WO2020177031A1 - 一种制芯机及制芯机控制方法和系统 - Google Patents

一种制芯机及制芯机控制方法和系统 Download PDF

Info

Publication number
WO2020177031A1
WO2020177031A1 PCT/CN2019/076758 CN2019076758W WO2020177031A1 WO 2020177031 A1 WO2020177031 A1 WO 2020177031A1 CN 2019076758 W CN2019076758 W CN 2019076758W WO 2020177031 A1 WO2020177031 A1 WO 2020177031A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
sand
making
parameters
raw material
Prior art date
Application number
PCT/CN2019/076758
Other languages
English (en)
French (fr)
Inventor
李嘉
桑海峰
Original Assignee
苏州明志科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州明志科技股份有限公司 filed Critical 苏州明志科技股份有限公司
Priority to CN201980013439.9A priority Critical patent/CN111801180B/zh
Priority to PCT/CN2019/076758 priority patent/WO2020177031A1/zh
Publication of WO2020177031A1 publication Critical patent/WO2020177031A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/02Compacting by pressing devices only
    • B22C15/08Compacting by pressing devices only involving pneumatic or hydraulic mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • This application relates to the technical field of core making machines, and in particular to a core making machine and a core making machine control method and system.
  • the core making machine (or called the core making equipment) is one of the important equipment in the foundry industry. Its working principle is: After the upper and lower parts of the core box (upper core box and lower core box) are closed, the mixture is mixed by compressed air The sand core material with curing agent (such as resin) and/or auxiliary materials is injected into the core box to prepare the required sand core.
  • curing agent such as resin
  • the process of preparing sand gravel mixed with curing agent and auxiliary materials is as follows: firstly, the sand gravel and the additives are premixed to reduce the water content and compaction rate of the gravel and increase the air permeability to obtain the first raw material. Then, the first raw material is finally mixed with curing agent, auxiliary materials, etc. to enhance its mechanical strength and material stability, and to obtain sand mixed with curing agent and other auxiliary materials. In this field, the above-mentioned pre-mixing and final pre-mixing steps are all carried out in the same sand mixer.
  • the sand mixed with auxiliary materials such as curing agent Due to factors such as ambient temperature, ambient humidity, storage time, and easy volatilization of the curing agent, it cannot be guaranteed that the sand mixed with auxiliary materials such as curing agent Therefore, the yield and quality of the prepared sand core may be reduced, and a large amount of raw material waste may also be caused. Because the traditional method mixes the raw materials in a sand mixing bin, the mixed raw materials will be stored in the sand mixing hopper for a long time. In order to ensure the yield of the sand core, the dosage of the curing agent will be increased, and the curing agent is more expensive and effective. The environment has a certain impact.
  • the core-making machine involves multiple parameters (such as state parameters, core-making parameters, etc.) in the process of making sand cores.
  • each parameter is basically independent. When one or more parameters do not meet the core-making requirements, time and resources may be wasted in order to make the parameters meet the core-making requirements.
  • One of the embodiments of the present application provides a method for preparing a sand core, which includes: rotating and mixing sand and additives along a first shaft in a vertical direction in a pre-mixing bin to obtain a first raw material;
  • the second rotating shaft rotates and mixes at least part of the first raw material, the curing agent and the auxiliary materials to obtain the sand core raw material;
  • the sand core is prepared from the sand core raw material.
  • the mass ratio of the curing agent to the sand core raw material is less than 0.4%.
  • the mass ratio of the first raw material, the curing agent, and the auxiliary material is: 73-78.5% of the first raw material, 0.2-0.4% of the curing agent, and 21.3-26.6% of the auxiliary material.
  • the method for preparing a sand core further includes: cooling or heating the sand and transporting the cooled or heated sand to a premixing bin.
  • the curing agent and the auxiliary materials are cooled or heated.
  • One of the embodiments of the present application provides a core-making equipment, including a pre-mixing chamber, a final mixing chamber, and a core-making assembly.
  • the pre-mixing chamber and the final mixing chamber are connected through a first control valve, and the final mixing chamber is connected to
  • the core-making assembly is connected by a second control valve;
  • the pre-mixing bin is used for rotating and mixing gravel and additives along the first shaft in the vertical direction to obtain the first raw material;
  • the final mixing bin is used for the vertical mixing
  • the second rotating shaft rotates and mixes at least part of the first raw material, the curing agent and the auxiliary materials to obtain the sand core raw material;
  • the core-making component is used for preparing the sand core from the sand core raw material.
  • One of the embodiments of the present application provides a method for determining core-making parameters, including: obtaining at least one state parameter during the preparation process of the sand core; obtaining the corresponding relationship between the core-making parameter and the state parameter; and based on the at least one state parameter and the Correspondence, determine the core-making parameters.
  • the at least one state parameter includes at least one of the following parameters: gravel temperature, first raw material temperature, first raw material storage time, environmental temperature, environmental humidity, curing agent temperature, auxiliary material temperature, sand core Raw material temperature, sand core material storage time, ratio of sand to additives, ratio of first raw material to curing agent and auxiliary materials, sand hopper temperature, pre-mixed bin temperature, final blended bin temperature, core box temperature.
  • the at least one state parameter includes sand core yield.
  • the qualified rate of the sand core is determined by the initial strength of the sand core and/or the appearance integrity of the sand core.
  • the obtaining the corresponding relationship between the core making parameters and the state parameters includes: obtaining historical core making parameters and historical state parameter information; and determining the core making parameters and the historical state parameter information according to the historical core making parameters and the historical state parameter information. Correspondence of state parameters.
  • the obtaining the corresponding relationship between the core-making parameters and the state parameters further includes: obtaining standard core-making parameters and standard state parameters; according to the historical core-making parameters and historical state parameter information, and the standard core-making parameters The parameters and the standard state parameters determine the corresponding relationship between the core-making parameters and the state parameters.
  • the determining the correspondence between the core-making parameters and the state parameters according to the historical core-making parameters and the historical state parameter information includes: training a machine learning model according to the historical core-making parameters and the historical state parameter information The machine learning model is used to reflect the corresponding relationship between the core-making parameters and the state parameters.
  • the determining the core-making parameter based on the at least one state parameter and the corresponding relationship includes: determining the core-making parameter by using a trained machine learning model based on the at least one state parameter.
  • the core-making parameters include at least one of the following: sand shooting pressure, sand shooting time, exhaust time, sand hopper temperature, pre-mixing bin temperature, final mixing bin temperature, pre-mixing bin mixing time , Final mixing chamber mixing time, curing time, curing pressure, high pressure sand shooting pressure, high pressure sand shooting time, low pressure sand shooting pressure, low pressure sand shooting time, pre-exhaust time, exhaust time, sand adding interval, sand adding time, The core box reaches the final pressure time, curing heater temperature, core box temperature, air heater temperature, intermediate heater temperature.
  • the determining the core-making parameter based on the at least one state parameter and the corresponding relationship includes: determining a deviation value of the at least one state parameter from a standard state parameter; determining the deviation value according to the deviation value.
  • Core making parameters includes: determining a deviation value of the at least one state parameter from a standard state parameter; determining the deviation value according to the deviation value.
  • the determining the core-making parameter based on the deviation value includes: determining the deviation coefficient of the at least one state parameter based on the deviation value; determining the deviation coefficient of the at least one state parameter The core making parameters.
  • the deviation coefficient of the core-making parameter is the same as the deviation coefficient of the at least one state parameter.
  • the at least one state parameter includes the storage time of the sand core raw material; the determining the core making parameter based on the at least one state parameter and the corresponding relationship includes: when the storage time of the sand core raw material is in the first When between the first threshold and the second threshold, it is determined that the sand shooting pressure is the first pressure range, and the sand shooting time is the first time range.
  • One of the embodiments of the present application provides a core-making parameter determination system, including a state parameter acquisition module, a corresponding relationship acquisition module, and a core-making parameter determination module;
  • the state parameter acquisition module is used to acquire at least one state during the preparation process of the sand core
  • the corresponding relationship acquisition module is used to acquire the corresponding relationship between the core making parameter and the state parameter;
  • the core making parameter determination module is used to determine the core making parameter based on the at least one state parameter and the corresponding relationship.
  • One of the embodiments of the present application provides a core-making parameter determination system, including at least one storage medium and at least one processor, the at least one storage medium is used to store computer instructions; the at least one processor is used to execute the computer Instructions to implement the core-making parameter determination method as described in any embodiment of the present application.
  • One of the embodiments of the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a processor, the method for determining core making parameters as described in any of the embodiments of the present application is implemented .
  • One of the embodiments of the present application provides a method for preparing a sand core, including: obtaining at least one state parameter of a pre-mixing bin and/or a final mixing bin during the preparation of the sand core; based on the pre-mixing bin and/or the final blending bin Determine the core-making parameters of the core-making component; use the core-making parameters of the core-making component to prepare a sand core.
  • the pre-mixing bin is used to mix gravel and additives to obtain the first raw material; the final-mixing bin is used to mix the curing agent, auxiliary materials, and at least part of the first material delivered from the pre-mixing bin.
  • a raw material is mixed to obtain a sand core raw material.
  • One of the embodiments of the present application provides a method for preparing sand cores, including: performing sand core pre-production based on pre-production core-making parameters; determining at least one state parameter in the sand core pre-production process; and according to the at least one state parameter, Determine whether to end pre-production.
  • the method for preparing a sand core further includes: determining a core-making parameter for formal production based on at least one state parameter at the end of pre-production; and performing formal production of a sand core based on the core-making parameter for formal production.
  • the at least one state parameter includes appearance integrity or sand core initial strength.
  • Fig. 1 is a schematic structural diagram of a core making machine according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of hardware components and/or software components of an exemplary dedicated computing device according to some embodiments of the present application;
  • Figure 3 is a block diagram of a core making machine control system according to some embodiments of the present application.
  • Fig. 4 is an exemplary flow chart of a method for preparing a sand core according to some embodiments of the present application
  • Fig. 5 is a block diagram of an integrated information system for a core making machine according to some embodiments of the present application.
  • Figure 6 is a block diagram of a sand core raw material generating system according to some embodiments of the present application.
  • Figure 7 is an exemplary flow chart of a method for preparing sand core raw materials according to some embodiments of the present application.
  • Fig. 8 is a block diagram of a core making parameter determination system according to some embodiments of the present application.
  • Fig. 9 is an exemplary flowchart of a method for determining core making parameters according to some embodiments of the present application.
  • 101 is a sand storage hopper
  • 102 is an auxiliary hopper
  • 103 is an additive storage device
  • 104 is a pre-mixing silo
  • 105 is a curing agent storage device
  • 106 is an auxiliary material storage device
  • 107 is a final mixing silo
  • 108 is a sanding channel
  • 109 is the sand storage bucket
  • 110 is the sand storage mechanism
  • 111 is the sand shooting mechanism
  • 111-1 is the pressure head drive mechanism
  • 111-2 is the pressure head
  • 112 is the air pressure mechanism
  • 113 is the sand shooting head
  • 114 is the upper core box
  • 115 is the lower core box
  • 116 is the core box conveying mechanism
  • 117 is the lifting mechanism
  • 118 is the bracket
  • 119 is the core making machine control unit.
  • system is a method for distinguishing different components, elements, parts, parts, or assemblies of different levels.
  • the words can be replaced by other expressions.
  • a flowchart is used in this application to illustrate the operations performed by the system according to the embodiments of the application. It should be understood that the preceding or following operations are not necessarily performed exactly in order. Instead, the steps can be processed in reverse order or simultaneously. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.
  • Fig. 1 shows a schematic diagram of a core making machine 100 according to some embodiments of the present application. It should be noted that Fig. 1 is only an example and does not limit the specific shape and structure of the core making machine.
  • the core making machine 100 may include: a sand storage hopper 101, an additive hopper 102, an additive adding device 103, a pre-mixing silo 104, a curing agent storage device 105, an auxiliary material storage device 106, a final mixing silo 107, and sanding Channel 108, sand storage bucket 109, sand storage mechanism 110, sand shooting mechanism 111, pressure head driving mechanism 111-1, pressure head 111-2, air pressure mechanism 112, sand shooting head 113, upper core box 114, lower core box 115 , Core box conveying mechanism 116, lifting mechanism 117, bracket 118, core making machine control unit 119 and other components.
  • the sand storage hopper 101, the additive hopper 102, the additive adding device 103 and the pre-mixing bin 104 may constitute a pre-mixing component.
  • the first raw material can be prepared through the premixed component.
  • the curing agent storage device 105, the auxiliary material storage device 106 and the final mixing chamber 107 may constitute a final mixing assembly.
  • Sand core raw materials can be prepared through final mixing components.
  • the box 115, the core box conveying mechanism 116, and the lifting mechanism 117 may constitute a core-making unit (or called a core-making assembly).
  • Sand cores can be prepared by the core-making unit.
  • the core making machine 100 may further include an alarm component (e.g., an alarm light, a horn, etc.) to send out an alarm (e.g., a reminder that the core box needs to be replaced, the core box cleaned, the condition of the components, etc.).
  • the alarm can be divided into different alarm levels.
  • the core-making machine control unit 119 may be used to control various components of the core-making machine 100 to implement various operations, including transporting raw materials (eg, gravel, additives, curing agents, auxiliary materials), and preparing the first raw material. , Preparation of sand core materials, preparation of sand cores, inspection of sand core quality, heating and cooling of components, installation of core boxes, and unloading of core boxes.
  • the core making machine control unit 119 may be installed on the frame or housing of the core making machine 100 or separated from the core making machine 100.
  • the core making machine control unit 119 can control various components of the core making machine 100 in a wired or wireless manner.
  • the core making machine 100 may also further include other mechanical structures for support and connection, other functional structures, etc., or combinations thereof.
  • the core making machine 100 may further include a control signal receiving mechanism (not shown in the figure) to receive control signals from the core making machine control part 119 of the core making machine 100. By providing a signal receiving mechanism, it is also convenient for the core making machine control unit 119 to jointly control the relevant components of the core making machine 100.
  • the core making machine 100 may further include other devices mounted on various components to collect state parameters of the core making machine 100, sand core quality data and/or to operate the core making machine 100 components.
  • the components of the core making machine 100 can be used to perform at least one of the following operations with other devices on board, including: detecting the ambient temperature, detecting the ambient humidity, detecting the temperature of the component, detecting the pressure in the component, detecting the humidity in the component, and detecting Temperature of raw materials (such as gravel, additives, curing agents, auxiliary materials, first raw materials, sand core materials, etc.), record the storage time of raw materials (such as sand, additives, curing agents, auxiliary materials, first raw materials, sand core materials, etc.), Perform heating, perform cooling, etc.
  • raw materials such as gravel, additives, curing agents, auxiliary materials, first raw materials, sand core materials, etc.
  • the other devices may include sensors (such as temperature sensors, pressure sensors, humidity sensors, load cells, etc.), timers, sand core quality inspection devices (such as surface adsorption performance testing devices, optical testing instruments, etc.) (Such as laser, etc.), ultrasonic detection device, pressure/pressure sensor, etc.), heating device, cooling device, etc. one or more of any combination.
  • sensors such as temperature sensors, pressure sensors, humidity sensors, load cells, etc.
  • timers such as surface adsorption performance testing devices, optical testing instruments, etc.
  • sand core quality inspection devices such as surface adsorption performance testing devices, optical testing instruments, etc.
  • ultrasonic detection device such as laser, etc.
  • pressure/pressure sensor such as ultrasonic detection device, pressure/pressure sensor, etc.
  • the sand storage bucket 101 can be used to store gravel.
  • the control part 119 of the core making machine can control the lower end control valve of the sand storage hopper 101 to add sand and the amount of sand (such as weight or volume) to the premix bin 104.
  • the sand storage bucket 101 may be further equipped with sensors (such as temperature sensors, humidity sensors, etc.), heating devices, cooling devices, and the like.
  • At least one of the following operations can be performed on the sand storage bucket 101 by using the above-mounted device, including: detecting the temperature of the sand storage bucket 101, detecting the temperature of the gravel, detecting the pressure in the sand storage bucket 101, and detecting the sand storage bucket 101
  • the humidity of the environment is detected, the humidity of the gravel is detected, the storage time of the gravel is recorded, the sand storage bucket 101 is heated, and the sand storage bucket 101 is cooled down.
  • the additive hopper 102 can be used to store additives.
  • the core-making machine control unit 119 can control the addition of additives and the amount of the added additives into the premix bin 104 through the control valve of the additive adding device 103.
  • the additive adding device 103 may be a catheter.
  • the additives may include at least one of the following: inorganic accelerators, anti-veining agents, makestars, and the like.
  • the additive hopper 103 may be further equipped with any combination of one or more of a sensor (such as a temperature sensor, a humidity sensor), a timer, a heating device, and a cooling device.
  • the onboard device can perform at least one of the following operations on the additive hopper 102, including: detecting the temperature of the additive hopper 102, detecting the temperature of the additive, detecting the pressure in the additive hopper 102, detecting the environmental humidity of the additive hopper 102, The humidity of the additive is detected, the storage time of the additive is recorded, the heating of the additive hopper 102 is performed, and the temperature of the additive hopper 102 is cooled.
  • the pre-mixing bin 104 may be used to mix the sand and additives obtained from the sand storage hopper 101 and the additive hopper 102 to prepare the first raw material.
  • the pre-mixing chamber 104 may include: a chamber body, a motor (not shown in the figure), a stirring shaft, and mounted devices (including: sensors (such as temperature sensors, humidity sensors, etc.), timers, heating Devices, cooling devices, etc.).
  • the motor can drive the stirring shaft to rotate to stir the gravel and additives, and the stirring is completed after a certain period of time.
  • the stirring shaft may rotate along a vertical rotating shaft (first rotating shaft), so as to stir the grit and additives in the pre-mixing bin.
  • At least one of the following operations can be performed on the pre-mixing bin 104 with the equipped device, including: detecting the temperature of the pre-mixing bin 104, detecting the pressure in the pre-mixing bin 104, detecting the humidity of the pre-mixing bin 104, and detecting the first raw material Humidity, detecting the temperature of the first raw material, recording the storage time of the first raw material, performing heating of the premixing bin 104, performing cooling of the premixing bin 104, and so on.
  • the mass ratio of the grit to the additive may be between 100:0.5 and 100:2.
  • the mass ratio of gravel and additives can be 100:0.5, 100:1.0, 100:1.5, 100:2.0, and so on.
  • the pre-mixing chamber 104 and the final mixing chamber 107 may be connected through a first control valve, and the core making machine control unit 119 may control the output from the pre-mixing chamber 104 to the final mixing chamber 107 through the first control valve. The amount of the first raw material and the first raw material.
  • the type of control valve (such as the first control valve) may include, but is not limited to, straight-through single-seat, straight-through double-seat, angle, diaphragm, small flow, three-way, eccentric rotation, butterfly, sleeve, Spherical and so on.
  • the curing agent storage device 105 may be used to store the curing agent.
  • the control valve at the lower end of the curing agent storage device 105 can be controlled by the core-making machine control unit 119 to control the addition of the curing agent to the final mixing chamber 107 and the amount of the added curing agent.
  • the curing agent may include at least one of the following: epoxy resins, aliphatic amines, aromatic amines, amidoamines, latent curing amines, urea substitutes, and the like.
  • the curing agent storage device 105 may be further equipped with sensors (eg, temperature sensors, humidity sensors, etc.), timers, heating devices, cooling devices, and the like.
  • the onboard device can perform at least one of the following operations on the curing agent storage device 105, including: detecting the temperature of the curing agent storage device 105, detecting the temperature of the curing agent, detecting the pressure in the curing agent storage device 105, and detecting curing The ambient humidity of the curing agent storage device 105, detecting the humidity of the curing agent, recording the storage time of the curing agent, performing heating of the curing agent storage device 105, performing cooling of the curing agent storage device 105, and the like.
  • the auxiliary material storage device 106 may be used to store auxiliary materials.
  • a control valve at the lower end of the auxiliary material storage device 106 can be controlled by the core making machine control unit 119 to control the addition of auxiliary materials to the final mixing bin 107 and the amount of added auxiliary materials.
  • the auxiliary material may include at least one of the following: lubricating material, catalytic material, surface active material, and the like.
  • the auxiliary material storage device 106 may be further equipped with sensors (e.g., temperature sensors, humidity sensors, etc.), timers, heating devices, cooling devices, and the like.
  • At least one of the following operations can be performed on the auxiliary material storage device 106 with the onboard device, including: detecting the temperature of the auxiliary material storage device 106, detecting the temperature of the auxiliary material, detecting the pressure in the auxiliary material storage device 106, and detecting the environment of the auxiliary material storage device 106 Humidity, detecting the humidity of the auxiliary material, recording the storage time of the auxiliary material, performing heating of the auxiliary material storage device 106, performing cooling of the auxiliary material storage device 106, and the like.
  • the final mixing bin 107 may be used to mix the first raw material obtained from the pre-mixing bin 104, the curing agent obtained from the curing agent storage device 105, and/or the auxiliary materials obtained from the auxiliary material storage device 106 to prepare sand core raw materials.
  • the final mixing chamber 107 may include a chamber body, a motor, a stirring shaft, and mounted devices (including sensors (such as temperature sensors, humidity sensors), timers, heating devices, cooling devices, etc.). Wherein, the motor can drive the stirring shaft to rotate to stir the first raw material, curing agent and/or auxiliary materials, and the stirring is completed after a certain period of time.
  • the stirring shaft may rotate along a vertical rotation shaft (second rotation shaft), thereby stirring the first raw material, curing agent and/or auxiliary materials in the final mixing chamber.
  • At least one of the following operations can be performed on the final mixing chamber 107 with the equipped device, including: detecting the temperature of the final mixing chamber 107, detecting the pressure in the final mixing chamber 107, detecting the environmental humidity of the final mixing chamber 107, and detecting the raw material of the sand core. Humidity, record the storage time of the sand core material, perform the heating of the final mixing chamber 107, and perform the cooling of the final mixing chamber 107.
  • the mass ratio of the first raw material, curing agent, and auxiliary material may be 73-78.5% of the first raw material, 0.2-0.4% of the curing agent, and 21.3-26.6% of the auxiliary material.
  • the first raw material is 73%
  • the curing agent is 0.4%
  • the auxiliary material is 26.6%
  • the first raw material is 75%
  • the curing agent is 0.2%
  • the auxiliary material is 24.8%.
  • the sand core material in the final mixing chamber 107 can be discharged through the second control valve at the lower part of the final mixing chamber 107.
  • the core maker control unit 119 can control the opening of the second control valve at the lower part of the final mixing chamber 107 to control the discharge of sand core materials from the final mixing chamber 107 and the amount of sand core materials discharged.
  • the sand core material discharged from the final mixing bin 107 will fall into the sand storage bucket 109 through the lower sand channel 108.
  • the stirring in the final mixing chamber 107 and the stirring in the premixing chamber 104 are independent of each other.
  • the final mixing warehouse 107 and the pre-mixing warehouse 104 may have only one mixing operation at the same time.
  • the final mixing chamber 107 and the pre-mixing chamber 104 may perform mixing operations separately at the same time.
  • the sand storage bucket 109 can be used to receive the sand core material discharged from the lower sand channel 108 and transfer the sand core material to other parts of the core making unit (for example, the sand storage mechanism 110).
  • the sand storage bucket 109 may be connected to the sand storage mechanism 110 through a conveying pipe.
  • the sand core material in the sand storage hopper 109 can be transported to the sand storage mechanism 110 in the core making unit through a motor-driven transport mechanism (such as a transport mechanism in a pipeline).
  • the sand storage hopper 109 may include a bin body, a motor, and mounted devices (including sensors (eg, temperature sensors, humidity sensors), timers, heating devices, cooling devices, etc.). Among them, at least one of the following operations can be performed on the sand storage hopper 109 with the equipped device, including: detecting the temperature of the sand storage hopper 109, detecting the pressure in the sand storage hopper 109, detecting the environmental humidity of the sand storage hopper 109, and detecting the sand core The humidity of the raw material, the storage time of the sand core raw material is recorded, the heating of the sand storage hopper 109, and the cooling of the sand storage hopper 109 are performed.
  • sensors eg, temperature sensors, humidity sensors
  • timers e.g., timers, heating devices, cooling devices, etc.
  • the sand storage mechanism 110 may further include a moving mechanism (not shown in the figure) for moving the sand storage mechanism 110.
  • the core making machine control part 119 may control the moving mechanism to move the sand storage mechanism 110 to the core making position. Specifically, by moving the sand storage mechanism 110 to the core making position, the core making machine control unit 119 can control the sand shooting mechanism 111 and the air pressure mechanism 112 to pass the sand core material in the sand storage mechanism 110 through the sand shooting head 113 or the sand shooting board ( (Not shown in the figure) is pressed into the closed core box (the upper core box 114 and the lower core box 115 are formed after being combined) to prepare a sand core.
  • the sand shooting mechanism 111 may be any reasonable structure that can press the sand core material in the sand storage mechanism 110 into the core box after the mold is closed (formed after the upper and lower core boxes are combined).
  • the sand shooting mechanism 111 may include an indenter driving mechanism 111-1 (for example, an oil cylinder), an indenter 111-2, and the like.
  • the indenter driving mechanism 111-1 can be connected to the indenter 111-2 through a connecting rod.
  • the pressure driving mechanism 111-1 can control the indenter 111-2 to move up and down through the connecting rod, and can be controlled by the core making machine control unit 119.
  • the inside of the indenter 111-2 may include a cavity structure.
  • the pneumatic mechanism 112 can introduce compressed gas into the cavity structure inside the pressure head 111-2 through a pipeline.
  • the core making machine control unit 119 can control the above-mentioned cavity structure and the cavity for storing sand in the sand storage mechanism 110 to be connected, and use compressed gas to store the sand.
  • the sand core material in the sand mechanism 110 is pressed into the closed core box through the sand shooting head 113 or the sand shooting board (not shown in the figure). Wherein, the sand shooting head 113 may be located under the sand storage mechanism 110.
  • the core making machine control unit 119 can also control the sand shooting head 113 to be released from the sand storage mechanism 110 to perform maintenance operations (such as replacement operations, cleaning operations, etc.) of the sand shooting head 113.
  • the clamping operation of the upper core box 114 and the lower core box 115 can be realized by the lifting mechanism 117.
  • the lifting mechanism 117 may include a lifting driving mechanism (for example, an oil cylinder), and the core making machine control part 119 may control the lifting driving mechanism to drive the lifting mechanism 117 to lift.
  • the lifting mechanism 117 may include an upper core box lifting mechanism (not shown in the figure) and a lower core box lifting mechanism.
  • the lifting mechanism 117 (such as the upper core box lifting mechanism) can be used to fix the upper core box 114 on the upper core box fixing frame, and release the upper core box 114 from the upper core box fixing frame, and then realize The upper core box 114 and the lower core box 115 are molded together to perform core making.
  • the lifting mechanism 117 may be used to disengage the upper core box 114 from the lower core box 115 to perform operations such as sand core removal.
  • the core box conveying mechanism 116 may be installed on the lifting mechanism 117 and lifted with the lifting mechanism 117; or the core box conveying mechanism 116 may also be installed on the frame without lifting with the lifting mechanism 117.
  • the core box conveying mechanism 116 may be used to realize the movement (such as horizontal movement) of the core box.
  • the core box transport mechanism 116 may be used to move the core box to the core making position.
  • the core box conveying mechanism 116 can be used to move the core box from the core making position to the maintenance position, so as to facilitate the maintenance operations of the core box (eg, replacement operation, cleaning operation, etc.).
  • the core box conveying mechanism 116 may include conveying devices such as roller conveyors and conveyor belts.
  • the core box may carry tags, such as RFID tags, printed tags, and the like. Among them, the label can be used to record core box parameters.
  • the bracket 180 may be located outside the core making machine 100 and may be used to provide mechanical support for the components of the core making machine 100.
  • the bracket 180 may include one or more connection structures for physical connection with the core making machine 100 components.
  • the connecting structure may include one or more connecting structures such as slots, card slots, protrusions, connecting holes, pins, and limiting blocks.
  • the connection structure of the bracket 180 may be detachable, so that the bracket 180 can be detachably installed on the frame of the core making machine 100 or on the base or column beside the core making machine 100.
  • FIG. 2 is a schematic diagram of hardware components and/or software components of an exemplary dedicated computing device 200 according to some embodiments of the present application.
  • the computing device 200 may include a processor 210, a memory 220, an input/output (I/O) 230, and a communication port 240.
  • the relevant control signal of the core making machine 100 can be implemented on the computing device 200.
  • the core making machine control unit 119 may be realized by a computing device 200 or the like.
  • the processor 210 may execute computer instructions (for example, program code), and perform corresponding functions according to the method described in this application.
  • the processor 210 may process data/information of functions such as preparing the first raw material, preparing the sand core raw material, preparing the sand core, and collecting the parameters of the core making machine 100.
  • Computer instructions may include, for example, conventional methods, programs, objects, components, data structures, procedures, modules, and functions that perform specific functions described in this application.
  • the processor 210 may include at least one hardware processor, such as a microcontroller, a microprocessor, a reduced set of instruction computers (RISC), an application-specific integrated circuit (ASIC), and an application-specific set of instruction processors.
  • RISC reduced set of instruction computers
  • ASIC application-specific integrated circuit
  • ASIP central processing unit
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physical processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM high-end RISC A machine
  • PLD programmable logic device
  • the computing device 200 in this application may also include multiple processors, so that the operations and/or method steps performed by one processor described in this application may also be jointly implemented by multiple processors. Or execute separately.
  • the processor of the computing device 200 performs operation A and operation B, it should be understood that operation A and operation B may also be performed jointly or separately by multiple different processors in the computing device 200 (For example, the first processor performs operation A and the second processor performs operation B, or the first processor and the second processor jointly perform operations A and B).
  • the memory 220 may store data/signals obtained from at least one component of the core making machine 100.
  • the memory 220 may store the collected state parameters of the core making machine 100, sand core quality data, standard state parameters, core making parameters, control signals, and the like.
  • the memory 220 may include mass storage, removable storage, volatile read-write memory, read-only memory (ROM), etc., or any combination thereof.
  • the mass storage may include a magnetic disk, optical disk, solid-state hard disk, and so on.
  • Removable storage can include flash drives, floppy disks, optical disks, memory cards, compact disks, and magnetic tapes.
  • Volatile read and write memory may include random access memory (RAM).
  • RAM can include dynamic RAM (DRAM), double-rate synchronous dynamic RAM (DDRSDRAM), static RAM (SRAM), thyristor RAM (T-RAM), and zero capacitance (Z-RAM).
  • exemplary read-only memory may include mask-type read-only memory (MROM), programmable read-only memory (PROM), erasable programmable read-only memory (PEROM), electrically erasable programmable read-only memory (EEPROM), CD-ROM and digital versatile disk read-only memory, etc.
  • the memory 220 may store at least one program and/or instruction for executing the exemplary method described in this application.
  • the memory 220 may store programs and instructions for the core making machine 100.
  • the I/O 230 can be used to input and/or output signals, data, information, etc.
  • the user can interact with the core making machine 100 through the I/O 230.
  • operators can perform authorization authentication through I/O.
  • I/O 230 may include input devices and output devices.
  • Exemplary input devices may include keyboard, mouse, touch screen, microphone, etc., or any combination thereof.
  • Exemplary output devices may include display devices, speakers, printers, projectors, etc., or any combination thereof.
  • Exemplary display devices may include liquid crystal displays (LCD), light emitting diode (LED) based displays, flat panel displays, curved displays, television equipment, cathode ray tubes (CRT), etc., or any combination thereof.
  • LCD liquid crystal displays
  • LED light emitting diode
  • CRT cathode ray tubes
  • the communication port 240 may be connected to a network to facilitate data communication.
  • the communication port 240 can establish a connection with at least one core making machine component.
  • the connection may include a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections.
  • Wired connections may include, for example, cables, optical cables, telephone lines, etc., or any combination thereof.
  • the wireless connection may include, for example, Bluetooth TM link, Wi-Fi TM link, WiMax TM link, WLAN link, ZigBee link, mobile network link (for example, 3G, 4G, 5G, etc.), etc., or any combination thereof .
  • the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, and the like.
  • the communication port 240 may be a specially designed communication port.
  • Fig. 3 is a block diagram of a core-making machine control system according to some embodiments of the present application.
  • the system may include a sand core raw material production module 310, a data acquisition module 320, a core making machine control module 330, and a sand core production module 340.
  • the sand core raw material production module 310 can be used to control the production of sand core raw materials.
  • the sand core material may be composed of sand, additives, curing agents, auxiliary materials, and the like.
  • the additives may include any combination of one or more of inorganic accelerators, anti-veining agents, and Makestar.
  • the auxiliary materials may include any combination of one or more of lubricating materials, catalytic materials, and surface active materials.
  • the sand core raw material production module 310 may include a first raw material production control unit 610 and a sand core raw material production control unit 620.
  • the first raw material production control unit 610 can control the mixing of gravel and additives in the premix bin to obtain the first raw material.
  • the sand core raw material production control unit 620 can control the use of the curing agent, auxiliary materials and at least part of the first raw material to obtain the sand core raw material. For more details about the first raw material production control unit 610 and the sand core raw material production control unit 620, please refer to FIG. 6 and related descriptions.
  • the data acquisition module 320 can be used to acquire state parameters, core quality data, standard state parameters, core making parameters, historical state parameters, and corresponding relationships between core making parameters and state parameters.
  • the state parameter may include at least one of the following parameters: sand temperature, first raw material temperature, first raw material storage time, ambient temperature, ambient humidity, curing agent temperature, auxiliary material temperature, sand core raw material temperature, sand core raw material storage Time, ratio of sand to additives, ratio of first raw material to curing agent and auxiliary materials, sand hopper temperature, pre-mixing bin temperature, final mixing bin temperature, core box temperature, etc.
  • Sand core quality data can include: sand core qualification rate (or yield), sand core initial strength, sand core hardness, sand core dimensional accuracy, sand core permeability, sand core moisture absorption, sand core appearance integrity, etc. Any combination of multiple.
  • the data acquisition module 320 can collect component data, environmental data, and core quality data through other devices mounted on at least one component of the core making machine.
  • the core-making machine control module 330 can be used to control the operation of at least one component of the core-making machine 100, including: transporting raw materials (eg, gravel, additives, curing agents, auxiliary materials, first raw materials, sand core raw materials), preparing first raw materials, Preparation of sand core materials, preparation of sand cores, inspection of sand core quality, heating and cooling of parts, installation of core boxes, and unloading of core boxes.
  • the core making machine control module 330 can be composed of a control signal receiving mechanism (not shown in the figure) and a core making machine control unit 119, wherein the control signal receiving mechanism can receive control signals from the core making machine 100.
  • the core-making machine control unit 119 may be used to control various components of the core-making machine 100 to realize the various operations described above.
  • the core making machine control module 330 may be an integrated module of the core making machine control system, or the core making machine control module 330 may be independent of other modules of the core making machine control system.
  • the sand core production module 340 can be used to control the production of sand cores.
  • the sand core production module 340 can use the sand core raw material production module 310 to control the prepared sand core raw materials and the data acquired by the data acquisition module 320. Under the control of the core making machine control module 330, in the core making unit Prepare a sand core.
  • system and its modules shown in FIG. 3 can be implemented in various ways.
  • the system and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic;
  • the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • processor control codes for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware Such codes are provided on a programmable memory or a data carrier such as an optical or electronic signal carrier.
  • the system and its modules of this application can not only be implemented by hardware circuits such as very large-scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. It can also be implemented by software executed by various types of processors, or can be implemented by a combination of the aforementioned hardware circuit and software (for example, firmware).
  • Fig. 4 is an exemplary flowchart of a method for preparing a sand core according to some embodiments of the present application. As shown in Figure 4, the method may include:
  • Step 410 start the core making machine.
  • This step 410 may be performed manually or by the core-making machine control module 330, for example, the core-making machine 100 may be turned on by a manual operation of related buttons (eg, a main power gate) or through a preset production plan.
  • the core making machine control module 330 may be an integrated module of the core making machine control system, or the core making machine control module 330 may be independent of other modules of the core making machine control system (eg, the core making machine control module 330 can contain an independent power supply).
  • local or remote authority authentication may also be performed.
  • the operator may be required to input verification content (such as account number, password, fingerprint, iris, etc.).
  • verification content such as account number, password, fingerprint, iris, etc.
  • the core-making machine control module 330 can turn on the working power of the core-making machine 100.
  • operators of different levels and/or proficiency may be required to verify different content, and the verification results may also be different, and thus may be assigned to different permissions.
  • Step 420 install the core box.
  • This step 420 may be performed manually or by the core-making machine control module 330 to confirm the core box and read the core box parameters. For example, to confirm whether the core box has been installed by manual observation. For another example, it is possible to automatically read the signal (eg, pressure signal, etc.) that the core box exists at the core making position to confirm that the core box has been installed.
  • the core box may carry tags, such as RFID tags, printed tags, and the like. Among them, the label can record the core box parameters of the core box.
  • the core box parameters may include core box types, core box process parameters (such as temperature range, blowing pressure, blowing time, sand shooting time, sand shooting pressure, quality of sand and gravel raw materials, curing time, curing pressure, etc.) , The actual use times of the core box, the online use of the core box, the curve of the degree of core box clogging and the number of uses (or operating temperature), the core box clogging classification corresponding to the number of uses (or operating temperature), etc.
  • the core box parameters can be read manually or automatically.
  • the manual observation method reads printed labels to obtain core box parameters.
  • RFID tags can be automatically read to obtain core box parameters.
  • the core box may be further operated manually and/or the core-making machine control module 330 so that the installed core box reaches its core box process parameters.
  • other devices mounted on the core box e.g., heating device, cooling device
  • other devices mounted on the core box e.g., temperature sensor, core Box heating times counter, etc.
  • obtain the core box temperature, core box heating times, etc. and confirm whether the core box preheating temperature reaches the core box process parameters.
  • it is possible to confirm whether the core box needs to be replaced based on experience or control of other devices mounted on the core box for example, a counter for the number of times the core box is used).
  • the core box use times for example, 20000 times
  • multiple use times intervals for example, 0-18000 times, 18001-19999 times, and 20000 times. If the core box use times counter counts the current core The number of uses of the box is between 0-18000 times and 18001-19999 times. It can be confirmed that the core box does not need to be replaced, and the core making machine control module 330 can be used in the two intervals of 0-18000 times and 18001-19999 times. Control the alarm components (such as alarm lights, horns, etc.) to issue an alarm to remind whether the core box needs to be replaced.
  • the alarm components such as alarm lights, horns, etc.
  • the alarm levels in the two sections can be the same or different (for example, the colors of the alarm lights are the same yellow or the colors of the alarm lights are respectively (Yellow, red); if the core box usage counter counts that the current core box usage is 20,000 times, it can automatically confirm that the core box needs to be replaced, and the core making machine control module 330 can control related components (such as alarm lights, horns) Etc.) Issue an alarm (such as a red light) and/or suspend the core making machine 100 (e.g., restrict the core making operation of the core making machine 100), and can prompt that the core box must be replaced. The core box can be replaced manually after seeing the alarm.
  • the core box usage counter counts that the current core box usage is 20,000 times, it can automatically confirm that the core box needs to be replaced, and the core making machine control module 330 can control related components (such as alarm lights, horns) Etc.) Issue an alarm (such as a red light) and/or suspend the core making machine 100 (e.g., restrict the core making operation of
  • the core maker control module 330 may receive an artificial replacement completion instruction or determine that the replacement has been completed by detecting the RFID method. At this time, the times counter resets the current number of times of core box use to 0 times.
  • the core-making machine may include multiple spare core boxes inside or outside, and the core-making machine control module 330 can control related components (such as robotic arms, transfer mechanisms, etc.) to replace the core boxes. The counter can reset the current use times of the core box to 0 times.
  • Step 430 pre-production. Specifically, this step 430 may be performed by multiple modules of the core making machine control system 300 shown in FIG. 3, such as the sand core raw material production module 310, the data acquisition module 320, the core making machine control module 330, and the sand core production module 340. .
  • the core making machine control module 330, the sand core raw material production module 310, and the data acquisition module 320 can be used to pass raw materials such as gravel, additives, curing agents, and auxiliary materials through premixed components, final mixed components, and core-making
  • the machine control unit 119 and the like prepare sand core materials.
  • An exemplary process may include:
  • the core making machine control module 330 can control the sand storage hopper 101 and the additive hopper 102 in the premix assembly, and transport the gravel and additives to the premix silo 104.
  • the core making machine control module 330 can control the opening of the lower end control valve of the sand storage hopper 101 to add gravel to the premix bin 104, and can control the amount of gravel added.
  • the core making machine control module 330 can control the additive hopper 102 to add the additive and the amount of the additive added to the premix bin 104 through the control valve of the additive adding device 103.
  • the mass ratio of sand and additives in the pre-production 403 may be 100:0.1 to 100:0.4.
  • the mass ratio of grit and additive may be 100:0.1, 100:0.2, 100:0.3, 100:0.4.
  • the core making machine control module 330 can control other devices (such as heating device, cooling device, temperature Sensor) to heat or increase the temperature of the gravel in the sand storage bucket 101 and determine the temperature of the gravel and the sand bucket.
  • the core making machine control module 330 can control the lower end control valve of the sand storage hopper 101 and/or the control valve of the additive adding device 103 according to the state parameters in the sand core preparation process to control the addition of gravel and the added The amount of grit (such as weight or volume, etc.) and/or the addition of additives and the amount of additives added, and control the mixing time of the mixing shaft in the premixing bin 104.
  • the core making machine control module 330 can control the lower end control valve of the sand storage hopper 101 and/or the control valve of the additive adding device 103 to switch to the premixing chamber 104 according to whether the temperature of the premixing bin reaches a preset value. 100 parts of gravel and 0.1 parts of additives, and control the mixing time of the mixing shaft in the pre-mixing bin 104 to 20 seconds.
  • the first raw material production control unit 610 in the sand core raw material production module 310 can control the pre-mixing bin 104 in the pre-mixing assembly, and stir the sand and additives in the pre-mixing bin 104. After a certain period of time (such as 5 ⁇ 50 seconds) and then stir to prepare the first raw material. For example, controlling the motor of the pre-mixing bin 104 to drive the stirring shaft in the pre-mixing bin 104 to rotate, so as to stir the grit and additives in the pre-mixing bin 104.
  • the core making machine control module 330 may control other devices (eg, heating device, cooling device, temperature sensor) mounted on the pre-mixing bin 104 to control the pre-mixing
  • the first raw material in the bin 104 is heated or raised, and the temperature of the first raw material and the temperature of the premix bin are determined.
  • the storage time of the prepared first raw material can be determined according to other devices (for example, a timer) mounted on the premix bin 104.
  • the core-making machine control module 330 can control the control valve between the pre-mixing bin 104 and the final mixing bin 107, as well as the curing agent storage device 105 and the auxiliary material storage device 106 in the final mixing assembly, to solidify the first raw material and
  • the agent and auxiliary materials are transported to the final mixing warehouse 107.
  • the core-making machine control module 330 can control the control valve between the pre-mixing bin 104 and the final-mixing bin 107, and adjust an appropriate amount of the first raw material (for example, the amount of the first raw material required to prepare one or more batches of sand core materials ) Is transported to the final mixing bin 107.
  • the core making machine control module 330 can control the control valves of the curing agent storage device 105 and the auxiliary material storage device 106, and control the amount of curing agent, auxiliary material, curing agent and auxiliary material added to the final mixing bin 107.
  • the mass ratio of the first raw material, curing agent, and auxiliary materials in the pre-production 403 may be: 78.5-84% of the first raw material, 0.2-0.4% of the curing agent, and 21.3-26.6% of the auxiliary materials.
  • the core-making machine control module 330 can control other devices mounted on the curing agent storage device 105 (such as heating devices, cooling devices, etc.). Device, temperature sensor) to heat or increase the temperature of the curing agent in the curing agent storage device 105 and determine the temperature of the curing agent.
  • devices mounted on the curing agent storage device 105 such as heating devices, cooling devices, etc.
  • Device, temperature sensor to heat or increase the temperature of the curing agent in the curing agent storage device 105 and determine the temperature of the curing agent.
  • the core-making machine control module 330 can control other devices mounted on the auxiliary material storage device 106 (eg, heating device, cooling device, temperature The sensor) is used to heat or increase the temperature of the auxiliary material in the auxiliary material storage device 106 and determine the temperature of the auxiliary material.
  • the core making machine control module 330 can control the control valve between the pre-mixing bin 104 and the final mixing bin 107, and the curing agent storage device 105 and the final blending bin 107 according to the state parameters during the preparation process of the sand core.
  • the control valve and the control valve between the auxiliary material storage device 106 and the final mixing bin 107 to control the amount of the first raw material, curing agent and auxiliary materials added, and to control the stirring time of the stirring shaft in the final mixing bin 107.
  • the core making machine control module 330 can control the control valve between the pre-mixing chamber 104 and the final mixing chamber 107, and the control valve between the curing agent storage device 105 and the final mixing chamber 107 according to whether the temperature of the final mixing chamber reaches a preset value.
  • the switch of the control valve between the auxiliary material storage device 106 and the final mixing bin 107 to control the amount of the first raw material, curing agent and auxiliary materials to be 78.5% of the first raw material, 0.2% of the curing agent, and 21.3% of the auxiliary material, and control the final
  • the stirring time of the stirring shaft in the mixing chamber 107 is 40 seconds.
  • the core-making machine control module 330 can control the gap between the pre-mixing bin 104 and the final blending bin 107 according to whether the quality (eg, initial strength, appearance integrity, etc.) of the prepared pre-production sand core reaches a preset value.
  • the control valve, the control valve between the curing agent storage device 105 and the final mixing bin 107 and the control valve between the auxiliary material storage device 106 and the final mixing bin 107 are switched to control the amount of the first raw material, curing agent and auxiliary materials added It is 78% of the first raw material, 0.2% of the curing agent, and 21.8% of the auxiliary materials, and the stirring time of the stirring shaft in the final mixing chamber 107 is controlled to be 50 seconds.
  • the sand core raw material production control unit 620 in the sand core raw material production module 310 can control the final mixing bin 107 in the final mixing assembly, and stir the first raw material, curing agent and auxiliary materials in the final mixing bin 107. After stirring for a certain period of time (such as 5-50 seconds), the sand core material is prepared.
  • the sand core raw material production control unit 620 may control the motor of the final mixing bin 107 to drive the mixing shaft of the final mixing bin 107 to rotate to stir the first raw material, curing agent and auxiliary materials.
  • the core making machine control module 330 may control other devices (such as heating devices, cooling devices, temperature sensors) mounted on the final mixing chamber 107 to control the final mixing
  • the sand core material in the bin 107 is heated or raised, and the temperature of the sand core material and the final mixing bin temperature are determined.
  • the storage time of the prepared sand core material can be determined according to other devices (eg, timer) mounted on the final mixing chamber 107.
  • the core making machine control module 330, the data acquisition module 320, and the sand core production module 340 can be further used, or the core making unit and the core making machine control unit 119 can be used to prepare core materials.
  • An exemplary process can include:
  • the core making machine control module 330 can control the sand core material in the final mixing bin 107 to be input into the core making unit.
  • the core making machine control module 330 can control the second control valve at the lower part of the final mixing chamber 107 to open, thereby controlling the final mixing chamber 107 to discharge sand core materials and the amount of sand core materials discharged (for example, to produce a batch of sand cores).
  • Required sand core materials) and transport the sand core materials to the core making unit.
  • the core-making parameters are determined based on the read core-box parameters, so that the sand core material passes through the sand-shooting mechanism 111 and the air-pressure mechanism 112 under the core-making parameters, and is injected into the core box (the upper core box 114 and the lower core box that are closed. 115) to prepare a sand core.
  • the core-making parameters can include sand shooting pressure, sand shooting time, exhaust time, sand hopper temperature, pre-mixing bin temperature, final mixing bin temperature, pre-mixing bin stirring time, final blending bin stirring time, curing time, curing pressure , High pressure sand shooting pressure, high pressure sand shooting time, low pressure sand shooting pressure, low pressure sand shooting time, pre-exhaust time, exhaust time, sand adding interval, sand adding time, core box reaching final pressure time, curing heater temperature, One or more arbitrary combinations of core box temperature, air heater temperature, intermediate heater temperature, etc.
  • the core-making machine control module 330 may control other devices (such as heating devices, cooling devices, temperature sensors) mounted in the core-making unit to control the sand in the core box.
  • the core performs operations such as heating, cooling, solidification, and exhaust, and the temperature of the sand core can be determined.
  • the core-making parameter based on at least one state parameter in the sand core preparation process collected by the data acquisition module 320, and to prepare the sand core under the core-making parameter.
  • the state parameters may include sand temperature, first raw material temperature, first raw material storage time, ambient temperature, environmental humidity, curing agent temperature, auxiliary material temperature, sand core raw material temperature, sand core raw material storage time, and the ratio of sand and additives , The ratio of the first raw material to the curing agent and auxiliary materials, the temperature of the sand hopper, the temperature of the pre-mixing chamber, the temperature of the final mixing chamber, the temperature of the core box, the initial strength of the sand core, the appearance integrity of the sand core, and any combination of one or more .
  • Figure 9 For more description of determining the core-making parameters, refer to Figure 9 and its related descriptions.
  • the core making machine control module 330 and the data acquisition module 320 can be used to determine the quality of the pre-produced sand core.
  • the qualification rate (or yield) of the pre-produced sand core can be determined by testing the hardness, dimensional accuracy, air permeability, moisture absorption, initial strength of the sand core, and appearance integrity of the sand core.
  • the hardness, dimensional accuracy, air permeability, moisture absorption, initial strength of the sand core, and appearance integrity of the sand core can also be tested online to determine the qualification rate (or yield) of the pre-produced sand core.
  • online inspection refers to the inspection of the pass rate or the quality of the finished product during the production process.
  • a certain pressure/pressure can be applied to the sand core. For example, if the sand core deforms (such as rupture) under at least 0.3MPA pressure/pressure, the sand core is deemed unqualified, otherwise the sand core is deemed qualified .
  • the quality threshold of the pre-production sand core (for example, the threshold of the pass rate or the yield rate) can be set according to human experience.
  • the number of times for executing the pre-production process can be set according to the production plan.
  • the pre-production can be ended and step 404 is executed.
  • one or more state parameters (such as gravel temperature, first raw material temperature, first raw material storage time, environmental temperature, environmental humidity, curing agent temperature, auxiliary material temperature, etc.) collected by the data acquisition module 320 can also be judged.
  • the initial strength of the sand core and/or the appearance integrity of the sand core may be the primary reference state parameter. If it fails to reach the preset threshold, the core making machine control module 330 needs to re-adjust the ratio of sand and additives.
  • Step 440 formal production. Specifically, this step 440 may be controlled and executed by multiple modules of the core making machine control system shown in FIG. 3, such as the sand core raw material production module 310, the data acquisition module 320, the core making machine control module 330 and/or the sand core production Module 340.
  • the mass ratio of sand and additives in the pre-production 403 and the mass ratio of sand and additives in the formal production 404 may be different, and the mass ratio of the sand and additives in the formal production 404 may be 100:0.5 to 100:2.
  • the quality ratio of the first raw material, curing agent, and auxiliary materials in the pre-production 403 may be different from the quality ratio of the first raw material, curing agent, and auxiliary materials in the formal production 404.
  • the mass ratio of the agent and the auxiliary material may be: 73-78.5% of the first raw material, 0.2-0.4% of the curing agent, and 21.3-26.6% of the auxiliary material.
  • the core-making parameters during formal production may be determined based on one or more state parameters at the end of pre-production.
  • one or more state parameters at the end of the pre-production can be adjusted to determine the core-making parameters at the time of formal production. For example, the first batch of sand cores is formally produced, and the initial strength and/or appearance integrity of the sand cores are tested.
  • the core-making machine control module 330 needs to re-adjust the core-making parameters and again The initial strength of the sand core and/or the appearance integrity of the sand core of the second batch of sand cores prepared after the adjustment of the data are tested. If the initial strength of the sand core and the appearance integrity of the sand core reach the preset threshold, other state parameters are used to determine whether to continue or end formal production.
  • Step 450 unload the core box.
  • this step 450 may be performed manually or by the core making machine control module 330 to unload the core box from the core making machine.
  • the core-making machine control module 330 may disconnect the signal connection between the core box and the core-making machine or manually unload the core box.
  • the core box can also be cleaned or replaced.
  • Fig. 5 is a block diagram of an integrated information system according to some embodiments of the present application.
  • the integrated information system 500 may include: a core-making management system (MES, Manufacturing Execution System) 501, a visual interface 502, an intelligent core-making control system 503, parameter information of various components and their action programs 504, an integrated core-making unit 505, Mold library management system 506, core box transport AGV (Automated Guided Vehicle) 507, core 508, core quality identification module 509, external consumables/energy 510, and core storage and transportation system 511.
  • MES Manufacturing Execution System
  • a visual interface 502 an intelligent core-making control system 503, parameter information of various components and their action programs 504, an integrated core-making unit 505, Mold library management system 506, core box transport AGV (Automated Guided Vehicle) 507, core 508, core quality identification module 509, external consumables/energy 510, and core storage and transportation system 511.
  • the integrated information system 500 may be applied to the process of the method for preparing sand cores
  • the integrated information system 500 can integrate various component control information through a control signal receiving mechanism (not shown in the figure), and can realize visual observation and operation.
  • the integrated information system 500 may be integrated into the core making machine control system 300, or the integrated information system 500 may be independent of the core making machine control system 300.
  • a core management system (MES) 501 can be used to manage the entire manufacturing process of sand cores.
  • the core management system (MES) 501 may be a manufacturing collaborative management platform, which may include manufacturing data management, planning and scheduling management, production scheduling management, inventory management, quality management, human resource management, work center/equipment management
  • One or more management modules such as tool tooling management, procurement management, cost management, project kanban management, production process control, bottom-level data integration analysis, upper-level data integration and decomposition.
  • the user can control the core manufacturing management system (MES) 501 through a visual interface (such as a mobile phone, a tablet/APP502-1).
  • the core-making management system (MES) 501 can cooperate with the intelligent core-making control system 503 to jointly control the sand core manufacturing process.
  • the intelligent core making control system 503 may also be a part of the core making management system (MES) 501.
  • the intelligent core making control system 503 can obtain user manipulation information (such as information obtained through mobile phones, tablets/APP502-1 and HMI man-machine interface 502-2), external consumables/energy consumption 510 information, and sand core quality identification module 509 information, information of the integrated core-making unit 505, and other module or component information.
  • the information of the integrated core making unit 505 may include information fed back from the first raw material production unit 505-1, sand core raw material production unit 505-2, core box mold 505-3 and/or core making unit 505-4, Including but not limited to any combination of one or more of state parameters, core making parameters, abnormal data, etc.
  • the intelligent core making control system 503 can also be used to control the mold library management system 506 and the parameter information of each component and its action program 504.
  • the integrated core making unit 505 can manufacture sand cores based on the parameter information of each component and the operation program 504 thereof.
  • the integrated core-making unit 505 may include a raw material production unit 505-1, a sand core raw material production unit 505-2, a core box mold 505-3, and a core-making unit 505-4.
  • the first raw material production unit may produce the first raw material based on the external consumable/energy consumption 510.
  • External consumables/energy consumption 510 may include, but are not limited to, gravel and additives.
  • the sand core raw material production unit 505-2 can produce sand core raw materials based on the first raw material and other external consumables/energy consumption 510 (curing agent, auxiliary materials, etc.).
  • the produced sand core material can be sent to the core making unit 505-4 for core making.
  • the core box mold 505-3 can be loaded into the core making unit 505-4, which has been used to produce various sand cores.
  • the core box mold 505-3 may be obtained from the mold library management system 506 and transported to the core making unit through the core box transport AGV 507.
  • the mold library management system 506 can add or delete molds under the unified management of the core management system (MES) 501.
  • the mold library management system 506 can also provide corresponding molds under the control of the intelligent core-making control system 503.
  • the integrated core making unit 505 can manufacture the sand core 508 through operations such as pre-production and production.
  • the sand core quality identification module 509 can identify the quality of the sand core.
  • the sand core quality identification module 509 can also feed back the identified sand core quality information to the intelligent core making control system 503, so that the intelligent core making control system 503 adjusts the parameter information and actions of each component according to the quality of the produced sand core Procedure 504.
  • the manufactured sand core 508 can be transported and stored by the sand core storage and transport system 511.
  • the sand core storage and transportation system 511 may be managed and controlled by the sand core storage and transportation system 511.
  • Step 410 start the core making machine.
  • This step 410 can be performed manually or automatically.
  • the core-making management system (MES) 501 and/or the intelligent core-making control system 503 can receive a control signal for manually or automatically starting the core-making machine, such as the manual operation of related buttons (eg, the main power gate).
  • MES core-making management system
  • the intelligent core-making control system 503 can receive a control signal for manually or automatically starting the core-making machine, such as the manual operation of related buttons (eg, the main power gate).
  • the visual interface 502 (including: mobile phone, tablet/APP502-1 and HMI (Human Machine Interface) 502-2) can also be used for local or remote Authorization authentication, for example, requires the operator to input verification content (such as account number, password, fingerprint, iris, etc.).
  • the core-making machine control module 330 can automatically turn on the working power of the core-making machine 100, and the core-making management system (MES) 501 and/or the intelligent core-making control system 503 can receive and start the core-making The control signal of the working power supply of the machine 100.
  • MES core-making management system
  • Step 420 install a core box (such as a core box mold).
  • the core box can be installed manually or automatically, and the core box parameters can be read.
  • the mold library management system 506 can receive signals from the core making management system (MES) 501 and/or the intelligent core making control system 503, so that a suitable core box mold can be selected from the mold library.
  • the core box transport AGV507 can receive the signal to install the core box, obtain the mold from the mold library, and automatically (or manually assisted) transport the core box mold to the core making unit 505-4 through the handling equipment (such as AGV trolley) .
  • the handling equipment such as AGV trolley
  • the core box mold can be installed on the core making unit 505-4 manually or by a core box installation mechanism.
  • the core box mold 505-3 can receive the pressure signal of the core box moving to the core making position to confirm whether the core box is installed in place.
  • tags such as RFID tags, printed tags, etc. can be carried on the core box.
  • the RFID tag can be automatically read by the RFID reader mounted in the core making unit (or the printed label can be scanned by the scanner) to obtain the core box parameters.
  • the core box mold 505-3 may receive an electrical signal for reading core box parameters, so as to read the core box parameters carried by the RFID tag.
  • Step 430-Step 440 pre-production and formal production.
  • the integrated core-making unit 505 can perform pre-production and formal production according to the parameter information of each component determined by the intelligent core-making control system 503 and the action program 504 thereof.
  • the first raw material production unit 505-1 can be controlled to transport the grit in the sand storage hopper 101 and the additive in the additive hopper 102 to the premixing hopper 104 for premixing to obtain the first raw material.
  • the parameters for the first raw material production unit 505-1 to produce the first raw material (such as the amount of gravel, the amount of additives, premixing time, heating time, cooling time, etc.) can be determined by the integrated core-making unit 505.
  • the first raw material production unit 505-1 can collect the first raw material production unit by using temperature sensors, humidity sensors, timers, flow sensors, etc. mounted on the premixing bin 104, the additive adding device 103 and/or the premixing bin 104.
  • the information of 505-1 is fed back to the integrated core making unit 505.
  • the integrated core making unit 505 can adjust the parameter information of each component and the parameters of the first raw material production unit 505-1 in the action program 504 according to the information fed back by the first raw material production unit 505-1 in real time.
  • the parameters and working procedures may include, but are not limited to: heating or increasing the temperature of the gravel in the sand storage hopper 101, controlling the opening or closing of the control valve of the additive adding device 103, and controlling the motor of the premixing bin 104 to drive the premixing bin 104
  • the stirring shaft inside rotates, heating or cooling the first raw material in the premixing bin 104, etc.
  • the sand core raw material production unit 505-2 can be controlled to transport the first raw material, curing agent and auxiliary materials to the final mixing bin 107 for final mixing to obtain sand core raw materials.
  • the sand core raw material production unit 505-2 produces sand core raw material parameters (such as the amount of the first raw material, the amount of curing agent, the amount of auxiliary materials, the final mixing time, the heating time, the cooling time, etc.) by the integrated core making unit 505 determine.
  • the sand core raw material production unit 505-2 can use the temperature sensor, humidity sensor, timer, flow sensor, etc. mounted on the curing agent adding device 105, the auxiliary material adding device 106 and/or the final mixing bin 107 to collect the first raw material for production.
  • the information of the unit 505-1 is fed back to the integrated core making unit 505.
  • the integrated core making unit 505 can adjust the parameter information of each component and the parameters of the first raw material production unit 505-1 in the action program 504 according to the information fed back by the first raw material production unit 505-1 in real time. Action program.
  • the parameters and working procedures may include but are not limited to: heating or cooling the curing agent in the curing agent adding device 105, heating or cooling the auxiliary materials in the auxiliary material adding device 106, controlling the opening of the premixing chamber 104 and final mixing
  • the control valve between the bins 107, the control valve of the curing agent storage device 105 are opened, the control valve of the auxiliary material storage device 106 is opened, the motor that controls the final mixing bin 107 drives the stirring shaft in the final mixing bin 107 to rotate, and so on.
  • the core making unit 505-4 can receive and install the core box mold 505-3.
  • the core-making unit 505-4 can receive the core material produced by the core-material production unit 505-2 on the component parameter information and its action program 504 determined by the intelligent core-making control system 503 Prepare sand core 508.
  • the sand core quality identification module 509 can identify the quality of the sand core.
  • the sand core quality identification module 509 can also feed back the identified sand core quality information to the intelligent core making control system 503, so that the intelligent core making control system 503 adjusts the parameter information and actions of each component according to the quality of the produced sand core Procedure 504.
  • the manufactured sand core 508 can be transported and stored by the sand core storage and transport system 511.
  • the system and its modules involved in FIG. 5 and related descriptions can be implemented in various ways.
  • the system and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic;
  • the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • an appropriate instruction execution system such as a microprocessor or dedicated design hardware.
  • the above-mentioned methods and systems can be implemented using computer-executable instructions and/or included in processor control codes, for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware Such codes are provided on a programmable memory or a data carrier such as an optical or electronic signal carrier.
  • the system and its modules of this application can not only be implemented by hardware circuits such as very large-scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. It can also be implemented by software executed by various types of processors, or can be implemented by a combination of the aforementioned hardware circuit and software (for example, firmware).
  • Fig. 6 is a block diagram of a sand core raw material generation system according to some embodiments of the present application.
  • the system may include a first raw material production control unit 610 and a sand core raw material production control unit 620.
  • the first raw material production control unit 610 may be used to control the production of the first raw material.
  • the first raw material production control unit 610 may be combined with the core-making machine control module 330 to prepare the first raw material by controlling the premixing component (such as the first raw material production unit 505-1).
  • the core-making machine control module 330 can control the sand storage hopper 101 and the additive hopper 102 in the premix assembly, and transport the sand and additives to the premix hopper 104.
  • the core making machine control module 330 can control to open the lower end control valve of the sand storage hopper 101 to realize the operation of adding sand to the premix bin 104 and the amount of sand added.
  • the core making machine control module 330 can control the additive hopper 102 to pass through the control valve of the additive adding device 103 to control the addition of additives to the premix bin 104 and the amount of additives added.
  • the mass ratio of grit to additive may be 100:0.5 to 100:2.
  • the core making machine control module 330 can control other devices (such as heating device, cooling device, temperature Sensor) to heat or increase the temperature of the gravel in the sand storage bucket 101 and determine the temperature of the gravel and the sand bucket.
  • other devices such as heating device, cooling device, temperature Sensor
  • the first raw material production control unit 610 can control the pre-mixing bin 104 to stir the grit and the additives, and stir after a certain period of time to prepare the first raw material.
  • the motor assembly of the pre-mixing bin 104 is controlled to drive the stirring shaft in the pre-mixing bin 104 to rotate, and the grit and additives in the pre-mixing bin 104 are stirred.
  • multiple layers and multiple sets of blades are configured on the stirring shaft, wherein the blades may include axial flow blades and radial flow blades.
  • the stirring time for preparing the first raw material may be longer. For example, 30-60 minutes.
  • the properties of the first raw material are relatively stable and can be stored for a longer period of time, such as 1-3 weeks.
  • the core making machine control module 330 may control other devices (eg, heating device, cooling device, temperature sensor) mounted on the pre-mixing bin 104 to control the pre-mixing
  • the first raw material in the bin 104 is heated or raised, and the temperature of the first raw material and the temperature of the premix bin are determined.
  • the storage time of the prepared first raw material can be determined according to other devices (for example, a timer) mounted on the premix bin 104.
  • the sand core raw material production control unit 620 may be used to control the production of sand core raw materials.
  • the sand core raw material production control unit 620 may be combined with the core making machine control module 330 to prepare sand core raw materials by controlling the final mixing component (such as the sand core raw material production unit 505-2).
  • the core making machine control module 330 can control the curing agent storage device 105 and the auxiliary material storage device 106 in the final mixing assembly, and transport the curing agent, auxiliary materials and at least part of the first raw material to the final mixing warehouse 107 .
  • the pre-mixing chamber 104 and the final mixing chamber 107 are connected through a first control valve.
  • the control valve type may include straight-through single-seat, straight-through double-seat, angle, diaphragm, small flow, three-way, eccentric rotation, butterfly, sleeve, spherical, etc.
  • the core making machine control module 330 may control the first control valve to deliver an appropriate amount of the first raw material to the final mixing bin 107. In some embodiments, the core making machine control module 330 can control the control valve at the lower end of the curing agent storage device 105 to control the amount of curing agent added to the final mixing chamber 107.
  • the curing agent may include at least one of the following: epoxy resins, aliphatic amines, aromatic amines, amidoamines, latent curing amines, urea substitutes, and the like.
  • the core making machine control module 330 can control the control valve at the lower end of the auxiliary material storage device 106 to control the amount of auxiliary material added to the final mixing bin 107.
  • the auxiliary material includes at least one of the following: a lubricating material, a catalytic material, and a surface active material.
  • the mass ratio of the first raw material, the curing agent, and the auxiliary material is: 73-78.5% of the first raw material, 0.2-0.4% of the curing agent, and 21.3-26.6% of the auxiliary material.
  • the order of delivering the curing agent, auxiliary materials, and at least part of the first raw material to the final mixing chamber 107 may not be limited.
  • the core-making machine control module 330 can control other devices mounted on the curing agent storage device 105 (such as heating devices, cooling devices, etc.). Device, temperature sensor) to heat or increase the temperature of the curing agent in the curing agent storage device 105 and determine the temperature of the curing agent.
  • devices mounted on the curing agent storage device 105 such as heating devices, cooling devices, etc.
  • Device, temperature sensor to heat or increase the temperature of the curing agent in the curing agent storage device 105 and determine the temperature of the curing agent.
  • the core-making machine control module 330 can control other devices mounted on the auxiliary material storage device 106 (eg, heating device, cooling device, temperature Sensor) to heat or increase the temperature of the auxiliary material in the auxiliary material storage device 106 and determine the temperature of the auxiliary material.
  • other devices mounted on the auxiliary material storage device 106 eg, heating device, cooling device, temperature Sensor
  • the sand core raw material production control unit 620 may control the final mixing bin 107 to stir the first raw material, curing agent and auxiliary materials, and stir after a certain period of time to prepare the sand core raw material.
  • the motor assembly of the final mixing chamber 107 is controlled to drive the stirring shaft in the final mixing chamber 107 to rotate, and the first raw material, curing agent and auxiliary materials in the final mixing chamber 107 are stirred.
  • multiple layers and multiple sets of blades are configured on the stirring shaft, wherein the blades may include axial flow blades and radial flow blades.
  • the stirring time for preparing the sand core material may be shorter. For example, it is 5-50 seconds.
  • the properties of the sand core material are not stable and cannot be stored for a long time, for example, the longest storage time of the sand core material is 0-2h. If the sand core material storage time exceeds its maximum storage time, such as 2h, the sand core material needs to be discarded.
  • the core making machine control module 330 may control other devices (such as heating devices, cooling devices, temperature sensors) mounted on the final mixing chamber 107 to control the final mixing
  • the sand core material in the bin 107 is heated or raised, and the temperature of the sand core material and the final mixing bin temperature are determined.
  • the storage time of the prepared sand core material can be determined according to other devices (eg, timer) mounted on the final mixing chamber 107.
  • the core-making parameters can be adjusted by the method described in Figure 9 and its description to cope with the changes in the properties of the raw materials caused by long-term storage.
  • the machine resumes work it is only necessary to add the first raw material that has been mixed in the pre-mixing warehouse to the final mixing warehouse for final mixing. Since the pre-mixing link is omitted, it saves time.
  • the existing core making machines generally have only one mixing chamber, and both pre-mixing and final mixing will be performed in the mixing chamber.
  • the existing core making machines generally include a sand storage hopper for storing mixed sand core materials. Since the sand core raw materials in the sand storage hopper are generally not used immediately, and the curing agent (such as resin) in the sand core raw materials is easy to volatilize, in order to ensure the quality of the sand core raw materials, the amount of resin is usually increased during the mixing process .
  • the sand core raw materials can be mixed with use, that is, the mixed sand core raw materials can be used for core making immediately, so the amount of resin can be changed. Less, which can save material costs to a certain extent. Furthermore, since the volatilization of the resin will have a certain negative impact on the environment, the embodiment of the present application can reduce the amount of volatilization of the resin by reducing the storage time of the sand core material, thereby making the core making process more environmentally friendly.
  • Fig. 7 is a schematic diagram of a sand core raw material generation process according to some embodiments of the present application. As shown in Figure 7, the method may include:
  • Step 710 mixing sand and additives in the premixing bin to obtain the first raw material. Specifically, this step 710 may be executed by the first raw material production control unit 610.
  • the first raw material production control unit 610 may control the pre-mixing bin 104 to stir the grit and the additives, and stir after a certain period of time to prepare the first raw material.
  • the motor assembly of the pre-mixing bin 104 is controlled to drive the stirring shaft in the pre-mixing bin 104 to rotate, and the grit and additives in the pre-mixing bin 104 are stirred.
  • multiple layers and multiple sets of blades are configured on the stirring shaft, wherein the blades may include axial flow blades and radial flow blades.
  • the stirring time for preparing the first raw material may be longer. For example, 30-60 minutes.
  • the properties of the first raw material are relatively stable and can be stored for a longer period of time, such as 1-3 weeks.
  • the core making machine control module 330 may control other devices (eg, heating device, cooling device, temperature sensor) mounted on the pre-mixing bin 104 to control the pre-mixing
  • the first raw material in the bin 104 is heated or raised, and the temperature of the first raw material and the temperature of the premix bin are determined.
  • the storage time of the prepared first raw material can be determined according to other devices (for example, a timer) mounted on the premix bin 104.
  • step 720 the curing agent, auxiliary materials and at least part of the first raw material are transported to the final mixing chamber 107 and mixed to obtain the sand core raw material.
  • this step 720 may be executed by the core making machine control module 330.
  • step 720 is performed after mixing in the premixing chamber is completed and stopped. Since the mixing shaft in the premixing bin rotates and agitates along the vertical axis, the premixing bin can only mix a batch of the first raw materials at a time. Through the arrangement of the stirring shaft for stirring in the vertical direction, the first raw material mixed in the pre-mixing bin can be made more uniform, so as to better ensure the qualified rate of the sand core.
  • the pre-mixing chamber 104 and the final mixing chamber 107 are connected through a first control valve.
  • the control valve type may include straight-through single-seat, straight-through double-seat, angle, diaphragm, small flow, three-way, eccentric rotation, butterfly, sleeve, spherical, etc.
  • the core making machine control module 330 may control the first control valve to deliver an appropriate amount of the first raw material to the final mixing bin 107.
  • the core making machine control module 330 can control the control valve at the lower end of the curing agent storage device 105 to control the amount of curing agent added to the final mixing chamber 107.
  • the curing agent may include at least one of the following: epoxy resins, aliphatic amines, aromatic amines, amidoamines, latent curing amines, urea substitutes.
  • the core making machine control module 330 can control the control valve at the lower end of the auxiliary material storage device 106 to control the amount of auxiliary material added to the final mixing bin 107.
  • the auxiliary material includes at least one of the following: a lubricating material, a catalytic material, and a surface active material.
  • the mass ratio of the first raw material, the curing agent, and the auxiliary material is: 73-78.5% of the first raw material, 0.2-0.4% of the curing agent, and 21.3-26.6% of the auxiliary material.
  • the order of delivering the curing agent, auxiliary materials, and at least part of the first raw material to the final mixing chamber 107 may not be limited.
  • Step 730 preparing a sand core using the sand core raw material. Specifically, this step 730 may be executed by the sand core raw material production control unit 620.
  • the sand core raw material production control unit 620 may control the final mixing bin 107 to stir the first raw material, the curing agent, and the auxiliary materials, and after a certain period of time is stirred, the sand core raw material is prepared.
  • the motor assembly of the final mixing chamber 107 is controlled to drive the stirring shaft in the final mixing chamber 107 to rotate, and the first raw material, curing agent and auxiliary materials in the final mixing chamber 107 are stirred.
  • multiple layers and multiple sets of blades are configured on the stirring shaft, wherein the blades may include axial flow blades and radial flow blades.
  • the stirring time for preparing the sand core material may be shorter. For example, it is 5-10 minutes.
  • the properties of the sand core material are not stable and cannot be stored for a long time, for example, the longest storage time of the sand core material is 0-2h. If the storage time of the sand core material exceeds its maximum storage time, such as 2h, the sand core material needs to be discarded.
  • the core making machine control module 330 may control other devices (such as heating devices, cooling devices, temperature sensors) mounted on the final mixing chamber 107 to control the final mixing
  • the sand core material in the bin 107 is heated or raised, and the temperature of the sand core material and the final mixing bin temperature are determined.
  • the storage time of the prepared sand core material can be determined according to other devices (eg, timer) mounted on the final mixing chamber 107.
  • Fig. 8 is a block diagram of a core making parameter determination system according to some embodiments of the present application.
  • the system may include a state parameter acquisition module 810, a correspondence relationship acquisition module 820, and a core making parameter determination module 830.
  • the core making parameter determination system 800 shown in FIG. 8 may be implemented by a dedicated computing device 200 (such as the processor 210) shown in FIG. 2.
  • the state parameter obtaining module 810 may be used to obtain at least one state parameter during the preparation process of the sand core.
  • the state parameter acquisition module 810 can acquire the state parameters through other devices mounted on at least one component of the core making machine 100.
  • other devices may include: sensors (such as temperature sensors, pressure sensors, humidity sensors, load cells, etc.), timers, sand core quality inspection devices (such as surface adsorption performance testing devices, optical testing instruments (such as lasers, etc.) ), ultrasonic detection device, pressure/pressure sensor, etc.), heating device (not shown in the figure), cooling device, etc. (not shown in the figure).
  • the at least one state parameter includes at least one of the following parameters: gravel temperature, first raw material temperature, first raw material storage time, environmental temperature, environmental humidity, curing agent temperature, auxiliary material temperature, sand core raw material Temperature, storage time of sand core raw materials, ratio of sand to additives, ratio of first raw material to curing agent and auxiliary materials, sand hopper temperature, pre-mixed bin temperature, final mixed bin temperature, core box temperature, sand core initial strength, The appearance integrity of the sand core.
  • the corresponding relationship obtaining module 820 may be used to obtain the corresponding relationship between the core making parameter and the state parameter.
  • the corresponding relationship obtaining module 820 may include a historical information obtaining unit 821, a standard parameter obtaining unit 822, and a corresponding relationship determining unit 823.
  • the core-making parameters may include at least one of the following: sand shooting pressure, sand shooting time, exhaust time, sand hopper temperature, pre-mixing bin temperature, final mixing bin temperature, pre-mixing bin stirring time, Final mixing chamber mixing time, curing time, curing pressure, high pressure sand shooting pressure, high pressure sand shooting time, low pressure sand shooting pressure, low pressure sand shooting time, pre-exhaust time, exhaust time, sand adding interval, sand adding time, core The box reaches the final pressure time, curing heater temperature, core box temperature, air heater temperature, intermediate heater temperature.
  • the core-making parameter may be a specific value or a range of values.
  • the corresponding relationship between the core-making parameters and the state parameters can be obtained based on the historical core-making parameters and historical state parameter information.
  • the historical information obtaining unit 821 may obtain historical core-making parameters and historical state parameter information; the correspondence determining unit 823 may determine the corresponding relationship between the core-making parameters and the state parameters according to the historical core-making parameters and the historical state parameter information.
  • obtaining the correspondence between the core-making parameters and the state parameters according to the historical core-making parameters and the historical state parameter information may include: training a machine learning model based on the historical core-making parameters and the historical state parameter information, and the machine learning model may be used for Reflect the corresponding relationship between core-making parameters and state parameters.
  • the machine learning model may include, but is not limited to, support vector machine, naive Bayes, K-nearest neighbor (KNN), decision tree, neural network model, etc., or any combination thereof.
  • the corresponding relationship between the core-making parameters and the state parameters can also be obtained based on the historical core-making parameters and historical state parameter information, as well as the standard core-making parameters and the standard state parameters.
  • the standard parameter obtaining unit 822 can obtain standard core making parameters and standard state parameters.
  • the corresponding relationship determining unit 823 may determine the corresponding relationship between the core making parameters and the state parameters according to the historical core making parameters and the historical state parameter information, and the standard core making parameters and the standard state parameters.
  • the standard core-making parameters and standard state parameters can be provided by the core-making equipment manufacturer, production expert, etc.
  • Standard core-making parameters and standard state parameters can be used as a positive sample that can produce qualified sand cores, so that the corresponding relationship between core-making parameters and state parameters can be determined by combining historical core-making parameters and historical state parameter information.
  • the corresponding relationship between core making parameters and state parameters may include:
  • the core-making parameter determination module 830 may be used to determine the core-making parameter based on at least one state parameter and the corresponding relationship. Specifically, the core-making parameter determination module 830 may include a deviation value determination unit 831 and a core-making parameter determination unit 832.
  • the core-making parameter determination module 830 may use a trained machine learning model to determine the core-making parameter based on at least one state parameter and the corresponding relationship.
  • the core-making parameter may also be determined based on the deviation value of at least one state parameter from the standard state parameter.
  • the deviation coefficient of at least one state parameter may be determined according to the deviation value, thereby determining the core-making parameter.
  • the core making parameter may be determined based on the deviation value of at least one state parameter from the standard state parameter.
  • the deviation value determining unit 831 may determine the deviation value of at least one state parameter from the standard state parameter.
  • the core-making parameter determination unit 832 may determine the core-making parameter according to the deviation value.
  • the core-making parameter determination unit 832 may determine the deviation coefficient of at least one state parameter according to the deviation value, thereby determining the core-making parameter.
  • the deviation coefficient of the core-making parameter and the deviation coefficient of the at least one state parameter may be the same.
  • system and its modules shown in FIG. 8 can be implemented in various ways.
  • the system and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic;
  • the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • processor control codes for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware Such codes are provided on a programmable memory or a data carrier such as an optical or electronic signal carrier.
  • the system and its modules of this application can not only be implemented by hardware circuits such as very large-scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. It can also be implemented by software executed by various types of processors, or can be implemented by a combination of the aforementioned hardware circuit and software (for example, firmware).
  • Fig. 9 is a schematic diagram of the flow of a method for determining core making parameters according to some embodiments of the present application. As shown in Figure 9, the method may include:
  • Step 910 Obtain at least one state parameter during the preparation process of the sand core. Specifically, this step 910 may be performed by the state parameter obtaining module 810.
  • the at least one state parameter may include at least one of the following parameters: gravel temperature, first raw material temperature, first raw material storage time, environmental temperature, environmental humidity, curing agent temperature, auxiliary material temperature, sand core Raw material temperature, sand core material storage time, ratio of sand to additives, ratio of first raw material to curing agent and auxiliary materials, sand hopper temperature, pre-mixed bin temperature, final mixed bin temperature, core box temperature, sand core initial strength , Sand core appearance integrity.
  • the state parameters can be obtained through other devices mounted on at least one component of the core making machine 100.
  • other devices can include: sensors (e.g., temperature sensors, pressure sensors, humidity sensors, load cells, flow sensors, etc.), timers, sand core quality inspection devices (e.g., surface adsorption performance testing devices, optical testing instruments (such as laser, etc.), ultrasonic detection device, pressure/pressure sensor, etc.), heating device (not shown in the figure), cooling device, etc. (not shown in the figure).
  • sensors e.g., temperature sensors, pressure sensors, humidity sensors, load cells, flow sensors, etc.
  • timers e.g., timers, sand core quality inspection devices (e.g., surface adsorption performance testing devices, optical testing instruments (such as laser, etc.), ultrasonic detection device, pressure/pressure sensor, etc.), heating device (not shown in the figure), cooling device, etc. (not shown in the figure).
  • the temperature of the gravel can be acquired by a temperature sensor mounted on the
  • the temperature of the curing agent can be obtained through a temperature sensor mounted on the curing agent storage device 105.
  • the storage time of the first raw material can be obtained through a timer mounted on the premix bin 104.
  • the temperature of the auxiliary material may be obtained through a temperature sensor mounted on the auxiliary material storage device 106.
  • the temperature of the sand core raw material can be obtained through a temperature sensor mounted on the final mixing chamber 107.
  • the storage time of the sand core material can be obtained through a timer mounted on the final mixing bin 107.
  • the temperature of the auxiliary material may be obtained through a temperature sensor mounted on the auxiliary material storage device 106.
  • the ratio of the grit to the additive added to the premix bin can be obtained through load cells respectively mounted on the sand storage hopper 101 and the additive adding device 103.
  • the information of the added substances (such as gravel, first raw material, curing agent, additives, auxiliary materials, sand core raw materials, etc.) can be obtained through the flow sensor mounted on the control valve (including the first control valve, the second control valve, etc.) the amount.
  • the ratio of the first raw material to the curing agent and the auxiliary material may be obtained through load cells respectively mounted on the premix bin 104, the curing agent storage device 105, and the auxiliary material storage device 106.
  • the initial strength of the sand core and the appearance integrity of the sand core can be determined by carrying the sand core quality inspection device on the core making machine and/or manual judgment.
  • Step 920 Obtain the corresponding relationship between the core making parameter and the state parameter. Specifically, this step 920 may be executed by the corresponding relationship obtaining module 820.
  • the core making parameters may include at least one of the following: switching of the first control valve, switching of the second control valve, sand shooting pressure, sand shooting time, exhaust time, sand hopper temperature, premixing Warehouse temperature, final mixing warehouse temperature, pre-mixing warehouse mixing start time, pre-mixing warehouse mixing time, final mixing warehouse mixing start time, final mixing warehouse mixing time, curing time, curing pressure, high pressure sand shooting pressure, high pressure sand shooting time, Low pressure sand shooting pressure, low pressure sand shooting time, pre-exhaust time, exhaust time, sand adding interval, sand adding time, core box reaching the final pressure time, curing heater temperature, core box temperature, air heater temperature, intermediate heating ⁇ Device temperature.
  • the core-making parameter may be a specific value or a range of values.
  • the corresponding relationship between the core-making parameters and the state parameters can be obtained according to the historical core-making parameters and historical state parameter information.
  • the historical information obtaining unit 821 may obtain historical core-making parameters and historical state parameter information; the correspondence determining unit 823 may determine the corresponding relationship between the core-making parameters and the state parameters according to the historical core-making parameters and the historical state parameter information.
  • the core-making parameters and state parameters of the core-making process can be recorded As a positive sample; when the produced sand core fails (for example, when the initial strength or appearance integrity of the sand core does not meet certain preset conditions), the core-making parameters and state parameters of the core-making process can be recorded as a negative sample.
  • the corresponding relationship between at least one core-making parameter and at least one state parameter can be determined based on the parameters recorded multiple times.
  • the core-making parameter b should be in the range B to make the sand core qualified.
  • the core-making parameter c is in the range C, the sand core produced will be unqualified.
  • the corresponding relationship between core making parameters and state parameters may include:
  • the storage time of the historical sand core material is 0.5h
  • the curing time in the corresponding historical core-making parameter is 0.5h
  • the storage time of the historical sand core material is 1 h
  • the corresponding historical core-making parameters have a curing time of 1.5 h and a curing pressure of 0.5 kpa.
  • the historical premixed bin temperature is 40°
  • its corresponding historical core making parameters include the premixed bin stirring time 2h and the final mixed bin stirring time 30min.
  • the historical premixed bin temperature is 50°
  • its corresponding historical core making parameters include the premixed bin stirring time 1.5h and the final mixed bin stirring time 20min.
  • the historical final mixing chamber temperature is 40°
  • its corresponding historical core-making parameters include high-pressure sand shooting pressure of 0.5 kpa and curing heater temperature of 60°.
  • the historical sand core raw material temperature is 40°
  • the corresponding historical core-making parameters include curing time 2h, high-pressure sand shooting pressure 0.5kpa, and curing heater temperature 55°.
  • the historical sand core raw material temperature is 50°
  • the corresponding historical core-making parameters include curing time 1.5h, high-pressure sand shooting pressure 1.5kpa, and curing heater temperature 55°.
  • the initial strength of the historical sand core is 0.1 MPA, and the appearance of the sand core has a large area of defects, and the historical sand core is discarded.
  • the initial strength of the historical sand core is 0.3MPA
  • the appearance of the sand core is complete
  • the corresponding historical core-making parameters include the final mixing time of 50 seconds, the curing time of 1.5h, the curing pressure of 0.5kpa, and the high-pressure sand shooting pressure of 1.5kpa
  • curing heater temperature is 55°.
  • the specific value can correspond to a range of values.
  • the storage time of historical sand core materials is 0.5h, which can correspond to the storage time of historical sand core materials between 0.4 and 0.6h.
  • the numerical range may be a range constituted by a certain deviation (such as 10%, 20%, 30%, etc.) before and after the specific numerical value.
  • obtaining the correspondence between the core-making parameters and the state parameters according to the historical core-making parameters and the historical state parameter information may include: training a machine learning model based on the historical core-making parameters and the historical state parameter information, and the machine learning model may be used for Reflect the corresponding relationship between core-making parameters and state parameters.
  • the machine learning model may include, but is not limited to, support vector machine, naive Bayes, K-nearest neighbor (KNN), decision tree, neural network model, etc., or any combination thereof.
  • the corresponding relationship between the core-making parameters and the state parameters can also be obtained based on the historical core-making parameters and historical state parameter information, as well as the standard core-making parameters and the standard state parameters.
  • the standard parameter obtaining unit 822 can obtain standard core making parameters and standard state parameters.
  • the corresponding relationship determining unit 823 may determine the corresponding relationship between the core making parameters and the state parameters according to the historical core making parameters and the historical state parameter information, and the standard core making parameters and the standard state parameters.
  • the standard core-making parameters and standard state parameters can be provided by the core-making equipment manufacturer, production expert, etc.
  • Standard core-making parameters and standard state parameters can be used as a positive sample that can produce qualified sand cores, so that the corresponding relationship between core-making parameters and state parameters can be determined by combining historical core-making parameters and historical state parameter information.
  • the corresponding relationship between core making parameters and state parameters may include:
  • the curing time in the corresponding historical core-making parameters can be 0.5 times of the standard core-making parameters.
  • the curing time in the corresponding historical core-making parameters can be 1.5 times the standard core-making parameters, and the curing pressure is the standard core-making parameter. 1.5 times.
  • the mixing time of the pre-mixed warehouse in the corresponding historical core-making parameters can be twice that of the standard core-making parameters, and the stirring time of the final mixed warehouse can be the standard system. 2 times the core parameter.
  • the mixing time of the premixing chamber in the corresponding historical core making parameter may be 0.5 times of the standard core making parameter.
  • the final mixing chamber stirring time in the corresponding historical core-making parameters can be 1 times the standard core-making parameters
  • the curing heater temperature can be standard 1 times the core-making parameters.
  • the corresponding curing heater temperature may be 0.5 times the standard core-making parameters.
  • the final mixing time in the corresponding historical core-making parameters can be 2.5 times the standard core-making parameters
  • the curing heater temperature can be the standard core-making parameters
  • the curing time can be 2.5 times the standard core-making parameters
  • the high-pressure sand shooting pressure can be 1.5 times the standard core-making parameters.
  • the curing heater temperature in the corresponding historical core-making parameter may be 0.5 times the standard core-making parameter.
  • the curing heater temperature in the corresponding historical core-making parameters can be 0.5 times the standard core-making parameters, and the high-pressure sand shooting pressure can be the standard core-making parameters. 1.5 times.
  • the initial strength of the historical sand core is lower than the initial strength of the standard sand core (for example, 0.3 MPA) by 0.1-0.2 MPA, and the appearance of the sand core is large-area defects, the historical sand core should be discarded.
  • the initial strength of the historical sand core is higher than the initial strength of the standard sand core (for example, 0.3MPA), and the appearance of the sand core is complete
  • the final mixing time in the corresponding historical core-making parameters can be twice the standard core-making parameters
  • the curing time can be twice the standard core-making parameters
  • the curing pressure can be twice the standard core-making parameters
  • the high-pressure sand shooting pressure can be twice the standard core-making parameters.
  • Step 930 Determine a core making parameter based on the at least one state parameter and the corresponding relationship. Specifically, this step 930 may be executed by the core making parameter determination module 830.
  • the core-making parameter determination module 830 may use a trained machine learning model to determine the core-making parameter based on at least one state parameter and the corresponding relationship.
  • the final mixing chamber temperature of 50° into the machine learning model, and output its corresponding core-making parameters in the machine learning model.
  • the high-pressure sand shooting pressure is 1.5kpa and the curing heater temperature is 50°.
  • the core making parameter may be determined based on the deviation value of at least one state parameter from the standard state parameter.
  • the deviation value determining unit 831 may determine the deviation value of at least one state parameter from the standard state parameter.
  • the core-making parameter determination unit 832 may determine the core-making parameter according to the deviation value.
  • the core-making parameter determination unit 832 may determine the deviation coefficient of at least one state parameter according to the deviation value, thereby determining the core-making parameter.
  • the deviation coefficient of the core-making parameter and the deviation coefficient of the at least one state parameter may be the same.
  • the final mixing temperature 10° lower than the standard final mixing temperature, 5-10° lower than the standard final mixing temperature, 5-10° higher than the standard final mixing temperature, and higher than the standard final mixing temperature.
  • the mixing chamber temperature is 10°.
  • set the deviation coefficient for each threshold the first deviation coefficient, the second deviation coefficient, the third deviation coefficient, and the fourth deviation coefficient.
  • a deviation coefficient can be set for the mixing time of the final mixing chamber.
  • the first coefficient of deviation means that the standard stirring time is 20 seconds longer;
  • the second coefficient of deviation means that the standard stirring time is exceeded by 10-20 seconds;
  • the third coefficient of deviation means that the standard stirring time is 10-20 seconds below;
  • the standard mixing time is 20 seconds.
  • the stirring time of the final mixing chamber can be set at the first deviation coefficient.
  • a qualified sand core can be produced.
  • the deviation coefficient may also be a numerical value.
  • the first deviation coefficient of the final mixing bin stirring time is 1.1 (or 1.1-1.2), which may indicate that the final mixing bin stirring time corresponding to the first deviation coefficient is 1.1 times (or 1.1-1.2 times) the standard stirring time.
  • two thresholds can be set for the storage time of sand core materials: 0-2h over the standard sand core material storage time, and 2h over the standard sand core material storage time. And set the deviation coefficient for each threshold range: the first deviation coefficient and the second deviation coefficient. If the current core material storage time exceeds the standard core material storage time by 1.5h, multiply the standard sand injection pressure by its own corresponding deviation coefficient (such as 1.3), and the standard sand shooting time multiply by its corresponding deviation coefficient One (such as 1.2) and so on.
  • the corresponding relationship between the core-making parameters and the state parameters can also be directly reflected through the numerical range.
  • the state parameter may include the storage time of the sand core material; based on the state parameter and the corresponding relationship, determining the core making parameter may include: when the storage time of the sand core material is between the first threshold (such as 1h) and the second threshold (such as 1.5h) ), confirm that the sand shooting pressure is the first pressure range (such as 1.5 to 1.8 kpa), and the sand shooting time is the first time range (such as 7 to 9 seconds).
  • the process 800 can be applied to a core making machine in which the pre-mixing chamber and the final mixing chamber are separated, and can also be applied to a core making machine in which the pre-mixing and final mixing are performed in the same chamber.
  • the possible beneficial effects of the core making machine and the core making machine control method and system disclosed in this application include but are not limited to: (1) Separate premixing and final mixing, which can avoid waste of time and raw materials, and improve sand core production Efficiency; At the same time, it can reduce the volatilization of curing agent (such as resin) due to long-term storage; (2) It can monitor and control the parameters of each link of sand core manufacturing, realize the intelligent production of sand cores and improve the production of sand cores Efficiency and qualification rate; (3) The core-making parameters can be adjusted according to specific conditions (such as different state parameters) to improve the production efficiency and qualification rate of the sand core; (4) The core production can be guided based on historical production experience to improve sand Core qualification rate. It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “one embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. .
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.
  • the computer storage medium may contain a propagated data signal containing a computer program code, for example on a baseband or as part of a carrier wave.
  • the propagation signal may have multiple manifestations, including electromagnetic forms, optical forms, etc., or a suitable combination.
  • the computer storage medium may be any computer readable medium other than the computer readable storage medium, and the medium may be connected to an instruction execution system, device, or device to realize communication, propagation, or transmission of the program for use.
  • the program code located on the computer storage medium can be transmitted through any suitable medium, including radio, cable, fiber optic cable, RF, or similar medium, or any combination of the above medium.
  • the computer program codes required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python Etc., conventional programming languages such as C language, VisualBasic, Fortran2003, Perl, COBOL2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code can run entirely on the user's computer, or run as an independent software package on the user's computer, or partly run on the user's computer and partly run on a remote computer, or run entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any form of network, such as a local area network (LAN) or a wide area network (WAN), or to an external computer (for example, via the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service
  • numbers describing the number of ingredients and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifier "about”, “approximately” or “substantially” in some examples. Retouch. Unless otherwise stated, “approximately”, “approximately” or “substantially” indicate that the number is allowed to vary by ⁇ 20%.
  • the numerical parameters used in the description and claims are approximate values, and the approximate values can be changed according to the required characteristics of individual embodiments. In some embodiments, the numerical parameter should consider the prescribed effective digits and adopt the general digit retention method. Although the numerical ranges and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

一种制备砂芯的方法,包括在预混仓(104)中沿竖直方向的第一转轴旋转混合砂砾和添加剂以获得第一原料;在终混仓(107)中沿竖直方向的第二转轴旋转混合至少部分所述第一原料、固化剂和辅料以获得砂芯原料;利用所述砂芯原料制备砂芯。还包括制芯设备、制芯参数确定方法、制芯参数确定系统、制芯参数确定系装置和计算机可读存储介质。通过将预混和终混分开设置,可以避免时间和原料的浪费,提升砂芯生产效率。

Description

一种制芯机及制芯机控制方法和系统 技术领域
本申请涉及制芯机技术领域,特别涉及一种制芯机及制芯机控制方法和系统。
背景技术
制芯机(或称为制芯设备)是铸造行业的重要设备之一,其工作原理是:芯盒的上下两部分(上芯盒和下芯盒)进行合模后,通过压缩空气将混有固化剂(例如树脂)和/或辅料的砂芯原料射入芯盒内,以制取所需砂芯。
制备混有固化剂和辅料的砂砾的过程为:首先将砂砾和添加剂预混,以减少砂砾的含水量和紧实率以及增加透气性,获得第一原料。然后将第一原料与固化剂、辅料等进行终混,以增强其机械强度和材料的稳定性,获得混有固化剂等辅料的砂砾。在本领域中,上述预混和终混预步骤均在同一个混砂机中进行,受环境温度、环境湿度、存放时间、固化剂容易挥发等因素影响,不能保证混有固化剂等辅料的砂砾的性质,从而可能导致制备出的砂芯的成品率和砂芯质量降低,也可能造成大量的原料浪费。由于传统方法将原料在一个混砂仓中混合而混合好的原料会在混砂斗中长时间的存放,为了保证砂芯的成品率会加大固化剂的剂量,而固化剂较为昂贵且对环境有一定的影响,增加固化剂的剂量既不环保也不省钱;而不增加又容易因为存放时间久,固化剂性质改变而导致成品率大幅下降。此外,制芯机在制取砂芯过程中,会涉及到多个参数(如状态参数、制芯参数等),在现有的制芯过程中,各个参数之间基本是独立的,当某一个或多个参数不满足制芯要求时,有可能为了使该参数达到该制芯要求而造成时间和资源的浪费。
发明内容
本申请实施例之一提供一种制备砂芯的方法,包括:在预混仓中沿竖直方向的第一转轴旋转混合砂砾和添加剂以获得第一原料;在终混仓中沿竖直方向的第二转轴旋转混合至少部分所述第一原料、固化剂和辅料以获得砂芯原料;利用所述砂芯原料制备砂芯。
在一些实施例中,所述固化剂占所述砂芯原料的质量比为0.4%以下。
在一些实施例中,所述第一原料、所述固化剂和所述辅料的质量配比为:第一原料73-78.5%、固化剂0.2-0.4%、辅料21.3-26.6%。
在一些实施例中,所述预混仓混合完成与所述终混仓开始混合之间存在时间间隔。
在一些实施例中,所述预混仓混合完成与所述终混仓开始混合之间存在时间间隔大于2小时。
在一些实施例中,所述制备砂芯的方法还包括:对所述砂砾进行冷却或加热,并将所述冷却或加热后的砂砾输送到预混仓。
在一些实施例中,将所述固化剂和所述辅料输送到所述终混仓前,对所述固化剂和/或所述辅料进行冷却或加热。
本申请实施例之一提供一种制芯设备,包括预混仓、终混仓和制芯组件,所述预混仓和所述终混仓通过第一控制阀连接,所述终混仓与所述制芯组件通过第二控制阀连接;所述预混仓用于沿竖直方向的第一转轴旋转混合砂砾和添加剂以获得第一原料;所述终混仓用于沿竖直方向的第二转轴旋转混合至少部分所述第一原料、固化剂和辅料以获得砂芯原料;所述制芯组件用于利用所述砂芯原料制备砂芯。
本申请实施例之一提供一种制芯参数确定方法,包括:获取砂芯制备过程中的至少一个状态参数;获取制芯参数与状态参数的对应关系;基于所述至少一个状态参数和所述对应关系,确定制芯参数。
在一些实施例中,所述至少一个状态参数包括以下参数中的至少一种:砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度。
在一些实施例中,所述至少一个状态参数包括砂芯合格率。
在一些实施例中,所述砂芯合格率通过所述砂芯的初强度和/或所述砂芯的外观完整性确定。
在一些实施例中,所述获取制芯参数与状态参数的对应关系包括:获取历史制芯参数与历史状态参数信息;根据所述历史制芯参数与历史状态参数信息确定所述制芯参数与状态参数的对应关系。
在一些实施例中,所述获取制芯参数与状态参数的对应关系还包括:获取标准制芯参数与标准状态参数;根据所述历史制芯参数与历史状态参数信息,以及所述标准制芯参数与标准状态参数确定所述制芯参数与状态参数的对应关系。
在一些实施例中,所述根据所述历史制芯参数与历史状态参数信息确定所述制芯参数与状态参数的对应关系包括:根据所述历史制芯参数与历史状态参数信息训练机器学习模型,所述机器学习模型用于反映所述制芯参数与状态参数的对应关系。
在一些实施例中,所述基于所述至少一个状态参数和所述对应关系,确定制芯参数包括:基于所述至少一个状态参数,利用训练好的机器学习模型确定所述制芯参数。
在一些实施例中,所述制芯参数包括以下中的至少一种:射砂压力、射砂时间、排气时间、砂斗温度、预混仓温度、终混仓温度、预混仓搅拌时间、终混仓搅拌时间、固化时间、固化压力、高压射砂压力、高压射砂时 间、低压射砂压力、低压射砂时间、预排气时间、排气时间、加砂间隔、加砂时间、芯盒达到最终压力时间、固化加热器温度、芯盒温度、空气加热器温度、中间加热器温度。
在一些实施例中,所述基于所述至少一个状态参数和所述对应关系,确定制芯参数包括:确定所述至少一个状态参数与标准状态参数的偏离值;根据所述偏离值确定所述制芯参数。
在一些实施例中,所述根据所述偏离值确定所述制芯参数包括:根据所述偏离值确定所述至少一个状态参数的偏离系数;根据所述至少一个状态参数的偏离系数,确定所述制芯参数。
在一些实施例中,所述制芯参数的偏离系数与所述至少一个状态参数的偏离系数相同。
在一些实施例中,所述至少一个状态参数包括砂芯原料存放时间;所述基于所述至少一个状态参数和所述对应关系,确定制芯参数包括:当所述砂芯原料存放时间处于第一阈值和第二阈值之间时,确定射砂压力为第一压力范围,射砂时间为第一时间范围。
本申请实施例之一提供一种制芯参数确定系统,包括状态参数获取模块、对应关系获取模块以及制芯参数确定模块;所述状态参数获取模块用于获取砂芯制备过程中的至少一个状态参数;所述对应关系获取模块用于获取制芯参数与状态参数的对应关系;所述制芯参数确定模块用于基于所述至少一个状态参数和所述对应关系,确定制芯参数。
本申请实施例之一提供一种制芯参数确定系装置,包括至少一个存储介质和至少一个处理器,所述至少一个存储介质用于存储计算机指令;所述至少一个处理器用于执行所述计算机指令以实现如本申请任一实施例所述的制芯参数确定方法。
本申请实施例之一提供一种计算机可读存储介质,所述存储介质存 储计算机指令,当所述计算机指令被处理器执行时,实现如本申请任一实施例所述的制芯参数确定方法。
本申请实施例之一提供一种制备砂芯的方法,包括:获取砂芯制备过程中预混仓和/或终混仓的至少一个状态参数;基于所述预混仓和/或终混仓的至少一个状态参数,确定制芯组件的制芯参数;利用所述制芯组件的制芯参数制备砂芯。
在一些实施例中,所述预混仓用于混合砂砾和添加剂以获得第一原料;所述终混仓用于将固化剂、辅料和从所述预混仓输送过来的至少部分所述第一原料混合以获得砂芯原料。
本申请实施例之一提供一种制备砂芯的方法,包括:基于预生产制芯参数进行砂芯预生产;确定砂芯预生产过程中的至少一个状态参数;根据所述至少一个状态参数,确定是否结束预生产。
在一些实施例中,所述制备砂芯的方法还包括:基于预生产结束时的至少一个状态参数,确定正式生产的制芯参数;基于所述正式生产的制芯参数进行砂芯正式生产。
在一些实施例中,所述至少一个状态参数包括外观完整性或砂芯初强度。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的制芯机的结构示意图;
图2是根据本申请一些实施例所示的示例性专用计算设备的硬件组件和/或软件组件的示意图;
图3是根据本申请一些实施例所示的制芯机控制系统的模块图;
图4是根据本申请一些实施例所示的制备砂芯方法的示例性流程图;
图5是根据本申请一些实施例所示的制芯机集成化信息系统的框图;
图6是根据本申请一些实施例所示的砂芯原料生成系统的模块图;
图7是根据本申请一些实施例所示的制备砂芯原料方法的示例性流程图;
图8是根据本申请一些实施例所示的制芯参数确定系统的框图;以及
图9是根据本申请一些实施例所示的制芯参数确定方法的示例性流程图。
其中,101为储砂斗,102为辅料斗,103为添加剂存储装置,104为预混仓,105为固化剂存储装置,106为辅料存储装置,107为终混仓,108为下砂通道,109为储砂斗,110为储砂机构,111为射砂机构,111-1为压头驱动机构,111-2为压头,112为气压机构,113为射砂头,114为上芯盒,115为下芯盒,116为芯盒输送机构,117为升降机构,118为支架,119为制芯机控制部。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1所示为根据本申请一些实施例所示制芯机100的结构示意图。需要注意的是,图1仅作为示例,并不对制芯机的具体形状和结构造成限定。
如图1所示,制芯机100可以包括:储砂斗101、添加剂斗102、添加剂加入装置103、预混仓104、固化剂存储装置105、辅料存储装置106、终混仓107、下砂通道108、储砂斗109、储砂机构110、射砂机构111、压头驱动机构111-1、压头111-2、气压机构112、射砂头113、上芯盒114、下芯盒115、芯盒输送机构116、升降机构117、支架118、制芯机控制部119等部件。其中,储砂斗101、添加剂斗102、添加剂加入装置103和预混仓104可以构成预混组件。通过预混组件可以制备出第一原料。固化剂存储装置105、辅料存储装置106和终混仓107可以构成终混组件。通过终混组件可以制备出砂芯原料。下砂通道108、储砂斗109、储砂机构110、射砂机构111、压头驱动机构111-1、压头111-2、气压机构112、射砂头113、上芯盒114、下芯盒115、芯盒输送机构116和升降机构117可以构成制芯单元(或称为制芯组件)。通过制芯单元可以制备出砂芯。在一些实施例中,制芯机100还可以包括警报组件(如,警报灯、喇叭等)以发出 警报(如,提示需要更换芯盒、清洁芯盒、部件情况等)。其中,警报可以划分出不同警报等级。
在一些实施例中,制芯机控制部119可以用于控制制芯机100的各部件,以实现各种操作,包括运送原料(如,砂砾、添加剂、固化剂、辅料)、制备第一原料、制备砂芯原料、制备砂芯、检测砂芯质量、对部件进行加热降温、安装芯盒、卸载芯盒等操作。制芯机控制部119可以安装在制芯机100的机架或外壳上,或者与制芯机100分离。制芯机控制部119可以通过有线或无线的方式控制制芯机100的各个部件。此外,制芯机100也可以进一步包括其他用于支撑和连接的机械结构、其他的功能性结构等或其组合。在一些实施例中,制芯机100还可以进一步包括控制信号接收机构(图中未示出)以接收来自制芯机100的制芯机控制部119的控制信号。通过设置信号接收机构,也可以便于制芯机控制部119联合控制制芯机100的相关部件。
在一些实施例中,制芯机100可以进一步包括搭载在各个部件上的其他装置,以采集制芯机100的状态参数、砂芯质量数据和/或对制芯机100部件进行操作。其中,利用搭载的其他装置可以对制芯机100的部件进行以下中至少一种操作,包括:检测环境温度、检测环境湿度、检测部件温度、检测部件内的压力、检测部件内的湿度、检测原料(如,砂砾、添加剂、固化剂、辅料、第一原料、砂芯原料等)温度、记录原料(如,砂砾、添加剂、固化剂、辅料、第一原料、砂芯原料等)存放时间、执行加热、执行降温等。在一些实施例中,所述其他装置可以包括传感器(如温度传感器、压力传感器、湿度传感器、称重传感器等)、计时器、砂芯质量检查器件(如,表面吸附性能检测装置、光学检测仪器(如激光等)、超声波检测装置、压力/压强传感器等)、加热装置、降温装置等一种或多种的任意组合。
储砂斗101可以用于存储砂砾。在一些实施例中,通过制芯机控制 部119可以控制储砂斗101的下端控制阀向预混仓104中加入砂砾以及所加砂砾的量(如重量或体积等)。在一些实施例中,储砂斗101上可以进一步搭载包括:传感器(如温度传感器、湿度传感器等)、加热装置、降温装置等。其中,利用搭载的上述装置可以对储砂斗101进行以下中至少一种操作,包括:检测储砂斗101的温度、检测砂砾的温度、检测储砂斗101内的压力、检测储砂斗101的环境湿度、检测砂砾的湿度、记录砂砾存放时间、执行储砂斗101加热、执行储砂斗101降温等。
添加剂斗102可以用于存储添加剂。在一些实施例中,制芯机控制部119可以通过添加剂加入装置103的控制阀,控制向预混仓104中加入添加剂和所加入添加剂的量。其中,添加剂加入装置103可以是导管。在一些实施例中,添加剂可以包括以下中的至少一种:无机促进剂、抗脉纹剂、麦克星等。在一些实施例中,添加剂斗103可以进一步搭载包括:传感器(如、温度传感器、湿度传感器)、计时器、加热装置、降温装置等一种或多种的任意组合。其中,利用搭载的装置可以对添加剂斗102进行以下中的至少一种操作,包括:检测添加剂斗102的温度、检测添加剂的温度、检测添加剂斗102内的压力、检测添加剂斗102的环境湿度、检测添加剂的湿度、记录添加剂存放时间、执行添加剂斗102加热、执行添加剂斗102降温等。
预混仓104可以用于混合从储砂斗101和添加剂斗102获得的砂砾和添加剂,以制备出第一原料。在一些实施例中,预混仓104可以包括:仓体、电机(图中未示出)、搅拌轴和搭载的装置(包括:传感器(如、温度传感器、湿度传感器等)、计时器、加热装置、降温装置等)。其中,可以通过电机驱动搅拌轴旋转,对砂砾和添加剂进行搅拌,经过一定时间后搅拌完成。具体的,预混仓104中,搅拌轴可以沿竖直方向的转轴(第一转轴)旋转,从而对预混仓内的砂砾和添加剂进行搅拌。利用搭载的装置 可以对预混仓104进行以下中至少一种操作,包括:检测预混仓104的温度、检测预混仓104内的压力、检测预混仓104的湿度、检测第一原料的湿度、检测第一原料的温度、记录第一原料存放时间、执行预混仓104加热、执行预混仓104降温等。在一些实施例中,砂砾和添加剂的质量比可以为100:0.5~100:2之间。例如,砂砾和添加剂的质量比可以为100:0.5、100:1.0、100:1.5、100:2.0等。在一些实施例中,预混仓104与终混仓107可以通过第一控制阀连接,制芯机控制部119可以通过该第一控制阀,控制从预混仓104向终混仓107中输出第一原料和第一原料的量。在一些实施例中,控制阀(如第一控制阀)的类型可以包括但不限于直通单座、直通双座、角形、隔膜、小流量、三通、偏心旋转、蝶形、套筒式、球形等。
固化剂存储装置105可以用于存储固化剂。在一些实施例中,通过制芯机控制部119可以控制固化剂存储装置105下端的控制阀,从而控制向终混仓107中加入固化剂,以及所加固化剂的量。在一些实施例中,固化剂可以包括以下中的至少一种:环氧树脂、脂肪族胺类、芳族胺类、酰胺基胺类、潜伏固化胺类、尿素替代物等。在一些实施例中,固化剂存储装置105可以进一步搭载包括:传感器(如、温度传感器、湿度传感器等)、计时器、加热装置、降温装置等。其中,利用搭载的装置可以对固化剂存储装置105进行以下中至少一种操作,包括:检测固化剂存储装置105的温度、检测固化剂的温度、检测固化剂存储装置105内的压力、检测固化剂存储装置105的环境湿度、检测固化剂的湿度、记录固化剂存放时间、执行固化剂存储装置105加热、执行固化剂存储装置105降温等。
辅料存储装置106可以用于存储辅料。在一些实施例中,通过制芯机控制部119可以控制辅料存储装置106下端的控制阀,控制向终混仓107中加入辅料,以及所加辅料的量。在一些实施例中,辅料可以包括以下中的至少一种:润滑材料、催化材料、表面活性材料等。在一些实施例中,辅 料存储装置106可以进一步搭载包括:传感器(如、温度传感器、湿度传感器等)、计时器、加热装置、降温装置等。其中,利用搭载的装置可以对辅料存储装置106进行以下中至少一种操作包括:检测辅料存储装置106的温度、检测辅料的温度、检测辅料存储装置106内的压力、检测辅料存储装置106的环境湿度、检测辅料的湿度、记录辅料存放时间、执行辅料存储装置106加热、执行辅料存储装置106降温等。
终混仓107可以用于混合从预混仓104获得的第一原料,以及从固化剂存储装置105获得的固化剂,和/或从辅料存储装置106获得的辅料,以制备出砂芯原料。在一些实施例中,终混仓107可以包括:仓体、电机、搅拌轴和搭载的装置(包括:传感器(如、温度传感器、湿度传感器)、计时器、加热装置、降温装置等)。其中,可以通过电机驱动搅拌轴旋转,对第一原料、固化剂和/或辅料进行搅拌,经过一定时间后搅拌完成。具体的,终混仓107中,搅拌轴可以沿竖直方向的转轴(第二转轴)旋转,从而对终混仓内的第一原料、固化剂和/或辅料进行搅拌。利用搭载的装置可以对终混仓107进行以下中至少一种操作包括:检测终混仓107的温度、检测终混仓107内的压力、检测终混仓107的环境湿度、检测砂芯原料的湿度、记录砂芯原料存放时间、执行终混仓107加热、执行终混仓107降温等。在一些实施例中,第一原料、固化剂和辅料的质量比可以为第一原料73-78.5%、固化剂0.2-0.4%、辅料21.3-26.6%。具体的,例如,第一原料73%、固化剂0.4%、辅料26.6%;又例如,第一原料75%、固化剂0.2%、辅料24.8%。在一些实施例中,可以通过终混仓107下部第二控制阀排出终混仓107中的砂芯原料。例如,可以通过制芯机控制部119控制终混仓107下部的第二控制阀打开,进而控制终混仓107排出砂芯原料,以及所排出砂芯原料的量。从终混仓107排出的砂芯原料将经过下砂通道108落入到储砂斗109中。在一些实施例中,终混仓107内的搅拌和预混仓104内的搅 拌相互独立。例如,终混仓107和预混仓104在同一时间可以只有一个仓在进行搅拌作业。又例如,终混仓107和预混仓104可以在同一时间分别进行搅拌作业。
储砂斗109可以用于接收下砂通道108排出的砂芯原料,并将砂芯原料传输到制芯单元的其他部件中(如,储砂机构110)。其中,储砂斗109可以通过输送管道与储砂机构110连接。例如,可以通过电机驱动输送机构(如管道中的输送机构)将储砂斗109中的砂芯原料输送到制芯单元中的储砂机构110中。在一些实施例中,储砂斗109可以包括:仓体、电机和搭载的装置(包括:传感器(如、温度传感器、湿度传感器)、计时器、加热装置、降温装置等)。其中,利用搭载的装置可以对储砂斗109进行以下中至少一种操作包括:检测储砂斗109的温度、检测储砂斗109内的压力、检测储砂斗109的环境湿度、检测砂芯原料的湿度、记录砂芯原料存放时间、执行储砂斗109加热、执行储砂斗109降温等。
储砂机构110还可以包括移动机构(图中未示出),以用于移动储砂机构110。在一些实施例中,制芯机控制部119可以控制该移动机构将储砂机构110移动至制芯位。具体的,通过移动储砂机构110至制芯位,制芯机控制部119可以控制射砂机构111和气压机构112将储砂机构110中的砂芯原料通过射砂头113或射砂板(图中未示出)压入合模后的芯盒(上芯盒114和下芯盒115合并后形成)中,以制备砂芯。
射砂机构111可以是能够将储砂机构110中的砂芯原料压入合模后的芯盒(上下芯盒合并后形成)中的任意合理结构。在一些实施例中,射砂机构111可以包括压头驱动机构111-1(例如,油缸)、压头111-2等。压头驱动机构111-1可以通过连接杆连接压头111-2。压力驱动机构111-1可以通过该连接杆控制压头111-2上下运动,并可以被制芯机控制部119所控制。进一步,压头111-2内部可以包括空腔结构。
气压机构112可以通过管路向压头111-2内部的空腔结构导入压缩气体。在一些实施例中,当储砂机构110位于制芯位时,制芯机控制部119可以控制上述空腔结构和储砂机构110中用于储砂的腔室导通,利用压缩气体将储砂机构110中的砂芯原料通过射砂头113或射砂板(图中未示出)压入合模后的芯盒中。其中,射砂头113可以位于储砂机构110下部。在一些实施例中,制芯机控制部119还可以控制射砂头113从储砂机构110上释放,以进行射砂头113的维护操作(如,更换操作、清理操作等)。
上芯盒114和下芯盒115的合模操作,可以通过升降机构117实现。其中,升降机构117可以包括升降驱动机构(例如,油缸),制芯机控制部119可以控制该升降驱动机构驱动升降机构117升降。在一些实施例中,升降机构117可以包括上芯盒升降机构(图中未示出)和下芯盒升降机构。在一些实施例中,升降机构117(如上芯盒升降机构)可以用于将上芯盒114固定于上芯盒固定架上,并将上芯盒114从上芯盒固定架上释放,然后实现上芯盒114和下芯盒115合模以进行制芯。在一些实施例中,升降机构117可以用于使上芯盒114与下芯盒115脱离以进行取砂芯等操作。在一些实施例中,可以将芯盒输送机构116安装在升降机构117上,并随升降机构117升降;或者,芯盒输送机构116也可以安装在机架上,且不随升降机构117升降。芯盒输送机构116可以用于实现芯盒的移动(如水平移动)。例如,芯盒输送机构116可以用于将芯盒移动到制芯位。又例如,芯盒输送机构116可以用于将从芯盒从制芯位移动至维护位,以便于芯盒的维护操作(如,更换操作、清理操作等)。具体的,芯盒输送机构116可以包括辊道、传送带等输送装置。在一些实施例中,芯盒可以携带标签,如RFID标签、印刷标签等。其中,该标签可以用于记录芯盒参数。
支架180可以位于制芯机100的外部,其可以用于为制芯机100的部件提供机械支撑。支架180上可以包括用于与制芯机100部件进行物理 连接的一个或多个连接结构。例如,该连接结构上可以包括插槽、卡槽、凸起、连接孔、销钉、限位块等连接结构的一种或多种。在一些实施例中,支架180的连接结构可以是可拆卸式的,从而使得支架180可以可拆卸地安装在制芯机100的机架上或制芯机100旁的基座或立柱上。
图2是根据本申请一些实施例所示的示例性专用计算设备200的硬件组件和/或软件组件的示意图。
如图2所示,计算设备200可以包括处理器210、存储器220、输入/输出(I/O)230和通信端口240。制芯机100的相关控制信号可以在计算设备200上实现。例如,制芯机控制部119可以通过计算设备200或类似设备实现。
处理器210可以执行计算机指令(例如,程序代码),并根据本申请描述的方法执行相应的功能。例如,处理器210可以处理制备第一原料、制备砂芯原料、制备砂芯、采集制芯机100参数等功能的数据/信息。计算机指令可以包括例如执行本申请描述的特定功能的常规方法、程序、对象、组件、数据结构、过程、模块和功能。在一些实施例中,处理器210可以包括至少一个硬件处理器,诸如微控制器、微处理器、精简一组指令计算机(RISC)、特定应用集成电路(ASIC)、特定应用一组指令处理器(ASIP)、中央处理单元(CPU)、图形处理单元(GPU)、物理处理单元(PPU)、微控制器单元、数字信号处理器(DSP)、现场可程序门阵列(FPGA)、高阶RISC机器(ARM)、可程序逻辑装置(PLD)、能够执行至少一个功能的任何电路或处理器或类似物,或其任何组合。
仅仅为了说明,在计算设备200中仅描述了一个处理器。然而,应该注意的是,本申请中的计算设备200还可以包括多个处理器,由此本申请中描述的由一个处理器执行的操作和/或方法步骤也可以由多个处理器联合地或单独地执行。例如,如果在本申请中,计算设备200的处理器执 行操作A和操作B,则应该理解,操作A和操作B也可以由计算设备200中的多个不同的处理器共同地或单独地执行(例如,第一处理器执行操作A并且第二处理器执行操作B、或者第一处理器和第二处理器共同执行操作A和B)。
存储器220可以存储从至少一个制芯机100的部件获得的数据/信号。例如,存储器220可以存储采集的制芯机100状态参数、砂芯质量数据、标准状态参数、制芯参数、控制信号等。在一些实施例中,存储器220可以包括大容量储存器、可移动储存器、易失性读写内存、只读存储器(ROM)等或其任意组合。例如,大容量存储器可以包括一磁盘、光盘、固态硬盘等。可移动存储器可以包括闪存驱动器、软盘、光盘、存储卡、压缩盘和磁带等。易失性读取和写入存储器可以包括随机存取存储器(RAM)。RAM可以包括动态RAM(DRAM)、双倍速率同步动态RAM(DDRSDRAM)、静态RAM(SRAM)、晶闸管RAM(T-RAM)和零电容(Z-RAM)等。示例性只读存储器可以包括掩模型只读存储器(MROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(PEROM)、电可擦除可编程只读存储器(EEPROM)、光盘只读存储器(CD-ROM)和数字多功能磁盘只读存储器等。在一些实施例中,存储器220可以存储至少一个程序和/或指令用来执行在本申请中描述的示例性方法。例如,存储器220可以存储用于制芯机100的程序和指令。
I/O230可以用于输入和/或输出信号、数据、信息等。在一些实施例中,用户可以通过I/O230与制芯机100交互。例如,操作人员可以通过I/O进行权限认证等。在一些实施例中,I/O230可以包括输入设备和输出设备。示例性的输入设备的可以包括键盘、鼠标、触摸屏、麦克风等,或其任何组合。示例性的输出设备可以包括显示设备、扬声器、打印机、投影仪等,或其任何组合。示例性显示设备可以包括液晶显示器(LCD)、基于发光二极 管(LED)的显示器、平板显示器、曲面显示器、电视设备、阴极射线管(CRT)等或其任意组合。
通信端口240可以连接到网络以促进数据通信。通信端口240可以和至少一个制芯机部件之间建立连接。连接可以包括有线连接、无线连接、可以启用数据传输和/或接收的任何其他通信连接,和/或这些连接的任何组合。有线连接可以包括例如电缆、光缆、电话线等或其任意组合。无线连接可以包括例如Bluetooth TM链路、Wi-Fi TM链路、WiMax TM链路、WLAN链路、ZigBee链路、行动网络链路(例如,3G、4G、5G等)等,或其任何组合。在一些实施例中,通信端口240可以是和/或包括标准化的通信端口,诸如RS232,RS485等。在一些实施例中,通信端口240可以是专门设计的通信端口。
图3是根据本申请一些实施例所示的制芯机控制系统的模块图。如图3所示,该系统可以包括砂芯原料生产模块310、数据获取模块320、制芯机控制模块330和砂芯生产模块340。
砂芯原料生产模块310可以用于控制生产砂芯原料。在一些实施例中,砂芯原料可以由砂砾、添加剂、固化剂、辅料等组成。其中,添加剂可以包括无机促进剂、抗脉纹剂、麦克星等一种或多种的任意组合。辅料可以包括润滑材料、催化材料、表面活性材料等一种或多种的任意组合。在一些实施例中,砂芯原料生产模块310可以包括第一原料生产控制单元610和砂芯原料生产控制单元620。在一些实施例中,通过第一原料生产控制单元610,可以控制在预混仓中混合砂砾和添加剂以获得第一原料。在一些实施例中,通过砂芯原料生产控制单元620,可以控制利用固化剂、辅料和至少部分第一原料获得砂芯原料。关于第一原料生产控制单元610和砂芯原料生产控制单元620的更多细节可以参见图6及其相关描述。
数据获取模块320可以用于获取状态参数、砂芯质量数据、标准状 态参数、制芯参数、历史状态参数、制芯参数与状态参数的对应关系等。其中,状态参数可以包括以下参数中的至少一种:砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度等。砂芯质量数据可以包括:砂芯合格率(或成品率)、砂芯初强度、砂芯硬度、砂芯尺寸精度、砂芯透气性、砂芯吸湿性、砂芯外观完整性等一种或多种的任意组合。在一些实施例中,数据获取模块320可以通过搭载在制芯机至少一个部件上的其他装置,采集部件数据、环境数据和砂芯质量数据。
制芯机控制模块330可以用于控制制芯机100至少一个部件的操作,包括:运送原料(如,砂砾、添加剂、固化剂、辅料、第一原料、砂芯原料)、制备第一原料、制备砂芯原料、制备砂芯、检测砂芯质量、部件进行加热降温、安装芯盒、卸载芯盒等操作。制芯机控制模块330可以通过控制信号接收机构(图中未示出)和制芯机控制部119组成,其中,控制信号接收机构可以接收来自制芯机100的控制信号。制芯机控制部119可以用于控制制芯机100的各部件,以实现上述各种操作。在一些实施例中,制芯机控制模块330可以是制芯机控制系统的集成模块,或者,制芯机控制模块330可以独立于制芯机控制系统的其他模块。
砂芯生产模块340可以用于控制生产砂芯。在一些实施例中,砂芯生产模块340可以利用砂芯原料生产模块310控制制备的砂芯原料和数据获取模块320获取的数据,在制芯机控制模块330的控制下,在制芯单元中制备出砂芯。
应当理解,图3所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可 以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
图4是根据本申请一些实施例所示的制备砂芯方法的示例性流程图。如图4所示,该方法可以包括:
步骤410,启动制芯机。该步骤410可以由人工或制芯机控制模块330执行,如可以通过人为操作相关按钮(如,总电源闸门)或者可以通过预先设置的生产计划开启制芯机100的总电源。在一些实施例中,制芯机控制模块330可以是制芯机控制系统的集成模块,或者,制芯机控制模块330可以独立于制芯机控制系统的其他模块(如,制芯机控制模块330可以包含独立的电源)。在一些实施例中,开启制芯机100的总电源后,还可以进行本地或远程权限认证,例如,可以要求操作人员输入验证内容(如,账号、密码、指纹、虹膜等)。在一些实施例中,通过认证后,制芯机控制模块330可以开启制芯机100的工作电源。在一些实施例中,不同等级和/或熟练度的操作人员可能被要求验证不同的内容,验证结果可能也不同,因而可能被分配到不同的权限。
步骤420,安装芯盒。该步骤420可以由人工或制芯机控制模块330执行,以确认芯盒并读取芯盒参数。例如,通过人工观察的方法确认芯盒是否已安装。又例如,可以自动读取制芯位存在芯盒的信号(如,压力信号 等)确认芯盒已安装。在一些实施例中,芯盒可以携带标签,如RFID标签、印刷标签等。其中,该标签可以记录芯盒的芯盒参数。具体的,芯盒参数可以包括芯盒种类、芯盒工艺参数(如,温度区间、吹气压力、吹气时间、射砂时间、射砂压力、砂砾原料的质量、固化时间、固化压力等)、芯盒实际使用次数、芯盒使用次数上线、芯盒堵塞程度与使用次数(或操作温度)的曲线、与使用次数(或操作温度)对应的芯盒堵塞分级等。在一些实施例中,可以通过人工或自动的方式读取芯盒参数。例如,人工观察的方法读取印刷标签,以获得芯盒参数。又例如,可以自动读取RFID标签,以获得芯盒参数。
在一些实施例中,还可以通过人工和/或制芯机控制模块330对芯盒进行进一步操作,使得安装的芯盒达到其芯盒工艺参数。例如,可以控制搭载在芯盒上的其他装置(如,加热装置、冷却装置)对芯盒进行预热(或冷却),并且可以通过搭载在芯盒上的其他装置(如,温度传感器、芯盒加热次数计数器等)获得的芯盒的温度、芯盒加热次数等,并确认芯盒预热温度是否达到芯盒工艺参数。又例如,可以根据经验或者根据控制搭载在芯盒上的其他装置(如,芯盒使用次数计数器),以确认芯盒是否需要更换。具体的,可以根据经验(如,芯盒磨损程度等)来人工确认芯盒是否需要更换。或者可以设置芯盒使用次数上限(如,20000次)和多个使用次数区间(如,0-18000次、18001-19999次、20000次三个区间),若芯盒使用次数计数器统计出当前芯盒的使用次数为0-18000次和18001-19999次这两个区间,则可以确认芯盒不需要更换,且在0-18000次和18001-19999次这两个区间制芯机控制模块330可以控制警报组件(如,警报灯、喇叭等)发出警报以提示是否需要更换芯盒,在该两个区间警报等级可以相同或不同(如,警报灯的颜色同为黄色或者警报灯的颜色分别为黄色、红色);若芯盒使用次数计数器统计出当前芯盒的使用次数为20000次,则可以自动 确认芯盒需要更换,且制芯机控制模块330可以控制有关组件(如,警报灯、喇叭等)发出警报(如红灯)和/或暂停制芯机100(如,限制制芯机100的制芯操作),并可以提示必须更换芯盒。人工在看到警报后可以进行芯盒的更换。更换完成后,制芯机控制模块330可以接收人为的更换完成指令或通过检测RFID的方法判断更换已完成。此时次数计数器将当前芯盒使用次数重新设置为0次。在一些实施例中,制芯机内部或外部可能包括多个备用芯盒,制芯机控制模块330可以控制有关组件(如机械臂,传送机构等)进行芯盒的更换,更换芯盒后次数计数器可以将当前芯盒使用次数重新设置为0次。
步骤430,预生产。具体的,该步骤430可以由图3所示的制芯机控制系统300的多个模块执行,如砂芯原料生产模块310、数据获取模块320、制芯机控制模块330和砂芯生产模块340。
在一些实施例中,可以利用制芯机控制模块330、砂芯原料生产模块310和数据获取模块320,将砂砾、添加剂、固化剂、辅料等原料,通过预混组件、终混组件和制芯机控制部119等,制备出砂芯原料。示例性的过程可以包括:
第一步,制芯机控制模块330可以控制预混组件中的储砂斗101和添加剂斗102,将砂砾和添加剂运送到预混仓104中。例如,制芯机控制模块330可控制开启储砂斗101的下端控制阀以实现向预混仓104中加入砂砾,并可以控制加入砂砾的量。又例如,制芯机控制模块330可控制添加剂斗102通过添加剂加入装置103的控制阀,向预混仓104中加入添加剂以及所加添加剂的量。在一些实施例中,预生产403中砂砾和添加剂的质量比可以为100:0.1~100:0.4。例如,砂砾和添加剂的质量比可以为100:0.1、100:0.2、100:0.3、100:0.4。在一些实施例中,储砂斗101中的砂砾在运送到预混仓104前,制芯机控制模块330可以控制搭载在储砂斗101上的其 他装置(如,加热装置、冷却装置、温度传感器)以对储砂斗101中的砂砾进行加热或升温,并确定砂砾温度和砂斗温度。在一些实施例中,制芯机控制模块330可以根据砂芯制备过程中的状态参数控制储砂斗101的下端控制阀和/或添加剂加入装置103的控制阀,以控制砂砾的加入以及所加砂砾的量(如重量或体积等)和/或添加剂的加入和所加入添加剂的量,并控制预混仓104中搅拌轴的搅拌时间。例如,制芯机控制模块330可以根据预混仓温度是否达到预设值,控制储砂斗101的下端控制阀和/或添加剂加入装置103的控制阀的开关,以向预混仓104中加入100份砂砾以及0.1份添加剂,并控制预混仓104中搅拌轴的搅拌时间为20秒。
第二步,砂芯原料生产模块310中的第一原料生产控制单元610可以控制预混组件中的预混仓104,对预混仓104中的砂砾和添加剂进行搅拌,经过一定时间(如5~50秒)后搅拌制备出第一原料。例如,控制预混仓104的电机驱动预混仓104内的搅拌轴旋转,对预混仓104中的砂砾和添加剂进行搅拌。在一些实施例中,在制备第一原料的搅拌过程中,制芯机控制模块330可以控制搭载在预混仓104上的其他装置(如,加热装置、冷却装置、温度传感器)以对预混仓104内的第一原料进行加热或升温,并确定第一原料温度和预混仓温度。在一些实施例中,可以根据搭载在预混仓104上的其他装置(如,计时器),确定制备的第一原料的存放时间。
第三步、制芯机控制模块330可以控制预混仓104与终混仓107之间的控制阀,以及终混组件中的固化剂存储装置105和辅料存储装置106,将第一原料、固化剂和辅料运送到终混仓107中。例如,制芯机控制模块330可以控制预混仓104与终混仓107之间的控制阀,将适量的第一原料(如,制备一批或者多批砂芯原料需要的第一原料的量)输送到到终混仓107中。又例如,制芯机控制模块330可控制固化剂存储装置105和辅料存储装置106的控制阀,控制向终混仓107加入固化剂、辅料、固化剂的 量和辅料的量。在一些实施例中,预生产403中第一原料、固化剂和辅料的质量配比可以为:第一原料78.5-84%、固化剂0.2-0.4%、辅料21.3-26.6%。在一些实施例中,固化剂存储装置105中的固化剂在运送到终混仓107前,制芯机控制模块330可以控制搭载在固化剂存储装置105上的其他装置(如,加热装置、冷却装置、温度传感器)以对固化剂存储装置105中的固化剂进行加热或升温,并确定固化剂温度。在一些实施例中,辅料存储装置106中的辅料在运送到终混仓107前,制芯机控制模块330可以控制搭载在辅料存储装置106上的其他装置(如,加热装置、冷却装置、温度传感器)以对辅料存储装置106中的辅料进行加热或升温,并确定辅料温度。在一些实施例中,制芯机控制模块330可以根据砂芯制备过程中的状态参数控制预混仓104与终混仓107之间的控制阀、固化剂存储装置105与终混仓107之间的控制阀以及辅料存储装置106与终混仓107之间的控制阀,以控制加入第一原料、固化剂和辅料的量,并控制终混仓107中搅拌轴的搅拌时间。例如,制芯机控制模块330可以根据终混仓温度是否达到预设值控制预混仓104与终混仓107之间的控制阀、固化剂存储装置105与终混仓107之间的控制阀以及辅料存储装置106与终混仓107之间的控制阀的开关,以控制加入第一原料、固化剂和辅料的量为第一原料78.5%、固化剂0.2%、辅料21.3%,并控制终混仓107中搅拌轴的搅拌时间为40秒。又例如,制芯机控制模块330可以根据制备出的预生产砂芯的质量(如,初强度、外观完整性等)是否达到预设值,来控制预混仓104与终混仓107之间的控制阀、固化剂存储装置105与终混仓107之间的控制阀以及辅料存储装置106与终混仓107之间的控制阀的开关,以控制加入第一原料、固化剂和辅料的量为第一原料78%、固化剂0.2%、辅料21.8%,并控制终混仓107中搅拌轴的搅拌时间为50秒。
第四步、砂芯原料生产模块310中的砂芯原料生产控制单元620可 以控制终混组件中的终混仓107,对终混仓107中的第一原料、固化剂和辅料进行搅拌,经过一定时间(如5~50秒)的搅拌后制备出砂芯原料。例如,砂芯原料生产控制单元620可以控制终混仓107的电机驱动终混仓107搅拌轴旋转,对第一原料、固化剂和辅料进行搅拌。在一些实施例中,在制备砂芯原料的搅拌过程中,制芯机控制模块330可以控制搭载在终混仓107上的其他装置(如,加热装置、冷却装置、温度传感器)以对终混仓107内的砂芯原料进行加热或升温,并确定砂芯原料温度和终混仓温度。在一些实施例中,可以根据搭载在终混仓107上的其他装置(如,计时器),确定制备的砂芯原料存放时间。
关于制备砂芯原料的更多描述可以参考图7及其相关描述。
在一些实施例中,可以进一步利用制芯机控制模块330、数据获取模块320和砂芯生产模块340,或者通过制芯单元和制芯机控制部119等部件,利用砂芯原料制备出砂芯。示例性的流程可以包括:
首先制芯机控制模块330可以控制将终混仓107中的砂芯原料输入制芯单元中。例如,制芯机控制模块330可以控制终混仓107下部的第二控制阀打开,进而控制终混仓107排出砂芯原料,以及所排出砂芯原料的量(如,生产一批次砂芯需要的砂芯原料),并将砂芯原料运送到制芯单元中。
然后,基于读取的芯盒参数确定制芯参数,使得砂芯原料在该制芯参数下通过射砂机构111和气压机构112,射入芯盒(合模的上芯盒114和下芯盒115)中以制备出砂芯。其中,制芯参数可以包括射砂压力、射砂时间、排气时间、砂斗温度、预混仓温度、终混仓温度、预混仓搅拌时间、终混仓搅拌时间、固化时间、固化压力、高压射砂压力、高压射砂时间、低压射砂压力、低压射砂时间、预排气时间、排气时间、加砂间隔、加砂时间、芯盒达到最终压力时间、固化加热器温度、芯盒温度、空气加热器温度、中 间加热器温度等一种或多种的任意组合。在一些实施例中,在制备砂芯的过程中,制芯机控制模块330可以控制搭载在制芯单元中的其他装置(如,加热装置、冷却装置、温度传感器)以对芯盒内的砂芯进行加热、冷却、固化、排气等操作,并可以确定砂芯温度。
在一些实施例中,还可以基于数据获取模块320采集的砂芯制备过程中至少一个状态参数,确定制芯参数,并在此制芯参数下制备砂芯。其中,状态参数可以包括砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度、砂芯初强度、砂芯外观完整性等一种或多种的任意组合。关于制芯参数确定的更多描述可以参考图9及其相关描述。
在一些实施例中,可以利用制芯机控制模块330和数据获取模块320,确定预生产砂芯的质量。例如,可以通过检测预生产出砂芯的硬度、尺寸精度、透气性、吸湿性、砂芯初强度、砂芯外观完整性等,确定预生产砂芯的合格率(或成品率)。在一些实施例中,也可以在线检测砂芯的硬度、尺寸精度、透气性、吸湿性、砂芯初强度、砂芯外观完整性等,确定预生产砂芯的合格率(或成品率)。其中,在线检测是指生产过程中进行合格率或者成品质量的检测。具体的,可以给砂芯施加一定的压强/压力,如,若砂芯在至少0.3MPA压强/压力下变形(如破裂)则将该砂芯认定为不合格,否则将该砂芯认定为合格。在一些实施例中,还可以通过肉眼观察法、激光仪器或超声波仪器来确定砂芯是否合格。例如,可以通过肉眼观察法检测砂芯外观的完整性以确定砂芯是否合格。在一些实施例中,可以按人为经验设置预生产砂芯的质量阈值(如,合格率或成品率的阈值)。在一些实施例中,可以按生产计划设置执行预生产流程的工作次数。在一些实施例中, 当预生产砂芯的质量达到预生产砂芯的质量阈值,并完成生产计划时,可以结束预生产,执行步骤404。在一些实施例中,也可以通过判断数据获取模块320采集的一个或多个状态参数(如砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度、砂芯初强度、砂芯外观完整性)等是否达到预设阈值,从而确定是否结束预生产。在一些实施例中,砂芯初强度和/或砂芯外观完整性可以是首要参考的状态参数,若其不能达到预设阈值,制芯机控制模块330则需要重新调整砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、制芯参数等,并再次检测调整数据后制备的砂芯的砂芯初强度和/或砂芯外观完整性。若砂芯初强度和砂芯外观完整性达到预设阈值,则通过其他状态参数确定是否结束预生产。
步骤440,正式生产。具体的,该步骤440可以由图3所示的制芯机控制系统的多个模块控制执行,如砂芯原料生产模块310、数据获取模块320、制芯机控制模块330和/或砂芯生产模块340。
在一些实施例中,步骤404与步骤403中除原料配比外,其他内容可以基本一致。例如,预生产403中砂砾和添加剂的质量比与正式生产404中砂砾和添加剂的质量比可以不同,在正式生产404中砂砾和添加剂的质量比可以为100:0.5~100:2。又例如,预生产403中第一原料、固化剂和辅料的质量配比与正式生产404中第一原料、固化剂和辅料的质量配比可以不同,例如在正式生产404中第一原料、固化剂和辅料的质量配比可以为:第一原料73-78.5%、固化剂0.2-0.4%、辅料21.3-26.6%。在一些实施例中,可以基于预生产结束时的一个或多个状态参数,确定正式生产时的制芯参数。在一些实施例中,可以调整基于预生产结束时的一个或多个状态参数,确定正式生产时的制芯参数。例如,正式生产出第一批砂芯,检测其砂芯 初强度和/或砂芯外观完整性,若其不能达到预设阈值,制芯机控制模块330则需要重新调整制芯参数,并再次检测调整数据后制备的第二批砂芯的砂芯初强度和/或砂芯外观完整性。若砂芯初强度和砂芯外观完整性达到预设阈值,则通过其他状态参数确定是否继续或结束正式生产。
步骤450,卸载芯盒。具体的,该步骤450可以由人为或制芯机控制模块330执行,将芯盒从制芯机中卸载。例如,按人为经验或生产计划(如,砂芯生产量)确定结束正式生产后,制芯机控制模块330可以断开芯盒与制芯机的信号连接或者人为卸载芯盒。在一些实施例中,卸载芯盒后,还可以对芯盒进行清理或更换。
应当注意的是,上述有关流程400的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程400进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
图5是根据本申请一些实施例所示的集成化的信息系统的框图。集成化的信息系统500可以包括:制芯管理系统(MES,Manufacturing Execution System)501、可视化界面502、智能制芯控制系统503、各部件参数信息及其动作程序504、集成式制芯单元505、模具库管理系统506、芯盒搬运AGV(自动引导运输车,Automated Guided Vehicle)507、砂芯508、砂芯质量识别模块509、外部耗材/耗能510和砂芯存储搬运系统511。在一些实施例中,该集成化的信息系统500可以应用于如图4所述的制备砂芯方法的流程中。如,该集成化的信息系统500可以通过控制信号接收机构(图中未示出)集成各种部件控制信息,并可以实现可视化观察和操作。在一些实施例中,该集成化的信息系统500可以集成到制芯机控制系统300中,或者,该集成化的信息系统500可以独立于制芯机控制系统300。
如图5所示,制芯管理系统(MES)501可以用于管理砂芯的整个制 造流程。具体的,制芯管理系统(MES)501可以是一个制造协同管理平台,其可以包括制造数据管理、计划排产管理、生产调度管理、库存管理、质量管理、人力资源管理、工作中心/设备管理、工具工装管理、采购管理、成本管理、项目看板管理、生产过程控制、底层数据集成分析、上层数据集成分解等一个或多个管理模块。用户可以通过可视化界面(如手机、平板/APP502-1)对制芯管理系统(MES)501进行操控。
在一些实施例中,制芯管理系统(MES)501可以与智能制芯控制系统503协作共同控制砂芯制造过程。在一些替代性实施例中,智能制芯控制系统503也可以为制芯管理系统(MES)501的一部分。具体的,智能制芯控制系统503可以获取用户操控信息(如通过手机、平板/APP502-1和HMI人机界面502-2获取的信息)、外部耗材/耗能510信息、砂芯质量识别模块509信息、集成式制芯单元505的信息等各个模块或部件的信息。其中,集成式制芯单元505的信息可以包括第一原料生产单元505-1、砂芯原料生产单元505-2、芯盒模具505-3和/或制芯单元505-4所反馈的信息,包括但不限于状态参数、制芯参数、异常数据等一种或多种的任意组合。在一些实施例中,智能制芯控制系统503还可以用于控制模具库管理系统506以及各部件参数信息及其动作程序504。
集成式制芯单元505可以基于各部件参数信息及其动作程序504进行砂芯制造。具体的,集成式制芯单元505可以包括原料生产单元505-1、砂芯原料生产单元505-2、芯盒模具505-3和制芯单元505-4。其中,第一原料生产单元可以基于外部耗材/耗能510生产第一原料。外部耗材/耗能510可以包括但不限于砂砾和添加剂等。砂芯原料生产单元505-2可以基于第一原料以及其他的外部耗材/耗能510(固化剂、辅料等)生产砂芯原料。所生产出的砂芯原料可以输送给制芯单元505-4用于制芯。同时,芯盒模具505-3可以装入制芯单元505-4中,已用于生产各类砂芯。在一些实施例 中,芯盒模具505-3可以是从模具库管理系统506中获取,并通过芯盒搬运AGV507运送至制芯单元。在一些实施例中,模具库管理系统506可以在制芯管理系统(MES)501的统一管理之下增减模具。同时,模具库管理系统506也可以在智能制芯控制系统503的控制下提供相应的模具。
集成式制芯单元505可以通过预生产、生产等操作制造出砂芯508。对于制造出的砂芯508,可以通过砂芯质量识别模块509识别砂芯质量。砂芯质量识别模块509还可以将所识别出的砂芯质量信息反馈给智能制芯控制系统503,以使智能制芯控制系统503根据所生产出的砂芯质量调整各部件参数信息及其动作程序504。此外,制造出的砂芯508可以通过砂芯存储搬运系统511进行搬运和存储。具体的,砂芯存储搬运系统511可以受砂芯存储搬运系统511的管理和控制。
以下将结合制备砂芯方法的示例性流程对集成化的信息系统500在制芯过程中的信息流作进一步阐述:
步骤410,启动制芯机。该步骤410可以由人工或自动执行。在一些实施例中,制芯管理系统(MES)501和/或智能制芯控制系统503可以接收人工或自动启动制芯机的控制信号,如人为操作相关按钮(如,总电源闸门)后的电信号或者根据预先设置的生产计划自动开启制芯机100的总电源的电信号,以确认制芯机是否启动。在一些实施例中,开启制芯机100的总电源后,还可以利用可视化界面502(包括:手机、平板/APP502-1和HMI(Human Machine Interface)人机界面502-2)进行本地或远程权限认证,例如,需要操作人员输入验证内容(如账号、密码、指纹、虹膜等)。在一些实施例中,通过认证后,可以通过制芯机控制模块330自动开启制芯机100的工作电源,制芯管理系统(MES)501和/或智能制芯控制系统503可以接收开启制芯机100的工作电源的控制信号。
步骤420,安装芯盒(如芯盒模具)。该步骤420可以由人工或自动 的方式安装芯盒,并可以读取芯盒参数。具体的,模具库管理系统506可以接收制芯管理系统(MES)501和/或智能制芯控制系统503的信号,从而可以从模具库中选取出合适的芯盒模具。进一步,芯盒搬运AGV507可以接收安装芯盒的信号,从模具库中获取模具并通过搬运设备(如AGV小车)以自动(或人工辅助)的方式将芯盒模具运送给制芯单元505-4。芯盒模具运送给制芯单元505-4后,可以通过人工或芯盒安装机构将芯盒模具安装到制芯单元505-4上。在一些实施例中,芯盒模具505-3可以接收芯盒移动至制芯位的压力信号,以确认芯盒是否安装到位。在一些实施例中,芯盒上可以携带标签,如RFID标签、印刷标签等。确认芯盒已安装后,可以通过搭载在制芯单元中的RFID读写器自动读取RFID标签(或者通过扫描仪扫描印刷标签)以获得芯盒参数。在一些实施例中,芯盒模具505-3可以接收读取芯盒参数的电信号,以读取如RFID标签所携带的芯盒参数。
步骤430-步骤440,预生产以及正式生产。在一些实施例中,集成式制芯单元505可以按照智能制芯控制系统503所确定的各部件参数信息及其动作程序504进行预生产,以及正式生产。
首先,可以控制第一原料生产单元505-1将储砂斗101的砂砾和添加剂斗102中的添加剂运送到预混仓104中进行预混,以获得第一原料。第一原料生产单元505-1生产第一原料的参数(如砂砾的量、添加剂的量、预混时间、加热时间、冷却时间等)可以由集成式制芯单元505确定。同时,第一原料生产单元505-1可以利用搭载在预混仓104、添加剂加入装置103和/或预混仓104上的温度传感器、湿度传感器、计时器、流量传感器等收集第一原料生产单元505-1的信息并反馈给集成式制芯单元505。在一些实施例中,集成式制芯单元505可以根据第一原料生产单元505-1所反馈的信息实时调整各部件参数信息及其动作程序504中关于第一原料生产单元505-1的参数及动作程序。具体的,参数及工作程序可以包括但不限 于:对储砂斗101中的砂砾进行加热或升温、控制添加剂加入装置103的控制阀开启或关闭、控制预混仓104的电机驱动预混仓104内的搅拌轴旋转、对预混仓104中的第一原料进行加热或降温等。
其次,可以控制砂芯原料生产单元505-2将第一原料、固化剂和辅料运送到终混仓107中进行终混,以获得砂芯原料。砂芯原料生产单元505-2生产砂芯原料的参数(如第一原料的量、固化剂的量、辅料的量、终混时间、加热时间、冷却时间等)可以由集成式制芯单元505确定。同时,砂芯原料生产单元505-2可以利用搭载在固化剂加入装置105、辅料加入装置106和/或终混仓107上的温度传感器、湿度传感器、计时器、流量传感器等收集第一原料生产单元505-1的信息并反馈给集成式制芯单元505。在一些实施例中,集成式制芯单元505可以根据第一原料生产单元505-1所反馈的信息实时调整各部件参数信息及其动作程序504中关于第一原料生产单元505-1的参数及动作程序。具体的,参数及工作程序可以包括但不限于:对固化剂加入装置105中的固化剂进行加热或冷却、对辅料加入装置106中的辅料进行加热或冷却、控制开启预混仓104与终混仓107之间的控制阀、控制固化剂存储装置105的控制阀开启、控制辅料存储装置106的控制阀开启、控制终混仓107的电机驱动终混仓107内的搅拌轴旋转等。
同时,制芯单元505-4可以接收并安装芯盒模具505-3。芯盒模具安装完毕后,制芯单元505-4可以在智能制芯控制系统503所确定的各部件参数信息及其动作程序504,接收砂芯原料生产单元505-2所生产的砂芯原料并制备砂芯508。砂芯508制备完成后,可以通过砂芯质量识别模块509识别砂芯质量。砂芯质量识别模块509还可以将所识别出的砂芯质量信息反馈给智能制芯控制系统503,以使智能制芯控制系统503根据所生产出的砂芯质量调整各部件参数信息及其动作程序504。此外,制造出的砂芯508可以通过砂芯存储搬运系统511进行搬运和存储。
应当理解,图5及其相关描述中所涉及的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
图6是根据本申请一些实施例所示的砂芯原料生成系统的框图。该系统可以包括第一原料生产控制单元610和砂芯原料生产控制单元620。
第一原料生产控制单元610可以用于控制生产第一原料。在一些实施例中,第一原料生产控制单元610可以结合制芯机控制模块330,通过控制预混组件(如第一原料生产单元505-1),制备出第一原料。
在一些实施例中,制芯机控制模块330可以控制预混组件中的储砂斗101和添加剂斗102,将砂砾和添加剂运送到预混仓104中。例如,制芯机控制模块330可控制开启储砂斗101的下端控制阀以实现向预混仓104中加入砂砾的操作和加入砂砾的量。又例如,制芯机控制模块330可控制添加剂斗102通过添加剂加入装置103的控制阀,控制向预混仓104中加入添加剂和加入添加剂的量。在一些实施例中,砂砾和添加剂的质量比可以为100:0.5~100:2。在一些实施例中,储砂斗101中的砂砾在运送到预混 仓104前,制芯机控制模块330可以控制搭载在储砂斗101上的其他装置(如,加热装置、冷却装置、温度传感器)以对储砂斗101中的砂砾进行加热或升温,并确定砂砾温度和砂斗温度。
第一原料生产控制单元610可以控制预混仓104对砂砾和添加剂进行搅拌,经过一定时间后搅拌,制备出第一原料。例如,控制预混仓104的电机组件,以驱动预混仓104内的搅拌轴进行旋转,对预混仓104中的砂砾和添加剂进行搅拌。在一些实施例中,搅拌轴上配置有多层多组桨叶,其中,桨叶可以包括轴流式桨叶及径流式桨叶。在一些实施例中,制备第一原料的搅拌时间可以较长。如,为30-60分钟。在一些实施例中,第一原料的性质较稳定,可以存放较长时间,如1-3星期。
在一些实施例中,在制备第一原料的搅拌过程中,制芯机控制模块330可以控制搭载在预混仓104上的其他装置(如,加热装置、冷却装置、温度传感器)以对预混仓104内的第一原料进行加热或升温,并确定第一原料温度和预混仓温度。在一些实施例中,可以根据搭载在预混仓104上的其他装置(如,计时器),确定制备的第一原料存放时间。
砂芯原料生产控制单元620可以用于控制生产砂芯原料。在一些实施例中,砂芯原料生产控制单元620可以结合制芯机控制模块330,通过控制终混组件(如砂芯原料生产单元505-2),制备出砂芯原料。
在一些实施例中,制芯机控制模块330可以控制终混组件中的固化剂存储装置105和辅料存储装置106,将固化剂、辅料和至少部分所述第一原料输送到终混仓107中。在一些实施例中,预混仓104和终混仓107通过第一控制阀连接。在一些实施例中,控制阀类型可以包括直通单座、直通双座、角形、隔膜、小流量、三通、偏心旋转、蝶形、套筒式、球形等。在一些实施例中,制芯机控制模块330可以通过控制第一控制阀,将适量的第一原料输送到终混仓107中。在一些实施例中,制芯机控制模块330 可以控制固化剂存储装置105下端的控制阀,控制向终混仓107中加入的固化剂的量。在一些实施例中,固化剂可以包括以下中的至少一种:环氧树脂、脂肪族胺类、芳族胺类、酰胺基胺类、潜伏固化胺类、尿素替代物等。在一些实施例中,制芯机控制模块330可以控制辅料存储装置106下端的控制阀,控制向终混仓107中加入的辅料的量。在一些实施例中,辅料包括以下中的至少一种:润滑材料、催化材料、表面活性材料。在一些实施例中,第一原料、固化剂和辅料的质量配比为:第一原料73-78.5%、固化剂0.2-0.4%、辅料21.3-26.6%。在一些实施例中,将固化剂、辅料和至少部分所述第一原料输送到终混仓107的先后顺序可以不受限制。
在一些实施例中,固化剂存储装置105中的固化剂在运送到终混仓107前,制芯机控制模块330可以控制搭载在固化剂存储装置105上的其他装置(如,加热装置、冷却装置、温度传感器)以对固化剂存储装置105中的固化剂进行加热或升温,并确定固化剂温度。在一些实施例中,辅料存储装置106中的辅料在运送到终混仓107前,制芯机控制模块330可以控制搭载在辅料存储装置106上的其他装置(如,加热装置、冷却装置、温度传感器),以对辅料存储装置106中的辅料进行加热或升温操作,并确定辅料温度。
在一些实施例中,砂芯原料生产控制单元620可以控制终混仓107对第一原料、固化剂和辅料进行搅拌,经过一定时间后搅拌,制备出砂芯原料。例如,控制终混仓107的电机组件,以驱动终混仓107内的搅拌轴进行旋转,对终混仓107中的第一原料、固化剂和辅料进行搅拌。在一些实施例中,搅拌轴上配置有多层多组桨叶,其中,桨叶可以包括轴流式桨叶及径流式桨叶。在一些实施例中,制备砂芯原料的搅拌时间可以较短。如,为5-50秒。在一些实施例中,砂芯原料的性质不太稳定,不可以存放较长时间,如砂芯原料最长存放时间为0-2h。若砂芯原料存放时间超过其 最长存放时间,如2h,则需要废弃该砂芯原料。
在一些实施例中,在制备砂芯原料的搅拌过程中,制芯机控制模块330可以控制搭载在终混仓107上的其他装置(如,加热装置、冷却装置、温度传感器)以对终混仓107内的砂芯原料进行加热或升温,并确定砂芯原料温度和终混仓温度。在一些实施例中,可以根据搭载在终混仓107上的其他装置(如,计时器),确定制备的砂芯原料存放时间。
在一些实施例中,所述预混仓混合完成与所述终混仓开始混合之间可以存在时间间隔。由于预混仓中的第一原料性质较为稳定,该时间间隔可以较长。例如,所述预混仓混合完成与所述终混仓开始混合之间存在时间间隔可以大于2小时(如2小时、3小时、5小时、12小时等)。在一些实施例中,当机器因为故障等原因停止超过例如2个小时,仅仅需要废弃掉终混仓中的制芯原料,而由于预混仓中的第一原料性质较为稳定,不需要进行废弃,对比现有技术的话浪费较少,成本较为节省。另外,当机器因为故障等原因停止0-2小时之间时,可以通过例如图9及其描述所述的方法调整制芯参数以应对因为长时间放置导致的原料的性质的变化。当机器恢复工作的时候,仅仅需要将预混仓已经混好的第一原料加入终混仓进行终混即可,由于省去了预混的环节,也较为省时。
现有的制芯机一般只有一个混合仓,预混和终混都将在该混合仓中进行。同时,现有的制芯机一般会包含储砂斗,用于存储混合好的砂芯原料。由于储砂斗中的砂芯原料一般不会立即被使用,而砂芯原料中的固化剂(如树脂)容易挥发,因此为了保证砂芯原料的质量,通常会在混合过程中增加树脂的用量。而在本申请的实施例中,通过预混仓和终混仓的设置,可以使砂芯原料随用随混,即混合完成的砂芯原料可以立即用于制芯,所以其树脂用量可以更少,从而可以在一定程度上节约材料成本。进一步,由于树脂的挥发会对环境产生一定的负面影响,本申请实施例通过降低砂 芯原料的存放时间可以减少树脂挥发的量,从而可以使制芯过程更加环保。
图7是根据本申请一些实施例所示的砂芯原料生成流程的示意图。如图7所示,该方法可以包括:
步骤710,在预混仓中混合砂砾和添加剂以获得第一原料。具体的,该步骤710可以由第一原料生产控制单元610执行。
在一些实施例中,第一原料生产控制单元610可以控制预混仓104对砂砾和添加剂进行搅拌,经过一定时间后搅拌,制备出第一原料。例如,控制预混仓104的电机组件,以驱动预混仓104内的搅拌轴进行旋转,对预混仓104中的砂砾和添加剂进行搅拌。在一些实施例中,搅拌轴上配置有多层多组桨叶,其中,桨叶可以包括轴流式桨叶及径流式桨叶。在一些实施例中,制备第一原料的搅拌时间可以较长。如,为30-60分钟。在一些实施例中,第一原料的性质较稳定,可以存放较长时间,如1-3星期。
在一些实施例中,在制备第一原料的搅拌过程中,制芯机控制模块330可以控制搭载在预混仓104上的其他装置(如,加热装置、冷却装置、温度传感器)以对预混仓104内的第一原料进行加热或升温,并确定第一原料温度和预混仓温度。在一些实施例中,可以根据搭载在预混仓104上的其他装置(如,计时器),确定制备的第一原料存放时间。
步骤720,将固化剂、辅料和至少部分所述第一原料输送到终混仓107中混合以获得砂芯原料。具体的,该步骤720可以由制芯机控制模块330执行。在一些实施例中,步骤720是在预混仓混合完成并停止后才进行的。由于预混仓内的搅拌轴沿竖直方向的转轴旋转搅拌,因此预混仓每次只能混合一批第一原料。通过上述沿竖直方向搅拌的搅拌轴的设置,可以使得预混仓所混合出的第一原料更加均匀,从而能够更好的保证砂芯的合格率。
在一些实施例中,预混仓104和终混仓107通过第一控制阀连接。 在一些实施例中,控制阀类型可以包括直通单座、直通双座、角形、隔膜、小流量、三通、偏心旋转、蝶形、套筒式、球形等。在一些实施例中,制芯机控制模块330可以通过控制第一控制阀,将适量的第一原料输送到终混仓107中。
在一些实施例中,制芯机控制模块330可以控制固化剂存储装置105下端的控制阀,控制向终混仓107中加入的固化剂的量。在一些实施例中,固化剂可以包括以下中的至少一种:环氧树脂、脂肪族胺类、芳族胺类、酰胺基胺类、潜伏固化胺类、尿素替代物。
在一些实施例中,制芯机控制模块330可以控制辅料存储装置106下端的控制阀,控制向终混仓107中加入的辅料的量。在一些实施例中,辅料包括以下中的至少一种:润滑材料、催化材料、表面活性材料。
在一些实施例中,第一原料、固化剂和辅料的质量配比为:第一原料73-78.5%、固化剂0.2-0.4%、辅料21.3-26.6%。
在一些实施例中,将固化剂、辅料和至少部分所述第一原料输送到终混仓107的先后顺序可以不受限制。
步骤730,利用所述砂芯原料制备砂芯。具体的,该步骤730可以由砂芯原料生产控制单元620执行。
在一些实施例中,砂芯原料生产控制单元620可以控制终混仓107对第一原料、固化剂和辅料进行搅拌,经过一定时间搅拌后,制备出砂芯原料。例如,控制终混仓107的电机组件,以驱动终混仓107内的搅拌轴进行旋转,对终混仓107中的第一原料、固化剂和辅料进行搅拌。在一些实施例中,搅拌轴上配置有多层多组桨叶,其中,桨叶可以包括轴流式桨叶及径流式桨叶。在一些实施例中,制备砂芯原料的搅拌时间可以较短。如,为5-10分钟。在一些实施例中,砂芯原料的性质不太稳定,不可以存放较长时间,如砂芯原料最长存放时间为0-2h。若砂芯原料存放时间超过 其最长存放时间,如2h,则需要废弃该砂芯原料。
在一些实施例中,在制备砂芯原料的搅拌过程中,制芯机控制模块330可以控制搭载在终混仓107上的其他装置(如,加热装置、冷却装置、温度传感器)以对终混仓107内的砂芯原料进行加热或升温,并确定砂芯原料温度和终混仓温度。在一些实施例中,可以根据搭载在终混仓107上的其他装置(如,计时器),确定制备的砂芯原料存放时间。
图8是根据本申请一些实施例所示的制芯参数确定系统的框图。该系统可以包括状态参数获取模块810、对应关系获取模块820、制芯参数确定模块830。在一些实施例中,图8所示的制芯参数确定系统800可以由如图2所示的专用计算设备200(如处理器210)实现。
状态参数获取模块810可以用于获取砂芯制备过程中的至少一个状态参数。状态参数获取模块810可以通过搭载在制芯机100至少一个部件上的其他装置获取状态参数。其中,其他装置可以包括:传感器(如、温度传感器、压力传感器、湿度传感器、称重传感器等)、计时器、砂芯质量检查器件(如,表面吸附性能检测装置、光学检测仪器(如激光等)、超声波检测装置、压力/压强传感器等)、加热装置(图中未示出)、降温装置等(图中未示出)。在一些实施例中,该至少一个状态参数包括以下参数中的至少一种:砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度、砂芯初强度、砂芯外观完整性。
对应关系获取模块820可以用于获取制芯参数与状态参数的对应关系。具体的,对应关系获取模块820可以包括历史信息获取单元821、标准参数获取单元822以及对应关系确定单元823。
在一些实施例中,制芯参数可以包括以下中的至少一种:射砂压力、 射砂时间、排气时间、砂斗温度、预混仓温度、终混仓温度、预混仓搅拌时间、终混仓搅拌时间、固化时间、固化压力、高压射砂压力、高压射砂时间、低压射砂压力、低压射砂时间、预排气时间、排气时间、加砂间隔、加砂时间、芯盒达到最终压力时间、固化加热器温度、芯盒温度、空气加热器温度、中间加热器温度。在一些实施例中,制芯参数可以是一个具体数值或者数值区间。
一些实施例中,可以根据历史制芯参数与历史状态参数信息,获取制芯参数与状态参数的对应关系。具体的,历史信息获取单元821可以获取历史制芯参数与历史状态参数信息;对应关系确定单元823可以根据历史制芯参数与历史状态参数信息确定制芯参数与状态参数的对应关系。
在一些实施例中,根据历史制芯参数与历史状态参数信息获取制芯参数与状态参数的对应关系可以包括:根据历史制芯参数与历史状态参数信息训练机器学习模型,机器学习模型可以用于反映制芯参数与状态参数的对应关系。在一些实施例中,机器学习模型可以包括但不限于支持向量机、朴素贝叶斯、K近邻(KNN)、决策树、神经网络模型等,或其任意组合。
在一些实施例中,还可以根据历史制芯参数与历史状态参数信息,以及标准制芯参数与标准状态参数,获取制芯参数与状态参数的对应关系。具体的,标准参数获取单元822可以获取标准制芯参数与标准状态参数。对应关系确定单元823可以根据历史制芯参数与历史状态参数信息,以及标准制芯参数与标准状态参数确定制芯参数与状态参数的对应关系。标准制芯参数与标准状态参数可以是由制芯设备的生产厂家、生产专家等提供。标准制芯参数与标准状态参数可以作为能够制作出合格砂芯的正样本,从而可以结合历史制芯参数与历史状态参数信息确定制芯参数与状态参数的对应关系。具体的,制芯参数与状态参数的对应关系可以包括:
制芯参数确定模块830可以用于基于至少一个状态参数和对应关系,确定制芯参数。具体的,制芯参数确定模块830可以包括偏离值确定单元831和制芯参数确定单元832。
在一些实施例中,制芯参数确定模块830可以利用训练好的机器学习模型,基于至少一个状态参数和对应关系,确定制芯参数。
在一些实施例中,还可以根据至少一个状态参数与标准状态参数的偏离值来确定制芯参数。在一些实施例中,可以根据偏离值确定至少一个状态参数的偏离系数,以此确定所述制芯参数。在一些实施例中,可以根据至少一个状态参数与标准状态参数的偏离值来确定制芯参数。具体的,偏离值确定单元831可以确定至少一个状态参数与标准状态参数的偏离值。制芯参数确定单元832可以根据偏离值确定制芯参数。在一些实施例中,制芯参数确定单元832可以根据偏离值确定至少一个状态参数的偏离系数,以此确定所述制芯参数。具体的,所述制芯参数的偏离系数与所述至少一个状态参数的偏离系数可以相同。
应当理解,图8所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的 软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
图9是根据本申请一些实施例所示的制芯参数确定方法的流程的示意图。如图9所示,该方法可以包括:
步骤910,获取砂芯制备过程中的至少一个状态参数。具体的,该步骤910可以由状态参数获取模块810执行。
在一些实施例中,该至少一个状态参数可以包括以下参数中的至少一种:砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度、砂芯初强度、砂芯外观完整性。
在一些实施例中,可以通过搭载在制芯机100至少一个部件上的其他装置获取状态参数。其中,其他装置可以包括:传感器(如、温度传感器、压力传感器、湿度传感器、称重传感器、流量传感器等)、计时器、砂芯质量检查器件(如,表面吸附性能检测装置、光学检测仪器(如激光等)、超声波检测装置、压力/压强传感器等)、加热装置(图中未示出)、降温装置等(图中未示出)。例如,可以通过搭载在储砂斗101上的温度传感器获取砂砾温度。又例如,可以通过搭载在预混仓104上的温度传感器获取第一原料温度。又例如,可以通过搭载在固化剂存储装置105上的温度传感器获取固化剂温度。又例如,可以通过搭载在预混仓104上的计时器获取第一原料存放时间。又例如,可以通过搭载在辅料存储装置106上的温度传感器获取辅料温度。又例如,可以通过搭载在终混仓107上的温度传感器获取砂芯原料温度。又例如,可以通过搭载在终混仓107上的计时器获取砂芯原料存放时间。又例如,可以通过搭载在辅料存储装置106上的温度传感器获取辅料温度。又例如,可以通过分别搭载在储砂斗101和添加剂加入装置103上的称重传感器获取加入预混仓的砂砾与添加剂的配 比。又例如,可以通过搭载在控制阀(包括第一控制阀、第二控制阀等)的流量传感器获取所添加物质(如砂砾、第一原料、固化剂、添加剂、辅料、砂芯原料等)的量。又例如,可以通过分别搭载在预混仓104、固化剂存储装置105、辅料存储装置106上的称重传感器获取第一原料与固化剂和辅料的配比。又例如,可以通过搭载制芯机上的砂芯质量检查器件和/或人工判断,确定砂芯初强度和砂芯外观完整性。
步骤920,获取制芯参数与状态参数的对应关系。具体的,该步骤920可以由对应关系获取模块820执行。
在一些实施例中,制芯参数可以包括以下中的至少一种:第一控制阀的开关、第二控制阀的开关、射砂压力、射砂时间、排气时间、砂斗温度、预混仓温度、终混仓温度、预混仓搅拌开始时间、预混仓搅拌时间、终混仓搅拌开始时间、终混仓搅拌时间、固化时间、固化压力、高压射砂压力、高压射砂时间、低压射砂压力、低压射砂时间、预排气时间、排气时间、加砂间隔、加砂时间、芯盒达到最终压力时间、固化加热器温度、芯盒温度、空气加热器温度、中间加热器温度。在一些实施例中,制芯参数可以是一个具体数值或者数值区间。
在一些实施例中,可以根据历史制芯参数与历史状态参数信息,获取制芯参数与状态参数的对应关系。具体的,历史信息获取单元821可以获取历史制芯参数与历史状态参数信息;对应关系确定单元823可以根据历史制芯参数与历史状态参数信息确定制芯参数与状态参数的对应关系。具体的,在历史制芯过程中,当所制出的砂芯合格时(例如砂芯初强度和外观完整性满足一定预设条件时),可以记录该制芯过程的制芯参数与状态参数作为正样本;当所制出的砂芯不合格时(例如砂芯初强度或外观完整性不满足一定预设条件时),可以记录该制芯过程的制芯参数与状态参数作为负样本。并可以根据多次记录下的参数,确定至少一个制芯参数与 至少一个状态参数的对应关系。例如,可以确定:当其他参数在一定范围内的情况下,状态参数a在范围A时,制芯参数b应该在范围B内,才能够使得所制出的砂芯合格。又例如,可以确定,当其他参数在一定范围内的情况下,状态参数a在范围A时,制芯参数c如果在范围C内,则所制出的砂芯将不合格。具体的,制芯参数与状态参数的对应关系可以包括:
例如,历史砂芯原料存放时间为0.5h,其对应的历史制芯参数中固化时间为0.5h。
又例如,历史砂芯原料存放时间为1h,其对应的历史制芯参数中固化时间为1.5h、固化压力为0.5kpa。
又例如,历史预混仓温度为40°,其对应的历史制芯参数中预混仓搅拌时间2h、终混仓搅拌时间30min。
又例如,历史预混仓温度为50°,其对应的历史制芯参数中预混仓搅拌时间1.5h、终混仓搅拌时间20min。
又例如,历史终混仓温度为40°,其对应的历史制芯参数中高压射砂压力为0.5kpa、固化加热器温度为60°。
又例如,历史砂芯原料温度为40°,其对应的历史制芯参数中固化时间2h、高压射砂压力为0.5kpa、固化加热器温度为55°。
又例如,历史砂芯原料温度为50°,其对应的历史制芯参数中固化时间1.5h、高压射砂压力为1.5kpa、固化加热器温度为55°。
又例如,历史砂芯初强度为0.1MPA,砂芯外观有大面积缺损,该历史砂芯被废弃。
又例如,历史砂芯初强度为0.3MPA,砂芯外观完整,其对应的历史制芯参数中终混仓搅拌时间为50秒、固化时间1.5h、固化压力为0.5kpa、高压射砂压力为1.5kpa、固化加热器温度为55°。
值得注意的是,在上述的例子中,仅以某一具体数值作为例子进行 说明,在实际情况中,该具体数值可以对应一个数值范围。例如,历史砂芯原料存放时间为0.5h,可以对应为历史砂芯原料存放时间在0.4~0.6h之间。即,数值范围可以是具体数值前后一定偏差(如10%、20%、30%等)所构成的范围。
在一些实施例中,根据历史制芯参数与历史状态参数信息获取制芯参数与状态参数的对应关系可以包括:根据历史制芯参数与历史状态参数信息训练机器学习模型,机器学习模型可以用于反映制芯参数与状态参数的对应关系。在一些实施例中,机器学习模型可以包括但不限于支持向量机、朴素贝叶斯、K近邻(KNN)、决策树、神经网络模型等,或其任意组合。
在一些实施例中,还可以根据历史制芯参数与历史状态参数信息,以及标准制芯参数与标准状态参数,获取制芯参数与状态参数的对应关系。具体的,标准参数获取单元822可以获取标准制芯参数与标准状态参数。对应关系确定单元823可以根据历史制芯参数与历史状态参数信息,以及标准制芯参数与标准状态参数确定制芯参数与状态参数的对应关系。标准制芯参数与标准状态参数可以是由制芯设备的生产厂家、生产专家等提供。标准制芯参数与标准状态参数可以作为能够制作出合格砂芯的正样本,从而可以结合历史制芯参数与历史状态参数信息确定制芯参数与状态参数的对应关系。具体的,制芯参数与状态参数的对应关系可以包括:
例如,历史砂芯原料存放时间超出标准砂芯原料最长存放时间0-0.5h,其对应的历史制芯参数中固化时间可以是标准制芯参数的0.5倍。
又例如,历史砂芯原料存放时间超出标准砂芯原料最长存放时间0.5-1h,其对应的历史制芯参数中固化时间可以是标准制芯参数的1.5倍、固化压力为是标准制芯参数的1.5倍。
又例如,历史预混仓温度低于标准预混仓温度10°,其对应的历史 制芯参数中预混仓搅拌时间可以是标准制芯参数的2倍、终混仓搅拌时间可以是标准制芯参数的2倍。
又例如,历史预混仓温度高于标准预混仓温度5-10°,其对应的历史制芯参数中预混仓搅拌时间可以是标准制芯参数的0.5倍。
又例如,历史终混仓温度低于标准预混仓温度5-10°,其对应的历史制芯参数中终混仓搅拌时间可以是标准制芯参数的1倍、固化加热器温度可以是标准制芯参数的1倍。
又例如,历史终混仓温度高于标准预混仓温度5-10°,其对应的固化加热器温度可以是标准制芯参数的0.5倍。
又例如,历史砂芯原料低于标准预混仓温度10°,其对应的历史制芯参数中终混仓搅拌时间可以是标准制芯参数的2.5倍、固化加热器温度可以是标准制芯参数的2倍、固化时间可以是标准制芯参数的2.5倍、高压射砂压力可以是标准制芯参数的1.5倍。
又例如,历史砂芯原料高于标准预混仓温度5-10°,其对应的历史制芯参数中固化加热器温度可以是标准制芯参数的0.5倍。
又例如,历史砂芯原料高于标准预混仓温度10°,其对应的历史制芯参数中固化加热器温度可以是标准制芯参数的0.5倍、高压射砂压力可以是标准制芯参数的1.5倍。
又例如,历史砂芯初强度低于标准砂芯初强度(如,0.3MPA)0.1-0.2MPA,且砂芯外观有大面积缺损,该历史砂芯应当被废弃。
又例如,历史砂芯初强度高于标准砂芯初强度(如,0.3MPA),且砂芯外观完整,其对应的历史制芯参数中终混仓搅拌时间可以是标准制芯参数的2倍、固化时间可以是标准制芯参数的2倍、固化压力可以是标准制芯参数的2倍、高压射砂压力可以是标准制芯参数的2倍。
步骤930,基于所述至少一个状态参数和所述对应关系,确定制芯参 数。具体的,该步骤930可以由制芯参数确定模块830执行。
在一些实施例中,制芯参数确定模块830可以利用训练好的机器学习模型,基于至少一个状态参数和对应关系,确定制芯参数。
例如,向机器学习模型中输入终混仓温度50°,机器学习模型中输出其对应的制芯参数中高压射砂压力为1.5kpa、固化加热器温度为50°等。
在一些实施例中,可以根据至少一个状态参数与标准状态参数的偏离值来确定制芯参数。具体的,偏离值确定单元831可以确定至少一个状态参数与标准状态参数的偏离值。制芯参数确定单元832可以根据偏离值确定制芯参数。在一些实施例中,制芯参数确定单元832可以根据偏离值确定至少一个状态参数的偏离系数,以此确定所述制芯参数。具体的,所述制芯参数的偏离系数与所述至少一个状态参数的偏离系数可以相同。
例如,给终混仓温度设置四个阈值:低于标准终混仓温度10°、低于标准终混仓温度5-10°、高于标准终混仓温度5-10°、高于标准终混仓温度10°。并分别为每一个阈值设置偏离系数:第一偏离系数、第二偏离系数、第三偏离系数、第四偏离系数。同样的,可以为终混仓搅拌时间设置偏离系数。例如,第一偏离系数表示超过标准搅拌时间20秒;第二偏离系数表示超过标准搅拌时间10-20秒;第三偏离系数表示低于标准搅拌时间10-20秒;第四偏离系数表示低于标准搅拌时间20秒。则当终混仓温度与终混仓搅拌时间存在对应关系时,若终混仓温度落在第一偏离系数所对应的温度范围内,则可以将终混仓搅拌时间设置在第一偏离系数所对应的搅拌时间内,从而可以制作出合格的砂芯。
在一些实施例中,偏离系数也可以是一个数值。例如,终混仓搅拌时间的第一偏离系数为1.1(或1.1~1.2),可以表示第一偏离系数对应的终混仓搅拌时间为标准搅拌时间的1.1倍(或1.1~1.2倍)。
例如,可以给砂芯原料存放时间设置2个阈值:超过标准砂芯原料 存放时间0-2h、超过标准砂芯原料存放时间2h。并分别为每一个阈值范围设置偏离系数:第一偏离系数、第二偏离系数。若当前砂芯原料存放时间超过标准砂芯原料存放时间1.5h,则用标准射砂压力乘以其自身对应的偏离系数一(如1.3)、标准射砂时间乘以其对应的偏离系数一(如1.2)等。
在一些实施例中,也可以直接通过数值范围反映制芯参数与状态参数的对应关系。例如,状态参数可以包括砂芯原料存放时间;基于状态参数和对应关系,确定制芯参数可以包括:当砂芯原料存放时间处于第一阈值(如1h)和第二阈值之间(如1.5h)时,确定射砂压力为第一压力范围(如1.5~1.8kpa),射砂时间为第一时间范围(如7~9秒)。
应当注意的是,上述有关流程800的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程800进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,流程800可以应用于预混仓和终混仓分离的制芯机,也可以应用于预混和终混在同一个仓中进行的制芯机。
本申请所披露的制芯机及制芯机控制方法和系统可能带来的有益效果包括但不限于:(1)将预混和终混分开设置,可以避免时间和原料的浪费,提升砂芯生产效率;同时,可以减少固化剂(如树脂)由于长时间存放而产生的挥发;(2)能够对砂芯制造各个环节的参数进行监督和控制,实现砂芯的智能生产,提高砂芯的生产效率及合格率;(3)能够根据具体情况(如不同的状态参数)调整制芯参数,以提高砂芯的生产效率及合格率;(4)能够基于历史生产经验指导砂芯生产,提高砂芯合格率。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述 详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、VisualBasic、Fortran2003、Perl、COBOL2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的控制阀实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似” 或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (29)

  1. 一种制备砂芯的方法,其特征在于,包括:
    在预混仓中沿竖直方向的第一转轴旋转混合砂砾和添加剂以获得第一原料;
    在终混仓中沿竖直方向的第二转轴旋转混合至少部分所述第一原料、固化剂和辅料以获得砂芯原料;
    利用所述砂芯原料制备砂芯。
  2. 如权利要求1所述的制备砂芯的方法,其特征在于,所述固化剂占所述砂芯原料的质量比为0.4%以下。
  3. 如权利要求1所述的制备砂芯的方法,其特征在于,所述第一原料、所述固化剂和所述辅料的质量配比为:第一原料73-78.5%、固化剂0.2-0.4%、辅料21.3-26.6%。
  4. 如权利要求1所述的制备砂芯的方法,其特征在于,所述预混仓混合完成与所述终混仓开始混合之间存在时间间隔。
  5. 如权利要求4所述的制备砂芯的方法,其特征在于,所述预混仓混合完成与所述终混仓开始混合之间存在时间间隔大于2小时。
  6. 如权利要求1所述的制备砂芯的方法,其特征在于,还包括:对所述砂砾进行冷却或加热,并将所述冷却或加热后的砂砾输送到预混仓。
  7. 如权利要求1所述的制备砂芯的方法,其特征在于,将所述固化剂和所述辅料输送到所述终混仓前,对所述固化剂和/或所述辅料进行冷却或加热。
  8. 一种制芯设备,其特征在于,包括预混仓、终混仓和制芯组件,所述预混仓和所述终混仓通过第一控制阀连接,所述终混仓与所述制芯组件通过第二控制阀连接;
    所述预混仓用于沿竖直方向的第一转轴旋转混合砂砾和添加剂以获得第一原料;
    所述终混仓用于沿竖直方向的第二转轴旋转混合至少部分所述第一原料、固化剂和辅料以获得砂芯原料;
    所述制芯组件用于利用所述砂芯原料制备砂芯。
  9. 一种制芯参数确定方法,其特征在于,包括:
    获取砂芯制备过程中的至少一个状态参数;
    获取制芯参数与状态参数的对应关系;
    基于所述至少一个状态参数和所述对应关系,确定制芯参数。
  10. 如权利要求9所述的制芯参数确定方法,其特征在于,所述至少一个状态参数包括以下参数中的至少一种:砂砾温度、第一原料温度、第一原料存放时间、环境温度、环境湿度、固化剂温度、辅料温度、砂芯原料温度、砂芯原料存放时间、砂砾与添加剂的配比、第一原料与固化剂和辅料的配比、砂斗温度、预混仓温度、终混仓温度、芯盒温度。
  11. 如权利要求9所述的制芯参数确定方法,其特征在于,所述至少一个状态参数包括砂芯合格率。
  12. 如权利要求11所述的制芯参数确定方法,其特征在于,所述砂芯合格率通过所述砂芯的初强度和/或所述砂芯的外观完整性确定。
  13. 如权利要求9所述的制芯参数确定方法,其特征在于,所述获取制芯参数与状态参数的对应关系包括:
    获取历史制芯参数与历史状态参数信息;
    根据所述历史制芯参数与历史状态参数信息确定所述制芯参数与状态参数的对应关系。
  14. 如权利要求13所述的制芯参数确定方法,其特征在于,所述获取制芯参数与状态参数的对应关系还包括:
    获取标准制芯参数与标准状态参数;
    根据所述历史制芯参数与历史状态参数信息,以及所述标准制芯参数与标准状态参数确定所述制芯参数与状态参数的对应关系。
  15. 如权利要求13所述的制芯参数确定方法,其特征在于,所述根据所述历史制芯参数与历史状态参数信息确定所述制芯参数与状态参数的对应关系包括:
    根据所述历史制芯参数与历史状态参数信息训练机器学习模型,所述机器学习模型用于反映所述制芯参数与状态参数的对应关系。
  16. 如权利要求13所述的制芯参数确定方法,其特征在于,所述基于所述至少一个状态参数和所述对应关系,确定制芯参数包括:
    基于所述至少一个状态参数,利用训练好的机器学习模型确定所述制芯参数。
  17. 如权利要求9所述的制芯参数确定方法,其特征在于,所述制芯参数包括以下中的至少一种:射砂压力、射砂时间、排气时间、砂斗温度、 预混仓温度、终混仓温度、预混仓搅拌时间、终混仓搅拌时间、固化时间、固化压力、高压射砂压力、高压射砂时间、低压射砂压力、低压射砂时间、预排气时间、排气时间、加砂间隔、加砂时间、芯盒达到最终压力时间、固化加热器温度、芯盒温度、空气加热器温度、中间加热器温度。
  18. 如权利要求9所述的制芯参数确定方法,其特征在于,所述基于所述至少一个状态参数和所述对应关系,确定制芯参数包括:
    确定所述至少一个状态参数与标准状态参数的偏离值;
    根据所述偏离值确定所述制芯参数。
  19. 如权利要求18所述的制芯参数确定方法,其特征在于,所述根据所述偏离值确定所述制芯参数包括:
    根据所述偏离值确定所述至少一个状态参数的偏离系数;
    根据所述至少一个状态参数的偏离系数,确定所述制芯参数。
  20. 如权利要求19所述的制芯参数确定方法,其特征在于,所述制芯参数的偏离系数与所述至少一个状态参数的偏离系数相同。
  21. 如权利要求9所述的制芯参数确定方法,其特征在于,所述至少一个状态参数包括砂芯原料存放时间;所述基于所述至少一个状态参数和所述对应关系,确定制芯参数包括:
    当所述砂芯原料存放时间处于第一阈值和第二阈值之间时,确定射砂压力为第一压力范围,射砂时间为第一时间范围。
  22. 一种制芯参数确定系统,其特征在于,包括状态参数获取模块、对应关系获取模块以及制芯参数确定模块;
    所述状态参数获取模块用于获取砂芯制备过程中的至少一个状态参数;
    所述对应关系获取模块用于获取制芯参数与状态参数的对应关系;
    所述制芯参数确定模块用于基于所述至少一个状态参数和所述对应关系,确定制芯参数。
  23. 一种制芯参数确定系装置,其特征在于,包括至少一个存储介质和至少一个处理器,其特征在于,
    所述至少一个存储介质用于存储计算机指令;
    所述至少一个处理器用于执行所述计算机指令以实现如权利要求9~21中任一项所述的制芯参数确定方法。
  24. 一种计算机可读存储介质,所述存储介质存储计算机指令,当所述计算机指令被处理器执行时,实现如权利要求9~21任一项所述的制芯参数确定方法。
  25. 一种制备砂芯的方法,其特征在于,包括:
    获取砂芯制备过程中预混仓和/或终混仓的至少一个状态参数;
    基于所述预混仓和/或终混仓的至少一个状态参数,确定制芯组件的制芯参数;
    利用所述制芯组件的制芯参数制备砂芯。
  26. 如权利要求25所述的制备砂芯的方法,其特征在于,
    所述预混仓用于混合砂砾和添加剂以获得第一原料;
    所述终混仓用于将固化剂、辅料和从所述预混仓输送过来的至少部分所述第一原料混合以获得砂芯原料。
  27. 一种制备砂芯的方法,其特征在于,包括:
    基于预生产制芯参数进行砂芯预生产;
    确定砂芯预生产过程中的至少一个状态参数;
    根据所述至少一个状态参数,确定是否结束预生产。
  28. 如权利要求27所述的制备砂芯的方法,其特征在于,还包括:
    基于预生产结束时的至少一个状态参数,确定正式生产的制芯参数;
    基于所述正式生产的制芯参数进行砂芯正式生产。
  29. 如权利要求27所述的制备砂芯的方法,其特征在于,所述至少一个状态参数包括外观完整性或砂芯初强度。
PCT/CN2019/076758 2019-03-01 2019-03-01 一种制芯机及制芯机控制方法和系统 WO2020177031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980013439.9A CN111801180B (zh) 2019-03-01 2019-03-01 一种制芯机及制芯机控制方法和系统
PCT/CN2019/076758 WO2020177031A1 (zh) 2019-03-01 2019-03-01 一种制芯机及制芯机控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076758 WO2020177031A1 (zh) 2019-03-01 2019-03-01 一种制芯机及制芯机控制方法和系统

Publications (1)

Publication Number Publication Date
WO2020177031A1 true WO2020177031A1 (zh) 2020-09-10

Family

ID=72338129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076758 WO2020177031A1 (zh) 2019-03-01 2019-03-01 一种制芯机及制芯机控制方法和系统

Country Status (2)

Country Link
CN (1) CN111801180B (zh)
WO (1) WO2020177031A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101592A (zh) * 2021-11-08 2022-03-01 浙江信立智能设备有限公司 一种集自动制芯、接芯、修芯为一体的设备及其修芯方法
CN115083882A (zh) * 2022-08-19 2022-09-20 中科润生康泰(苏州)医学检验实验室有限公司 一种用于质谱缓减进样毛细管污染的装置
CN116975770A (zh) * 2023-09-22 2023-10-31 南通钢安机械制造有限公司 铸钢的缺陷检测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808943A (zh) * 2021-02-03 2021-05-18 苏州明志科技股份有限公司 制芯工序及制芯单元
CN113118392B (zh) * 2021-04-14 2022-08-30 苏州三信机器制造有限公司 制芯车间用智能化取芯控制方法、装置及系统
CN114130962A (zh) * 2021-11-19 2022-03-04 江苏新韦尔新材料有限公司 一种覆膜砂壳型分层喷射成型的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192305A (ja) * 2000-12-26 2002-07-10 Aisin Takaoka Ltd 鋳造用中子の製造方法
CN101347820A (zh) * 2008-08-22 2009-01-21 苏州明志科技有限公司 冷芯盒造型制芯机
CN102371341A (zh) * 2010-08-08 2012-03-14 韦加伟 树脂砂新型制芯工艺
CN104785722A (zh) * 2015-04-30 2015-07-22 成都桐林铸造实业有限公司 一种制芯工艺
CN104858361A (zh) * 2015-06-13 2015-08-26 开封东立高压阀门铸造有限公司 一种自硬式树脂砂双混工艺
CN107774896A (zh) * 2016-08-29 2018-03-09 青岛天地铸造有限公司 一种自硬式树脂砂双混工艺
CN108941465A (zh) * 2018-08-10 2018-12-07 苏州明志科技有限公司 制芯固化方法、系统及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586400A (zh) * 2013-10-31 2014-02-19 吴江市液铸液压件铸造有限公司 一种呋喃树脂砂的配制工艺
CN105219022A (zh) * 2015-09-12 2016-01-06 安徽互感器有限公司 一种大结构户内电压互感器及其浇铸工艺
CN107774872A (zh) * 2016-08-26 2018-03-09 青岛天地铸造有限公司 一种呋喃树脂砂的配制工艺
CN107999693A (zh) * 2017-12-12 2018-05-08 北京航星机器制造有限公司 一种自硬树脂砂混砂机及其混砂方法
CN108127075A (zh) * 2017-12-27 2018-06-08 苏州明志科技有限公司 一种用于提高树脂砂综合性能的混砂工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192305A (ja) * 2000-12-26 2002-07-10 Aisin Takaoka Ltd 鋳造用中子の製造方法
CN101347820A (zh) * 2008-08-22 2009-01-21 苏州明志科技有限公司 冷芯盒造型制芯机
CN102371341A (zh) * 2010-08-08 2012-03-14 韦加伟 树脂砂新型制芯工艺
CN104785722A (zh) * 2015-04-30 2015-07-22 成都桐林铸造实业有限公司 一种制芯工艺
CN104858361A (zh) * 2015-06-13 2015-08-26 开封东立高压阀门铸造有限公司 一种自硬式树脂砂双混工艺
CN107774896A (zh) * 2016-08-29 2018-03-09 青岛天地铸造有限公司 一种自硬式树脂砂双混工艺
CN108941465A (zh) * 2018-08-10 2018-12-07 苏州明志科技有限公司 制芯固化方法、系统及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101592A (zh) * 2021-11-08 2022-03-01 浙江信立智能设备有限公司 一种集自动制芯、接芯、修芯为一体的设备及其修芯方法
CN114101592B (zh) * 2021-11-08 2023-12-19 浙江信立智能设备有限公司 一种集自动制芯、接芯、修芯为一体的设备及其修芯方法
CN115083882A (zh) * 2022-08-19 2022-09-20 中科润生康泰(苏州)医学检验实验室有限公司 一种用于质谱缓减进样毛细管污染的装置
CN115083882B (zh) * 2022-08-19 2022-11-08 中科润生康泰(苏州)医学检验实验室有限公司 一种用于质谱缓减进样毛细管污染的装置
CN116975770A (zh) * 2023-09-22 2023-10-31 南通钢安机械制造有限公司 铸钢的缺陷检测方法及系统

Also Published As

Publication number Publication date
CN111801180B (zh) 2022-04-22
CN111801180A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2020177031A1 (zh) 一种制芯机及制芯机控制方法和系统
CN100548622C (zh) 用于监测和控制塑料容器制造的工艺方法和系统
CN103009482B (zh) 全数字自动控制的火泥配料方法和装置
CN105069584A (zh) 液晶玻璃基板后加工生产信息管理系统与管理方法
CN203197211U (zh) 一种能精确定位的内定位销装置
CN101436680A (zh) 一种锂离子电池配料设备
CN105225028A (zh) 一种基于虚拟id的液晶玻璃基板生产信息追踪方法
CN202129869U (zh) 一种移动式混凝土搅拌装置
CN201527387U (zh) 型砂在线检测仪
CN109397618A (zh) 一种配合注塑机组合式模仁入子全自动上下料及拆解机构
CN103144965B (zh) 一种煤粉气力输送系统及其方法
CN112783106A (zh) 一种斗轮机智能取料方法及其系统
CN103640092B (zh) 补料控制方法、装置及系统、骨料仓及搅拌站
CN202129866U (zh) 一种具有安全保护措施的移动式混凝土搅拌装置
CN204297574U (zh) 一种自动配料输送系统
CN109047770A (zh) 一种多轴机器人为核心的全自动等比压热压机装置及控制方法
CN208681952U (zh) 一种配合注塑机组合式模仁入子全自动上下料及拆解机构
WO2020048038A1 (zh) 溶液制备机构及具有其的尿素机
CN103714442A (zh) 订单追踪系统
CN103954342A (zh) 一种用于合成材料组分的称料方法及称料系统
CN202220274U (zh) 一种重量法染缸助剂自动配送系统
CN208526500U (zh) 一种塑粉邦定装置
CN204294150U (zh) 一种相容增韧高分散pc加热搅拌装置
CN203542852U (zh) 一种发泡水泥构件生产线智能监控系统
CN213078093U (zh) 一种用于磁性材料加工的配料装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918041

Country of ref document: EP

Kind code of ref document: A1