WO2020178370A1 - Methode de melange d'un liquide visqueux par un melangeur a recipient rotatif exempt d'organe de brassage du liquide et melangeur apte a la mise en oeuvre du dit methode - Google Patents

Methode de melange d'un liquide visqueux par un melangeur a recipient rotatif exempt d'organe de brassage du liquide et melangeur apte a la mise en oeuvre du dit methode Download PDF

Info

Publication number
WO2020178370A1
WO2020178370A1 PCT/EP2020/055805 EP2020055805W WO2020178370A1 WO 2020178370 A1 WO2020178370 A1 WO 2020178370A1 EP 2020055805 W EP2020055805 W EP 2020055805W WO 2020178370 A1 WO2020178370 A1 WO 2020178370A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
liquid
rotation
mixer
angular speed
Prior art date
Application number
PCT/EP2020/055805
Other languages
English (en)
Inventor
Patrice MEUNIER
Nicolas Brosse
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Université D'aix-Marseille (Amu)
Ecole Centrale De Marseille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs), Université D'aix-Marseille (Amu), Ecole Centrale De Marseille filed Critical Centre National De La Recherche Scientifique (Cnrs)
Publication of WO2020178370A1 publication Critical patent/WO2020178370A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/401Receptacles, e.g. provided with liners
    • B01F29/4011Receptacles, e.g. provided with liners characterised by the shape or cross-section of the receptacle, e.g. of Y-, Z -, S -, or X shape
    • B01F29/40111Non-cylindrical sections, e.g. elliptical or irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/401Receptacles, e.g. provided with liners
    • B01F29/4011Receptacles, e.g. provided with liners characterised by the shape or cross-section of the receptacle, e.g. of Y-, Z -, S -, or X shape
    • B01F29/40113Conical, double-conicalor diabolo shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/403Disposition of the rotor axis
    • B01F29/4033Disposition of the rotor axis inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • B01F29/62Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers without bars, i.e. without mixing elements; characterised by the shape or cross section of the receptacle, e.g. of Y-, Z-, S- or X- shape; with cylindrical receptacles rotating about an axis at an angle to their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/33Transmissions; Means for modifying the speed or direction of rotation
    • B01F35/331Transmissions; Means for modifying the speed or direction of rotation alternately changing the speed of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/33Transmissions; Means for modifying the speed or direction of rotation
    • B01F35/332Transmissions; Means for modifying the speed or direction of rotation alternately changing the direction of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/30Mixing paints or paint ingredients, e.g. pigments, dyes, colours, lacquers or enamel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/44Mixing of ingredients for microbiology, enzymology, in vitro culture or genetic manipulation

Definitions

  • the present invention relates to the field of mixers for a liquid with a rotating container free of any member for stirring the liquid, such as without a blade or propeller, for example.
  • the invention relates more specifically to such mixers whose axis of rotation is inclined with respect to gravity during the mixing of the liquid.
  • the invention relates to a method for mixing a liquid using such mixers, as well as to a mixer for implementing such a method.
  • a mixer comprising a receptacle for receiving the liquid mounted on a frame. It is common for such a receptacle to house at least one rotating member for mixing the liquid, such as blades or a propeller for example, which provides homogenization between the liquid and the adjuvant to be mixed with the liquid.
  • the stirring member causes strong shear within the liquid, by detaching its boundary layer. This is detrimental for the liquid, in particular for a biologically sensitive liquid such as for example for cell cultures in solution in a bioreactor.
  • the stirring member prior to any liquid mixing operation, the stirring member must be thoroughly cleaned to prevent pollution of the liquid to be mixed, such an operation being restrictive. This operation is all the more delicate for biologically sensitive liquids for which a sterile environment is necessary.
  • the power required for driving the stirring member is inappropriately very high in the context of a large volume of liquid to be mixed contained in a large container. This is why it has been developed container mixers without a liquid stirring member.
  • the container is then equipped with specific accessories, such as for example an accessory for injecting gas into the liquid.
  • the gas injection provides mixing of the liquid with the adjuvant as a result of its agitation by gas bubbles.
  • the gas which is injected corresponds to the dissolved gas to be mixed, such as oxygen or carbon dioxide for example for biological liquids, the injection of bubbles directly into the liquid makes it possible to accelerate the homogenization. gas dissolved in the container.
  • the container is driven in mobility on the frame in order to generate a flow in the liquid which it contains and thus to promote its mixing with the adjuvant.
  • the movable mounting of the container on the frame can be structurally complex, such as for example be achieved by mounting the container rotating around two concurrent axes of rotation.
  • Such a solution is to be avoided because it further induces a complexification of the organization of the mixer and / or of having to limit the capacity of the container and therefore the volume of liquid that can be mixed during the same mixing operation.
  • the subject of the invention is a method of implementing a liquid mixer with a rotary container which is free from a stirring member and whose axis of rotation of the container is inclined relative to its axis of gravity during mixing of the liquid.
  • a subject of the invention is also such a liquid mixer configured to optimize the results obtained by implementing a method in accordance with the invention.
  • the invention aims in particular to provide such a method and such a mixer making it possible to mix an adjuvant in a liquid while avoiding all of the constraints and / or disadvantages mentioned above.
  • Another aim of the invention is to provide a solution making it possible to effectively mix a liquid in substantial volume and / or having a high viscosity, such as in particular an industrial surface coating liquid such as a paint or a varnish for example.
  • Another aim of the invention is to provide a solution making it possible to effectively mix a liquid in a sterile environment, such as a biologically sensitive liquid such as for example an agri-food liquid, a biological culture liquid and / or an industrial liquid to be protected. against possible pollution.
  • a biologically sensitive liquid such as for example an agri-food liquid, a biological culture liquid and / or an industrial liquid to be protected. against possible pollution.
  • Another object of the invention is to provide such a method and such a mixer making it possible to effectively mix a liquid as quickly as possible, including including a liquid contained in substantial volume in the container and / or having a high viscosity.
  • the method of the invention is a method of using a liquid mixer with an adjuvant, comprising an axial extension vessel with a wall of revolution for receiving the liquid having a free surface.
  • the container is rotatably mounted on a frame and is free from a stirring device for the liquid inside the container.
  • the container in the mixer operating station is axially inclined with respect to its axis of gravity and is rotated at a variable angular speed.
  • Said wall of revolution is in particular the wall of the container delimiting its capacity for receiving the liquid to be mixed.
  • the generatrix defining the revolution of the wall of the container may be for example a straight line, giving the container a cylindrical or conical shape, or for example a curve or a broken straight line at at least one point of inflection, for example giving the container a truncated conformation.
  • the method of the invention is recognizable in that the setting in rotation of the container is carried out as a function of parameters comprising at least the radius of the container, the quantity of liquid inside the container and the viscosity of the liquid. , according to a mode of operation of the mixer comprising iterative cycles of setting the container in rotation in alternating directions of rotation. Each cycle comprises at least two successive sequences of variation of the angular speed of rotation of the container.
  • the mixture of a liquid of which at least the viscosity and the volume contained in the container of a given radius are identified beforehand conditions the setting in rotation of the container in accordance with said operating mode, which comprises iterative cycles of setting. rotating the container in alternating directions of rotation.
  • Each cycle of rotation of the container comprises successive sequences according to which the methods of setting the container in rotation vary, in particular in speed and / or in acceleration.
  • the duration and the kinematics of setting the container in rotation during the various sequences are identified as a function of the value of said parameters.
  • Reversing the direction of rotation of the container generates a flow speed of the liquid oriented along the axis of rotation of the container, which makes it possible to homogenize the mixture of the liquid with the adjuvant from the base to the top. of the container.
  • reversing the direction of rotation of the container makes it possible to generate moderate shearing of the liquid at the periphery of the container, with the effect of stretching the adjuvant which is in particular in the form of a sheet.
  • each of the sequences alternates an acceleration phase and a deceleration phase of the rotation of the container, which are optionally separated from each other by an intermediate phase of maintaining d. 'driving the container in rotation at a constant maximum angular speed.
  • the individual durations of the different phases making up the same sequence are in particular determined as a function of the value of said parameters.
  • the individual durations of the acceleration phase and of the deceleration phase are preferably identical, the variation in the angular speed of the container also being preferably identical for the acceleration phase and the deceleration phase.
  • the individual durations of the different phases composing the same sequence can for example be expressed in number of turns of rotation of the container.
  • the number of revolutions of the container for each of the acceleration and deceleration phases of the same sequence may be as low as possible or in other words as close as possible to zero, depending on the driving capacity of the drive in rotation of the container and according to the viscosity of the liquid.
  • the setting in rotation of the container is preferably maintained at a maximum angular speed which is constant during at least one revolution of rotation of the container.
  • the intermediate phase is likely to be ephemeral, the deceleration phase in this case succeeding the acceleration phase at the earliest.
  • the acceleration phase and the deceleration phase are each carried out according to linear modes of variation of the angular speed of rotation of the container.
  • the acceleration phase and the deceleration phase are successively carried out according to a parabolic mode of variation of the angular speed of rotation of the container.
  • said maximum angular speed of rotation of the container is identified at least by applying a first following rule:
  • Qwiax 2 R / g £ 3 in which Qwiax is the maximum angular speed of rotation of the container, R is the radius of the container and g is the unit of acceleration of gravity at the earth's surface.
  • said maximum angular speed of rotation of the container is identified at least by applying a second following rule:
  • Qwiax R 2 / v> 1 Qwiax R 2 / v> 1, where Qwiax is the maximum angular speed of rotation of the container, R is the radius of the container and v is the kinematic viscosity of the liquid.
  • Such modalities provide for a flow of the liquid within the rotating container which is sufficient to provide satisfactory mixing of the liquid.
  • the duration of implementation of the sequences is identical for each of the cycles and is defined by the number of revolutions of the container during mixing of the liquid.
  • the number of rotations of the container is potentially between 1 and 20 rotations, which makes it possible to best limit the duration of homogenization of the adjuvant in the liquid.
  • the method of the invention makes it possible to mix liquids having a viscosity which can reach at least 1,000 times (a thousand times) that of water, which corresponds to kinematic viscosities of the order of 10 3 m 2 .s 1 , and / or volumes of liquid inside the container which can reach several hundreds of liters, and this notwithstanding the absence of liquid stirring members inside the container.
  • the method is particularly suitable for mixing industrial liquids for coating surfaces, such as varnishes or paints for example, or alternatively for mixing sensitive liquids maintained in a sterile environment, such as biological liquids and / or agrifood liquids.
  • the subject of the invention is also a liquid mixer suitable for implementing a method in accordance with the invention.
  • the mixer is of the type comprising an axial extension vessel with a wall of revolution for receiving the liquid.
  • the container is rotatably mounted on a frame and is free from a stirring device for the liquid inside the container.
  • the container in the operating station of the mixer is inclined along its axis of extension with respect to its axis of gravity.
  • the mixer of the invention is recognizable in that it is equipped with an engine for setting the container in rotation, the implementation of which is dependent on a servo-control regulating the implementation of the engine in accordance with application of the method of the invention.
  • the servo-control is in particular equipped with a memory integrating a logic for calculating the alternate rotation of the container as a function of the value of parameters previously entered in said memory.
  • Said parameters relate at least to at least one of the dimensional characteristics of the container, including its radius, the volume of liquid contained inside the container and at least one of the physicochemical characteristics of the liquid, including at least its viscosity .
  • the container has a capacity for receiving the liquid suitable for efficient implementation of the method, which complies with the following third rule:
  • H / R is between 1 and 3, in which H is the maximum height of the column of liquid that can be contained inside the container axially oriented along its axis of gravity, with a free surface, and in which R is the radius of the container.
  • the angle of axial inclination of the container relative to its axis of gravity is between 5 ° and 45 °.
  • an angle of axial inclination of the container with respect to its axis of gravity of 25 ° +/- 5 ° (25 degrees plus or minus five degrees), provides a satisfactory result.
  • the mixer is preferably equipped with a member for adjusting the inclination of the container on the frame, so as to be able to vary the inclination of the container according to various operating stations of the mixer, in particular according to the physicochemical characteristics of the liquid to be mixed.
  • the container is capable of being tilted at a specific angle via said adjustment member, depending on the liquid to be mixed.
  • FIG. 1 is a schematic illustration of a liquid mixer according to an exemplary embodiment of the invention.
  • FIG. 2 is a diagram showing an example of implementation of a method according to an example of embodiment of the invention.
  • a mixer 1 for liquid 2 with an adjuvant comprises a rotary container 3 of axial extension A1 which is free from a stirring member.
  • the mixture of the liquid 2 is obtained from the single rotation T 1 of the container 3 around its axis of extension A1, the container 3 having a wall 4 of revolution for receiving the liquid 2 such as a cylindrical wall 4 according to the illustrated embodiment.
  • the container 3 is mounted rotating T1 on a frame 5 and is driven in rotation T1 by a motorization 6, the implementation of which is dependent on a servo-control 7.
  • the servo-control 7 is equipped with a memory 8 incorporating a logic calculation 9 controlling the setting in rotation T1 of the container 3 as a function of the values of various parameters 10 which are entered beforehand in said memory 8.
  • the container 3 is axially inclined A1 at an angle a (alpha) with respect to its axis of gravity A2, as illustrated in solid lines.
  • the mixer 1 is preferably equipped with a member 11 for adjusting the angle a of inclination of the container 3.
  • the container 3 can be more or less axially A1 inclined with respect to its axis of gravity A2, in particular depending on the liquid 2 to be mixed, as an indication between 5 ° (five degrees) and 45 ° (forty five degrees).
  • the implementation of the adjustment member 1 1 can optionally also be motorized depending on the servo control 7.
  • the angle a of inclination of the container 3 can be determined by logic calculation 9 from the values of the parameters 10 entered beforehand, and the inclination of the container 3 be controlled by the servo control 7.
  • a first parameter relates to the volume of liquid
  • Said parameters 10 also include a second parameter relating to said radius R of the container 3 and a third parameter relating to the viscosity of the liquid 2.
  • FIG. 2 a method is proposed for mixing a liquid 2 via the mixer 1 illustrated in FIG. 1, taking into account the values of the parameters 10 which are entered beforehand in said memory 8 by an operator and which are used by the calculation logic 9 fitted to the servo-control 7 controlling at least the setting in rotation T1 of the container 3, or even also its inclination.
  • a variation in the angular speed W of rotation of the container 3 is marked on the ordinate as a function of time (t) marked on the abscissa.
  • a variation in the direction S1, S2 of rotation T1 and in the angular speed W of rotation T1 of the container 3 are identified and controlled by the servo-control 7, as a function of the values of the parameters 10 at least relating to the radius R of the container 3, the quantity and viscosity of the liquid 2 contained inside the container 3.
  • the calculation logic 9 identifies a spinning T1 of the container
  • each cycle comprises successive sequences C1 a, C1 b; C2a, C2b, comprising each of the successive phases P1, P2, P3 of rotating T1 of the container 3 according to specific kinematics determined by the calculation logic 9.
  • a first phase is a phase of acceleration P1 of the angular speed W of rotation T1 of the container 3, followed by a second intermediate phase P2 of rotation T1 of the container 3 at a maximum angular speed WMQ, which is kept constant according to the example illustrated, followed by a third phase of deceleration P3 of the rotation T1 of the container 3.
  • the phases of acceleration P1 and of deceleration P3 are each carried out according to a linear mode of variation of the angular speed W of rotation T1 of the container 3, or in other words according to an affine function (f) of variation of the angular speed W of rotation T1 of the container 3.
  • the phases of acceleration P1 and deceleration P3 are identified by the calculation logic 9 of the servo-control 7, as a function of the maximum angular speed WM 3C of rotation T1 of the container 3, taking into account in particular the quantity and the viscosity of the liquid 2 contained inside the container 3 to optimize the mixing efficiency of the liquid 2 and to avoid significantly deleterious shearing of the liquid 2.
  • the maximum angular speed WM 3C of rotation T1 of the container 3 is identified by the calculation logic 9 of the servo-control 7, taking into account the radius R of the container 3 and the unit of acceleration of gravity g on the surface of the earth, and / or by taking into account the radius R of the container 3 and the viscosity of the liquid 2.
  • the quantity of liquid 2 contained inside the container 3 is identified by taking into account the radius R of the container 3 and the height H of the column of liquid 2 contained inside the container 3 with a free surface, the container 3 being considered axially A1 oriented along its axis of gravity A2.
  • the invention provides a homogeneous mixture of the liquid 2 and the adjuvant throughout the vessel 3 for viscous fluids, which is difficult to achieve with paddle mixers. Indeed, for a viscous liquid mixed with a paddle mixer, for example of the turbine type, areas of the unmixed liquid often remain present in the container.
  • the invention makes it possible to mix liquids 1000 times more viscous and to reduce the time required for obtaining an efficient mixture of the liquid by a factor of at least four.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

L'invention a pour objet une méthode de mise en œuvre d'un mélangeur de liquide avec un adjuvant comprenant un récipient d'extension axiale à paroi de révolution pour la réception du liquide présentant une surface libre. Le récipient est monté tournant sur un châssis et est exempt d'organe de brassage du liquide à l'intérieur du récipient. Le récipient en station de fonctionnement du mélangeur est axialement incliné par rapport à son axe de gravité et est entraîné en rotation (T1) selon une vitesse angulaire (Ω) variable. La mise en rotation (T1) du récipient est réalisée en fonction de paramètres comprenant au moins le rayon du récipient, la quantité de liquide à l'intérieur du récipient et la viscosité du liquide, suivant un mode de fonctionnement du mélangeur comprenant des cycles (C1, C2) itératifs de mise en rotation (T1) du récipient selon des sens (S1, S2) de rotation (T1) alternés. Chaque cycle (C1, C2) comprend au moins deux séquences (C1a, C1b) successives de variation de la vitesse angulaire (Ω) de rotation du récipient.

Description

DESCRIPTION
METHODE DE MELANGE D'UN LIQUIDE VISQUEUX PAR UN MELANGEUR A RECIPIENT ROTATIF EXEMPT D'ORGANE DE BRASSAGE DU LIQUIDE ET MELANGEUR APTE A LA MISE EN OEUVRE DU DIT METHODE
Domaine technique de l'invention La présente invention relève du domaine des mélangeurs d'un liquide à récipient rotatif exempt d'organe de brassage du liquide, tel que sans pale ni hélice par exemple. L'invention porte plus spécifiquement sur de tels mélangeurs dont l'axe de rotation est incliné par rapport à la gravité au cours du mélange du liquide. L'invention concerne une méthode de mélange d'un liquide par de tels mélangeurs, ainsi qu'un mélangeur de mise en oeuvre d'une telle méthode.
Art antérieur
Pour mélanger un liquide avec un adjuvant, tel qu'un autre liquide plus ou moins visqueux ou un adjuvant pulvérulent, il est d'usage d'utiliser un mélangeur comprenant un récipient de réception du liquide monté sur un châssis. Il est courant qu'un tel récipient loge au moins un organe tournant de brassage du liquide, tel que des pales ou une hélice par exemple, qui procure une homogénéisation entre le liquide et l'adjuvant à mélanger au liquide.
Cependant l'organe de brassage provoque un fort cisaillement au sein du liquide, par décollement de sa couche limite. Ceci est préjudiciable pour le liquide, notamment pour un liquide biologiquement sensible comme par exemple pour les cultures de cellules en solution dans un bioréacteur. De plus préalablement à toute opération de mélange du liquide, l'organe de brassage doit être rigoureusement nettoyé pour éviter une pollution du liquide devant être mélangé, une telle opération étant contraignante. Cette opération est d'autant plus délicate pour des liquides biologiquement sensibles pour lesquels un environnement stérile est nécessaire. Par ailleurs, la puissance nécessaire pour l'entraînement de l'organe de brassage est inopportunément très élevée dans le cadre d'un volume conséquent de liquide à mélanger contenu dans un récipient de grandes dimensions. C'est pourquoi il a été développé des mélangeurs à récipient exempt d'organe de brassage du liquide.
Selon une approche, le récipient est alors équipé d'accessoires spécifiques, comme par exemple un accessoire d'injection de gaz au sein du liquide. L'injection de gaz procure un mélange du liquide avec l'adjuvant par suite de son agitation par des bulles de gaz. En outre, si le gaz qui est injecté correspond au gaz dissous à mélanger, tel que de l’oxygène ou du dioxyde de carbone par exemple pour des liquides biologiques, l’injection de bulles directement dans le liquide permet d’accélérer l’homogénéisation du gaz dissous au sein du récipient.
Cependant l'adjonction d'un tel accessoire complexifie la structure du mélangeur. En outre, une telle injection de gaz n'est pas toujours compatible pour le mélange de certains liquides, notamment des liquides biologiquement sensibles et/ou des liquides industriels. Une telle incompatibilité résulte notamment de la difficulté de pouvoir injecter un gaz stérile et/ou du risque d'un endommagement des éléments sensibles contenus dans le liquide par suite de son cisaillement provoqué par le mouvement des bulles dans le liquide.
Selon une autre approche, le récipient est entraîné en mobilité sur le châssis afin de générer un écoulement dans le liquide qu'il contient et ainsi favoriser son mélange avec l'adjuvant.
Cependant, le montage en mobilité du récipient sur le châssis peut être structurellement complexe, comme par exemple être réalisé par un montage du récipient tournant autour de deux axes de rotation concourants. Une telle solution est à éviter car elle induit encore une complexification de l'organisation du mélangeur et/ou d'avoir à limiter la capacité du récipient et donc le volume de liquide pouvant être mélangé au cours d'une même opération de mélange.
Pour éviter de tels inconvénients et/ou contraintes, il est connu d'utiliser un mélangeur exempt d'organe de brassage du liquide, selon lequel l'axe de rotation du récipient est incliné par rapport à son axe de gravité. On pourra par exemple se reporter au document WO 2017/149034-A1 (MEUNIER Patrice, MANASSEH Richard), qui décrit un tel mélangeur dont le récipient est entraîné en rotation à vitesse constante ou à vitesse faiblement variable.
Présentation générale de l'invention
Il est fait le constat que la mise en oeuvre de tels mélangeurs mérite d'être perfectionnée, pour optimiser leur capacité à mélanger un liquide présentant une forte viscosité, comme par exemple pour certains liquides industriels ou pour des liquides biologiquement sensibles.
Dans ce contexte, l'invention a pour objet une méthode de mise en oeuvre d'un mélangeur de liquide à récipient rotatif qui est exempt d'organe de brassage et dont l'axe de rotation du récipient est incliné par rapport à son axe de gravité au cours du mélange du liquide. L'invention a aussi pour objet un tel mélangeur de liquide configuré pour optimiser les résultats obtenus par la mise en oeuvre d'une méthode conforme à l'invention.
L'invention vise notamment à proposer une telle méthode et un tel mélangeur permettant de mélanger un adjuvant dans un liquide en évitant l'ensemble des contraintes et/ou des inconvénients précédemment mentionnés.
Un autre but de l'invention est de proposer une solution permettant de mélanger efficacement un liquide en volume conséquent et/ou présentant une forte viscosité, comme notamment un liquide industriel de revêtement de surface tel qu'une peinture ou un vernis par exemple.
Un autre but de l'invention est de proposer une solution permettant de mélanger efficacement un liquide dans un environnement stérile, tel qu'un liquide biologiquement sensible comme par exemple un liquide agroalimentaire, un liquide de culture biologique et/ou un liquide industriel à protéger contre une éventuelle pollution.
Un autre but de l'invention est de proposer une telle méthode et un tel mélangeur permettant de mélanger efficacement un liquide le plus rapidement possible, y compris un liquide contenu en volume conséquent dans le récipient et/ou présentant une forte viscosité.
Les buts visés par la présente invention sont atteints isolément ou en combinaison par application des dispositions qui suivent.
La méthode de l'invention est une méthode de mise en oeuvre d'un mélangeur de liquide avec un adjuvant, comprenant un récipient d'extension axiale à paroi de révolution pour la réception du liquide présentant une surface libre.
Le récipient est monté tournant sur un châssis et est exempt d'organe de brassage du liquide à l'intérieur du récipient. Le récipient en station de fonctionnement du mélangeur est axialement incliné par rapport à son axe de gravité et est entraîné en rotation selon une vitesse angulaire variable. Ladite paroi de révolution est notamment la paroi du récipient délimitant sa capacité de réception du liquide à mélanger. La génératrice définissant la révolution de la paroi du récipient peut être par exemple une droite, conférant au récipient une conformation cylindrique ou conique, ou par exemple encore une courbe ou une droite brisée à au moins un point d'inflexion conférant par exemple au récipient une conformation tronconique.
Dans ce contexte, la méthode de l'invention est reconnaissable en ce que la mise en rotation du récipient est réalisée en fonction de paramètres comprenant au moins le rayon du récipient, la quantité de liquide à l'intérieur du récipient et la viscosité du liquide, suivant un mode de fonctionnement du mélangeur comprenant des cycles itératifs de mise en rotation du récipient selon des sens de rotation alternés. Chaque cycle comprend au moins deux séquences successives de variation de la vitesse angulaire de rotation du récipient.
Autrement dit le mélange d'un liquide dont au moins la viscosité et le volume contenu dans le récipient d'un rayon donné sont préalablement identifiés, conditionnent la mise en rotation du récipient conformément au dit mode de fonctionnement, qui comprend des cycles itératifs de mise en rotation du récipient suivant des sens de rotation alternés. Chaque cycle de mise en rotation du récipient comprend des séquences successives selon lesquelles les modalités de mise en rotation du récipient varient, notamment en vitesse et/ou en accélération.
La durée et la cinématique de mise en rotation du récipient au cours des différentes séquences sont identifiées en fonction de la valeur desdits paramètres.
L'inversion du sens de rotation du récipient est génératrice d'une vitesse d'écoulement du liquide orienté suivant l'axe de rotation du récipient, ce qui permet d'homogénéiser le mélange du liquide avec l'adjuvant depuis la base vers le sommet du récipient. En outre, l'inversion du sens de rotation du récipient permet de générer un cisaillement modéré du liquide en périphérie du récipient, avec pour effet d'étirer l'adjuvant qui se présente notamment sous forme de nappe.
Ceci a finalement pour effet d'accélérer la diffusion de l'adjuvant dans le liquide, en procurant un compromis acceptable entre un cisaillement du liquide, maintenu de faible ampleur, et une performance optimisée du mélange obtenu au cours d'une opération de mélange la plus brève possible. En effet par rapport à la méthode décrite dans le document WO 2017/149034-A1 où la vitesse de rotation est constante ou faiblement variable, la méthode relevant de la présente invention permet de diminuer le temps de mélange d’un facteur au moins égal à quatre.
Selon des modalités préférées de mise en oeuvre de la méthode, chacune des séquences alterne une phase d'accélération et une phase de décélération de la rotation du récipient, qui éventuellement sont séparées l'une de l'autre par une phase intermédiaire de maintien d'un entraînement du récipient en rotation à une vitesse angulaire maximale constante.
Les durées individuelles des différentes phases composant une même séquence sont notamment déterminées en fonction de la valeur desdits paramètres. Les durées individuelles de la phase d'accélération et de la phase de décélération sont préférentiellement identiques, la variation de la vitesse angulaire du récipient étant aussi préférentiellement identique pour la phase d'accélération et la phase de décélération. A titre indicatif, les durées individuelles des différentes phases composant une même séquence peuvent par exemple être exprimées en nombre de tours de rotation du récipient.
Le nombre de tours de rotation du récipient pour chacune des phases d'accélération et de décélération d'une même séquence, peut être le plus faible possible ou autrement dit au plus proche d'une valeur nulle, selon la capacité motrice d'entraînement en rotation du récipient et selon la viscosité du liquide.
Selon une forme de réalisation en phase intermédiaire, la mise en rotation du récipient est de préférence maintenue à une vitesse angulaire maximale qui est constante pendant au moins un tour de rotation du récipient. Selon une variante, la phase intermédiaire est susceptible d'être éphémère, la phase de décélération succédant dans ce cas au plus tôt à la phase d'accélération.
Selon une forme de réalisation, pour chacune desdites séquences, la phase d'accélération et la phase de décélération sont chacune réalisées selon des modes linéaires de variation de la vitesse angulaire de rotation du récipient.
Selon une variante pour chacune desdites séquences, la phase d'accélération et la phase de décélération sont successivement réalisées selon un mode parabolique de variation de la vitesse angulaire de rotation du récipient.
Selon des modalités préférées de mise en oeuvre de la méthode, la dite vitesse angulaire maximale de rotation du récipient est identifiée au moins par application d'une première règle suivante :
Qwiax2 R / g £ 3, dans laquelle Qwiax est la vitesse angulaire maximale de rotation du récipient, R est le rayon du récipient et g est l'unité d'accélération de la pesanteur en surface de la terre. De telles modalités permettent d'éviter un effet de courbure de la surface libre du liquide.
Selon des modalités préférées de mise en oeuvre de la méthode, y compris potentiellement en combinaison avec les modalités préalablement visées, ladite vitesse angulaire maximale de rotation du récipient est identifiée au moins par application d'une deuxième règle suivante :
Qwiax R2 / v > 1 , dans laquelle Qwiax est la vitesse angulaire maximale de rotation du récipient, R est le rayon du récipient et v est la viscosité cinématique du liquide. De telles modalités procurent un écoulement du liquide à l'intérieur du récipient en rotation qui est suffisant pour procurer un mélange satisfaisant du liquide.
De préférence, la durée de mise en oeuvre des séquences est identique pour chacun des cycles et est définie par le nombre de tours de rotation du récipient lors du mélange du liquide. A titre indicatif pour chacune des séquences d'un cycle, le nombre de tours de rotation du récipient est potentiellement compris entre 1 et 20 rotations, ce qui permet de limiter au mieux la durée d’homogénéisation de l’adjuvant au sein du liquide.
La méthode de l'invention permet de mélanger des liquides ayant une viscosité pouvant atteindre au moins 1 .000 fois (mille fois) celle de l'eau, ce qui correspond à des viscosités cinématique de l’ordre de 10 3 m2.s 1 , et/ou des volumes de liquide à l'intérieur du récipient pouvant atteindre plusieurs centaines de litres, et cela nonobstant l'absence d'organes de brassage du liquide à l'intérieur du récipient. La méthode est particulièrement adaptée au mélange de liquides industriels pour le revêtement de surfaces, tels que des vernis ou des peintures par exemple, ou encore au mélange de liquides sensibles maintenus en environnement stérile, tels que des liquides biologiques et/ou des liquides agroalimentaires.
L'invention a aussi pour objet un mélangeur de liquide apte à la mise en oeuvre d'une méthode conforme à l'invention. Le mélangeur est du type comprenant un récipient d'extension axiale à paroi de révolution pour la réception du liquide. Le récipient est monté tournant sur un châssis et est exempt d'organe de brassage du liquide à l'intérieur du récipient. Le récipient en station de fonctionnement du mélangeur est incliné suivant son axe d'extension par rapport à son axe de gravité.
Le mélangeur de l'invention est reconnaissable en ce qu'il est équipé d'une motorisation de mise en rotation du récipient, dont la mise en oeuvre est placée sous dépendance d'une servocommande régulant la mise en oeuvre de la motorisation conformément à l'application de la méthode de l'invention. La servocommande est notamment équipée d'une mémoire intégrant une logique de calcul de mise en rotation alternée du récipient en fonction de la valeur de paramètres préalablement saisis en ladite mémoire. Lesdits paramètres sont au moins relatifs à l'une au moins des caractéristiques dimensionnelles du récipient, dont son rayon, le volume de liquide contenu à l'intérieur du récipient et l'une au moins des caractéristiques physicochimiques du liquide, dont au moins sa viscosité.
Selon une forme de réalisation, le récipient présente une capacité de réception du liquide adaptée pour une mise en oeuvre efficace de la méthode, qui est conforme à la troisième règle suivante :
H / R est compris entre 1 et 3, dans laquelle H est la hauteur maximale de la colonne du liquide pouvant être contenu à l'intérieur du récipient axialement orienté suivant son axe de gravité, en présentant une surface libre, et dans laquelle R est le rayon du récipient.
Selon une forme de réalisation en station de fonctionnement du mélangeur, l'angle d'inclinaison axiale du récipient par rapport à son axe de gravité est compris entre 5° et 45°. A titre indicatif il est constaté que pour la plupart des liquides, dans le contexte de la méthode de l'invention, un angle d'inclinaison axiale du récipient par rapport à son axe de gravité de 25°+/- 5° (25 degrés plus ou moins cinq degrés), procure un résultat satisfaisant.
Le mélangeur est de préférence équipé d'un organe de réglage de l'inclinaison du récipient sur le châssis, pour pouvoir faire varier l'inclinaison du récipient selon diverses stations de fonctionnement du mélangeur, notamment en fonction des caractéristiques physicochimiques du liquide à mélanger. En d'autres termes, le récipient est susceptible d'être incliné suivant un angle spécifique via ledit organe de réglage, en fonction du liquide à mélanger.
Présentation des figures
L'invention sera mieux comprise à la lecture de la description détaillée qui suit d'exemples de réalisation de la présente invention, en relation avec les figures suivantes :
La figure 1 est une illustration schématique d'un mélangeur de liquide conforme à un exemple de réalisation de l'invention. La figure 2 est un schéma représentant un exemple de mise en œuvre d'une méthode conforme à un exemple de réalisation de l'invention.
Description détaillée d'un mode de réalisation de l'invention
Les figures et leurs descriptions détaillées non limitatives, exposent l'invention selon des modalités particulières qui ne sont pas restrictives quant à la portée de l'invention telle que définie par les revendications. Les figures et leurs descriptions détaillées d'exemples de réalisation de l'invention peuvent servir à mieux la définir, si besoin en relation avec la description générale qui vient d’en être faite.
Sur la figure 1 , un mélangeur 1 de liquide 2 avec un adjuvant comprend un récipient 3 rotatif d'extension axiale A1 qui est exempt d'organe de brassage. Le mélange du liquide 2 est obtenu à partir de la seule rotation T 1 du récipient 3 autour de son axe d'extension A1 , le récipient 3 présentant une paroi 4 de révolution pour la réception du liquide 2 telle qu'une paroi 4 cylindrique selon l'exemple de réalisation illustré.
Le récipient 3 est monté tournant T1 sur un châssis 5 et est entraîné en rotation T1 par une motorisation 6 dont la mise en œuvre est placée sous la dépendance d'une servocommande 7. La servocommande 7 est équipée d'une mémoire 8 intégrant une logique de calcul 9 contrôlant la mise en rotation T1 du récipient 3 en fonction des valeurs de différents paramètres 10 qui sont préalablement saisies en ladite mémoire 8.
En station de fonctionnement du mélangeur 1 , le récipient 3 est axialement A1 incliné d'un angle a (alpha) par rapport à son axe de gravité A2, comme illustré en traits continus. A cet effet, le mélangeur 1 est de préférence équipé d'un organe de réglage 1 1 de l'angle a d'inclinaison du récipient 3. Ainsi, le récipient 3 peut être plus ou moins axialement A1 incliné par rapport à son axe de gravité A2, notamment en fonction du liquide 2 à mélanger, à titre indicatif entre 5° (cinq degrés) et 45° (quarante cinq degrés). La mise en œuvre de l'organe de réglage 1 1 peut éventuellement être aussi motorisée sous dépendance de la servocommande 7. Dans ce cas, l'angle a d'inclinaison du récipient 3 peut être déterminé par la logique de calcul 9 à partir des valeurs des paramètres 10 préalablement saisies, et l'inclinaison du récipient 3 être contrôlée par la servocommande 7.
Parmi lesdits paramètres 10, un premier paramètre est relatif au volume de liquide
2 contenu à l'intérieur du récipient 3 en présentant une surface libre, en étant par exemple identifié par la hauteur H de la colonne de liquide 2 contenu à l'intérieur du récipient 3 de rayon R, considéré orienté axialement A1 suivant son axe de gravité A2, comme illustré en surimpression en traits interrompus. Les dits paramètres 10 comprennent aussi un deuxième paramètre relatif audit rayon R du récipient 3 et un troisième paramètre relatif à la viscosité du liquide 2.
Sur la figure 2, il est proposé une méthode pour mélanger un liquide 2 via le mélangeur 1 illustré sur la figure 1 , en tenant compte des valeurs des paramètres 10 qui sont préalablement saisies en ladite mémoire 8 par un opérateur et qui sont exploitées par la logique de calcul 9 équipant la servocommande 7 contrôlant au moins la mise en rotation T1 du récipient 3, voire aussi son inclinaison.
Une variation de la vitesse angulaire W de rotation du récipient 3 est repérée en ordonnée en fonction du temps (t) repéré en abscisse. Une ligne médiane identifie en ordonnée une vitesse angulaire Wo de rotation T1 du récipient 3 de valeur nulle, soit Wo = 0. Il est compris ici que la vitesse angulaire W de rotation T 1 du récipient 3 augmente de part et d'autre de ladite ligne médiane, selon des sens S1 , S2 respectifs de mise en rotation T1 du récipient 3.
Plus particulièrement une variation du sens S1 , S2 de rotation T1 et de la vitesse angulaire W de rotation T1 du récipient 3 sont identifiées et contrôlées par la servocommande 7, en fonction des valeurs des paramètres 10 au moins relatifs au rayon R du récipient 3, à la quantité et à la viscosité du liquide 2 contenu à l'intérieur du récipient 3. La logique de calcul 9 identifie une mise en rotation T1 du récipient
3 selon des cycles itératifs C1 , C2 qui sont donc successivement identiques. Il est compris que sur la figure 2 les cycles C1 , C2 sont représentés à titre illustratif au nombre de deux. En début de chaque cycle C1 , C2 la vitesse initiale Wo de rotation T1 du récipient 3 est de valeur nulle. Chaque cycle comprend des séquences successives C1 a, C1 b ; C2a, C2b, comprenant chacune des phases P1 , P2, P3 successives de mise en rotation T1 du récipient 3 selon des cinématiques spécifiques déterminées par la logique de calcul 9. Pour chacune des séquences C1 a, C1 b ; C2a, C2b, une première phase est une phase d'accélération P1 de la vitesse angulaire W de rotation T1 du récipient 3, suivie d'une deuxième phase intermédiaire P2 de mise en rotation T1 du récipient 3 à une vitesse angulaire maximale WMQ , qui est maintenue constante selon l'exemple illustré, suivie d'une troisième phase de décélération P3 de la rotation T1 du récipient 3.
A l'issue de chaque séquence C1 a, C1 b ; C2a, C2b, le sens S1 , S2 de rotation T1 du récipient 3 est inversé. Selon l'exemple illustré, les phases d'accélération P1 et de décélération P3 sont chacune réalisées suivant un mode linéaire de variation de la vitesse angulaire W de rotation T1 du récipient 3, ou autrement dit suivant une fonction affine (f) de variation de la vitesse angulaire W de rotation T1 du récipient 3.
Les phases d'accélération P1 et de décélération P3 sont identifiées par la logique de calcul 9 de la servocommande 7, en fonction de la vitesse angulaire maximale WM3C de rotation T1 du récipient 3, en prenant notamment en compte la quantité et la viscosité du liquide 2 contenu à l'intérieur du récipient 3 pour optimiser l'efficacité du mélange du liquide 2 et pour éviter un cisaillement significativement délétère du liquide 2.
La vitesse angulaire maximale WM3C de rotation T1 du récipient 3 est identifiée par la logique de calcul 9 de la servocommande 7, en prenant en compte le rayon R du récipient 3 et l'unité d'accélération de la pesanteur g en surface de la terre, et/ou en prenant en compte le rayon R du récipient 3 et la viscosité du liquide 2. La quantité de liquide 2 contenue à l'intérieur du récipient 3 est identifiée en prenant en compte le rayon R du récipient 3 et la hauteur H de la colonne du liquide 2 contenu à l'intérieur du récipient 3 en présentant une surface libre, le récipient 3 étant considéré axialement A1 orienté suivant son axe de gravité A2. L’invention procure un mélange homogène du liquide 2 et de l’adjuvant dans tout le récipient 3 pour des fluides visqueux, ce qui est difficilement réalisable avec des mélangeurs à pales. En effet, pour un liquide visqueux mélangé avec un mélangeur à pales, par exemple du type à turbine, des zones du liquide non mélangées restent souvent présentes dans le récipient.
Par comparaison avec la méthode décrite dans le document WO 2017/149034-A1 selon laquelle le sens de rotation du récipient est constant et/ou faiblement variable, l'invention permet de mélanger des liquides 1000 fois plus visqueux et de diminuer le temps nécessaire à l'obtention d'un mélange performant du liquide d'un facteur au moins égal à quatre.

Claims

REVENDICATIONS
1 .- Méthode de mise en œuvre d'un mélangeur (1 ) de liquide (2) avec un adjuvant, comprenant un récipient (3) d'extension axiale (A1 ) à paroi (4) de révolution pour la réception du liquide (2) présentant une surface libre, le récipient (3) étant monté tournant sur un châssis (5) et étant exempt d'organe de brassage du liquide (2) à l'intérieur du récipient (3), le récipient (3) en station de fonctionnement du mélangeur (1 ) étant axialement incliné par rapport à son axe de gravité (A2) et étant entraîné en rotation (T1 ) selon une vitesse angulaire (W) variable, caractérisée en ce que la mise en rotation (T1 ) du récipient (3) est réalisée en fonction de paramètres (10) comprenant au moins le rayon (R) du récipient (3), la quantité de liquide (2) à l'intérieur du récipient (3) et la viscosité du liquide (2), suivant un mode de fonctionnement du mélangeur (1 ) comprenant des cycles (C1 , C2) itératifs de mise en rotation (T1 ) du récipient (3) selon des sens (S1 , S2) de rotation (T1 ) alternés, chaque cycle (C1 , C2) comprenant au moins deux séquences (C1 a, C1 b) successives de variation de la vitesse angulaire (W) de rotation du récipient (3).
2.- Méthode selon la revendication 1 , caractérisée en ce que chacune des séquences (C1 a, C1 b) alterne une phase d'accélération (P1 ) et une phase de décélération (P3) de la rotation (T1 ) du récipient (3), qui sont séparées l'une de l'autre par une phase intermédiaire (P2) de maintien d'un entraînement en rotation du récipient (3) à une vitesse angulaire maximale (WM3C) constante.
3.- Méthode selon la revendication 2, caractérisée en ce que pour chacune des séquences (C1 a, C1 b), la phase d'accélération (P1 ) et la phase de décélération (P3) sont chacune réalisées selon des modes linéaires de variation de la vitesse angulaire (W) de rotation (T1 ) du récipient (3).
4 Méthode selon la revendication 2, caractérisée en ce que pour chacune des séquences (C1 a, C1 b), la phase d'accélération (P1 ) et la phase de décélération (P3) sont successivement réalisées selon un mode parabolique de variation de la vitesse angulaire (W) de rotation (T1 ) du récipient (3).
5.- Méthode selon l'une quelconque des revendications 2 à 4, caractérisée en ce que la dite vitesse angulaire maximale (Qwiax) de rotation (T1 ) du récipient (3) est identifiée au moins par application d'une première règle suivante :
Qwiax2 R / g £ 3, dans laquelle Qwiax est la vitesse angulaire maximale de rotation (T1 ) du récipient (3), R est le rayon (R) du récipient (3) et g est l'unité d'accélération de la pesanteur en surface de la terre.
6.- Méthode selon l'une quelconque des revendications 2 à 4, caractérisée en ce que ladite vitesse angulaire maximale (Qwiax) de rotation (T1 ) du récipient (3) est identifiée au moins par application d'une deuxième règle suivante :
QM3X R2 / V > 1 , dans laquelle Qwiax est la vitesse angulaire maximale de rotation (T1 ) du récipient (3), R est le rayon du récipient (3) et v est la viscosité cinématique du liquide (2).
7.- Méthode selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la durée de mise en oeuvre des séquences (C1 a, C1 b) est identique pour chacun des cycles (C1 , C2, C3...) et est définie par le nombre de tours de rotation (T1 ) du récipient (3) lors du mélange du liquide (2).
8.- Méthode selon la revendication 5, caractérisée en ce que pour chacune des séquences (C1 a, C1 b) d'un cycle (C1 , C2), le nombre de tours de rotation (T1 ) du récipient (3) est compris entre 1 et 20 rotations (T1 ).
9.- Mélangeur (1 ) de liquide (2) apte à la mise en oeuvre d'une méthode selon l'une quelconque des revendications 1 à 8, le mélangeur (1 ) comprenant un récipient (3) d'extension axiale (A1 ) à paroi (4) de révolution pour la réception du liquide (2), le récipient (3) étant monté tournant sur un châssis (5) et étant exempt d'organe de brassage du liquide (2) à l'intérieur du récipient (3), le récipient (3) en station de fonctionnement du mélangeur (1 ) étant incliné suivant son axe d'extension (A1 ) par rapport à son axe de gravité (A2), caractérisé en ce que le mélangeur (1 ) est équipé d'une motorisation (6) de mise en rotation (T1 ) du récipient (3), dont la mise en oeuvre est placée sous dépendance d'une servocommande (7) équipée d'une mémoire (8) intégrant une logique de calcul (9) de mise en rotation (T1 ) alternée du récipient (3) en fonction de la valeur de paramètres (10) qui sont préalablement saisis en ladite mémoire (8) et qui sont au moins relatifs à l'une au moins des caractéristiques dimensionnelles du récipient (3), dont son rayon (R), le volume de liquide (2) contenu à l'intérieur du récipient (3) et l'une au moins des caractéristiques physicochimiques du liquide (2), dont au moins sa viscosité.
10.- Mélangeur (1 ) de liquide (2) selon la revendication 9, caractérisé en ce que le récipient (3) présente une capacité de réception du liquide (2) qui est conforme à la troisième règle suivante :
H / R est compris entre 1 et 3, dans laquelle H est la hauteur maximale de la colonne du liquide (2) pouvant être contenu à l'intérieur du récipient (3) axialement (A1 ) orienté suivant son axe de gravité (A2), en présentant une surface libre, et dans laquelle R est le rayon du récipient (3).
1 1 .- Mélangeur (1 ) de liquide (2) selon l'une quelconque des revendications 9 et 10, caractérisé en ce qu'en station de fonctionnement du mélangeur (1 ), l'angle (a) d'inclinaison axiale (A1 ) du récipient (3) par rapport à son axe de gravité (A2) est compris entre 5° et 45°.
PCT/EP2020/055805 2019-03-05 2020-03-05 Methode de melange d'un liquide visqueux par un melangeur a recipient rotatif exempt d'organe de brassage du liquide et melangeur apte a la mise en oeuvre du dit methode WO2020178370A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902211A FR3093442B1 (fr) 2019-03-05 2019-03-05 Méthode de mélange d'un liquide visqueux par un mélangeur à récipient rotatif exempt d'organe de brassage du liquide.
FRFR1902211 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020178370A1 true WO2020178370A1 (fr) 2020-09-10

Family

ID=67002034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/055805 WO2020178370A1 (fr) 2019-03-05 2020-03-05 Methode de melange d'un liquide visqueux par un melangeur a recipient rotatif exempt d'organe de brassage du liquide et melangeur apte a la mise en oeuvre du dit methode

Country Status (2)

Country Link
FR (1) FR3093442B1 (fr)
WO (1) WO2020178370A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3117505A1 (fr) * 2020-12-11 2022-06-17 Université d’Aix Marseille Système, procédé et ensemble pour la culture cellulaire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014533A1 (fr) * 2002-08-07 2004-02-19 Amersham Health As Adaptateur
US9693892B1 (en) * 2008-06-06 2017-07-04 C° Change Surgical Llc Method of producing slush for surgical use through receptacle oscillation
WO2017149034A1 (fr) 2016-03-01 2017-09-08 Centre National De La Recherche Scientifique Cnrs Melangeur sans pale et procede
EP3397308A1 (fr) * 2015-12-29 2018-11-07 Bracco Suisse SA Procédé et dispositif de préparation de suspension de microparticules réparties de manière homogène dans un transporteur liquide aqueux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014533A1 (fr) * 2002-08-07 2004-02-19 Amersham Health As Adaptateur
US9693892B1 (en) * 2008-06-06 2017-07-04 C° Change Surgical Llc Method of producing slush for surgical use through receptacle oscillation
EP3397308A1 (fr) * 2015-12-29 2018-11-07 Bracco Suisse SA Procédé et dispositif de préparation de suspension de microparticules réparties de manière homogène dans un transporteur liquide aqueux
WO2017149034A1 (fr) 2016-03-01 2017-09-08 Centre National De La Recherche Scientifique Cnrs Melangeur sans pale et procede

Also Published As

Publication number Publication date
FR3093442B1 (fr) 2021-02-26
FR3093442A1 (fr) 2020-09-11

Similar Documents

Publication Publication Date Title
EP2254687B1 (fr) Recipient-melangeur
WO2010106282A1 (fr) Recipient-melangeur avec palier d'arbre en partie supérieure.
FR3032957A3 (fr)
CA2717460A1 (fr) Ensemble de melange, et procede de fabrication d'une reparation utilisant ledit ensemble
WO2020178370A1 (fr) Methode de melange d'un liquide visqueux par un melangeur a recipient rotatif exempt d'organe de brassage du liquide et melangeur apte a la mise en oeuvre du dit methode
EP1513605A1 (fr) Procede pour melanger en continu dynamiquement au moins deux fluides et micromelangeur
EP2492003B1 (fr) Appareil de traitement mécanique d'une composition liquide et procédé de traitement mécanique d'une telle composition liquide
FR2919281A1 (fr) Procede et dispositif pour homogeneiser une masse fondue de verre
EP2673076B1 (fr) Dispositif de mise en contact d'une espèce liquide et d'une espèce solide particulaire en croissance
CA2533912C (fr) Dispositif melangeur pour dechets solides divises
EP2965806B1 (fr) Installation de traitement d'eau ou d'effluents industriels comprenant des moyens d'agitation à moyens d'entrainement communs
EP2802409B1 (fr) Systeme d'agitation ou de conservation de peintures
EP1338330A2 (fr) Dispositif de mélange et d'homogénéisation destiné à la production d'émulsions
EP1011333B1 (fr) Machine de fabrication et de stockage de levain naturel liquide
EP3655147A1 (fr) Dispositif d'homogeneisation et de prelevement d'un liquide
EP1467810A1 (fr) DISPOSITIF ET PROCEDE D AGITATION EN PARTICULIER POUR u /u LA DISPERSION OU L EMULSIFICATION DE DEUX LIQUIDES NON MISC IBLES
FR3036974B1 (fr) Installation de melange-separation de liquides non miscibles
EP1865781B1 (fr) Dispositif de melange en continu d une pâte alimentaire comprenant deux types d outils de melange superposes et une evacuation laterale, procédé de fabrication et installation
EP0367664A1 (fr) Procédé automatisé de mélange d'un milieu liquide et mélangeur submersible automatisé apte à mettre en oeuvre ce procédé
EP2480323B1 (fr) Procédé et dispositif de mélange d'une solution hétérogène en solution homogène
FR2777804A1 (fr) Dispositif melangeur a rotor et stator
WO2005108036A2 (fr) Appareil de traitement de matieres plastiques dans un but de recyclage et procede utilisant cet appareil
EP3170550A1 (fr) Couvercle agitateur et système utilisant le couvercle agitateur
WO2017046514A1 (fr) Procédé et dispositif de melange et d'homogeneisation d'un milieu complexe
FR3130648A1 (fr) Dispositif et procédé de broyage et de mélange de poudres comportant des mobiles de broyage et de mélange contrarotatifs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20707451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20707451

Country of ref document: EP

Kind code of ref document: A1