WO2020173493A1 - 确定波束赋形的加权参数的方法及wlan中的ap - Google Patents

确定波束赋形的加权参数的方法及wlan中的ap Download PDF

Info

Publication number
WO2020173493A1
WO2020173493A1 PCT/CN2020/077140 CN2020077140W WO2020173493A1 WO 2020173493 A1 WO2020173493 A1 WO 2020173493A1 CN 2020077140 W CN2020077140 W CN 2020077140W WO 2020173493 A1 WO2020173493 A1 WO 2020173493A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
reference space
space
scheduling frame
time
Prior art date
Application number
PCT/CN2020/077140
Other languages
English (en)
French (fr)
Inventor
应腾达
肖峻峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020173493A1 publication Critical patent/WO2020173493A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • This application relates to the technical field of wireless local area network (wireless local area network, WLAN), and in particular to a method for determining weighting parameters of beamforming and an access point (AP) in the WLAN.
  • WLAN wireless local area network
  • AP access point
  • an AP can send data frames to a station (station, STA) through beamforming, and when the AP sends data frames, it uses at least one space-time stream Send the data frame.
  • STA station
  • the AP sends the data frame to the STA through a space-time stream
  • each space-time stream is sent according to the weighting parameter, it can be ensured that the data frame sent by the AP can be directed to the STA, thereby improving the quality of the signal received by the STA.
  • the STA sends uplink data frames to the AP according to the number of space-time streams set by itself.
  • the AP determines the uplink channel matrix according to the received uplink data frames, and determines the beamforming weighting parameters used when sending downlink data frames according to the uplink channel matrix.
  • each element in the uplink channel matrix is used to indicate the channel state information of the equivalent channel corresponding to an antenna of a space-time stream transmitted by the STA to the AP. Assuming that the total number of antennas of the AP is N and the number of space-time streams set by the STA is M, the dimension of the uplink channel matrix obtained at this time is N*M.
  • the foregoing method of determining the downlink weighting parameter according to the uplink channel matrix may be referred to as an implicit feedback beamforming parameter calculation method.
  • the weighting parameters of the downlink beamforming determined by the above implicit feedback beamforming parameter calculation method are likely to miss the optimal beamforming direction, resulting in a low received signal-to-noise ratio of the STA.
  • a method for determining the weighting parameters of beamforming and the AP in the WLAN are provided, which can improve the received signal-to-noise ratio of the STA in the WLAN.
  • the technical solution is as follows:
  • a method for determining weighting parameters of beamforming includes: an AP in a WLAN sends a scheduling frame, and the scheduling frame carries the respective reference space-time flow quantity of at least one station STA in the WLAN, The scheduling frame is used to instruct each STA that receives the scheduling frame to use the corresponding number of reference space-time streams to send uplink data frames, and at least one reference space-time stream number in the scheduling frame is the maximum number of space-time streams that the corresponding STA can use; the AP receives the response One or more uplink data frames that are sent in the scheduling frame; the AP uses implicit feedback beamforming parameter calculation method to determine the downlink weighting parameter used when the AP sends the downlink data frame according to one or more uplink data frames.
  • the STA may not use the maximum number of space-time streams it can use to send uplink data frames.
  • the weighting parameters of the downlink beamforming obtained by using the implicit feedback beamforming parameter calculation method do not include the parameters corresponding to those space-time streams that are not used by the STA when sending the uplink data frame.
  • the STA usually uses its maximum space-time stream to receive downlink data frames, so the STA uses the space-time
  • the weighting parameters of the downlink beamforming determined by the implicit feedback beamforming parameter calculation method are likely to miss the optimal beamforming direction.
  • the scheduling frame instructs at least one STA to use the maximum number of space-time streams that it can use to transmit uplink data frames, so that when determining downlink weighting parameters for the STA, as many beamforming directions can be considered as possible.
  • the miss probability of the downlink maximum weighting direction is reduced, thereby improving the received signal-to-noise ratio of the STA while increasing the multiplexing gain of the WLAN system.
  • the number of any reference space-time streams in the scheduling frame is the maximum number of space-time streams that the corresponding STA can use. That is, the number of reference space-time streams of all STAs in the scheduling frame is the maximum number of space-time streams of the corresponding STA, so as to ensure that all possible beamforming directions can be considered when determining the downlink weighting parameter, thereby improving the STA The received signal-to-noise ratio.
  • the sum of the numbers of all reference space-time streams carried in the scheduling frame is less than or equal to the total number of reference space-time streams supported by the computing power of the AP in the implicit feedback beamforming parameter calculation mode.
  • the AP when determining the weighting parameter, the AP can obtain enough linearly independent equations to calculate the upstream channel matrix, and then determine the weighting parameter.
  • the scheduling frame carries at least two reference space-time flow quantities, and the at least two reference space-time flow quantities respectively correspond to at least two STAs, and the maximum WLAN transmission bandwidths supported by the at least two STAs are the same. That is, in this application, STAs with the same maximum WLAN transmission bandwidth are scheduled together, thereby improving the convenience of scheduling STAs.
  • the method further includes: the AP groups multiple STAs associated with the AP, and any group in the grouping result includes only STAs with the same maximum supported WLAN transmission bandwidth; at least one reference space-time stream quantity carried in the scheduling frame The corresponding at least one STA belongs to a single group in the grouping result.
  • the AP can implement the same maximum WLAN transmission bandwidth supported by the STAs scheduled each time in the above manner, so as to improve the convenience of scheduling the STAs.
  • a method for sending a WLAN data frame is provided.
  • the method includes: a STA receives a scheduling frame, the scheduling frame carries the number of reference space-time streams of the STA, and the number of reference space-time streams is the maximum space-time that the STA can use Number of streams: In response to the scheduling frame, the STA uses the maximum number of space-time streams to send uplink data frames, so that subsequent APs can determine downlink weighting parameters based on the uplink data frames sent by the STA.
  • an AP in a WLAN is provided, and the AP has a function of implementing the method behavior of determining the weighting parameter of beamforming in the first aspect.
  • the apparatus for determining the weighting parameters of beamforming includes at least one module, and the at least one module is configured to implement the method for determining the weighting parameters of beamforming provided in the first aspect.
  • a STA in a WLAN has a function of implementing the behavior of the WLAN data frame sending method in the second aspect.
  • the WLAN data frame sending device includes at least one module, and the at least one module is used to implement the WLAN data frame sending method provided in the second aspect.
  • an AP in a WLAN is provided, and the AP includes a processor and a communication interface.
  • the processor is configured to execute any method of determining a weighting parameter of beamforming in the first aspect described above.
  • the processor is also configured to exchange information with the STA through a communication interface.
  • the AP may also include a communication bus, and the communication bus is used for the A connection is established between the processor and the communication interface.
  • a STA in a WLAN includes a processor and a communication interface.
  • the processor is configured to execute the method of any one of the above-mentioned second aspects.
  • the processor is also configured to exchange information with the AP through the communication interface.
  • the STA may also include a communication bus, where the communication bus is used to establish a connection between the processor and the memory.
  • a computer-readable storage medium is provided. The computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the weighting of the beamforming described in the first aspect. Parameter method.
  • a computer-readable storage medium where instructions are stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the WLAN data frame sending method described in the second aspect above .
  • a computer program product containing instructions is provided, which when running on a computer, causes the computer to execute the method for determining the weighting parameters of beamforming as described in the first aspect.
  • a computer program product containing instructions is provided, which when running on a computer, causes the computer to execute the method for sending a WLAN data frame described in the second aspect.
  • Fig. 1 is a schematic diagram of MIMO channel transmission provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a WLAN system provided by an embodiment of the present application.
  • Figure 3 is a flow chart of a method for determining weighting parameters of beamforming according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a format of a trigger frame provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for sending WLAN data frames provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of a frame sending sequence provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a single-user downlink scheduling provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a multi-user downlink scheduling provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an AP in a WLAN provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a computer device provided by an embodiment of the present application. detailed description In order to make the objectives, technical solutions, and advantages of the present application clearer, the implementation manners of the present application will be further described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a schematic diagram of a 4 X 2 MIM0 channel transmission. Among them, the total number of antennas of the AP is 4, the total number of antennas of the STA is 2, and the maximum number of space-time streams of data frames sent by the AP is 4, and the maximum number of space-time streams of data frames sent by the STA is 2.
  • the AP sends data frames, it can perform precoding and weighting on the data according to the channel matrix to change the beam transmission direction of the equivalent channel.
  • the channel transmission model shown in Figure 1 can be expressed as:
  • represents the received signal of the STA, represents the transmitted signal of the AP, Represents the channel matrix, represents the precoding weight matrix of the AP, and represents additive white gaussian noise (AWGN).
  • AWGN additive white gaussian noise
  • the above represents the transmission model of the th subcarrier, and the following is simple and convenient, and the subscript k is omitted. That is, in the embodiment of the present application, determining the weighting parameter of beamforming refers to: when determining data transmission through the k th subcarrier The weighting parameter of the beamforming. The weighting parameter of this beamforming is the precoding weighting matrix in formula (1).
  • the weighting parameters of beamforming can be determined by performing singular value decomposition (SVD) on the channel matrix.
  • the above-mentioned channel matrix can be obtained in two ways: explicit feedback and implicit feedback.
  • this method is called the implicit feedback beamforming parameter calculation method. This method has been described in detail in the foregoing content, and will not be repeated here.
  • this method is called expl icit feedback beamforming parameter calculation method. This method specifically refers to: the AP sends a null data packet announcement (NDPA) to the STA, and then sends a null data packet (NDP) to the STA.
  • NDPA null data packet announcement
  • NDP null data packet
  • the STA determines the beamforming weighting parameter used when sending the downlink data frame according to the received null data packet, and sends the weighting parameter to the AP at the time point indicated in the received scheduling frame. Since the null data packet does not carry a payload, data cannot be transmitted during the process of determining the weighting parameter through the display feedback beamforming, resulting in a large air interface overhead.
  • FIG. 2 is a schematic diagram of a WLAN system provided by an embodiment of the present application.
  • the WLAN system includes an AP 201 and multiple STAs 202, and each STA 202 can be connected to the AP 201 in a wireless manner for communication .
  • the AP 201 is used to provide a wireless access service based on the WLAN protocol for the connected STA 202.
  • the data transmitted by the AP 201 to the STA 202 is called downlink transmission data, and the data transmitted by the STA 202 to the AP 201 is called uplink transmission data.
  • the AP may be a network device such as a base station, a router, or a switch that supports WLAN
  • the STA may be a mobile phone or computer that supports WLAN.
  • FIG. 2 only uses three STAs as an example for description, which does not constitute a limitation on the number of STAs in the WLAN system provided in the embodiment of the present application.
  • FIG. 3 is a flowchart of a method for determining weighting parameters of beamforming according to an embodiment of the present application, which is applied to FIG. 2 In the WLAN system shown. As shown in Figure 3, the method includes the following steps:
  • Step 301 The AP in the WLAN sends a scheduling frame, the scheduling frame carries the respective reference space-time flow quantity of at least one STA, and the scheduling frame is used to instruct each STA that receives the scheduling frame to use the corresponding reference space-time flow quantity to send uplink data frames At least one reference space-time flow quantity in the scheduling frame is the maximum space-time flow quantity that the corresponding STA can use.
  • the AP uses the implicit feedback beamforming parameter calculation method to determine the weighting parameters for sending downlink data frames .
  • the AP may determine the weighting parameter for sending the downlink data frame through step 301 to step 303.
  • At least one reference space-time flow quantity is the maximum space-time flow quantity that the corresponding STA can use.
  • the number of any reference space-time streams in the scheduling frame is the maximum number of space-time streams that the corresponding STA can use. That is, the AP can configure the number of reference space-time streams of all STAs in the scheduling frame as the maximum number of space-time streams of the corresponding STA. Therefore, when the AP uses the implicit feedback beamforming parameter calculation method to determine the downlink weighting parameters, it can consider all possible beamforming directions, further reducing the probability of missing the downlink maximum weighting direction, thereby improving the received signal-to-noise of the STA. It also improves the multiplexing gain of the WLAN system.
  • the scheduling frame carries the number of reference space-time streams of 4 STAs.
  • the number of reference space-time streams of two or three STAs may be configured as the maximum number of space-time streams of the corresponding STA.
  • the number of reference space-time streams of the four STAs can all be configured as the maximum number of space-time streams of the corresponding STA.
  • a trigger frame is a frame for allocating resources for the transmission of a physical layer protocol data unit (PPDU), and the trigger frame may also include STAs. Other information needed to send PPDU. Therefore, in this embodiment of the present application, the AP may use the trigger frame in the 802.11 lax protocol draft as the scheduling frame to indicate the number of reference space-time streams used when sending uplink data frames in at least one station.
  • the scheduling frame may specifically be a buffer status report poll (BSRP) trigger frame in the 802.1 lax protocol draft.
  • BSRP buffer status report poll
  • the scheduling frame may also be the 802. l lax protocol draft. For other types of scheduling frames in, there is no specific limitation here.
  • Figure 4 is a schematic diagram of the format of the trigger frame in the 802.11 lax protocol draft.
  • the trigger frame includes a frame control (frame control) field, a frame length (duration) field, a receiver address (RA) field, a transmitter address (TA) field, and common information ( common info) field, at least one user information (user info) field, padding (padding) field, Frame Check Sequence (FCS) field, etc.
  • frame control frame control
  • RA receiver address
  • TA transmitter address
  • common info common information
  • common info common info
  • FCS Frame Check Sequence
  • the user information field is used to configure resources of users that need to be scheduled.
  • the user information field may include: a field (UL length) used to indicate the length of the uplink transmission PPDU, a field used to indicate the maximum bandwidth supported by the STA uplink (UL BW field), and a field used to indicate The field of the resource block related information (RU Allocation) and the space-time stream allocation field (SS allocation field) used when the scheduled STA sends the PPDU uplink. Therefore, in this embodiment of the present application, the space-time flow allocation field in the scheduling frame in the 802.11 lax protocol draft may be used to carry the respective reference space-time flow quantity of at least one STA. In a possible implementation manner, if only one STA currently needs to be scheduled, the number of spat ial streams in the space-time stream allocation field can be set to the reference space-time stream number of the STA .
  • multiple space-time stream quantity fields can be divided in the space-time stream allocation field, and each space-time stream quantity field is used to set a reference space-time stream quantity for one STA.
  • the sum of the number of reference space-time streams carried in the scheduling frame is less than or equal to the total number of reference space-time streams supported by the calculation capability of the AP in the implicit feedback beamforming parameter calculation method.
  • the process of determining the weighting parameter will not exceed the computing capability of the AP.
  • the total number of reference space-time streams supported by the calculation capability of the AP in the implicit feedback beamforming parameter calculation method is called the theoretical maximum number of space-time streams of the AP.
  • the theoretical maximum number of space-time streams of the AP may be equal to or less than the total number of antennas of the AP.
  • the total number of antennas of the AP is 12, but the theoretical maximum number of space-time streams of the AP may be 10, and the sum of the number of all reference space-time streams carried in the scheduling frame should be less than or equal to 10.
  • the scheduling of the STAs by the AP may be implemented in groups.
  • the AP may schedule STAs with the same maximum WLAN transmission bandwidth supported together. Therefore, in this embodiment of the present application, the scheduling frame carries at least two reference space-time flow quantities, and the at least two reference space-time flow quantities respectively correspond to at least two STAs, and the maximum WLAN transmission bandwidth supported by the at least two STAs is the same.
  • the AP needs to group multiple STAs associated with the AP, and any group in the grouping result only includes the STAs with the same maximum WLAN transmission bandwidth supported. At this time, at least one STA corresponding to the at least one reference space-time flow quantity carried in the scheduling frame in step 301 belongs to a single group in the grouping result.
  • the AP first groups multiple associated STAs according to the maximum WLAN transmission bandwidth supported by each STA to obtain multiple STA sets, each STA set includes at least one STA, and each STA The set corresponds to a bandwidth. At this time, each STA set can be directly regarded as a group.
  • the STA set is directly regarded as a group. If the set of STAs includes at least two STAs, determine the maximum number of space-time streams for each of the at least two STAs, and then divide it according to the theoretical maximum number of space-time streams whose sum is less than or equal to the AP As a group.
  • the theoretical maximum number of space-time streams of an AP is 10, and a certain STA set includes 5 STAs, which are respectively marked as STA1, STA2, STA3, STA4, and STA5.
  • the maximum number of space-time streams of STA1 is 6
  • the maximum number of space-time streams of STA2 is 2
  • the maximum number of space-time streams of STA3 is 3
  • the maximum number of space-time streams of STA4 is 4
  • the maximum number of space-time streams of STA5 is 5.
  • STA1 and STA4 can be regarded as one group
  • STA2, STA3 and STA5 can be regarded as another group.
  • each STA currently accessing the AP may receive the scheduling frame.
  • the STA determines whether it needs to respond to the scheduling frame according to the user information carried in the scheduling frame. If it needs to respond to the scheduling frame, obtain the information needed to send the PPDU from the scheduling frame, Includes the number of reference space-time streams used when sending PPDUs. Then the uplink data frame is sent according to the reference space-time stream quantity. If it is determined that there is no need to respond to the scheduling frame, then the scheduling frame is ignored.
  • the STA may also send uplink data frames according to the WLAN data frame sending method shown in FIG. 5.
  • the method for sending a WLAN data frame includes the following steps: Step 501: The STA receives a scheduling frame, and the scheduling frame carries the number of reference space-time streams of the STA, and the number of reference space-time streams is the maximum space-time that the STA can use. The number of streams. Step 502: In response to the scheduling frame, the STA uses the maximum number of space-time streams to send uplink data frames.
  • the STA responds to the scheduling frame and the STA uses the maximum number of space-time streams to send the uplink data frame means: the STA sends the uplink data frame according to the information for sending the uplink PPDU indicated in the scheduling frame.
  • the information for sending the uplink PPDU includes information such as the length of the uplink PPDU.
  • Step 302 The AP receives one or more uplink data frames sent in response to the scheduling frame.
  • the AP After the AP sends the scheduling frame, when any STA in at least one STA receives the scheduling frame, if there is currently no data to be transmitted, the STA will not send an uplink data frame. In addition, even if the STA sends an uplink data frame to the AP, the AP may not receive the uplink data frame sent by the STA within the specified time due to network environment and other reasons. Therefore, in this embodiment of the present application, when the AP sends a scheduling frame, the AP will try to receive each uplink data frame sent in response to the scheduling frame.
  • Fig. 6 is a schematic diagram of a frame sending sequence provided by an embodiment of the present application. As shown in Fig. 6, it is assumed that at least one STA is STA1 to STAN. After the AP sends a scheduling frame, each STA from STA1 to STAN returns to the AP PPDU. APS tries to receive PPDUs sent from STA 1 to STAN.
  • Step 303 The AP uses the implicit feedback beamforming parameter calculation method to determine according to one or more uplink data frames
  • the downlink weighting parameter used by the AP when sending downlink data frames is not limited.
  • step 303 may specifically be: decoding each received uplink data frame, obtaining a long training sequence in each uplink data frame, and solving the uplink channel matrix through each long training sequence. Then, the singular value decomposition is performed on the uplink channel matrix to further determine the weighting parameters of beamforming used when sending downlink data frames.
  • the process of solving the weighting parameters by performing singular value decomposition (SVD) on the channel matrix is as follows:
  • ⁇ and V are unitary matrices, the column vectors of V constitute singular vectors; S is a diagonal matrix composed of singular values, the diagonal elements are non-negative, arranged in descending order from large to small, and the square of singular values is the eigenvalue of the matrix ;
  • the conjugate transpose has the following properties:
  • the solved V is the precoding weight matrix of the AP.
  • the mode becomes single user (single user, SU) downlink scheduling.
  • the scheduling mode can be represented by FIG. 7. As shown in FIG. 7, the current AP needs to schedule STA1, and the AP sends a scheduling frame that carries the address of STA1 and the number of reference space-time streams of STA1. When STA1 receives the scheduling frame, it sends uplink PPDUs according to the number of reference space-time streams of STA1 indicated in the scheduling frame, so that the AP can determine the beamforming weight used when sending downlink data frames according to the received uplink PPDE. parameter.
  • the channel transmission model shown in FIG. 1 is a 4 ⁇ 4 MIM0 channel, that is, the maximum number of space-time streams of AP and STA1 are both 4. If the uplink PPDU of STA1 uses 4 space-time streams, the AP can obtain a 4*4 complete uplink channel matrix, and obtain the corresponding precoding weight matrix through channel matrix transposition and SVD. among them,
  • the harmonic average signal-to-noise ratio corresponding to the two space-time streams is:
  • Calendar 2 201og 10 (* p)
  • the scheduling mode of step 301 to step 303 may be referred to as multi-user (multiple users, MU) downlink scheduling.
  • the scheduling mode can be represented by FIG. 8. As shown in FIG. 8, the current AP needs to schedule STA2 and STA3, and the AP sends a scheduling frame.
  • the scheduling frame carries the address of STA2 and the address of STA3, and the reference space-time of STA2. The number of streams and the reference space-time stream number of STA3.
  • STA2 or STA3 When STA2 or STA3 receives the scheduling frame, it sends the uplink PPDU according to the number of reference space-time streams indicated in the scheduling frame, and the subsequent AP determines the beamforming weighting parameter used when sending the downlink data frame according to the uplink PPDU that it tries to receive.
  • FIG. 9 is a schematic structural diagram of an AP in a WLAN provided by an embodiment of the present application.
  • the AP 900 includes a sending module 901, a receiving module 902, and a determining module 903:
  • the sending module 901 is used to perform step 301 in the embodiment of FIG. 3;
  • the receiving module 902 is used to perform step 302 in the embodiment of FIG. 3;
  • the determining module 903 is configured to execute step 303 in the embodiment of FIG. 3.
  • the number of any reference space-time streams in the scheduling frame is the maximum number of space-time streams that the corresponding STA can use.
  • the sum of the numbers of all reference space-time streams carried in the scheduling frame is less than or equal to the total number of reference space-time streams supported by the computing power of the AP in the implicit feedback beamforming parameter calculation mode.
  • the scheduling frame carries at least two reference space-time flow quantities, and the at least two reference space-time flow quantities respectively correspond to at least two STAs, and the maximum WLAN transmission bandwidths supported by the at least two STAs are the same.
  • AP 900 further includes:
  • the grouping module is used to group multiple STAs associated with the AP, and any group in the grouping result includes only STAs with the same maximum WLAN transmission bandwidth supported;
  • At least one STA corresponding to at least one reference space-time flow quantity carried in the scheduling frame belongs to a single group in the grouping result.
  • the AP can set the number of reference space-time streams for each STA according to requirements. For example, the number of reference space-time streams can be set to the corresponding
  • the maximum number of space-time streams that the STA can use so that when determining the downlink weighting parameters, more beamforming directions can be considered as much as possible, reducing the probability of missing the downlink maximum weighting direction, thereby improving the received signal noise of the STA. It also improves the multiplexing gain of the WLAN system.
  • Fig. 10 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the AP involved in the embodiment of the present application may be implemented by the computer device shown in FIG. 10.
  • the computer device includes at least one processor 1001, a communication bus 1002, a memory 1003, and at least one communication interface 1004.
  • the processor 1001 may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling program execution of the solution of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the computer device may include multiple processors, for example, the processor 1001 and the processor 1005 shown in FIG. 10. Each of these processors can be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication bus 1002 may include a path to transmit information between the aforementioned components.
  • the memory 1003 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device may also be an electrically erasable programmable read-only memory (EEPR0M), an optical disk or other optical storage, a magnetic disk storage medium or other magnetic storage device, or it can be used for carrying or storing Any other medium that has desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited to this.
  • the memory 1003 may exist independently, and is connected to the processor 1001 through the communication bus 1002.
  • the memory 1003 can also be integrated with the processor 1001.
  • the memory 1003 is used to store the program code for executing the solution of the application, and the processor 1001 controls the execution.
  • the processor 1001 is configured to execute the program code stored in the memory 1003.
  • One or more software modules can be included in the program code.
  • the communication interface 1004 uses any device such as a transceiver to communicate with other devices or communication networks. Such as wireless local area network (WLAN).
  • the processor 1001 exchanges information with other network devices such as STA through the communication interface 1004.
  • the aforementioned computer equipment may be a general-purpose computer equipment or a special-purpose computer equipment.
  • the computer device may be a desktop computer, a portable computer, a network server, a handheld computer (PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, or an embedded device.
  • PDA handheld computer
  • the embodiments of this application do not limit the type of computer equipment.
  • it may be implemented in whole or in part by software, hardware, or a combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer Computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (for example: coaxial cable, optical fiber, twisted pair) or wireless (for example: infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more media.
  • the medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state drive (SSD)), etc.
  • SSD solid state drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种确定波束赋形的加权参数的方法及计算机存储介质,属于WLAN技术领域。所述方法包括:WLAN中的AP发送调度帧,调度帧用于指示接收到调度帧的每个STA采用相应参考空时流数量发送上行数据帧。因此,AP可以根据需求设置各个STA的参考空时流数量,比如,可以将参考空时流数量设置为相应STA能够采用的最大空时流数量,从而使得为该STA确定下行加权参数时,能够尽可能考虑到更多的波束赋形方向,降低了下行最大加权方向的遗漏概率,从而在提升STA接收信噪比的同时提升WLAN系统的复用增益。

Description

确定波束赋形的加权参数的方法及 WLAN中的 AP 本申请要求于 2019年 2月 28日提交的申请号为 201910151474. 9、发明名称为“确 定波束赋形的加权参数的方法及 WLAN中的 AP” 的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。 技术领域
本申请涉及无线局域网 (wireless local area network, WLAN) 技术领域, 特别涉及 一种确定波束赋形的加权参数的方法及 WLAN中的接入点 ( access point, AP) 。 背景技术
在多输入多输出 (multiple input multiple output, MIMO)技术中, AP可以通过波束 赋形的方式向站点 ( station, STA) 发送数据帧, 且 AP在发送数据帧时, 是采用至少一 个空时流发送数据桢的。 其中, AP在将数据桢通过空时流 ( space-time stream) 发送给 STA时, 需确定波束赋形的加权参数。 当按照该加权参数发送各个空时流时, 可以保证 AP发送的数据帧能够定向传输至 STA, 从而提高 STA接收信号的质量。
STA按照自行设置的空时流数量向 AP发送上行数据帧, AP根据接收到的上行数据 帧确定上行信道矩阵, 并根据上行信道矩阵确定发送下行数据帧时采用的波束赋形的加 权参数。其中, 上行信道矩阵中的每个元素用于指示 STA的一个空时流传输到 AP的一个 天线对应的等效信道的信道状态信息。 假设 AP的天线总数为 N, STA自行设置的空时流 数量为 M, 那么此时获取的上行信道矩阵的维度为 N*M。 上述根据上行信道矩阵确定下 行加权参数的方式可以称为隐式反馈波束赋形 (implicit feedback beamforming) 参数计 算方式。
上述隐式反馈波束赋形参数计算方式确定出的下行波束赋形的加权参数容易漏掉 最优的波束赋形方向, 从而导致 STA的接收信噪比较低。 发明内容
提供了一种确定波束赋形的加权参数的方法及 WLAN中的 AP, 可以提高 WLAN中 STA的 接收信噪比。 所述技术方案如下:
第一方面, 提供了一种确定波束赋形的加权参数的方法, 所述方法包括: WLAN中的 AP发送调度帧, 调度帧中携带 WLAN中的至少一个站点 STA各自的参考空时流数量, 调度 帧用于指示接收到调度帧的每个 STA采用相应参考空时流数量发送上行数据帧, 调度帧 中至少一个参考空时流数量为相应 STA能够采用的最大空时流数量; AP接收响应于调度 帧被发送的一个或多个上行数据帧; AP根据一个或多个上行数据帧, 用隐式反馈波束赋 形参数计算方式确定 AP发送下行数据帧时采用的下行加权参数。
如果 STA按照自行设置的空时流数量向 AP发送上行数据帧, STA可能不会用其能够采 用的最大空时流数量发送上行数据帧。此时使用隐式反馈波束赋形参数计算方式得到的 下行波束赋形的加权参数不包括 STA在发送上行数据帧时没有用到的那些空时流对应的 参数。 然而 STA通常用其最大空时流数量接受下行数据帧, 因此 STA按照自行设置的空时 流数量向 AP发送上行数据帧时, 隐式反馈波束赋形参数计算方式确定出的下行波束赋形 的加权参数容易漏掉最优的波束赋形方向。 上述第一方面中调度帧指示至少一个 STA采 用其能够采用的最大空时流数量发送上行数据帧, 从而使得为该 STA确定下行加权参数 时, 能够尽可能考虑到更多的波束赋形方向, 降低了下行最大加权方向的遗漏概率, 从 而在提升 STA的接收信噪比的同时提升 WLAN系统的复用增益。
可选地, 调度帧中任意一个参考空时流数量为相应 STA能够采用的最大空时流数量。 也即是, 调度帧中所有 STA的参考空时流数量均为相应 STA的最大空时流数量, 以确保在 确定下行加权参数时, 能够考虑到所有可能的波束赋形方向, 从而提升了 STA的接收信 噪比。
可选地, 调度帧携带的所有参考空时流数量之和小于等于 AP的计算能力在隐式反馈 波束赋形参数计算方式中支持的参考空时流数量总数。当调度帧中的参考空时流数量满 足上述条件时, 此时 AP在确定加权参数时, 可以获取足够多的线性无关的方程来计算上 行信道矩阵, 进而确定加权参数。
可选地, 调度帧携带至少两个参考空时流数量, 至少两个参考空时流数量分别对应 于至少两个 STA, 至少两个 STA支持的最大 WLAN传输带宽相同。 也即是, 在本申请中, 将 最大 WLAN传输带宽相同的 STA—起进行调度, 从而提高了对 STA进行调度的便利性。
可选地, 该方法还包括: AP将与 AP关联的多个 STA分组, 分组结果中任意一组中仅 包括支持的最大 WLAN传输带宽相同的 STA; 调度帧携带的至少一个参考空时流数量对应 的至少一个 STA属于所述分组结果中的单个组。 在本申请中, AP可以通过上述方式实现 每次调度的 STA支持的最大 WLAN传输带宽相同, 以提高对 STA进行调度的便利性。 第二方面, 提供一种 WLAN数据帧的发送方法, 该方法包括: STA接收调度帧, 调度 帧中携带该 STA的参考空时流数量,参考空时流数量为该 STA能够采用的最大空时流数量; 响应于调度帧, 该 STA采用最大空时流数量发送上行数据帧, 以便于后续 AP根据 STA发送 的上行数据帧确定下行加权参数。 由于 STA采用最大空时流数量发送上行数据帧, 因此 AP在确定下行加权参数时, 能够尽可能考虑到更多的波束赋形方向, 降低了下行最大加 权方向的遗漏概率, 从而在提升 STA的接收信噪比的同时提升 WLAN系统的复用增益。 第三方面, 提供了一种 WLAN中的 AP, 所述 AP具有实现上述第一方面中确定波束赋形 的加权参数的方法行为的功能。所述确定波束赋形的加权参数的装置包括至少一个模块, 该至少一个模块用于实现上述第一方面所提供的确定波束赋形的加权参数的方法。 第四方面, 提供了一种 WLAN中的 STA, 所述 STA具有实现上述第二方面中 WLAN数据帧 的发送方法行为的功能。 所述 WLAN数据帧的发送装置包括至少一个模块, 该至少一个模 块用于实现上述第二方面所提供的 WLAN数据帧的发送方法。 第五方面, 提供了一种 WLAN中的 AP, 该 AP中包括处理器和通信接口。 所述处理器被 配置为用于执行上述第一方面中任一确定波束赋形的加权参数的方法。所述处理器还被 配置通过通信接口与 STA进行信息交互。 该 AP还可以包括通信总线, 该通信总线用于该 处理器与通信接口之间建立连接。 第六方面, 提供了一种 WLAN中的 STA, 该 STA中包括处理器和通信接口。 所述处理器 被配置为用于执行上述第二方面任一所述的方法。所述处理器还被配置通过通信接口与 AP进行信息交互。 该 STA还可以包括通信总线, 该通信总线用于该处理器与存储器之间 建立连接。 第七方面, 提供了一种计算机可读存储介质, 所述计算机可读存储介质中存储有指 令, 当其在计算机上运行时, 使得计算机执行上述第一方面所述的确定波束赋形的加权 参数的方法。 第八方面, 提供了一种计算机可读存储介质, 所述计算机可读存储介质中存储有指 令, 当其在计算机上运行时, 使得计算机执行上述第二方面所述的 WLAN数据帧的发送方 法。 第九方面, 提供了一种包含指令的计算机程序产品, 当其在计算机上运行时, 使得 计算机执行上述第一方面所述的确定波束赋形的加权参数的方法。 第十方面, 提供了一种包含指令的计算机程序产品, 当其在计算机上运行时, 使得 计算机执行上述第二方面所述的 WLAN数据帧的发送方法。 上述第三方面、 第五方面、 第七方面和第九方面所获得的技术效果与第一方面中对 应的技术手段获得的技术效果近似, 在这里不再赘述。
上述第二方面、 第四方面、 第六方面和第十方面所获得的技术效果与第二方面中对 应的技术手段获得的技术效果近似, 在这里不再赘述。 附图说明
图 1是本申请实施例提供的一种 MIM0信道传输示意图;
图 2是本申请实施例提供的一种 WLAN系统示意图;
图 3是本申请实施例提供的一种确定波束赋形的加权参数的方法流程图;
图 4是本申请实施例提供的一种触发帧的格式示意图;
图 5是本申请实施例提供的一种 WLAN数据帧的发送方法流程图;
图 6是本申请实施例提供的一种帧发送序列示意图;
图 7是本申请实施例提供的一种单用户下行调度示意图;
图 8是本申请实施例提供的一种多用户下行调度示意图;
图 9是本申请实施例提供的一种 WLAN中的 AP的结构示意图;
图 10是本申请实施例提供的一种计算机设备的结构示意图。 具体实施方式 为使本申请的目的、 技术方案和优点更加清楚, 下面将结合附图对本申请实施方式 作进一步地详细描述。
在对本申请实施例提供的方法进行解释说明之前, 先对本申请实施例涉及的应用场 景进行解释说明。
在 MIM0技术中, 802. l lax协议草案提供了进行自适应传输波束赋型的能力。 AP通过 对传输信号进行加权来改善 STA的接收状况。 在信道相干时间内, AP可以根据信道状态 信息计算 AP下行波束赋形的加权参数。 图 1为一个 4 X 2 MIM0信道传输示意图。 其中, AP 的天线总数为 4, STA的天线总数为 2, 且 AP发送数据帧的最大空时流数量为 4, STA发送 数据帧的最大空时流数量为 2。 AP在发送数据帧时可以根据信道矩阵对数据进行预编码 加权, 以改变等效信道的波束传输方向。 图 1所示的信道传输模型可以表示为:
yk ^ HkQkxk + zk ( 1 )
其中, ^表示 STA的接收信号, 表示 AP的发送信号,
Figure imgf000006_0001
表示信道矩阵, 表示 AP的预编码加权矩阵, 表示加性高斯白噪声 ( additive white gaussian noise, AWGN)。 以上表示第 个子载波的传输模型, 后续为简便, 均省略下角标 k, 也即是, 在本申请实 施例中, 确定波束赋形的加权参数是指: 确定通过第 k个子载波传输数据时采用的波束 赋形的加权参数。 该波束赋形的加权参数即为公式 ( 1 ) 中的预编码加权矩阵。 另外, 当获取到信道矩阵时,通过对信道矩阵进行奇异值分解 ( singular value decomposition, SVD) 即可确定波束赋形的加权参数。
上述的信道矩阵可以通过显示反馈和隐式反馈两种方式获取。当通过隐式反馈获取 的信道矩阵确定波束赋形的加权参数时, 该方式称为隐式反馈波束赋形参数计算方式。 该方式己经在前述内容中进行了详细说明, 在此不再赘述。 当通过显示反馈获取的信道 矩阵确定波束赋形的加权参数时, 该方式称为显示反馈波束赋形 ( expl icit feedback beamforming)参数计算方式。 该方式具体是指: AP向 STA发送空数据包声明 (nul l data packet announcement , NDPA) , 再向 STA发送空数据包 (nul l data packet , NDP) 。 STA根据接收到的空数据包确定发送下行数据帧时采用的波束赋形的加权参数, 并按照 接收到的调度帧中指示的时间点将加权参数发送给 AP。 由于空数据包不携带净荷, 导致 在通过显示反馈波束赋形确定加权参数的过程中不能传输数据, 从而导致空口开销较大。
而本申请实施例提供的确定波束赋形的加权参数的方法就应用于上述 AP根据信道 矩阵确定发送下行数据帧的加权参数的场景中。 图 2是本申请实施例提供的一种 WLAN系统示意图,如图 2所示,该 WLAN系统包括 AP 201 和多个 STA 202, 每个 STA 202可与 AP 201之间通过无线方式连接以进行通信。 AP 201用 于为连接的 STA 202提供基于 WLAN协议的无线接入服务。 其中, AP 201向 STA 202传输数 据称为下行传输数据, STA 202向 AP 201传输数据称为上行传输数据。
可选地, AP可以为支持 WLAN的基站、 路由器、 交换机等网络设备, STA可以为支持 WLAN的手机或电脑等。 另外, 图 2中仅仅以 3个 STA为例进行说明, 并不构成本申请实施 例提供的 WLAN系统中的 STA的数量的限制。 图 3是本申请实施例提供的一种确定波束赋形的加权参数的方法流程图,应用于图 2 所示的 WLAN系统中。 如图 3, 该方法包括如下步骤:
步骤 301 : WLAN中的 AP发送调度帧, 调度帧中携带至少一个 STA各自的参考空时流数 量, 调度帧用于指示接收到调度帧的每个 STA采用相应参考空时流数量发送上行数据帧, 调度帧中至少一个参考空时流数量为相应 STA能够采用的最大空时流数量。
由于显示反馈波束赋形参数计算方式容易导致空口开销较大, 因此, 在本申请实施 例中, 为了降低空口开销, AP通过隐式反馈波束赋形参数计算方式来确定发送下行数据 帧的加权参数。 当 AP需要对 WLAN中的至少一个 STA进行调度时, AP可以通过步骤 301至步 骤 303确定发送下行数据帧的加权参数。
其中, 至少一个参考空时流数量为相应 STA能够采用的最大空时流数量。 将参考空 时流数量设置为相应 STA能够采用的最大空时流数量, 在为该 STA确定下行加权参数时, 能够尽可能考虑到更多的波束赋形方向, 降低了下行最大加权方向的遗漏概率, 从而在 提升 STA的接收信噪比的同时提升 WLAN系统的复用增益。
可选地, 调度帧中任意一个参考空时流数量为相应 STA能够采用的最大空时流数量。 也即是, AP可以将调度帧中所有 STA的参考空时流数量配置为对应的 STA的最大空时流数 量。 从而使得 AP在采用隐式反馈波束赋形参数计算方式确定下行加权参数时, 能够考虑 到所有可能的波束赋形方向, 进一步降低了下行最大加权方向的遗漏概率, 从而在提升 STA的接收信噪比的同时提升 WLAN系统的复用增益。
比如, 调度帧中携带 4个 STA的参考空时流数量。 在一种可能的实现方式中, 可以将 其中的 2个或 3个的 STA的参考空时流数量配置为相应 STA的最大空时流数量。在另一种可 能的实现方式中, 可以将 4个的 STA的参考空时流数量全部配置为相应 STA的最大空时流 数量。
其中, 在 IEEE 802. l lax协议草案中, 触发帧 ( trigger frame) 是一种为传输物理 层协议数据单元 (physical layer protocol data unit, PPDU) 分配资源的一种桢, 触发帧还可以包括 STA发送 PPDU所需的其他信息。 因此, 在本申请实施例中, AP可以采 用 802. l lax协议草案中的触发帧作为调度帧, 以指示至少一个站点中各自在发送上行数 据帧时采用的参考空时流数量。 在一种可能的实现方式中, 调度帧具体可以为 802. l lax 协议草案中的缓冲状态报告轮询 (buffer status report poll , BSRP) 触发桢, 当然 调度帧也可以为 802. l lax协议草案中其他类型的调度帧, 在此不做具体限定。
图 4是 802. l lax协议草案中的触发帧的格式示意图。 如图 4所示, 该触发帧包括帧控 制 ( frame control ) 字段、 桢长 ( duration) 字段、 接收方地址 (receiver address, RA) 字段、 发送方地址 ( transmitter address , TA) 字段、 常用信息 ( common info) 字段、至少一个用户信息 (user info)字段、填充 (padding)字段以及桢校验序列 (Frame Check Sequence, FCS) 字段等。 关于各个字段的解释在此不再一一赘述。
其中, 用户信息字段用于对需要调度的用户的资源进行配置。 在 802. l lax协议草案 中, 用户信息字段中可以包括: 用于指示上行发送 PPDU的长度的字段 (UL length) 、 用于指示 STA上行支持的最大带宽字段 (UL BW字段) 、 用于指示被调度的 STA上行发送 PPDU时采用的资源块的相关信息 (RU Allocation) 的字段、 以及空时流分配字段 (SS allocation字段) 。 因此, 在本申请实施例中, 可以采用 802. l lax协议草案中的调度帧 中的空时流分配字段携带至少一个 STA各自的参考空时流数量。 在一种可能的实现方式中, 如果当前只需要对一个 STA进行调度, 则可以将空时流 分配字段中的空时流数量 ( number of spat ial streams ) 设置为该 STA的参考空时流数 量。
如果当前需要对多个 STA进行调度, 则可以在空时流分配字段中划分出多个空时流 数量字段, 每个空时流数量字段用于设置一个 STA的参考空时流数量。 其中, 多个空时 流数量字段可以依次标记为 Nss_STAl、 Nss_STA2、 、 Nss_STAN。 比如, N为 2, 可以将 Nss_STAl=2, Nss_STA2=2, 表明将待调度的第一个 STA的参考空时流数量设置为 2, 将待 调度的第二个 STA的参考空时流数量设置为 2。
另外, 在本申请实施例中, 调度帧携带的所有参考空时流数量之和小于等于 AP的计 算能力在隐式反馈波束赋形参数计算方式中支持的参考空时流数量总数。当调度帧携带 的所有参考空时流数量满足该条件时, 确定加权参数的过程将不会超出 AP的计算能力。 为了后续便于说明,将 AP的计算能力在隐式反馈波束赋形参数计算方式中支持的参考空 时流数量总数称为 AP的理论最大空时流数量。
其中, AP的理论最大空时流数量可以等于 AP的天线总数,也可以小于 AP的天线总数。 比如, AP的天线总数为 12, 但是 AP的理论最大空时流数量可能为 10, 此时调度帧携带的 所有参考空时流数量之和应小于等于 10。
另外, 由于当前接入 AP的 STA的数量可能有很多个, 为了便于实现调度, AP对 STA的 调度可能是分组实现的。 并且, 为了便于实现调度, AP可以将支持的最大 WLAN传输带宽 相同的 STA—起进行调度。 因此, 在本申请实施例中, 调度帧携带至少两个参考空时流 数量, 至少两个参考空时流数量分别对应于至少两个 STA, 至少两个 STA支持的最大 WLAN 传输带宽相同。
为了实现上述分组调度, 在 AP进行调度之前, AP需将与 AP关联的多个 STA分组, 分 组结果中任意一组中仅包括支持的最大 WLAN传输带宽相同的 STA。 此时, 步骤 301中的调 度帧携带的至少一个参考空时流数量对应的至少一个 STA属于分组结果中的单个组。
在一种可能的实现方式中, AP先按照每个 STA支持的最大 WLAN传输带宽对关联的多 个 STA进行分组, 得到多个 STA集合, 每个 STA集合中包括至少一个 STA, 且每个 STA集合 对应一个带宽。 此时, 可以直接将每个 STA集合作为一个分组。
在另一种可能的实现方式中, 当划分出多个 STA集合之后, 对于多个 STA集合中任一 STA集合,如果该 STA集合中包括一个 STA,则将该 STA集合直接作为一个分组。如果该 STA 集合中包括至少两个 STA, 则确定至少两个 STA中每个 STA的最大空时流数量, 然后按照 将最大空时流数量之和小于或等于 AP的理论最大空时流数量划分为一个分组。
比如, AP的的理论最大空时流数量为 10, 某个 STA集合中包括 5个 STA, 分别标记为 STA1、 STA2、 STA3、 STA4、 STA5。 其中, STA1的最大空时流数量为 6、 STA2的最大空时 流数量为 2、 STA3的最大空时流数量为 3、 STA4的最大空时流数量为 4、 STA5的最大空时 流数量为 5。 此时, 则可以将 STA1和 STA4作为一个分组, 将 STA2、 STA3和 STA5作为另一 个分组。
另外, 在 AP发送调度帧之后, 当前接入 AP的各个 STA都可能接收到该调度帧。 对于 接入 AP的任一 STA, 当该 STA接收到该调度帧时, 根据调度帧中携带的用户信息确定是否 需要响应该调度帧。 如果需要响应该调度帧, 则从调度帧中获取发送 PPDU所需的信息, 包括发送 PPDU时采用的参考空时流数量。 然后按照参考空时流数量发送上行数据帧。 如 果确定不需要响应该调度帧, 则忽略该调度帧。
可选地, 当调度帧中携带的该 STA的参考空时流数量为该 STA的最大空时流数量时, 该 STA还可以按照图 5所示的 WLAN数据帧的发送方法发送上行数据帧。如图 5所示,该 WLAN 数据帧的发送方法包括如下步骤: 步骤 501 : STA接收调度帧, 调度帧中携带 STA的参考 空时流数量, 参考空时流数量为 STA能够采用的最大空时流数量。 步骤 502: STA响应于 调度帧, STA采用最大空时流数量发送上行数据帧。
其中, STA响应于调度帧, STA采用最大空时流数量发送上行数据帧是指: STA按照 调度帧中指示的发送上行 PPDU的信息发送上行数据帧。该发送上行 PPDU的信息包括上行 PPDU的长度等信息。
步骤 302: AP接收响应于调度桢被发送的一个或多个上行数据桢。
在 AP发送调度帧之后, 至少一个 STA中的任一 STA在接收到该调度帧时, 如果当前没 有数据需要传输, 那么该 STA将不会发送上行数据帧。 另外, 即使该 STA向 AP发送了上行 数据帧, 但是也可能由于网络环境等原因, 导致 AP并没有在指定时间内接收到该 STA发 送的上行数据帧。 因此, 在本申请实施例中, AP在发送调度帧时候, AP会尝试接收响应 于调度帧被发送的各个上行数据帧。
图 6是本申请实施例提供的一种帧发送序列示意图, 如图 6所示, 假设至少一个 STA 为 STA1至 STAN , 当 AP发送调度帧之后, STA1至 STAN中的每个 STA均向 AP返回 PPDU。 APS 试接收 STA 1至 STAN发送的 PPDU。
步骤 303: AP根据一个或多个上行数据帧, 用隐式反馈波束赋形参数计算方式确定
AP发送下行数据帧时采用的下行加权参数。
在一种可能的实现方式中, 步骤 303具体可以为: 解码接收到的每个上行数据帧, 获取每个上行数据帧中的长训练序列,通过各个长训练序列,可以求解上行的信道矩阵。 然后对上行的信道矩阵进行奇异值分解, 即可进一步确定发送下行数据帧时采用的波束 赋形的加权参数。
其中, 当获取到信道矩阵时, 通过对信道矩阵进行奇异值分解 ( SVD) 求解加权参 数的过程具体如下:
H = USVH (2)
其中, ^和 V是酉矩阵, V的列向量构成奇异向量; S是由奇异值组成的对角矩阵, 对角元素非负, 从大到小降序排列, 奇异值的平方是矩阵 的特征值;
Figure imgf000009_0001
的共 轭转置。 酉矩阵具有如下性质:
Figure imgf000009_0002
。 通过 利用 V的列向量作为数据加权的权值进行发送, 也即是, 求解出的 V即为 AP的预编码加 权矩阵。
另外, 如果 AP当前只需要对一个 STA进行调度, 可以将步骤 301至步骤 303这种调度 模式成为单用户 ( single user, SU) 下行调度。 该调度模式可以通过图 7表示, 如图 7 所示,当前 AP需要对 STA1进行调度,则 AP发送调度帧,该调度帧中携带 STA1的地址和 STA1 的参考空时流数量。 当 STA1接收到该调度帧时, 按照该调度帧中指示的 STA1的参考空时 流数量发送上行 PPDU, 以便于 AP根据尝试接收到的上行 PPDE确定发送下行数据帧时采用 的波束赋形的加权参数。
为了进一步说明本申请实施例提供的确定波束赋形的加权参数针对上述单用户下 行调度的有益效果, 下面举例说明:
如图 7所示, 假设图 1所示的信道传输模型中为 4 X 4 MIM0信道, 也即是, AP和 STA1 的最大空时流数量均为 4。 如果 STA1的上行 PPDU采用 4个空时流, 则 AP能够获取 4*4完整 的上行的信道矩阵, 通过信道矩阵转置并进行 SVD获取相应的预编码加权矩阵。 其中,
Figure imgf000010_0001
当 AP下行利用这两个奇异值对应的预编码加权矩阵进行加权传输时, 此时, 对应两 个空时流的调和平均信噪比为:
2
歷歷 2 = 201og10 ( * p)
.2503 0.6272 ( I D 因此, 两种方式下确定的信噪比之间的差值为:
SNRavel - SNRave2 = l.6924dB ( 12 )
显然,在 STA1的最大空时流数量为 4的情况下。如果 STA1的上行 PPDU采用 4个空时流, 按照最终确定的加权参数发送数据帧可以明显提升 STA的接收信噪比。
如果 AP当前需要对多个 STA进行调度, 可以将步骤 301至步骤 303这种调度模式称为 多用户 (multiple users , MU) 下行调度。 该调度模式可以通过图 8表示, 如图 8所示, 当前 AP需要对 STA2和 STA3进行调度, 则 AP发送调度帧, 该调度帧中携带 STA2的地址和 STA3的地址、 以及 STA2的参考空时流数量和 STA3的参考空时流数量。 当 STA2或 STA3接收 到该调度帧时, 按照该调度帧中指示的参考空时流数量发送上行 PPDU, 后续 AP根据尝 试接收到的上行 PPDU确定发送下行数据帧时采用的波束赋形加权参数。
在本申请实施例中, 由于调度帧中携带 WLAN中的至少一个站点 STA各自的参考空时 流数量, 且调度帧用于指示接收到调度帧的每个 STA采用相应参考空时流数量发送上行 数据帧。 因此, AP可以根据需求设置各个 STA的参考空时流数量。 比如, 可以将参考空 时流数量设置为相应 STA能够采用的最大空时流数量, 从而使得在确定下行加权参数时, 能够尽可能考虑到更多的波束赋形方向, 降低了下行最大加权方向的遗漏概率, 从而在 提升 STA的接收信噪比的同时提升 WLAN系统的复用增益。 图 9是本申请实施例提供的一种 WLAN中的 AP的结构示意图, 该 AP 900包括发送模块 901、 接收模块 902和确定模块 903:
发送模块 901, 用于执行图 3实施例中的步骤 301 ;
接收模块 902, 用于执行图 3实施例中的步骤 302;
确定模块 903, 用于执行图 3实施例中的步骤 303。
可选地, 调度帧中任意一个参考空时流数量为相应 STA能够采用的最大空时流数量。 可选地, 调度帧携带的所有参考空时流数量之和小于等于 AP的计算能力在隐式反馈 波束赋形参数计算方式中支持的参考空时流数量总数。
可选地, 调度帧携带至少两个参考空时流数量, 至少两个参考空时流数量分别对应 于至少两个 STA, 该至少两个 STA支持的最大 WLAN传输带宽相同。
可选地, AP 900还包括:
分组模块, 用于将与 AP关联的多个 STA分组, 分组结果中任意一组中仅包括支持的 最大 WLAN传输带宽相同的 STA;
调度帧携带的至少一个参考空时流数量对应的至少一个 STA属于分组结果中的单个 组。
由于调度帧中携带 WLAN中的至少一个站点 STA各自的参考空时流数量, 且调度帧用 于指示接收到调度帧的每个 STA采用相应参考空时流数量发送上行数据帧。 因此, AP可 以根据需求设置各个 STA的参考空时流数量。 比如, 可以将参考空时流数量设置为相应
STA能够采用的最大空时流数量, 从而使得在确定下行加权参数时, 能够尽可能考虑到 更多的波束赋形方向, 降低了下行最大加权方向的遗漏概率, 从而在提升 STA的接收信 噪比的同时提升 WLAN系统的复用增益。
上述实施例提供的 WLAN中的 AP在确定波束赋形的加权参数时,仅以上述各功能模块 的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功能模块 完成, 即将设备的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功 能。 另外, 上述实施例提供的 WLAN中的 AP与确定波束赋形的加权参数的方法实施例属于 同一构思, 其具体实现过程详见方法实施例, 这里不再赘述。 图 10是本申请实施例提供的一种计算机设备的结构示意图。本申请实施例中涉及的 AP可通过图 10所示的计算机设备来实现。 参见图 10, 该计算机设备包括至少一个处理器 1001, 通信总线 1002、 存储器 1003以及至少一个通信接口 1004。
处理器 1001可以是一个中央处理器 ( central processing unit, CPU) 、 特定应用 集成电路 (application-specific integrated circuit, ASIC) 或一个或多个用于控 制本申请方案程序执行的集成电路。
在具体实现中, 作为一种实施例, 计算机设备可以包括多个处理器, 例如图 10中所 示的处理器 1001和处理器 1005。 这些处理器中的每一个可以是一个单核处理器, 也可以 是一个多核处理器。 这里的处理器可以指一个或多个设备、 电路、 和 /或用于处理数据 (例如计算机程序指令) 的处理核。
通信总线 1002可包括一通路, 在上述组件之间传送信息。
存储器 1003可以是只读存储器 (read-only memory, ROM) 或可存储静态信息和指 令的其它类型的静态存储设备, 随机存取存储器 (random access memory, RAM)或者可 存储信息和指令的其它类型的动态存储设备, 也可以是电可擦可编程只读存储器 ( electrically erasable programmable read-only memory, EEPR0M) 、 光盘或其它 光存储、 磁盘存储介质或者其它磁存储设备、 或者能够用于携带或存储具有指令或数据 结构形式的期望的程序代码并能够由计算机存取的任何其它介质, 但不限于此。 存储器 1003可以是独立存在, 通过通信总线 1002与处理器 1001相连接。 存储器 1003也可以和处 理器 1001集成在一起。
其中, 当处理器为 CPU时, 存储器 1003用于存储执行本申请方案的程序代码, 并由 处理器 1001来控制执行。 处理器 1001用于执行存储器 1003中存储的程序代码。 程序代码 中可以包括一个或多个软件模块。
通信接口 1004, 使用任何收发器一类的装置, 用于与其它设备或通信网络通信。 如 无线局域网 (WLAN) 等。 处理器 1001通过通信接口 1004与 STA等其他网络设备进行信息 交互。
上述的计算机设备可以是一个通用计算机设备或者是一个专用计算机设备。在具体 实现中, 计算机设备可以是台式机、 便携式电脑、 网络服务器、 掌上电脑 (PDA) 、 移 动手机、 平板电脑、 无线终端设备、 通信设备或者嵌入式设备。 本申请实施例不限定计 算机设备的类型。 在上述实施例中, 可以全部或部分地通过软件、 硬件或者其结合来实现。 当使用软 件实现时, 可以全部或部分地以计算机程序产品的形式实现。 所述计算机程序产品包括 一个或多个计算机指令。 在计算机上加载和执行所述计算机指令时, 全部或部分地产生 按照本申请实施例所述的流程或功能。 所述计算机可以是通用计算机、 专用计算机、 计 算机网络、 或者其他可编程装置。 所述计算机指令可以存储在计算机可读存储介质中, 或者从一个计算机可读存储介质向另一个计算机可读存储介质传输, 例如, 所述计算机 指令可以从一个网站站点、 计算机、 服务器或数据中心通过有线 (例如: 同轴电缆、 光 纤、 双绞线) 或无线 (例如: 红外、 无线、 微波等) 方式向另一个网站站点、 计算机、 服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何介 质或者是包含一个或多个介质集成的服务器、 数据中心等数据存储设备。 所述介质可以 是磁性介质 (例如: 软盘、 硬盘、 磁带) 、 光介质、 或者半导体介质 (例如: 固态硬盘 (SSD) ) 等。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来 完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读 存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。

Claims

权利要求书
1、 一种确定波束赋形的加权参数的方法, 其特征在于, 所述方法包括: 无线局域网 (WLAN) 中的接入点 (AP) 发送调度帧, 所述调度帧中携带所述 WLAN 中的至少一个站点 (STA) 各自的参考空时流数量, 所述调度帧用于指示接收到所述调 度帧的每个 STA采用相应参考空时流数量发送上行数据帧,所述调度帧中至少一个参考 空时流数量为相应 STA能够采用的最大空时流数量;
所述 AP接收响应于所述调度帧被发送的一个或多个上行数据帧;
所述 AP根据所述一个或多个上行数据帧, 用隐式反馈波束赋形参数计算方式确定 所述 AP发送下行数据帧时采用的下行加权参数。
2、 如权利要求 1所述的方法, 其特征在于, 所述调度帧中任意一个参考空时流数 量为相应 STA能够采用的最大空时流数量。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述调度帧携带的所有参考空时 流数量之和小于等于所述 AP的计算能力在所述隐式反馈波束赋形参数计算方式中支持 的参考空时流数量总数。
4、 如权利要求 1至 3任一所述的方法, 其特征在于, 所述调度帧携带至少两个参 考空时流数量, 所述至少两个参考空时流数量分别对应于至少两个 STA, 所述至少两个 STA支持的最大 WLAN传输带宽相同。
5、 如权利要求 1至 4任一所述的方法, 其特征在于, 所述方法还包括: 所述 AP将与所述 AP关联的多个 STA分组,所述分组结果中任意一组中仅包括支持 的最大 WLAN传输带宽相同的 STA;
所述调度帧携带的至少一个参考空时流数量对应的至少一个 STA属于所述分组结果 中的单个组。
6、 一种无线局域网 (WLAN) 中的接入点 (AP), 其特征在于, 所述 AP包括: 发送模块,用于发送调度帧,所述调度帧中携带所述 WLAN中的至少一个站点(STA) 各自的参考空时流数量,所述调度帧用于指示接收到所述调度帧的每个 STA采用相应参 考空时流数量发送上行数据帧,所述调度帧中至少一个参考空时流数量为相应 STA能够 采用的最大空时流数量;
接收模块, 用于接收响应于所述调度帧被发送的一个或多个上行数据帧; 确定模块, 用于根据所述一个或多个上行数据帧, 用隐式反馈波束赋形参数计算方 式确定所述 AP发送下行数据帧时采用的下行加权参数。
7、 如权利要求 6所述的 AP, 其特征在于, 所述调度帧中任意一个参考空时流数量 为相应 STA能够采用的最大空时流数量。
8、 如权利要求 6或 7所述的 AP, 其特征在于, 所述调度帧携带的所有参考空时流 数量之和小于等于所述 AP的计算能力在所述隐式反馈波束赋形参数计算方式中支持的 参考空时流数量总数。
9、 如权利要求 6至 8任一所述的 AP, 其特征在于, 所述调度帧携带至少两个参考 空时流数量,所述至少两个参考空时流数量分别对应于至少两个 STA,所述至少两个 STA 支持的最大 WLAN传输带宽相同。
10、 如权利要求 6至 9任一所述的 AP, 其特征在于, 所述 AP还包括:
分组模块, 用于所述 AP将与所述 AP关联的多个 STA分组, 所述分组结果中任意一 组中仅包括支持的最大 WLAN传输带宽相同的 STA;
所述调度帧携带的至少一个参考空时流数量对应的至少一个 STA属于所述分组结果 中的单个组。
11、 一种无线局域网 (WLAN) 中的接入点 (AP), 其特征在于, 所述 AP包括处理器 和通信接口;
所述处理器被配置为用于执行权利要求 1-5任一项所述的方法;
所述处理器还被配置为通过所述通信接口与站点 (STA) 进行信息交互。
PCT/CN2020/077140 2019-02-28 2020-02-28 确定波束赋形的加权参数的方法及wlan中的ap WO2020173493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910151474.9 2019-02-28
CN201910151474.9A CN111628809B (zh) 2019-02-28 2019-02-28 确定波束赋形的加权参数的方法及wlan中的ap

Publications (1)

Publication Number Publication Date
WO2020173493A1 true WO2020173493A1 (zh) 2020-09-03

Family

ID=72239157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077140 WO2020173493A1 (zh) 2019-02-28 2020-02-28 确定波束赋形的加权参数的方法及wlan中的ap

Country Status (2)

Country Link
CN (1) CN111628809B (zh)
WO (1) WO2020173493A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203344A (zh) * 2020-09-29 2021-01-08 展讯通信(上海)有限公司 基于AP的peer连接数据分时调度方法及装置
CN116827402A (zh) * 2023-08-29 2023-09-29 极芯通讯技术(南京)有限公司 下行信道波束赋形方法及相关设备
WO2024021859A1 (zh) * 2022-07-29 2024-02-01 中兴通讯股份有限公司 数据传输方法、装置、存储介质及程序产品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630412A (zh) * 2020-12-11 2022-06-14 华为技术有限公司 无线局域网中的功率控制方法及相关装置
CN112953605B (zh) * 2021-01-26 2022-06-24 中国铁塔股份有限公司 单双流调度方法、装置、通信基站及存储介质
CN114710251A (zh) * 2022-04-15 2022-07-05 Oppo广东移动通信有限公司 通信方法、系统、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733541A (zh) * 2011-06-21 2014-04-16 马维尔国际贸易有限公司 用于mimo隐式波束形成的上行链路训练
CN105517157A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 无线局域网中上行多用户数据传输方法、系统及站点
US20160254884A1 (en) * 2015-02-27 2016-09-01 Newracom, Inc. Mixed fine/coarse sounding methods for he stas for mimo and ofdma
CN106789761A (zh) * 2015-11-23 2017-05-31 华为技术有限公司 无线局域网数据传输方法和装置
US10182361B1 (en) * 2015-04-09 2019-01-15 Newracom, Inc. Receiver behavior for uplink multi-user transmission in wireless LAN systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933620B (zh) * 2017-05-23 2021-05-07 上海华为技术有限公司 一种波束赋形方法及终端、基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733541A (zh) * 2011-06-21 2014-04-16 马维尔国际贸易有限公司 用于mimo隐式波束形成的上行链路训练
CN105517157A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 无线局域网中上行多用户数据传输方法、系统及站点
US20160254884A1 (en) * 2015-02-27 2016-09-01 Newracom, Inc. Mixed fine/coarse sounding methods for he stas for mimo and ofdma
US10182361B1 (en) * 2015-04-09 2019-01-15 Newracom, Inc. Receiver behavior for uplink multi-user transmission in wireless LAN systems
CN106789761A (zh) * 2015-11-23 2017-05-31 华为技术有限公司 无线局域网数据传输方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203344A (zh) * 2020-09-29 2021-01-08 展讯通信(上海)有限公司 基于AP的peer连接数据分时调度方法及装置
WO2024021859A1 (zh) * 2022-07-29 2024-02-01 中兴通讯股份有限公司 数据传输方法、装置、存储介质及程序产品
CN116827402A (zh) * 2023-08-29 2023-09-29 极芯通讯技术(南京)有限公司 下行信道波束赋形方法及相关设备
CN116827402B (zh) * 2023-08-29 2024-01-05 极芯通讯技术(南京)有限公司 下行信道波束赋形方法及相关设备

Also Published As

Publication number Publication date
CN111628809A (zh) 2020-09-04
CN111628809B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2020173493A1 (zh) 确定波束赋形的加权参数的方法及wlan中的ap
US9906281B2 (en) MU-MIMO transmission method in wireless LAN system
JP5633048B2 (ja) Sdmaマルチデバイス無線通信
US9615309B2 (en) System and method for Wi-Fi downlink-uplink protocol design for uplink interference alignment
US9793966B2 (en) Link adaptation method and apparatus in wireless LAN system
JP2012100277A (ja) ワイヤレス通信システム、関連する方法、および、データ構造
EP2904713B1 (en) Scheduling transmission for multi-user, multiple-input, multiple-output data
EP4152799A1 (en) Channel sounding method and device for multi-ap coordinated transmission
JP2013541248A (ja) ダウンリンクマルチユーザmimo構成におけるビームフォーミングのためのサブバンドフィードバック
CN105794257B (zh) Ofdma资源分配的系统和方法
US11917547B2 (en) Power save for multi-user (MU) operation
US20210105157A1 (en) Channel estimation method and apparatus, and communications system
WO2020135534A1 (zh) 预编码方法和装置及信息传输方法和装置
US20220416866A1 (en) Channel state information feedback method and communications apparatus
KR20110120052A (ko) 순차적 리스폰스 프로토콜을 이용한 데이터 통신 방법 및 상기 방법이 적용된 단말
WO2023011436A1 (zh) 通信处理方法和通信处理装置
US11658707B2 (en) Intelligent selection of physical layer transmission types in 802.11AX based Wi-Fi networks
WO2022206455A1 (zh) 信道质量信息确定方法及装置
WO2022111119A1 (zh) 一种数据检测方法及通信装置
WO2023160331A1 (zh) 一种天线模式切换方法及相关装置
WO2024093686A1 (zh) 一种下行信道状态信息上报方法及装置
US20240015541A1 (en) Client station to client station sensing
WO2020248108A1 (zh) 数据传输方法及装置
TW202344010A (zh) 在wifi系統中一設備與另一設備進行通訊的設備及其操作方法
JP2024521568A (ja) 通信方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762240

Country of ref document: EP

Kind code of ref document: A1