy when stopping the second lens group
  • the focus sensitivity tends to be low. In this case, since the amount of movement of the second lens group increases, it is necessary to widen the space for movement. Therefore, the optical unit becomes large.
  • conditional expression (13′) is satisfied instead of conditional expression (13). 1.03 ⁇ 2F ⁇ 1.30 (13') Further, it is more preferable that the following conditional expression (13′′) is satisfied instead of conditional expression (13). 1.05 ⁇ 2F ⁇ 1.25 (13”)
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (14). 1.01 ⁇ 2N/ ⁇ 2F ⁇ 1.15 (14) here, ⁇ 2F is the magnification of the second lens group at the first position, ⁇ 2N is the magnification of the second lens group at the second position, Is.
  • the focal length at the far point becomes short, so a wide angle of view can be secured at the far point. Also, since the focal length at the near point becomes long, a high magnification can be obtained at the near point.
  • An optical system that has a wide angle of view at the far point and high magnification at the near point is suitable for the optical system of an endoscope. Therefore, the wide-angle optical system of this embodiment can be used as an optical system of an endoscope.
  • the optical system of the endoscope has a wide angle of view in the far point observation and a high magnification in the near point observation.
  • the optical system of the endoscope can be focused with high accuracy.
  • conditional expression (14) If the value exceeds the upper limit of conditional expression (14), the focus sensitivity on the near point side becomes high. In this case, the stopping accuracy on the near point side is high. Therefore, it becomes difficult to focus with high accuracy.
  • the value is less than the lower limit value of the conditional expression (14), it becomes difficult to secure a wide angle of view in the far point observation and a high magnification in the near point observation. Therefore, it is not suitable for the optical system of an endoscope.
  • conditional expression (14) instead of the conditional expression (14), the following conditional expression (14') may be satisfied. 1.02 ⁇ 2N / ⁇ 2F ⁇ 1.12 (14') Further, it is better to satisfy the following conditional expression (14 ") instead of the conditional expression (14). 1.03 ⁇ 2N / ⁇ 2F ⁇ 1.09 (14 ")
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (15). 0.08 ⁇ (1- ⁇ 2F 2 ) ⁇ 3F 2 ⁇ 0.45 (15) here, ⁇ 2F is the magnification of the second lens group at the first position, ⁇ 3F is the magnification of the third lens group at the first position, Is.
  • the optical unit becomes large.
  • conditional expression (15′) may be satisfied. 0.11 ⁇ (1- ⁇ 2F 2 ) ⁇ ⁇ 3F 2 ⁇ 0.35 (15') Further, it is more preferable that the following conditional expression (15′′) is satisfied instead of conditional expression (15). 0.13 ⁇ (1- ⁇ 2F 2 ) x ⁇ 3F 2 ⁇ 0.30 (15 ")
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (16). 0.15 ⁇ (1- ⁇ 2N 2 ) ⁇ 3N 2 ⁇ 0.55 (16) here, ⁇ 2N is the magnification of the second lens group at the second position, ⁇ 3N is the magnification of the third lens group at the second position, Is.
  • the focus sensitivity on the near point side becomes too high. In this case, the stopping accuracy on the near point side is high. If the value is less than the lower limit value of the conditional expression (16), the focus sensitivity on the near point side tends to be low. In this case, since the amount of movement of the second lens group increases, it is necessary to widen the space for movement.
  • conditional expression (16) may be satisfied. 0.20 ⁇ (1- ⁇ 2N 2 ) ⁇ 3N ⁇ 0.45 (16') Further, it is more preferable that the following conditional expression (16′′) is satisfied instead of conditional expression (16). 0.22 ⁇ (1- ⁇ 2N 2 ) ⁇ 3N ⁇ 0.40 (16”)
  • the second lens group has only a positive lens.
  • the first lens group has only a negative lens, and the negative lens has a larger Abbe number than the most object-side positive lens of the third lens group.
  • the outer diameter of the first lens group tends to be large.
  • the negative refractive power of the first lens group should be increased. If the negative refracting power is increased, off-axis aberrations, particularly astigmatism, are likely to occur.
  • the negative refracting power of the first lens group can be shared by the plurality of negative lenses.
  • the negative refractive power of the first lens group is increased, it is possible to excellently correct off-axis aberrations, especially astigmatism. Therefore, it is better to place the negative lens component on the most object side.
  • the first lens group is not intentionally provided with a lens for correcting chromatic aberration.
  • the first lens group has only a single lens.
  • lateral chromatic aberration is likely to occur in the first lens group.
  • lateral chromatic aberration generated in the first lens group can be corrected by the third lens group.
  • the Abbe number of the negative lens of the first lens group is made larger than the Abbe number of the positive lens on the most object side of the third lens group.
  • the positive lens closest to the object in the third lens group is located at the closest distance to the negative lens in the first lens group. Therefore, it becomes possible to correct the lateral chromatic aberration without deteriorating the axial chromatic aberration. If the Abbe number of the negative lens in the first lens group is smaller than the Abbe number of the positive lens closest to the object in the third lens group, it becomes difficult to simultaneously correct axial chromatic aberration and lateral chromatic aberration.
  • the first lens group has a plurality of negative lens components, and the plurality of negative lens components have a first negative lens component and a second negative lens component
  • the 2 negative lens component is the second negative lens component positioned from the object side among the plurality of negative lens components, and preferably satisfies the following conditional expression (17). -2.0 ⁇ fL/R12F a ⁇ 0.5 (17) here, R12F a is the radius of curvature of the object-side surface of the second negative lens component, fL is the focal length of the wide-angle optical system at the first position, Is.
  • the wide-angle optical system of this embodiment has a wide angle of view, it can be used as an endoscope optical system.
  • the surface located closest to the object side is a flat surface or a surface convex toward the object side due to the securing of the viewing angle, the restriction of aberration correction, and the restriction of cleaning. Therefore, in the second negative lens component from the object side, it is preferable that the object side surface has a strong divergent surface.
  • conditional expression (17) If the value exceeds the upper limit of conditional expression (17), the ray height in the first lens group tends to be high. If the value is less than the lower limit of conditional expression (17), astigmatism is likely to occur.
  • the second negative lens component is, for example, a negative single lens located second from the object side or a negative junction lens located second from the object side.
  • the cemented lens may be formed by a positive lens and a negative lens.
  • the positive lens may be located on the object side or the negative lens may be located on the object side.
  • conditional expression (17) instead of the conditional expression (17), the following conditional expression (17') may be satisfied. -0.8 ⁇ fL/R12F a ⁇ 0.2 (17') It is more preferable that the following conditional expression (17′′) is satisfied instead of conditional expression (18). -0.6 ⁇ fL/R12F a ⁇ 0.0 (17”)
  • the first lens group has the fourth lens component and the fifth lens component, and the fourth lens component is the lens located closest to the object side in the first lens group.
  • the fifth lens component is a lens component located second from the object side in the first lens group, the fourth lens component is a negative lens component, and the fifth lens component is a cemented lens. Therefore, it is preferable that the following conditional expression (18) is satisfied. -1.0 ⁇ fL / R12F b ⁇ 0.5 (18) here, R12F b is the radius of curvature of the object-side surface of the fifth lens component, fL is the focal length of the wide-angle optical system at the first position, Is.
  • the surface closest to the object side is a flat surface or a convex surface on the object side. Therefore, in the third negative lens from the object side, it is preferable that the object side surface has a strong divergent surface.
  • conditional expression (18) If the value exceeds the upper limit of conditional expression (18), the ray height in the first lens group tends to be high. If the value is less than the lower limit of conditional expression (18), astigmatism is likely to occur.
  • conditional expression (18') may be satisfied.
  • conditional expression (18') may be satisfied.
  • conditional expression (18') may be satisfied.
  • conditional expression (18 ) instead of the conditional expression (18).
  • conditional expression (18 ) instead of the conditional expression (18).
  • the first lens group has the fourth lens component, the fifth lens component, and the sixth lens component, and the fourth lens component is the most in the first lens group.
  • the fifth lens component is a lens component located on the object side
  • the fifth lens component is a lens component located second from the object side in the first lens group
  • the sixth lens component is a lens component located from the object side in the first lens group.
  • the fourth lens component is the third lens component
  • the fourth lens component is the negative lens component
  • the fifth lens component is the negative lens component
  • the sixth lens component is the positive lens component. It is preferable to satisfy (19).
  • R12F c is the radius of curvature of the object-side surface of the fifth lens component
  • fL is the focal length of the wide-angle optical system at the first position, Is.
  • the surface closest to the object side is a flat surface or a convex surface on the object side. Therefore, in the second negative lens from the object side, it is preferable that the object side surface has a strong divergent surface.
  • conditional expression (19) If the value exceeds the upper limit of conditional expression (19), the ray height in the first lens group tends to be high. If the value is less than the lower limit of conditional expression (19), astigmatism is likely to occur.
  • conditional expression (19) the following conditional expression (19′) may be satisfied. -0.8 ⁇ fL / R12F c ⁇ 0.2 (19 ') Further, it is more preferable that the following conditional expression (19′′) is satisfied instead of conditional expression (19). -0.6 ⁇ fL / R12F c ⁇ 0.0 (19 ")
  • the first lens group has the fourth lens component, the fifth lens component, and the sixth lens component, and the fourth lens component is the most in the first lens group.
  • the fifth lens component is a lens component located on the object side
  • the fifth lens component is a lens component located second from the object side in the first lens group
  • the sixth lens component is a lens component located from the object side in the first lens group.
  • the fourth lens component is the third lens component
  • the fourth lens component is a negative lens component
  • the fifth lens component is a lens component having a smaller absolute value of refractive power than the fourth lens component
  • the sixth lens component is Is composed of a bonded lens, and preferably satisfies the following conditional equation (20).
  • R12F d is the radius of curvature of the surface of the sixth lens component on the object side
  • fL is the focal length of the wide-angle optical system at the first position, Is.
  • the surface closest to the object side is a flat surface or a convex surface on the object side. Therefore, in the third negative lens from the object side, it is preferable that the object side surface has a strong divergent surface.
  • conditional expression (20) If the value exceeds the upper limit of conditional expression (20), the ray height in the first lens group tends to be high. If the value is less than the lower limit of conditional expression (20), astigmatism is likely to occur.
  • conditional expression (20′) is satisfied instead of conditional expression (20).
  • conditional expression (20′′) is satisfied instead of conditional expression (20).
  • the first lens group has the fourth lens component and the fifth lens component
  • the fourth lens component is the lens located closest to the object side in the first lens group.
  • the fifth lens component is a lens component located second from the object side in the first lens group, and preferably satisfies the following conditional expression (21). -1.0 ⁇ fL/fL12 ⁇ 0.4 (21) here, fL12 is the focal length of the fifth lens component, fL is the focal length of the wide-angle optical system at the first position, Is.
  • conditional expression (21′) is satisfied instead of conditional expression (21). -0.7 ⁇ fL/fL12 ⁇ 0.2 (21') Further, it is more preferable that the following conditional expression (21′′) is satisfied instead of conditional expression (21). -0.6 ⁇ fL/fL12 ⁇ 0.16 (21”)
  • the wide-angle optical system of the present embodiment has an image-side lens component, and the image-side lens component is the lens component that is located closest to the image side among the plurality of lens components. It is preferable to be satisfied.
  • an optical element with zero refracting power is often placed between the image-side lens component and the image plane.
  • the optical element having zero refractive power is, for example, an optical filter or a prism.
  • Conditional expressions (5) and (6) specify the radius of curvature of the surface of the positive single lens located closest to the image side.
  • the radius of curvature of the surface is defined for the image-side lens component.
  • the image side lens component is a lens component located closest to the image side. Therefore, it can be said that the conditional expression (22) is substantially a conditional expression that limits the conditional expressions (5) and (6).
  • the wide-angle optical system of the present embodiment has an image-side lens component and an optical element having a refractive power of zero, and the image-side lens component is the lens component located closest to the image side among the plurality of lens components. It is preferable that the optical element is located on the image side of the image-side lens component, and the image-side lens component and the optical element are cemented together.
  • an optical element with zero refracting power is often arranged between the image-side lens component and the image plane.
  • the optical element having zero refractive power is, for example, an optical filter or a prism.
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (23).
  • y max is the maximum image height
  • ⁇ max is the angle of view corresponding to the maximum image height
  • fL is the focal length of the wide-angle optical system at the first position, Is.
  • the wide-angle optical system of this embodiment is an optical system having a high resolution and a small outer diameter by arranging an actuator required for focus position adjustment. Therefore, the wide-angle optical system of this embodiment can be used for an optical system of an endoscope.
  • the wide-angle optical system of this embodiment satisfies the conditional expression (24).
  • conditional expression (24) it is possible to reduce the outer diameter of the optical unit while ensuring a wide angle of view. Therefore, the wide-angle optical system of this embodiment can be used as an optical system of an endoscope.
  • the wide-angle optical system of the present embodiment preferably satisfies the following conditional expression (24).
  • ER2 ⁇ 4 ⁇ fL/F EX (24) here, ER2 is the effective radius of the most image-side surface of the second lens component, F EX is the effective F value at the first position, fL is the focal length of the wide-angle optical system at the first position, Is.
  • the conditional expression (24) is a conditional expression regarding the ray height. If the conditional expression (24) is satisfied, the wide-angle optical system of this embodiment can be used as an optical system of an endoscope. The effective radius is determined by the height of the outermost ray on the surface.
  • the image pickup apparatus of the present embodiment has an optical system and an image pickup element arranged on an image plane, the image pickup element has an image pickup plane, and an image formed on the image pickup plane by the optical system is converted into an electrical signal.
  • the optical system is the wide-angle optical system described above.
  • the image pickup apparatus of the embodiment even if an image pickup device having a large number of pixels is used, a clear image corresponding to the number of pixels can be obtained.
  • (A) is a sectional view at a far point
  • (b) is a sectional view at a near point.
  • the first lens group is G1
  • the second lens group is G2
  • the third lens group is G3
  • the aperture stop is S
  • the filter is F
  • the cover glass is C
  • the prism is P
  • the image surface is indicated by I. There is.
  • the aberration diagram of each embodiment shows the aberration diagram at the far point and the aberration diagram at the near point in this order.
  • (a) shows spherical aberration (SA)
  • (b) shows astigmatism (AS)
  • (c) shows chromatic aberration of magnification (CC)
  • (d) shows distortion (DT).
  • SA spherical aberration
  • AS astigmatism
  • CC chromatic aberration of magnification
  • DT distortion
  • DT distortion aberration
  • the wide-angle optical system of Example 1 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a biconvex positive lens L3.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L5, a negative meniscus lens L6 having a convex surface directed toward the image side, a biconvex positive lens L7, a biconcave negative lens L8, and a negative meniscus surface convex on the object side. It has a lens L9, a biconvex positive lens L10, a biconvex positive lens L11, and a negative meniscus lens L12 with a convex surface facing the image side.
  • the biconvex positive lens L5 and the negative meniscus lens L6 are cemented together.
  • the biconvex positive lens L11 and the negative meniscus lens L12 are joined.
  • the filter F is arranged in the first lens group G1.
  • An aperture stop S is arranged between the second lens group G2 and the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 2 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a positive meniscus lens L5 having a convex surface directed toward the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a biconvex positive lens L7, and a positive meniscus lens having a convex surface directed toward the image side. It has an L8, a biconcave negative lens L9, a positive meniscus lens L10 with a convex surface facing the image side, and a biconvex positive lens L11.
  • the negative meniscus lens L6 and the biconvex positive lens L7 are joined.
  • the positive meniscus lens L8 and the biconcave negative lens L9 are joined.
  • the filter F is arranged in the first lens group G1.
  • An aperture stop S is arranged between the second lens group G2 and the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a positive meniscus lens L5 having a convex surface directed toward the object side, a biconcave negative lens L6, a biconvex positive lens L7, a positive meniscus lens L8 having a convex surface directed toward the image side, and a biconcave negative lens. It has a lens L9, a biconvex positive lens L10, and a positive meniscus lens L11 having a convex surface facing the object side.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented together.
  • the positive meniscus lens L8 and the biconcave negative lens L9 are joined.
  • the filter F is arranged in the first lens group G1.
  • An aperture stop S is arranged between the second lens group G2 and the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 4 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. It has G3 and.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a positive meniscus lens L5 having a convex surface directed toward the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a biconvex positive lens L7, a biconvex positive lens L8, and a biconcave negative lens. It has a lens L9, a biconvex positive lens L10, and a positive meniscus lens L11 with a convex surface facing the object side.
  • the negative meniscus lens L6 and the biconvex positive lens L7 are joined.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are joined.
  • the filter F is arranged in the first lens group G1.
  • An aperture stop S is arranged between the second lens group G2 and the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 5 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a positive meniscus lens L5 with a convex surface facing the object side, a biconvex positive lens L6, a negative meniscus lens L7 with a convex surface facing the image side, a biconvex positive lens L8, and both concave and negative. It has a lens L9, a positive meniscus lens L10 having a convex surface facing the image side, a biconvex positive lens L11, and a plano-convex positive lens L12.
  • the biconvex positive lens L6 and the negative meniscus lens L7 are joined.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are joined.
  • a filter F is arranged between the first lens group G1 and the second lens group G2.
  • the aperture stop S is arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L12 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 6 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the image side, and a positive meniscus lens L3 having a convex surface facing the image side.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L5, a negative meniscus lens L6 with a convex surface facing the image side, a biconvex positive lens L7, a negative meniscus lens L8 with a convex surface facing the object side, and an object side.
  • the biconvex positive lens L5 and the negative meniscus lens L6 are cemented together.
  • the negative meniscus lens L8 and the positive meniscus lens L9 are cemented.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are joined.
  • the filter F is arranged in the first lens group G1.
  • the aperture stop S is arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L14 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 7 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side. Both concave negative lenses L2 and positive meniscus lens L3 are joined.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a negative meniscus lens L5 having a convex surface directed toward the object side, a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface directed toward the object side, a biconvex positive lens L8, and a biconcave negative lens. It has a lens L9, a biconvex positive lens L10, a biconvex positive lens L11, and a negative meniscus lens L12 with a convex surface facing the object side.
  • the negative meniscus lens L5 and the biconvex positive lens L6 are joined.
  • the negative meniscus lens L7 and the biconvex positive lens L8 are joined.
  • the biconcave negative lens L9 and the biconvex positive lens L10 are joined.
  • the filter F is arranged in the first lens group G1.
  • the aperture stop S is arranged in the third lens group G3.
  • a cover glass C and a prism P are arranged on the image side of the third lens group G3.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 8 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a plano-convex positive lens L2, a biconcave negative lens L3, and a biconvex positive lens L4.
  • the biconcave negative lens L3 and the biconvex positive lens L4 are joined.
  • the second lens group G2 has a positive meniscus lens L5 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface directed toward the image side, a negative meniscus lens L8 having a convex surface directed toward the object side, and a positive meniscus lens having a convex surface directed toward the object side.
  • L9 a biconvex positive lens L10, a negative meniscus lens L11 having a convex surface facing the image side, and a plano-convex positive lens L12.
  • the biconvex positive lens L6 and the negative meniscus lens L7 are joined.
  • the negative meniscus lens L8 and the positive meniscus lens L9 are cemented.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are joined.
  • An aperture stop S and a filter F are arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L12 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 9 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a positive meniscus lens L2 having a convex surface directed toward the image side, a biconcave negative lens L3, and a biconvex positive lens L4.
  • the biconcave negative lens L3 and the biconvex positive lens L4 are joined.
  • the second lens group G2 has a positive meniscus lens L5 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a biconcave negative lens L7, a negative meniscus lens L8 having a convex surface on the object side, a positive meniscus lens L9 having a convex surface on the object side, and a biconvex positive lens. It has a lens L10, a negative meniscus lens L11 having a convex surface facing the image side, and a plano-convex positive lens L12.
  • the biconvex positive lens L6 and the biconcave negative lens L7 are joined.
  • the negative meniscus lens L8 and the positive meniscus lens L9 are cemented.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are joined.
  • An aperture stop S and a filter F are arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L12 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 10 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface directed toward the object side. Both concave negative lenses L2 and positive meniscus lens L3 are joined.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a positive meniscus lens L5 having a convex surface directed toward the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a biconvex positive lens L7, and a negative meniscus lens having a convex surface directed toward the object side. It has L8, a biconvex positive lens L9, and a plano-convex positive lens L10.
  • the negative meniscus lens L6 and the biconvex positive lens L7 are joined.
  • the negative meniscus lens L8 and the biconvex positive lens L9 are cemented together.
  • the filter F is arranged in the first lens group G1.
  • the aperture stop S is arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L10 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 11 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a biconvex positive lens L3.
  • the biconcave negative lens L2 and the biconvex positive lens L3 are cemented together.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a negative meniscus lens L5 having a convex surface directed to the object side, a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface directed to the object side, a biconvex positive lens L8, and an object side. It has a negative meniscus lens L9 having a convex surface, a biconvex positive lens L10, and a plano-convex positive lens L11.
  • the negative meniscus lens L5 and the plano-convex positive lens L6 are joined.
  • the negative meniscus lens L7 and the biconvex positive lens L8 are joined.
  • the negative meniscus lens L9 and the biconvex positive lens L10 are joined.
  • An aperture stop S and a filter F are arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L11 and the cover glass C are joined.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 12 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 has a plano-concave negative lens L1.
  • the second lens group G2 has a positive meniscus lens L2 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L3, a negative meniscus lens L4 having a convex surface directed toward the image side, a biconvex positive lens L5, a biconcave negative lens L6, a biconvex positive lens L7, and a biconvex lens. It has a positive lens L8.
  • the biconvex positive lens L3 and the negative meniscus lens L4 are joined.
  • the biconvex positive lens L5, the biconcave negative lens L6, and the biconvex positive lens L7 are cemented together.
  • a filter F is arranged between the first lens group G1 and the second lens group G2.
  • the aperture stop S is arranged in the third lens group G3.
  • a prism P and a cover glass C are arranged on the image side of the third lens group G3.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 13 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a biconvex positive lens L3.
  • the biconcave negative lens L2 and the biconvex positive lens L3 are cemented together.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a biconvex positive lens L5, a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface directed toward the image side, and a plano-convex positive lens L8.
  • the biconvex positive lens L6 and the negative meniscus lens L7 are cemented together.
  • An aperture stop S is arranged between the second lens group G2 and the third lens group G3.
  • the filter F is arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L8 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the wide-angle optical system of Example 14 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3 and.
  • the first lens group G1 includes a plano-concave negative lens L1, a biconcave negative lens L2, and a biconvex positive lens L3.
  • the biconcave negative lens L2 and the biconvex positive lens L3 are cemented together.
  • the second lens group G2 has a positive meniscus lens L4 having a convex surface directed toward the object side.
  • the third lens group G3 includes a plano-convex positive lens L5, a negative meniscus lens L6 having a convex surface directed toward the object side, a plano-convex positive lens L7, a biconvex positive lens L8, and a negative meniscus surface convex on the image side. It has a lens L9 and a plano-convex regular lens L10.
  • the negative meniscus lens L6 and the plano-convex positive lens L7 are cemented together.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented together.
  • An aperture stop S and a filter F are arranged in the third lens group G3.
  • the cover glass C is arranged on the image side of the third lens group G3.
  • the plano-convex positive lens L10 and the cover glass C are cemented together.
  • the second lens group G2 moves when adjusting the focus position. During the adjustment from the far point to the near point, the second lens group G2 moves to the image side.
  • the numerical data of each of the above examples are shown below.
  • r is the radius of curvature of each lens surface
  • d is the distance between the lens surfaces
  • nd is the d-line refractive index of each lens
  • ⁇ d is the Abbe number of each lens
  • * mark is an aspherical surface.
  • the diaphragm is a brightness diaphragm.
  • OBJ is the object distance
  • FL is the focal length of the entire system
  • MG is the magnification of the entire system
  • NAI is the numerical aperture
  • FNO is the F number
  • FIY and FIM are the image height
  • LTL is the total length of the optical system
  • FB is the back focus.
  • the back focus is the distance from the most image-side lens surface to the paraxial image surface, which is expressed in air.
  • the total length is the distance from the lens surface on the most object side to the lens surface on the image side with back focus added.
  • ⁇ 1 is the magnification of the first lens group
  • ⁇ 2 is the magnification of the second lens group
  • ⁇ 3 is the magnification of the third lens group.
  • f1, f2 are focal lengths of each lens group.
  • the aspherical shape has the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficient is A4, A6, A8, A10, A12, and so on. expressed.
  • z (y 2 /r)/[1+ ⁇ 1-(1+k)(y/r) 2 ⁇ 1/2 ] +A4y 4 +A6y 6 +A8y 8 +A10y 10 +A12y 12 +...
  • E ⁇ n (n is an integer) indicates 10 to the n-th power.
  • Numerical Example 1 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 21.0000 1. 1 ⁇ 0.3700 1.88300 40.76 1.598 2 1.3365 0.7000 1. 1.054 3 ⁇ 0.4000 1.51633 64.14 1.020 4 ⁇ 0.2000 1. 0.970 5 -2.4149 0.2932 1.88300 40.76 0.971 6 11.5245 0.0905 1.1.030 7 9.8202 0.6960 1.78472 25.68 1.061 8 -3.2386 d8 1.1.110 9 1.7471 0.5591 1.49700 81.54 1.033 10 1.8893 d10 1. 0.904 11 (Aperture) ⁇ 0.1000 1.
  • Numerical Example 2 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 21.0000 1. 1 ⁇ 0.3700 1.88300 40.76 1.881 2 1.8089 0.6000 1. 1.306 3 ⁇ 0.4000 1.51633 64.14 1.293 4 ⁇ 0.1633 1. 1.209 5 -7.7140 0.2984 1.88300 40.76 1.185 6 3.9041 0.0965 1. 1.135 7 2.4546 0.8446 1.92286 18.90 1.157 8 3.1566 d8 1. 1.013 9 2.2403 1.5268 1.49700 81.54 0.981 10 3.3915 d10 1.0.697 11 (Aperture) ⁇ 0.0783 1.
  • Numerical Example 3 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 17.0000 1. 1 20.0000 0.3700 1.88300 40.76 2.170 2 1.8355 0.6000 1. 1.438 3 ⁇ 0.4000 1.51633 64.14 1.482 4 ⁇ 0.3651 1. 1.367 5 -6.0073 0.7484 1.88300 40.76 1.260 6 3.8110 0.5388 1. 1.141 7 2.9102 0.4410 1.92286 18.90 1.179 8 4.0476 d8 1. 1.118 9 2.4287 1.7001 1.49700 81.54 1.088 10 3.4681 d10 1.0.763 11 (Aperture) ⁇ 0.0944 1.
  • Numerical Example 4 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 17.0000 1. 1 18.6062 0.3700 1.88300 40.76 1.550 2 1.1634 0.6000 1. 0.954 3 ⁇ 0.4000 1.51633 64.14 0.921 4 ⁇ 0.2106 1.0.839 5 -2.9012 0.2987 1.88300 40.76 0.816 6 6.6566 0.0969 1. 0.825 7 2.2651 0.4862 1.67270 32.10 0.857 8 7.9 728 d8 1. 0.830 9 2.1192 0.9855 1.49700 81.54 0.806 10 2.7662 d10 1.0.651 11 (Aperture) ⁇ 0.0820 1.
  • Numerical Example 6 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 23.0000 1. 1 23.3351 0.3000 1.88300 40.76 1.615 2 1.3180 1.0918 1. 1.065 3 -2.3725 0.3000 1.72916 54.68 0.965 4 -14.0022 0.0758 1. 0.981 5 ⁇ 0.4000 1.51633 64.14 0.983 6 ⁇ 0.1000 1. 0.985 7 -7.2570 0.5313 1.84666 23.78 0.986 8 -4.6300 d8 1. 1.019 9 1.5542 0.4753 1.49700 81.61 0.973 10 1.7441 d10 1.
  • Numerical Example 7 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 13.0000 1. 1 ⁇ 0.2500 1.88300 40.76 1.404 2 * 0.9721 0.5998 1. 0.965 3 ⁇ 0.4000 1.49400 75.01 0.945 4 ⁇ 0.1025 1. 0.891 5 -7.4090 0.3000 1.81600 46.62 0.881 6 1.0886 0.7980 1.80518 25.42 0.840 7 76.4205 d7 1. 0.820 8* 2.2208 0.4521 1.49700 81.54 0.786 9 * 2.9006 d9 1.
  • Numerical Example 8 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 11.5000 1. 1 ⁇ 0.2500 1.88300 40.76 1.436 2* 0.8505 0.6529 1. 0.953 3 13.6043 0.5102 1.62004 36.26 0.919 4 -4.6021 0.2426 1. 0.852 5 -1.5808 0.2500 1.80400 46.57 0.809 6 3.0801 0.6314 1.80518 25.42 0.852 7 -3.5286 d7 1. 0.880 8* 1.7682 0.5533 1.51633 64.14 0.833 9 2.1000 d9 1.
  • Numerical Example 9 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 12.5000 1. 1 ⁇ 0.2500 1.88300 40.76 1.290 2* 0.8666 0.5899 1. 0.874 3 -67.8910 0.4204 1.62004 36.26 0.850 4 -11.6480 0.2250 1. 0.805 5 -1.9029 0.2500 1.80400 46.57 0.786 6 2.7315 0.6194 1.80518 25.42 0.830 7 -3.0429 d7 1.0.860 8* 1.7618 0.4866 1.51633 64.14 0.805 9 2.1000 d9 1.
  • Numerical Example 10 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 12.5000 1. 1 ⁇ 0.2500 1.88300 40.76 1.337 2* 0.8692 0.5880 1. 0.900 3 ⁇ 0.4000 1.49400 75.01 0.887 4 ⁇ 0.0878 1. 0.848 5 -9.0618 0.2500 1.81600 46.62 0.841 6 1.0427 0.7558 1.80518 25.42 0.815 7 17.0221 d7 1. 0.801 8* 3.0758 0.4338 1.80610 40.92 0.798 9 3.6580 d9 1. 0.740 10* 2.1247 0.6051 1.72916 54.68 0.650 11* 9.8770 0.1000 1.
  • Numerical Example 11 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 10.0000 1. 1 ⁇ 0.2500 1.88300 40.76 1.380 2* 1.0031 0.9611 1. 0.964 3 -3.9828 0.2500 1.81600 46.62 0.840 4 1.2000 0.7325 1.69895 30.13 0.803 5 -11.8723 d5 1. 0.801 6* 1.7685 0.4535 1.49700 81.54 0.781 7* 2.1000 d7 1. 0.710 8 3.0533 0.3263 1.80400 46.58 0.650 9 1.0971 0.5783 1.67003 47.23 0.576 10 -10.8438 0.1000 1. 0.544 12 (Aperture) ⁇ 0.1000 1.
  • Numerical Example 12 Unit mm Surface data Surface number r d nd ⁇ d ER Paraboloid ⁇ 15.0000 1. 1 ⁇ 0.2500 1.88300 40.76 1.270 2* 0.7856 0.6500 1. 0.838 3 ⁇ 0.4000 1.49400 75.01 0.824 4 ⁇ d4 1. 0.800 5 * 1.9309 0.4597 1.49700 81.54 0.766 6 2.8631 d6 1. 0.685 7 8.2193 0.5563 1.72825 28.46 0.492 8-0.8058 0.3000 1.81600 46.62 0.453 9 -2.4732 0.1000 1. 0.430 10 (Aperture) ⁇ 0.6013 1.
  • Numerical Example 13 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 12.0000 1. 1 ⁇ 0.2500 1.88300 40.76 0.959 2* 0.5867 0.7292 1. 0.604 3 -2.9628 0.2500 1.77250 49.60 0.580 4 1.8141 0.6400 1.84666 23.78 0.598 5 -3.6936 d5 1.0.611 6 1.4089 0.5984 1.65160 58.55 0.568 7 1.5806 d7 1.0.446 8 (Aperture) ⁇ 0.1000 1.
  • Numerical Example 14 Unit mm Surface data Surface number r d nd ⁇ d ER Object ⁇ 12.0000 1. 1 ⁇ 0.3000 1.88300 40.76 0.956 2 * 0.6059 0.5726 1. 0.590 3 -2.2791 0.3000 1.77250 49.60 0.568 4 2.2000 0.6000 1.84666 23.78 0.588 5 -5.1712 d5 1. 0.611 6 * 1.1177 0.5146 1.51633 64.14 0.582 7 * 1.2614 d7 1. 0.492 8 2.4878 0.3800 1.72916 54.68 0.408 9 ⁇ 0.1000 1. 0.378 10 (Aperture) ⁇ 0.1000 1.
  • Example 1 Example 2
  • Example 3 (1) f3L12 / fL 1.294826951 1.804565353 2.308091394 (2)fL/R31F 0.65378829 0.23622396 0.56554193 (3) fL ⁇ P SNi -0.4785357 -0.4654942 -0.3424523 (5) (R 3R1 +R 3R2 ) /(R 3R1 -R 3R2 ) --- (6) ('R 3R1 +'R 3R2 ) / ( 'R 3R1 -'R 3R2) -0.3120846 -0.918874 -4.0103185 (7)fL/r SNr -0.7720844 -0.7041468 -0.6792642 (8) ⁇ 31P - ⁇ 32P 0 -11.67 -23.38 (9) ⁇ 33P -( ⁇ 33P -( ⁇ 33P -( ⁇ 33P -( ⁇ 33P -( ⁇ 33P -( ⁇
  • FIG. 29 is an example of an imaging device.
  • the imaging device is an endoscope system.
  • FIG. 29 is a diagram showing a schematic configuration of the endoscope system.
  • the endoscope system 300 is an observation system using an electronic endoscope.
  • the endoscope system 300 includes an electronic endoscope 310 and an image processing device 320.
  • the electronic endoscope 310 includes a scope unit 310a and a connection cord unit 310b.
  • a display unit 330 is connected to the image processing device 320.
  • the scope unit 310a is roughly divided into an operation unit 340 and an insertion unit 341.
  • the insertion portion 341 is elongated and can be inserted into the body cavity of the patient. Further, the insertion portion 341 is made of a flexible member. The observer can perform various operations using an angle knob or the like provided on the operation unit 340.
  • connection cord unit 310b extends from the operation unit 340.
  • the connection cord portion 310b includes a universal cord 350.
  • the universal cord 350 is connected to the image processing device 320 via the connector 360.
  • the universal code 350 is used to send and receive various signals.
  • Various signals include a power supply voltage signal and a CCD drive signal. These signals are transmitted from the power supply device or the video processor to the scope unit 310a. Further, there are video signals as various signals. This signal is transmitted from the scope unit 310a to the video processor.
  • Peripheral devices such as a VTR deck and a video printer (not shown) can be connected to the video processor in the image processing device 320.
  • the video processor performs signal processing on the video signal from the scope unit 310a.
  • An endoscopic image is displayed on the display screen of the display unit 330 based on the video signal.
  • FIG. 30 is a diagram showing the configuration of the optical system of the endoscope.
  • the optical system 400 has an illumination unit and an observation unit.
  • the illumination unit has a light guide 401 and an illumination lens 402.
  • the light guide 401 transmits the illumination light to the tip portion 342 of the insertion portion 341.
  • the transmitted illumination light is emitted from the tip surface of the light guide 401.
  • the illumination lens 402 is arranged at the tip portion 342.
  • the illumination lens 402 is arranged at a position facing the tip surface of the light guide 401.
  • the illumination light passes through the illumination lens 402 and exits from the illumination window 403.
  • observation region 404 the observation target region inside the subject
  • An observation window 405 is provided on the tip portion 342 next to the illumination window 403.
  • the light from the observation site 404 passes through the observation window 405 and enters the tip portion 342.
  • An observation unit is provided behind the observation window 405.
  • the observation unit has a wide-angle optical system 406 and an image sensor 407.
  • the wide-angle optical system 406 for example, the wide-angle optical system of Example 1 is used.
  • the reflected light from the observation region 404 passes through the wide-angle optical system 406 and enters the image sensor 407.
  • An image (optical image) of the observation site 404 is formed on the imaging surface of the imaging element 407.
  • the image of the observation region 404 is photoelectrically converted by the image sensor 407, and the image of the observation region 404 is obtained.
  • the image of the observed region 404 is displayed on the display unit 330. In this way, the observer can observe the image of the observation region 404.
  • the image plane has a curved shape.
  • the image sensor 407 has a curved light-receiving surface (imaging surface) that is the same as the shape of the image surface. By using the image pickup element 407, the image quality of a captured image can be improved.
  • FIG. 31 is a diagram showing the configuration of the optical system of the imaging device.
  • the optical system has an objective optical system OBJ, a cover glass C, and a prism P.
  • the cover glass C is arranged between the objective optical system OBJ and the prism P.
  • the wide-angle optical system of Example 7 is used for the objective optical system OBJ.
  • An optical filter may be arranged instead of the cover glass C. Alternatively, the cover glass C may not be arranged.
  • the prism P has a prism P1 and a prism P2.
  • the prisms P1 and P2 are both triangular prisms.
  • An optical path splitting element is formed by the prism P1 and the prism P2.
  • the prism P1 has an optical surface S1, an optical surface S2, and an optical surface S3.
  • the prism P2 has an optical surface S3, an optical surface S4, and an optical surface S5.
  • the prism P1 is joined to the prism P2.
  • a joint surface is formed by the prism P1 and the prism P2.
  • the optical surface S3 is a cemented surface.
  • imaging light The light emitted from the objective optical system OBJ (hereinafter referred to as "imaging light") passes through the cover glass C and is incident on the optical surface S1. Since the optical surface S1 is a transmitting surface, the imaging light is transmitted through the optical surface S1.
  • the imaging light is incident on the optical surface S3.
  • the optical surface S3 is arranged so that the normal to the surface is 45 degrees with respect to the optical axis.
  • the imaging light incident on the optical surface S3 is the light transmitted through the optical surface S3 (hereinafter referred to as "imaging light 1") and the light reflected by the optical surface S3 (hereinafter referred to as "imaging light 2").
  • imaging light 1 the light transmitted through the optical surface S3
  • imaging light 2 the light reflected by the optical surface S3
  • the image-forming light 1 and the image-forming light 2 travel in mutually different directions.
  • the optical surface S3 forms the first optical path and the second optical path. In this way, the optical surface S3 functions as an optical path dividing surface.
  • the first optical path is formed on the extension of the optical path of the objective optical system OBJ.
  • the second optical path is formed so as to intersect with the first optical path. In FIG. 31, the second optical path is orthogonal to the first optical path.
  • the optical surface S3, the optical surface S4, and the optical surface S5 are located in the first optical path.
  • the imaging light 1 that has passed through the optical surface S3 enters the optical surface S4.
  • the optical surface S4 is a reflecting surface.
  • the imaging light 1 is reflected by the optical surface S4 and enters the optical surface S5.
  • the optical surface S5 is a transmission surface.
  • the imaging light 1 passes through the optical surface S5 and is focused on the image plane I near the optical surface S5. An optical image is formed on the image plane I by the imaging light 1.
  • the optical surface S3, the optical surface S2, the optical surface S3, and the optical surface S5 are located in the second optical path.
  • the imaging light 2 reflected by the optical surface S3 is incident on the optical surface S2.
  • the optical surface S2 is a reflecting surface.
  • the imaging light 2 is reflected by the optical surface S2 and is incident on the optical surface S3.
  • On the optical surface S3, the imaging light 2 is divided into light that passes through the optical surface S3 and light that is reflected by the optical surface S3.
  • the imaging light 2 transmitted through the optical surface S3 is incident on the optical surface S5.
  • the imaging light 2 passes through the optical surface S5 and is focused on the image plane I near the optical surface S5.
  • An optical image formed by the imaging light 2 is formed on the image plane I.
  • optical path length in the first optical path and the optical path length in the second optical path are equal, two in-focus optical images are formed at different positions in the same plane.
  • the two optical images are optical images when the same object is in focus. Therefore, the position of the object plane in one optical image is the same as the position of the object plane in the other optical image.
  • the optical path length in the first optical path and the optical path length in the second optical path are different, two in-focus optical images are formed at different positions in the same plane.
  • the two optical images are optical images when different objects are in focus. Therefore, the position of the object plane in one optical image is different from the position of the object plane in the other optical image.
  • the optical path length in the first optical path is shorter than the optical path length in the second optical path.
  • the object surface of the optical image formed by the imaging light 1 is located farther than the object surface formed by the imaging light 2.
  • object distance two object surfaces having different distances from the objective optical system OBJ (hereinafter referred to as "object distance") are focused on each other. Even if the two object planes have different object distances, two optical images are formed at different positions in the same plane.
  • the objective optical system OBJ has a section in focus (hereinafter referred to as “focus section”).
  • the focus section is a section represented by the object distance, and corresponds to the depth of field of the objective optical system OBJ. In the focus section, a focused optical image is formed regardless of where the object plane is located.
  • optical surface S3 for example, a half mirror surface or a polarized beam splitter surface can be used.
  • the optical surface S3 is a half mirror surface
  • half of the amount of imaged light is reflected by the optical surface S3, and the other half is transmitted through the optical surface S3. Therefore, the amount of light of the imaging light 2 is half the amount of the imaging light.
  • the imaging light 2 is reflected by the optical surface S2.
  • the imaging light 2 reflected by the optical surface S2 passes through the optical surface S3. On the optical surface S3, only half of the light amount of the imaging light 2 can be transmitted.
  • the optical surface S3 is a polarized beam splitter surface
  • a depolarizing plate or a wave plate may be used instead of the cover glass C.
  • the optical surface S2 is not a reflecting surface but a transmitting surface. Then, the reflecting surface is arranged at a position away from the optical surface S2. Further, a ⁇ /4 wave plate is arranged between the optical surface S2 and the reflecting surface.
  • P-polarized light is polarized light with the amplitude of light in the plane of the paper
  • S-polarized light is polarized light with the amplitude in the plane orthogonal to the paper. If the P-polarized light passes through the optical surface S3 and the S-polarized light is reflected by the optical surface S3, the P-polarized light corresponds to the imaging light 1 and the S-polarized light corresponds to the imaging light 2.
  • the imaging light passes through the depolarizing plate. Therefore, in the image-forming light emitted from the depolarizer, the ratio of the P-polarized light and the S-polarized light contained in the image-forming light is approximately half.
  • the imaging light that has entered the optical surface S3 is split into P-polarized light and S-polarized light on the optical surface S3. Therefore, the amount of light of the imaging light 2 is half the amount of the imaging light.
  • the image-forming light 2 traveling from the optical surface S3 to the optical surface S2 is S-polarized light.
  • the optical surface S2 is a reflecting surface
  • the image-forming light 2 is reflected toward the optical surface S3 while being S-polarized. Since the image-forming light 2 traveling from the optical surface S2 to the optical surface S3 is S-polarized, the image-forming light 2 cannot pass through the optical surface S3.
  • the optical surface S2 is a transmission surface
  • the image formation light 2 is reflected by the reflection surface.
  • a ⁇ /4 wave plate is arranged between the optical surface S2 and the reflecting surface. Since the imaging light 2 reciprocates between the optical surface S2 and the reflecting surface, the polarization direction of the imaging light 2 is rotated by 90 degrees. Therefore, S polarized light can be converted into P polarized light. As a result, the imaged light traveling from the optical surface S2 to the optical surface S3 becomes P-polarized light.
  • the imaging light 2 converted into P-polarized light reaches the optical surface S3. Therefore, the imaging light 2 is not reflected by the optical surface S3. That is, almost all of the light amount of the imaging light 2 can be transmitted through the optical surface S3.
  • FIG. 32 is a diagram showing a schematic configuration of the imaging device.
  • (A) is a figure which shows the whole structure
  • (B) is a figure which shows the direction of an object.
  • the imaging device 500 includes an objective optical system 501, a depolarizing plate 502, a first prism 503, a second prism 504, a third prism 505, and a wave plate 506. It has a mirror 507, an image sensor 508, an image processing unit 511, and an image display device 512.
  • the first prism 503, the second prism 504, and the third prism 505 form an optical path splitting element.
  • the objective optical system 501 forms an image of an object.
  • a depolarizer 502 is arranged between the objective optical system 501 and the first prism 503.
  • the first prism 503 and the second prism 504 are joined.
  • a joint surface 509 is formed by the first prism 503 and the second prism 504. Light incident on the joint surface 509 is divided into light reflected by the joint surface 509 and light transmitted through the joint surface 509.
  • a polarization beam splitter surface can be used as the bonding surface 509.
  • P-polarized light is transmitted and S-polarized light is reflected at the joint surface 509.
  • the P-polarized light that has passed through the cemented surface 509 is emitted from the second prism 504.
  • the P-polarized light enters the third prism 505 and reaches the optical surface 510.
  • the optical surface 510 is, for example, a mirror surface. Therefore, the P-polarized light is reflected by the optical surface 510.
  • the P-polarized light reflected by the optical surface 510 is emitted from the third prism 505 and enters the image sensor 508.
  • the imaging element 508 has a first region 513 and a second region 514.
  • the P-polarized light reflected by the optical surface 510 enters the first region 513. Therefore, an optical image is formed in the first region 513.
  • the S-polarized light reflected by the cemented surface 509 is emitted from the first prism 503.
  • the S-polarized light enters the wave plate 506.
  • a ⁇ /4 wave plate is used as the wave plate 506. Therefore, the S-polarized light is converted into circularly polarized light by the wave plate 506. As a result, circularly polarized light is emitted from the wave plate 506.
  • Circularly polarized light is reflected by the mirror 507 and is incident on the wave plate 506 again.
  • the light emitted from the wave plate 506 enters the first prism 503 and reaches the bonding surface 509.
  • the circularly polarized light incident on the wave plate 506 is converted into P polarized light by the wave plate 506. Since the light reaching the joint surface 509 is P-polarized light, it passes through the joint surface 509.
  • the P-polarized light that has passed through the cemented surface 509 exits from the second prism 504 and enters the image sensor 508.
  • the image sensor 508 has the first region 513 and the second region 514.
  • the P-polarized light that has passed through the bonding surface 509 enters the second region 514. As a result, an optical image is formed in the second area 514.
  • a rolling shutter system is adopted for the image sensor 508, for example.
  • image information is read line by line.
  • the image sensor 508 is connected to the image processing unit 511.
  • the read image information is input to the image processing unit 511.
  • the image processing unit 511 has a second image processing unit 511b.
  • the second image processing unit 511b can select an in-focus image as a display image by using the image information read line by line.
  • the images of each line selected by the second image processing unit 511b are combined and displayed on the image display device 512.
  • the image processing unit 511 will be described.
  • the image processing unit 511 is provided in, for example, a central processing unit (not shown).
  • the image processing unit 511 includes a first image processing unit 511a, a second image processing unit 511b, a third image processing unit 511c, a fourth image processing unit 511d, and a fifth image processing unit 511e. There is.
  • first image the orientation of the image acquired from the first region 513
  • second image the orientation of the image acquired from the second region 514
  • the orientation of the first image and the orientation of the second image are the orientation of the optical image formed in the first region 513 (hereinafter referred to as “first optical image”) and the orientation of the optical image formed in the second region 514, respectively. It is determined by the orientation (hereinafter referred to as "second optical image”).
  • FIG. 33 is a diagram showing the positional relationship between the object, the objective optical system, and the optical path splitting element. For example, the case of observing the letter "F" as shown in FIG. 33 will be described. The orientation of the first optical image and the orientation of the second optical image are as shown in FIG. 32(B).
  • the first optical image and the second optical image have a mirror image relationship with each other. Further, assuming that the up-down direction of the paper surface is the upright direction, the first optical image and the second optical image are rotated by 90 degrees from the upright direction.
  • the first image processing unit 511a rotates the first image by 90 degrees around the center point of the first region 513.
  • the second image is also rotated 90 degrees around the center point of the region 514. Then, for the second image, the image is inverted to correct the mirror image.
  • the processing by the first image processing unit 511a ends, the processing by the second image processing unit 511b is executed. However, if necessary, at least one of the third image processing unit 511c, the fourth image processing unit 511d, and the fifth image processing unit 511e is processed before the processing by the second image processing unit 511b is executed. You can run it.
  • the third image processing unit 511c is configured so that the white balance of the first image and the white balance of the second image can be adjusted.
  • the fourth image processing unit 511d is configured such that the center position of the first image and the center position of the second image are movable or selectable.
  • the fifth image processing unit 511e is configured such that the display range of the first image and the display range of the second image can be adjusted. Further, in the fifth image processing unit 511e, the display magnification may be adjustable instead of the display range.
  • the second image processing unit 511b is configured to compare the first image and the second image and select the image in the focused area as the display image.
  • the second image processing unit 511b includes, for example, a high pass filter, a comparator, and a switch.
  • a high pass filter is connected to each of the first region 513 and the second region 514.
  • the high-pass filter extracts high-pass components from each of the first image and the second image.
  • the outputs of the two high pass filters are input to the comparator.
  • the high-pass components extracted by the two high-pass filters are compared by the comparator.
  • the comparison result is input to the switch.
  • a first area 513 and a second area 514 are further connected to the switch. Therefore, the comparison result, the signal of the first image, and the signal of the second image are input to the switch.
  • the switch selects a region in the first image with many high frequency components and a region in the second image with many high frequency components.
  • the image display device 512 has a display area.
  • the image selected by the second image processing unit 511b is displayed in the display area.
  • the image display device 512 may have a display area for displaying the first image and the second image.
  • the invention according to the present invention is a wide-angle optical system in which various aberrations are satisfactorily corrected and the outer diameter of the moving lens and the outer diameter of the lens located near the moving lens group are sufficiently small. It is suitable for the imaging device used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

諸収差が良好に補正され、移動するレンズの外径と、移動するレンズ群の近くに位置するレンズの外径が、十分に小さい広角光学系及びそれを用いた撮像装置を提供する。 広角光学系は、レンズ成分を有する広角光学系であって、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を備え、遠点から近点に焦点位置調節するときに、第2レンズ群G2が、第1の位置から第2の位置に向かって移動し、第3レンズ群G3は3つ以上のレンズ成分を有し、3つ以上のレンズ成分は、第1レンズ成分と、第2レンズ成分と、を有し、第1レンズ成分と第2レンズ成分は、それぞれ正の屈折力を有し、以下の条件式(1)を満足する。 0.8<f3L12/fL<6.0 (1)

Description

広角光学系及びそれを備えた撮像装置
 本発明は、広角光学系及びそれを備えた撮像装置に関する。
 広い画角を有する光学系として、内視鏡用対物光学系が知られている。内視鏡用対物光学系には、画角が100度を超えるような広角光学系が用いられている。
 従来の内視鏡では、画素数が少ない撮像素子が用いられていた。そのため、内視鏡用対物光学系には、固定焦点の光学系が用いられていた。固定焦点の光学系を用いても、観察する必要のある被写体距離の範囲(観察深度)を、被写界深度でカバーすることができていた。
 しかし、近年では、観察像質を向上するために、画素数が多い撮像素子が用いられるようになってきた、画素数が多い撮像素子が用いられる内視鏡では、光学系にも高い分解能が要求される。
 光学系に高い分解能を持たせると、被写界深度が、必要な観察深度よりも狭くなる。そのため、必要な観察深度を、ピントの合った状態で観察することが困難になる。このようなことから、光学系に焦点位置を調節する機能を持たせる必要が出てきた。
 焦点位置が調節できる内視鏡用対物光学系が、知られている。この内視鏡用対物光学系では、焦点位置の調整に、インナーフォーカスが用いられている。インナーフォーカスを行うために、光学系の周囲にアクチュエーターが設けられている。
 光学ユニットは、例えば、光学系とアクチュエーターとを含む。内視鏡では、光学ユニットを密封する必要がある。また、画角が140°以上であることや、アクチュエーターのサイズや出力に制限がある。そのため、焦点位置調節では、光学系を移動させることが困難である。軽量で省スペースなインナーフォーカスが必要である。
 インナーフォーカスを用いた内視鏡用対物光学系が、特許文献1と特許文献2に開示されている。
国際公開第2014/129089号 国際公開第2016/067838号
 しかしながら、特許文献1の内視鏡用対物光学系と、特許文献2の内視鏡用対物光学系では、移動するレンズの外径と、移動するレンズ群の近くに位置するレンズの外径が、十分に小さいとは言えない。そのため、光学ユニットの更なる小型化が難しい。
 また、レンズの移動では、レンズの偏心やレンズ面の倒れを少なくすることが望ましい。そのためには、アクチュエーターの光軸方向へのサイズを小さくする必要がある。しかしながら、特許文献1の内視鏡用対物光学系と、特許文献2の内視鏡用対物光学系では、アクチュエーターの小型化が難しい。
 本発明は、このような課題に鑑みてなされたものであって、諸収差が良好に補正され、移動するレンズの外径と、移動するレンズ群の近くに位置するレンズの外径が、十分に小さい広角光学系及びそれ用いた撮像装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る広角光学系は、
 レンズ成分を有する広角光学系であって、
 レンズ成分は、複数の光学面を有し、
 レンズ成分では、2つの光学面が空気と接触し、且つ、少なくとも1つの光学面が曲面であり、
 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、
 遠点から近点に焦点位置調節するときに、第2レンズ群が、第1の位置から第2の位置に向かって移動し、第1の位置は、第1レンズ群と第2レンズ群との間隔が最小となる位置であり、第2の位置は、第2レンズ群と第3レンズ群との間隔が最小となる位置であり、
 第3レンズ群は3つ以上のレンズ成分を有し、
 3つ以上のレンズ成分は、第1レンズ成分と、第2レンズ成分と、を有し、第1レンズ成分は、第3レンズ群において、最も物体側に位置するレンズ成分であり、第2レンズ成分は、第3レンズ群において、物体側から2番目に位置するレンズ成分であり、
 第1レンズ成分と第2レンズ成分は、それぞれ正の屈折力を有し、
 以下の条件式(1)を満足することを特徴とする。
 0.8<f3L12/fL<6.0   (1)
 ここで、
 f3L12は、第1レンズ成分と第2レンズ成分の合成焦点距離、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 また、本発明の撮像装置は、
 光学系と、像面に配置された撮像素子と、を有し、
 撮像素子は撮像面を有し、且つ光学系によって撮像面上に形成された像を電気信号に変換し、
 光学系が上述の広角光学系であることを特徴とする。
 本発明によれば、諸収差が良好に補正され、移動するレンズの外径と、移動するレンズ群の近くに位置するレンズの外径が、十分に小さい広角光学系及びそれ用いた撮像装置を提供することができる。
実施例1の広角光学系のレンズ断面図である。 実施例2の広角光学系のレンズ断面図である。 実施例3の広角光学系のレンズ断面図である。 実施例4の広角光学系のレンズ断面図である。 実施例5の広角光学系のレンズ断面図である。 実施例6の広角光学系のレンズ断面図である。 実施例7の広角光学系のレンズ断面図である。 実施例8の広角光学系のレンズ断面図である。 実施例9の広角光学系のレンズ断面図である。 実施例10の広角光学系のレンズ断面図である。 実施例11の広角光学系のレンズ断面図である。 実施例12の広角光学系のレンズ断面図である。 実施例13の広角光学系のレンズ断面図である。 実施例14の広角光学系のレンズ断面図である。 実施例1の広角光学系の収差図である。 実施例2の広角光学系の収差図である。 実施例3の広角光学系の収差図である。 実施例4の広角光学系の収差図である。 実施例5の広角光学系の収差図である。 実施例6の広角光学系の収差図である。 実施例7の広角光学系の収差図である。 実施例8の広角光学系の収差図である。 実施例9の広角光学系の収差図である。 実施例10の広角光学系の収差図である。 実施例11の広角光学系の収差図である。 実施例12の広角光学系の収差図である。 実施例13の広角光学系の収差図である。 実施例14の広角光学系の収差図である。 内視鏡システムの概略構成を示す図である。 内視鏡の光学系の構成を示す図である。 撮像装置の光学系の構成を示す図である。 撮像装置の概略構成を示す図である。 物体、対物光学系、及び光路分割素子の位置関係を示す図である。
 実施例の説明に先立ち、本発明のある態様にかかる実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
 本実施形態の広角光学系は、レンズ成分を有する広角光学系であって、レンズ成分は、複数の光学面を有し、レンズ成分では、2つの光学面が空気と接触し、且つ、少なくとも1つの光学面が曲面であり、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、遠点から近点に焦点位置調節するときに、第2レンズ群が、第1の位置から第2の位置に向かって移動し、第1の位置は、第1レンズ群と第2レンズ群との間隔が最小となる位置であり、第2の位置は、第2レンズ群と第3レンズ群との間隔が最小となる位置であり、第3レンズ群は3つ以上のレンズ成分を有し、3つ以上のレンズ成分は、第1レンズ成分と、第2レンズ成分と、を有し、第1レンズ成分は、第3レンズ群において、最も物体側に位置するレンズ成分であり、第2レンズ成分は、第3レンズ群において、物体側から2番目に位置するレンズ成分であり、第1レンズ成分と第2レンズ成分は、それぞれ正の屈折力を有し、以下の条件式(1)を満足することを特徴とする。
 0.8<f3L12/fL<6.0   (1)
 ここで、
 f3L12は、第1レンズ成分と第2レンズ成分の合成焦点距離、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 本実施形態の広角光学系は、例えば、画角が100度を超える広角光学系に関するものである。近年、高解像度モニターなどの登場により、観察時の画質に、高い画質が求められるようになってきた。本実施形態の広角光学系は、このような要求に対応できる広角光学系である。
 また、本実施形態の広角光学系は、インナーフォーカスを用いた光学系である。そのため、インナーフォーカスレンズの周囲に、アクチュエーターが配置される。本実施形態の広角光学系では、光学系の周囲にアクチュエーターが配置されても、光学系全体の外径が小さい。本実施形態の広角光学系は、広い画角を有する光学系でありながらも、光学系の中央部の長い範囲で光線高が低く抑えられた光学系である。
 本実施形態の広角光学系は、レンズ成分を有する広角光学系である。レンズ成分は、複数の光学面を有する。レンズ成分では、2つの光学面が空気と接触し、少なくとも1つの光学面が曲面である。レンズ成分には、例えば、単レンズと、接合レンズと、が含まれる。
 また、レンズ成分では、レンズと平行平板とが接合されていても良い。この場合、一方の空気と接触する光学面はレンズ面で、他方の空気と接触する光学面は平面である。単レンズと平行平板とが接合されているレンズ成分は、単レンズと見なす。接合レンズと平行平板とが接合されているレンズ成分は、接合レンズと見なす。
 また、平凸レンズと平凹レンズとが接合されていても良い。この場合、接合面が曲面で、空気と接触する光学面は平面である。
 レンズ成分の物体側の面は、空気と接触する2つの光学面のうち、物体側に位置する光学面である。レンズ成分の像側の面は、空気と接触する2つの光学面のうち、像側に位置する光学面である。レンズ成分が接合レンズの場合、物体側の面と像側の面の間に接合面が位置している。
 本実施形態の広角光学系は、物体側から順に負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備える。遠点から近点に焦点位置調節するときに、第2レンズ群が、第1の位置から第2の位置に向かって移動する。この移動は、第1レンズ群と第2レンズ群との間隔が広がる方向の移動で、かつ、第2レンズ群と第3レンズ群との間隔が縮まる方向の移動である。
 第1の位置は、第1レンズ群と第2レンズ群との間隔が最小となる位置である。第1の位置では、第2レンズ群は、移動範囲のなかで最も物体側に位置している。第1の位置では、遠点に位置する物体に合焦することができる。
 第2の位置は、第2レンズ群と第3レンズ群との間隔が最小となる位置である。第2の位置では、第2レンズ群は、移動範囲のなかで最も像側に位置している。第2の位置では、近点に位置する物体に合焦することができる。
 第3レンズ群は、3つ以上のレンズ成分を有する。3つ以上のレンズ成分は、第1レンズ成分と、第2レンズ成分と、を有する。第1レンズ成分は、第3レンズ群において、最も物体側に位置するレンズ成分である。第2レンズ成分は、第3レンズ群において、物体側から2番目に位置するレンズ成分である。
 本実施形態の広角光学系では、第1レンズ成分と第2レンズ成分は、それぞれ正の屈折力を有する。また、本実施形態の広角光学系は、像側レンズ成分を有する。これにより、視野角が大きく、焦点位置の調整範囲内での収差が良好に補正され、高い分解能を有する広角光学系を実現することができる。また、光学系が高い分解能を有することで、画素数が多い撮像素子を使用しても、その画素数に応じた鮮明な画像を取得することができる。
 第2レンズ群は、焦点位置調節のために移動する。第2レンズ群の移動には、アクチュエーターが用いられる。アクチュエーターは、第2レンズ群の近傍、または第3レンズ群の近傍に配置される。よって、第2レンズ群の近傍、または第3レンズ群の近傍に、アクチュエーターを配置するための空間を設ける必要がある。
 第3レンズ群に、正の屈折力を有するレンズ成分を2つ配置することで、第2レンズ群の物体側から第3レンズ群の中央付近までの広い範囲(以下、「所定の範囲」という)で、光線高を低くすることができる。
 条件式(1)を満足することにより、所定の範囲で、光線高を低くすることができる。そのため、第2レンズ群の外径と、第3レンズ群の一部の外径とを、小さくすることができる。その結果、アクチュエーターを配置しても、光学ユニットの外径の増大を抑えることができる。
 第1レンズ成分と第2レンズ成分の合成焦点距離を小さくすることにより、所定の範囲で光線高を低く抑えることができる。しかしながら、第1レンズ成分と第2レンズ成分の合成屈折力が大きくなるので、収差が大きくなる。よって、第1レンズ成分と第2レンズ成分の合成焦点距離を適切に設定することが好ましい。
 値が条件式(1)の上限値を上回る場合、所定の範囲で光線高を低く抑えることが困難になる。値が条件式(1)の下限値を下回る場合、球面収差の補正とコマ収差の補正が困難になる。
 条件式(1)に代えて、以下の条件式(1’)を満足すると良い。
 1.0<f3L12/fL<5.2   (1’)
 また、条件式(1)に代えて、以下の条件式(1”)を満足するとなお良い。
 1.2<f3L12/fL<4.8   (1”)
 本実施形態の広角光学系は、像側レンズ成分を有していても良い。像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分である。像側レンズ成分は単レンズであって、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であっても良い。
 本実施形態の広角光学系が第1レンズ群、第2レンズ群、及び3レンズ群からなる場合、像側レンズ成分は、第3レンズ群において、最も像側に位置するレンズ成分である。
 本実施形態の広角光学系では、第1レンズ成分の最も物体側の面から第2レンズ成分の最も像側の面までの間に、2面以上の発散面が配置されていることが好ましい。
 このようにすることで、所定の範囲で光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系では、第3レンズ群は3つ以上の接合面を含み、かつ、3つ以上の接合面のそれぞれで、屈折率差の値が0.25以上であることが好ましい。
 ここで、
 屈折率差は、物体側屈折率と像側屈折率との差、
 物体側屈折率は、接合面の物体側に位置し、且つ接合面と隣接する媒質のd線に対する屈折率、
 像側屈折率は、接合面の像側に位置し、且つ接合面と隣接する媒質のd線に対する屈折率、
である。
 このようにすることで、所定の範囲で光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系では、第3レンズ群は、4つ以上のレンズ成分を有し、かつ、屈折率差の値が0.25以上の接合面を2つ以上有することが好ましい。
 ここで、
 屈折率差は、物体側屈折率と像側屈折率との差、
 物体側屈折率は、接合面の物体側に位置し、且つ接合面と隣接する媒質のd線に対する屈折率、
 像側屈折率は、接合面の像側に位置し、且つ接合面と隣接する媒質のd線に対する屈折率、
である
 このようにすることで、所定の範囲で光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系では、第3レンズ群は、正の屈折力を有するレンズ成分を3つ、4つ、又は5つ含むことが好ましい。
 このようにすることで、所定の範囲で光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系では、第3レンズ群の最も像側に位置する接合レンズは、物体側から順に、正レンズと、負レンズと、を有することが好ましい。
 このようにすることで、所定の範囲で光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系では、第3レンズ群の最も像側に、単レンズ群が配置され、単レンズ群は、2つの単レンズからなるか、又は3つの単レンズからなり、単レンズ群の物体側に、接合レンズが単レンズ群と隣接して配置され、接合レンズは、物体側から順に、正レンズと、負レンズと、を有することが好ましい。
 このようにすることで、所定の範囲で光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系では、第3レンズ群の最も像側に、1つの単レンズが配置され、単レンズの物体側に、接合レンズが単レンズと隣接して配置され、接合レンズは、物体側から順に、正レンズと、負レンズと、を有することが好ましい。
 このようにすることで、第3レンズ群内での光線高を低く保ちつつ、結像性能を良好に保つことができる。
 本実施形態の広角光学系は、以下の条件式(2)を満足することが好ましい。
 0.05<fL/R31F<1.20   (2)
 ここで、
 R31Fは、第1レンズ成分の物体側の面の曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 条件式(2)は、第3レンズ群の最も物体側の面の収斂性を規定した条件式である。第3レンズ群の最も物体側には、第1レンズ成分が位置している。よって、条件式(2)は、第1レンズ成分の物体側の面の収斂性を規定した条件式である。
 レンズ面の曲率が大きいほど、レンズ面における光線の収斂性も強くなる。第1レンズ成分の物体側の面は、第3レンズ群において最も物体側に位置している。第1レンズ成分の物体側の面の曲率を適切な大きさにすることで、第3レンズ群における光線高を低く抑えることができる。
 値が条件式(2)の上限値を上回る場合、球面収差とコマ収差が発生し易くなるか、あるいは製造誤差感度が高くなり易い。画素数が多い撮像素子を使用しても、その画素数に応じた鮮明な画像の取得が困難になる。また、所望のバックフォーカスの確保も困難となる。値が条件式(2)の下限値を下回る場合、光線高が高くなる。そのため、本実施形態の広角光学系を内視鏡の光学系に用いた場合、挿入部の径が大きくなる。
 条件式(2)に代えて、以下の条件式(2’)を満足すると良い。
 0.07<fL/R31F<0.85   (2’)
 また、条件式(2)に代えて、以下の条件式(2”)を満足するとなお良い。
 0.08<fL/R31F<0.75   (2”)
 条件式(2)を満足する光学系は、上限値よりも小さい値を有する。光学系における値が小さくなるほど、その光学系では、収差を良好に補正し易くなるか、あるいは所望のバックフォーカスを確保しやすくなる。
 条件式(2)については、好ましい上限値を設定することができる。上限値は、0.60252、0.55、0.50、0.45のいずれかにすることが好ましい。このようにすることで、良好な収差補正が行える。
 良好な収差補正を優先したい場合、あるいは所望のバックフォーカスの確保を優先したい場合は、0.10から0.40までが、条件式(2)の最良の範囲と言える。所定の範囲における低い光線高の確保を優先したい場合は、0.35から0.65までが、条件式(2)の最良の範囲と言える。
 本実施形態の広角光学系では、像側レンズ成分を有し、像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であり、第3レンズ群は、第1レンズ成分と像側レンズ成分との間に、N枚の接合面SNi(i=1、2、…N)を含み、以下の条件式(3)を満足することが好ましい。
 -1.0<fL×ΣPSNi<-0.05   (3)
 ここで、
 PSNiは、接合面SNiの屈折力であって、以下の式(4)で表され、
 PSNi=(nSNi’-nSNi)/rSNi   (4)
 nSNiは、接合面SNiの物体側に位置する媒質のd線に対する屈折率、
 nSNi’は、接合面SNiの像側に位置する媒質のd線に対する屈折率、
 rSNiは、接合面SNiの光軸近傍における曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 条件式(3)は、第3レンズ群に含まれる接合面の屈折力を規定した条件式である。所定の範囲では、光束径を細くした状態を保つ必要がある。一方で、近軸量の確保、例えば、焦点距離の確保、又はバックフォーカスの確保も重要である。
 所定の範囲で光線高を低くするために、第3レンズ群では、物体側に位置するレンズ成分に、強い収斂性を持たせている。近軸量を確保するためには、物体側に位置するレンズ成分よりも像側に、強い発散性を有するレンズ成分を配置することが好ましい。
 本実施形態の広角光学系では、第3レンズ群は、N枚の接合面SNiを含んでいる。接合面SNiは、強い発散性を有する。よって、条件式(3)は、所定の範囲の像側における光線の発散性を規定した条件式と言うことができる。
 値が条件式(3)の上限値を上回る場合、所定の範囲の像側での光線の発散性が弱くなる。そのため、所望の近軸量の確保が困難になるか、又は、所定の範囲における低い光線高の確保が困難となる。
一方、値が条件式(3)の下限値を下回る場合、球面収差とコマ収差が発生し易くなるか、あるいは製造誤差感度が高くなり易い。画素数が多い撮像素子を使用しても、その画素数に応じた鮮明な画像の取得が困難になる。
 条件式(3)に代えて、以下の条件式(3’)を満足すると良い。
 -0.85<fL×ΣPSNi<-0.1   (3’)
 また、条件式(3)に代えて、以下の条件式(3”)を満足するとなお良い。
 -0.75<fL×ΣPSNi<-0.1   (3”)
 条件式(3)については、好ましい下限値を設定することができる。下限値は、-0.71861、-0.65、-0.60、-0.55のいずれかにすることが好ましい。このようにすることで、良好な収差補正が行える。
 良好な収差補正を優先したい場合は、-0.50から-0.20までが、条件式(3)の最良の範囲と言える。所定の範囲における低い光線高の確保を優先したい場合は、-0.70から-0.40までが、条件式(3)の最良の範囲と言える。
 条件式(2)を満足するか、又は、条件式(3)を満足することで、所定の範囲における低い光線高の確保、又は所望の近軸量の確保を容易に行える。条件式(2)と条件式(3)の両方を満足すると、より良い。
 ただし、条件式(2)と条件式(3)の両方を満足すると、非点収差の補正が困難になりやすい。そこで、第3レンズ群では、非点収差も良好に補正する必要がある。
 上述のように、nSNiとnSNi’は屈折率を表している。より詳しくは、nSNiは、接合面SNiの物体側に位置し、且つ接合面SNiと隣接する媒質のd線に対する屈折率であり、nSNi’は、接合面SNiの像側に位置し、且つ接合面SNiと隣接する媒質のd線に対する屈折率である。
 本実施形態の広角光学系では、第3レンズ群は、接合レンズのなかで最も像側に位置する接合レンズと、最も像側に位置する正の単レンズと、を有し、最も像側に位置する接合レンズは、正の屈折力を有し、正の単レンズは以下の条件式(5)を満足することが好ましい。
 -2<(R3R1+R3R2)/(R3R1-R3R2)<2   (5)
 ここで、
 R3R1は、正の単レンズの物体側の面の曲率半径、
 R3R2は、正の単レンズの像側の面の曲率半径、
である。
 第3レンズ群は、最も像側に位置する接合レンズ(以下、「接合レンズA」という)を有する。第3レンズ群に配置された接合レンズが一つの場合、その接合レンズが接合レンズAに対応する。
 光学系の中央を境にして、光学系を物体側と像側の2つに分けると、接合レンズAは像側に位置している。適切なバックフォーカスの確保を重視する場合、接合レンズAの屈折力を正の屈折力にすると良い。
 この場合、光学系の物体側だけでなく、光学系の像側でも大きな正の屈折力が必要となる。そこで、最も像側に位置するレンズ成分を正の単レンズにすると共に、条件式(5)を満足することが好ましい。このようにすることで、非点収差の発生を抑制することができる。
 条件式(5)に代えて、以下の条件式(5’)を満足すると良い。
 -1.5<(R3R1+R3R2)/(R3R1-R3R2)<1.0   (5’)
 また、条件式(5)に代えて、以下の条件式(5”)を満足するとなお良い。
 -1.1<(R3R1+R3R2)/(R3R1-R3R2)<0.0   (5”)
 本実施形態の広角光学系では、第3レンズ群は、接合レンズのなかで最も像側に位置する接合レンズと、最も像側に位置する正の単レンズと、を有し、最も像側に位置する接合レンズは、負の屈折力を有し、正の単レンズは以下の条件式(6)を満足することが好ましい。
 -5<(’R3R1+’R3R2)/(’R3R1-’R3R2)<1   (6)
 ここで、
 ’R3R1は、正の単レンズの物体側の面の曲率半径、
 ’R3R2は、正の単レンズの像側の面の曲率半径、
である。
 適切なバックフォーカスの確保よりも、光学系の全長の短縮が重視される場合がある。この場合、光学系の物体側では大きな正の屈折力が必要になるので、像側では大きな負の屈折力が必要となる。
 接合レンズAは、接合レンズのなかで、最も像側に位置する。よって、接合レンズAの屈折力を負の屈折力にすることで、像側では大きな負の屈折力を得ることができる。ただし、このようにすると、非点収差が発生し易くなるか、又は、軸外光線の射出角が大きくなり易い。
 この場合、最も像側に位置するレンズ成分を正の単レンズにすると共に、条件式(6)を満足することが好ましい。このようにすることで、負の屈折力の接合レンズの後側に、正の単レンズが配置されることになる。そのため、非点収差の増大を相殺できるか、又は、軸外光線の射出角の増大を相殺できる。
 値が条件式(6)の上限値を上回る場合、上述の相殺作用が弱まり易くなる。値が条件式(6)の下限値を下回る場合、非点収差の発生が増大するか又、は、正の単レンズの有効径を十分に確保できない。正の単レンズの有効径を十分に確保しようとすると、バックフォーカスが長くなり過ぎる。そのため、光学系の全長が長くなってしまう。
 第3レンズ群の最も像側に位置するレンズ成分では、軸外光線の光線高が高い。そのため、このレンズ成分に接合レンズを用いると、レンズ成分としての厚みが増大し易くなる。その結果、十分なバックフォーカスの確保、あるいは光学系の全長の短縮が困難になる。
 条件式(6)に代えて、以下の条件式(6’)を満足すると良い。
 -4.7<(’R3R1+’R3R2)/(’R3R1-’R3R2)<0.8   (6’)
 また、条件式(6)に代えて、以下の条件式(6”)を満足するとなお良い。
 -4.5<(’R3R1+’R3R2)/(’R3R1-’R3R2)<0.6   (6”)
 本実施形態の広角光学系では、第3レンズ群の最も像側に位置する接合面が、以下の条件式(7)を満足することが好ましい。
 -2.0<fL/rSNr<1.5     (7)
 ここで、
 rSNrは、最も像側に位置する接合面の光軸近傍における曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 所定の範囲の像側では、光線の発散性が強めになっていることが好ましい。光線の発散性が強めになっていると、軸外光線の光線高が、軸上光線の光線高に対して、相対的に高くなる。
 軸外光線の光線高が高くなると、非点収差が大きくなり易い。非点収差の増大を抑制するためには、第3レンズ群の最も像側に位置する接合面は、光学系の瞳に対してコンセントリックな形状にすると良い。条件式(7)を満足することで、非点収差の増大を抑制することができる。
 値が条件式(7)の上限値を上回る場合、非点収差の補正が行いにくくなる。値が条件式(7)の下限値を下回る場合、球面収差の補正を行いにくくなる。
 条件式(7)に代えて、以下の条件式(7’)を満足すると良い。
 -1.2<fL/rSNr<1.0   (7’)
 また、条件式(7)に代えて、以下の条件式(7”)を満足するとなお良い。
 -0.9<fL/rSNr<0.6   (7”)
 条件式(7)を満足する光学系は、上限値よりも小さい値を有する。光学系における値が小さくなるほど、その光学系では、非点収差を補正し易くなる。
 条件式(7)については、好ましい上限値を設定することができる。上限値は、-0.32190、-0.35、-0.40、-0.45のいずれかにすることが好ましい。このようにすることで、非点収差を良好に補正できる。
 非点収差の補正を優先したい場合は、-0.80から-0.50までが、条件式(7)の最良の範囲と言える。球面収差の補正を優先したい場合は、-0.60から-0.30までが、条件式(7)の最良の範囲と言える。
 第3レンズ群の最も像側に位置する接合面では、接合面の物体側に正レンズが位置し、接合面の像側に負レンズが位置していることが好ましい。
 所定の範囲での光線高の抑制、設計時の収差補正、および製造時の収差悪化の防止を同時に実現する手段として、色収差補正の自由度を高めることが挙げられる。色収差補正の自由度を高めるには、レンズに用いる媒質に、適切な媒質を用いれば良い。
 レンズの曲率や厚みを適切に設定することで、球面収差、コマ収差、及び非点収差を良好に補正でき、レンズに用いる媒質に適切な硝材を選択することで、色収差を良好に補正できる。
 例えば、内視鏡光学系では、各レンズの厚みが光学系の焦点距離に対して大きい。このような光学系では、軸上色収差の補正と倍率色収差の補正との両立が困難である。
 しかしながら、本実施形態の広角光学系では、第3レンズ群に、複数のレンズ成分が配置されている。よって、物体側の位置するレンズ成分の媒質と、像側に位置するレンズ成分の媒質と、を適切に設定することができる。その結果、軸上色収差の補正と倍率色収差の補正との両立ができる。
 本実施形態の広角光学系では、第3レンズ群は、複数の正レンズを有し、複数の正レンズは、第1正レンズと、第2正レンズと、を有し、第1正レンズは、複数の正レンズのなかで、最も物体側に位置する正レンズであり、第2正レンズは、複数の正レンズのなかで、物体側から2番目に位置する正レンズであり、以下の条件式(8)を満足することが好ましい。
 -70<ν31P-ν32P<20   (8)
 ここで、
 ν31Pは、第1正レンズのアッベ数、
 ν32Pは、第2正レンズのアッベ数、
である。
 条件式(8)は、第1正レンズのアッベ数と第2正レンズのアッベ数との関係について規定した条件式である。条件式(8)を満足する場合、軸上色収差の補正と倍率色収差の補正との両立させた状態で、様々な光学系の設計条件を満たすことが容易になる。
 値がプラス側に大きくなる場合、例えば、条件式(8)の上限値を上回る場合、軸上色収差が補正過剰の方向に変化し、倍率色収差が補正不足の方向に変化する。
 条件式(8)に代えて、以下の条件式(8’)を満足すると良い。
 -65<ν31P-ν32P<15   (8’)
 また、条件式(8)に代えて、以下の条件式(8”)を満足するとなお良い。
-60 <ν31P-ν32P<10   (8”)
 条件式(8)を満足する光学系は、上限値よりも小さい値を有する。光学系における値が小さくなるほど、その光学系では、軸上色収差と倍率色収差を補正し易くなる。
 条件式(8)については、好ましい上限値を設定することができる。上限値は、0、-5.0、-10.0、-15.0のいずれかにすることが好ましい。このようにすることで、軸上色収差と倍率色収差を良好に補正できる。また、-60.0から-20.0までが、条件式(8)の最良の範囲と言える。
 本実施形態の広角光学系では、第3レンズ群は、複数の正レンズを有し、複数の正レンズは、第1正レンズと、第2正レンズと、第3正レンズと、を有し、第1正レンズは、複数の正レンズのなかで、最も物体側に位置する正レンズであり、第2正レンズは、複数の正レンズのなかで、物体側から2番目に位置する正レンズであり、第3正レンズは、複数の正レンズのなかで、物体側から3番目に位置する正レンズであり、以下の条件式(9)を満足することが好ましい。
 -50<ν33P-(ν31P+ν32P)/2<80   (9)
 ここで、
 ν31Pは、第1正レンズのアッベ数、
 ν32Pは、第2正レンズのアッベ数、
 ν33Pは、第3正レンズのアッベ数、
である。
 条件式(9)は、第1正レンズのアッベおよび第2正レンズのアッベ数の平均値と、第3正レンズのアッベとの関係について規定した条件式である。条件式(9)を満足する場合、軸上色収差の補正と倍率色収差の補正との両立させた状態で、様々な光学系の設計条件を満たすことが容易になる。
 値がマイナス側に大きくなる場合、例えば、条件式(9)の下限値を下回る場合、軸上色収差が補正過剰の方向に変化し、倍率色収差が補正不足の方向に変化する。
 条件式(9)に代えて、以下の条件式(9’)を満足すると良い。
 -40<ν33P-(ν31P+ν32P)/2<70   (9’)
 また、条件式(9)に代えて、以下の条件式(9”)を満足するとなお良い。
 -35<ν33P-(ν31P+ν32P)/2<60   (9”)
 条件式(9)については、好ましい下限値を設定することができる。下限値は、-22.99、-15.0、-10.0、-5.0のいずれかにすることが好ましい。このようにすることで、軸上色収差と倍率色収差を良好に補正できる。また、0.0から40.0までが、条件式(9)の最良の範囲と言える。
 本実施形態の広角光学系では、第3レンズ群は、複数の負レンズを有し、複数の負レンズは、第1負レンズと、第2負レンズと、を有し、第1負レンズは、複数の負レンズのなかで、最も物体側に位置する負レンズであり、第2負レンズは、複数の負レンズのなかで、物体側から2番目に位置する負レンズであり、以下の条件式(10)を満足することが好ましい。
 -40<ν31N-ν32N<50   (10)
 ここで、
 ν31Nは、第1負レンズのアッベ数、
 ν32Nは、第2負レンズのアッベ数、
である。
 条件式(10)は、第1負レンズのアッベ数と第2負レンズのアッベ数との関係について規定した条件式である。条件式(10)を満足する場合、軸上色収差の補正と倍率色収差の補正との両立させた状態で、様々な光学系の設計条件を満たすことが容易になる。
 値がマイナス側に大きくなる場合、例えば、条件式(10)の下限値を下回る場合、軸上色収差が補正過剰の方向に変化し、倍率色収差が補正不足の方向に変化する。
 条件式(10)に代えて、以下の条件式(10’)を満足すると良い。
 -25<ν31N-ν32N<40   (10’)
 また、条件式(10)に代えて、以下の条件式(10”)を満足するとなお良い。
 -20<ν31N-ν32N<30   (10”)
 条件式(10)については、好ましい下限値を設定することができる。下限値は、-15.34、-12.0、-8.0、-4.0のいずれかにすることが好ましい。このようにすることで、軸上色収差と倍率色収差を良好に補正できる。また、0.0から20.0までが、条件式(10)の最良の範囲と言える。
 第3レンズ群に含まれる負レンズが1つの場合は、以下の条件式を満足すると良い。
 -40<νN<50
 ここで、
 νNは、負レンズのアッベ数、
である。
 本実施形態の広角光学系では、第3レンズ群は焦点位置調節時には固定であることが好ましい。
 第3レンズ群では、収差変動に関して、製造誤差感度が高くなる傾向強い。製造誤差感度が高いと、製造誤差が小さくても、収差が大きく変動する。そのため、第3レンズ群は、焦点位置調節時には固定とするのが好ましい。
 本実施形態の広角光学系は、以下の条件式(11)を満足することが好ましい。
 -60<(R21F+R21R)/(R21F-R21R)<1   (11)
 ここで、
 R21Fは、所定のレンズ成分の物体側の面の曲率半径、
 R21Rは、所定のレンズ成分の像側の面の曲率半径、
 所定のレンズ成分は、第2レンズ群で最も物体側に位置するレンズ成分、
である。
 値が条件式(11)の上限値を上回る場合、焦点位置調節時の球面収差の変動、あるいは非点収差の変動が大きくなり易い。値が条件式(11)の下限値を下回る場合、偏心によるコマ収差の劣化と非点収差の劣化が起こり易い。上述のように、偏心は、第2レンズ群の移動によって発生する。
 条件式(11)に代えて、以下の条件式(11’)を満足すると良い。
 -40<(R21F+R21R)/(R21F-R21R)<-1   (11’)
 また、条件式(11)に代えて、以下の条件式(11”)を満足するとなお良い。
 -30<(R21F+R21R)/(R21F-R21R)<-2   (11”)
 条件式(11)を満足する光学系は、上限値よりも小さい値を有する。光学系における値が小さくなるほど、その光学系では、焦点位置調節時の球面収差あるいは非点収差をより良好に補正し易くなる。
 条件式(11)については、好ましい上限値を設定することができる。上限値は、5.33106、1.0、0.0、-1.0のいずれかにすることが好ましい。また、-15.0から-2.0までが、条件式(11)の最良の範囲と言える。
 本実施形態の広角光学系は、以下の条件式(12)を満足することが好ましい。
 0.2<D21/fL<3.0   (12)
 ここで、
 D21は、第2レンズ群の最も物体側の面と最も像側の面との光軸上の距離、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 値が条件式(12)の上限値を上回る場合、第2レンズ群の重量が増加するか、又は、光線高が高くなる。このように、第2レンズ群における重量の増加の抑制という点、又は、光線高の増加の抑制という点で不利になり易い。
 値が条件式(12)の下限値を下回る場合、2つの制御の両立が困難になる。一方の制御は、焦点位置調節時の球面収差の変動の抑制、あるいは非点収差の変動の抑制である。他方の制御は、偏心によるコマ収差の劣化の抑制、あるいは非点収差の劣化の抑制である。偏心は、焦点位置調節時の移動群の移動によって発生する。
 条件式(12)に代えて、以下の条件式(12’)を満足すると良い。
 0.3<D21/fL<2.5   (12’)
 また、条件式(12)に代えて、以下の条件式(12”)を満足するとなお良い。
 0.4<D21/fL<2.0   (12”)
 条件式(12)を満足する光学系は、下限値よりも大きい値を有する。光学系における値が大きくなるほど、その光学系では、上述の2つの抑制の両立が行い易くなる。
 条件式(12)については、好ましい下限値を設定することができる。下限値は、0.54857、0.56、0.58、0.60のいずれかにすることが好ましい。また、0.60から1.5までが、条件式(12)の最良の範囲と言える。
 本実施形態の広角光学系は、以下の条件式(13)を満足することが好ましい。
 1.01<β2F<1.35   (13)
 ここで、
 β2Fは、第1の位置における第2レンズ群の倍率、
である。
 値が条件式(13)の上限値を上回る場合、第2レンズ群の移動量に対するピント移動量(以下、「フォーカス感度」という)が高くなりすぎる。この場合、第2レンズ群を停止させるときの精度(以下、「停止精度」という)が高くなりすぎる。そのため、移動機構が複雑になる。
 値が条件式(13)の下限値を下回る場合、フォーカス感度が低くなり易い。この場合、第2レンズ群の移動量が増えるので、移動のための空間を広くしなくてはならない。そのため、光学ユニットが大きくなる。
 条件式(13)に代えて、以下の条件式(13’)を満足すると良い。
 1.03<β2F<1.30   (13’)
 また、条件式(13)に代えて、以下の条件式(13”)を満足するとなお良い。
 1.05<β2F<1.25   (13”)
 本実施形態の広角光学系は、以下の条件式(14)を満足することが好ましい。
 1.01<β2N/β2F<1.15   (14)
 ここで、
 β2Fは、第1の位置における第2レンズ群の倍率、
 β2Nは、第2の位置における第2レンズ群の倍率、
である。
 条件式(14)を満足する場合、遠点における焦点距離が短くなるので、遠点において広い画角を確保することができる。また、近点における焦点距離が長くなるので、近点において高い倍率が得られる。
 遠点で広い画角を有し、近点で高い倍率を有する光学系は、内視鏡の光学系に適している。よって、本実施形態の広角光学系は、内視鏡の光学系として用いることができる。
 内視鏡では、例えば、広い範囲を観察して病変部の有無を確認する。そして、病変部が確認された場合、病変部を拡大して詳しく観察する。そのため、内視鏡の光学系は、遠点観察では広い画角を有し、近点観察では高い倍率を有していることが好ましい。
 また、近点観察では、病変部を詳細に観察する必要がある。よって、内視鏡の光学系では、高い精度で合焦できることが好ましい。
 値が条件式(14)の上限値を上回る場合、近点側でのフォーカス感度が高くなる。この場合、近点側での停止精度が高くなる。そのため、高い精度で合焦することが困難になる。値が条件式(14)の下限値を下回る場合、遠点観察における広い画角の確保と、近点観察における高い倍率の確保が困難になる。そのため、内視鏡の光学系には適さなくなる。
 条件式(14)に代えて、以下の条件式(14’)を満足すると良い。
 1.02<β2N/β2F<1.12   (14’)
 また、条件式(14)に代えて、以下の条件式(14”)を満足するとなお良い。
 1.03<β2N/β2F<1.09   (14”)
 本実施形態の広角光学系は、以下の条件式(15)を満足することが好ましい。
 0.08<(1-β2F2)×β3F2<0.45   (15)
 ここで、
 β2Fは、第1の位置における第2レンズ群の倍率、
 β3Fは、第1の位置における第3レンズ群の倍率、
である。
 値が条件式(15)の上限値を上回る場合、遠点側でのフォーカス感度が高くなりすぎる。この場合、遠点側での停止精度が高くなる。値が条件式(15)の下限値を下回る場合、遠点側でのフォーカス感度が低くなり易い。この場合、第2レンズ群の移動量が増えるので、移動のための空間を広くしなくてはならない。そのため、光学ユニットが大きくなる。
 条件式(15)に代えて、以下の条件式(15’)を満足すると良い。
 0.11<(1-β2F2)×β3F2<0.35   (15’)
 また、条件式(15)に代えて、以下の条件式(15”)を満足するとなお良い。
 0.13<(1-β2F2)×β3F2<0.30   (15”)
 本実施形態の広角光学系は、以下の条件式(16)を満足することが好ましい。
 0.15<(1-β2N2)×β3N2<0.55   (16)
 ここで、
 β2Nは、第2の位置における第2レンズ群の倍率、
 β3Nは、第2の位置における第3レンズ群の倍率、
である。
 値が条件式(16)の上限値を上回る場合、近点側でのフォーカス感度が高くなりすぎる。この場合、近点側での停止精度が高くなる。値が条件式(16)の下限値を下回る場合、近点側でのフォーカス感度が低くなり易い。この場合、第2レンズ群の移動量が増えるので、移動のための空間を広くしなくてはならない。
 条件式(16)に代えて、以下の条件式(16’)を満足すると良い。
 0.20<(1-β2N2)×β3N<0.45   (16’)
 また、条件式(16)に代えて、以下の条件式(16”)を満足するとなお良い。
 0.22<(1-β2N2)×β3N<0.40   (16”)
 本実施形態の広角光学系では、第2レンズ群は、正レンズのみを有することが好ましい。
 このようにすることで、焦点位置調節時の非点収差の変動を小さくすることができる。
 本実施形態の広角光学系では、第1レンズ群は、負レンズのみを有し、負レンズは、第3レンズ群の最も物体側の正レンズよりも大きいアッベ数を有することが好ましい。
 第1レンズ群には、アクチュエーターを配置する必要はない。しかしながら、広い画角を確保するために、第1レンズ群の外径が大きくなり易い。第1レンズ群の外径を小さくするには、第1レンズ群の負の屈折力を大きくすれば良い。負の屈折力を大きくすると、軸外収差、特に、非点収差が発生し易い。
 第1レンズ群に複数の負レンズを配置することで、第1レンズ群の負の屈折力を、複数の負レンズに分担させることができる。その結果、第1レンズ群の負の屈折力を大きくしても、軸外収差、特に非点収差を良好に補正することができる。そこで、最も物体側には負レンズ成分を配置した方が良い。
 非常に広い画角を有する光学系において光線高を低くするには、入射面から入射瞳位置までの距離をできる限り短くすることが効果的である。そのために、第1レンズ群に、敢えて色収差を補正するレンズを配置しないことも、選択肢の1つとして考えられる。色収差を補正するレンズが第1レンズ群に配置されない場合、第1レンズ群は、単レンズのみを有する。
 この場合、第1レンズ群で、倍率色収差が発生しやすくなる。しかしながら、第1レンズ群で発生した倍率色収差は、第3レンズ群で補正することができる。このとき、第1レンズ群の負レンズのアッベ数を、第3レンズ群の最も物体側の正レンズのアッベ数よりも大きくする。
 第3レンズ群の最も物体側の正レンズは、第1レンズ群の負レンズに対して、最も近い距離に位置している。そのため、軸上色収差を悪化せずに、倍率色収差の補正が可能になる。第1レンズ群の負レンズのアッベ数が第3レンズ群の最も物体側の正レンズのアッベ数よりも小さい場合、軸上色収差の補正と倍率色収差の補正を同時に行うことは困難となる。
 本実施形態の広角光学系では、第1レンズ群は、複数の負レンズ成分を有し、複数の負レンズ成分は、第1負レンズ成分と、第2負レンズ成分と、を有し、第2負レンズ成分は、複数の負レンズ成分のなかで、物体側から2番目に位置する負レンズ成分であり、以下の条件式(17)を満足することが好ましい。
 -2.0<fL/R12Fa<0.5   (17)
 ここで、
 R12Faは、第2負レンズ成分の物体側の面の曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 本実施形態の広角光学系は広い画角を有するので、内視鏡の光学系に用いることができる。内視鏡の光学系では、視野角の確保、収差補正の制約、及び洗浄の制約から、最も物体側に位置する面は平面、あるいは物体側に凸の面となる。そのため、物体側から2番目の負レンズ成分では、物体側面を強い発散面にすることが好ましい。
 値が条件式(17)の上限値を上回る場合、第1レンズ群での光線高が高くなり易い。値が条件式(17)の下限値を下回る場合、非点収差が発生し易い。
 第2負レンズ成分は、例えば、物体側から2番目に位置する負の単レンズ、又は、物体側から2番目に位置する負の接合レンズである。第2負レンズ成分が接合レンズの場合、接合レンズは、正レンズと負レンズとで形成すれば良い。正レンズが物体側に位置していても、負レンズが物体側に位置していても良い。
 条件式(17)に代えて、以下の条件式(17’)を満足すると良い。
 -0.8<fL/R12Fa<0.2   (17’)
 また、条件式(18)に代えて、以下の条件式(17”)を満足するとなお良い。
 -0.6<fL/R12Fa<0.0   (17”)
 本実施形態の広角光学系では、第1レンズ群は、第4レンズ成分と、第5レンズ成分と、を有し、第4レンズ成分は、第1レンズ群において、最も物体側に位置するレンズ成分であり、第5レンズ成分は、第1レンズ群において、物体側から2番目に位置するレンズ成分であり、第4レンズ成分は、負レンズ成分からなり、第5レンズ成分は、接合レンズからなり、以下の条件式(18)を満足することが好ましい。
 -1.0<fL/R12Fb<0.5   (18)
 ここで、
 R12Fbは、第5レンズ成分の物体側の面の曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 上述のように、内視鏡の光学系では、最も物体側に位置する面は平面、あるいは物体側に凸の面となる。そのため、物体側から3番目の負レンズでは、物体側面を強い発散面にすることが好ましい。
 値が条件式(18)の上限値を上回る場合、第1レンズ群での光線高が高くなり易い。値が条件式(18)の下限値を下回る場合、非点収差が発生し易い。
 条件式(18)に代えて、以下の条件式(18’)を満足すると良い。
 -0.8<fL/R12Fb<0.2   (18’)
 また、条件式(18)に代えて、以下の条件式(18”)を満足するとなお良い。
 -0.6<fL/R12Fb<0.0   (18”)
 本実施形態の広角光学系では、第1レンズ群は、第4レンズ成分と、第5レンズ成分と、第6レンズ成分と、を有し、第4レンズ成分は、第1レンズ群において、最も物体側に位置するレンズ成分であり、第5レンズ成分は、第1レンズ群において、物体側から2番目に位置するレンズ成分であり、第6レンズ成分は、第1レンズ群において、物体側から3番目に位置するレンズ成分であり、第4レンズ成分は、負レンズ成分からなり、第5レンズ成分は、負レンズ成分からなり、第6レンズ成分は、正レンズ成分からなり、以下の条件式(19)を満足することが好ましい。
 -1.0<fL/R12Fc<0.4   (19)
 ここで、
 R12Fcは、第5レンズ成分の物体側の面の曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 上述のように、内視鏡の光学系では、最も物体側に位置する面は平面、あるいは物体側に凸の面となる。そのため、物体側から2番目の負レンズでは、物体側面を強い発散面にすることが好ましい。
 値が条件式(19)の上限値を上回る場合、第1レンズ群での光線高が高くなり易い。値が条件式(19)の下限値を下回る場合、非点収差が発生し易い。
 条件式(19)に代えて、以下の条件式(19’)を満足すると良い。
 -0.8<fL/R12Fc<0.2   (19’)
 また、条件式(19)に代えて、以下の条件式(19”)を満足するとなお良い。
 -0.6<fL/R12Fc<0.0   (19”)
 本実施形態の広角光学系では、第1レンズ群は、第4レンズ成分と、第5レンズ成分と、第6レンズ成分と、を有し、第4レンズ成分は、第1レンズ群において、最も物体側に位置するレンズ成分であり、第5レンズ成分は、第1レンズ群において、物体側から2番目に位置するレンズ成分であり、第6レンズ成分は、第1レンズ群において、物体側から3番目に位置するレンズ成分であり、第4レンズ成分は、負レンズ成分からなり、第5レンズ成分は、第4レンズ成分よりも屈折力の絶対値が小さいレンズ成分からなり、第6レンズ成分は、接合レンズからなり、以下の条件式(20)を満足することが好ましい。
 -1.2<fL/R12Fd<0.2   (20)
 ここで、
 R12Fdは、第6レンズ成分の物体側の面の曲率半径、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 上述のように、内視鏡の光学系では、最も物体側に位置する面は平面、あるいは物体側に凸の面となる。そのため、物体側から3番目の負レンズでは、物体側面を強い発散面にすることが好ましい。
 値が条件式(20)の上限値を上回る場合、第1レンズ群での光線高が高くなり易い。値が条件式(20)の下限値を下回る場合、非点収差が発生し易い。
 条件式(20)に代えて、以下の条件式(20’)を満足すると良い。
 -0.9<fL/R12Fd<0.0   (20’)
 また、条件式(20)に代えて、以下の条件式(20”)を満足するとなお良い。
 -0.6<fL/R12Fd<-0.2   (20”)
 本実施形態の広角光学系では、第1レンズ群は、第4レンズ成分と、第5レンズ成分と、を有し、第4レンズ成分は、第1レンズ群において、最も物体側に位置するレンズ成分であり、第5レンズ成分は、第1レンズ群において、物体側から2番目に位置するレンズ成分であり、以下の条件式(21)を満足することが好ましい。
 -1.0<fL/fL12<0.4   (21)
 ここで、
 fL12は、第5レンズ成分の焦点距離、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 値が条件式(21)の上限値を上回る場合、第4レンズ成分を小型化する効果があまり得られない。値が条件式(21)の下限値を下回る場合、軸外収差を補正する効果があまり得られない。
 条件式(21)に代えて、以下の条件式(21’)を満足すると良い。
 -0.7<fL/fL12<0.2   (21’)
 また、条件式(21)に代えて、以下の条件式(21”)を満足するとなお良い。
 -0.6<fL/fL12<0.16   (21”)
 本実施形態の広角光学系は、像側レンズ成分を有し、像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であり、以下の条件式(22)を満足することが好ましい。
 100×|ffin|<|Rfin|   (22)
 ここで、
 ffinは、像側レンズ成分の焦点距離、
 Rfinは、像側レンズ成分の像側の面の曲率半径、
である。
 光学系では、像側レンズ成分と像面との間に、屈折力がゼロの光学素子が配置されることが多い。屈折力がゼロの光学素子は、例えば、光学フィルタ、又は、プリズムである。条件式(22)を満足すると、屈折力がゼロの光学素子を配置するスペースの確保と、非点収差の良好な補正との両立がし易くなる。
 条件式(5)と条件式(6)では、最も像側に位置する正の単レンズについて、面の曲率半径を規定している。条件式(22)では、像側レンズ成分について、面の曲率半径を規定している。像側レンズ成分は、最も像側に位置するレンズ成分である。よって、条件式(22)は、実質的に、条件式(5)と条件式(6)を限定した条件式ということができる。
 本実施形態の広角光学系は、像側レンズ成分と、屈折力がゼロの光学素子と、を有し、像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であり、光学素子は、像側レンズ成分の像側に位置し、像側レンズ成分と光学素子は接合されていることが好ましい。
 光学系では、像側レンズ成分と像面との間に、屈折力がゼロの光学素子が配されることが多い。屈折力がゼロの光学素子は、例えば、光学フィルタ、又は、プリズムである。像側レンズ成分と光学素子を接合することで、偏心による結像性能の劣化を防止することができる。
 本実施形態の広角光学系は、以下の条件式(23)を満足することが好ましい。
 2ymax<fL×tanωmax   (23)
 ここで、
 ymaxは、最大像高、
 ωmaxは、最大像高に対応した画角、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 本実施形態の広角光学系は、高い分解能を有すると共に、焦点位置調節に必要なアクチュエーターを配置して外径が小さな光学系である。よって、本実施形態の広角光学系は、内視鏡の光学系に用いることができる。
 本実施形態の広角光学系を内視鏡の光学系に用いるためには、例えば、100度以上の画角が確保されることが好ましい。100度以上の画角を有する光学系では、歪曲収差の発生が許容されている。よって、このような光学系は、以下の式(A)を満足していない。式(A)歪曲収差のない条件である。
 ymax=fL×tanωmax   (A)
 その代わりに、本実施形態の広角光学系は、条件式(24)を満足している。条件式(24)を満足することで、広い画角を確保しつつ、光学ユニットの外径を小さくすることができる。よって、本実施形態の広角光学系を、内視鏡の光学系に用いることができる。
 本実施形態の広角光学系は、以下の条件式(24)を満足することが好ましい。
 ER2<4×fL/FEX   (24)
 ここで、
 ER2は、第2レンズ成分の最も像側の面の有効半径、
 FEXは、第1の位置における有効F値、
 fLは、第1の位置における広角光学系の焦点距離、
である。
 条件式(24)は、光線高に関する条件式である。条件式(24)を満足することで、本実施形態の広角光学系を内視鏡の光学系に用いることができる。有効半径は、面における最外光線高で決まる。
 本実施形態の撮像装置は、光学系と、像面に配置された撮像素子と、を有し、撮像素子は撮像面を有し、且つ光学系によって撮像面上に形成された像を電気信号に変換し、光学系が上述の広角光学系であることを特徴する。
 実施形態の撮像装置によれば、画素数が多い撮像素子を使用しても、その画素数に応じた鮮明な画像を取得することができる。
 以下に、広角光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 各実施例のレンズ断面図について説明する。(a)は遠点における断面図、(b)は近点における断面図である。
 第1レンズ群はG1、第2レンズ群はG2、第3レンズ群はG3、明るさ絞りはS、フィルタはF、カバーガラスはC、プリズムはP、像面(撮像面)はIで示してある。
 各実施例の収差図について説明する。収差図は、遠点における収差図、近点における収差図の順に示している。遠点における収差図では、(a)は球面収差(SA)、(b)は非点収差(AS)、(c)は倍率色収差(CC)、(d)は歪曲収差(DT)を示している。近点における収差図では、(e)は球面収差(SA)、(f)は非点収差(AS)、(g)は倍率色収差(CC)、(h)は歪曲収差(DT)を示している。
 実施例1の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、両凸正レンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、両凸正レンズL5と、像側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、両凹負レンズL8と、物体側に凸面を向けた負メニスカスレンズL9と、両凸正レンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、を有する。
 両凸正レンズL5と負メニスカスレンズL6とが接合されている。両凸正レンズL11と負メニスカスレンズL12とが接合されている。
 第1レンズ群G1中に、フィルタFが配置されている。第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例2の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL5と、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、像側に凸面を向けた正メニスカスレンズL8と、両凹負レンズL9と、像側に凸面を向けた正メニスカスレンズL10と、両凸正レンズL11と、を有する。
 負メニスカスレンズL6と両凸正レンズL7とが接合されている。正メニスカスレンズL8と両凹負レンズL9とが接合されている。
 第1レンズ群G1中に、フィルタFが配置されている。第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例3の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL5と、両凹負レンズL6と、両凸正レンズL7と、像側に凸面を向けた正メニスカスレンズL8と、両凹負レンズL9と、両凸正レンズL10と、物体側に凸面を向けた正メニスカスレンズL11と、を有する。
 両凹負レンズL6と両凸正レンズL7とが接合されている。正メニスカスレンズL8と両凹負レンズL9とが接合されている。
 第1レンズ群G1中に、フィルタFが配置されている。第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例4の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL5と、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凹負レンズL9と、両凸正レンズL10と、物体側に凸面を向けた正メニスカスレンズL11と、を有する。
 負メニスカスレンズL6と両凸正レンズL7とが接合されている。両凸正レンズL8と両凹負レンズL9とが接合されている。
 第1レンズ群G1中に、フィルタFが配置されている。第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例5の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL5と、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凹負レンズL9と、像側に凸面を向けた正メニスカスレンズL10と、両凸正レンズL11と、平凸正レンズL12と、を有する。
 両凸正レンズL6と負メニスカスレンズL7とが接合されている。両凸正レンズL8と両凹負レンズL9とが接合されている。
 第1レンズ群G1と第2レンズ群G2の間に、フィルタFが配置されている。第3レンズ群G3中に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL12とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例6の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、両凸正レンズL5と、像側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、物体側に凸面を向けた負メニスカスレンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、像側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、平凸正レンズL14と、を有する。
 両凸正レンズL5と負メニスカスレンズL6とが接合されている。負メニスカスレンズL8と正メニスカスレンズL9とが接合されている。両凸正レンズL10と負メニスカスレンズL11とが接合されている。
 第1レンズ群G1中に、フィルタFが配置されている。第3レンズ群G3中に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL14とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例7の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。両凹負レンズL2と正メニスカスレンズL3とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、両凹負レンズL9と、両凸正レンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、を有する。
 負メニスカスレンズL5と両凸正レンズL6とが接合されている。負メニスカスレンズL7と両凸正レンズL8とが接合されている。両凹負レンズL9と両凸正レンズL10とが接合されている
 第1レンズ群G1中に、フィルタFが配置されている。第3レンズ群G3中に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCとプリズムPとが配置されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例8の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、平凸正レンズL2と、両凹負レンズL3と、両凸正レンズL4と、を有する。両凹負レンズL3と両凸正レンズL4とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL5を有する。
 第3レンズ群G3は、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、物体側に凸面を向けた負メニスカスレンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、平凸正レンズL12と、を有する。
 両凸正レンズL6と負メニスカスレンズL7とが接合されている。負メニスカスレンズL8と正メニスカスレンズL9とが接合されている。両凸正レンズL10と負メニスカスレンズL11とが接合されている。
 第3レンズ群G3中に、明るさ絞りSと、フィルタFと、が配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL12とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例9の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と、両凸正レンズL4と、を有する。両凹負レンズL3と両凸正レンズL4とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL5を有する。
 第3レンズ群G3は、両凸正レンズL6と、両凹負レンズL7と、物体側に凸面を向けた負メニスカスレンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、平凸正レンズL12と、を有する。
 両凸正レンズL6と両凹負レンズL7とが接合されている。負メニスカスレンズL8と正メニスカスレンズL9とが接合されている。両凸正レンズL10と負メニスカスレンズL11とが接合されている。
 第3レンズ群G3中に、明るさ絞りSと、フィルタFと、が配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL12とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例10の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。両凹負レンズL2と正メニスカスレンズL3とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL5と、物体側に凸面を向けた負メニスカスレンズL6と、両凸正レンズL7と、物体側に凸面を向けた負メニスカスレンズL8と、両凸正レンズL9と、平凸正レンズL10と、を有する。
 負メニスカスレンズL6と両凸正レンズL7とが接合されている。負メニスカスレンズL8と両凸正レンズL9とが接合されている。
 第1レンズ群G1中に、フィルタFが配置されている。第3レンズ群G3中に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL10とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例11の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、両凸正レンズL3と、を有する。両凹負レンズL2と両凸正レンズL3とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL5と、両凸正レンズL6と、物体側に凸面を向けた負メニスカスレンズL7と、両凸正レンズL8と、物体側に凸面を向けた負メニスカスレンズL9と、両凸正レンズL10と、平凸正レンズL11と、を有する。
 負メニスカスレンズL5と平凸正レンズL6とが接合されている。負メニスカスレンズL7と両凸正レンズL8とが接合されている。負メニスカスレンズL9と両凸正レンズL10とが接合されている。
 第3レンズ群G3中に、明るさ絞りSと、フィルタFと、が配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL11とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例12の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL2を有する。
 第3レンズ群G3は、両凸正レンズL3と、像側に凸面を向けた負メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、を有する。
 両凸正レンズL3と負メニスカスレンズL4とが接合されている。両凸正レンズL5、両凹負レンズL6、及び両凸正レンズL7が接合されている。
 第1レンズ群G1と第2レンズ群G2の間に、フィルタFが配置されている。第3レンズ群G3中に、明るさ絞りSが配置されている。第3レンズ群G3の像側に、プリズムPと、カバーガラスCと、が配置されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例13の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、両凸正レンズL3と、を有する。両凹負レンズL2と両凸正レンズL3とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、両凸正レンズL5と、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、平凸正レンズL8と、を有する。両凸正レンズL6と負メニスカスレンズL7とが接合されている。
 第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。第3レンズ群G3中に、フィルタFが配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL8とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 実施例14の広角光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、を有する。
 第1レンズ群G1は、平凹負レンズL1と、両凹負レンズL2と、両凸正レンズL3と、を有する。両凹負レンズL2と両凸正レンズL3とが接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。
 第3レンズ群G3は、平凸正レンズL5と、物体側に凸面を向けた負メニスカスレンズL6と、平凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、平凸正レンズL10と、を有する。
 負メニスカスレンズL6と平凸正レンズL7とが接合されている。両凸正レンズL8と負メニスカスレンズL9とが接合されている。
 第3レンズ群G3中に、明るさ絞りSと、フィルタFと、が配置されている。第3レンズ群G3の像側に、カバーガラスCが配置されている。平凸正レンズL10とカバーガラスCとが接合されている。
 焦点位置の調節では、第2レンズ群G2が移動する。遠点から近点への調節時、第2レンズ群G2は像側に移動する。
 以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、*印は非球面である。絞りは明るさ絞りである。
 また、各種データにおいて、OBJは物体距離、FLは全系の焦点距離、MGは全系の倍率、NAIは開口数、FNOはFナンバー、FIYとFIMは像高、LTLは光学系の全長、FBはバックフォーカスである。バックフォーカスは、最も像側のレンズ面から近軸像面までの距離を空気換算して表したものである。全長は、最も物体側のレンズ面から最も像側のレンズ面までの距離にバックフォーカスを加えたものである。また、β1は第1レンズ群の倍率、β2は第2レンズ群の倍率、β3は第3レンズ群の倍率である。
 また、各焦点距離において、f1、f2…は各レンズ群の焦点距離である。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12…としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10+A12y12+…
 また、非球面係数において、「E-n」(nは整数)は、10のn乗を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        21.0000        1.
   1         ∞         0.3700        1.88300    40.76    1.598
   2        1.3365      0.7000        1.                  1.054
   3         ∞         0.4000        1.51633    64.14    1.020
   4         ∞         0.2000        1.                  0.970
   5       -2.4149      0.2932        1.88300    40.76    0.971
   6       11.5245      0.0905        1.                  1.030
   7        9.8202      0.6960        1.78472    25.68    1.061
   8       -3.2386      d8            1.                  1.110
   9        1.7471      0.5591        1.49700    81.54    1.033
  10        1.8893      d10           1.                  0.904
  11(絞り)   ∞         0.1000        1.                  0.570
  12        1.6617      0.8323        1.58913    61.14    0.648
  13       -1.3612      0.2948        1.83400    37.16    0.665
  14       -4.5054      0.0944        1.                  0.706
  15        2.3887      0.7740        1.58913    61.14    0.720
  16       -1.6464      0.0861        1.                  0.676
  17       -1.3548      0.2847        1.88300    40.76    0.642
  18        1.6199      0.0148        1.                  0.669
  19        1.5740      0.2830        1.69895    30.13    0.689
  20        1.8348      0.0446        1.                  0.712
  21        1.9198      0.8306        1.51742    52.43    0.739
  22       -3.6617      0.0887        1.                  0.828
  23        9.6091      0.8470        1.51633    64.14    0.852
  24       -1.4071      0.2937        1.88300    40.76    0.873
  25       -4.5032      0.0856        1.                  0.961
  26         ∞         1.5000        1.51633    64.14    0.988
  27         ∞         0.0700        1.                  1.129
像面         ∞         0.
 
各種データ
          遠点          近点
OBJ     21.0000        2.9000 
FL       1.08640       1.03636 
MG      -0.049360     -0.266448 
NAI      0.1264        0.1262 
FIY      1.140         1.140 
LTL     12.4438       12.4438 
FB       0.01637      -0.20614
d8       0.36201       1.95324
d10      2.24872       0.65748
β1      0.06727       0.33940
β2      1.12363       1.20217
β3     -0.65304      -0.65304
 
各群焦点距離
f1=-1.51854,    f2=20.26060,    f3=2.68873
数値実施例2
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        21.0000        1.
   1         ∞         0.3700        1.88300    40.76    1.881
   2        1.8089      0.6000        1.                  1.306
   3         ∞         0.4000        1.51633    64.14    1.293
   4         ∞         0.1633        1.                  1.209
   5       -7.7140      0.2984        1.88300    40.76    1.185
   6        3.9041      0.0965        1.                  1.135
   7        2.4546      0.8446        1.92286    18.90    1.157
   8        3.1566      d8            1.                  1.013
   9        2.2403      1.5268        1.49700    81.54    0.981
  10        3.3915      d10           1.                  0.697
  11(絞り)   ∞         0.0783        1.                  0.460
  12*       4.0614      0.3192        1.88300    40.76    0.485
  13*      11.1597      0.0830        1.                  0.526
  14        2.0140      0.3000        1.88300    40.76    0.578
  15        1.5060      0.8356        1.51742    52.43    0.586
  16       -1.5170      0.0934        1.                  0.663
  17      -10.3264      1.2276        1.51633    64.14    0.654
  18       -1.3625      0.2968        1.84666    23.78    0.649
  19        1.8989      0.2849        1.                  0.704
  20      -48.9192      0.5397        1.72916    54.68    0.805
  21       -2.6727      0.0956        1.                  0.941
  22        3.6698      0.5463        1.88300    40.76    1.093
  23      -86.8018      0.3500        1.                  1.101
  24         ∞         1.4000        1.51633    64.14    1.111
  25         ∞         0.0757        1.                  1.137
像面         ∞         0.
 
非球面データ
第12面
K=0.
A2=0.0000E+00,A4=2.2626E-02,A6=-1.5521E-01,A8=7.9970E-01,
A10=-1.6090E+00,A12=-1.8424E-01,A14=1.3225E+00,
A16=0.0000E+00,A18=0.0000E+00,A20=0.0000E+00
第13面
K=0.
A2=0.0000E+00,A4=5.9775E-02,A6=-3.6261E-02,A8=2.2828E-01,
A10=-3.7908E-01,A12=7.3652E-02,A14=-4.9792E-01,
A16=0.0000E+00,A18=0.0000E+00,A20=0.0000E+00
 
各種データ
          遠点          近点
OBJ     21.0000        2.9000 
FL       0.95940       0.97543 
MG      -0.042789     -0.227651 
FNO      3.9659        3.8809 
FIY      1.140         1.140 
LTL     12.4974       12.4974 
FB       0.03465      -0.14635
d8       0.37036       1.16143
d10      1.30128       0.51021
β1      0.04739       0.23415
β2      1.11562       1.20142
β3     -0.80926      -0.80926
 
各群焦点距離
f1=-1.07556,    f2=9.21973,    f3=2.80485
数値実施例3
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        17.0000        1.
   1       20.0000      0.3700        1.88300    40.76    2.170
   2        1.8355      0.6000        1.                  1.438
   3         ∞         0.4000        1.51633    64.14    1.482
   4         ∞         0.3651        1.                  1.367
   5       -6.0073      0.7484        1.88300    40.76    1.260
   6        3.8110      0.5388        1.                  1.141
   7        2.9102      0.4410        1.92286    18.90    1.179
   8        4.0476      d8            1.                  1.118
   9        2.4287      1.7001        1.49700    81.54    1.088
  10        3.4681      d10           1.                  0.763
  11(絞り)   ∞         0.0944        1.                  0.501
  12*       1.7041      0.3825        1.88300    40.76    0.600
  13*       5.1778      0.2781        1.                  0.590
  14      -29.8880      0.3000        1.88300    40.76    0.629
  15        2.9929      0.6826        1.51633    64.14    0.668
  16       -1.6314      0.1268        1.                  0.749
  17       -8.7698      1.5571        1.51633    64.14    0.757
  18       -1.4188      0.3403        1.84666    23.78    0.820
  19        4.3711      0.6288        1.                  0.933
  20      264.1515      0.7659        1.72916    54.68    1.240
  21       -2.7702      0.1844        1.                  1.362
  22        2.3631      0.6206        1.88300    40.76    1.495
  23        3.9331      0.4000        1.                  1.392
  24         ∞         1.4000        1.51633    64.14    1.358
  25         ∞         0.0411        1.                  1.147
像面         ∞         0.
 
非球面データ
第12面
K=0.
A2=0.0000E+00,A4=5.2580E-02,A6=5.3691E-02,A8=-3.8939E-03,
A10=0.0000E+00
第13面
K=0.
A2=0.0000E+00,A4=1.2458E-01,A6=7.6091E-02,A8=4.8603E-02,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     17.0000        3.0000 
FL       0.96374       0.99290 
MG      -0.051712     -0.215244 
FNO      3.8797        3.8945 
FIY      1.140         1.140 
LTL     14.5440       14.5440 
FB      -0.00878      -0.17266
d8       0.28712       1.03089
d10      1.29110       0.54733
β1      0.06071       0.23796
β2      1.13728       1.20767
β3     -0.74900      -0.74900
 
各群焦点距離
f1=-1.14099,    f2=10.56718,    f3=4.20765
数値実施例4
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        17.0000        1.
   1       18.6062      0.3700        1.88300    40.76    1.550
   2        1.1634      0.6000        1.                  0.954
   3         ∞         0.4000        1.51633    64.14    0.921
   4         ∞         0.2106        1.                  0.839
   5       -2.9012      0.2987        1.88300    40.76    0.816
   6        6.6566      0.0969        1.                  0.825
   7        2.2651      0.4862        1.67270    32.10    0.857
   8        7.9728      d8            1.                  0.830
   9        2.1192      0.9855        1.49700    81.54    0.806
  10        2.7662      d10           1.                  0.651
  11(絞り)   ∞         0.0820        1.                  0.510
  12*       1.5966      0.3119        1.88300    40.76    0.557
  13*       1.8942      0.0923        1.                  0.547
  14        1.2718      0.3000        1.88300    40.76    0.588
  15        0.8534      1.2563        1.51742    52.43    0.549
  16       -2.5219      0.2499        1.                  0.650
  17      263.2306      0.8622        1.49700    81.54    0.650
  18       -1.3145      0.3172        1.92286    18.90    0.650
  19        2.8013      0.1794        1.                  0.733
  20       17.9648      0.6025        1.78472    25.68    0.806
  21       -2.5539      0.0985        1.                  0.937
  22        4.4647      0.4767        1.78472    25.68    1.044
  23      837.6148      0.3500        1.                  1.056
  24         ∞         1.5000        1.51633    64.14    1.078
  25         ∞         0.0239        1.                  1.140
像面         ∞         0.
 
非球面データ
第12面
K=0.
A2=0.0000E+00,A4=5.4679E-02,A6=-7.3153E-02,A8=1.8821E-01,
A10=-2.6187E-01
第13面
K=0.
A2=0.0000E+00,A4=1.1151E-01,A6=-2.3505E-02,A8=4.5913E-02,
A10=-1.4874E-01
 
各種データ
          遠点          近点
OBJ     17.0000        3.0000 
FL       0.95516       0.95802 
MG      -0.052812     -0.235620 
FNO      3.9309        3.8269 
FIY      1.140         1.140 
LTL     11.7045       11.7045 
FB      -0.02656      -0.20184
d8       0.28665       1.04021
d10      1.26710       0.51353
β1      0.05086       0.21466
β2      1.08934       1.15157
β3     -0.95317      -0.95317
 
各群焦点距離
f1=-0.93319,    f2=12.10818,    f3=2.86916
数値実施例5
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        17.0000        1.
   1      167.9781      0.3000        1.88300    40.76    1.564
   2        1.6545      0.7012        1.                  1.131
   3       -5.5183      0.3000        1.88300    40.76    1.082
   4        3.1744      0.0871        1.                  1.041
   5        2.5804      0.7814        1.84666    23.78    1.066
   6        6.9505      0.1577        1.                  0.996
   7         ∞         0.4000        1.51633    64.14    0.988
   8         ∞         d8            1.                  0.965
   9        1.8888      0.4616        1.49700    81.54    0.928
  10        2.1977     d10            1.                  0.836
  11*       1.8361      0.5888        1.80625    40.91    0.610
  12*       6.3888      0.1529        1.                  0.483
  13(絞り)   ∞         0.1033        1.                  0.434
  14        7.9548      0.7137        1.49700    81.54    0.462
  15       -0.9463      0.2804        1.88300    50.15    0.534
  16       -1.4714      0.0811        1.                  0.610
  17        7.9058      1.2449        1.49700    81.54    0.624
  18       -1.8551      0.2802        1.84666    23.78    0.640
  19        1.8960      0.2604        1.                  0.682
  20      -28.2916      0.5750        1.69895    40.19    0.759
  21       -3.3461      0.0701        1.                  0.916
  22        6.3282      0.5457        1.69895    30.13    1.024
  23      -12.4763      0.3661        1.                  1.083
  24        5.0000      1.0000        1.88300    40.76    1.182
  25         ∞         0.6000        1.51633    64.14    1.162
  26         ∞         0.0441        1.                  1.145
像面         ∞         0.
 
非球面データ
第11面
K=0.4228
A2=0.0000E+00,A4=1.9118E-02,A6=0.0000E+00,A8=0.0000E+00,
A10=0.0000E+00
第12面
K=0.
A2=0.0000E+00,A4=8.0725E-02,A6=0.0000E+00,A8=0.0000E+00,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     17.0000        3.0000 
FL       1.01557       1.01923 
MG      -0.055562     -0.239423 
FNO      3.9399        3.9046 
FIY      1.140         1.140 
LTL     11.7980       11.7980 
FB      -0.01230      -0.19990
d8       0.18900       1.30877
d10      1.51315       0.39339
β1      0.06224       0.25370
β2      1.08568       1.14764
β3     -0.82231      -0.82231
 
各群焦点距離
f1=-1.15452,    f2=18.07196,    f3=3.62238
数値実施例6
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        23.0000        1.
   1       23.3351      0.3000        1.88300    40.76    1.615
   2        1.3180      1.0918        1.                  1.065
   3       -2.3725      0.3000        1.72916    54.68    0.965
   4      -14.0022      0.0758        1.                  0.981
   5         ∞         0.4000        1.51633    64.14    0.983
   6         ∞         0.1000        1.                  0.985
   7       -7.2570      0.5313        1.84666    23.78    0.986
   8       -4.6300      d8            1.                  1.019
   9        1.5542      0.4753        1.49700    81.61    0.973
  10        1.7441      d10           1.                  0.867
  11        6.3417      0.8343        1.69895    30.13    0.700
  12       -1.2695      0.2967        1.84666    23.78    0.632
  13       -8.2452      0.0892        1.                  0.610
  14(絞り)   ∞         0.0900        1.                  0.544
  15        3.3742      1.3677        1.84666    23.78    0.628
  16      -37.5413      0.0916        1.                  0.687
  17        3.4999      0.8220        1.92286    18.90    0.698
  18        1.4223      0.3889        1.49700    81.61    0.663
  19        1.9638      0.0578        1.                  0.700
  20        2.2850      1.0027        1.49700    81.61    0.718
  21       -1.2509      0.2904        1.84666    23.78    0.794
  22       -2.1469      0.0769        1.                  0.887
  23       -2.2922      0.5036        1.80610    40.92    0.894
  24       -2.7798      0.0825        1.                  1.007
  25        2.0361      0.2532        1.72825    28.46    1.067
  26        1.6933      0.7456        1.                  1.011
  27        5.5337      1.0000        1.88300    40.76    1.122
  28         ∞         0.6000        1.51633    64.14    1.131
  29         ∞         0.0451        1.                  1.138
像面         ∞         0.
 
各種データ
          遠点          近点
OBJ     23.0000        3.5000 
FL       1.01803       1.00996 
MG      -0.042133     -0.217390 
FNO      3.8210        3.7550 
FIY      1.140         1.140 
LTL     13.4982       13.4982 
FB       0.00220      -0.17446
d8       0.26049       1.10362
d10      1.32512       0.48199
β1      0.04971       0.24508
β2      1.15340       1.20715
β3     -0.73482      -0.73482
 
各群焦点距離
f1=-1.21606,    f2=15.68585,    f3=3.50719
数値実施例7
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        13.0000        1.
   1         ∞         0.2500        1.88300    40.76    1.404
   2*       0.9721      0.5998        1.                  0.965
   3         ∞         0.4000        1.49400    75.01    0.945
   4         ∞         0.1025        1.                  0.891
   5       -7.4090      0.3000        1.81600    46.62    0.881
   6        1.0886      0.7980        1.80518    25.42    0.840
   7       76.4205      d7            1.                  0.820
   8*       2.2208      0.4521        1.49700    81.54    0.786
   9*       2.9006      d9            1.                  0.722
  10        6.3327      0.3000        1.83400    37.16    0.650
  11        1.1384      1.1031        1.64769    33.79    0.614
  12       -9.1597      0.1000        1.                  0.598
  13(絞り)   ∞         0.1000        1.                  0.590
  14        2.4331      0.4109        1.81600    46.62    0.624
  15        1.4835      0.6873        1.49700    81.54    0.615
  16       -1.5523      0.1000        1.                  0.650
  17       -1.7693      0.3000        1.81600    46.62    0.643
  18        4.9222      0.5112        1.49700    81.54    0.711
  19       -5.5507      0.1000        1.                  0.795
  20*       5.0297      0.6920        1.49700    81.54    0.850
  21*      -1.8981      0.1000        1.                  0.907
  22       16.7852      0.5780        1.83400    37.16    0.902
  23        9.3753      0.4930        1.                  0.882
  24         ∞         0.2000        1.51633    64.14    0.890
  25         ∞         0.1000        1.                  0.892
  26         ∞         5.3000        1.63854    55.38    0.894
  27         ∞         0.0856        1.                  0.950
像面         ∞         0.
 
非球面データ
第2面
K=-1.0000
A2=0.0000E+00,A4=-1.6360E-02,A6=4.6266E-02,A8=0.0000E+00,
A10=0.0000E+00
第8面
K=0.
A2=0.0000E+00,A4=-5.2700E-02,A6=5.4101E-02,A8=4.5765E-03,
A10=0.0000E+00
第9面
K=0.
A2=0.0000E+00,A4=-4.9134E-02,A6=6.3791E-02,A8=0.0000E+00,
A10=0.0000E+00
第20面
K=0.
A2=0.0000E+00,A4=-5.9779E-03,A6=1.4095E-03,A8=0.0000E+00,
A10=0.0000E+00
第21面
K=0.
A2=0.0000E+00,A4=2.2880E-02,A6=3.2241E-03,A8=0.0000E+00,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     13.0000        2.4000 
FL       0.80002       0.79259 
MG      -0.057538     -0.240455 
FNO      3.6407        3.5879 
FIM      0.948         0.948 
LTL     15.7036       15.7037 
FB       0.03958      -0.10492 
d7       0.30000       0.98746 
d9       1.24011       0.55265 
β1      0.06093       0.24500 
β2      1.11789       1.16191 
β3     -0.84467      -0.84469
 
各群焦点距離
f1=-0.85974,    f2=15.61736,    f3=2.99266
数値実施例8
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        11.5000        1.
   1         ∞         0.2500        1.88300    40.76    1.436
   2*       0.8505      0.6529        1.                  0.953
   3       13.6043      0.5102        1.62004    36.26    0.919
   4       -4.6021      0.2426        1.                  0.852
   5       -1.5808      0.2500        1.80400    46.57    0.809
   6        3.0801      0.6314        1.80518    25.42    0.852
   7       -3.5286      d7            1.                  0.880
   8*       1.7682      0.5533        1.51633    64.14    0.833
   9        2.1000      d9            1.                  0.727
  10        2.0695      0.8114        1.63854    55.38    0.600
  11       -1.3646      0.2500        1.80100    34.97    0.507
  12      -26.3432      0.1000        1.                  0.487
  13(絞り)   ∞         0.1000        1.                  0.475
  14        1.5941      0.8544        1.80100    34.97    0.526
  15        0.7801      0.6500        1.49700    81.54    0.508
  16*       2.2277      0.2000        1.                  0.600
  17        1.4012      0.8500        1.49700    81.54    0.770
  18       -1.6518      0.3000        1.81600    46.62    0.785
  19       -6.6118      0.2000        1.                  0.840
  20         ∞         0.4000        1.49400    75.01    0.870
  21         ∞         0.6001        1.                  0.901
  22        3.9388      0.5256        1.76182    26.52    0.987
  23         ∞         0.3000        1.51633    64.14    0.968
  24         ∞         0.0263        1.                  0.952
像面         ∞         0.
 
非球面データ
第2面
K=-0.7649
A2=0.0000E+00,A4=-7.8745E-02,A6=2.3040E-02,A8=5.7998E-03,
A10=0.0000E+00
第8面
K=-0.5166
A2=0.0000E+00,A4=-5.0786E-04,A6=9.9993E-03,A8=0.0000E+00,
A10=0.0000E+00
第16面
K=0.
A2=0.0000E+00,A4=1.0123E-01,A6=-6.6182E-02,A8=9.6241E-02,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     11.5000        2.0000 
FL       0.77283       0.76709 
MG      -0.062553     -0.269761 
FNO      3.6083        3.5385 
FIM      0.948         0.948 
LTL     10.8109       10.8109 
FB      -0.02202      -0.18060 
d7       0.29000       1.05123 
d9       1.26273       0.50150 
β1      0.07260       0.29872 
β2      1.14373       1.19879 
β3     -0.75331      -0.75331 
 
各群焦点距離
f1=-0.91119,    f2=13.82488,    f3=3.05955
数値実施例9
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        12.5000        1.
   1         ∞         0.2500        1.88300    40.76    1.290
   2*       0.8666      0.5899        1.                  0.874
   3      -67.8910      0.4204        1.62004    36.26    0.850
   4      -11.6480      0.2250        1.                  0.805
   5       -1.9029      0.2500        1.80400    46.57    0.786
   6        2.7315      0.6194        1.80518    25.42    0.830
   7       -3.0429      d7            1.                  0.860
   8*       1.7618      0.4866        1.51633    64.14    0.805
   9        2.1000      d9            1.                  0.719
  10        1.8693      0.8282        1.63854    55.38    0.600
  11       -1.2660      0.2500        1.80100    34.97    0.496
  12      255.5774      0.1000        1.                  0.472
  13(絞り)   ∞         0.1000        1.                  0.460
  14        1.5979      0.8190        1.80100    34.97    0.508
  15        0.7863      0.6500        1.49700    81.54    0.496
  16*       2.2032      0.2000        1.                  0.600
  17        1.4729      0.8500        1.49700    81.54    0.747
  18       -2.4872      0.3000        1.81600    46.62    0.783
  19       -9.6848      0.2000        1.                  0.828
  20         ∞         0.4000        1.49400    75.01    0.860
  21         ∞         0.6000        1.                  0.897
  22        3.1860      0.5610        1.76182    26.52    1.001
  23         ∞         0.3000        1.51633    64.14    0.975
  24         ∞         0.0259        1.                  0.951
像面         ∞         0.
 
非球面データ
第2面
K=-0.4408
A2=0.0000E+00,A4=-1.1358E-01,A6=1.3043E-02,A8=-2.8998E-02,
A10=0.0000E+00
第8面
K=0.2651
A2=0.0000E+00,A4=-1.5431E-02,A6=6.8384E-03,A8=0.0000E+00,
A10=0.0000E+00
第16面
K=0.
A2=0.0000E+00,A4=1.2142E-01,A6=0.0000E+00,A8=0.0000E+00,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     12.5000        2.1000 
FL       0.80064       0.79640 
MG      -0.059913     -0.269809 
FNO      3.6030        3.5550 
FIM      0.948         0.948 
LTL     10.5879       10.5879 
FB      -0.02210      -0.18901 
d7       0.29400       1.08080 
d9       1.26851       0.48171 
β1      0.07161       0.30780 
β2      1.16057       1.21589 
β3     -0.72092      -0.72092 
 
各群焦点距離
f1=-0.97051,    f2=14.22153,    f3=3.39668
数値実施例10
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        12.5000        1.
   1         ∞         0.2500        1.88300    40.76    1.337
   2*       0.8692      0.5880        1.                  0.900
   3         ∞         0.4000        1.49400    75.01    0.887
   4         ∞         0.0878        1.                  0.848
   5       -9.0618      0.2500        1.81600    46.62    0.841
   6        1.0427      0.7558        1.80518    25.42    0.815
   7       17.0221      d7            1.                  0.801
   8*       3.0758      0.4338        1.80610    40.92    0.798
   9        3.6580      d9            1.                  0.740
  10*       2.1247      0.6051        1.72916    54.68    0.650
  11*       9.8770      0.1000        1.                  0.523
  12(絞り)   ∞         0.1000        1.                  0.505
  13        2.4630      0.3572        1.74951    35.33    0.520
  14        0.9957      1.5342        1.49700    81.54    0.517
  15       -4.3095      0.4000        1.                  0.650
  16        3.5884      0.3000        1.83400    37.16    0.735
  17        1.5227      0.5851        1.49700    81.54    0.731
  18*    -405.9130      0.6000        1.                  0.777
  19        3.5202      0.6000        1.53172    48.84    0.901
  20         ∞         2.4000        1.51633    64.14    0.910
  21         ∞         0.0260        1.                  0.950
像面         ∞         0.
 
非球面データ
第2面
K=-0.9776
A2=0.0000E+00,A4=-8.8118E-03,A6=6.8995E-02,A8=0.0000E+00,
A10=0.0000E+00
第8面
K=0.
A2=0.0000E+00,A4=-9.1674E-04,A6=3.1219E-02,A8=-8.5050E-03,
A10=0.0000E+00
第10面
K=0.
A2=0.0000E+00,A4=-1.0574E-02,A6=-6.0806E-02,A8=0.0000E+00,
A10=0.0000E+00
第11面
K=0.
A2=0.0000E+00,A4=2.6851E-03,A6=-6.5815E-02,A8=0.0000E+00,
A10=0.0000E+00
第18面
K=0.
A2=0.0000E+00,A4=9.0488E-03,A6=-1.1887E-02,A8=0.0000E+00,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     12.5000        2.1000 
FL       0.79078       0.78170 
MG      -0.059423     -0.269569 
FNO      3.6685        3.5909 
FIM      0.948         0.948 
LTL     11.9080       11.9080 
FB      -0.02102      -0.18476 
d7       0.23000       1.06652 
d9       1.30502       0.46850 
β1      0.05531       0.24046 
β2      1.07157       1.11807 
β3     -1.00267      -1.00267 
 
各群焦点距離
f1=-0.74700,    f2=17.99209,    f3=2.73069
数値実施例11
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        10.0000        1.
   1         ∞         0.2500        1.88300    40.76    1.380
   2*       1.0031      0.9611        1.                  0.964
   3       -3.9828      0.2500        1.81600    46.62    0.840
   4        1.2000       0.7325       1.69895    30.13    0.803
   5      -11.8723      d5            1.                  0.801
   6*       1.7685      0.4535        1.49700    81.54    0.781
   7*       2.1000      d7            1.                  0.710
   8        3.0533      0.3263        1.80400    46.58    0.650
   9        1.0971      0.5783        1.67003    47.23    0.576
  10      -10.8438      0.1000        1.                  0.544
  12(絞り)   ∞         0.1000        1.                  0.525
  12        3.6361      1.0893        1.83400    37.16    0.557
  13        3.2493      0.4833        1.49700    81.54    0.604
  14       -7.5585      0.3269        1.                  0.650
  15        7.6519      0.3000        1.80518    25.42    0.709
  16        1.5170      0.7129        1.49700    81.54    0.727
  17*      -2.4421      0.1000        1.                  0.795
  18         ∞         0.4000        1.49400    75.01    0.816
  19         ∞         0.6000        1.                  0.840
  20        6.8695      0.6732        1.49700    81.54    0.901
  21         ∞         2.4000        1.51633    64.14    0.911
  22         ∞         0.0265        1.                  0.951
像面         ∞         0.
 
非球面データ
第2面
K=-1.9630
A2=0.0000E+00,A4=8.3944E-02,A6=-1.6945E-03,A8=0.0000E+00,
A10=0.0000E+00
第6面
K=0.
A2=0.0000E+00,A4=-3.6151E-02,A6=1.9453E-02,A8=-5.8053E-03,
A10=0.0000E+00
第7面
K=0.
A2=0.0000E+00,A4=-2.3622E-02,A6=0.0000E+00,A8=0.0000E+00,
A10=0.0000E+00
第17面
K=0.
A2=0.0000E+00,A4=1.2915E-02,A6=-8.6587E-03,A8=0.0000E+00,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     10.0000        2.0000 
FL       0.77489       0.77102 
MG      -0.071294     -0.269683 
FNO      3.6407        3.5703 
FIM      0.948         0.948 
LTL     12.4265       12.4265 
FB      -0.02879      -0.18148 
d5       0.25000       1.03523 
d7       1.31256       0.52733 
β1      0.06956       0.25131 
β2      1.07800       1.12865 
β3     -0.95078      -0.95078 
 
各群焦点距離
f1=-0.76944,    f2=15.50141,    f3=2.75593
数値実施例12
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        15.0000        1.
   1         ∞         0.2500        1.88300    40.76    1.270
   2*       0.7856      0.6500        1.                  0.838
   3         ∞         0.4000        1.49400    75.01    0.824
   4         ∞         d4            1.                  0.800
   5*       1.9309      0.4597        1.49700    81.54    0.766
   6        2.8631      d6            1.                  0.685
   7        8.2193      0.5563        1.72825    28.46    0.492
   8       -0.8058      0.3000        1.81600    46.62    0.453
   9       -2.4732      0.1000        1.                  0.430
  10(絞り)   ∞         0.6013        1.                  0.395
  11        9.1375      0.4871        1.49700    81.54    0.517
  12       -2.2107      0.2570        1.80518    25.42    0.562
  13        1.6710      0.6818        1.49700    81.54    0.623
  14       -1.7198      0.1000        1.                  0.728
  15*       2.9755      0.5709        1.49700    81.54    0.800
  16       -5.8213      0.6000        1.                  0.818
  17         ∞         3.2000        1.88300    40.76    0.816
  18         ∞         0.3000        1.51633    64.14    0.812
  19         ∞         0.0263        1.                  0.812
像面         ∞         0.
 
非球面データ
第2面
K=-1.0000
A2=0.0000E+00,A4=3.5380E-02,A6=2.5784E-02,A8=7.1050E-02,
A10=0.0000E+00
第5面
K=0.
A2=0.0000E+00,A4=-1.5830E-02,A6=4.2282E-02,A8=1.6255E-02,
A10=0.0000E+00
第15面
K=0.
A2=0.0000E+00,A4=2.1314E-03,A6=1.0242E-02,A8=0.0000E+00,
A10=0.0000E+00
 
各種データ
          遠点          近点
OBJ     15.0000        1.7300 
FL       0.70373       0.69457 
MG      -0.044525     -0.275741 
FNO      3.6056        3.5439 
FIM      0.812         0.812 
LTL     11.0387       11.0387 
FB      -0.00508      -0.16527 
d4       0.26500       1.03032 
d6       1.23330       0.46798 
β1      0.05553       0.32325 
β2      1.16820       1.24284 
β3     -0.68635      -0.68635 
 
各群焦点距離
f1=-0.88975,    f2=10.25404,    f3=2.38964 
数値実施例13
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        12.0000        1.
   1         ∞         0.2500        1.88300    40.76    0.959
   2*       0.5867      0.7292        1.                  0.604
   3       -2.9628      0.2500        1.77250    49.60    0.580
   4        1.8141      0.6400        1.84666    23.78    0.598
   5       -3.6936      d5            1.                  0.611
   6        1.4089      0.5984        1.65160    58.55    0.568
   7        1.5806      d7            1.                  0.446
   8(絞り)   ∞         0.1000        1.                  0.320
   9        3.0016      0.3300        1.49700    81.54    0.363
  10       -2.8548      0.2000        1.                  0.415
  11        3.2270      0.5193        1.49700    81.54    0.469
  12       -0.9500      0.5877        1.84666    23.78    0.498
  13       -1.9860      0.2000        1.                  0.611
  14         ∞         0.4000        1.51633    64.14    0.629
  15         ∞         1.8314        1.                  0.645
  16        1.4990      0.4755        1.65160    58.55    0.769
  17         ∞         0.3000        1.51633    64.14    0.719
  18         ∞         0.0256        1.                  0.656
像面         ∞         0.
 
非球面データ
第2面
K=-3.9151
A2=0.0000E+00,A4=1.8116E+00,A6=-3.8819E+00,A8=7.7408E+00,
A10=-6.1502E+00,A12=-1.6103E-08,A14=0.0000E+00,
A16=0.0000E+00,A18=0.0000E+00,A20=0.0000E+00
 
各種データ
          遠点          近点
OBJ     12.0000        2.3000 
FL       0.57445       0.58774 
MG      -0.045069     -0.193515 
FNO      3.7639        3.8219 
FIM      0.644         0.644 
LTL      8.5877        8.5877 
FB      -0.00025      -0.08809 
d5       0.31000       0.75760 
d7       0.84053       0.39293 
β1      0.06232       0.25629 
β2      1.21026       1.26367 
β3     -0.59752      -0.59752 
 
各群焦点距離
f1=-0.79876,    f2=8.38077,    f3=3.42474
数値実施例14
単位    mm
 
面データ
面番号       r            d            nd        νd       ER
物面         ∞        12.0000        1.
   1         ∞         0.3000        1.88300    40.76    0.956
   2*       0.6059      0.5726        1.                  0.590
   3       -2.2791      0.3000        1.77250    49.60    0.568
   4        2.2000      0.6000        1.84666    23.78    0.588
   5       -5.1712      d5            1.                  0.611
   6*       1.1177      0.5146        1.51633    64.14    0.582
   7*       1.2614      d7            1.                  0.492
   8        2.4878      0.3800        1.72916    54.68    0.408
   9         ∞         0.1000        1.                  0.378
  10(絞り)   ∞         0.1000        1.                  0.370
  11        1.7000      0.2500        1.80518    25.42    0.385
  12        1.0712      0.5000        1.49700    81.54    0.381
  13         ∞         0.2000        1.                  0.408
  14        1.4815      0.7000        1.49700    81.54    0.456
  15       -0.9675      0.4036        1.88300    40.76    0.458
  16       -9.2037      0.2000        1.                  0.515
  17         ∞         0.4000        1.49400    75.01    0.550
  18         ∞         0.7801        1.                  0.593
  19        1.6195      0.6259        1.69680    55.53    0.749
  20         ∞         0.3000        1.51633    64.14    0.695
  21         ∞         0.0264        1.                  0.654
像面         ∞         0.
 
非球面データ
第2面
K=-3.9794
A2=0.0000E+00,A4=1.7134E+00,A6=-3.7300E+00,A8=7.5080E+00,
A10=-5.6418E+00,A12=-1.6099E-08,A14=0.0000E+00,
A16=0.0000E+00,A18=0.0000E+00,A20=0.0000E+00
第6面
K=0.
A2=0.0000E+00,A4=-1.2803E-01,A6=0.0000E+00,A8=0.0000E+00,
A10=0.0000E+00
第7面
K=0.
A2=0.0000E+00,A4=-1.0352E-01,A6=0.0000E+00,A8=0.0000E+00,
A10=0.0000E+00

各種データ
          遠点          近点
OBJ     12.0000        2.3000 
FL       0.59329       0.60659 
MG      -0.046655     -0.201619 
FNO      3.6591        3.6799      
FIM      0.644         0.644 
LTL      8.4232        8.4232 
FB      -0.00123      -0.09585 
d5       0.30000       0.73415 
d7       0.87000       0.43585 
β1      0.05072       0.20971 
β2      1.12026       1.17095 
β3     -0.82104      -0.82104
 
各群焦点距離
f1=-0.64900,    f2=8.56357,    f3=3.24456
 次に、各実施例における条件式の値を以下に掲げる。-(ハイフン)は該当する構成がないことを示す。
                      実施例1       実施例2       実施例3
(1)f3L12/fL          1.294826951    1.804565353    2.308091394
(2)fL/R31F           0.65378829     0.23622396     0.56554193
(3)fL×ΣPSNi        -0.4785357     -0.4654942     -0.3424523
(5)(R3R1+R3R2)
    /(R3R1-R3R2)        -              -              -
(6)('R3R1+'R3R2)
    /('R3R1-'R3R2)    -0.3120846     -0.918874      -4.0103185
(7)fL/rSNr           -0.7720844     -0.7041468     -0.6792642
(8)ν31P32P         0            -11.67         -23.38
(9)ν33P
  -(ν31P32P)/2   -31.01          17.545         11.69
(10)ν31N32N       -3.6           16.98          16.98
(11)(R21F+R21R)
    /(R21F-R21R)   -25.572433      -4.8921126     -5.673273
(12)D21/fL           0.51463549     1.5914113      1.764065
(13)β2F             1.12363        1.11562        1.13728
(14)β2N/β2F        1.06989845     1.07690791     1.06189329
(15)(1-β2F2)
      ×β3F2        0.17145198     0.19795146     0.21976094
(16)(1-β2N2)
      ×β3N2        0.29074171     0.35883399     0.34339165
(17)fL/R12Fa        -0.4498737     -0.1243713     -0.1604281
(18)fL/R12Fb          -              -              -
(19)fL/R12Fc        -0.4498737     -0.1243713     -0.1604281
(20)fL/R12Fd          -              -              - 
(21)fL/FL12         -0.4852166     -0.3307478     -0.3779965
(22)|Rfin|/|ffin|      0.012346397   21.70696209       0.695422317
(23)fL×tanωmax      6.28466714     7.38281509     5.57185721
2ymax                 2.28           2.28           2.28
(24)ER2              0.676          0.663          0.749
4×fL/FEX             1.09848332     0.96373682     0.99482839
 
                      実施例4       実施例5       実施例6
(1)f3L12/fL          2.06321454     2.049095582    2.841763013
(2)fL/R31F           0.59824627     0.55311258     0.16052951
(3)fL×ΣPSNi        -0.7186162     -0.6056761     -0.7078323
(5)(R3R1+R3R2)
    /(R3R1-R3R2)        -              -            -1.0000011
(6)('R3R1+'R3R2)
    /('R3R1-'R3R2)    -1.0107176     -1.0000001       -
(7)fL/rSNr           -0.7266337     -0.5474476     -0.813838
(8)ν31P32P       -11.67         -40.63           6.35
(9)ν33P
  -(ν31P32P)/2    34.945         20.315         54.655
(10)ν31N32N       21.86          26.37           4.88
(11)(R21F+R21R)
    /(R21F-R21R)    -7.5508501    -13.2292       -17.368615
(12)D21/fL           1.03176431     0.45452308     0.46688212
(13)β2F             1.08934        1.08568        1.1534
(14)β2N/β2F        1.05712633     1.05707022     1.04660135
(15)(1-β2F2)
      ×β3F2        0.17792027     0.14694767     0.24273424
(16)(1-β2N2)
      ×β3N2        0.31084157     0.26073606     0.33596788
(17)fL/R12Fa        -0.3292293     -0.1840368     -0.4290959
(18)fL/R12Fb          -              -              -
(19)fL/R12Fc        -0.3292293     -0.1840368     -0.4290959
(20)fL/R12Fd          -              -             - 
(21)fL/FL12         -0.4235367     -0.4522086     -0.2570458
(22)|Rfin|/|ffin|    146.472004     17660044.0     15956852.5
(23)fL×tanωmax      5.542921362    2.74763805     4.27016993
2ymax                 2.28           2.28           2.28
(24)ER2              0.65           0.610          0.687
4×fL/FEX             0.96676113     1.02842532     1.06183051
 
                      実施例7       実施例8       実施例9
(1)f3L12/fL          2.82442939     3.49882898     3.46073141
(2)fL/R31F           0.12633158     0.37343803     0.42831006
(3)fL×ΣPSNi        -0.3548088     -0.5424258     -0.514974
(5)(R3R1+R3R2)
    /(R3R1-R3R2)        -            -1.0000001     -1.0000001
(6)('R3R1+'R3R2)
    /('R3R1-'R3R2)    0.45203383       -              -
(7)fL/rSNr            0.16253301     -0.4678714    -0.3219041
(8)ν31P32P       -47.75         -26.16         -26.16
(9)ν33P
  -(ν31P32P)/2    23.875         13.08          13.08
(10)ν31N32N       -9.46           0              0
(11)(R21F+R21R)
    /(R21F-R21R)    -7.5336864    -11.658228     -11.418687
(12)D21/fL           0.56511087     0.71594012     0.60776379
(13)β2F             1.11789        1.14373        1.16057
(14)β2N/β2F        1.03937776     1.04814073     1.04766623
(15)(1-β2F2)
      ×β3F2        0.21089556     0.23210861     0.25010353
(16)(1-β2N2)
      ×β3N2        0.29567094     0.32926989     0.34487983
(17)fL/R12Fa        -0.1079795        -              -
(18)fL/R12Fb        -0.1079795        -              -
(19)fL/R12Fc          -               -              -
(20)fL/R12Fd          -            -0.4888854     -0.4207473
(21)fL/FL12         -0.1052367      0.13785028     0.03540806
(22)|Rfin|/|ffin|      0.35511155    19341611.3     23911431.8
(23)fL×tanωmax      2.46301838     4.37275453     2.4579755
2ymax                 1.896          1.896          1.896
(24)ER2              0.650          0.6            0.6
4×fL/FEX             0.87409997     0.85160331     0.88541886
 
                      実施例10     実施例11     実施例12
(1)f3L12/fL          3.25109386     3.49339906     4.72851804
(2)fL/R31F           0.37218431     0.25378771     0.08561921
(3)fL×ΣPSNi        -0.3755556     -0.3324111     -0.3045253
(5)(R3R1+R3R2)
    /(R3R1-R3R2)      -1.0000001     -1.0000001     -0.323504
(6)('R3R1+'R3R2)
    /('R3R1-'R3R2)      -              -              -
(7)fL/rSNr            0.51932751     0.51080422     0.42114303
(8)ν31P32P       -26.86         -34.31         -53.08
(9)ν33P
  -(ν31P32P)/2    13.43          17.155         26.54
(10)ν31N32N       -1.83           9.42          21.2
(11)(R21F+R21R)
    /(R21F-R21R)   -11.566128     -11.669683      -5.1426732
(12)D21/fL           0.5485723      0.58524436     0.65323348
(13)β2F             1.07157        1.078          1.1682
(14)β2N/β2F        1.04339427     1.04698516     1.06389317
(15)(1-β2F2)
      ×β3F2        0.14865813     0.15410623     0.25030583
(16)(1-β2N2)
      ×β3N2        0.25074824     0.26037189     0.3738214
(17)fL/R12Fa        -0.0872652     -0.1945591       -
(18)fL/R12Fb        -0.0872652     -0.1945591       -
(19)fL/R12Fc          -              -              -
(20)fL/R12Fd          -              -              - 
(21)fL/FL12         -0.118959      -0.183571       0.0686298
(22)|Rfin|/|ffin|   15104827.4     7234895.27        1.437642
(23)fL×tanωmax      2.41626746     2.38641257     2.15048988
2ymax                 1.896          1.896          1.624
(24)ER2              0.65           0.65           0.728
4×fL/FEX             0.85698185     0.84479695     0.77760221
 
                      実施例13     実施例14
(1)f3L12/fL          3.57594221     3.47974852
(2)fL/R31F           0.19138126     0.23847978
(3)fL×ΣPSNi        -0.2114339     -0.40739
(5)(R3R1+R3R2)
    /(R3R1-R3R2)      -1             -1
(6)('R3R1+'R3R2)
    /('R3R1-'R3R2)      -              -
(7)fL/rSNr           -0.6046842     -0.6132196
(8)ν31P32P         0            -26.86
(9)ν33P
  -(ν31P32P)/2   -22.99          13.43
(10)ν31N32N         -           -15.34
(11)(R21F+R21R)
    /(R21F-R21R)   -17.411182     -16.556019
(12)D21/fL           1.04169205     0.86736672
(13)β2F             1.21026        1.12026
(14)β2N/β2F        1.04413101     1.04524842
(15)(1-β2F2)
      ×β3F2         0.27768503     0.20935081
(16)(1-β2N2)
      ×β3N2         0.3566369      0.30470757
(17)fL/R12Fa           -            -0.2603177
(18)fL/R12Fb         -0.1938875     -0.2603177
(19)fL/R12Fc           -              -
(20)fL/R12Fd           -              -
(21)fL/FL12           0.02105524    -0.0676638
(22)|Rfin|/|ffin|    43468810.7      43025556.8
(23)fL×tanωmax       1.76552611     1.84324927
2ymax                  1.288          1.288
(24)ER2               0.611          0.408
4×fL/FEX              0.61372863     0.64929138
 図29は、撮像装置の例である。この例では、撮像装置は内視鏡システムである。図29は、内視鏡システムの概略構成を示す図である。
 内視鏡システム300は、電子内視鏡を用いた観察システムである。内視鏡システム300は、電子内視鏡310と画像処理装置320とから構成されている。電子内視鏡310は、スコープ部310aと接続コード部310bとを備えている。また、画像処理装置320には、表示ユニット330が接続されている。
 スコープ部310aは、操作部340と挿入部341に大別される。挿入部341は、細長で患者の体腔内へ挿入可能になっている。また、挿入部341は、可撓性を有する部材で構成されている。観察者は、操作部340に設けられているアングルノブ等により、諸操作を行うことができる。
 また、操作部340からは、接続コード部310bが延設されている。接続コード部310bは、ユニバーサルコード350を備えている。ユニバーサルコード350は、コネクタ360を介して画像処理装置320に接続されている。
 ユニバーサルコード350は、各種の信号等の送受信に用いられる。各種の信号としては、電源電圧信号及びCCD駆動信号等がある。これらの信号は、電源装置やビデオプロセッサからスコープ部310aに送信される。また、各種の信号として映像信号がある。この信号は、スコープ部310aからビデオプロセッサに送信される。
 なお、画像処理装置320内のビデオプロセッサには、図示しないVTRデッキ、ビデオプリンタ等の周辺機器が接続可能である。ビデオプロセッサは、スコープ部310aからの映像信号に対して信号処理を施す。映像信号に基づいて、表示ユニット330の表示画面上に内視鏡画像が表示される。
 挿入部341の先端部342には、光学系が配置されている。図30は、内視鏡の光学系の構成を示す図である。光学系400は、照明部と観察部とを有する。
 照明部は、ライトガイド401と照明レンズ402とを有する。ライトガイド401は、照明光を挿入部341の先端部342に伝送する。伝送された照明光は、ライトガイド401の先端面から出射する。
 先端部342には、照明レンズ402が配置されている。照明レンズ402は、ライトガイド401の先端面と対向する位置に配置されている。照明光は照明レンズ402を通過し、照明窓403から出射する。これにより、被検体内部の観察対象部位(以下、「観察部位404」という)が照明される。
 先端部342には、観察窓405が、照明窓403の隣に設けられている。観察部位404からの光は、観察窓405を通過して、先端部342内に入射する。観察窓405の後方には、観察部が設けられている。
 観察部は、広角光学系406と撮像素子407とを有する。広角光学系406に、例えば、実施例1の広角光学系が用いられている。
 観察部位404からの反射光は、広角光学系406を通過して撮像素子407に入射する。撮像素子407の撮像面には、観察部位404の像(光学像)が形成される。観察部位404の像は撮像素子407によって光電変換され、これにより観察部位404の画像が得られる。観察部位404の画像は表示ユニット330に表示される。このようにして、観察者は、観察部位404の画像を観察できる。
 広角光学系406では、像面は湾曲形状になっている。撮像素子407は、像面の形状と同じ湾曲形状の受光面(撮像面)を有している。撮像素子407を用いることで、撮影画像の画質を向上することができる。
 図31は、撮像装置の光学系の構成を示す図である。光学系は、対物光学系OBJと、カバーガラスCと、プリズムPと、を有する。カバーガラスCは、対物光学系OBJとプリズムPとの間に配置されている。対物光学系OBJに、実施例7の広角光学系が用いられている。カバーガラスCの代わりに、光学フィルタを配置しても良い。あるいは、カバーガラスCは配置しなくても良い。
 プリズムPは、プリズムP1と、プリズムP2と、を有する。プリズムP1とプリズムP2は、共に三角プリズムである。プリズムP1とプリズムP2とで、光路分割素子が形成されている。
 プリズムP1は、光学面S1と、光学面S2と、光学面S3と、を有する。プリズムP2は、光学面S3と、光学面S4と、光学面S5と、を有する。プリズムP1は、プリズムP2に接合されている。プリズムP1とプリズムP2とで、接合面が形成される。光学面S3は、接合面である。
 対物光学系OBJから射出された光(以下、「結像光」という)は、カバーガラスCを通過して、光学面S1に入射する。光学面S1は透過面なので、結像光は光学面S1を透過する。
 続いて、結像光は光学面S3に入射する。光学面S3は、面の法線が光軸に対して45度となるように配置されている。光学面S3に入射した結像光は、光学面S3を透過する光(以下、「結像光1」という)と、光学面S3で反射される光(以下、「結像光2」という)と、に分かれる。
 結像光1と結像光2は、互いに異なる方向に進行する。結像光1が進行する光路を第1の光路とし、結像光2が進行する光路を第2の光路とすると、光学面S3によって、第1の光路と第2の光路が形成される。このように、光学面S3は、光路分割面として機能する。
 第1の光路は、対物光学系OBJの光路の延長線上に形成されている。第2の光路は、第1の光路と交差するように形成されている。図31では、第2の光路は第1の光路と直交している。
 第1の光路には、光学面S3、光学面S4、及び光学面S5が位置している。光学面S3を透過した結像光1は、光学面S4に入射する。光学面S4は反射面である。結像光1は光学面S4で反射され、光学面S5に入射する。光学面S5は透過面である。結像光1は光学面S5を透過し、光学面S5の近傍の像面Iに集光する。像面Iに、結像光1による光学像が形成される。
 第2の光路には、光学面S3、光学面S2、光学面S3、及び光学面S5が位置している。光学面S3で反射された結像光2は、光学面S2に入射する。光学面S2は反射面である。結像光2は光学面S2で反射され、光学面S3に入射する。光学面S3では、結像光2は、光学面S3を透過する光と、光学面S3で反射される光と、に分かれる。
 光学面S3を透過した結像光2は、光学面S5に入射する。結像光2は光学面S5を透過し、光学面S5の近傍の像面Iに集光する。像面Iに、結像光2による光学像が形成される。
 図31に示す光学系では2つの光路が形成されているので、同一平面に光学像が2つ形成される。この同一平面は、2つの光路における像面Iである。
 第1の光路における光路長と第2の光路における光路長が等しい場合、同一平面内の異なる位置に、ピントの合った光学像が2つ形成される。2つの光学像は、同一物体にピントが合ったときの光学像である。よって、一方の光学像における物体面の位置と他方の光学像における物体面の位置は等しい。
 一方、第1の光路における光路長と第2の光路における光路長が異なる場合も、同一平面内の異なる位置に、ピントの合った光学像が2つ形成される。ただし、2つの光学像は、異なる物体にピントが合ったときの光学像である。よって、一方の光学像における物体面の位置と他方の光学像における物体面の位置は異なる。
 例えば、第1の光路における光路長が第2の光路における光路長よりも短いとする。この場合、結像光1によって形成される光学像の物体面は、結像光2によって形成される物体面よりも遠くに位置している。このように、対物光学系OBJからの距離(以下、「物体距離」という)が異なる2つの物体面に対して、それぞれピントを合わせることになる。2つの物体面で物体距離が異なっていても、同一平面内の異なる位置に、2つの光学像が形成される。
 対物光学系OBJは、ピントの合っている区間(以下、「合焦区間」という)を有する。合焦区間は物体距離で表される区間であって、対物光学系OBJの被写界深度に相当する。合焦区間では、物体面がどこに位置していても、ピントの合った光学像が形成される。
 2つの物体面で物体距離が異なる場合、一方の物体面における合焦区間の位置と、他方の物体面における合焦区間の位置との間で、ずれが生じる。2つの物体面の間隔を適切に設定することで、一方の物体面における合焦区間の一部と、他方の物体面における合焦区間の一部を、重複させることができる。
 こうして、合焦区間がずれた2つの光学像を撮像し、これにより2つの画像を取得する。そして、撮像した2つの画像からピントが合っている領域(被写界深度に相当する範囲の画像領域)だけを抽出し、抽出した領域を合成する。このようにすることで、被写界深度の大きな画像を取得することができる。
 光学面S3には、例えば、ハーフミラー面、又は偏光ビームスプッリタ面を用いることができる。
 光学面S3がハーフミラー面の場合、結像光の光量の半分が光学面S3で反射され、残りの半分が光学面S3を透過する。よって、結像光2の光量は、結像光の光量の半分の光量になる。結像光2は、光学面S2で反射される。光学面S2で反射された結像光2は、光学面S3を透過する。光学面S3では、結像光2の光量の半分しか透過させることができない。
 光学面S3が偏光ビームスプッリタ面の場合、カバーガラスCの代わりに、偏光解消板、又は波長板を用いてもよい。また、光学面S2は反射面ではなく、透過面である。そして、光学面S2から離れた位置に、反射面を配置する。更に、光学面S2と反射面との間に、λ/4波長板を配置する。
 P偏光は紙面内に光の振幅を持つ偏光で、S偏光は紙面と直交する面内に振幅を持つ偏光である。P偏光は光学面S3を透過し、S偏光は光学面S3で反射されるとすると、P偏光が結像光1に対応し、S偏光が結像光2に対応する。
 例えば、カバーガラスCの代わりに偏光解消板が用いられると、結像光は偏光解消板を通過する。そのため、偏光解消板から射出された結像光では、結像光に含まれるP偏光とS偏光の割合は、略半分になる。光学面S3に入射した結像光は、光学面S3でP偏光とS偏光に分かれる。よって、結像光2の光量は、結像光の光量の半分の光量になる。
 光学面S3から光学面S2に向かうときの結像光2は、S偏光である。光学面S2が反射面の場合、結像光2はS偏光のままで光学面S3に向かって反射される。光学面S2から光学面S3に向かうときの結像光2はS偏光なので、結像光2は光学面S3を透過できない。
 一方、光学面S2が透過面の場合、結像光2は反射面で反射される。光学面S2と反射面との間には、λ/4波長板が配置されている。光学面S2と反射面との間を結像光2が往復することで、結像光2における偏光方向が90度回転する。よって、S偏光をP偏光に変換することができる。その結果、光学面S2から光学面S3に向かうときの結像光は、P偏光になる。
 光学面S3には、P偏光に変換された結像光2が到達する。よって、結像光2は光学面S3で反射されない。すなわち、光学面S3では、結像光2の光量のほぼ全てを透過させることができる。
 図32は、撮像装置の概略構成を示す図である。(A)は全体構成を示す図、(B)は物体の向きを示す図である。
 図32(A)に示すように、撮像装置500は、対物光学系501と、偏光解消板502と、第1プリズム503と、第2プリズム504と、第3プリズム505と、波長板506と、ミラー507と、撮像素子508と、画像処理部511と、画像表示装置512と、を有する。
 撮像装置500では、第1プリズム503、第2プリズム504、及び第3プリズム505で、光路分割素子が形成されている。
 対物光学系501は、物体の像を形成する。対物光学系501と第1プリズム503との間に、偏光解消板502が配置されている。
 第1プリズム503と第2プリズム504は接合されている。第1プリズム503と第2プリズム504によって、接合面509が形成されている。接合面509に入射した光は、接合面509で反射された光と、接合面509を透過する光に分かれる。
 接合面509には、偏光ビームスプリッタ面を用いることができる。この場合、接合面509では、例えば、P偏光は透過され、S偏光は反射される。
 接合面509を透過したP偏光は、第2プリズム504から射出される。P偏光は、第3プリズム505に入射し、光学面510に到達する。光学面510は、例えば、ミラー面である。よって、P偏光は、光学面510で反射される。
 光学面510で反射されたP偏光は、第3プリズム505から射出され、撮像素子508に入射する。図32(B)に示すように、撮像素子508は、第1領域513と、第2領域514と、を有する。光学面510で反射されたP偏光は、第1領域513に入射する。よって、第1領域513に、光学像が形成される。
 一方、接合面509で反射されたS偏光は、第1プリズム503から射出される。S偏光は、波長板506に入射する。波長板506には、λ/4波長板が用いられている。そのため、S偏光は、波長板506で円偏光に変換される。その結果、波長板506から、円偏光が射出される。
 円偏光は、ミラー507で反射され、再び波長板506に入射する。波長板506から射出された光は、第1プリズム503に入射し、接合面509に到達する。波長板506に入射した円偏光は、波長板506でP偏光に変換される。接合面509に到達した光はP偏光なので、接合面509を透過する。
 接合面509を透過したP偏光は、第2プリズム504から射出され、撮像素子508に入射する。上述のように、撮像素子508は、第1領域513と、第2領域514と、を有する。接合面509を透過したP偏光は、第2領域514に入射する。その結果、第2領域514に、光学像が形成される。
 撮像素子508には、例えば、ローリングシャッタ方式が採用されている。ローリングシャッタ方式では、1ラインずつ画像情報が読み出される。撮像素子508は、画像処理部511に接続されている。読み出された画像情報は、画像処理部511に入力される。
 画像処理部511は、第2画像処理部511bを有する。第2画像処理部511bでは、1ラインずつ読み出された画像情報を用いて、焦点が合った画像を表示用画像として選択することができる。第2画像処理部511bが選択した1ラインずつの画像は、合成されて画像表示装置512に表示される。
 画像処理部511について説明する。画像処理部511は、例えば、中央処理演算装置(不図示)に設けられている。画像処理部511は、第1画像処理部511aと、第2画像処理部511bと、第3画像処理部511cと、第4画像処理部511dと、第5画像処理部511eと、を有している。
 第1画像処理部511aでは、第1領域513から取得された画像(以下「第1画像」という)の向きと、第2領域514から取得された画像(以下「第2画像」という)の向きが補正される。画像の向きの補正では、例えば、画像が回転される。
 第1画像の向きと、第2画像の向きは、各々、第1領域513に形成される光学像(以下「第1光学像」という)の向きと、第2領域514に形成される光学像(以下「第2光学像」という)の向きによって決まる。
 図33は、物体、対物光学系、及び光路分割素子の位置関係を示す図である。例えば、図33に示すような”F”の文字を観察する場合について説明する。第1光学像の向きと、第2光学像の向きは、各々、図32(B)に示すような向きになる。
 図32(B)に示すように、第1光学像と第2光学像は、互いに鏡像の関係になっている。更に、紙面の上下方向を正立方向とすると、第1光学像と第2光学像は、正立方向から90度回転している。
 そこで、物体の画像を画像表示装置512に表示させる場合には、第1画像処理部511aで、第1画像を、第1領域513の中心点を中心として90度回転させる。第2画像についても、領域514の中心点を中心として90度回転させる。そして、第2画像については、画像を反転させて鏡像を補正する。
 第1画像処理部511aによる処理が終ると、第2画像処理部511bによる処理が実行される。ただし、必要に応じて、第2画像処理部511bによる処理を実行する前に、第3画像処理部511c、第4画像処理部511d、及び第5画像処理部511eのうちの少なくとも1つの処理を実行しても良い。
 第3画像処理部511cは、第1画像のホワイトバランスと第2画像のホワイトバランスが、調整可能に構成されている。第4画像処理部511dは、第1画像の中心位置と第2画像の中心位置が、移動可能又は選択可能に構成されている。第5画像処理部511eは、第1画像の表示範囲と第2画像の表示範囲が、調整可能に構成されている。また、第5画像処理部511eでは、表示範囲に代えて、表示倍率が調整可能に構成されていても良い。
 第2画像処理部511bは、第1画像と第2画像とを比較し、焦点が合った領域の画像を表示用画像として選択するように構成されている。
 第2画像処理部511bは、例えば、高域通過フィルタと、比較器と、切替器と、を有する。第1領域513と第2領域514の各々に、高域通過フィルタが接続されている。高域通過フィルタでは、第1画像と第2画像の各々から、高域成分が抽出される。
 2つの高域通過フィルタの出力は、比較器に入力される。2つの高域通過フィルタで抽出された高域成分は、比較器で比較される。比較結果は、切替器に入力される。切替器には、更に、第1領域513と第2領域514が接続されている。よって、切替器には、比較結果、第1画像の信号、及び第2画像の信号が入力されている。
 切替器では、比較結果に基づいて、第1画像において高域成分の多い領域と、第2画像において高域成分の多い領域とが、選択される。
 画像表示装置512は、表示領域を有している。表示領域には、第2画像処理部511bが選択した画像が表示される。画像表示装置512は、第1の画像と第2の画像を表示する表示領域を有していてもよい。
 以上のように、本発明に係る発明は、諸収差が良好に補正され、移動するレンズの外径と、移動するレンズ群の近くに位置するレンズの外径が、十分に小さい広角光学系及びそれ用いた撮像装置に適している。
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 S 明るさ(開口)絞り
 F フィルタ
 C カバーガラス
 P、P1、P2 プリズム
 I 像面
 300 内視鏡システム
 310 電子内視鏡
 310a スコープ部
 310b 接続コード部
 320 画像処理装置
 330 表示ユニット
 340 操作部
 341 挿入部
 342 先端部
 350 ユニバーサルコード
 360 コネクタ
 400 光学系
 401 ライトガイド
 402 照明レンズ
 403 照明窓
 404 観察部位
 405 観察窓
 406 広角光学系
 407 撮像素子
 500 撮像装置
 501 対物光学系
 502 偏光解消板
 503 第1プリズム
 504 第2プリズム
 505 第3プリズム
 506 波長板
 507 ミラー
 508 撮像素子
 509 接合面
 510、S1、S2、S3、S4、S5 光学面
 511 画像処理部
 511a 第1画像処理部
 511b 第2画像処理部
 511c 第3画像処理部
 511d 第4画像処理部
 511e 第5画像処理部
 512 画像表示装置
 513 第1領域
 514 第2領域

Claims (35)

  1.  レンズ成分を有する広角光学系であって、
     前記レンズ成分は、複数の光学面を有し、
     前記レンズ成分では、2つの前記光学面が空気と接触し、且つ、少なくとも1つの光学面が曲面であり、
     物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、
     遠点から近点に焦点位置調節するときに、前記第2レンズ群が、第1の位置から第2の位置に向かって移動し、前記第1の位置は、前記第1レンズ群と前記第2レンズ群との間隔が最小となる位置であり、前記第2の位置は、前記第2レンズ群と前記第3レンズ群との間隔が最小となる位置であり、
     前記第3レンズ群は3つ以上のレンズ成分を有し、
     前記3つ以上のレンズ成分は、第1レンズ成分と、第2レンズ成分と、を有し、前記第1レンズ成分は、前記第3レンズ群において、最も物体側に位置するレンズ成分であり、前記第2レンズ成分は、前記第3レンズ群において、物体側から2番目に位置するレンズ成分であり、
     前記第1レンズ成分と第2レンズ成分は、それぞれ正の屈折力を有し、
     以下の条件式(1)を満足することを特徴とする広角光学系。
     0.8<f3L12/fL<6.0   (1)
     ここで、
     f3L12は、前記第1レンズ成分と前記第2レンズ成分の合成焦点距離、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  2.  前記第1レンズ成分の最も物体側の面から前記第2レンズ成分の最も像側の面までの間に、2面以上の発散面が配置されていることを特徴とする請求項1に記載の広角光学系。
  3.  前記第3レンズ群は3つ以上の接合面を含み、かつ、
     前記3つ以上の接合面のそれぞれで、屈折率差の値が0.25以上であることを特徴とする請求項1に記載の広角光学系。
     ここで、
     前記屈折率差は、物体側屈折率と像側屈折率との差、
     前記物体側屈折率は、前記接合面の物体側に位置し、且つ前記接合面と隣接する媒質のd線に対する屈折率、
     前記像側屈折率は、前記接合面の像側に位置し、且つ前記接合面と隣接する媒質のd線に対する屈折率、
    である。
  4.  前記第3レンズ群は、4つ以上のレンズ成分を有し、かつ、屈折率差の値が0.25以上の接合面を2つ以上有することを特徴とする請求項1に記載の広角光学系。
     ここで、
     前記屈折率差は、物体側屈折率と像側屈折率との差、
     前記物体側屈折率は、前記接合面の物体側に位置し、且つ前記接合面と隣接する媒質のd線に対する屈折率、
     前記像側屈折率は、前記接合面の像側に位置し、且つ前記接合面と隣接する媒質のd線に対する屈折率、
    である。
  5.  前記第3レンズ群は、正の屈折力を有するレンズ成分を3つ、4つ、又は5つ含むことを特徴とする請求項1に記載の広角光学系。
  6.  前記第3レンズ群の最も像側に位置する接合レンズは、物体側から順に、正レンズと、負レンズと、を有することを特徴とする請求項1に記載の広角光学系。
  7.  前記第3レンズ群の最も像側に、単レンズ群が配置され、
     前記単レンズ群は、2つの単レンズからなるか、又は3つの単レンズからなり、
     前記単レンズの物体側に、接合レンズが前記単レンズ群と隣接して配置され、
     前記接合レンズは、物体側から順に、正レンズと、負レンズと、を有することを特徴とする請求項1に記載の広角光学系。
  8.  前記第3レンズ群の最も像側に、1つの単レンズが配置され、
     前記単レンズの物体側に、接合レンズが前記単レンズと隣接して配置され、
     前記接合レンズは、物体側から順に、正レンズと、負レンズと、を有することを特徴とする請求項1に記載の広角光学系。
  9.  以下の条件式(2)を満足することを特徴とする請求項1乃至4のいずれか一項に記載の広角光学系。
     0.05<fL/R31F<1.20   (2)
     ここで、
     R31Fは、前記第1レンズ成分の物体側の面の曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  10.  像側レンズ成分を有し、
     前記像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であり、
     前記第3レンズ群は、前記第1レンズ成分と前記像側レンズ成分との間に、N枚の接合面SNi(i=1、2、…N)を含み、
     以下の条件式(3)を満足することを特徴とする請求項1乃至4のいずれか一項に記載の広角光学系。
     -1.0<fL×ΣPSNi<-0.05   (3)
     ここで、
     PSNiは、前記接合面SNiの屈折力であって、以下の式(4)で表され、
     PSNi=(nSNi’-nSNi)/rSNi   (4)
     nSNiは、前記接合面SNiの物体側に位置する媒質のd線に対する屈折率、
     nSNi’は、前記接合面SNiの像側に位置する媒質のd線に対する屈折率、
     rSNiは、前記接合面面SNiの光軸近傍における曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  11.  前記第3レンズ群は、接合レンズのなかで最も像側に位置する接合レンズと、最も像側に位置する正の単レンズと、を有し、
     最も像側に位置する前記接合レンズは、正の屈折力を有し、
     前記正の単レンズは、以下の条件式(5)を満足することを特徴とする請求項1に記載の広角光学系。
     -2<(R3R1+R3R2)/(R3R1-R3R2)<2   (5)
     ここで、
     R3R1は、前記正の単レンズの物体側の面の曲率半径、
     R3R2は、前記正の単レンズ像側の面の曲率半径、
    である。
  12.  前記第3レンズ群は、接合レンズのなかで最も像側に位置する接合レンズと、最も像側に位置する正の単レンズと、を有し、
     最も像側に位置する前記接合レンズは、負の屈折力を有し、
     前記正の単レンズは、以下の条件式(6)を満足することを特徴とする請求項1に記載の広角光学系。
     -5<(’R3R1+’R3R2)/(’R3R1-’R3R2)<1   (6)
     ここで、
     ’R3R1は、前記正の単レンズの物体側の面の曲率半径、
     ’R3R2は、前記正の単レンズの像側の面の曲率半径、
    である。
  13.  前記第3レンズ群の最も像側に位置する接合面が、以下の条件式(7)を満足することを特徴とする請求項1乃至4のいずれか一項に記載の広角光学系。
     -2.0<fL/rSNr<1.5   (7)
     ここで、
     rSNrは、前記最も像側に位置する接合面の光軸近傍における曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  14.  前記第3レンズ群は、複数の正レンズを有し、
     前記複数の正レンズは、第1正レンズと、第2正レンズと、を有し、前記第1正レンズは、前記複数の正レンズのなかで、最も物体側に位置する正レンズであり、前記第2正レンズは、前記複数の正レンズのなかで、物体側から2番目に位置する正レンズであり、
     以下の条件式(8)を満足することを特徴とする請求項1乃至4のいずれか一項に記載の広角光学系。
     -70<ν31P-ν32P<20   (8)
     ここで、
     ν31Pは、前記第1正レンズのアッベ数、
     ν32Pは、前記第2正レンズのアッベ数、
    である。
  15.  前記第3レンズ群は、複数の正レンズを有し、
     前記複数の正レンズは、第1正レンズと、第2正レンズと、第3正レンズと、を有し、前記第1正レンズは、前記複数の正レンズのなかで、最も物体側に位置する正レンズであり、前記第2正レンズは、前記複数の正レンズのなかで、物体側から2番目に位置する正レンズであり、前記第3正レンズは、前記複数の正レンズのなかで、物体側から3番目に位置する正レンズであり、
     以下の条件式(9)を満足することを特徴とする請求項1乃至4のいずれか一項に記載の広角光学系。
     -50<ν33P-(ν31P+ν32P)/2<80   (9)
     ここで、
     ν31Pは、前記第1正レンズのアッベ数、
     ν32Pは、前記第2正レンズのアッベ数、
     ν33Pは、前記第3正レンズのアッベ数、
    である。
  16.  前記第3レンズ群は、複数の負レンズを有し、
     前記複数の負レンズは、第1負レンズと、第2負レンズと、を有し、前記第1負レンズは、前記複数の負レンズのなかで、最も物体側に位置する負レンズであり、前記第2負レンズは、前記複数の負レンズのなかで、物体側から2番目に位置する負レンズであり、
     以下の条件式(10)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -40<ν31N-ν32N<50   (10)
     ここで、
     ν31Nは、前記第1負レンズのアッベ数、
     ν32Nは、前記第2負レンズのアッベ数、
    である。
  17.  前記第3レンズ群は焦点位置調節時には固定であることを特徴とする請求項1乃至4のいずれか一項に記載の広角光学系。
  18.  以下の条件式(11)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -60<(R21F+R21R)/(R21F-R21R)<1   (11)
     ここで、
     R21Fは、所定のレンズ成分の物体側の面の曲率半径、
     R21Rは、前記所定のレンズ成分の像側の面の曲率半径、
     前記所定のレンズ成分は、前記第2レンズ群で最も物体側に位置するレンズ成分、
    である。
  19.  以下の条件式(12)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     0.2<D21/fL<3.0   (12)
     ここで、
     D21は、前記第2レンズ群の最も物体側の面と最も像側の面との光軸上の距離、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  20.  以下の条件式(13)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     1.01<β2F<1.35   (13)
     ここで、
     β2Fは、前記第1の位置における前記第2レンズ群の倍率、
    である。
  21.  以下の条件式(14)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     1.01<β2N/β2F<1.15   (14)
     ここで、
     β2Fは、前記第1の位置における前記第2レンズ群の倍率、
     β2Nは、前記第2の位置における前記第2レンズ群の倍率、
    である。
  22.  以下の条件式(15)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     0.08<(1-β2F2)×β3F2<0.45   (15)
     ここで、
     β2Fは、前記第1の位置における前記第2レンズ群の倍率、
     β3Fは、前記第1の位置における前記第3レンズ群の倍率、
    である。
  23.  以下の条件式(16)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     0.15<(1-β2N2)×β3N2<0.55   (16)
     ここで、
     β2Nは、前記第2の位置における前記第2レンズ群の倍率、
     β3Nは、前記第2の位置における前記第3レンズ群の倍率、
    である。
  24.  前記第2レンズ群は、正レンズのみを有することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
  25.  前記第1レンズ群は、負レンズのみを有し、
     前記負レンズは、前記第3レンズ群の最も物体側の正レンズよりも大きいアッベ数を有することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
  26.  前記第1レンズ群は、複数の負レンズ成分を有し、
     前記複数の負レンズ成分は、第1負レンズ成分と、第2負レンズ成分と、を有し、第2負レンズ成分は、前記複数の負レンズ成分のなかで、物体側から2番目に位置する負レンズ成分であり、
     以下の条件式(17)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -2.0<fL/R12Fa<0.5   (17)
     ここで、
     R12Faは、前記第2負レンズ成分の物体側の面の曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  27.  前記第1レンズ群は、第4レンズ成分、第5レンズ成分と、を有し、前記第4レンズ成分は、前記第1レンズ群において、最も物体側に位置するレンズ成分であり、前記第5レンズ成分は、前記第1レンズ群において、物体側から2番目に位置するレンズ成分であり、
     前記第4レンズ成分は、負レンズ成分からなり、
     前記第5レンズ成分は、接合レンズからなり、
     以下の条件式(18)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -1.0<fL/R12Fb<0.5   (18)
     ここで、
     R12Fbは、前記第5レンズ成分の物体側面の曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  28.  前記第1レンズ群は、第4レンズ成分と、第5レンズ成分と、第6レンズ成分と、を有し、前記第4レンズ成分は、前記第1レンズ群において、最も物体側に位置するレンズ成分であり、前記第5レンズ成分は、前記第1レンズ群において、物体側から2番目に位置するレンズ成分であり、前記第6レンズ成分は、前記第1レンズ群において、物体側から3番目に位置するレンズ成分であり、
     前記第4レンズ成分は、負レンズ成分からなり、
     前記第5レンズ成分は、負レンズ成分からなり、
     前記第6レンズ成分は、正レンズ成分からなり、
     以下の条件式(19)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -1.0<fL/R12Fc<0.4   (19)
     ここで、
     R12Fcは、前記第5レンズ成分の物体側の面の曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  29.  前記第1レンズ群は、第4レンズ成分と、第5レンズ成分と、第6レンズ成分と、を有し、前記第4レンズ成分は、前記第1レンズ群において、最も物体側に位置するレンズ成分であり、前記第5レンズ成分は、前記第1レンズ群において、物体側から2番目に位置するレンズ成分であり、前記第6レンズ成分は、前記第1レンズ群において、物体側から3番目に位置するレンズ成分であり、
     前記第4レンズ成分は、負レンズ成分からなり、
     前記第5レンズ成分は、前記第4レンズ成分よりも屈折力の絶対値が小さいレンズ成分からなり、
     前記第6レンズ成分は、接合レンズからなり、
     以下の条件式(20)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -1.2<fL/R12Fd<0.2   (20)
     ここで、
     R12Fdは、前記第6レンズ成分の物体側の面の曲率半径、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  30.  前記第1レンズ群は、第4レンズ成分と、第5レンズ成分と、を有し、前記第4レンズ成分は、前記第1レンズ群において、最も物体側に位置するレンズ成分であり、前記第5レンズ成分は、前記第1レンズ群において、物体側から2番目に位置するレンズ成分であり、
     以下の条件式(21)を満足することを特徴とする請求項1乃至10のいずれか一項に記載の広角光学系。
     -1.0<fL/fL12<0.4   (21)
     ここで、
     fL12は、前記第5レンズ成分の焦点距離、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  31.  像側レンズ成分を有し、
     前記像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であり、
     以下の条件式(22)を満足することを特徴とする請求項1乃至30のいずれか一項に記載の広角光学系。
     100×|ffin|<|Rfin|   (22)
     ここで、
     ffinは、前記像側レンズ成分の焦点距離、
     Rfinは、前記像側レンズ成分の像側の面の曲率半径、
    である。
  32.  像側レンズ成分と、屈折力がゼロの光学素子と、を有し、
     前記像側レンズ成分は、複数のレンズ成分のなかで、最も像側に位置するレンズ成分であり、
     前記光学素子は、前記像側レンズ成分の像側に位置し、
     前記像側レンズ成分と前記光学素子は接合されていることを特徴とする請求項1乃至30のいずれか一項に記載の広角光学系。
  33.  以下の条件式(23)を満足することを特徴とする請求項1に記載の広角光学系。
     2ymax<fL×tanωmax   (23)
     ここで、
     ymaxは、最大像高、
     ωmaxは、前記最大像高に対応した画角、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  34.  以下の条件式(24)を満足することを特徴とする請求項1に記載の広角光学系。
     ER2<4×fL/FEX   (24)
     ここで、
     ER2は、前記第2レンズ成分の最も像側の面の有効径、
     FEXは、前記第1の位置における有効F値、
     fLは、前記第1の位置における前記広角光学系の焦点距離、
    である。
  35.  光学系と、像面に配置された撮像素子と、を有し、
     前記撮像素子は撮像面を有し、且つ前記光学系によって前記撮像面上に形成された像を電気信号に変換し、
     前記光学系が請求項1から34のいずれか一項に記載の広角光学系であることを特徴とする撮像装置。
PCT/JP2019/008033 2019-03-01 2019-03-01 広角光学系及びそれを備えた撮像装置 WO2020178885A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/008033 WO2020178885A1 (ja) 2019-03-01 2019-03-01 広角光学系及びそれを備えた撮像装置
CN201980056977.6A CN112639568B (zh) 2019-03-01 2019-03-01 广角光学系统及具备该广角光学系统的摄像装置
JP2021503242A JPWO2020178885A1 (ja) 2019-03-01 2019-03-01 広角光学系及びそれを備えた撮像装置
US17/189,353 US20210255440A1 (en) 2019-03-01 2021-03-02 Wide-angle optical system and image pickup apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008033 WO2020178885A1 (ja) 2019-03-01 2019-03-01 広角光学系及びそれを備えた撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/189,353 Continuation US20210255440A1 (en) 2019-03-01 2021-03-02 Wide-angle optical system and image pickup apparatus using the same

Publications (1)

Publication Number Publication Date
WO2020178885A1 true WO2020178885A1 (ja) 2020-09-10

Family

ID=72338202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008033 WO2020178885A1 (ja) 2019-03-01 2019-03-01 広角光学系及びそれを備えた撮像装置

Country Status (4)

Country Link
US (1) US20210255440A1 (ja)
JP (1) JPWO2020178885A1 (ja)
CN (1) CN112639568B (ja)
WO (1) WO2020178885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994876A (zh) * 2022-05-27 2022-09-02 莆田学院 一种宽光谱日夜两用的监控鱼眼镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140002910A1 (en) * 2012-06-28 2014-01-02 Leica Camera Ag Modified retrofocus-type wide-angle lens
WO2017199614A1 (ja) * 2016-05-16 2017-11-23 オリンパス株式会社 対物光学系
WO2018173412A1 (ja) * 2017-03-24 2018-09-27 オリンパス株式会社 内視鏡システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691855B2 (ja) * 2010-06-23 2015-04-01 株式会社ニコン 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
JP6609956B2 (ja) * 2015-03-27 2019-11-27 株式会社シグマ 魚眼レンズ
JP2019184733A (ja) * 2018-04-05 2019-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140002910A1 (en) * 2012-06-28 2014-01-02 Leica Camera Ag Modified retrofocus-type wide-angle lens
WO2017199614A1 (ja) * 2016-05-16 2017-11-23 オリンパス株式会社 対物光学系
WO2018173412A1 (ja) * 2017-03-24 2018-09-27 オリンパス株式会社 内視鏡システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994876A (zh) * 2022-05-27 2022-09-02 莆田学院 一种宽光谱日夜两用的监控鱼眼镜头
CN114994876B (zh) * 2022-05-27 2023-09-26 莆田学院 一种宽光谱日夜两用的监控鱼眼镜头

Also Published As

Publication number Publication date
CN112639568A (zh) 2021-04-09
US20210255440A1 (en) 2021-08-19
CN112639568B (zh) 2022-09-13
JPWO2020178885A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP3709148B2 (ja) ズームレンズ系
JP5414205B2 (ja) ズームレンズおよびそれを有する撮像装置
JP5455572B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6302397B2 (ja) 広角ズームレンズ
JP5767423B1 (ja) 拡大内視鏡光学系
US7538953B2 (en) Zoom lens system
JP5774055B2 (ja) ズームレンズ及びそれを有する撮像装置
US10488635B2 (en) Image pickup apparatus
JP2013088782A (ja) ズームレンズ
JP5262281B2 (ja) 広角レンズ、および撮像装置
JP5448351B2 (ja) ズームレンズおよびそれを有する撮像装置
JP7132424B2 (ja) 広角光学系及びそれを備えた撮像装置
JP6437017B2 (ja) ズーム撮像装置
JPH10282414A (ja) ズームレンズ
WO2020178885A1 (ja) 広角光学系及びそれを備えた撮像装置
JP4585796B2 (ja) ズームレンズ及びそれを有する撮像装置
JP7061226B2 (ja) 広角光学系及びそれを備えた撮像装置
CN112639566B (zh) 广角光学系统及具备该广角光学系统的摄像装置
JP2017146393A (ja) ズームレンズ及びそれを有する撮像装置
JP2020204637A (ja) ズームレンズおよびこれを用いた撮像装置
US20220137379A1 (en) Zoom lens and image pickup apparatus
JP2013054191A (ja) ズームレンズ
JP2019070705A (ja) コンバータ光学系及びそれを有する撮像装置
WO2019239578A1 (ja) 対物光学系及びそれを用いた硬性鏡用光学系、硬性鏡
JP2008008983A (ja) 色分解光学系とこれを有する光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917590

Country of ref document: EP

Kind code of ref document: A1