WO2022111119A1 - 一种数据检测方法及通信装置 - Google Patents

一种数据检测方法及通信装置 Download PDF

Info

Publication number
WO2022111119A1
WO2022111119A1 PCT/CN2021/124088 CN2021124088W WO2022111119A1 WO 2022111119 A1 WO2022111119 A1 WO 2022111119A1 CN 2021124088 W CN2021124088 W CN 2021124088W WO 2022111119 A1 WO2022111119 A1 WO 2022111119A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
factor
frequency resource
resource
frequency
Prior art date
Application number
PCT/CN2021/124088
Other languages
English (en)
French (fr)
Inventor
高翔
刘鹍鹏
刘显达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022111119A1 publication Critical patent/WO2022111119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data detection method and a communication device.
  • multiple input and multiple output (multiple input and multiple output, MIMO) precoding technology can be divided into linear precoding and nonlinear precoding according to different signal processing methods.
  • linear precoding the solution of the precoding matrix is only related to the channel matrix.
  • nonlinear precoding the calculation of the precoding matrix is related to both the channel matrix and the transmitted modulation symbols (for example, the transmitting end performs nonlinear operations such as interference cancellation and modulo calculation).
  • the nonlinear precoding includes tomlinson-harashinma precoding (tomlinson-harashinma precoding, THP) or vector perturbation (vector perturbation, VP) precoding, and the like.
  • Linear precoding includes zero forcing (ZF) precoding, regularized zero forcing (RZF) precoding, eigenzero forcing (EZF) precoding, minimum mean-square error (minimum mean-square error) , MMSE) precoding and so on.
  • ZF zero forcing
  • RZF regularized zero forcing
  • EZF eigenzero forcing
  • minimum mean-square error minimum mean-square error (minimum mean-square error)
  • MMSE minimum mean-square error
  • the receiving end needs to know the factor used by the transmitting end for precoding in order to complete correct data detection.
  • the optimal factor is related to the transmitted symbols of the network equipment on the time-frequency resource and space layer.
  • the symbols sent by the network device on each spatial layer correspond to an optimal factor.
  • the network device informs the terminal device of a factor for each RE for each spatial layer, this will result in a lot of signaling overhead. Therefore, how to reduce the signaling overhead of the network device notification factor is an urgent problem to be solved at present.
  • the present application provides a data detection method and a communication device, which are beneficial to reduce the signaling overhead of a notification factor of a network device.
  • the present application provides a data detection method.
  • the method includes: a terminal device detects data on a first time-frequency resource and a first space resource, and data on a first time-frequency resource and a first space resource Associated with a first factor, a first factor independently determined by data association on different first time-frequency resources and the first space resource, the first factor is a scalar, and is used to perform the data associated with the first factor.
  • one first time-frequency resource includes one or more frequency domain resource groups
  • one first spatial resource includes one or more spatial layers.
  • the terminal device can also receive at least one precoded reference signal, one second time-frequency resource and one second space resource are associated with one reference signal, one second time-frequency resource and one first
  • the data on the two space resources is associated with a second factor, the second factor is a scalar, used to precode the data associated with the second factor, and a second time-frequency resource includes one or more frequency domain resources group, a second spatial resource includes one or more spatial layers; the terminal device may also detect data on the second time-frequency resource and the second spatial resource associated with the reference signal based on the reference signal.
  • the time-frequency resources scheduled by the network device can be divided into first time-frequency resources and second time-frequency resources, so that data on the first time-frequency resources and the data on the second time-frequency resources can use different factors Precoding is performed, which can make the granularity of the factors finer, thereby improving the system performance.
  • the network device does not need to indicate the factor used for precoding the second time-frequency resource and the second space resource, which can save the overhead of indicating signaling.
  • the reference signal may include one or more reference signal symbols, and one reference signal symbol represents one reference signal element.
  • the reference signal symbols may be demodulation reference signal DMRS symbols, or the reference signal symbols may be symbols on some resources in a DMRS resource, or the reference signal symbols may also be other types of reference signal symbols.
  • Reference signal symbols included in one reference signal may be located in different time-frequency units.
  • One reference signal symbol may correspond to one reference signal port, and one reference signal port may correspond to one spatial layer.
  • Reference signal symbols corresponding to different reference signal ports may constitute a reference signal symbol vector.
  • Different reference signal ports may be orthogonal ports, that is, reference signal symbols corresponding to different reference signal ports may be sent by one or more of frequency division multiplexing, time division multiplexing or code division multiplexing. Multiple reference signal symbols may be sent on different time-frequency resources, or may be sent on the same time-frequency resource.
  • the terminal device may also receive indication information sent by the network device, where the indication information is used to indicate at least one first piece of information, one piece of first piece of information and one first factor related to one piece of first piece of information and one piece of second piece of information
  • the time-frequency resource is associated with a second space resource
  • the specific implementation method for the terminal device to detect the data on the first time-frequency resource and the first space resource is: the terminal device is based on the first information and the target reference signal in the at least one reference signal. , the data precoded by the first factor related to the first information is detected, and the second time-frequency resource and the second space resource associated with the target reference signal are the second time-frequency resource and the second space resource associated with the first information.
  • the network device can also indicate to the terminal device first information related to the first factor through signaling, so that the terminal device can detect the first time-frequency resource and the first space resource based on the first information. The data.
  • the second factor associated with the data on the second time-frequency resource and the second space resource is further used for precoding the reference signal associated with the second time-frequency resource and the second space resource.
  • a first factor is associated with one or more second factors, and a first information is associated with a first factor and a second factor associated with the first factor.
  • the first information is a difference between the first factor and a second factor associated with the first factor, or the first information is a second factor associated with the first factor and the first factor quotient between.
  • the first information in this possible implementation is helpful for the terminal device to accurately detect data precoded based on the first factor related to the first information.
  • the first factor is related to one or more pieces of the following information: data on the first time-frequency resource, the first channel matrix corresponding to the first time-frequency resource, or the first time-frequency resource corresponding to the first time-frequency resource. a precoding matrix; the second factor is related to one or more of the following information: the data on the second time-frequency resource, the reference signal associated with the second time-frequency resource, the second channel matrix corresponding to the second time-frequency resource, or A second precoding matrix corresponding to the second time-frequency resource.
  • the data on the first time-frequency resource may be transmission data symbols on all spatial layers corresponding to the first time-frequency resource.
  • the data on the second time-frequency resource may be transmission data symbols on all spatial layers corresponding to the second time-frequency resource.
  • the reference signals associated with the second time-frequency resource may be reference signal symbols corresponding to all spatial layers corresponding to the second time-frequency resource. Based on this possible implementation, the factors jointly consider the corresponding channel matrix, precoding matrix and transmitted data signal, maximize the use of signal and channel characteristics, achieve the best interference avoidance and signal power improvement, and help improve system performance.
  • one time-frequency resource set includes one or more first time-frequency resources and one or more second time-frequency resources.
  • the first time-frequency resource and the second time-frequency resource further divide a time-frequency resource set into time-frequency resource subsets with smaller granularity, and each time-frequency resource subset only contains less time-frequency resources resource.
  • Different time-frequency resource subsets correspond to different phase factors, which is conducive to realizing refined phase factor adjustment, so as to improve the power efficiency brought by the phase factor as much as possible.
  • the time domain resources included in the first time-frequency resource are different from the time domain resources included in the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource occupy the same subcarrier, but occupy different OFDM symbols.
  • the first time-frequency resource and the second time-frequency resource occupy different subcarriers and occupy different OFDM symbols.
  • the second time-frequency resource can be made closer in time to the reference signal resource corresponding to the phase factor corresponding to the second time-frequency resource, which is beneficial to the reference signal based
  • the equivalent channel corresponding to the data on the second time-frequency resource is accurately estimated.
  • the frequency domain resources included in the first time-frequency resource are different from the frequency domain resources included in the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource occupy different subcarriers and occupy the same OFDM symbol.
  • the first time-frequency resource and the second time-frequency resource occupy different subcarriers and occupy different OFDM symbols.
  • the second time-frequency resource can be made closer to the reference signal resource corresponding to the phase factor corresponding to the second time-frequency resource in the frequency domain. The signal accurately estimates the equivalent channel corresponding to the data on the second time-frequency resource.
  • the above-mentioned at least one piece of first information is information in the first information set.
  • the number of the first time-frequency resources and/or the number of the second time-frequency resources is pre-specified in the protocol; or, before the terminal device receives the indication information sent by the network device, the terminal device may also receive the network Configuration information sent by the device, where the configuration information is used to configure the number of first time-frequency resources and/or the number of second time-frequency resources.
  • the terminal device may only need to detect the indication information of the fixed bit length, which is beneficial to reduce the number of blind detections, reduce the processing complexity and processing delay of the terminal device, and save the power consumption of the terminal device.
  • the terminal device determines the time-frequency resources included in each first time-frequency resource based on the time-frequency resources of the downlink data scheduled by the network device, and the number of the first time-frequency resources and/or the number of the second time-frequency resources. and/or the time-frequency resources included in each second time-frequency resource. Based on this optional implementation manner, the terminal device can accurately determine the time-frequency resource included in each first time-frequency resource and/or the time-frequency resource included in each second time-frequency resource based on a preset rule.
  • the number of frequency domain resources included in the second time-frequency resource (or the bandwidth of the second time-frequency resource in the frequency domain) is specified by a protocol or configured by a network device.
  • the number of frequency domain resources included in the second time-frequency resource may be one PRG.
  • the terminal device may divide one or more second time-frequency resources among the scheduled time-frequency resources according to a preset second time-frequency resource division method based on the number of frequency domain resources included in the second time-frequency resources.
  • the number of frequency domain resources included in the first time-frequency resource (or the bandwidth of the first time-frequency resource in the frequency domain) is specified by a protocol or configured by a network device.
  • the number of frequency domain resources included in the first time-frequency resource may be one PRG.
  • the terminal device may divide one or more first time-frequency resources among the scheduled time-frequency resources according to a preset first time-frequency resource dividing method based on the number of frequency domain resources included in the first time-frequency resources.
  • the number of time-frequency resource sets and/or the number of first time-frequency resources included in the time-frequency resource set and/or the number of time-frequency resource sets included in the time-frequency resource set is predetermined by the protocol; or, when there are one or more time-frequency resource sets, before the terminal device receives the indication information sent by the network device, the terminal device can also receive the configuration information sent by the network device.
  • the configuration information is used to configure the number of time-frequency resource sets and/or the number of first time-frequency resources included in the time-frequency resource set and/or the number of second time-frequency resources included in the time-frequency resource set.
  • the terminal device Based on this possible implementation manner, it is beneficial to ensure a fixed number of notifications of the first information, thereby helping to ensure a fixed signaling overhead.
  • the terminal device only needs to detect the indication information of the fixed bit length, which is beneficial to reduce the number of blind detections, reduce the processing complexity and processing delay of the terminal device, and save the power consumption of the terminal device.
  • the terminal device is based on the time-frequency resources of the downlink data scheduled by the network device, and the number of time-frequency resource sets and/or the number of first time-frequency resources included in the time-frequency resource set and/or the number of time-frequency resources included in the time-frequency resource set.
  • the number of the second time-frequency resources is determined by determining the time-frequency resources included in the first time-frequency resources and/or the time-frequency resources included in the second time-frequency resources in each time-frequency resource set. Based on this optional implementation manner, the terminal device can accurately determine the time-frequency resource included in the first time-frequency resource and/or the time-frequency resource included in the second time-frequency resource in each time-frequency resource set based on a preset rule. frequency resources.
  • the number of the first space resources is predetermined by the protocol; or, before the terminal device receives the indication information sent by the network device, the terminal device may also receive configuration information sent by the network device, the configuration information being used for Configure the number of first space resources. Based on this possible implementation manner, it is beneficial to ensure a fixed number of notifications of the first information, thereby helping to ensure a fixed signaling overhead. In this way, the terminal device only needs to detect the indication information of the fixed bit length, which is beneficial to reduce the number of blind detections, reduce the processing complexity and processing delay of the terminal device, and save the power consumption of the terminal device.
  • the terminal device determines the spatial layer included in the first spatial resource based on the number of spatial layers of the terminal device and the number of the first spatial resource. Based on this possible implementation, the terminal device can accurately determine the spatial layer included in the first spatial resource.
  • the process of precoding data by the first factor is:
  • is the power adjustment factor, or or represents the first factor corresponding to the kth spatial layer
  • W is the linear precoding matrix
  • the process of precoding the data or the reference signal by the second factor is:
  • is the power adjustment factor
  • W is the linear precoding matrix
  • the process of precoding data by the first factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the data by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the reference signal by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H.
  • the terminal device may also receive at least one precoded second reference signal, wherein one second time-frequency resource and one second space resource are associated with one second reference signal, and one second reference signal is The time-frequency resource and the data on a second space resource are associated with a second factor, the second factor is a scalar, and is used for precoding the data associated with the second factor, and a second time-frequency resource includes a or Multiple frequency domain resource groups, one second spatial resource includes one or more spatial layers; the terminal device can also receive at least one precoded first reference signal, where one first reference signal is precoded based on one first information , a piece of first information is related to a first factor, and a piece of first information is associated with a second time-frequency resource and a second space resource; the terminal device can also detect an association with the second reference signal based on the second reference signal The data on the second time-frequency resources and the second space resources of the terminal equipment; the specific implementation manner of the terminal device detecting the data on the first time-frequency resources and
  • the first reference signal precoded by the first information uses the first reference signal precoded by the first information to detect data precoded based on the first factor related to the first information, and the second time-frequency resource and the second space resource associated with the target reference signal are associated with the first information. the second time-frequency resources and second space resources. Based on this possible implementation manner, the first information is carried by the reference signal, and the first information is not indicated by additional signaling, which is beneficial to save the overhead of the indication signaling.
  • the terminal device can also receive indication information sent by the network device, where the indication information is used to indicate at least one first factor; the terminal device can also receive at least one precoded reference signal, a second time A frequency resource and a second space resource are associated with a reference signal, a second time-frequency resource and data on a second space resource are associated with a second factor, the second factor is a scalar, used for The data associated with the two factors is precoded, one second time-frequency resource includes one or more frequency domain resource groups, and one second spatial resource includes one or more spatial layers; the terminal device can also detect, based on the reference signal, which is related to the The data on the second time-frequency resource and the second space resource associated with the reference signal; the specific implementation method for the terminal device to detect the data on the first time-frequency resource and the first space resource is: detecting based on the first factor based on the first factor precoded data. Based on this possible implementation, the first factor can be indicated by the indication information, and the second factor can be carried by the
  • the terminal device may also receive indication information sent by the network device, where the indication information is used to indicate at least one first factor; the terminal device detects the specific details of the data on the first time-frequency resource and the first space resource The implementation is as follows: based on the first factor, the data precoded based on the first factor is detected. Based on this possible implementation, the network device does not need to indicate a first factor for each RE and each spatial layer, which is beneficial to saving the overhead of indication signaling of indication information.
  • the at least one first factor indicated by the above indication information is a factor in the factor set.
  • the factor set may also be referred to as a candidate factor set or a quantization factor set.
  • the factor set may be obtained by the network device and the terminal device based on quantization of Q bits, where Q is an integer greater than 0.
  • Q may be pre-specified by the protocol, or notified to the terminal device by the network device, or implicitly indicated by a certain rule.
  • the network device obtains the factor set based on Q bits quantization, and configures the factor set to the terminal device.
  • the set of factors may be predefined by the protocol.
  • each factor in the factor set may correspond to a factor index, and the indication information may specifically indicate the first factor index.
  • each factor in the factor set corresponds to a parameter value for determining the factor, and the indication information may specifically indicate an index of the parameter value.
  • the first spatial resource includes a spatial layer
  • the at least one first factor is a factor in the quantization codebook
  • the quantization codebook includes P factor vectors
  • each factor vector is a vector of the quantization codebook
  • a factor The vector includes N factors, the factors of each factor vector are associated with the reference signal ports one by one, and P and N are integers greater than zero
  • the indication information carries the index of the factor vector, that is, the indication information indicates the first factor through the index of the factor vector
  • the terminal device may determine the first factor from the quantization codebook based on the index of the factor vector carried by the indication information and the reference signal port allocated to the terminal device.
  • the granularity of the first factor in the spatial dimension can be made finer, and by indicating the index of one factor vector, multiple first factors can be indicated factor, which can greatly save the overhead of indication signaling.
  • the terminal device may also receive at least one precoded reference signal, and one first time-frequency resource and one first space resource are associated with one reference signal; the terminal device detects the first time-frequency resource and the A specific implementation manner of the data on the first space resource is: based on the reference signal associated with the first time-frequency resource and the first space resource, detecting the data on the first time-frequency resource and the first space resource. Based on this possible implementation manner, the network device does not need to instruct the terminal device to use signaling to precode the factor used for the downlink data, which is beneficial for saving the overhead of signaling.
  • one RB includes multiple first time-frequency resources.
  • the first time-frequency resources By dividing one RB into multiple first time-frequency resources, the first time-frequency resources only include less time-frequency resources. Different first time-frequency resources correspond to different first factors, which is conducive to realizing refined factor adjustment, thereby improving the power efficiency brought by the factors as much as possible.
  • the reference signals corresponding to different first time-frequency resources may be the same type of reference signals, or may be different types of reference signals.
  • a reference signal includes all reference signal symbols corresponding to the same first factor.
  • the reference signal associated with the first time-frequency resource and the first space resource is precoded based on the first factor associated with the first time-frequency resource and the data on the first space resource.
  • the present application provides a data detection method.
  • the method includes: a network device precoding data on a first time-frequency resource and a first space resource based on a first factor, and sending the data on the first time-frequency resource.
  • Data after precoding; data on a first time-frequency resource and a first space resource are associated with a first factor, and different first time-frequency resources and data on the first space resource are associated with an independently determined first factor.
  • the first factor is a scalar, used to precode data associated with the first factor
  • a first time-frequency resource includes one or more frequency domain resource groups
  • a first space resource includes one or more space layer.
  • the network device precodes at least one reference signal, and sends the precoded at least one reference signal to the terminal device, where one second time-frequency resource and one second space resource are related to one reference signal data on a second time-frequency resource and a second space resource is associated with a second factor, the second factor is a scalar, used to precode the data associated with the second factor, a second factor
  • the time-frequency resource includes one or more frequency domain resource groups, and a second space resource includes one or more space layers; the network device precodes the data on the second time-frequency resource and the second space resource based on the second factor, and send the precoded data in the second time-frequency resource.
  • the network device sends indication information to the terminal device, where the indication information is used to indicate at least one first information, one first information is related to a first factor, and one first information is related to a second time-frequency
  • the resource is associated with a second spatial resource.
  • the second factor associated with the data on the second time-frequency resource and the second space resource is also used to perform a second factor on the reference signal associated with the second time-frequency resource and the second space resource. precoding.
  • a first factor is associated with one or more second factors, and a first information is related to a first factor and a second factor associated with the first factor.
  • the first information is a difference between the first factor and a second factor associated with the first factor, or the first information is a second factor associated with the first factor and the first factor quotient between.
  • the first factor is related to one or more pieces of the following information: data on the first time-frequency resource, the first channel matrix corresponding to the first time-frequency resource, or the first time-frequency resource corresponding to the first time-frequency resource. a precoding matrix;
  • the second factor is related to one or more of the following information: the data on the second time-frequency resource, the reference signal associated with the second time-frequency resource, the second channel matrix or the second time-frequency resource corresponding to the second time-frequency resource the corresponding second precoding matrix.
  • the data on the first time-frequency resource may be transmission data symbols on all spatial layers corresponding to the first time-frequency resource.
  • the data on the second time-frequency resource may be transmission data symbols on all spatial layers corresponding to the second time-frequency resource.
  • the reference signals associated with the second time-frequency resource may be reference signal symbols corresponding to all spatial layers corresponding to the second time-frequency resource.
  • one time-frequency resource set includes one or more first time-frequency resources and one or more second time-frequency resources.
  • the time domain resources included in the first time-frequency resource are different from the time domain resources included in the second time-frequency resource.
  • the frequency domain resources included in the first time-frequency resource are different from the frequency domain resources included in the second time-frequency resource.
  • the above-mentioned at least one piece of first information is information in the first information set.
  • the number of the first time-frequency resources and/or the number of the second time-frequency resources is predetermined by the protocol; or, before the network device sends the indication information to the terminal device, the network device may also send the terminal device Send configuration information, where the configuration information is used to configure the number of first time-frequency resources and/or the number of second time-frequency resources.
  • the terminal device only needs to detect the indication information of the fixed bit length, which is beneficial to reduce the number of blind detections, reduce the processing complexity and processing delay of the terminal device, and save the power consumption of the terminal device.
  • the network device determines the time-frequency resources and /or time-frequency resources included in each second time-frequency resource. Based on this optional implementation manner, the network device can accurately determine the time-frequency resource included in each first time-frequency resource and the time-frequency resource included in each second time-frequency resource based on a preset rule.
  • the number of frequency domain resources included in the second time-frequency resource (or the bandwidth of the second time-frequency resource in the frequency domain) is specified by a protocol or configured by a network device.
  • the number of frequency domain resources included in the second time-frequency resource may be one PRG.
  • the network device may divide one or more second time-frequency resources among the scheduled time-frequency resources according to a preset second time-frequency resource dividing method based on the number of frequency domain resources included in the second time-frequency resources.
  • the number of frequency domain resources included in the first time-frequency resource may also be specified by a protocol or configured by a network device.
  • the number of frequency domain resources included in the first time-frequency resource may be one PRG.
  • the network device may divide one or more first time-frequency resources among the scheduled time-frequency resources according to a preset first time-frequency resource dividing method based on the number of frequency domain resources included in the first time-frequency resources.
  • the number of time-frequency resource sets and/or the number of first time-frequency resources included in the time-frequency resource set and/or the number of time-frequency resource sets included in the time-frequency resource set The number of the second time-frequency resources is predetermined by the protocol; or, when there are one or more time-frequency resource sets, before the network device sends the indication information, the network device may also send configuration information to the terminal device, where the configuration information is used to configure The number of time-frequency resource sets and/or the number of first time-frequency resources included in the time-frequency resource set and/or the number of second time-frequency resources included in the time-frequency resource set.
  • the network device is based on the time-frequency resources of downlink data scheduled by the network device, and the number of time-frequency resource sets and/or the number of first time-frequency resources included in the time-frequency resource set and/or the number of time-frequency resources included in the time-frequency resource set.
  • the number of the second time-frequency resources is determined by determining the time-frequency resources included in the first time-frequency resources and/or the time-frequency resources included in the second time-frequency resources in each time-frequency resource set.
  • the number of space resources is predetermined by the protocol; or, before the network device sends the indication information, the network device may also send configuration information to the terminal device, where the configuration information is used to configure the number of space resources.
  • the network device determines the spatial layers included in the spatial resources based on the number of spatial layers and the number of spatial resources of the terminal device.
  • the process of precoding data by the first factor is:
  • is the power adjustment factor, or or represents the first factor corresponding to the kth spatial layer
  • W is the linear precoding matrix
  • the process of precoding the data or the reference signal by the second factor is:
  • is the power adjustment factor
  • W is the linear precoding matrix
  • the process of precoding data by the first factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the data by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the reference signal by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H.
  • the network device may further perform precoding on at least one second reference signal, and send the at least one second reference signal after precoding to the terminal device, wherein one second time-frequency resource and one A second space resource is associated with a second reference signal, a second time-frequency resource and data on a second space resource are associated with a second factor, and the second factor is a scalar, used for matching the second factor with the second factor.
  • the associated data is precoded, one second time-frequency resource includes one or more frequency domain resource groups, and one second spatial resource includes one or more spatial layers; the network device may also perform precoding on at least one first reference signal.
  • the network device may also precode the data on the second time-frequency resource and the second space resource based on the second factor, and send the precoding on the second time-frequency resource. data after encoding.
  • the network device may also send indication information to the terminal device, where the indication information is used to indicate at least one first factor; the network device may further perform precoding on at least one reference signal, and send the precoding information to the terminal device.
  • the encoded at least one reference signal, a second time-frequency resource and a second space resource are associated with a reference signal, and data on a second time-frequency resource and a second space resource is associated with a second factor,
  • the second factor is a scalar, used for precoding data associated with the second factor, a second time-frequency resource includes one or more frequency domain resource groups, and a second spatial resource includes one or more spatial layers ;
  • the network device may also precode the data on the second time-frequency resource and the second space resource based on the second factor, and send the precoded data on the second time-frequency resource, a second time-frequency resource and a first time-frequency resource.
  • Two spatial resources are associated with a second factor.
  • the network device may also send indication information to the terminal device, where the indication information is used to indicate at least one first factor.
  • the at least one first factor indicated by the above indication information is a factor in the factor set.
  • the factor set may also be referred to as a candidate factor set or a quantization factor set.
  • the factor set may be obtained by the network device and the terminal device based on quantization of Q bits, where Q is an integer greater than 0.
  • Q may be pre-specified by the protocol, or notified to the terminal device by the network device, or implicitly indicated by a certain rule.
  • the network device obtains the factor set based on Q bits quantization, and configures the factor set to the terminal device.
  • the set of factors may be predefined by the protocol.
  • each first factor in the factor set may correspond to a first factor index, and the indication information may specifically indicate the first factor index.
  • each first factor in the factor set corresponds to a parameter value for determining the first factor, and the indication information may specifically indicate an index of the parameter value.
  • the first spatial resource includes a spatial layer
  • the above-mentioned at least one first factor is a first factor in a quantization codebook
  • the quantization codebook includes P factor vectors
  • each factor vector is a vector of the quantization codebook
  • a factor vector includes N first factors, the first factors of each factor vector are associated with the reference signal ports one by one, and P and N are integers greater than zero;
  • the indication information carries the index of the factor vector, that is, the indication information passes through the factor vector. index to indicate the first factor.
  • the network device may further perform precoding on at least one reference signal, and send the precoded at least one reference signal, a first time-frequency resource and a first space resource and a associated with reference signals.
  • one RB includes multiple first time-frequency resources.
  • the reference signals corresponding to different first time-frequency resources may be the same type of reference signals, or may be different types of reference signals.
  • a reference signal includes all reference signal symbols corresponding to the same first factor.
  • the reference signal associated with the first time-frequency resource and the first space resource is precoded based on the first factor associated with the first time-frequency resource and the data on the first space resource.
  • the present application provides a communication apparatus, which may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a chip system.
  • the communication device may perform the method described in the first aspect.
  • the functions of the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit may be software and/or hardware.
  • the present application provides a communication device, which may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the communication device may also be a chip system.
  • the communication device can perform the method of the second aspect.
  • the functions of the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions. This unit can be software and/or hardware.
  • the present application provides a communication apparatus, the communication apparatus includes a processor, and when the processor calls a computer program in a memory, the method according to the first aspect or the second aspect is performed.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer-executed instructions; the processor is used for executing the computer-executed instructions stored in the memory, to The communication device is caused to perform the method of the first aspect or the second aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, the transceiver is used for receiving a channel or a signal, or transmitting a channel or signal; the memory is used for Store program code; the processor for invoking the program code from the memory to execute the method according to the first aspect or the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to perform the method of the first aspect or the second aspect.
  • the present application provides a computer-readable storage medium for storing instructions that, when executed, cause the method according to the first aspect or the second aspect to be accomplish.
  • the present application provides a computer program product comprising instructions which, when executed, cause the method of the first aspect or the second aspect to be implemented.
  • Fig. 1 is the flow chart of a kind of existing THP precoding processing
  • Fig. 2 is a flow chart of an existing THP precoding process based on a factor
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a data detection method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first time-frequency resource and space resource provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another first time-frequency resource and space resource provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another first time-frequency resource and space resource provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another first time-frequency resource and space resource provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another first time-frequency resource and space resource provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a quantization codebook provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • 14a is a schematic diagram of a first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 14b is a schematic diagram of another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 15 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 16 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 17 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • FIG. 18 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • FIG. 19 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application.
  • 20 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 21 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 22 is a schematic diagram of a time-frequency resource set provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of another time-frequency resource set provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of still another first time-frequency resource and space resource provided by an embodiment of the present application.
  • 26a is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • 26b is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • FIG. 27 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • 29 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • FIG. 30 is a schematic diagram of still another first time-frequency resource and a second time-frequency resource provided by an embodiment of the present application;
  • FIG. 31 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • 32a is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 32b is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and both A and B exist three A case where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c"", where a, b, c can be single or multiple.
  • a vector or matrix A its transpose vector or transpose matrix is denoted A T
  • a H its conjugate transpose vector or conjugate transpose matrix
  • multiple parallel data streams can be simultaneously transmitted on the same frequency domain resources, and each data stream is called a spatial layer or spatial stream, which can also be referred to as for layers or streams.
  • a network device may use a MIMO precoding (precoding) technology to process the data to be sent, so as to improve the signal transmission quality or rate.
  • the PRG refers to the frequency domain granularity that the network device uses the same precoding matrix to perform precoding, and may include one or more consecutive resource blocks (resource blocks, RBs). For example, one PRG may be 2 RBs or 4 RBs or the full bandwidth.
  • the network device uses the same precoding matrix for precoding when sending data (such as a PDSCH signal) and sending a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • the terminal device performs detection on the data and the demodulation reference signal assuming that the same precoding matrix corresponds to one PRG.
  • the definition of PRG in the standard is as follows: the terminal device will assume that the basic granularity of precoding performed by the network device is P consecutive RBs in the frequency domain.
  • the value of P can be ⁇ 2, 4, full bandwidth ⁇ . If the value of P is the full bandwidth, the downlink data scheduling cannot support the scheduling of discontinuous PRBs, and the same precoding matrix and precoding processing method are used for the scheduled time-frequency resources. If the value of P is 2 or 4, the bandwidth part (BWP) i will be divided into PRGs with P consecutive PRBs as the basic granularity, and each PRG may contain one or more PRBs.
  • a UE may assume that precoding granularity is P′ BWP.i consecutive resource blocks in the frequency domain.P′ BWP.i canbe equal to one of the values among ⁇ 2,4,wideband ⁇ . If P′ BWP.i is determined as "wideband", the UE is not expected to be scheduled with non-contiguous PRBs and the UE may assume that the same precoding is applied to the allocated resource.
  • P′ BWP.i is determined as one of the values among ⁇ 2,4 ⁇ ,Precoding Resource Block Group(PRGs)partitions the bandwidth part i with P′ BWP.i consecutive PRBs.Actual number of consecutive PRBs in each PRG could be one or more.
  • the UE may assume the same precoding is applied for any downlink contiguous allocation of PRBs in a PRG.
  • MIMO precoding technology can be divided into linear precoding and nonlinear precoding according to different signal processing methods.
  • Nonlinear precoding can approach the theoretical channel capacity through nonlinear operations such as interference cancellation and modulo calculation at the transmitter, and significantly improve system performance in high channel correlation scenarios.
  • the processing complexity is greatly increased due to the introduction of nonlinear operations.
  • the THP algorithm is a nonlinear precoding scheme that compromises system performance and complexity. Due to the advantages of low implementation complexity and small system performance loss, it has been widely studied and applied.
  • FIG. 1 is a flowchart of a THP precoding process.
  • the THP precoding process includes a nonlinear processing stage and a linear processing stage.
  • K users perform multi-user transmission, and each user corresponds to sending a symbol vector where L k represents the number of spatial layers sent by the kth user.
  • s k,l (l ⁇ [1,L k ]) represents the symbol sent by the kth user at the lth spatial layer.
  • the output transmission symbol xl can be expressed as:
  • B l,i represents the element corresponding to the l-th row and the i-th column of the feedback matrix B.
  • the matrix R is the complete channel matrix through all users
  • H k represents the channel matrix corresponding to the kth user, and the dimension is NR ,k ⁇ NT .
  • NR ,k represents the number of receiving antennas of the kth user, and NT represents the number of transmitting antennas of the network device.
  • Matrix G is a diagonal matrix, and its main diagonal elements are the reciprocals of the main diagonal elements of matrix R, that is, in, Represents the element corresponding to the lth row and the lth column of the matrix G.
  • the obtained transmitted symbol vector x can be expressed as:
  • v (v 1 , v 2 ,...,v L ) T
  • the power back-off operation can also be performed by using the power normalization factor ⁇ after the nonlinear processing.
  • the transmitted symbol vector obtained after the linear processing operation and the power backoff operation can be expressed as:
  • a modulo operation and a power backoff operation are performed in the THP precoding process.
  • the joint received symbol vector of all users can be expressed as:
  • H is the channel matrix.
  • n is the channel noise
  • G -1 is the diagonal matrix
  • G and ⁇ are as described above.
  • g ll is the element corresponding to the l-th row and the l-th column in the diagonal matrix G -1 .
  • y l is the received symbol of the terminal device corresponding to the lth spatial layer.
  • n l is the noise corresponding to the lth spatial layer. Since G -1 is a diagonal matrix, multi-user interference and multi-antenna interference are eliminated by THP precoding, and the MU-MIMO channel is converted into parallel multi-channel sub-channels.
  • the received signal can be denoted as: where g k,l represents the equivalent channel coefficient corresponding to the lth spatial layer of the kth user.
  • the kth terminal equipment uses the reference signal to estimate the equivalent channel coefficients Then, based on the received symbols y k,l and Identify the symbols sent by the network device.
  • the embodiments of the present application propose factor-based THP precoding.
  • the factor may also be referred to as a phase factor in the whole text of the embodiments of this application.
  • Factor-based THP precoding may also be referred to as rotated phase THP precoding, or phase factor rotated THP precoding, or transmitted signal rotated THP precoding. As shown in Fig.
  • the phase rotation of the superimposed interference signal corresponding to each spatial layer is performed by the factor, thereby reducing the significant increase of the signal power caused by the superimposed interference signal.
  • the same factor is then used for phase compensation after the modulo operation.
  • the corresponding factor can be ⁇ l or or or j ⁇ l .
  • the following factors are For example.
  • the transmitted symbol after nonlinear processing can be expressed as:
  • the factor corresponding to each spatial layer can be selected based on the criterion of maximizing transmit power or minimizing power loss, such as or Q can be [0, 2 ⁇ ), or a set of quantized factors.
  • g k,l represents the equivalent channel coefficient corresponding to the lth spatial layer of the kth terminal device.
  • g k,l is the element corresponding to the lth spatial layer of the kth terminal device in the diagonal matrix G -1 . It can be seen that for factor-based THP precoding, the terminal device needs to know the factor used by the network device for precoding In order to complete the correct data detection.
  • linear precoding may include any one of the following precodings: zero forcing (ZF) precoding, regularized zero forcing (RZF) precoding, eigenzero forcing (EZF) precoding Encoding or minimum mean-square error (MMSE) precoding.
  • ZF zero forcing
  • RZF regularized zero forcing
  • EZF eigenzero forcing
  • MMSE minimum mean-square error
  • Factor-based linear precoding may also be referred to as rotated phase linear precoding, or phase factor rotated linear precoding, or transmitted signal rotated linear precoding.
  • FIG. 3 is a schematic diagram of a factor-based linear precoding.
  • the phase rotation of the transmitted modulation symbols corresponding to each spatial layer is performed by the factor, and then the linear precoding operation is performed.
  • the process of linearly precoding data based on factors is:
  • x represents the precoded data symbol vector.
  • is the power adjustment factor.
  • W is a linear precoding matrix. is a diagonal matrix, and the kth main diagonal element corresponds to the factor of the kth spatial layer.
  • the factor corresponding to each spatial layer can be selected based on the criterion of maximizing transmit power or minimizing power loss, that is, Or it can also be selected based on the criterion of maximizing the sum of the received SINRs, that is, Or choose based on maximizing the average received SINR criterion, i.e. Or choose based on maximizing the minimum received SINR criterion, i.e. Q can be [0, 2 ⁇ ), or a set of quantized factors.
  • SINR 1 represents the received SINR corresponding to the lth spatial layer.
  • L k may also be greater than or equal to 1
  • the number of transport streams corresponding to each terminal device may be the same or different.
  • the same number of transport streams corresponding to each terminal device is taken as an example.
  • the channel matrix of the kth terminal device is H k
  • the corresponding eigenvectors corresponding to the maximum L k eigenvalues are
  • the dimension of V k is N T ⁇ L k , which is obtained by SVD decomposition or EVD decomposition of the channel matrix H k , that is, it satisfies If the linear precoding adopts the EZF algorithm, the linear precoding matrix can be expressed as:
  • the spliced matrix has a dimension of N T ⁇ L.
  • is an adjustment factor, which is related to the signal-to-noise ratio. in an implementation method in represents the noise power, Indicates the transmit signal power.
  • I is an L ⁇ L identity matrix.
  • the factor can also be ⁇ k,l or or or j ⁇ k,l , where the factor is For example.
  • the kth terminal device corresponds to the transmitted symbol vector sk,l (l ⁇ [1, Lk ]) represents the symbol sent by the kth terminal device at the lth spatial layer.
  • W k is a sub-matrix included in the precoding matrix W, representing the precoding matrix corresponding to the kth terminal device, and its dimension is N T ⁇ L k .
  • f(s, H, W) represents the factor The determination of is related to the transmitted signal s, the channel matrix H and the precoding matrix W of all terminal equipments.
  • the received data symbol vector can be expressed as:
  • T diag(T 1 , T 2 , . . . , T K ).
  • L k ⁇ L k representing the factor matrix corresponding to the kth terminal device
  • ⁇ k,l or or Or j ⁇ k,l represents the factor corresponding to the lth spatial layer of the kth terminal device.
  • the interference caused by the other K-1 paired terminal equipments corresponding to the kth terminal equipment, n k represents the additive noise vector corresponding to the kth terminal equipment.
  • the detection of the transmitted data is performed based on the equivalent channel matrix H k W k T k .
  • the terminal device needs to perform data detection based on the equivalent channel matrix H k W k and the corresponding factor T k . Similarly, after other precoding methods use factors for precoding, the terminal device also needs to know the factors to perform data detection.
  • the network device informs the terminal device of the factor of the data sampling sent by the network device through signaling. Because the optimal factor is related to the transmitted symbols of the network equipment on the time-frequency resource and space layer. Theoretically, for a resource element (RE), the symbols sent by the network device on each spatial layer correspond to an optimal factor. However, if the network device informs each spatial layer of a factor for each RE, this will result in a lot of signaling overhead.
  • RE resource element
  • the embodiments of the present application provide a data detection method and a communication device.
  • the method provided in this application can be applied to various communication systems, for example, an internet of things (Internet of things, IoT) system, a narrow band internet of things (NB-IoT) system, a long term evolution (long term evolution) system.
  • evolution, LTE) system it can also be a fifth-generation (5th-generation, 5G) communication system, it can also be a hybrid architecture of LTE and 5G, or it can be a 5G new radio (NR) system, and in the future communication development Emergence of new communication systems, etc.
  • IoT internet of things
  • NB-IoT narrow band internet of things
  • LTE long term evolution
  • evolution, LTE evolution
  • 5G fifth-generation
  • 5G fifth-generation
  • NR new radio
  • FIG. 4 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application, and the solution in the present application is applicable to the communication system.
  • the communication system may include a network device and at least one terminal device.
  • FIG. 4 takes the communication system including one access network device and one terminal device as an example. As shown in Figure 4, the access network equipment and the terminal equipment can communicate through beams. Both access network equipment and terminal equipment are capable of generating multiple beams.
  • the access network device involved in the embodiments of the present application is an entity on the network side that is used to transmit or receive signals, and can be used to convert received air frames and network protocol (Internet protocol, IP) packets to and from each other. , as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network and the like.
  • IP Internet protocol
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network device may be an evolutional Node B (evolutional Node B, eNB or e-NodeB) in LTE, a new radio controller (new radio controller, NR controller), or a gNode B in the 5G system (gNB), which can be a centralized unit, a new wireless base station, a remote radio module, a micro base station, a relay, or a distributed unit ), which may be a reception point (transmission reception point, TRP) or a transmission point (transmission point, TP) or any other wireless access device, but the embodiment of the present application is not limited to this.
  • evolutional Node B evolutional Node B, eNB or e-NodeB
  • a new radio controller new radio controller, NR controller
  • gNode B in the 5G system gNB
  • TRP transmission reception point
  • TP transmission point
  • the terminal equipment involved in the embodiments of this application is an entity on the user side that is used to receive or transmit signals.
  • a terminal device may be a device that provides voice and/or data connectivity to a user, eg, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device may also be other processing device connected to the wireless modem.
  • Terminal devices can communicate with a radio access network (RAN).
  • RAN radio access network
  • Terminal equipment may also be referred to as wireless terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE) and so on.
  • Terminal devices may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized, hand-held, computer-built, or vehicle-mounted mobile devices, which are associated with wireless The access network exchanges language and/or data.
  • the terminal device may also be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), and other equipment.
  • Common terminal devices include, for example, mobile phones, tablet computers, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, pedometers, etc. The example is not limited to this.
  • FIG. 5 is a schematic flowchart of a data detection method provided by an embodiment of the present application.
  • the data detection method includes the following steps 501 and 502 .
  • the method execution subject shown in FIG. 5 may be a network device and a terminal device, or the subject may be a chip in the network device and a chip in the terminal device.
  • FIG. 5 takes a network device and a terminal device as an example for executing the method for description.
  • the execution subjects of the data detection methods shown in other drawings in the embodiments of the present application are the same, and will not be described in detail below. in:
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • the data on a first time-frequency resource and a first space resource is associated with a first factor, and the data on different first time-frequency resources and the first space resource are associated with an independently determined first factor, the first The factor is a scalar and is used to precode data associated with the first factor.
  • One first time-frequency resource includes one or more frequency domain resource groups, and one first spatial resource includes one or more spatial layers.
  • first time-frequency resources There may be one or more first time-frequency resources, and there may also be one or more first space resources.
  • the quantity of the first time-frequency resources may be fixed or non-fixed, and the quantity of the first space resources may be fixed or non-fixed.
  • the association of data on a first time-frequency resource and a first space resource with a first factor means that the network device will use the same first time-frequency resource and the same first space resource using the same first factor.
  • the factor precodes the data symbols.
  • precoding the data may be equivalent to performing preprocessing on the transmitted data symbols or data modulation symbols, such as performing phase rotation on the transmitted data symbols or data modulation symbols.
  • the first factor independently determined by the data association on different first time-frequency resources and the first space resource refers to: the first factor corresponding to one first time-frequency resource and the first space resource is not affected by other first time-frequency resources and the first factor.
  • the influence of the first factor corresponding to the first space resource is only related to one or more of the channel matrix corresponding to the first time-frequency resource and the first space resource, the precoding matrix and the transmitted data.
  • one first time-frequency resource includes one or more frequency domain resource groups
  • one first spatial resource includes one or more spatial layers.
  • the number of frequency domain resource groups included in different first time-frequency resources may be the same or different.
  • the number of spatial layers included in different first spatial resources may also be the same or different.
  • a frequency-domain resource group refers to a set including multiple frequency-domain resources.
  • a frequency-domain resource group may be one or more subcarriers in the frequency domain, or multiple REs, or one or more RBs, or One or more PRGs.
  • a first time-frequency resource including one or more frequency domain resource groups can be understood as: the length of a first time-frequency resource in the frequency domain is equal to the frequency domain length of one or more frequency domain resource groups, or, a first time-frequency resource The bandwidth of the time-frequency resource in the frequency domain is equal to the frequency domain length of one or more frequency-domain resource groups, or, a first time-frequency resource includes one or more frequency-domain resource groups in the frequency domain.
  • a first time-frequency resource may further include one or more time units in the time domain, and a time unit may be one or more (orthogonal frequency division multiplexing, OFDM) symbols, or one or more time units. slot.
  • the number of time units included in the time domain by different first time-frequency resources may be the same or different.
  • the first time-frequency resources can be divided into the following three ways:
  • the correlation between the first time-domain resources, the first space resources, the first time-domain resources, and the data on the first space resources and the first factor is further introduced:
  • Example 1 Take the length of a first time-domain resource in the frequency domain as the frequency-domain length of a PRG, and a first spatial resource includes one spatial layer as an example.
  • a first spatial resource includes one spatial layer as an example.
  • FIG. 6 it is assumed that there are two first time-frequency resources and two first space resources.
  • Each first time-frequency resource includes the frequency domain length of one PRG in the frequency domain, and the frequency domain resources of each first time-frequency resource are different.
  • each grid in the frequency domain dimension represents a PRG, and the same is true for FIGS. 7 to 10 , which will not be described in detail later.
  • the time domain resources of each first time-frequency resource are the same, and each first time-frequency resource includes one or more time units in the time domain.
  • each first spatial resource includes 1 spatial layer.
  • the data on the first time-frequency resource 1 and the data on the spatial layer 1 are associated with a factor 1, that is, the network device uses the factor 1 to precode the data on the first time-frequency resource 1 and the spatial layer 1.
  • the data on the first time-frequency resource 2 and the spatial layer 1 are associated with a factor of 2, that is, the network device uses the factor 2 to precode the data on the first time-frequency resource 2 and the spatial layer 1.
  • the data on the first time-frequency resource 1 and the data on the spatial layer 2 are associated with a factor of 3, that is, the network device uses the factor 3 to precode the data on the first time-frequency resource 1 and the spatial layer 2.
  • the data on the first time-frequency resource 2 and the spatial layer 2 are associated with a factor of 4, that is, the network device uses the factor 4 to precode the data on the first time-frequency resource 2 and the spatial layer 2.
  • Example 2 Take the length of a first time-domain resource in the frequency domain as the frequency-domain length of a PRG, and a first spatial resource includes multiple spatial layers as an example. As shown in FIG. 7 , it is assumed that there are two first time-frequency resources and two first space resources. Each first time-frequency resource includes the frequency domain length of one PRG in the frequency domain, and the frequency domain resources of each first time-frequency resource are different. Each first time-frequency resource includes one or more time units in the time domain, and the time domain resources of each first time-frequency resource are the same. Each first spatial resource includes 2 spatial layers.
  • the data on the first time-frequency resource 1 and the first space resource 1 are associated with the factor 1, that is, the network device uses the factor 1 to precode the data on the first time-frequency resource 1 and the first space resource 1.
  • the data on the first time-frequency resource 2 and the first space resource 1 are associated with the factor 2, that is, the network device uses the factor 2 to precode the data on the first time-frequency resource 2 and the first space resource 1 .
  • the data on the first time-frequency resource 1 and the first space resource 2 are associated with the factor 3, that is, the network device uses the factor 3 to precode the data on the first time-frequency resource 1 and the first space resource 2.
  • the data on the first time-frequency resource 2 and the first space resource 2 are associated with a factor of 4, that is, the network device uses the factor 4 to precode the data on the first time-frequency resource 2 and the first space resource 2 .
  • Example 3 Take the length of a first time-domain resource in the frequency domain as the frequency-domain length of multiple PRGs, and a first spatial resource includes one spatial layer as an example.
  • a first time-domain resource includes one spatial layer as an example.
  • FIG. 8 it is assumed that there are two first time-frequency resources and two first space resources.
  • Each first time-frequency resource includes a frequency domain length of 4 PRGs in the frequency domain, and the frequency domain resources of each first time-frequency resource are different.
  • Each first time-frequency resource includes one or more time units in the time domain, and the time domain resources of each first time-frequency resource are the same.
  • Each first spatial resource includes 1 spatial layer.
  • a first time-frequency resource and a first space resource are associated with a factor, and details are not described here.
  • Example 4 Taking a first time domain resource including the frequency domain lengths of multiple PRGs in the frequency domain, and one spatial resource including multiple spatial layers as an example. As shown in FIG. 9 , it is assumed that there are two first time-frequency resources and two first space resources. Each first time-frequency resource includes a frequency domain length of 4 PRGs in the frequency domain, and the frequency domain resources of each first time-frequency resource are different. Each first time-frequency resource includes one or more time units in the time domain, and the time domain resources of each first time-frequency resource are the same. Each first spatial resource includes 2 spatial layers. Similarly, a first time-frequency resource and a first space resource are associated with a factor, and details are not described here.
  • the number of PRGs included in different first time-frequency resources may be different, and the number of spatial layers included in different first spatial resources may be different as an example.
  • the first time-frequency resource 1 includes the frequency domain length of 2 PRGs in the frequency domain
  • the first time-frequency resource 2 includes the frequency domain length of 4 PRGs in the frequency domain
  • the frequency domain resources of each first time-frequency resource are different.
  • Each first time-frequency resource includes one or more time units in the time domain, and the time domain resources of each first time-frequency resource are the same.
  • the first spatial resource 1 includes one spatial layer.
  • the first spatial resource 2 includes 2 spatial layers.
  • a first time-frequency resource and a first space resource are associated with a factor, and details are not described here.
  • the frequency-domain dimension shown in Figures 6 to 10 can be replaced with the time-domain dimension.
  • a grid represents one or more OFDM symbols, and the first time-frequency The frequency domain resources of resource 1 and first time-frequency resource 2 are the same.
  • the protocol may pre-specify the number of first time-frequency resources and/or the number of first space resources.
  • the network device may also send configuration information to configure the number of first time-frequency resources and/or the number of first space resources.
  • the terminal device can receive the configuration information.
  • the configuration information may be radio resource control (radio resource control, RRC) signaling or other signaling. That is to say, in this possible implementation, the number of the first time-frequency resources is fixed, and the number of the first time-frequency resources does not change with the change of the time-frequency resources of the downlink data scheduled by the network device. And/or, the number of the first spatial resources is fixed, and the number of the first spatial resources does not change with the number of spatial layers possessed by the terminal device.
  • RRC radio resource control
  • the terminal device only needs to detect the indication information of the fixed bit length, which is beneficial to reduce the number of blind detections, reduce the processing complexity and processing delay of the terminal device, and save the power consumption of the terminal device.
  • the network device may also use the time-frequency resources, first time-frequency resources of downlink data scheduled by the network device
  • the terminal device may also determine the time-frequency resources included in each first time-frequency resource based on the time-frequency resources of the downlink data scheduled by the network device and the number of the first time-frequency resources. Based on this optional implementation manner, the network device and the terminal device can accurately determine the time-frequency resources included in the first time-frequency resource.
  • the network device may also determine the number of first space resources based on the number of space layers of the terminal device and the number of first space resources.
  • the spatial layer included in each first spatial resource e.g., the terminal device determines the spatial layer included in each first spatial resource based on the number of spatial layers of the terminal device and the number of the first spatial resources. Based on the optional implementation manner, the network device and the terminal device can accurately determine the spatial layer included in the first spatial resource.
  • the method for dividing the first time-frequency resource may be a preset rule. Taking the division of the first time-frequency resources according to the frequency domain as an example, different first time-frequency resources have different frequency domain resources, and different first time-frequency resources correspond to the same time domain resources. The frequency domain resources included in the different first time-frequency resources should be equally divided as much as possible.
  • the time-frequency resource of the downlink data scheduled by the network device includes N PDSCH PRGs in the frequency domain, and the number of the first time-frequency resource is S , then the first S-1 first time-frequency resources all contain PRGs, the S-th first time-frequency resource contains the remaining PRGs.
  • This rule of dividing the first time-frequency resources according to the frequency domain is applicable to the basic granularity of the frequency domain resources included in the first time-frequency resources being RBs or REs, and is also applicable to the time domain division and spatial domain division of the first time-frequency resources.
  • This rule of dividing the first time-frequency resource according to the frequency domain is also applicable to the dividing of the first space resource.
  • different first time-frequency resources have different frequency-domain resources, and different first time-frequency resources include frequency-domain resources equally divided, and different first time-frequency resources correspond to the same time-domain resources .
  • the network device determines that each first time-frequency resource includes The number of PRGs, that is, the first time-frequency resource 1 includes PRG1 to PRG4 in the frequency domain, and the first time-frequency resource 2 includes PRG5 to PRG8 in the frequency domain.
  • the number of spatial layers corresponding to the terminal device is 2. According to a preset division rule, for example, different first spatial resources contain the same number of spatial layers.
  • the network device determines that the first space resource 1 includes the space layer 1 , and the first space resource 2 includes the space layer 2 .
  • the terminal device determines that the first time-frequency resource 1 includes PRG1 to PRG4 in the frequency domain, the first time-frequency resource 2 includes PRG5 to PRG8 in the frequency domain, and the first time-frequency resource 1 and the first time-frequency resource 2 are in the frequency domain.
  • the protocol may not specify the number of first time-frequency resources and/or the number of first space resources, and the network device may not configure the number of first time-frequency resources and/or the number of first space resources.
  • the number of frequency domain resource groups included in each first time-frequency resource is fixed, and/or the number of spatial layers included in each first spatial resource is fixed.
  • the number of the first time-frequency resources may vary with the change of the time-frequency resources of the downlink data, and the number of the first space resources may vary with the change of the number of spatial layers of the terminal device.
  • each first time-frequency resource includes only one RPG in the frequency domain, then if the time-frequency resource of the downlink data includes two RPGs, there are two first time-frequency resources.
  • each first space resource only includes one space layer, then if the terminal device has two space layers correspondingly, it has two first space resources. If the terminal device corresponds to 4 spatial layers, it has 4 first spatial resources.
  • the first factor may also be associated with data in only one dimension.
  • data on a first time-frequency resource is associated with a first factor, and a first time-frequency resource includes one or more frequency domain resource groups.
  • data on a first spatial resource is associated with a first factor, and a first spatial resource includes multiple spatial layers.
  • the precoding algorithm used by the network device to precode the data based on the first factor may be any one of the following algorithms: THP precoding, zero forcing (ZF) precoding, regular forcing Zero (regularized zero forcing, RZF) precoding, eigenzero forcing (EZF) precoding or minimum mean-square error (minimum mean-square error, MMSE) precoding.
  • the network device may also use other precoding algorithms to precode the data.
  • the first factor is related to one or more pieces of the following information: data on the first time-frequency resource, the first channel matrix corresponding to the first time-frequency resource, or the first time-frequency resource corresponding to the first time-frequency resource. a precoding matrix.
  • the first time-frequency resource is the first time-frequency resource where the data associated with the first factor is located.
  • the terminal device detects data on the first time-frequency resource and the first space resource.
  • the terminal device detects data on the first time-frequency resource 1 and the spatial layer 1 .
  • the terminal device detects data on the first time-frequency resource 2 and the spatial layer 1 .
  • the terminal device detects data on the first time-frequency resource 1 and the spatial layer 2 .
  • the terminal device detects data on the first time-frequency resource 2 and the spatial layer 2 .
  • FIG. 11 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • the network device may indicate the first factor to the terminal device, and then the terminal device may detect data on the first time-frequency resource and the first space resource based on the first factor.
  • the data detection method includes the following steps 1101 to 1103 . in:
  • the network device sends indication information to the terminal device, where the indication information indicates at least one first factor.
  • data on a first time-frequency resource and a first space resource is associated with a first factor, and data on different first time-frequency resources and first space resources are associated with an independently determined first factor.
  • the first factor is a scalar, used to precode data associated with the first factor
  • a first time-frequency resource includes one or more frequency domain resource groups
  • a first space resource includes one or more spatial resource groups Floor.
  • the indication information sent by the network device indicates factor 1 to factor 4.
  • the indication information may be downlink control information (downlink control information, DCI) signaling, or other signaling capable of indicating factors.
  • DCI downlink control information
  • the first factor may be a factor in a factor set or a factor in a quantization codebook.
  • the two implementations are described in detail below:
  • the first factor is the factor in the factor set.
  • This set of factors may also be referred to as a set of candidate factors.
  • the network device and the terminal device can obtain the factor set based on Q bits quantization, where Q is an integer greater than 0.
  • Q may be pre-specified by the protocol, or notified by the network device to the terminal device.
  • the terminal device may also obtain the factor set without quantizing the Q bits.
  • the factor set may be configured to the terminal device.
  • the set of factors may be predefined by the protocol.
  • the factor set obtained by uniform quantization of Q bits can be expressed as:
  • each factor in the factor set may correspond to a factor index, and when the indication information indicates the first factor, it may specifically indicate the index of the first factor.
  • each factor in the factor set corresponds to a parameter value used to determine the factor.
  • the indication information may specifically indicate the first factor by indicating the index of the parameter value of the first factor.
  • each factor in the factor set corresponds to a value of the parameter K.
  • the factor ⁇ corresponding to the K value can be expressed as:
  • the K value corresponding to factor 0 is 0, and the factor The corresponding K value is 1,...,factor The corresponding K value is N-1.
  • the indication information may indicate the first factor implicitly by indicating the index of the K value corresponding to the first factor.
  • a factor set including 8 factors can be obtained by uniform quantization based on Q bits.
  • the set of factors can be expressed as:
  • the network device selects a factor from a set of factors as a factor for data association on the first time-frequency resource 1 and the first space resource 1. and selecting factors from a set of factors as a factor of data association on the first time-frequency resource 1 and the first space resource 2. and selecting factors from a set of factors as a factor for data association on the first time-frequency resource 2 and the first space resource 1. and selecting a factor ⁇ from the factor set as a factor for data association on the first time-frequency resource 2 and the first space resource 2 . It can be seen that the network device needs to select 4 factors from the factor set and generate indication information, where the indication information is used to indicate the 4 factors.
  • the indication information may indicate the factor in the order of the first space resource and then the first time-frequency resource. For example, assuming that one factor requires 3 bits to indicate, the indication information requires a total of 12 bits to indicate 4 factors.
  • the first to third bits are used to indicate the factor associated with the spatial layer 1 and the first time-frequency resource 1.
  • the 4th to 6th bits are used to indicate the factor associated with the spatial layer 1 and the first time-frequency resource 2.
  • the seventh to ninth bits are used to indicate the factor associated with the spatial layer 2 and the first time-frequency resource 1.
  • the 10th to 12th bits are used to indicate the factor associated with the spatial layer 2 and the first time-frequency resource 2 .
  • the factors may be indicated in the order of the first time-frequency resource and then the first space resource.
  • the first to third bits are used to indicate a factor associated with the first time-frequency resource 1 and the spatial layer 1.
  • the fourth to sixth bits are used to indicate the factor associated with the first time-frequency resource 1 and the spatial layer 2.
  • the seventh to ninth bits are used to indicate the factor associated with the first time-frequency resource 2 and the spatial layer 1.
  • the 10th to 12th bits are used to indicate the factor associated with the first time-frequency resource 2 and the spatial layer 2 .
  • the indication information may indicate the 4 factors through the indices of the 4 factors.
  • the factor index corresponding to each factor in the factor set can be shown in Table 1 below. After the terminal device receives the indication information, it can determine the factor indicated by the indication information based on the corresponding relationship shown in Table 1 below.
  • the indication information may indicate the 4 factors through indexes of 4 K values.
  • the factor corresponding to K is equal to The corresponding relationship between the factor and the K value is shown in Table 2 below.
  • the terminal device After the terminal device receives the indication information, it can determine the K value based on the correspondence between the K value and the index of the K value shown in Table 3 below, and then calculate the corresponding factor based on the K value.
  • a smaller factor index can also correspond to a larger factor
  • a smaller K value index can also correspond to a larger K value. This embodiment of the present application does not limit how the factor index corresponds to the factor, and does not limit how the K value index corresponds to the K value.
  • the first space resource includes a space layer, and the first factor associated with the data on the first time-frequency resource and the first space resource is a factor in the quantization codebook.
  • the quantization codebook includes P factor vectors, each factor vector is a vector of the quantization codebook, the factor vector includes N factors, and the factors of the factor vector are associated with the reference signal ports one by one, and P and N are greater than zero. Integer.
  • the indication information indicates the first factor by carrying an index of the factor vector. Accordingly, the terminal device may determine the first factor from the quantization codebook based on the index of the factor vector and the reference signal port allocated to the terminal device. By presetting the factor vector (or called factor combination), the granularity of factors in the spatial dimension can be made finer, and by indicating the index of one factor vector, multiple first factors can be indicated, which can greatly save signaling overhead.
  • quantization codebook and how the indication information indicates the factor are further described below with a specific example:
  • FIG. 12 is a schematic diagram of a quantization codebook.
  • the quantization codebook includes P factor vectors, each factor vector is a vector in the codebook, and the vector may be in the form of a column vector or a row vector.
  • Figure 12 takes each factor vector as a column vector in the codebook as an example.
  • a factor vector may also be called an array, or a column or row in the quantization codebook.
  • Each factor vector contains N rows of factors (ie, each factor vector contains N factors), and each row factor of the factor vector is associated with a DMRS port number.
  • This association relationship may be a fixed association relationship preset by the protocol, or may be a preconfigured association relationship of the network device. As shown in FIG.
  • the factors in the first row to the Nth row of the factor vector correspond to DMRS port 0 to DMRS port N-1, respectively.
  • the factor vectors are a row vector, each factor vector contains N columns of factors, and each column of the factor vector is associated with a DMRS port number.
  • the first time-frequency resources are divided according to the frequency domain, the frequency-domain resources of each first time-frequency resource are different, and the time-domain resources of each first time-frequency resource are the same.
  • Each first time-frequency resource includes a frequency domain length of 4 PRGs in the frequency domain, and includes one or more time units in the time domain.
  • Each first spatial resource includes 1 spatial layer.
  • the network device may then select two factor vectors from the P factor vectors. Assume that the network device selects the factor vector of the first column for the first time-frequency resource 1, spatial layer 1 and spatial layer 2, and selects the factor vector of the second column for the first time-frequency resource 2, spatial layer 1 and spatial layer 2 .
  • the network device sends indication information to the terminal device, where the indication information carries the index of the factor vector in the first column and the index of the factor vector in the second column.
  • MU-MIMO multi-user multiple-input multiple-output
  • terminal device 1 corresponds to terminal device 1
  • spatial layer 2 corresponds to terminal device 2.
  • the quantization codebook shown in FIG. 12 is also stored in the terminal device 1 and the terminal device 2 .
  • terminal device 1 and terminal device 2 determine the factor vector of the first column and the factor vector of the second column from the quantization codebook based on the index of the factor vector of the first column and the index of the factor vector of the second column.
  • DMRS port 0 is associated with spatial layer 1
  • DMRS port 1 is associated with spatial layer 2.
  • the DMRS port allocated by the network device for terminal device 1 is 0.
  • the terminal device 1 determines that 1 in the factor vector of the first column is the factor 1 associated with the data on the first time-frequency resource 1 and the spatial layer 1, and determines that 1 in the factor vector of the second column is the first time-frequency resource 2 is a factor of 2 associated with data on spatial layer 1.
  • the terminal device 1 detects the data precoded based on the factor 1 based on the factor 1, that is, detects the data on the first time-frequency resource 1 and the spatial layer 1 based on the factor 1.
  • the terminal device 1 detects the data precoded based on the factor 2 based on the factor 2, that is, detects the data on the first time-frequency resource 2 and the spatial layer 1 based on the factor 2.
  • the DMRS port allocated by the network device for terminal device 1 is 1.
  • Terminal device 2 determines that in the factor vector of the first column factor 3 associated with the data on the first time-frequency resource 1 and spatial layer 2, and determine the factor 3 in the second column of the factor vector is a factor 4 associated with the data on the first time-frequency resource 2 and the spatial layer 2 .
  • the terminal device 2 detects the data precoded based on the factor 3 based on the factor 3, that is, detects the data on the first time-frequency resource 1 and the spatial layer 2 based on the factor 2.
  • the terminal device 2 detects the data precoded based on the factor 4 based on the factor 4, that is, detects the data on the first time-frequency resource 2 and the spatial layer 2 based on the factor 2.
  • a terminal device is assigned a DMRS port 0 and a DMRS port 1 by a network device.
  • DMRS port 0 is associated with spatial layer 1
  • DMRS port 1 is associated with spatial layer 2. Then, the terminal device determines that 1 in the factor vector of the first column is the factor 1 associated with the data on the first time-frequency resource 1 and the spatial layer 1, is the factor 2 associated with the data on the first time-frequency resource 1 and the spatial layer 2.
  • the terminal device determines that 1 in the factor vector of the second column is the factor 3 associated with the data on the first time-frequency resource 2 and the spatial layer 1, is a factor 4 associated with the data on the first time-frequency resource 2 and the spatial layer 2 .
  • the terminal device 1 detects the data precoded based on the factor 1 based on the factor 1.
  • the terminal device 1 detects the data precoded based on the factor 2 based on the factor 2.
  • the terminal device 1 detects the data precoded based on the factor 3 based on the factor 3.
  • the terminal device 1 detects the data precoded based on the factor 4 based on the factor 4.
  • the network device only needs to indicate an index of a factor vector for each first time-frequency resource.
  • the overhead of the network device indication factor vector is bits, where rounded up.
  • Figure 12 takes the factor e j ⁇ as an example.
  • the factor can also be e- j ⁇ , or the factor can also be j ⁇ , or the factor can also be ⁇ .
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • step 1101 may be performed before step 1102 , or may be performed after step 1102 , or step 1101 may be performed simultaneously with step 1102 .
  • the specific implementation manner of step 1102 is the same as the specific implementation manner of step 501. For details, reference may be made to the description under step 501, which is not repeated here.
  • the terminal device detects, based on the first factor, data precoded based on the first factor.
  • the terminal device after receiving the indication information, the terminal device detects data precoded based on the first factor based on the first factor.
  • Example 1 Take the network device precoding data by using the factor-based THP precoding algorithm as an example. Based on the previous description, the data symbol vectors received by all terminal devices can be expressed as:
  • the data signal received by the kth terminal device on the first time-frequency resource and the lth spatial layer can be expressed as:
  • the terminal device can use DMRS to estimate the equivalent channel coefficient corresponding to the lth spatial layer
  • the terminal device is based on the received signal y k,l , the equivalent channel coefficient and the first factor or Either j ⁇ k,l or -j ⁇ k,l , the data symbols sent by the network device can be recovered.
  • the first factor corresponding to the first time-frequency resource and the data on the lth spatial layer is Then the terminal equipment uses the equivalent channel coefficient obtained by the lth spatial layer with factor Multiply to get the equivalent channel coefficient Using the received signal y k,l and the equivalent channel coefficients Detect the received signal.
  • the terminal equipment uses the reference signal to estimate the equivalent channel coefficient corresponding to the data symbol Introduce:
  • DMRS Demodulation Reference Signal
  • DMRS is used for channel estimation at the receiver to complete data detection.
  • the DMRS and the data perform exactly the same precoding operation (that is, use the same precoding matrix for calculation), so as to ensure that the DMRS and the data experience the same equivalent channel.
  • the DMRS cannot use the same precoding process as the data, because the modulo operation will introduce a disturbance term d k ⁇ , which changes the original DMRS signal sequence. As a result, the DMRS signal cannot be known to the receiving end, so that correct channel estimation cannot be performed.
  • DMRS For the THP precoding channel estimation problem, DMRS needs to be precoded differently from data. Usually DMRS can use linear precoding. In an implementation manner, if the network device uses the factor-based THP precoding algorithm to precode data, assuming that the DMRS symbol vector sent by the sender is s RS , the process of precoding the DMRS by the network device can be expressed as:
  • the estimation result of the equivalent channel matrix RH can be obtained through a channel estimation algorithm (such as least squares LS estimation algorithm or minimum mean square error MMSE algorithm, etc.).
  • R H is a lower triangular matrix.
  • the G matrix is a diagonal matrix, and its main diagonal elements are the reciprocals of the main diagonal elements of the R matrix. Therefore, the main diagonal elements of the equivalent channel matrix RH corresponding to the DMRS are the same as the main diagonal elements of the equivalent channel matrix G -1 corresponding to the data symbols. Therefore, the terminal equipment can obtain the equivalent channel matrix estimated results.
  • the terminal device can learn the power factor difference between DMRS precoding and data precoding, that is, the difference between ⁇ and ⁇ . Based on this power factor difference, the terminal device can determine estimated results. Among them, ⁇ can also be 1 by default.
  • the process of precoding the DMRS by the network device can be expressed as:
  • the DMRS symbol vector received by the terminal device can be expressed as:
  • the equivalent channel matrix can be obtained through a channel estimation algorithm (such as the least squares LS estimation algorithm or the minimum mean square error MMSE algorithm, etc.). estimated results.
  • the terminal device can learn the power factor difference between DMRS precoding and data precoding, that is, the difference between ⁇ and ⁇ . Based on this power factor difference, the terminal device can determine estimated results. Among them, ⁇ can also be 1 by default.
  • Example 2 Take the network device precoding data by using the factor-based EZF precoding algorithm as an example. Based on the aforementioned formula (14), the data symbol vector received by the kth terminal device on the first time-frequency resource, L k spatial layers can be expressed as:
  • H k is the channel matrix corresponding to the kth terminal device
  • Wk is the precoding matrix corresponding to the kth terminal device
  • sk is the data symbol vector sent by the kth terminal device on the first time-frequency resource
  • n k is the additive noise corresponding to the kth terminal device
  • is the power normalization factor or power control factor
  • j ⁇ k,l represents the first factor corresponding to the lth spatial layer of the kth terminal device, and the same is true in the following text, which will not be repeated in the following text.
  • the terminal device is based on the received signal y k , the equivalent channel matrix H k W k and the factor matrix
  • the data symbols sent by the network device can be recovered.
  • the network device uses the factor-based EZF precoding algorithm to precode data, it is assumed that the DMRS symbol vector of the sender corresponding to the kth terminal device is in The DMRS symbol corresponding to the lth DMRS port corresponds to the lth spatial layer of the kth terminal device.
  • the DMRS symbol vector corresponding to the kth user by the network device The precoding process can be expressed as:
  • W k is the precoding matrix corresponding to the kth terminal device.
  • the DMRS signals of each terminal device are orthogonal, and the DMRS symbol vector received corresponding to the kth terminal device can be expressed as:
  • n k represents the additive noise vector corresponding to the kth terminal device.
  • I k represents the corresponding interference signal received by the kth terminal device. Due to DMRS symbols It is known to the transceiver end, so the equivalent channel matrix can be obtained by channel estimation algorithm (such as least squares LS estimation algorithm or minimum mean square error MMSE algorithm, etc.) estimated results.
  • channel estimation algorithm such as least squares LS estimation algorithm or minimum mean square error MMSE algorithm, etc.
  • the network device uses the same factor to precode the data symbols on a first time-frequency resource and data on a first space resource, and the network device precodes the data symbols for a first time-frequency resource.
  • the data on the resource and a first spatial resource need only indicate a factor.
  • One first time-frequency resource includes one or more frequency domain resource groups, and one first spatial resource includes one or more spatial layers.
  • the network equipment does not need to indicate a factor for each RE and each spatial layer. Therefore, based on the method described in FIG. 11 , it is beneficial to save the signaling overhead of the indication information.
  • FIG. 13 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • the data detection method includes the following operations 1301 to 1305 . in:
  • the network device precodes at least one reference signal, and sends the precoded at least one reference signal to the terminal device.
  • the time-frequency resources of the downlink data scheduled by the network device are divided into one or more first time-frequency resources and one or more second time-frequency resources.
  • a second time-frequency resource and a second space resource are associated with a reference signal
  • data on a second time-frequency resource and a second space resource are associated with a second factor
  • the second factor is a scalar
  • one second time-frequency resource includes one or more frequency domain resource groups
  • one second spatial resource includes one or more spatial layers.
  • the data on a first time-frequency resource and a first space resource is associated with a first factor, and the data on different first time-frequency resources and the data on the first space resource are associated with an independently determined first factor, and the first factor is A scalar, used for precoding data associated with the first factor, one first time-frequency resource includes one or more frequency domain resource groups, and one first spatial resource includes one or more spatial layers.
  • first time-frequency resource, the first space resource, and the first factor reference may be made to the description in the above-mentioned embodiment corresponding to FIG. 5 or FIG. 11 , and details are not repeated here.
  • precoding the reference signal may be equivalent to preprocessing the transmitted reference signal symbols or reference signal elements, such as performing phase rotation on the transmitted reference signal symbols or reference signal elements.
  • the reference signal in the whole of the embodiments of this application may include one or more reference signal symbols, and one reference signal symbol represents one reference signal element.
  • the reference signal symbols may be demodulation reference signal DMRS symbols, or the reference signal symbols may be symbols on some resources in a DMRS resource, or the reference signal symbols may also be other types of reference signal symbols.
  • Reference signal symbols included in one reference signal may be located in different time-frequency units.
  • One reference signal symbol may correspond to one reference signal port, and one reference signal port may correspond to one spatial layer.
  • Reference signal symbols corresponding to different reference signal ports may constitute a reference signal symbol vector.
  • Different reference signal ports may be orthogonal ports, that is, reference signal symbols corresponding to different reference signal ports may be sent by one or more of frequency division multiplexing, time division multiplexing or code division multiplexing. Multiple reference signal symbols may be sent on different time-frequency resources, or may be sent on the same time-frequency resource.
  • precoding the reference signal may be equivalent to performing preprocessing on the transmitted reference signal symbol or reference signal element, such as performing phase rotation on the transmitted reference signal symbol or reference signal element.
  • the network device precodes the reference signal associated with the second time-frequency resource and the second space resource based on the second factor associated with the data on the second time-frequency resource and the second space resource . That is to say, the second factor associated with the data on the second time-frequency resource and the second space resource is also used to precode the reference signal associated with the second time-frequency resource and the second space resource .
  • one second time-frequency resource includes one or more frequency domain resource groups
  • one second spatial resource includes one or more spatial layers.
  • the number of frequency domain resource groups included in different second time-frequency resources may be the same or different.
  • the number of spatial layers included in different second spatial resources may also be the same or different.
  • a second time-frequency resource including one or more frequency domain resource groups can be understood as: the length of a second time-frequency resource in the frequency domain is the frequency domain length of one or more frequency domain resource groups, or the length of a second time-frequency resource in the frequency domain.
  • the frequency domain bandwidth of the frequency resource is the frequency domain length of one or more frequency domain resource groups, or a second time-frequency resource includes one or more frequency domain resource groups in the frequency domain.
  • one second time-frequency resource may further include one or more time units in the time domain.
  • a time unit may be one or more (Orthogonal Frequency Division Multiplexing, OFDM) symbols, or one or more time slots (slots).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of time units included in different second time-frequency resources in the time domain may be the same or different.
  • FIG. 14a is a schematic diagram of the first time-frequency resource and the second time-frequency resource on the spatial layer 1 .
  • the first time-frequency resource 1, the first time-frequency resource 2, the second time-frequency resource 1, and the second time-frequency resource 2 respectively include three OFDM symbols in the time domain and two in the frequency domain.
  • RB The OFDM symbols occupied by the first time-frequency resource 1, the first time-frequency resource 2, the second time-frequency resource 1 and the second time-frequency resource 2 are different, and the RBs occupied in the frequency domain are the same.
  • the first time-frequency resource 1, the first time-frequency resource 2, the second time-frequency resource 1, and the second time-frequency resource 2 are divided according to the time domain.
  • the time-frequency resources in the white grid in Fig. 14a are used for mapping reference signals.
  • the reference signal may be a DMRS or other reference signals, and FIG. 14a takes the reference signal as a DMRS as an example.
  • 14b to 23, 26a, 26b, 28, and 30, the time-frequency resources of the white grids are also used for mapping reference signals, which will not be described in detail below.
  • the second time-frequency resource 1 and the data on the spatial layer 1 are associated with the second factor t 2
  • the second time-frequency resource 1 and the spatial layer 1 are associated with the DMRS1
  • the network device performs the DMRS1 based on the second factor t 2
  • the data on the first time-frequency resource 1 and the spatial layer 1 are associated with a first factor t 1
  • the network device precodes the data on the first time-frequency resource 1 and the spatial layer 1 based on the first factor t 1 .
  • the second time-frequency resource 2 and the data on the spatial layer 1 are associated with the second factor t 4
  • the second time-frequency resource 2 and the spatial layer 1 are associated with the DMRS2
  • the network device precodes the DMRS2 based on the second factor t 4
  • the data on the first time-frequency resource 2 and the spatial layer 1 are associated with a first factor t 3
  • the network device precodes the data on the first time-frequency resource 2 and the spatial layer 1 based on the first factor t 3 .
  • FIG. 14a can be understood as a schematic diagram of the first time-frequency resource and the second time-frequency resource on the spatial layer 1 .
  • FIG. 14b can be understood as a schematic diagram of the first time-frequency resource and the second time-frequency resource on the spatial layer 2 .
  • the second factor t5 in Figure 14b is the factor for the data association on the second time-frequency resource 1 and the second space resource 2.
  • the second time-frequency resource 1 and the second space resource 2 are associated with DMRS3.
  • the network device precodes DMRS3 based on the second factor t5, and precodes data on the second time-frequency resource 1 and the second spatial resource 2 based on the second factor t5.
  • the second factor t 6 is a factor for data association on the second time-frequency resource 2 and the second space resource 2 .
  • the second time-frequency resource 2 and the second spatial resource 2 are associated with DMRS4, and the network device precodes the DMRS4 based on the second factor t6, and the second time-frequency resource 2 and the second spatial resource are based on the second factor t6. 2 is precoded.
  • the first time-frequency resource and the second time-frequency resource can be divided into the following three ways:
  • the time domain resources included in the first time-frequency resource are different from the time domain resources included in the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource are divided according to the time domain. For example, as shown in Figures 14a and 14b.
  • FIG. 15 takes the example of having one second time-frequency resource and two first time-frequency resources. Assuming that there is a first space resource and a second space resource, the first space resource and the second space resource are both space layer 1, FIG. 15 is a schematic diagram of the first time-frequency resource and the second time-frequency resource on the space layer 1 , Figures 16 to 23 are the same, and will not be described in detail later. As shown in FIG. 15 , the second time-frequency resource 1, the first time-frequency resource 1, and the first time-frequency resource 2 respectively include 3 OFDM symbols in the time domain, and respectively include 2 RBs in the frequency domain. In addition, the second time-frequency resource 1, the first time-frequency resource 1, and the first time-frequency resource 2 include different OFDM symbols in the time domain, and include the same RBs in the frequency domain.
  • FIG. 16 takes the example of having two second time-frequency resources and one first time-frequency resource.
  • the second time-frequency resource 1, the first time-frequency resource 1 and the second time-frequency resource 2 respectively include 3 OFDM symbols in the time domain, and respectively include 2 RBs in the frequency domain.
  • the second time-frequency resource 1, the first time-frequency resource 1, and the second time-frequency resource 2 include different OFDM symbols in the time domain, and the RBs included in the frequency domain are the same.
  • Mode 1 can make the second time-frequency resource closer in time to the reference signal resource corresponding to the factor corresponding to the second time-frequency resource, which is conducive to accurately estimating the equivalent value corresponding to the data on the second time-frequency resource based on the reference signal channel.
  • the frequency domain resources included in the first time-frequency resource are different from the frequency domain resources included in the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource are divided according to the frequency domain.
  • FIG. 17 takes the example of having one first time-frequency resource and one second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource respectively include 9 OFDM symbols in the time domain, and each include 1 RB in the frequency domain.
  • the first time-frequency resource and the second time-frequency resource include the same OFDM symbols in the time domain, and different RBs included in the frequency domain.
  • FIG. 18 takes the example of having one first time-frequency resource and two second time-frequency resources.
  • the first time-frequency resource 1, the second time-frequency resource 1 and the second time-frequency resource 2 respectively include 9 OFDM symbols in the time domain and 1 RB respectively in the frequency domain.
  • the first time-frequency resource 1, the second time-frequency resource 1, and the second time-frequency resource 2 include the same OFDM symbols in the time domain, and different RBs included in the frequency domain.
  • FIG. 19 takes the example of having two first time-frequency resources and one second time-frequency resource.
  • the first time-frequency resource 1, the first time-frequency resource 2, and the second time-frequency resource 1 respectively include 9 OFDM symbols in the time domain, and respectively include one different RB in the frequency domain.
  • the first time-frequency resource 1, the first time-frequency resource 2, and the second time-frequency resource 1 include the same OFDM symbols in the time domain, and different RBs included in the frequency domain.
  • Mode (2) can make the second time-frequency resource closer to the reference signal resource corresponding to the factor corresponding to the second time-frequency resource in the frequency domain, which is conducive to accurately estimating the data corresponding to the second time-frequency resource based on the reference signal, etc. effective channel.
  • the first time-frequency resource and the second time-frequency resource include different frequency domain resource groups, and the first time-frequency resource and the second time-frequency resource include different time domain resources. That is, the first time-frequency resource and the second time-frequency resource are divided according to the time domain and the frequency domain.
  • the frequency domain resource group included in the second time-frequency resource in the frequency domain may be N times the first time-frequency resource, or N is an integer greater than 1.
  • the number of spatial layers included in the second spatial resource may also be N times the number of spatial layers included in the first spatial resource or times.
  • FIG. 20 takes the example of having two first time-frequency resources and one second time-frequency resource.
  • the first time-frequency resource 1, the first time-frequency resource 2 and the second time-frequency resource 1 respectively include three OFDM symbols in the time domain.
  • the second time-frequency resource 1 includes two RBs in the frequency domain, the first time-frequency resource 1 and the first time-frequency resource 2 respectively include one RB in the frequency domain, and the first time-frequency resource 1 and the first time-frequency resource 2 include RBs are not the same.
  • FIG. 21 takes the example of having two second time-frequency resources and one first time-frequency resource.
  • the first time-frequency resource 1, the second time-frequency resource 1 and the second time-frequency resource 2 respectively include three OFDM symbols in the time domain.
  • the first time-frequency resource 1 includes two RBs in the frequency domain
  • the second time-frequency resource 1 and the second time-frequency resource 2 respectively include one RB in the frequency domain
  • the second time-frequency resource 1 and the second time-frequency resource 2 include RBs are not the same.
  • one time-frequency resource set includes one or more first time-frequency resources and one or more second time-frequency resources.
  • the first time-frequency resource and the second time-frequency resource further divide a time-frequency resource set into time-frequency resource subsets with smaller granularity, and each time-frequency resource subset only contains less time-frequency resources resource.
  • Different time-frequency resource subsets correspond to different factors, which is conducive to realizing refined factor adjustment, so as to maximize the power efficiency improvement brought by the factors.
  • the concept of time-frequency resource sets may not exist, and the time-frequency resources of downlink data scheduled by the network device may be directly divided into one or more first time-frequency resources and one or more second time-frequency resources.
  • the time-frequency resource set can be divided into the following three ways:
  • FIG. 22 takes the example of having two time-frequency resource sets.
  • the time-frequency resource set 1 includes 7 symbols in the time domain, and the time-frequency resource set 2 also includes 7 symbols in the time domain.
  • the time-frequency resource set 1 includes 2 RBs in the frequency domain.
  • the time-frequency resource set 2 includes 2 RBs in the frequency domain.
  • Time-frequency resource set 1 and time-frequency resource set 2 include different RBs in the frequency domain.
  • the time-frequency resource set 1 includes a first time-frequency resource 1 and a second time-domain resource 1 .
  • the time-frequency resource set 2 includes a first time-frequency resource 2 and a second time-domain resource 2 .
  • the time-frequency resource set 1 may also include multiple first time-frequency resources and multiple second time-frequency resources.
  • the time-frequency resource set 2 may also include multiple first time-frequency resources and multiple second time-frequency resources.
  • FIG. 22 takes as an example that the time-frequency resource set 1 includes a first time-frequency resource and a second time-frequency resource, and the time-frequency resource set 2 includes a first time-frequency resource and a second time-frequency resource.
  • the time-frequency resources used for mapping reference signals may not belong to the resources in the time-frequency resource set.
  • FIG. 22 takes the time-frequency resources used for mapping reference signals belonging to the resources in the time-frequency resource set as an example.
  • FIG. 23 takes the example of having two time-frequency resource sets.
  • the time-frequency resource set 1 includes 4 symbols in the time domain, and the time-frequency resource set 2 also includes 4 symbols in the time domain.
  • Time-frequency resource set 1 and time-frequency resource set 2 include different symbols in the time domain.
  • the time-frequency resource set 1 includes 4 RBs in the frequency domain.
  • the time-frequency resource set 2 includes 4 RBs in the frequency domain.
  • the time-frequency resource set 1 includes a first time-frequency resource 1 and a second time-domain resource 1 .
  • the time-frequency resource set 2 includes a first time-frequency resource 2 and a second time-domain resource 2 .
  • the time-frequency resource set 1 may also include multiple first time-frequency resources and multiple second time-frequency resources.
  • the time-frequency resource set 2 may also include multiple first time-frequency resources and multiple second time-frequency resources.
  • FIG. 23 takes as an example that the time-frequency resource set 1 includes a first time-frequency resource and a second time-frequency resource, and the time-frequency resource set 2 includes a first time-frequency resource and a second time-frequency resource.
  • the number of the second time-frequency resources is predetermined by the protocol; or, before the terminal device receives the indication information sent by the network device, the terminal device may also receive configuration information sent by the network device, and the configuration information is used for configuring the number of second time-frequency resources.
  • the network device can send the configuration information to the terminal device.
  • the network device and the terminal device determine the time-frequency resources included in each second time-frequency resource based on the time-frequency resources of the downlink data scheduled by the network device and the number of second time-frequency resources.
  • the number of frequency domain resources included in the second time-frequency resource (or the bandwidth of the second time-frequency resource in the frequency domain) is specified by a protocol or configured by a network device.
  • the number of frequency domain resources included in the second time-frequency resource may be one PRG.
  • the terminal device and the network device may divide one or more second time-frequency resources in the scheduled time-frequency resources according to the preset second time-frequency resource division method based on the number of frequency domain resources included in the second time-frequency resources. frequency resources.
  • the protocol when there are one or more time-frequency resource sets, the protocol may pre-specify the number of time-frequency resource sets and/or the number and/or time-frequency resources of the first time-frequency resources included in the time-frequency resource set the number of second time-frequency resources included in the resource set; or, when there are one or more time-frequency resource sets, the network device may also send configuration information to configure the number of time-frequency resource sets and/or the time-frequency resource sets included The number of first time-frequency resources and/or the number of second time-frequency resources included in the set of time-frequency resources. Accordingly, the terminal device can receive the configuration information.
  • the network device is based on time-frequency resources of downlink data scheduled by the network device, and the number of time-frequency resource sets and/or the number and/or time-frequency resources of the first time-frequency resources included in the time-frequency resource set
  • the number of second time-frequency resources included in the resource set determines the time-frequency resources included in the first time-frequency resource and/or the second time-frequency resource in each time-frequency resource set.
  • the network device precodes the data on the second time-frequency resource and the second space resource based on the second factor, and sends the precoded data on the second time-frequency resource.
  • the process of precoding the data or the reference signal by the second factor is as follows:
  • is the power adjustment factor, or or represents the second factor corresponding to the kth spatial layer
  • W is the linear precoding matrix.
  • the process of precoding the data by the second factor is as follows:
  • is the power adjustment factor, or or Represents the second factor corresponding to the kth spatial layer
  • the Q matrix and the B matrix are related to the channel matrix H.
  • is the modulo operation parameter.
  • the process of precoding the reference signal by using the second factor is as follows:
  • is the power adjustment factor, or or Represents the second factor corresponding to the kth spatial layer
  • the Q matrix and the B matrix are related to the channel matrix H.
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • the process of precoding the data by the first factor is as follows:
  • is the power adjustment factor, or or represents the first factor corresponding to the kth spatial layer
  • W is the linear precoding matrix.
  • the process of precoding the data by the first factor is as follows:
  • is the power adjustment factor, or or Represents the first factor corresponding to the kth spatial layer
  • the Q matrix and the B matrix are related to the channel matrix H.
  • is the modulo operation parameter.
  • the first factor is related to one or more pieces of the following information: data on the first time-frequency resource, the first channel matrix corresponding to the first time-frequency resource, or the first time-frequency resource corresponding to the first time-frequency resource. a precoding matrix.
  • the first time-frequency resource is the first time-frequency resource where the data associated with the first factor is located.
  • the second factor is related to one or more of the following information: data on the second time-frequency resource, a reference signal associated with the second time-frequency resource, and a second time-frequency resource corresponding to the second time-frequency resource.
  • the second time-frequency resource is the second time-frequency resource where the data associated with the second factor is located.
  • the data on the first time-frequency resource may be transmission data symbols on all spatial layers corresponding to the first time-frequency resource.
  • the data on the second time-frequency resource may be transmission data symbols on all spatial layers corresponding to the second time-frequency resource.
  • the reference signals associated with the second time-frequency resource may be reference signal symbols corresponding to all spatial layers corresponding to the second time-frequency resource.
  • the factor jointly considers the corresponding channel matrix, the precoding matrix and the transmitted data signal, or the factor jointly considers the corresponding channel matrix, the precoding matrix, the transmitted data signal and the corresponding reference signal, and the maximum Maximize the use of signal and channel characteristics to achieve the best interference avoidance and signal power enhancement, which is beneficial to improve system performance.
  • the terminal device Based on the reference signal, the terminal device detects data on the second time-frequency resource and the second space resource associated with the reference signal.
  • the terminal device after receiving at least one reference signal, the terminal device detects data on the second time-frequency resource and the second space resource associated with the reference signal based on the reference signal.
  • the terminal device detects data on the first time-frequency resource and the first space resource.
  • FIG. 14a shows the first time-frequency resource and the second time-frequency resource on the space layer 1 schematic diagram.
  • the data on the second time-frequency resource 1 and spatial layer 1 are associated with a second factor t 2
  • the second time-frequency resource 1 and spatial layer 1 are associated with DMRS1
  • the network device is based on the second factor t t 2.
  • the network device precodes the data on the second time-frequency resource 1 and the spatial layer 1 based on the second factor t2 , and sends the precoded data on the second time-frequency resource 1.
  • the data on the first time-frequency resource 1 and the data on the spatial layer 1 are associated with the first factor t 1 , and the network device precodes the data on the first time-frequency resource 1 and the spatial layer 1 based on the first factor t 1 , and sends data after precoding.
  • the terminal device After receiving the DMRS1, the terminal device detects the data on the second time-frequency resource 1 and the spatial layer 1 based on the DMRS1.
  • the terminal device also detects data on the first time-frequency resource 1 and the spatial layer 1.
  • the data on the second time-frequency resource 2 and the spatial layer 1 are associated with the second factor t 4
  • the second time-frequency resource 2 and the spatial layer 1 are associated with the DMRS2
  • the network device based on the second factor t 4 DMRS2 Precoding is performed, and the precoded DMRS2 is sent.
  • the network device precodes the data on the second time-frequency resource 2 and the spatial layer 1 based on the second factor t4, and sends the precoded data.
  • the data on the first time-frequency resource 2 and the spatial layer 1 are associated with the first factor t3
  • the network device precodes the data on the first time-frequency resource 2 and the spatial layer 1 based on the first factor t3 , and sends data after precoding.
  • the terminal device detects the data on the second time-frequency resource 2 and the spatial layer 1 based on the DMRS2.
  • the terminal device also detects data on the first time-frequency resource 2 and the spatial layer 1 .
  • the specific implementation of the terminal device detecting the data on the second time-frequency resource 1 and the spatial layer 1 based on DMRS1, and detecting the data on the second time-frequency resource 2 and the spatial layer 1 based on DMRS2 can refer to the implementation corresponding to FIG. 24 below. The description in the example is not repeated here.
  • the specific implementation of the terminal device detecting the data on the first time-frequency resource 1 and the spatial layer 1, and detecting the data on the first time-frequency resource 2 and the spatial layer 1 can refer to the corresponding Figure 24 or Figure 25 or Figure 27 below. The descriptions in the embodiments are not repeated here.
  • the time-frequency resources scheduled by the network device can be divided into the first time-frequency resources and the second time-frequency resources, so that the data on the first time-frequency resources and the second time-frequency resources can use different
  • the factors are pre-coded, so that the granularity of the factors can be finer, thereby improving the system performance.
  • the factor used for precoding the second time-frequency resource and the second space resource is carried by the reference signal, and the network device does not need to indicate the factor used for precoding the second time-frequency resource and the second space resource, which can save the indication Signaling overhead.
  • FIG. 24 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • the network device can also indicate the first information related to the first factor to the terminal device through signaling, so that the terminal device can determine the first factor based on the first information.
  • Data on the first time-frequency resource and the first space resource is detected.
  • the data detection method includes the following operations 2401 to 2406 . in:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate at least one piece of first information.
  • a piece of first information is related to a first factor, and a piece of first information is associated with a second time-frequency resource and a second space resource.
  • a second time-frequency resource and a second space resource are associated with a reference signal, and data on a second time-frequency resource and a second space resource is associated with a second factor, and the second factor is a scalar, used for The data associated with the second factor is precoded, one second time-frequency resource includes one or more frequency domain resource groups, and one second spatial resource includes one or more spatial layers.
  • the data on a first time-frequency resource and a first space resource is associated with a first factor, and the data on different first time-frequency resources and the data on the first space resource are associated with an independently determined first factor, and the first factor is A scalar, used for precoding data associated with the first factor, a first time-frequency resource includes one or more frequency domain resource groups, and a first spatial resource includes one or more spatial layers.
  • a first time-frequency resource includes one or more frequency domain resource groups
  • a first spatial resource includes one or more spatial layers.
  • a first factor is associated with one or more second factors, and a first information is related to a first factor and a second factor associated with the first factor.
  • the second time-frequency resource and the second space resource where the data associated with the second factor related to the first information is located are the second time-frequency resource and the second space resource associated with the first information.
  • FIG. 14a shows the first time-frequency resource and the second time-frequency resource on the space layer 1 Schematic diagram of frequency resources.
  • the first factor t1 is a factor associated with data on the first time-frequency resource 1 and the first space resource.
  • the second factor t 2 is a factor for data association on the second time-frequency resource 1 and the second space resource.
  • the first factor t3 is a factor for data association on the first time-frequency resource 2 and the first space resource.
  • the second factor t 4 is a factor of the association on the second time-frequency resource 2 and the second space resource.
  • the first factor t 1 is associated with the second factor t 2 .
  • the first factor t3 is associated with the second factor t4.
  • the indication information needs to indicate two pieces of first information.
  • the first information 1 is related to the first factor t 1 and the second factor t 2 , and the first information 1 is associated with the second time-frequency resource 1 and the second space resource.
  • DMRS1 is associated with the second time-frequency resource 1 and the second spatial resource, so DMRS1 is precoded based on the second factor t2 .
  • the first information 2 is related to the first factor t 3 and the second factor t 4 , and the first information 2 is associated with the second time-frequency resource 2 and the second space resource.
  • DMRS2 is associated with the second time-frequency resource 2 and the second spatial resource, so DMRS2 is precoded based on the second factor t4.
  • FIG. 14a can be understood as a schematic diagram of the first time-frequency resource and the second time-frequency resource on the spatial layer 1 .
  • FIG. 14b can be understood as a schematic diagram of the first time-frequency resource and the second time-frequency resource on the spatial layer 2 .
  • the second factor t 5 is the factor associated with the second time-frequency resource 1 and the second space resource 2 .
  • the second factor t 6 is a factor associated with the second time-frequency resource 2 and the second space resource 2 .
  • the first factor t 1 is associated with the second factor t 2 and the second factor t 5 .
  • the first factor t 3 is associated with the second factor t 4 and the second factor t 6 .
  • the indication information needs to indicate 4 pieces of first information.
  • the first information 1 is related to the first factor t 1 and the second factor t 2 , and the first information 1 is associated with the second time-frequency resource 1 and the second space resource 1 .
  • DMRS1 is associated with the second time-frequency resource 1 and the second spatial resource 1, so DMRS1 is precoded based on the second factor t2 .
  • the first information 2 is related to the first factor t 3 and the second factor t 4 , and the first information 2 is associated with the second time-frequency resource 2 and the second space resource 1 .
  • DMRS2 is associated with the second time-frequency resource 2 and the second spatial resource 1, so DMRS2 is precoded based on the second factor t4.
  • the first information 3 is related to the first factor t 1 and the second factor t 5 , and the first information 3 is associated with the second time-frequency resource 1 and the second space resource 2 .
  • DMRS3 is associated with the second time-frequency resource 1 and the second spatial resource 2, so DMRS3 is precoded based on the second factor t5.
  • the first information 4 is related to the first factor t 3 and the second factor t 6
  • the first information 4 is related to the DMRS 4
  • the first information 4 is associated with the second time-frequency resource 2 and the second space resource 2 .
  • DMRS4 is associated with the second time-frequency resource 2 and the second spatial resource 2, so DMRS4 is precoded based on the second factor t6.
  • the first information is the difference between the first factor and the second factor associated with the first factor, or the first information is the first factor associated with the first factor.
  • the quotient between the two factors Based on this possible implementation, it is beneficial for the terminal device to accurately detect data on the first time-frequency resource and the first space resource.
  • the first information 1 is related to the first factor t 1 and the second factor t 2 .
  • the first information 1 may be the difference between the first factor t 1 and the second factor t 2 .
  • the first information 1 may be a quotient between the first factor t 1 and the second factor t 2 .
  • the first information 1 may be the difference between the first factor t 1 and the second factor t 2 .
  • the first information 1 may be equal to t 1 -t 2 , or equal to t 2 -t 1 .
  • the first factor t1 is The second factor t2 is Then the first information 1 may be the quotient between the first factor t 1 and the second factor t 2 .
  • the first information 1 may be equal to or equal to
  • the first information 1 may also be equal to t 1 +t 2 , or the first information 1 may also be equal to t 1 *t 2 .
  • the first information 2 is related to the first factor t 3 and the second factor t 4 .
  • the first information 2 may be the difference between the first factor t3 and the second factor t4.
  • the first information 2 may be a quotient between the first factor t 3 and the second factor t 4 .
  • the first information 2 may be the sum of the first factor t 3 and the second factor t 4 .
  • the first information 2 may be the product between the first factor t 3 and the second factor t 4 .
  • a second factor may be associated with one or more first factors.
  • the first information indicated by the indication information is information in the first information set.
  • the first information set may also be referred to as a candidate information set.
  • the network device and the terminal device may obtain the first information set based on Q bits quantization, where Q is an integer greater than 0.
  • Q may be pre-specified by the protocol, or notified by the network device to the terminal device.
  • the terminal device may also obtain the first information set without quantizing the Q bits.
  • the first information set may be configured to the terminal device.
  • the first set of information may be predefined by a protocol.
  • the principle of obtaining the first information set by quantization of the network device and/or the terminal device is the same as the principle of obtaining the factor set by quantization of the network device and/or the terminal device in the foregoing method embodiments, and details are not described herein.
  • each value in the first information set may correspond to an index of the first information, and when the indication information indicates the first information, it may specifically indicate the index of the first information.
  • each first information in the first information set corresponds to a parameter value used for determining the first information, and the indication information may specifically indicate an index of the parameter value.
  • the terminal device can determine the corresponding first information based on the parameter value indicated by the indication information.
  • the indication information may indicate the first information in the order of the first space resource and then the first time-frequency resource.
  • the first information may be indicated in the order of the first time-frequency resource and then the space resource.
  • the principle of the network device indicating the first information is the same as the principle of the network device indicating the first factor in the foregoing method embodiments, and details are not described herein.
  • the network device precodes at least one reference signal, and sends the precoded at least one reference signal to the terminal device.
  • the network device precodes the data on the second time-frequency resource and the second space resource based on the second factor, and sends the precoded data on the second time-frequency resource.
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • steps 2402 to 2404 For the specific implementation of steps 2402 to 2404, reference may be made to the specific implementation of steps 1301 to 1303 in the method embodiment described in FIG. 13 , and details are not described here.
  • the terminal device Based on the reference signal, the terminal device detects data on the second time-frequency resource and the second space resource associated with the reference signal.
  • the terminal device detects, based on the first information and the target reference signal in the at least one reference signal, the data precoded by the first factor related to the first information, the second time-frequency resource and the second space resource associated with the target reference signal. are the second time-frequency resources and the second space resources associated with the first information.
  • step 2405 and step 2406 may be performed simultaneously, or step 2405 may be performed before step 2406, or step 2405 may be performed after step 2406.
  • FIG. 14a is a schematic diagram of the second time-frequency resource and the first time-frequency resource on the spatial layer 1 .
  • FIG. 14b is a schematic diagram of the second time-frequency resource and the first time-frequency resource on the spatial layer 2. As shown in FIG.
  • the network device sends indication information to the terminal device.
  • the indication information needs to indicate four pieces of first information.
  • the first information 1 is related to the first factor t 1 and the second factor t 2
  • the first information 1 is related to the second time-frequency resource 1 and the second space resource 1 .
  • the first information 2 is related to the first factor t 3 and the second factor t 4
  • the first information 2 is associated with the second time-frequency resource 2 and the second space resource 1 .
  • the first information 3 is related to the first factor t 1 and the second factor t 5
  • the first information 3 is associated with the second time-frequency resource 1 and the second space resource 2 .
  • the first information 4 is related to the first factor t 3 and the second factor t 6
  • the first information 4 is associated with the second time-frequency resource 2 and the second space resource 2 .
  • the first information 1 is t 1 -t 2 , or the first information 1 is The first information 2 is t 3 -t 4 , or the first information 2 is The first information 3 is t 1 -t 5 , or the first information 3 is The first information 4 is t 3 -t 6 , or the first information 4 is
  • the DMRS1 is associated with the second time-frequency resource 1 and the second spatial resource 1, and the network device performs precoding on the DMRS1 corresponding to the spatial layer 1 using the second factor t2 .
  • the network device sends the precoded DMRS1 at symbol 0.
  • the network device performs precoding on the second time-frequency resource 1 and the data on the spatial layer 1 using the second factor t 2 , and sends the precoded data on the second time-frequency resource 1 .
  • the network device performs precoding on the first time-frequency resource 1 and the data on the spatial layer 1 using the first factor t 1 , and sends the precoded data on the first time-frequency resource 1 .
  • the DMRS2 is associated with the second time-frequency resource 2 and the second spatial resource 1, and the network device performs precoding on the DMRS2 corresponding to the spatial layer 1 using the second factor t4.
  • the network device sends the precoded DMRS2 at symbol 7.
  • the network device performs precoding on the second time-frequency resource 2 and the data on the spatial layer 1 using the second factor t 4 , and sends the precoded data on the second time-frequency resource 2 .
  • the network device performs precoding on the first time-frequency resource 2 and the data on the spatial layer 1 using the first factor t 3 , and sends the precoded data on the first time-frequency resource 2 .
  • the principle that the network device sends DMRS and data on the spatial layer 2 is the same as the principle that the network device sends the DMRS and data on the spatial layer 1, and will not be repeated here.
  • the terminal device After receiving the indication information, the terminal device determines the first information 1 to the first information 4 . After detecting the precoded DMRS1 on the spatial layer 1, the terminal device obtains an equivalent channel matrix corresponding to the second time-frequency resource 1 and the spatial layer 1 based on the DMRS1. The terminal device obtains the equivalent channel matrix corresponding to the first time-frequency resource 1 and the space layer 1 based on the first information 1 and the equivalent channel matrix corresponding to the second time-frequency resource 1 and the space layer 1, and further based on the first time-frequency resource 1 and the equivalent channel matrix corresponding to the spatial layer 1 detects the data on the first time-frequency resource 1 and the spatial layer 1.
  • the terminal device detects data on the second time-frequency resource 1 and the spatial layer 1 based on the equivalent channel matrix corresponding to the second time-frequency resource 1 and the spatial layer 1 .
  • the terminal device After detecting the precoded DMRS2 on the spatial layer 1, the terminal device obtains an equivalent channel matrix corresponding to the second time-frequency resource 2 and the spatial layer 1 based on the DMRS2.
  • the terminal device obtains the equivalent channel matrix corresponding to the first time-frequency resource 2 and the spatial layer 1 based on the first information 2 and the equivalent channel matrix corresponding to the second time-frequency resource 2 and the space layer 1, and further based on the first time-frequency resource 2 and the equivalent channel matrix corresponding to the spatial layer 1 detects the data on the first time-frequency resource 2 and the spatial layer 1.
  • the terminal device detects data on the second time-frequency resource 2 and the spatial layer 1 based on the equivalent channel matrix corresponding to the second time-frequency resource 2 and the spatial layer 1 .
  • the principle that the terminal device detects data on the spatial layer 2 is the same as the principle that the network device detects data on the spatial layer 1, and is not repeated here.
  • the terminal equipment detects the data precoded based on the first factor based on the DMRS and the first information, and the terminal equipment detects the data precoded based on the second factor based on the DMRS.
  • the implementation is described in detail.
  • the network device may employ linear precoding for the DMRS symbols on symbol 0.
  • the DMRS symbol vector corresponding to all terminal devices sent by the network device is in Indicates the DMRS symbol vector corresponding to the kth terminal device.
  • the precoding process of DMRS on symbol 0 can be:
  • T is the block diagonal matrix is the second factor matrix corresponding to the kth terminal device.
  • the corresponding DMRS symbol vector is in The DMRS symbol corresponding to the lth DMRS port of the kth terminal corresponds to the lth spatial layer of the kth terminal.
  • the reference signal ports corresponding to different terminal devices are orthogonal ports, and the DMRS precoding process corresponding to the kth terminal device may be:
  • Q k represents the precoding vector or precoding sub-matrix corresponding to the kth terminal device in the Q matrix.
  • the DMRS symbol vector received by the kth terminal device can be expressed as:
  • H k is the channel matrix corresponding to the kth terminal device.
  • reference signal symbol vector It is known to the transceiver end, so the equivalent channel matrix corresponding to the second time-frequency resource can be obtained through the channel estimation algorithm
  • the lth line of (corresponding to the lth spatial layer of the kth terminal device), assuming its main diagonal element is where r ll is the main diagonal element in the R matrix corresponding to the l th spatial layer of the k th terminal device.
  • the data symbols received by the kth terminal equipment on the second time-frequency resource 1 and the lth spatial layer can be expressed as:
  • the terminal device can learn the power factor difference between DMRS precoding and data precoding, that is, the difference between ⁇ and ⁇ . Based on this power factor difference, the terminal device can determine The terminal equipment is based on the equivalent channel matrix and receive symbols The data sent by the network device on the second time-frequency resource 1 and the lth spatial layer can be detected by combining the modulo operation.
  • the data symbols received by the kth terminal device on the first time-frequency resource 1 and the lth spatial layer can be expressed as:
  • the first time-frequency resource and the second time-frequency resource are relatively close in time domain and frequency domain, so the channel state information is close.
  • Terminal equipment is based on and the first information can be determined Based on the above formula (34), it can be known that the terminal equipment is based on the equivalent channel matrix and receive symbol vector Combined with the modulo operation, the first time-frequency resource 1 and the data sent by the network device on the lth spatial layer can be detected.
  • the terminal equipment Take the detection of the first time-frequency resource 1 and the data on the spatial layer 1 with the first information 1 as an example. If t1 is t2 is The first information 1 is So, If t1 is t2 is The first information 1 is So, If t1 is t2 is The first information 1 is So, The terminal equipment is based on the equivalent channel matrix and receive symbol vector The data sent by the network device on the first time-frequency resource 1 and the space layer 1 can be detected. The terminal device is based on the equivalent channel matrix corresponding to the second time-frequency resource 1 and the space layer 2 The detection of the data on the first time-frequency resource 1 and the data on the spatial layer 2 by the first information 3 is the same, and details are not described here.
  • the network device uses the THP precoding algorithm to precode the data.
  • the network device may employ linear precoding for the DMRS on symbol 0.
  • the DMRS symbol vector sent by the network device is The precoding process of DMRS on symbol 0 is:
  • the Q matrix is obtained by performing QR decomposition on the conjugate transposed matrix of the complete channel matrix H of all terminal devices.
  • the G matrix is a diagonal matrix, and its main diagonal element is the reciprocal of the main diagonal element of the R matrix, that is, Usually, the reference signal ports corresponding to different terminal devices are orthogonal ports.
  • the corresponding DMRS symbol vector is The precoding process of the DMRS corresponding to the kth terminal device may be:
  • F k corresponds to a partial column vector of matrix F.
  • F. represents the second factor matrix corresponding to the kth terminal device, and its main diagonal elements correspond to the second factor corresponding to each spatial layer of the kth terminal device.
  • the DMRS symbol vector received by the kth terminal device can be expressed as:
  • H k is the channel matrix corresponding to the kth terminal device. is a diagonal matrix, and its diagonal elements are the elements corresponding to the spatial layer corresponding to the kth terminal device in the matrix G -1 .
  • the received DMRS symbols can be expressed as:
  • the terminal device can learn the power factor difference between DMRS1 precoding and data precoding, that is, the difference between ⁇ and ⁇ . Based on the power factor difference, the terminal device can determine the equivalent channel matrix corresponding to the second time-frequency resource 1 and the lth spatial layer estimated results. Based on the above formula (33), it can be known that the terminal device is based on the equivalent channel matrix and receive symbols The data sent by the network device on the second time-frequency resource 1 and the lth spatial layer can be detected.
  • Terminal equipment is based on and the first information can be determined Based on the above formula (34), it can be known that the terminal equipment is based on the equivalent channel matrix and receive symbol vector The data sent by the network device on the first time-frequency resource 1 and the lth spatial layer can be detected. Terminal equipment is based on and the first information to determine The principles and methods of 1 are based on and the first information to determine The principle is the same and will not be repeated here.
  • the network device uses the EZF precoding algorithm to precode the data.
  • the kth terminal device for a set of time-frequency resources, suppose or is the second factor corresponding to the second time-frequency resource and the lth spatial layer.
  • the symbol vector of the DMRS sent by the sender at symbol 0 is The precoding process of the DMRS by the network device can be expressed as:
  • the W matrix is based on the complete channel matrix of all terminal devices get.
  • the channel matrix of the kth terminal device is H k
  • the corresponding eigenvectors corresponding to the maximum L k eigenvalues are
  • the dimension of V k is N T ⁇ L k , which is obtained by SVD decomposition or EVD decomposition of the channel matrix H k .
  • the spliced matrix has a dimension of N T ⁇ L.
  • is an adjustment factor, which is related to the signal-to-noise ratio.
  • is a power normalization factor, or a power adjustment factor.
  • the reference signal ports corresponding to different terminal equipments are orthogonal ports.
  • the corresponding DMRS symbol vector is The DMRS precoding process corresponding to the kth terminal device may be:
  • W k represents the precoding vector or precoding sub-matrix corresponding to the kth terminal device in the Q matrix.
  • W k corresponds to a partial column vector of matrix W.
  • W. represents the second factor matrix corresponding to the kth terminal device, and its main diagonal elements correspond to the second factor corresponding to each spatial layer of the kth terminal device.
  • the symbol vector of the DMRS received by the kth terminal device can be expressed as:
  • H k is the channel matrix corresponding to the kth terminal device. represents the equivalent channel matrix. Indicates the equivalent interference signal.
  • the equivalent channel matrix can be obtained by channel estimation algorithm (such as least squares LS estimation algorithm or minimum mean square error MMSE algorithm, etc.) estimated results.
  • channel estimation algorithm such as least squares LS estimation algorithm or minimum mean square error MMSE algorithm, etc.
  • the data symbol vector received by the terminal device on the second time-frequency resource 1 and the second space resource can be expressed as:
  • the terminal equipment is based on the equivalent channel matrix and receive symbols
  • the data sent by the network device on the second time-frequency resource 1 and the second space resource can be detected.
  • the data symbol vector sent by the network device on the first time-frequency resource 1 and the first space resource is: Based on the aforementioned formula (14), the data symbol vector received by the terminal device on the first time-frequency resource 1 and the first space resource can be expressed as:
  • the terminal equipment is based on the equivalent channel matrix and receive symbols
  • the data sent by the network device on the first time-frequency resource 1 and the first space resource can be detected.
  • the network device can indicate the first information related to the first factor through the indication information, and carry the second factor through the reference signal, which is beneficial to saving signaling overhead.
  • FIG. 25 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • the difference between the data detection method shown in FIG. 25 and the data detection method shown in FIG. 24 is that in the data detection method shown in FIG. 25 , the first information is not notified to the terminal device by additionally sending indication information, but is The reference signal carries the first information.
  • the data detection method includes the following operations 2501 to 2506 . in:
  • the network device precodes at least one second reference signal, and sends the precoded at least one second reference signal to the terminal device.
  • a second time-frequency resource and a second space resource are associated with a second reference signal, and data on a second time-frequency resource and a second space resource is associated with a second factor, and the second factor is a scalar,
  • one second time-frequency resource includes one or more frequency domain resource groups
  • one second spatial resource includes one or more spatial layers.
  • the data on a first time-frequency resource and a first space resource is associated with a first factor, and the data on different first time-frequency resources and the data on the first space resource are associated with an independently determined first factor, and the first factor is A scalar, used for precoding data associated with the first factor, one first time-frequency resource includes one or more frequency domain resource groups, and one first spatial resource includes one or more spatial layers.
  • one first time-frequency resource includes one or more frequency domain resource groups
  • one first spatial resource includes one or more spatial layers.
  • the network device specifically determines the second reference signal associated with the second time-frequency resource and the second space resource based on the second factor associated with the second time-frequency resource and the data on the second space resource precoding. That is to say, the second factor associated with the data on the second time-frequency resource and the second space resource is also used to perform the second reference signal associated with the second time-frequency resource and the second space resource. precoding.
  • the specific implementation manner of the network device precoding the second reference signal based on the second factor please refer to the specific implementation manner of the network device precoding the reference signal based on the second factor in the method embodiment corresponding to FIG. 13 above. Repeat.
  • the network device precodes at least one first reference signal, and sends the precoded at least one first reference signal to the terminal device.
  • a first reference signal is precoded based on a first information.
  • first information for the description of the first information, reference may be made to the description in the above-mentioned embodiment corresponding to FIG. 24 , which is not repeated here.
  • step 2501 and step 2502 may be performed simultaneously, or step 2501 may be performed before step 2502, or step 2501 may be performed after step 2502.
  • the network device precodes the data on the second time-frequency resource and the second space resource based on the second factor, and sends the precoded data on the second time-frequency resource.
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • step 2503 and step 2504 For the specific implementation manner of step 2503 and step 2504, reference may be made to the specific implementation manner of step 1302 and step 1303 in the method embodiment described above in FIG. 13 , and details are not described here.
  • the terminal device Based on the second reference signal, the terminal device detects data on the second time-frequency resource and the second space resource associated with the second reference signal.
  • the terminal device after receiving at least one second reference signal, the terminal device detects data precoded based on the second factor by using the reference signal precoded by the second factor.
  • the terminal device detects, based on the target reference signal in the at least one second reference signal and the first reference signal precoded by the first information, data precoded based on the first factor related to the first information, the target reference signal
  • the associated second time-frequency resource and the second space resource are the second time-frequency resource and the second space resource associated with the first information.
  • the terminal device after receiving at least one second reference signal and at least one first reference signal, the terminal device detects, based on the target reference signal and the first reference signal precoded by the first information, a related signal based on the first information. First factor precoded data.
  • step 2505 and step 2506 may be performed simultaneously, or step 2505 may be performed before step 2506, or step 2505 may be performed after step 2506.
  • the second space resource 1 includes a space layer 1
  • the second space resource 2 includes a space layer 2
  • the first spatial resource includes spatial layer 1 and spatial layer 2
  • Figure 26a shows the second time-frequency resource and the first time-frequency resource on spatial layer 1.
  • Figure 26b shows the second time-frequency resource and the first time-frequency resource on spatial layer 2.
  • the network device performs precoding on the data on the second time-frequency resource 1 and the second space resource 1 by using a second factor t 2 .
  • the second time-frequency resource 1 and the second space resource 1 are associated with the DMRS1, and the network device precodes the DMRS1 by the second factor t2 .
  • the network device precodes the DMRS2 by using the first information 1 (ie, t 1 -t 2 ), and precodes the data on the first time-frequency resource 1 and the first space resource 1 by using the first factor t 1 .
  • the first information 1 is associated with the second time-frequency resource 1 and the second space resource 1 .
  • the network device performs precoding on the data on the second time-frequency resource 1 and the second space resource 2 by using a second factor t3 .
  • the second time-frequency resource 1 and the second space resource 2 are associated with the DMRS3, and the network device precodes the DMRS3 by the second factor t3 .
  • the network device precodes the DMRS4 through the first information 2 (ie, t 1 -t 3 ).
  • the first information 2 is associated with the second time-frequency resource 1 and the second space resource 2 .
  • the terminal device After receiving the DMRS1, the terminal device obtains an equivalent channel matrix corresponding to the second time-frequency resource 1 and the second space resource 1 based on the DMRS1.
  • the terminal device detects data on the second time-frequency resource 1 and the second space resource 1 based on the equivalent channel matrix corresponding to the second time-frequency resource 1 and the second space resource 1 .
  • the terminal device obtains the equivalent channel matrix corresponding to the first time-frequency resource 1 and the space layer 1 based on the equivalent channel matrix corresponding to the second time-frequency resource 1 and the second space resource 1 and the DMRS2.
  • the terminal device detects data on the first time-frequency resource 1 and the spatial layer 1 based on the equivalent channel matrix corresponding to the first time-frequency resource 1 and the spatial layer 1 .
  • the terminal device After receiving the DMRS3, the terminal device obtains equivalent channel matrices corresponding to the second time-frequency resource 1 and the second space resource 2 based on the DMRS3.
  • the terminal device detects data on the second time-frequency resource 1 and the second space resource 2 based on the equivalent channel matrix corresponding to the second time-frequency resource 1 and the second space resource 2 .
  • the terminal device obtains the equivalent channel matrix corresponding to the first time-frequency resource 1 and the space layer 2 based on the equivalent channel matrix corresponding to the second time-frequency resource 1 and the second space resource 2 and the DMRS4.
  • the terminal device detects data on the first time-frequency resource 1 and the spatial layer 2 based on the equivalent channel matrix corresponding to the first time-frequency resource 1 and the spatial layer 2 .
  • the terminal device k may obtain the first information 1 based on the DMRS2.
  • H is the channel matrix corresponding to all users
  • I is the identity matrix
  • ⁇ 2 is an adjustment factor, which is related to noise power and/or interference power.
  • the terminal device is based on the equivalent channel matrix corresponding to the first information 1 and the second time-frequency resource 1 and the space layer 1 Determine the equivalent channel matrix corresponding to the first time-frequency resource 1 and the space layer 1
  • the terminal device is based on the equivalent channel matrix corresponding to the first information 1 and the second time-frequency resource 1 and the space layer 1 Determine the equivalent channel matrix corresponding to the first time-frequency resource 1 and the space layer 1
  • the terminal equipment is based on the equivalent channel matrix and receive symbol vector
  • the data on the first time-frequency resource 1 and the spatial layer 1 can be detected. It is the same for the terminal device to detect the data on the first time-frequency resource 1 and the space layer 2, and details are not described here.
  • the network device uses the EZF precoding algorithm to precode the data.
  • the terminal device can obtain the first information 1 based on DMRS2, obtain the first information 2 based on DMRS4, and obtain the equivalent channel matrix based on the first information 1, the first information 2 and the second time-frequency resource 1 and the second space resource. Determine the equivalent channel matrix corresponding to the first time-frequency resource 1 and the first space resource.
  • the terminal device determines the equivalent channel matrix corresponding to the first time-frequency resource 1 and the first space resource For a specific implementation manner, reference may be made to the description in the method embodiment corresponding to FIG. 24 above, which is not repeated here.
  • the terminal equipment is based on the equivalent channel matrix and receive symbols
  • the data sent by the network device on the first time-frequency resource 1 and the first space resource can be detected.
  • FIG. 27 is a schematic flowchart of a data detection method provided by an embodiment of the present application.
  • the difference between the data detection method shown in FIG. 27 and the data detection method shown in FIG. 24 is that in the data detection method shown in FIG. 27 , the indication information does not indicate the first information, but indicates the first factor.
  • the data detection method includes the following operations 2701 to 2706 . in:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate at least one first factor.
  • the network device precodes at least one reference signal, and sends the precoded at least one reference signal to the terminal device.
  • the time-frequency resources of the downlink data scheduled by the network device are divided into one or more first time-frequency resources and one or more second time-frequency resources.
  • a second time-frequency resource and a second space resource are associated with a reference signal
  • data on a second time-frequency resource and a second space resource are associated with a second factor
  • the second factor is a scalar
  • one second time-frequency resource includes one or more frequency domain resource groups
  • one second spatial resource includes one or more spatial layers.
  • the data on a first time-frequency resource and a first space resource is associated with a first factor, and the data on different first time-frequency resources and the data on the first space resource are associated with an independently determined first factor, and the first factor is A scalar, used for precoding data associated with the first factor, one first time-frequency resource includes one or more frequency domain resource groups, and one first spatial resource includes one or more spatial layers.
  • one first time-frequency resource includes one or more frequency domain resource groups
  • one first spatial resource includes one or more spatial layers.
  • the network device precodes the data on the second time-frequency resource and the second space resource based on the second factor, and sends the precoded data on the second time-frequency resource.
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • the terminal device Based on the reference signal, the terminal device detects data on the second time-frequency resource and the second space resource associated with the reference signal.
  • steps 2702 to 2705 For the specific implementation manners of steps 2702 to 2705, reference may be made to the specific implementation manners of steps 1301 to 1304, which will not be repeated here.
  • the terminal device detects, based on the first factor, data precoded based on the first factor.
  • the terminal device after receiving the indication information, the terminal device detects data precoded based on the first factor.
  • step 2705 and step 2706 may be performed simultaneously, or step 2705 may be performed before step 2706, or step 2705 may be performed after step 2706.
  • FIG. 28 shows the second time-frequency resource and the first time-frequency resource on spatial layer 1 .
  • the network device precodes DMRS1 by the second factor t2 , and precodes the second time-frequency resource and spatial layer 1 by using the second factor t2 .
  • the network device sends indication information to the terminal device, where the indication information indicates the first factor t 1 , and the network device performs precoding on the first time-frequency resource and the spatial layer 1 using the first factor t 1 .
  • the terminal device After receiving the DMRS1, the terminal device detects the second time-frequency resource and the data on the space layer 1 through the DMRS1.
  • the terminal device After receiving the DMRS1, the terminal device detects the second time-frequency resource and the data on the space layer 1 through the DMRS1.
  • the terminal device After receiving the first factor t 1 , the terminal device can predict the equivalent channel matrix corresponding to the first time-frequency resource and the spatial layer 1 based on DMRS2, and obtain the equivalent channel matrix corresponding to the first time-frequency resource and the spatial layer 1 according to the equivalent channel matrix and the first time-frequency resource.
  • a factor t 1 detects the data on the first time-frequency resource and spatial layer 1 .
  • FIG. 29 is a schematic flowchart of another data detection method provided by an embodiment of the present application.
  • the difference between the data detection method shown in FIG. 29 and the data detection method shown in FIG. 11 is that in the data detection method shown in FIG. 29 , all factors corresponding to the time-frequency resources and the spatial layer are carried by the reference signal, without the need for Send additional signaling to inform the first factor.
  • the data detection method includes the following operations 2901 to 2903 . in:
  • the network device precodes at least one reference signal, and sends the precoded at least one reference signal to the terminal device.
  • a first time-frequency resource and a first space resource are associated with a reference signal
  • data on a first time-frequency resource and a first space resource are associated with a first factor
  • different first time-frequency resources and A first factor independently determined by data association on the first spatial resource
  • the first factor is a scalar, and is used to precode data associated with the first factor
  • a first time-frequency resource includes one or more frequency domain resources group
  • a first spatial resource includes one or more spatial layers.
  • the network device precodes the reference signal associated with the first time-frequency resource and the first space resource by using the first factor associated with the first time-frequency resource and the data on the first space resource.
  • one RB includes multiple first time-frequency resources.
  • the first time-frequency resources By dividing one RB into multiple first time-frequency resources, the first time-frequency resources only include less time-frequency resources. Different first time-frequency resources correspond to different factors, which is conducive to realizing refined factor adjustment, so as to improve the power efficiency brought by the factor as much as possible.
  • the reference signals corresponding to different first time-frequency resources may be the same type of reference signals, or may be different types of reference signals.
  • Each first spatial resource includes a spatial layer.
  • Each first time-frequency resource includes a frequency domain length of 4 RBs in the frequency domain, and the frequency domain resources of each first time-frequency resource are different.
  • each grid represents one RB in the frequency domain dimension.
  • the time domain resources of each first time-frequency resource are the same, and each first time-frequency resource includes one or more time units in the time domain. Since the time domain resources of each first time-frequency resource are the same, FIG. 30 only shows the frequency domain dimension and the spatial domain dimension, and does not show the time domain dimension.
  • the white grids are used for mapping reference signals.
  • DMRS1 is mapped on the spatial layer 1 and the first RB
  • DMRS2 is mapped on the spatial layer 2 and the first RB
  • DMRS3 is mapped on the spatial layer 1 and the fifth RB
  • DMRS4 is mapped on the spatial layer 2 and the fifth RB.
  • the data on the first time-frequency resource 1 and the spatial layer 1 is associated with a factor of 1.
  • the first time-frequency resource 2 and spatial layer 1 are associated with factor 2.
  • the first time-frequency resource 1 and spatial layer 2 are associated with factor 3.
  • the first time-frequency resource 2 and the spatial layer 2 are associated with a factor of 4.
  • the network device precodes DMRS1 with factor 1, the network device precodes DMRS2 with factor 3, the network device precodes DMRS3 with factor 2, and the network device precodes DMRS4 with factor 4.
  • the network device sends the precoded DMRS1 to DMRS4 to the terminal device.
  • the terminal device After receiving the DMRS1 to DMRS4, the terminal device detects the data on the first time-frequency resource 1 and the spatial layer 1 based on the DMRS1. Detect data on first time-frequency resource 1 and spatial layer 2 based on DMRS2. Detect data on first time-frequency resource 2 and spatial layer 1 based on DMRS3. The data on the first time-frequency resource 2 and the spatial layer 2 are detected based on DMRS4.
  • the terminal device detecting the first time-frequency resource and data on the spatial layer based on DMRS, please refer to the method embodiment corresponding to FIG. 24 above.
  • the terminal device detects the second time-frequency resource 1 and the second spatial resource based on the DMRS.
  • the specific implementation of the above data will not be repeated here.
  • the network device precodes data on the first time-frequency resource and the first space resource based on the first factor, and sends the precoded data on the first time-frequency resource.
  • the terminal device detects data on the first time-frequency resource and the first space resource based on the reference signal associated with the first time-frequency resource and the first space resource.
  • the terminal device after receiving at least one reference signal, the terminal device detects data on the first time-frequency resource and the first space resource based on the reference signal associated with the first time-frequency resource and the first space resource.
  • the network device does not need to indicate the first factor through additional signaling, and the terminal device can complete the detection of the data on the first time-frequency resource and the first space resource, which is conducive to saving information. make overhead.
  • FIG. 31 shows a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 31 can be used to execute part or all of the functions of the terminal device in the method embodiment described in FIG. 5 or FIG. 11 or FIG. 13 or FIG. 24 or FIG. 25 or FIG.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be used in combination with the terminal device. Wherein, the communication device may also be a chip system.
  • the communication apparatus shown in FIG. 31 may include a communication unit 3101 and a processing unit 3102 . Among them, the processing unit 3102 is used for data processing.
  • the communication unit 3101 integrates a receiving unit and a transmitting unit.
  • the communication unit 3101 may also be referred to as a transceiving unit. Alternatively, the communication unit 3101 can also be divided into a receiving unit and a sending unit.
  • the processing unit 3102 and the communication unit 3101 below are the same, and will not be repeated below. in:
  • the communication unit 3101 is configured to detect data on a first time-frequency resource and a first space resource, and data on a first time-frequency resource and a first space resource are associated with a first factor, and different first time-frequency resources are associated with a first factor.
  • a first spatial resource includes one or more spatial layers.
  • the communication unit 3101 is further configured to receive at least one precoded reference signal, one second time-frequency resource and one second space resource are associated with one reference signal, one second time-frequency resource and data on a second space resource is associated with a second factor, the second factor is a scalar, used to precode the data associated with the second factor, and a second time-frequency resource includes one or more In the frequency domain resource group, a second spatial resource includes one or more spatial layers; the communication unit 3101 is further configured to detect data on the second time-frequency resource and the second spatial resource associated with the reference signal based on the reference signal.
  • the communication unit 3101 is further configured to receive indication information sent by the network device, where the indication information is used to indicate at least one piece of first information, one piece of first information is related to one first factor, one piece of first information is associated with a second time-frequency resource and a second space resource; the communication unit 3101 detects the data on the first time-frequency resource and the first space resource in a specific manner: based on the first information and the target in at least one reference signal A reference signal, detecting data precoded by the first factor related to the first information, and the second time-frequency resource and the second space resource associated with the target reference signal are the second time-frequency resource and the second time-frequency resource associated with the first information. space resource.
  • the second factor associated with the data on the second time-frequency resource and the second space resource is also used to perform a second factor on the reference signal associated with the second time-frequency resource and the second space resource. precoding.
  • a first factor is associated with one or more second factors, and a first information is related to a first factor and a second factor associated with the first factor.
  • the first information is a difference between the first factor and a second factor associated with the first factor, or the first information is a second factor associated with the first factor and the first factor quotient between.
  • the first factor is related to one or more pieces of the following information: data on the first time-frequency resource, the first channel matrix corresponding to the first time-frequency resource, or the first time-frequency resource corresponding to the first time-frequency resource.
  • a precoding matrix; the second factor is related to one or more of the following information: data on the second time-frequency resource, a reference signal associated with the second time-frequency resource, a second channel matrix corresponding to the second time-frequency resource, or A second precoding matrix corresponding to the second time-frequency resource.
  • the data on the first time-frequency resource may be transmission data symbols on all spatial layers corresponding to the first time-frequency resource.
  • the data on the second time-frequency resource may be transmission data symbols on all spatial layers corresponding to the second time-frequency resource.
  • the reference signals associated with the second time-frequency resource may be reference signal symbols corresponding to all spatial layers corresponding to the second time-frequency resource.
  • one time-frequency resource set includes one or more first time-frequency resources and one or more second time-frequency resources.
  • the time domain resources included in the first time-frequency resource are different from the time domain resources included in the second time-frequency resource.
  • the frequency domain resources included in the first time-frequency resource are different from the frequency domain resources included in the second time-frequency resource.
  • the above-mentioned at least one piece of first information is information in the first information set.
  • the number of the first time-frequency resources is predetermined by the protocol; or, before the communication unit 3101 receives the indication information sent by the network device, it is further configured to receive the configuration information sent by the network device. for configuring the number of first time-frequency resources.
  • the terminal device determines the time-frequency resource included in each first time-frequency resource based on the time-frequency resource of the downlink data scheduled by the network device and the number of the first time-frequency resource.
  • the quantity of the first space resources is predetermined by the protocol; or, before the communication unit 3101 receives the indication information sent by the network device, it is further configured to receive configuration information sent by the network device, the configuration information being used for Configure the number of first space resources.
  • the terminal device determines the spatial layers included in each first spatial resource based on the number of spatial layers of the terminal device and the number of the first spatial resources.
  • the process of precoding data by the first factor is:
  • is the power adjustment factor, or or represents the first factor corresponding to the kth spatial layer
  • W is the linear precoding matrix
  • the process of precoding the data or the reference signal by the second factor is:
  • is the power adjustment factor
  • W is the linear precoding matrix
  • the process of precoding data by the first factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the data by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the reference signal by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H.
  • the communication unit 3101 may further receive at least one precoded second reference signal, wherein one second time-frequency resource and one second space resource are associated with one second reference signal, and one first Data on two time-frequency resources and a second space resource is associated with a second factor, the second factor is a scalar, used to precode the data associated with the second factor, and a second time-frequency resource includes a or multiple frequency domain resource groups, and one second spatial resource includes one or more spatial layers; the communication unit 3101 can also receive at least one precoded first reference signal, where one first reference signal is based on one first information precoding, a piece of first information is related to a first factor, and a piece of first information is associated with a second time-frequency resource and a second space resource; the communication unit 3101 can also detect, based on the second reference signal, a The data on the second time-frequency resource and the second space resource associated with the reference signal; the specific implementation manner for the communication unit 3101 to detect the data on the first time-frequency resource and the
  • the target reference signal and the first reference signal precoded by the first information, and the data precoded based on the first factor related to the first information are detected, and the second time-frequency resource and the second space resource associated with the target reference signal are: The second time-frequency resource and the second space resource associated with the first information.
  • the communication unit 3101 may also receive indication information sent by the network device, where the indication information is used to indicate at least one first factor; the communication unit 3101 may also receive at least one precoded reference signal, a first Two time-frequency resources and a second space resource are associated with a reference signal, and the data on a second time-frequency resource and a second space resource are associated with a second factor, and the second factor is a scalar, used to compare and The data associated with the second factor is precoded, a second time-frequency resource includes one or more frequency domain resource groups, and a second spatial resource includes one or more spatial layers; the communication unit 3101 may also be based on the reference signal, Detect the data on the second time-frequency resource and the second space resource associated with the reference signal; the specific implementation manner of the communication unit 3101 detecting the data on the first time-frequency resource and the first space resource is: The first factor precoded data.
  • the communication unit 3101 may also receive indication information sent by the network device, where the indication information is used to indicate at least one first factor; the communication unit 3101 detects data on the first time-frequency resource and the first space resource
  • the specific implementation manner is: detecting data precoded based on the first factor based on the first factor.
  • the at least one first factor indicated by the above indication information is a factor in the factor set.
  • the first spatial resource includes a spatial layer
  • the at least one first factor indicated by the above indication information is a factor in a quantization codebook
  • the quantization codebook includes P factor vectors
  • each factor vector is one of the quantization codebooks.
  • Vector, a factor vector includes N factors, the factors of each factor vector are associated with the reference signal port one by one, P and N are integers greater than zero;
  • the indication information carries the index of the factor vector; the processing unit 3102 can be based on the indication information.
  • the index of the factor vector and the reference signal port allocated to the terminal device are taken from the quantization codebook to determine the first factor.
  • the communication unit 3101 may further receive at least one precoded reference signal, and a first time-frequency resource and a first space resource are associated with one reference signal; the communication unit 3101 detects the first time-frequency resource
  • a specific implementation manner of the resource and the data on the first space resource is: based on a reference signal associated with the first time-frequency resource and the first space resource, detecting the data on the first time-frequency resource and the first space resource.
  • FIG. 31 shows a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 31 can be used to perform part or all of the functions of the network device in the method embodiment described in FIG. 5 or FIG. 11 or FIG. 13 or FIG. 24 or FIG. 25 or FIG.
  • the device may be a network device, or a device in a network device, or a device that can be matched and used with the network device. Wherein, the communication device may also be a chip system.
  • the communication apparatus shown in FIG. 31 may include a communication unit 3101 and a processing unit 3102 . in:
  • the processing unit 3102 is used for precoding the data on the first time-frequency resource and the first space resource based on the first factor; the communication unit 3101 is used for sending the precoded data on the first time-frequency resource; a first The time-frequency resource and data on a first space resource are associated with a first factor, and the data on different first time-frequency resources and the data on the first space resource are associated with an independently determined first factor, the first factor is a scalar, with For precoding data associated with the first factor, one first time-frequency resource includes one or more frequency domain resource groups, and one first spatial resource includes one or more spatial layers.
  • the processing unit 3102 is further configured to precode at least one reference signal; the communication unit 3101 is further configured to send at least one reference signal after precoding, a second time-frequency resource to the terminal device
  • a second space resource is associated with a reference signal, a second time-frequency resource and data on a second space resource are associated with a second factor, and the second factor is a scalar, used for matching with the second factor
  • the associated data is precoded, a second time-frequency resource includes one or more frequency domain resource groups, and a second space resource includes one or more spatial layers; the processing unit 3102 is further configured to perform a The two time-frequency resources and the data on the second space resource are precoded; the communication unit 3101 is further configured to send the precoded data on the second time-frequency resource.
  • the communication unit 3101 is further configured to send indication information to the terminal device, where the indication information is used to indicate at least one piece of first information, one piece of first information is related to one first factor, and one piece of first information is related to A second time-frequency resource is associated with a second space resource.
  • the second factor associated with the data on the second time-frequency resource and the second space resource is also used to perform a second factor on the reference signal associated with the second time-frequency resource and the second space resource. precoding.
  • a first factor is associated with one or more second factors, and a first information is related to a first factor and a second factor associated with the first factor.
  • the first information is a difference between the first factor and a second factor associated with the first factor, or the first information is a second factor associated with the first factor and the first factor quotient between.
  • the first factor is related to one or more pieces of the following information: data on the first time-frequency resource, the first channel matrix corresponding to the first time-frequency resource, or the first time-frequency resource corresponding to the first time-frequency resource.
  • a precoding matrix; the second factor is related to one or more of the following information: data on the second time-frequency resource, a reference signal associated with the second time-frequency resource, a second channel matrix corresponding to the second time-frequency resource, or A second precoding matrix corresponding to the second time-frequency resource.
  • the data on the first time-frequency resource may be transmission data symbols on all spatial layers corresponding to the first time-frequency resource.
  • the data on the second time-frequency resource may be transmission data symbols on all spatial layers corresponding to the second time-frequency resource.
  • the reference signals associated with the second time-frequency resource may be reference signal symbols corresponding to all spatial layers corresponding to the second time-frequency resource.
  • one time-frequency resource set includes one or more first time-frequency resources and one or more second time-frequency resources.
  • the time domain resources included in the first time-frequency resource are different from the time domain resources included in the second time-frequency resource.
  • the frequency domain resources included in the first time-frequency resource are different from the frequency domain resources included in the second time-frequency resource.
  • the at least one piece of first information is information in the first information set.
  • the number of the first time-frequency resources is predetermined by the protocol; or, before the communication unit 3101 sends the indication information, it is also used to send configuration information to the terminal device, where the configuration information is used to configure the first time-frequency resource. number of frequency resources.
  • the processing unit 3102 determines the time-frequency resources included in each first time-frequency resource based on the time-frequency resources of the downlink data scheduled by the network device and the number of the first time-frequency resources.
  • the number of the first space resources is predetermined by the protocol; or, before the communication unit 3101 sends the indication information, it is further configured to send configuration information to the terminal device, where the configuration information is used to configure the first space resources quantity.
  • the processing unit 3102 determines the spatial layer included in the first spatial resource based on the number of spatial layers of the terminal device and the number of the first spatial resource.
  • the process of precoding data by the first factor is:
  • is the power adjustment factor
  • W is the linear precoding matrix
  • the process of precoding the data or the reference signal by the second factor is:
  • is the power adjustment factor
  • W is the linear precoding matrix
  • the process of precoding data by the first factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H.
  • is the modulo operation parameter.
  • the process of precoding the data by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H
  • is Modulo operation parameters.
  • the process of precoding the reference signal by the second factor is:
  • is the power adjustment factor
  • the Q matrix and the B matrix are related to the channel matrix H.
  • the processing unit 3102 is further configured to precode at least one second reference signal;
  • the communication unit 3101 is further configured to send the at least one second reference signal after precoding to the terminal device, wherein , a second time-frequency resource and a second space resource are associated with a second reference signal, and the data on a second time-frequency resource and a second space resource are associated with a second factor, and the second factor is a scalar , for precoding the data associated with the second factor, a second time-frequency resource includes one or more frequency domain resource groups, and a second space resource includes one or more spatial layers;
  • the processing unit 3102 is further configured to precode at least one first reference signal;
  • the communication unit 3101 is further configured to send the at least one first reference signal after precoding to the terminal device, wherein one first reference signal is precoded based on a first information coding, a piece of first information is related to a first factor, and a piece of first information is associated with a second time-frequency resource and a second space resource;
  • the communication unit 3101 is further configured to send indication information to the terminal device, where the indication information is used to indicate at least one first factor; the processing unit 3102 is further configured to precode at least one reference signal; The communication unit 3101 is further configured to send at least one reference signal after precoding to the terminal device, one second time-frequency resource and one second space resource are associated with one reference signal, one second time-frequency resource and one second space resource
  • the data on the resource is associated with a second factor, the second factor is a scalar, used for precoding the data associated with the second factor, and a second time-frequency resource includes one or more frequency domain resource groups,
  • a second spatial resource includes one or more spatial layers; the processing unit 3102 is further configured to precode the data on the second time-frequency resource and the second spatial resource based on the second factor; the communication unit 3101 is further configured to The second time-frequency resource transmits precoded data, and a second time-frequency resource and a second space resource are associated with a second factor.
  • the communication unit 3101 is further configured to send indication information to the terminal device, where the indication information is used to indicate at least one first factor.
  • the at least one first factor indicated by the above indication information is a factor in the factor set.
  • the first spatial resource includes a spatial layer
  • the at least one first factor indicated by the above indication information is a factor in a quantization codebook
  • the quantization codebook includes P factor vectors
  • each factor vector is one of the quantization codebooks.
  • vector, a factor vector includes N factors, the factors of each factor vector are associated with reference signal ports one by one, P and N are integers greater than zero; the indication information carries an index of the factor vector to indicate at least one first factor.
  • a communication apparatus 320 provided by an embodiment of the present application is used to implement the functions of the terminal device in the above-mentioned FIG. 5 or FIG. 11 or FIG. 13 or FIG. 24 or FIG. 25 or FIG. 27 or FIG.
  • the apparatus may be a terminal device or an apparatus for a terminal device.
  • the means for the terminal device may be a system-on-a-chip or a chip within the terminal device. Wherein, the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the communication apparatus 320 is configured to implement the function of the network device in the above-mentioned FIG. 5 or FIG. 11 or FIG. 13 or FIG. 24 or FIG. 25 or FIG. 27 or FIG. 29 .
  • the apparatus may be a network device or an apparatus for a network device.
  • the means for the network device may be a system-on-a-chip or a chip within the network device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the communication apparatus 320 includes at least one processor 3220, configured to implement the data processing function of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the apparatus 320 may further include a communication interface 3210, configured to implement the sending and receiving operations of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 3210 is used by the apparatus in the apparatus 320 to communicate with other devices.
  • the processor 3220 uses the communication interface 3210 to send and receive data, and is used to implement the method described in FIG. 5 or FIG. 11 or FIG. 13 or FIG. 24 or FIG. 25 or FIG. 27 or FIG.
  • Apparatus 320 may also include at least one memory 3230 for storing program instructions and/or data.
  • Memory 3230 and processor 3220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 3220 may cooperate with the memory 3230.
  • the processor 3220 may execute program instructions stored in the memory 3230. At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the communication interface 3210, the processor 3220, and the memory 3230 is not limited in the embodiments of the present application.
  • the memory 3230, the processor 3220, and the communication interface 3210 are connected by a bus 3240 in FIG. 32a.
  • the bus is represented by a thick line in FIG. 32a, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in Figure 32a, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 3210 may output or receive baseband signals.
  • the output or reception of the communication interface 3210 may be a radio frequency signal.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or The methods, operations, and logic block diagrams disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the operations of the methods disclosed in combination with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • FIG. 32b is a schematic structural diagram of another terminal device 3200 provided by an embodiment of the present application.
  • the terminal device may perform the operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 32b only shows the main components of the terminal device.
  • the terminal device 3200 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal equipment, execute software programs, and process data of software programs, for example, to support the terminal equipment to execute Figure 5 or Figure 11 or Figure 13 or Figure 24 Or the flow described in FIG. 25 or FIG. 27 or FIG. 29 .
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 3200 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used for receiving data input by the user and outputting data to the user. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 32b only shows one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the device controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) or any combination thereof.
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above-mentioned types of memory.
  • the antenna and the radio frequency circuit with a transceiver function can be regarded as the communication unit 3201 of the terminal device 3200, and the processor with a processing function can be regarded as a part of the terminal device 3200.
  • the communication unit 3201 may also be referred to as a transceiver, a transceiver, a transceiver device, a transceiver unit, etc., and is used to implement a transceiver function.
  • the device for implementing the receiving function in the communication unit 3201 may be regarded as a receiving unit
  • the device for implementing the transmitting function in the communication unit 3201 may be regarded as a transmitting unit, that is, the communication unit 3201 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the communication unit 3201 and the processing unit 3202 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separated into different devices.
  • the communication unit 3201 may be configured to perform the sending and receiving operations of the terminal device in the foregoing method embodiments.
  • the processing unit 3202 may be configured to perform data processing operations of the terminal device in the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is executed on a processor, the method flow of the foregoing method embodiment is implemented.
  • the embodiments of the present application further provide a computer program product, when the computer program product runs on a processor, the method flow of the above method embodiments is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据检测方法及通信装置,方法包括:终端设备检测第一时频资源和第一空间资源上的数据,一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。一个第一时频资源和一个第一空间资源上的数据是通过同一个因子进行预编码的,这样网络设备不用针对每个RE和每个空间层都向终端设备指示一个因子。因此,基于本申请提供的方法,有利于节省指示信令的开销。

Description

一种数据检测方法及通信装置
本申请要求于2020年11月30日提交中国专利局、申请号为202011378080.6、申请名称为“一种数据检测方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据检测方法及通信装置。
背景技术
目前,多输入多输出(multiple input and multiple output,MIMO)预编码技术按照信号处理的方式不同,可以分为线性预编码和非线性预编码。对于线性预编码,预编码矩阵的求解仅与信道矩阵有关。而对于非线性预编码,预编码矩阵的计算与信道矩阵以及发送的调制符号均有关(例如发送端进行干扰消除及求模等非线性操作)。例如,非线性预编码包括tomlinson-harashinma预编码(tomlinson-harashinma precoding,THP)或矢量扰动(vector perturbation,VP)预编码等。线性预编码包括迫零(zero forcing,ZF)预编码,正则迫零(regularizedzero forcing,RZF)预编码,本征迫零(eigenzero forcing,EZF)预编码,最小均方误差(minimum mean-square error,MMSE)预编码等。
对于某些线性预编码或非线性预编码,需要在预编码的过程中引入特殊的因子来进行预编码,以降低数据发送功率,提升数据传输性能。相应地,接收端需要知道发送端进行预编码所采用的因子,才能完成正确的数据检测。由于最优的因子与网络设备在时频资源和空间层上的发送符号有关。理论上,对于一个资源粒子(resource element,RE)来说,网络设备在每个空间层上的发送符号均对应一个最优的因子。但如果网络设备针对每个RE,对每个空间层均向终端设备通知一个因子,这样会导致信令开销很多。因此,如何减小网络设备通知因子的信令开销是目前亟待解决的问题。
发明内容
本申请提供了一种数据检测方法及通信装置,有利于减小网络设备通知因子的信令开销。
第一方面,本申请提供了一种数据检测方法,该方法包括:终端设备检测第一时频资源和第一空间资源上的数据,一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与该第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。
可见,基于第一方面所描述的方法,一个第一时频资源和一个第一空间资源上的数据是通过同一个因子进行预编码的。这样网络设备不用针对每个RE和每个空间层都向终端设备指示一个因子。因此,基于第一方面所描述的方法,有利于节省指示信令的开销。
在一种可能的实现中,终端设备还可接收经过预编码的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源 上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;终端设备还可基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据。基于该可能的实现方式,可以将网络设备调度的时频资源划分为第一时频资源和第二时频资源,从而第一时频资源和第二时频资源上的数据可以使用不同的因子进行预编码,这样能够使因子的粒度更加精细,从而提高系统性能。并且基于该可能的实现方式,网络设备无需指示对第二时频资源和第二空间资源进行预编码使用的因子,这样能够节省指示信令的开销。
可选的,参考信号可以包括一个或多个参考信号符号,一个参考信号符号表示一个参考信号元素。参考信号符号可以是解调参考信号DMRS符号,或者,参考信号符号可以是一个DMRS资源中的部分资源上的符号,或者,参考信号符号还可以是其他类型的参考信号符号。一个参考信号包括的参考信号符号可以位于不同的时频单元。一个参考信号符号可以对应一个参考信号端口,一个参考信号端口可以与一个空间层相对应。对应不同参考信号端口的参考信号符号可以构成参考信号符号向量。不同参考信号端口可以是正交端口,即可以通过频分复用,时分复用或者码分复用中的一种或多种方式,发送不同参考信号端口所对应的参考信号符号。多个参考信号符号可以在不同的时频资源上发送,也可以在相同的时频资源上发送。
在一种可能的实现中,终端设备还可接收网络设备发送的指示信息,该指示信息用于指示至少一个第一信息,一个第一信息与一个第一因子有关一个第一信息与一个第二时频资源和一个第二空间资源相关联;终端设备检测第一时频资源和第一空间资源上的数据的具体实现方式为:终端设备基于第一信息和至少一个参考信号中的目标参考信号,检测经过第一信息有关的第一因子预编码的数据,目标参考信号关联的第二时频资源和第二空间资源为第一信息关联的第二时频资源和第二空间资源。基于该可能的实现方式,网络设备还可通过信令向终端设备指示与第一因子有关的第一信息,从而终端设备可以基于该第一信息来检测第一时频资源和第一空间资源上的数据。
可选的,与第二时频资源和第二空间资源上的数据相关联的第二因子,还用于对与第二时频资源和第二空间资源相关联的参考信号进行预编码。
可选的,一个第一因子与一个或多个第二因子相关联,一个第一信息与一个第一因子和第一因子相关联的一个第二因子有关。
在一种可能的实现中,第一信息为第一因子与第一因子关联的一个第二因子之间的差值,或者,第一信息为第一因子与第一因子关联的一个第二因子之间的商。该可能的实现方式中的第一信息有利于终端设备准确地检测到基于第一信息有关的第一因子预编码的数据。
在一种可能的实现中,第一因子与以下一项或多项信息有关:第一时频资源上的数据、第一时频资源对应的第一信道矩阵或第一时频资源对应的第一预编码矩阵;第二因子与以下一项或多项信息有关:第二时频资源上的数据、第二时频资源相关联的参考信号、第二时频资源对应的第二信道矩阵或第二时频资源对应的第二预编码矩阵。其中,第一时频资源上的数据可以是第一时频资源上对应的所有空间层上的传输数据符号。第二时频资源上的数据可以是第二时频资源上对应的所有空间层上的传输数据符号。第二时频资源相关联的参考信号可以是第二时频资源上对应的所有空间层所对应的参考信号符号。基于该可能的实现方式,因子联合考虑了对应的信道矩阵,预编码矩阵以及发送的数据信号,最大限度利用信号和信道特征,实现最佳的干扰规避和信号功率提升,有利于提高系统性能。
在一种可能的实现中,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个第一时频资源以及一个或多个第二时频资源。通过这种划分方法,第一时频资源和第二时频资源将一个时频资源集合进一步划分为粒度更小的时频资源子集,每个时频资源子集仅包含较少的时频资源。不同的时频资源子集对应不同的相位因子,有利于实现精细化的相位因子调整,从而尽可能地提升相位因子带来的功率效率提升。
在一种可能的实现中,第一时频资源包括的时域资源与第二时频资源包括的时域资源不相同。例如,第一时频资源和第二时频资源占用相同的子载波,而占用不同的OFDM符号。或者,第一时频资源和第二时频资源占用不相同的子载波,且占用不同的OFDM符号。基于该可能的实现方式,可以根据参考信号的资源分配方式,使第二时频资源在时间上与对应承载第二时频资源所对应的相位因子的参考信号资源更加接近,有利于基于参考信号准确地估计第二时频资源上数据对应的等效信道。
在一种可能的实现中,第一时频资源包括的频域资源与第二时频资源包括的频域资源不相同。例如,第一时频资源和第二时频资源占用不同的子载波,而占用相同的OFDM符号。或者,第一时频资源和第二时频资源占用不相同的子载波,且占用不同的OFDM符号。基于该可能的实现方式,可以根据参考信号的资源分配方式,使第二时频资源在频域上与对应承载第二时频资源所对应的相位因子的参考信号资源更加接近,有利于基于参考信号准确地估计第二时频资源上数据对应的等效信道。
在一种可能的实现中,上述至少一个第一信息为第一信息集合中的信息。
在一种可能的实现中,第一时频资源的数量和/或第二时频资源的数量为协议预先规定的;或者,终端设备接收网络设备发送的指示信息之前,终端设备还可接收网络设备发送的配置信息,该配置信息用于配置第一时频资源的数量和/或第二时频资源的数量。基于该可能的实现方式,有利于保证第一信息的通知数目固定,从而有利于保证固定的信令开销。这样终端设备仅需要检测固定比特长度的指示信息,有利于减少盲检次数,降低终端设备处理复杂度和处理时延,节省终端设备的功耗。
可选的,终端设备基于网络设备调度的下行数据的时频资源,以及第一时频资源的数量和/或第二时频资源的数量,确定每个第一时频资源包括的时频资源和/或每个第二时频资源包括的时频资源。基于该可选的实现方式,终端设备能够基于预设的规则,准确地确定出每个第一时频资源包括的时频资源和/或每个第二时频资源包括的时频资源。
在一种可能的实现中,第二时频资源包含的频域资源数目(或第二时频资源在频域的带宽)是协议规定的或网络设备配置的。例如,第二时频资源包含的频域资源数目可以是1个PRG。可选的,终端设备可基于第二时频资源包含的频域资源数目,按照预设的第二时频资源划分方法,在调度的时频资源中划分一个或多个第二时频资源。
在一种可能的实现中,第一时频资源包含的频域资源数目(或第一时频资源在频域的带宽)是协议规定的或网络设备配置的。例如,第一时频资源包含的频域资源数目可以是1个PRG。可选的,终端设备可基于第一时频资源包含的频域资源数目,按照预设的第一时频资源划分方法,在调度的时频资源中划分一个或多个第一时频资源。
在一种可能的实现中,具有一个或多个时频资源集合时,时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量为协议预先规定的;或者,具有一个或多个时频资源集合时,终端设备接收网络设备发送的指示信息之前,终端设备还可接收网络设备发送的配置信息,该配置信息用于配置时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源 的数量。基于该可能的实现方式,有利于保证第一信息的通知数目固定,从而有利于保证固定的信令开销。这样终端设备仅需要检测固定比特长度的指示信息,有利于减少盲检次数,降低终端设备处理复杂度和处理时延,节省终端设备的功耗。
可选的,终端设备基于网络设备调度的下行数据的时频资源,以及时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量,确定每个时频资源集合中的第一时频资源包括的时频资源和/或第二时频资源包括的时频资源。基于该可选的实现方式,终端设备能够基于预设的规则,准确地确定出每个时频资源集合中的第一时频资源包括的时频资源和/或第二时频资源包括的时频资源。
在一种可能的实现中,第一空间资源的数量为协议预先规定的;或者,终端设备接收网络设备发送的指示信息之前,终端设备还可接收网络设备发送的配置信息,该配置信息用于配置第一空间资源的数量。基于该可能的实现方式,有利于保证第一信息的通知数目固定,从而有利于保证固定的信令开销。这样终端设备仅需要检测固定比特长度的指示信息,有利于减少盲检次数,降低终端设备处理复杂度和处理时延,节省终端设备的功耗。
可选的,终端设备基于终端设备的空间层数量和第一空间资源的数量,确定第一空间资源包括的空间层。基于该可能的实现方式,终端设备能够准确地确定出第一空间资源包括的空间层。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000001
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000002
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000003
Figure PCTCN2021124088-appb-000004
Figure PCTCN2021124088-appb-000005
表示第k个空间层对应的第一因子,W为线性预编码矩阵。
在一种可能的实现中,通过第二因子对数据或参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000006
其中,s=(s 1,s 2,…,s L) T表示发送的数据或参考信号,
Figure PCTCN2021124088-appb-000007
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000008
Figure PCTCN2021124088-appb-000009
Figure PCTCN2021124088-appb-000010
表示第k个空间层对应的第二因子,W为线性预编码矩阵。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000011
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000012
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000013
Figure PCTCN2021124088-appb-000014
Figure PCTCN2021124088-appb-000015
表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000016
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000017
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000018
Figure PCTCN2021124088-appb-000019
Figure PCTCN2021124088-appb-000020
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000021
或者为:
Figure PCTCN2021124088-appb-000022
其中,s=(s 1,s 2,…,s L) T表示发送的参考信号,
Figure PCTCN2021124088-appb-000023
为对角矩阵,α为功率调整因子,
Figure PCTCN2021124088-appb-000024
Figure PCTCN2021124088-appb-000025
Figure PCTCN2021124088-appb-000026
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
在一种可能的实现中,终端设备还可接收经过预编码的至少一个第二参考信号,其中,一个第二时频资源和一个第二空间资源与一个第二参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;终端设备还可接收经过预编码的至少一个第一参考信号,其中,一个第一参考信号基于一个第一信息预编码,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联;终端设备还可基于第二参考信号,检测与该第二参考信号关联的第二时频资源和第二空间资源上的数据;终端设备检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于至少一个第二参考信号中的目标参考信号和通过该第一信息预编码的第一参考信号,检测基于该第一信息有关的第一因子预编码的数据,该目标参考信号关联的第二时频资源和第二空间资源为第一信息关联的第二时频资源和第二空间资源。基于该可能的实现方式,第一信息通过参考信号进行承载,不用通过额外的信令指示第一信息,有利于节省指示信令的开销。
在一种可能的实现中,终端设备还可接收网络设备发送的指示信息,该指示信息用于指示至少一个第一因子;终端设备还可接收经过预编码的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;终端设备还可基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据;终端设备检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于第一因子检测基于该第一因子预编码的数据。基于该可能的实现方式,能够通过指示信息指示第一因子,并通过参考信号承载第二因子,这样有利于节省指示信令的开销,并有利于使因子的精度更加精细。
在一种可能的实现中,终端设备还可接收网络设备发送的指示信息,该指示信息用于指示至少一个第一因子;终端设备检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于第一因子检测基于该第一因子预编码的数据。基于该可能的实现方式,网络设备不需要每个RE和每个空间层都指示一个第一因子,有利于节省指示信息的指示信令的开销。
可选的,上述指示信息指示的至少一个第一因子为因子集合中的因子。
可选的,该因子集合也可称为候选因子集合或者量化因子集合。该因子集合可以是网络设备和终端设备基于Q个比特量化得到的,Q为大于0的整数。因子集合中包括N=2 Q个第一因子。其中,Q可以是协议预先规定的,或者是网络设备通知给终端设备的,也可以是通过某种规则隐式指示的。或者,网络设备基于Q个比特量化得到该因子集合,并将该因子集合配置给终端设备。或者,该因子集合可以是协议预先规定的。
可选的,因子集合中的每个因子可对应一个因子索引,指示信息具体可以指示第一因子索引。或者,因子集合中的每个因子对应一个用于确定因子的参数值,指示信息具体可以指示该参数值的索引。
可选的,第一空间资源包括一个空间层,上述至少一个第一因子为量化码本中的因子,量化码本包括P个因子向量,每个因子向量为量化码本的一个向量,一个因子向量包括N个因子,每个因子向量的因子与参考信号端口一一关联,P和N为大于零的整数;指示信息携带因子向量的索引,即指示信息通过因子向量的索引来指示第一因子;终端设备可基于指示信息携带的因子向量的索引和为终端设备分配的参考信号端口从量化码本中,确定第一因子。在该可能的实现方式中,通过预设因子向量(或称为因子组合),能够使第一因子在空间维度的粒度更加精细,并且通过指示一个因子向量的索引,就能指示多个第一因子,能够极大地节省指示信令的开销。
在一种可能的实现中,终端设备还可接收经过预编码的至少一个参考信号,一个第一时频资源和一个第一空间资源与一个参考信号相关联;终端设备检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于第一时频资源和第一空间资源相关联的参考信号,检测该第一时频资源和该第一空间资源上的数据。基于该可能的实现方式,网络设备不需要通过信令指示终端设备对下行数据进行预编码所采用的因子,有利于节省指示信令的开销。
可选的,一个RB包括多个第一时频资源。通过将一个RB划分为多个第一时频资源,这样第一时频资源仅包含较少的时频资源。不同的第一时频资源对应不同的第一因子,有利于实现精细化的因子调整,从而尽可能地提升因子带来的功率效率。
可选的,不同第一时频资源对应的参考信号可以是相同类型的参考信号,也可以是不同类型的参考信号。一个参考信号包括所有的参考信号符号对应同一个第一因子。
可选的,第一时频资源和第一空间资源相关联的参考信号基于该第一时频资源和该第一空间资源上的数据相关联的第一因子进行预编码。
第二方面,本申请提供了一种数据检测方法,该方法包括:网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据;一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与该第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。
在一种可能的实现中,网络设备对至少一个参考信号进行预编码,并向终端设备发送预编码之后的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;网络设备基于第二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据。
在一种可能的实现中,网络设备向终端设备发送指示信息,该指示信息用于指示至少一个第一信息,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联。
在一种可能的实现中,与第二时频资源和第二空间资源上的数据相关联的第二因子,还用于对与第二时频资源和第二空间资源相关联的参考信号进行预编码。
在一种可能的实现中,一个第一因子与一个或多个第二因子相关联,一个第一信息与一个第一因子和第一因子相关联的一个第二因子有关。
在一种可能的实现中,第一信息为第一因子与第一因子关联的一个第二因子之间的差值,或者,第一信息为第一因子与第一因子关联的一个第二因子之间的商。
在一种可能的实现中,第一因子与以下一项或多项信息有关:第一时频资源上的数据、第一时频资源对应的第一信道矩阵或第一时频资源对应的第一预编码矩阵;
第二因子与以下一项或多项信息有关:第二时频资源上的数据、第二时频资源相关联的参考信号、第二时频资源对应的第二信道矩阵或第二时频资源对应的第二预编码矩阵。其中,第一时频资源上的数据可以是第一时频资源上对应的所有空间层上的传输数据符号。第二时频资源上的数据可以是第二时频资源上对应的所有空间层上的传输数据符号。第二时频资源相关联的参考信号可以是第二时频资源上对应的所有空间层所对应的参考信号符号。
在一种可能的实现中,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个第一时频资源以及一个或多个第二时频资源。
在一种可能的实现中,第一时频资源包括的时域资源与第二时频资源包括的时域资源不相同。
在一种可能的实现中,第一时频资源包括的频域资源与第二时频资源包括的频域资源不相同。
在一种可能的实现中,上述至少一个第一信息为第一信息集合中的信息。
在一种可能的实现中,第一时频资源的数量和/或第二时频资源的数量为协议预先规定的;或者,网络设备向终端设备发送指示信息之前,网络设备还可向终端设备发送配置信息,该配置信息用于配置第一时频资源的数量和/或第二时频资源的数量。基于该可能的实现方式,有利于保证第一信息的通知数目固定,从而有利于保证固定的信令开销。这样终端设备仅需要检测固定比特长度的指示信息,有利于减少盲检次数,降低终端设备处理复杂度和处理时延,节省终端设备的功耗。
可选的,网络设备基于网络设备调度的下行数据的时频资源、第一时频资源的数量和/或第二时频资源的数量,确定每个第一时频资源包括的时频资源和/或每个第二时频资源包括的时频资源。基于该可选的实现方式,网络设备能够基于预设的规则,准确地确定出每个第一时频资源包括的时频资源和每个第二时频资源包括的时频资源。
在一种可能的实现中,第二时频资源包含的频域资源数目(或第二时频资源在频域的带宽)是协议规定的或网络设备配置的。例如,第二时频资源包含的频域资源数目可以是1个PRG。可选的,网络设备可基于第二时频资源包含的频域资源数目,按照预设的第二时频资源划分方法,在调度的时频资源中划分一个或多个第二时频资源。
在一种可能的实现中,第一时频资源包含的频域资源数目也可以是协议规定的或是网络设备配置的。例如,第一时频资源包含的频域资源数目可以是1个PRG。可选的,网络设备可基于第一时频资源包含的频域资源数目,按照预设的第一时频资源划分方法,在调度的时频资源中划分一个或多个第一时频资源。
在一种可能的实现中,具有一个或多个时频资源集合时,时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量为协议预先规定的;或者,具有一个或多个时频资源集合时,网络设备发送指示信息之前,网络设备还可向终端设备发送配置信息,该配置信息用于配置时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量。
可选的,网络设备基于网络设备调度的下行数据的时频资源,以及时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量,确定每个时频资源集合中的第一时频资源包括的时频资源和/或第二时频资源包括的时频资源。
在一种可能的实现中,空间资源的数量为协议预先规定的;或者,网络设备发送指示信息之前,网络设备还可向终端设备发送配置信息,该配置信息用于配置空间资源的数量。
可选的,网络设备基于终端设备的空间层数量和空间资源的数量,确定空间资源包括的空间层。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000027
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000028
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000029
Figure PCTCN2021124088-appb-000030
Figure PCTCN2021124088-appb-000031
表示第k个空间层对应的第一因子,W为线性预编码矩阵。
在一种可能的实现中,通过第二因子对数据或参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000032
其中,s=(s 1,s 2,…,s L) T表示发送的数据或参考信号,
Figure PCTCN2021124088-appb-000033
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000034
Figure PCTCN2021124088-appb-000035
Figure PCTCN2021124088-appb-000036
表示第k个空间层对应的第二因子,W为线性预编码矩阵。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000037
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000038
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000039
Figure PCTCN2021124088-appb-000040
Figure PCTCN2021124088-appb-000041
表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000042
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000043
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000044
Figure PCTCN2021124088-appb-000045
Figure PCTCN2021124088-appb-000046
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000047
或者为:
Figure PCTCN2021124088-appb-000048
其中,s=(s 1,s 2,…,s L) T表示发送的参考信号,
Figure PCTCN2021124088-appb-000049
为对角矩阵,α为功率调整因子,
Figure PCTCN2021124088-appb-000050
Figure PCTCN2021124088-appb-000051
Figure PCTCN2021124088-appb-000052
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
在一种可能的实现中,网络设备还可对至少一个第二参考信号进行预编码,并向终端设备发送预编码之后的该至少一个第二参考信号,其中,一个第二时频资源和一个第二空间资源与一个第二参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;网络设备还可对至少一个第一参考信号进行预编码,并向终端设备发送预编码之后的该至少一个第一参考信号,其中,一个第一参考信号基于一个第一信息预编码,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联;网络设备还可基于第 二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据。
在一种可能的实现中,网络设备还可向终端设备发送指示信息,该指示信息用于指示至少一个第一因子;网络设备还可对至少一个参考信号进行预编码,并向终端设备发送预编码之后的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;网络设备还可基于第二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据,一个第二时频资源和一个第二空间资源与一个第二因子相关联。
在一种可能的实现中,网络设备还可向终端设备发送指示信息,该指示信息用于指示至少一个第一因子。
可选的,上述指示信息指示的至少一个第一因子为因子集合中的因子。
可选的,该因子集合也可称为候选因子集合或者量化因子集合。该因子集合可以是网络设备和终端设备基于Q个比特量化得到的,Q为大于0的整数。因子集合中包括N=2 Q个第一因子。其中,Q可以是协议预先规定的,或者是网络设备通知给终端设备的,也可以是通过某种规则隐式指示的。或者,网络设备基于Q个比特量化得到该因子集合,并将该因子集合配置给终端设备。或者,该因子集合可以是协议预先规定的。
可选的,因子集合中的每个第一因子可对应一个第一因子索引,指示信息具体可以指示第一因子索引。或者,因子集合中的每个第一因子对应一个用于确定第一因子的参数值,指示信息具体可以指示该参数值的索引。
可选的,第一空间资源包括一个空间层,上述至少一个第一因子为量化码本中的第一因子,量化码本包括P个因子向量,每个因子向量为量化码本的一个向量,一个因子向量包括N个第一因子,每个因子向量的第一因子与参考信号端口一一关联,P和N为大于零的整数;指示信息携带因子向量的索引,即指示信息通过因子向量的索引来指示第一因子。
在一种可能的实现中,网络设备还可对至少一个参考信号进行预编码,并向终端设备发送预编码之后的该至少一个参考信号,一个第一时频资源和一个第一空间资源与一个参考信号相关联。
可选的,一个RB包括多个第一时频资源。
可选的,不同第一时频资源对应的参考信号可以是相同类型的参考信号,也可以是不同类型的参考信号。一个参考信号包括所有的参考信号符号对应同一个第一因子。
可选的,第一时频资源和第一空间资源相关联的参考信号基于该第一时频资源和该第一空间资源上的数据相关联的第一因子进行预编码。
第三方面,本申请提供了一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第四方面,本申请提供了一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该 通信装置可执行第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果,重复之处不再赘述。
第五方面,本申请提供了一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面或第二方面所述的方法被执行。
第六方面,本申请提供了一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面或第二方面所述的方法。
第七方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信道或信号,或者发送信道或信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面或第二方面所述的方法。
第八方面,本申请提供了一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面或第二方面所述的方法。
第九方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如第一方面或第二方面所述的方法被实现。
第十方面,本申请提供一种包括指令的计算机程序产品,当所述指令被执行时,使得如第一方面或第二方面所述的方法被实现。
附图说明
图1是现有的一种THP预编码处理的流程图;
图2是现有的一种基于因子的THP预编码处理的流程图;
图3是现有的一种基于因子的线性预编码处理的流程图;
图4是本申请实施例提供的一种通信系统的示意图;
图5是本申请实施例提供的一种数据检测方法的流程示意图;
图6是本申请实施例提供的一种第一时频资源和空间资源的示意图;
图7是本申请实施例提供的另一种第一时频资源和空间资源的示意图;
图8是本申请实施例提供的又一种第一时频资源和空间资源的示意图;
图9是本申请实施例提供的又一种第一时频资源和空间资源的示意图;
图10是本申请实施例提供的又一种第一时频资源和空间资源的示意图;
图11是本申请实施例提供的另一种数据检测方法的流程示意图;
图12是本申请实施例提供的一种量化码本的示意图;
图13是本申请实施例提供的又一种数据检测方法的流程示意图;
图14a是本申请实施例提供的一种第一时频资源和第二时频资源的示意图;
图14b是本申请实施例提供的另一种第一时频资源和第二时频资源的示意图;
图15是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图16是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图17是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图18是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图19是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图20是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图21是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图22是本申请实施例提供的一种时频资源集合的示意图;
图23是本申请实施例提供的另一种时频资源集合的示意图;
图24是本申请实施例提供的又一种数据检测方法的流程示意图;
图25是本申请实施例提供的又一种第一时频资源和空间资源的示意图;
图26a是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图26b是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图27是本申请实施例提供的又一种数据检测方法的流程示意图;
图28是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图29是本申请实施例提供的又一种数据检测方法的流程示意图;
图30是本申请实施例提供的又一种第一时频资源和第二时频资源的示意图;
图31是本申请实施例提供的一种通信装置的结构示意图;
图32a是本申请实施例提供的另一种通信装置的结构示意图;
图32b是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。对于向量或矩阵A,其转置向量或转置矩阵表示为A T,其共轭转置向量或共轭转置矩阵表示为A H
为了更好地理解本申请实施例,下面首先对本申请实施例涉及的相关概念进行介绍:
一、空间层
对于空间复用多输入多输出(multiple input and multiple output,MIMO)系统,在相同频域资源上可以同时传输多路并行数据流,每一路数据流称为一个空间层或空间流,也可以简称为层或者流。
二、预编码资源块组(precoding resource block group,PRG)
在MIMO系统中,网络设备可以采用MIMO预编码(precoding)技术对待发送的数据进行处理,以提高信号传输质量或者速率。PRG是指网络设备采用相同预编码矩阵进行预编码的频域粒度,可以包含连续的一个或多个资源块(resource block,RB)。例如,一个PRG可以为2个RB或者4个RB或者全带宽。对于一个PRG内包含的所有时频资源,网络设备在发送数据(如PDSCH信号)和发送解调参考信号(demodulation reference signal,DMRS)时,采用同一个预编码矩阵进行预编码。相应地,终端设备在一个PRG内假设对应同一个预编码矩阵对数据和解调参考信号进行检测。
例如,标准中对PRG的定义如下:终端设备会假设网络设备进行预编码的基本粒度为频域上连续的P个RB。P的取值可以为{2,4,全带宽}。若P的取值为全带宽,下行数据调度不能支持非连续PRB的调度,且对于调度的时频资源,采用相同的预编码矩阵和预编码处理方式。若P的取值为2或4,带宽部分(bandwidth part,BWP)i将会以连续的P个PRB为基本粒度进行划分PRG,每个PRG包含的PRB数目可以是1个或多个。(A UE may assume that precoding granularity is P′ BWP.i consecutive resource blocks in the frequency domain.P′ BWP.i canbe equal to one of the values among{2,4,wideband}.If P′ BWP.i is determined as"wideband",the UE is not expected to be scheduled with non-contiguous PRBs and the UE may assume that the same precoding is applied to the allocated resource.If P′ BWP.i is determined as one of the values among{2,4},Precoding Resource Block Group(PRGs)partitions the bandwidth part i with P′ BWP.i consecutive PRBs.Actual number of consecutive PRBs in each PRG could be one or more.The UE may assume the same precoding is applied for any downlink contiguous allocation of PRBs in a PRG.)
三、THP(tomlinson-harashinma precoding)预编码
MIMO预编码技术按照信号处理的方式不同,可以分为线性预编码和非线性预编码。非线性预编码通过发送端干扰消除及求模等非线性操作,能够接近理论信道容量,显著提升高信道相关性场景下的系统性能。相应地,由于非线性操作的引入,大大增加了处理复杂度。THP算法是系统性能与复杂度折衷的非线性预编码方案。由于实现复杂度低,系统性能损失小等优点,得到广泛的研究和应用。
图1是一种THP预编码处理的流程图。如图1所示,THP预编码处理包括非线性处理阶段和线性处理阶段。假设K个用户进行多用户传输,每个用户对应发送符号向量
Figure PCTCN2021124088-appb-000053
Figure PCTCN2021124088-appb-000054
中L k表示第k个用户发送的空间层数。s k,l(l∈[1,L k])表示第k个用户第l个空间层发送的符号。网络设备在非线性处理阶段会对多用户发送符号向量s=(s 1,s 2,…,s K) T进行干扰消除,并且为了避免干扰消除操作导致发送功率不受限制,在干扰消除操作之后还会进行模操作。模操作之后得到发送符号向量x=(x 1,x 2,…,x K) T。然后网络设备再对发送符号向量x进行线性处理,并将线性处理得到的符号至终端设备。为了表述方便,K个用户总的发送空间层数为
Figure PCTCN2021124088-appb-000055
我们将多用户发送符号向量s中的每个元素重新排列索引,记为s=(s 1,s 2,…,s L) T。同样的,发送符号向量x中的每个元素重新排列索引,记为x=(x 1,x 2,…,x L) T
例如,在网络设备侧(即发送端),对于所有用户构成的第l个空间层,将s l进行非线性处理之后,输出的发送符号x l可以表示为:
Figure PCTCN2021124088-appb-000056
其中,B l,i表示反馈矩阵B的第l行第i列对应的元素。反馈矩阵B可以表示为B=GR H。矩 阵R是通过对所有用户的完整信道矩阵
Figure PCTCN2021124088-appb-000057
的共轭转置进行QR分解得到的,H H=QR。其中H k表示第k个用户对应的信道矩阵,维度为N R,k×N T。N R,k表示第k个用户的接收天线数目,N T表示网络设备的发送天线数目。矩阵G为对角矩阵,其主对角线元素为矩阵R主对角线元素的倒数,即
Figure PCTCN2021124088-appb-000058
其中,
Figure PCTCN2021124088-appb-000059
表示矩阵G的第l行第l列对应的元素。
在公式(1)中,
Figure PCTCN2021124088-appb-000060
表示对发送符号s l进行干扰消除。由于第k个用户第l个空间层的发送符号s k,l叠加了之前k-1个用户所有空间层以及该用户的前l-1个空间层对应的干扰项
Figure PCTCN2021124088-appb-000061
这会导致THP预编码后发送功率显著提升,使得发送功率不再受限。为了对发送功率进行限制,如公式(1)所示,可以对
Figure PCTCN2021124088-appb-000062
进行模操作。公式(1)中的Mod τ{x}表示模操作,对于给定模操作参数τ,
Figure PCTCN2021124088-appb-000063
d l表示模操作得到的取整部分。
通过以上非线性操作,得到的发送符号向量x可以表示为:
x=B -1(s+dτ)=B -1v  (2)
其中,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量。v=(v 1,v 2,...,v L) T,v l=s l+d lτ,l=1,2,…,L。
在非线性步骤之后,通过乘以酉矩阵Q实现线性处理。并且由于非线性处理过程中的模操作会带来模损失,为了减小模损失,还可以在非线性处理之后通过功率归一化因子β进行功率回退操作。经过线性处理操作和功率回退操作之后得到的发送符号向量可以表示为:
Figure PCTCN2021124088-appb-000064
也就是说,为了对发送功率进行限制,在THP预编码过程中会进行模操作以及功率回退操作。
在终端设备侧(即接收端),所有用户的联合接收符号向量可以表示为:
Figure PCTCN2021124088-appb-000065
其中,H为信道矩阵。n为信道噪声,G -1为对角矩阵,G和β如前文所述。
由于G -1为对角矩阵,基于(4)式可以看出,在理想情况下接收端每个空间层没有其他空间层的干扰。第l个空间层对应的终端设备接收的数据符号可以表示为:
Figure PCTCN2021124088-appb-000066
其中,g ll为对角矩阵G -1中第l行第l列对应的元素。y l为第l个空间层对应的终端设备的接收符号。n l为第l个空间层对应的噪声。由于G -1为对角矩阵,因此通过THP预编码消除了多用户干扰和多天线干扰,将MU-MIMO信道转化为并行的多路子信道。对于第k个用 户的第l个空间层,基于式(5),可以将接收信号记为:
Figure PCTCN2021124088-appb-000067
其中g k,l表示第k个用户的第l个空间层对应的等效信道系数。对于第l个空间层,第k个终端设备利用参考信号估计到等效信道系数
Figure PCTCN2021124088-appb-000068
之后,就能基于接收符号y k,l
Figure PCTCN2021124088-appb-000069
确定出网络设备发送的符号。
四、基于因子的THP预编码
上面介绍了为了对发送功率进行限制,在THP预编码过程中会进行模操作以及功率回退操作。然而模操作会造成模损失,功率回退操作会造成功率损失。为了降低模损失和功率损失,本申请实施例提出了基于因子的THP预编码。本申请实施例全文中因子也可以称为相位因子。基于因子的THP预编码也可称为旋转相位THP预编码,或相位因子旋转的THP预编码,或发送信号旋转的THP预编码。如图2所示,在基于因子的THP预编码技术中,通过因子对每个空间层对应的叠加干扰信号进行相位旋转,从而降低叠加干扰信号对信号功率的显著提升。随后在模操作之后采用相同的因子进行相位补偿。例如,对于所有终端设备对应的第l个空间层,对应的因子可以为θ l
Figure PCTCN2021124088-appb-000070
Figure PCTCN2021124088-appb-000071
或jθ l。下文以因子为
Figure PCTCN2021124088-appb-000072
为例。与式(1)相对应,非线性处理后的发送符号可以表示为:
Figure PCTCN2021124088-appb-000073
类似于公式(2),写为矩阵的形式,非线性处理后的发送信号可以表示为:
x=B -1T(s+dτ)=B -1Tv  (7)
每个空间层对应的因子可以基于最大化发送功率准则或者最小化功率损失准则进行选择,例如
Figure PCTCN2021124088-appb-000074
或者
Figure PCTCN2021124088-appb-000075
Q可以为[0,2π),或者为量化的因子集合。
在非线性步骤之后,通过乘以酉矩阵Q实现线性处理。并且由于非线性处理过程中的模操作会带来模损失,为了减小模损失,还可以在非线性处理之后通过功率归一化因子β进行功率回退操作。因此,基于因子对数据进行THP预编码的过程可以表示为:
Figure PCTCN2021124088-appb-000076
其中,
Figure PCTCN2021124088-appb-000077
为对角矩阵,
Figure PCTCN2021124088-appb-000078
表示第l个主对角线元素对应第l个空间层的因子。其中j为虚部单位,满足j 2=-1,后文同理,后文不再赘述。通过选择合适的因子向量T,可以对大限度地限制发送功率的抬升从而降低功率损失和模损失。相应地,所有终端设备接收的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000079
由于G -1和T为对角矩阵,基于式(9)可以看出,在理想情况下接收端每个空间层没有其他空间层的干扰。对于第k个终端设备第l个空间层上接收的数据符号可以表示为:
Figure PCTCN2021124088-appb-000080
其中,g k,l表示第k个终端设备的第l个空间层对应的等效信道系数。g k,l为对角矩阵G -1中第k个终端设备的第l个空间层对应的元素。可以看出,对于基于因子的THP预编码,终端设备需要知道网络设备进行预编码采用的因子
Figure PCTCN2021124088-appb-000081
才可以完成正确的数据检测。
五、基于因子的线性预编码
为了降低数据发送功率,提升数据传输性能,本申请实施例提出了基于因子的线性预编码。例如,线性预编码可以包括以下预编码中的任意一种:迫零(zero forcing,ZF)预编码、正则迫零(regularizedzero forcing,RZF)预编码、本征迫零(eigenzero forcing,EZF)预编码或最小均方误差(minimum mean-square error,MMSE)预编码。基于因子的线性预编码也 可以称为旋转相位线性预编码,或相位因子旋转的线性预编码,或发送信号旋转的线性预编码。
图3为一种基于因子的线性预编码的示意图。在基于因子的线性预编码的技术中,通过因子对每个空间层对应的发送调制符号进行相位旋转,随后进行线性预编码操作。基于因子对数据进行线性预编码的过程为:
Figure PCTCN2021124088-appb-000082
其中x表示预编码后的数据符号向量。β为功率调整因子。W为线性预编码矩阵。
Figure PCTCN2021124088-appb-000083
为对角矩阵,第k个主对角线元素对应第k个空间层的因子。通过最优因子T的选择,可以使得功率调整因子β的值较小,从而降低功率回退带来的功率损失。
每个空间层对应的因子可以基于最大化发送功率准则或者最小化功率损失准则进行选择,即
Figure PCTCN2021124088-appb-000084
或者也可以基于最大化接收SINR之和准则进行选择,即
Figure PCTCN2021124088-appb-000085
或者基于最大化平均接收SINR准则进行选择,即
Figure PCTCN2021124088-appb-000086
Figure PCTCN2021124088-appb-000087
或者基于最大化最小接收SINR准则进行选择,即
Figure PCTCN2021124088-appb-000088
Q可以为[0,2π),或者为量化的因子集合。SINR l表示第l个空间层对应的接收SINR。
以基于因子的EZF预编码为例,假设网络设备中的发送天线数目为N T,共有K个终端设备进行MU-MIMO传输,每个终端设备对应传输流数为L k,则总的传输流数
Figure PCTCN2021124088-appb-000089
其中,L k还可以大于或等于1,并且每个终端设备对应的传输流数可以相同或不同,这里以每个终端设备对应的传输流数相同为例。第k个终端设备的信道矩阵为H k,其对应的最大L k个特征值所对应的特征向量为
Figure PCTCN2021124088-appb-000090
其中V k的维度为N T×L k,是信道矩阵为H k进行SVD分解或EVD分解得到的,即满足
Figure PCTCN2021124088-appb-000091
若线性预编码采用EZF算法,线性预编码矩阵可以表示为:
W=V(V HV+δI) -1  (12)
其中
Figure PCTCN2021124088-appb-000092
由K个终端设备对应的
Figure PCTCN2021124088-appb-000093
拼接成的矩阵,维度为N T×L。δ为调整因子,与信噪比相关。在一种实现方法中
Figure PCTCN2021124088-appb-000094
其中
Figure PCTCN2021124088-appb-000095
表示噪声功率,
Figure PCTCN2021124088-appb-000096
表示发送信号功率。I为L×L的单位矩阵。根据发送信号s=(s 1,s 2,…,s K) T,信道矩阵
Figure PCTCN2021124088-appb-000097
和线性预编码矩阵W=[W 1 … W K],确定第k个终端设备第l个空间层对应的最优因子
Figure PCTCN2021124088-appb-000098
l=1,2,…,L,k=1,2,…,K。因子也可以为θ k,l
Figure PCTCN2021124088-appb-000099
Figure PCTCN2021124088-appb-000100
或jθ k,l,这里以因子为
Figure PCTCN2021124088-appb-000101
为例。其中第k个终端设备对应发送符号向量
Figure PCTCN2021124088-appb-000102
s k,l(l∈[1,L k])表示第k个终端设备第l个空间层发送的符号。W k为预编码矩阵W中包含的子矩阵,表示第k个终端设备对应的预编码矩阵,其维度为N T×L k。f(s,H,W)表示因子
Figure PCTCN2021124088-appb-000103
的确定与发送信号s,所有终端设备信道矩阵H以及预编码矩阵W有关。
接收端所有终端设备接收的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000104
其中对于第k个终端设备,接收的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000105
其中,T=diag(T 1,T 2,…,T K)。
Figure PCTCN2021124088-appb-000106
为维度为L k×L k的对角矩阵,表示第k个终端设备对应的因子矩阵,θ k,l
Figure PCTCN2021124088-appb-000107
Figure PCTCN2021124088-appb-000108
或jθ k,l表示第k个终端设备的第l个空间层对应的因子。
Figure PCTCN2021124088-appb-000109
为第k个终端设备对应的其他K-1个配对的终端设备带来的干扰,n k表示第k个终端设备对应的加性噪声向量。对于第k个终端设备,基于等效 信道矩阵H kW kT k进行发送数据的检测。
可以看到,终端设备需要基于等效信道矩阵H kW k以及对应的因子T k进行数据的检测。同理,其他预编码方法使用因子进行预编码之后,终端设备也需要知道因子才能进行数据的检测。
假设网络设备通过信令通知终端设备网络设备发送数据采样的因子。由于最优的因子与网络设备在时频资源和空间层上的发送符号有关。理论上,对于一个资源粒子(resource element,RE)来说,网络设备在每个空间层上的发送符号均对应一个最优的因子。但如果网络设备针对每个RE,对每个空间层均通知一个因子,这样会导致信令开销很多。
因此,为了节省网络设备通知终端设备因子的信令开销,本申请实施例提供了一种数据检测方法及通信装置。为了能够更好地理解本申请实施例,下面先对本申请实施例的系统架构进行说明:
本申请提供的方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统,以及未来通信发展中出现的新的通信系统等。只要通信系统中需要通过确定物理下行信道的接收参数,均可以采用本申请实施例提供的方法。
图4是本申请实施例提供的一种通信系统的架构示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括网络设备和至少一个终端设备,图4以通信系统中包括一个接入网设备和一个终端设备为例。如图4所示,接入网设备和终端设备之间可以通过波束进行通信。接入网设备和终端设备都能够产生多个波束。
本申请实施例中所涉及的接入网设备,是网络侧的一种用于发射或接收信号的实体,可以用于将收到的空中帧与网络协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可以包括IP网络等。接入网设备还可以协调对空中接口的属性管理。例如,接入网设备可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit),可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
本申请实施例中涉及的终端设备,是用户侧的一种用于接收或发射信号的实体。终端设备可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以是连接到无线调制解调器的其他处理设备。终端设备可以与无线接入网(radio access network,RAN)进行通信。终端设备也可以称为无线终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment,UE)等等。或者,终端设备也可以简称为用户。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳 电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。
下面对本申请实施例提供的数据检测方法进行详细描述:
请参见图5,图5是本申请实施例提供的一种数据检测方法的流程示意图。如图5所示,该数据检测方法包括如下步骤501和步骤502。图5所示的方法执行主语可以为网络设备和终端设备,或主语可以为网络设备中的芯片和终端设备中的芯片。图5以网络设备和终端设备为方法的执行主体为例进行说明。本申请实施例的其他附图所示的数据检测方法的执行主语同理,后文不再赘述。其中:
501、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码后的数据。
其中,一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。
第一时频资源可以有一个或多个,第一空间资源也可以有一个或多个。第一时频资源的数量可以是固定的或者是非固定的,第一空间资源的数量可以是固定的或者是非固定的。一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联是指:网络设备会在同一个第一时频资源和同一个第一空间资源上,使用同一个第一因子对数据符号进行预编码。本申请实施例全文中,对数据进行预编码可以等效为对发送的数据符号或数据调制符号进行预处理,如对发送的数据符号或数据调制符号进行相位旋转。
不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子是指:一个第一时频资源和第一空间资源对应的第一因子不受其他第一时频资源和第一空间资源对应的第一因子的影响,只与该第一时频资源和第一空间资源对应的信道矩阵,预编码矩阵和发送数据中的一个或多个有关。
本申请实施例中,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。不同的第一时频资源包括的频域资源组的数量可以相同或不同。不同的第一空间资源包括的空间层数量也可以相同或不同。频域资源组是指包括多个频域资源的集合,例如,一个频域资源组在频域上可以为一个或多个子载波,或者为多个RE,或者为一个或多个RB,或者为一个或多个PRG。一个第一时频资源包括一个或多个频域资源组可以理解为:一个第一时频资源在频域上的长度等于一个或多个频域资源组的频域长度,或者,一个第一时频资源在频域上的带宽等于一个或多个频域资源组的频域长度,或者,一个第一时频资源在频域上包括一个或多个频域资源组。
可选的,一个第一时频资源还可在时域上包括一个或多个时间单元,一个时间单元可以是一个或多个(orthogonal frequency division multiplexing,OFDM)符号,或者为一个或多个时隙(slot)。不同的第一时频资源在时域上包括的时间单元的数量可以相同或不同。
第一时频资源可以有以下三种划分方式:
①按照频域划分第一时频资源。即不同的第一时频资源的频域资源不同,不同的第一时频资源的时域资源相同。
②按照时域划分第一时频资源。即不同的第一时频资源的时域资源不同,不同的第一时 频资源的频域资源相同。
③按照时域和频域划分第一时频资源。即不同的第一时频资源的频域资源不同,不同的第一时频资源的时域资源也不同。
下面以按照频域划分第一时频资源为例,对第一时域资源、第一空间资源、第一时域资源和第一空间资源上的数据与第一因子的关联关系进一步进行介绍:
示例1:以一个第一时域资源在频域上的长度为一个PRG的频域长度,一个第一空间资源包括一个空间层为例。如图6所示,假设具有2个第一时频资源和2个第一空间资源。每个第一时频资源在频域上包括一个PRG的频域长度,每个第一时频资源的频域资源不同。图6中在频域维度每个格子表示一个PRG,图7~图10同理,后文不再赘述。每个第一时频资源的时域资源相同,每个第一时频资源在时域上包含一个或多个时间单元。由于每个第一时频资源的时域资源相同,图6只示出频域维度和空域维度,未示出时域维度,图7~图10同理,后文不再赘述。每个第一空间资源包括1个空间层。其中,第一时频资源1和空间层1上的数据与因子1关联,即网络设备使用因子1对第一时频资源1和空间层1上的数据进行预编码。第一时频资源2和空间层1上的数据与因子2关联,即网络设备使用因子2对第一时频资源2和空间层1上的数据进行预编码。第一时频资源1和空间层2上的数据与因子3关联,即网络设备使用因子3对第一时频资源1和空间层2上的数据进行预编码。第一时频资源2和空间层2上的数据与因子4关联,即网络设备使用因子4对第一时频资源2和空间层2上的数据进行预编码。
示例2:以一个第一时域资源在频域上的长度为一个PRG的频域长度,一个第一空间资源包括多个空间层为例。如图7所示,假设具有2个第一时频资源和2个第一空间资源。每个第一时频资源在频域上包括一个PRG的频域长度,每个第一时频资源的频域资源不同。每个第一时频资源在时域上包含一个或多个时间单元,每个第一时频资源的时域资源相同。每个第一空间资源包括2个空间层。其中,第一时频资源1和第一空间资源1上的数据与因子1关联,即网络设备使用因子1对第一时频资源1和第一空间资源1上的数据进行预编码。第一时频资源2和第一空间资源1上的数据与因子2关联,即网络设备使用因子2对第一时频资源2和第一空间资源1上的数据进行预编码。第一时频资源1和第一空间资源2上的数据与因子3关联,即网络设备使用因子3对第一时频资源1和第一空间资源2上的数据进行预编码。第一时频资源2和第一空间资源2上的数据与因子4关联,即网络设备使用因子4对第一时频资源2和第一空间资源2上的数据进行预编码。
示例3:以一个第一时域资源在频域上的长度为多个PRG的频域长度,一个第一空间资源包括一个空间层为例。如图8所示,假设具有2个第一时频资源和2个第一空间资源。每个第一时频资源在频域上包括4个PRG的频域长度,每个第一时频资源的频域资源不同。每个第一时频资源在时域上包含一个或多个时间单元,每个第一时频资源的时域资源相同。每个第一空间资源包括1个空间层。同理,一个第一时频资源和一个第一空间资源与一个因子相关联,在此不赘述。
示例4:以一个第一时域资源在频域包括多个PRG的频域长度,一个空间资源包括多个空间层为例。如图9所示,假设具有2个第一时频资源和2个第一空间资源。每个第一时频资源在频域上包括4个PRG的频域长度,每个第一时频资源的频域资源不同。每个第一时频资源在时域上包含一个或多个时间单元,每个第一时频资源的时域资源相同。每个第一空间资源包括2个空间层。同理,一个第一时频资源和一个第一空间资源与一个因子相关联,在此不赘述。
示例5:以不同的第一时频资源包括的PRG的数量可以不同,不同的第一空间资源包括的空间层的数量可以不同为例。如图10所示,假设具有2个第一时频资源和2个第一空间资源。第一时频资源1在频域上包括2个PRG的频域长度,第一时频资源2在频域上包括4个PRG的频域长度,每个第一时频资源的频域资源不同。每个第一时频资源在时域上包含一个或多个时间单元,每个第一时频资源的时域资源相同。第一空间资源1包括1个空间层。第一空间资源2包括2个空间层。同理,一个第一时频资源和一个第一空间资源与一个因子相关联,在此不赘述。
假设按照时域划分第一时频资源,可以将图6~图10所示的频域维度替换为时域维度,在时域维度上一个格子表示一个或多个OFDM符号,且第一时频资源1和第一时频资源2的频域资源相同。
在一种可能的实现中,协议可以预先规定第一时频资源的数量和/或第一空间资源的数量。或者,网络设备也可以发送配置信息,以配置第一时频资源的数量和/或第一空间资源的数量。相应地,终端设备可以接收该配置信息。该配置信息可以为无线资源控制(radio resource control,RRC)信令或其他信令。也就是说,在该可能的实现中,第一时频资源的数量固定,第一时频资源的数量不随网络设备调度的下行数据的时频资源的变化而变化。和/或,第一空间资源的数量固定,第一空间资源的数量不随终端设备拥有的空间层数量的变化而变化。基于该可能的实现方式,有利于保证因子的通知数目固定,从而有利于保证固定的信令开销。这样终端设备仅需要检测固定比特长度的指示信息,有利于减少盲检次数,降低终端设备处理复杂度和处理时延,节省终端设备的功耗。
可选的,如果协议规定了第一时频资源的数量,或网络设备通过配置信息配置了第一时频资源的数量,网络设备还可基于网络设备调度的下行数据的时频资源、第一时频资源的数量,确定每个第一时频资源包括的时频资源。确定第一时频资源包括的时频资源可以是指确定第一时频资源在频域上包括的RE、子载波、RB或PRG,以及第一时频资源在时域上包括的OFDM符号。相应地,终端设备也可基于网络设备调度的下行数据的时频资源、第一时频资源的数量,确定每个第一时频资源包括的时频资源。基于该可选的实现方式,网络设备和终端设备能够准确地确定出第一时频资源包括的时频资源。
可选的,如果协议规定了第一空间资源的数量,或网络设备通过配置信息配置了第一空间资源的数量,网络设备还可基于终端设备的空间层数量和第一空间资源的数量,确定每个第一空间资源包括的空间层。相应地,终端设备基于终端设备的空间层数量和第一空间资源的数量,确定每个第一空间资源包括的空间层。基于该可选的实现方式,网络设备和终端设备能够准确地确定出第一空间资源包括的空间层。
第一时频资源的划分方法可以是预设的规则。以按照频域划分第一时频资源为例,不同的第一时频资源的频域资源不同,不同的第一时频资源对应的时域资源相同。不同的第一时频资源包含的频域资源尽量等分。以第一时频资源包含的频域资源的基本粒度为PRG为例,假设网络设备调度的下行数据的时频资源在频域上包括N PDSCH个PRG,第一时频资源的数量为S个,则前S-1个第一时频资源均包含
Figure PCTCN2021124088-appb-000110
个PRG,第S个第一时频资源包含剩余的
Figure PCTCN2021124088-appb-000111
个PRG。这种按照频域划分第一时频资源的规则,适用于第一时频资源包含的频域资源的基本粒度为RB或者RE,也适用于第一时频资源时域划分和空域划分。这种按照频域划分第一时频资源的规则也适用于第一空间资源的划分。
举例来说,如果网络设备通过配置信息配置了第一时频资源的数量为S=2个,第一空间资源的数量为2个。网络设备调度的下行数据的时频资源在频域上包括N PDSCH=8个PRG,在时域上包含N t=14个OFDM符号。按照预设的划分规则,例如不同的第一时频资源的频域资 源不同,且不同的第一时频资源包含的频域资源等分,不同的第一时频资源对应的时域资源相同。网络设备确定每个第一时频资源包含
Figure PCTCN2021124088-appb-000112
个PRG,即第一时频资源1在频域上包括PRG1~PRG4,第一时频资源2在频域上包括PRG5~PRG8。第一时频资源1和第一时频资源2在时域占用相同的N t=14个OFDM符号。终端设备对应的空间层数量为2个。按照预设的划分规则,例如不同的第一空间资源包含的空间层数目相同。网络设备确定第一空间资源1包括空间层1,第一空间资源2包括空间层2。
相应地,终端设备确定第一时频资源1在频域上包括PRG1~PRG4,第一时频资源2在频域上包括PRG5~PRG8,第一时频资源1和第一时频资源2在时域占用相同的N t=14个OFDM符号,以及确定第一空间资源1包括空间层1,第一空间资源2包括空间层2。
当然,协议也可以不规定第一时频资源的数量和/或第一空间资源的数量,网络设备也可以不配置第一时频资源的数量和/或第一空间资源的数量。每个第一时频资源包括的频域资源组的数量是固定的,和/或,每个第一空间资源包括的空间层的数量是固定的。第一时频资源的数量可随着下行数据的时频资源的变化而变化,第一空间资源的数量可以随终端设备的空间层数量的变化而变化。例如,每个第一时频资源在频域只包括一个RPG,那么如果下行数据的时频资源包括2个RPG,则具有2个第一时频资源。如果下行数据的时频资源包括4个RPG,则具有4个第一时频资源。再如,每个第一空间资源只包括一个空间层,那么如果终端设备对应有2个空间层,则具有2个第一空间资源。如果终端设备对应有4个空间层,则具有4个第一空间资源。
在一种可能的实现中,第一因子也可以只与一个维度上的数据相关联。例如,一个第一时频资源上的数据与一个第一因子相关联,一个第一时频资源中包括一个或多个频域资源组。或者,一个第一空间资源上的数据与一个第一因子相关联,一个第一空间资源中包括多个空间层。
本申请实施例全文中,网络设备基于第一因子对数据进行预编码采用的预编码算法可以是以下算法中的任一项:THP预编码、迫零(zero forcing,ZF)预编码、正则迫零(regularizedzero forcing,RZF)预编码、本征迫零(eigenzero forcing,EZF)预编码或最小均方误差(minimum mean-square error,MMSE)预编码。或者,网络设备还可以采用其他预编码算法对数据进行预编码。
本申请实施例全文中,关于因子的描述,以及如何基于因子对数据进行预编码,可参见前文中对基于因子的THP预编码和基于因子的线性预编码的描述,在此不赘述。
在一种可能的实现中,第一因子与以下一项或多项信息有关:第一时频资源上的数据、第一时频资源对应的第一信道矩阵或第一时频资源对应的第一预编码矩阵。其中,该第一时频资源为与该第一因子关联的数据所在的第一时频资源。基于该可能的实现方式,因子联合考虑了对应的信道矩阵,预编码矩阵以及发送的数据信号,最大限度利用信号和信道特征,实现最佳的干扰规避和信号功率提升,有利于提高系统性能。
502、终端设备检测第一时频资源和第一空间资源上的数据。
例如,假设第一时频资源和第一空间资源如图6所示。终端设备检测第一时频资源1和空间层1上的数据。终端设备检测第一时频资源2和空间层1上的数据。终端设备检测第一时频资源1和空间层2上的数据。终端设备检测第一时频资源2和空间层2上的数据。终端设备如何检测第一时频资源和第一空间资源上的数据可参见后文的描述,在此不赘述。
可见,基于图5所描述的方法,一个第一时频资源和一个第一空间资源上的数据是通过同一个因子进行预编码的。这样网络设备不用针对每个RE和每个空间层都向终端设备指示 一个因子。因此,基于图5所描述的方法,有利于节省信令开销。
请参见图11,图11是本申请实施例提供的另一种数据检测方法的流程示意图。在图11所示的数据检测方法中,网络设备可向终端设备指示第一因子,进而终端设备可基于第一因子来检测第一时频资源和第一空间资源上的数据。如图11所示,该数据检测方法包括如下步骤1101~步骤1103。其中:
1101、网络设备向终端设备发送指示信息,该指示信息指示至少一个第一因子。
本申请实施例中,一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。
例如,如果第一时频资源和第一空间资源上的数据与第一因子的关联关系如图6~图10所示,网络设备发送的指示信息指示因子1~因子4。
其中,指示信息可以为下行控制信息(downlink control information,DCI)信令,或其他能够指示因子的信令。
在一种可能的实现中,第一因子可以是因子集合中的因子或者是量化码本中的因子,下面对这两种实现方式分别进行详细的介绍:
①第一因子为因子集合中的因子。
该因子集合也可称为候选因子集合。网络设备和终端设备可基于Q个比特量化得到该因子集合,Q为大于0的整数。因子集合中包括N=2 Q个因子。基于Q个比特量化得到因子集合是指从0~2π中选择N=2 Q个因子。其中,Q可以是协议预先规定的,或者是网络设备通知给终端设备的。
可选的,终端设备也可以不基于Q个比特量化得到因子集合。例如,网络设备基于Q个比特量化得到该因子集合之后,可将该因子集合配置给终端设备。或者,该因子集合可以是协议预先规定的。
可选的,网络设备和/或终端设备具体可基于Q个比特均匀量化得到因子集合,即从0~2π中选择等间隔的N=2 Q个因子。基于Q个比特均匀量化得到的因子集合可以表示为:
Figure PCTCN2021124088-appb-000113
可选的,因子集合中的每个因子可对应一个因子索引,指示信息指示第一因子时具体可以指示第一因子的索引。或者,因子集合中的每个因子对应一个用于确定因子的参数值。指示信息具体可以通过指示第一因子的参数值的索引,来指示第一因子。
例如,因子集合中的每个因子对应参数K的一个值。K值对应的因子θ可以表示为:
Figure PCTCN2021124088-appb-000114
也就是说,因子0对应的K值为0,因子
Figure PCTCN2021124088-appb-000115
对应的K值为1,…,因子
Figure PCTCN2021124088-appb-000116
对应的K值为N-1。终端设备确定K值之后,就能基于公式(16)确定K值对应的因子。因此,指示信息可以通过指示第一因子对应的K值的索引,来隐式指示第一因子。
下面以一个具体的示例,对因子集合以及指示信息如何指示因子进一步进行说明:
假设Q为3,则基于Q个比特可均匀量化得到包括8个因子的因子集合。该因子集合可以表示为:
Figure PCTCN2021124088-appb-000117
如图6~图10所示,假设具有2个第一时频资源和2个第一空间资源。网络设备从因子集合中选择因子
Figure PCTCN2021124088-appb-000118
作为第一时频资源1和第一空间资源1上的数据关联的因子。以及从因子集合中选择因子
Figure PCTCN2021124088-appb-000119
作为第一时频资源1和第一空间资源2上的数据关联的因子。以及从因子集合中选择因子
Figure PCTCN2021124088-appb-000120
作为第一时频资源2和第一空间资源1上的数据关联的因子。以及从因子集合中选择因子π作为第一时频资源2和第一空间资源2上的数据关联的因子。可见,网络设备需要从因子集合中选择4个因子,并生成指示信息,该指示信息用于指示该4个因子。
在一种可能的实现中,指示信息可以按照先第一空间资源再第一时频资源的顺序指示因子。例如,假设一个因子需要3个比特来指示,指示信息总共需要12个比特来指示4个因子。第1~第3个比特用于指示空间层1和第一时频资源1关联的因子。第4~第6个比特用于指示空间层1和第一时频资源2关联的因子。第7~第9个比特用于指示空间层2和第一时频资源1关联的因子。第10~第12个比特用于指示空间层2和第一时频资源2关联的因子。
在另一种可能的实现中,可以按照先第一时频资源再第一空间资源的顺序指示因子。例如,第1~第3个比特用于指示第一时频资源1和空间层1关联的因子。第4~第6个比特用于指示第一时频资源1和空间层2关联的因子。第7~第9个比特用于指示第一时频资源2和空间层1关联的因子。第10~第12个比特用于指示第一时频资源2和空间层2关联的因子。
在一种可能的实现中,指示信息可通过这4个因子的索引来指示这4个因子。因子集合中每个因子对应的因子索引可如下表1所示。在终端设备接收该指示信息之后,就能基于下表1所示的对应关系,确定指示信息指示的因子。
表1
Figure PCTCN2021124088-appb-000121
在另一种可能的实现中,指示信息可通过4个K值的索引来指示这4个因子。因子集合中的每个因子对应参数K的一个值,K=0,1,2,...,7。K对应的因子等于
Figure PCTCN2021124088-appb-000122
因子与K值的对应关系如下表2所示。在终端设备接收该指示信息之后,就能基于下表3所示的K值与K值的索引之间的对应关系,确定K值,再基于K值计算其对应的因子。
表2
Figure PCTCN2021124088-appb-000123
表3
K值的索引 K值
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
值得一提的是,在上述表1中,也可以较小的因子索引对应较大的因子,在上述表3中,也可以较小的K值索引对应较大的K值。本申请实施例对因子索引与因子如何对应不做限定,以及对K值索引与K值如何对应不做限定。
②第一空间资源包括一个空间层,第一时频资源和第一空间资源上的数据关联的第一因子为量化码本中的因子。其中,该量化码本包括P个因子向量,每个因子向量为量化码本的一个向量,因子向量包括N个因子,因子向量的因子与参考信号端口一一关联,P和N为大于零的整数。指示信息通过携带因子向量的索引来指示第一因子。相应地,终端设备可基于因子向量的索引和为终端设备分配的参考信号端口从量化码本中,确定第一因子。通过预设因子向量(或称为因子组合),能够使因子在空间维度的粒度更加精细,并且通过指示一个因子向量的索引,就能指示多个第一因子,能够极大地节省信令开销。
下面以具体的示例对量化码本以及指示信息如何指示因子进一步进行说明:
图12为量化码本的一种示意图。如图12所示,量化码本包含P个因子向量,每个因子向量为码本中的一个向量,该向量可以是列向量的形式或者行向量的形式。图12以每个因子向量为码本中的一个列向量为例。可选的,一个因子向量也可以称为一个数组,或量化码本中的一列或一行。每个因子向量包含N行因子(即每个因子向量包含N个因子),因子向量的每一行因子与一个DMRS端口号相关联。这种关联关系可以是协议预设的固定关联关系, 也可以是网络设备预配置的关联关系。如图12所示,因子向量的第一行至第N行因子分别对应DMRS端口0~DMRS端口N-1。或者,如果因子向量是一个行向量,每个因子向量包含N列因子,因子向量的每一列与一个DMRS端口号相关联。
如图8所示,假设具有2个第一时频资源和2个第一空间资源。第一时频资源是按照频域划分的,每个第一时频资源的频域资源不同,每个第一时频资源的时域资源相同。每个第一时频资源在频域包括4个PRG的频域长度,在时域包括一个或多个时间单元。每个第一空间资源包括1个空间层。那么网络设备可以从P个因子向量中选择两个因子向量。假设网络设备针对第一时频资源1、空间层1和空间层2选择了第一列的因子向量,针对第一时频资源2、空间层1和空间层2选择了第二列的因子向量。网络设备向终端设备发送指示信息,该指示信息中携带第一列的因子向量的索引和第二列的因子向量的索引。
在多用户-多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)的通信场景下,假设空间层1对应终端设备1,空间层2对应终端设备2。终端设备1和终端设备2中也存储了图12所示的量化码本。终端设备1和终端设备2接收指示信息之后,基于第一列的因子向量的索引和第二列的因子向量的索引从量化码本中确定第一列的因子向量和第二列的因子向量。DMRS端口0与空间层1关联,DMRS端口1与空间层2关联。对于终端设备1,网络设备为终端设备1分配的DMRS端口是0。终端设备1确定第一列的因子向量中的1为第一时频资源1和空间层1上的数据相关联的因子1,以及确定第二列的因子向量中的1为第一时频资源2和空间层1上的数据相关联的因子2。终端设备1基于因子1检测基于因子1预编码的数据,即基于因子1检测第一时频资源1和空间层1上的数据。终端设备1基于因子2检测基于因子2预编码的数据,即基于因子2检测第一时频资源2和空间层1上的数据。对于终端设备2,网络设备为终端设备1分配的DMRS端口是1。终端设备2确定第一列的因子向量中的
Figure PCTCN2021124088-appb-000124
为第一时频资源1和空间层2上的数据相关联的因子3,以及确定第二列的因子向量中的
Figure PCTCN2021124088-appb-000125
为第一时频资源2和空间层2上的数据相关联的因子4。终端设备2基于因子3检测基于因子3预编码的数据,即基于因子2检测第一时频资源1和空间层2上的数据。终端设备2基于因子4检测基于因子4预编码的数据,即基于因子2检测第一时频资源2和空间层2上的数据。
在多用户-多输入多输出(single-user multiple-input multiple-output,SU-MIMO)的通信场景下,假设终端设备被网络设备分配了DMRS端口0和DMRS端口1。DMRS端口0与空间层1关联,DMRS端口1与空间层2关联。那么,该终端设备确定第一列的因子向量中的1为第一时频资源1和空间层1上的数据相关联的因子1,
Figure PCTCN2021124088-appb-000126
为第一时频资源1和空间层2上的数据相关联的因子2。终端设备确定第二列的因子向量中的1为第一时频资源2和空间层1上的数据相关联的因子3,
Figure PCTCN2021124088-appb-000127
为第一时频资源2和空间层2上的数据相关联的因子4。终端设备1基于因子1检测基于因子1预编码的数据。终端设备1基于因子2检测基于因子2预编码的数据。终端设备1基于因子3检测基于因子3预编码的数据。终端设备1基于因子4检测基于因子4预编码的数据。
可见,网络设备仅需要对每个第一时频资源指示一个因子向量的索引。对于一个第一时频资源,网络设备指示因子向量的开销为
Figure PCTCN2021124088-appb-000128
比特,其中
Figure PCTCN2021124088-appb-000129
上取整。以量化码本中包含P=64个因子向量为例。假设第一时频资源的数量为2,指示信息共计需要
Figure PCTCN2021124088-appb-000130
个比特来指示因子。
值得一提的是,图12以因子为e 为例。因子也可以为e -jθ,或者,因子也可以为jθ,或者因子也可以为θ。其中j为虚部单位,满足j 2=-1。
1102、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据。
其中,步骤1101可以在步骤1102之前执行,或者在步骤1102之后执行,或者步骤1101可以和步骤1102同时执行。步骤1102的具体实现方式与步骤501的具体实现方式相同,具体可参见上述步骤501下的描述,在此不赘述。
1103、终端设备基于第一因子检测基于该第一因子预编码的数据。
本申请实施例中,终端设备接收指示信息之后,基于第一因子检测基于该第一因子预编码的数据。
示例1:以网络设备采用基于因子的THP预编码算法对数据进行预编码为例。基于前文中的描述可知,所有终端设备接收的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000131
第k个终端设备在第一时频资源和第l个空间层上接收的数据信号可以通过前述公式(10)表示为:
Figure PCTCN2021124088-appb-000132
其中,终端设备可以利用DMRS估计到第l个空间层对应的等效信道系数
Figure PCTCN2021124088-appb-000133
终端设备基于接收信号y k,l,等效信道系数
Figure PCTCN2021124088-appb-000134
以及第一因子
Figure PCTCN2021124088-appb-000135
Figure PCTCN2021124088-appb-000136
或jθ k,l或-jθ k,l,就能恢复网络设备发送的数据符号。例如,与第一时频资源和第l个空间层上的数据相对应的第一因子为
Figure PCTCN2021124088-appb-000137
则终端设备将第l个空间层得到的等效信道系数
Figure PCTCN2021124088-appb-000138
与因子
Figure PCTCN2021124088-appb-000139
相乘,得到等效信道系数
Figure PCTCN2021124088-appb-000140
利用接收信号y k,l和等效信道系数
Figure PCTCN2021124088-appb-000141
对接收信号进行检测。
下面对终端设备利用参考信号估计数据符号对应的等效信道系数
Figure PCTCN2021124088-appb-000142
进行介绍:
以参考信号为DMRS(解调参考信号)为例。DMRS用于接收端进行信道估计以完成数据检测。通常在网络设备侧,DMRS与数据进行完全相同的预编码操作(即使用相同的预编码矩阵进行计算),从而保证DMRS与数据经历相同的等效信道。以下行传输为例,假设网络设备发送的下行数据符号向量为s PDSCH=(s 1,s 2,…,s L) T,发送的DMRS符号构成向量
Figure PCTCN2021124088-appb-000143
其中
Figure PCTCN2021124088-appb-000144
对应第l个DMRS端口对应的DMRS符号,与第l个空间层相对应。终端设备接收到的数据符号向量可以表示为y=HPs PDSCH+n。终端设备接收到的DMRS符号向量可以表示为r=HPs RS+n。由于DMRS符号向量s RS对于收发端是已知的,终端设备对DMRS进行信道估计,可以得到等效信道
Figure PCTCN2021124088-appb-000145
的估计结果。终端设备基于该等效信道的估计结果,即可完成对数据符号向量s PDSCH的检测。然而对于THP预编码,DMRS无法采用与数据完全相同的预编码过程,因为模操作会引入扰动项d kτ,使得原本的DMRS信号序列发生改变。从而导致DMRS信号对于接收端无法获知,因此无法进行正确的信道估计。
对于THP预编码信道估计问题,DMRS需要与数据进行不同的预编码处理。通常DMRS可以采用线性预编码。在一种实现方式中,如果网络设备采用基于因子的THP预编码算法对数据进行预编码,假设发送端发送的DMRS符号向量为s RS,网络设备对DMRS进行预编码过程可以表示为:
Figure PCTCN2021124088-appb-000146
终端设备接收到的DMRS符号向量可以表示为:
Figure PCTCN2021124088-appb-000147
由于DMRS符号向量s RS对于收发端是已知的,因此可以通过信道估计算法(如最小二 乘LS估计算法或最小均方误差MMSE算法等)得到等效信道矩阵R H的估计结果。需要注意的是,R H是下三角矩阵。如前文所述,G矩阵为对角矩阵,其主对角线元素为R矩阵主对角线元素的倒数。因此,DMRS对应的等效信道矩阵R H主对角线元素与数据符号对应的等效信道矩阵G -1的主对角线元素相同。因此,终端设备可以得到等效信道矩阵
Figure PCTCN2021124088-appb-000148
的估计结果。通过网络设备发送的通知信令,终端设备可以获知DMRS预编码与数据预编码的功率因子差,即α和β的差异。基于该功率因子差,终端设备可以确定
Figure PCTCN2021124088-appb-000149
的估计结果。其中,α也可以默认为1。
在另一种实现方式中,如果网络设备采用基于因子的THP预编码算法对数据进行预编码,假设发送端发送的DMRS符号向量为s RS,网络设备对DMRS进行预编码过程可以表示为:
Figure PCTCN2021124088-appb-000150
其中,α表示功率归一化因子。终端设备接收到的DMRS符号向量可以表示为:
Figure PCTCN2021124088-appb-000151
由于DMRS符号向量s RS对于收发端是已知的,因此可以通过信道估计算法(如最小二乘LS估计算法或最小均方误差MMSE算法等)得到等效信道矩阵
Figure PCTCN2021124088-appb-000152
的估计结果。通过网络设备发送的通知信令,终端设备可以获知DMRS预编码与数据预编码的功率因子差,即α和β的差异。基于该功率因子差,终端设备可以确定
Figure PCTCN2021124088-appb-000153
的估计结果。其中,α也可以默认为1。
示例2:以网络设备采用基于因子的EZF预编码算法对数据进行预编码为例。基于前述公式(14),第k个终端设备在第一时频资源,L k个空间层上接收的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000154
其中,H k为第k个终端设备对应的信道矩阵,W k为第k个终端设备对应的预编码矩阵,s k为第k个终端设备在第一时频资源上发送的数据符号向量,n k为第k个终端设备对应的加性噪声,
Figure PCTCN2021124088-appb-000155
为第k个终端设备对应的其他K-1个配对的终端设备带来的干扰,β为功率归一化因子或功率控制因子,
Figure PCTCN2021124088-appb-000156
为维度为L k×L k的对角矩阵,表示第k个终端设备对应的因子矩阵,θ k,l
Figure PCTCN2021124088-appb-000157
Figure PCTCN2021124088-appb-000158
或jθ k,l表示第k个终端设备的第l个空间层对应的第一因子,后文同理,后文不再赘述。
终端设备可以利用DMRS估计到等效信道矩阵H kW k,并基于第k个终端设备对应的L k个空间层的第一因子θ k,l
Figure PCTCN2021124088-appb-000159
Figure PCTCN2021124088-appb-000160
或jθ k,l(l=1,2,…,L k)得到对应的因子矩阵
Figure PCTCN2021124088-appb-000161
终端设备基于接收信号y k,等效信道矩阵H kW k以及因子矩阵
Figure PCTCN2021124088-appb-000162
就能恢复网络设备发送的数据符号。
在一种实现方式中,如果网络设备采用基于因子的EZF预编码算法对数据进行预编码,假设发送端对应第k个终端设备的DMRS符号向量为
Figure PCTCN2021124088-appb-000163
其中
Figure PCTCN2021124088-appb-000164
对应第l个DMRS端口对应的DMRS符号,与第k个终端设备的第l个空间层相对应。网络设备对第k用户对应的DMRS符号向量
Figure PCTCN2021124088-appb-000165
进行预编码过程可以表示为:
Figure PCTCN2021124088-appb-000166
其中,W k为第k个终端设备对应的预编码矩阵。通常每个终端设备的DMRS信号是正交的,第k个终端设备对应接收到的DMRS符号向量可以表示为:
Figure PCTCN2021124088-appb-000167
n k表示第k个终端设备对应的加性噪声向量。I k表示第k个终端设备对应受到的干扰信号。由于DMRS符号
Figure PCTCN2021124088-appb-000168
对于收发端是已知的,因此可以通过信道估计算法(如最小二乘LS估计算法或最小均方误差MMSE算法等)得到等效信道矩阵
Figure PCTCN2021124088-appb-000169
的估计结果。
可见,通过实施图11所描述的方法,网络设备对一个第一时频资源和一个第一空间资源上的数据使用同一个因子对发送的数据符号进行预编码,网络设备针对一个第一时频资源和一个第一空间资源上的数据只需要指示一个因子。一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。网络设备不需要每个RE和每个空间层都指示一个因子。因此,基于图11所描述的方法,有利于节省指示信息的信令开销。
请参见图13,图13是本申请实施例提供的另一种数据检测方法的流程示意图。在图13所描述的方法中,除了具有第一时频资源和第一空间资源,还具有第二时频资源和第二空间资源。第二时频资源和第二空间资源上的数据基于第二因子进行预编码,并且第二因子通过参考信号来承载。如图13所示,该数据检测方法包括如下操作1301~操作1305。其中:
1301、网络设备对至少一个参考信号进行预编码,并向终端设备发送预编码之后的至少一个参考信号。
本申请实施例中,网络设备调度的下行数据的时频资源被划分为一个或多个第一时频资源和一个或多个第二时频资源。其中,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层。一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。关于第一时频资源、第一空间资源和第一因子的描述可参见上述图5或图11所对应的实施例中的描述,在此不赘述。
本申请实施例全文中,对参考信号进行预编码可以等效为对发送的参考信号符号或参考信号元素进行预处理,如对发送的参考信号符号或参考信号元素进行相位旋转。本申请实施例全文中的参考信号可以包括一个或多个参考信号符号,一个参考信号符号表示一个参考信号元素。参考信号符号可以是解调参考信号DMRS符号,或者,参考信号符号可以是一个DMRS资源中的部分资源上的符号,或者,参考信号符号还可以是其他类型的参考信号符号。一个参考信号包括的参考信号符号可以位于不同的时频单元。一个参考信号符号可以对应一个参考信号端口,一个参考信号端口可以与一个空间层相对应。对应不同参考信号端口的参考信号符号可以构成参考信号符号向量。不同参考信号端口可以是正交端口,即可以通过频分复用,时分复用或者码分复用中的一种或多种方式,发送不同参考信号端口所对应的参考信号符号。多个参考信号符号可以在不同的时频资源上发送,也可以在相同的时频资源上发送。
本申请实施例全文中,对参考信号进行预编码可以等效为对发送的参考信号符号或参考信号元素进行预处理,如对发送的参考信号符号或参考信号元素进行相位旋转。
本申请实施例中,网络设备基于第二时频资源和第二空间资源上的数据相关联的第二因子,对该第二时频资源和该第二空间资源相关联的参考信号进行预编码。也就是说,与第二 时频资源和第二空间资源上的数据相关联的第二因子,还用于对与该第二时频资源和该第二空间资源相关联的参考信号进行预编码。
本申请实施例中,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层。不同的第二时频资源包括的频域资源组的数量可以相同或不同。不同的第二空间资源包括的空间层数量也可以相同或不同。关于频域资源组的描述可参见图5所对应的实施例中的描述,在此不赘述。一个第二时频资源包括一个或多个频域资源组可以理解为:一个第二时频资源在频域上的长度为一个或多个频域资源组的频域长度,或一个第二时频资源的频域带宽为一个或多个频域资源组的频域长度,或一个第二时频资源在频域包括一个或多个频域资源组。
可选的,一个第二时频资源还可在时域上包括一个或多个时间单元。一个时间单元可以是一个或多个(Orthogonal Frequency Division Multiplexing,OFDM)符号,或者为一个或多个时隙(slot)。不同的第二时频资源在时域上包括的时间单元的数量可以相同或不同。
举例来说,假设具有一个第一空间资源和一个第二空间资源,第一空间资源和第二空间资源均为空间层1。图14a为空间层1上的第一时频资源和第二时频资源的示意图。如图14a所示,第一时频资源1、第一时频资源2、第二时频资源1和第二时频资源2分别在时域包括3个OFDM符号,在频域分别包括2个RB。第一时频资源1、第一时频资源2、第二时频资源1和第二时频资源2所占的OFDM符号不同,在频域上所占的RB相同。即第一时频资源1、第一时频资源2、第二时频资源1和第二时频资源2是按照时域划分的。图14a中白色格子的时频资源用于映射参考信号。例如该参考信号可以是DMRS或其他参考信号,图14a以参考信号为DMRS为例。图14b~图23、图26a、图26b、图28和图30中的白格子的时频资源也用于映射参考信号,后文不再赘述。在每个第二时频资源之前具有用于映射DMRS的时频资源。其中,第二时频资源1和空间层1上的数据与第二因子t 2相关联,第二时频资源1和空间层1与DMRS1相关联,网络设备基于第二因子t 2对DMRS1进行预编码,以及基于第二因子t 2对第二时频资源1和空间层1上的数据进行预编码。第一时频资源1和空间层1上的数据与第一因子t 1相关联,网络设备基于第一因子t 1对第一时频资源1和空间层1上的数据进行预编码。第二时频资源2和空间层1上的数据与第二因子t 4相关联,第二时频资源2和空间层1与DMRS2相关联,网络设备基于第二因子t 4对DMRS2进行预编码,以及基于第二因子t 4对第二时频资源2和空间层1上的数据进行预编码。第一时频资源2和空间层1上的数据与第一因子t 3相关联,网络设备基于第一因子t 3对第一时频资源2和空间层1上的数据进行预编码。
再举例来说,假设具有一个第一空间资源,该第一空间资源包括空间层1和空间层2,具有两个第二空间资源,第二空间资源1包括空间层1,第二空间资源2包括空间层2。图14a可以理解为是空间层1上的第一时频资源和第二时频资源的示意图。图14b可以理解为是空间层2上的第一时频资源和第二时频资源的示意图。图14b中的第二因子t 5是第二时频资源1和第二空间资源2上的数据关联的因子。第二时频资源1和第二空间资源2与DMRS3相关联。网络设备基于第二因子t 5对DMRS3进行预编码,以及基于第二因子t 5对第二时频资源1和第二空间资源2上的数据进行预编码。第二因子t 6是第二时频资源2和第二空间资源2上的数据关联的因子。第二时频资源2和第二空间资源2与DMRS4相关联,网络设备基于第二因子t 6对DMRS4进行预编码,以及基于第二因子t 6对第二时频资源2和第二空间资源2上的数据进行预编码。
第一时频资源和第二时频资源可以有以下3种划分方式:
①第一时频资源包括的时域资源和第二时频资源包括的时域资源不相同。
如果第一时频资源包括的时域资源和第二时频资源包括的时域资源不相同,但第一时频资源包括的频域资源和第二时频资源包括的频域资源相同,则第一时频资源和第二时频资源是按照时域划分的。例如,如图14a和图14b所示。
再如,图15以具有一个第二时频资源和两个第一时频资源为例。假设具有一个第一空间资源和一个第二空间资源,第一空间资源和第二空间资源均为空间层1,图15为空间层1上的第一时频资源和第二时频资源的示意图,图16~图23同理,后续不赘述。如图15所示,第二时频资源1、第一时频资源1和第一时频资源2在时域分别包括3个OFDM符号,在频域分别包括2个RB。并且第二时频资源1、第一时频资源1和第一时频资源2在时域包括的OFDM符号不同,在频域包括的RB相同。
再如,图16以具有两个第二时频资源和一个第一时频资源为例。如图16所示,第二时频资源1、第一时频资源1和第二时频资源2在时域分别包括3个OFDM符号,在频域分别包括2个RB。并且第二时频资源1、第一时频资源1和第二时频资源2在时域包括的OFDM符号不同,在频域包括的RB相同。
方式①可以使第二时频资源在时间上与对应承载第二时频资源所对应的因子的参考信号资源更加接近,有利于基于参考信号准确地估计第二时频资源上数据对应的等效信道。
②第一时频资源包括的频域资源与第二时频资源包括的频域资源不相同。
如果第一时频资源包括的时域资源和第二时频资源包括的频域资源不相同,但第一时频资源包括的频域资源和第二时频资源包括的时域资源相同,则第一时频资源和第二时频资源是按照频域划分的。例如,图17以具有一个第一时频资源和一个第二时频资源为例。如图17所示,第一时频资源和第二时频资源在时域分别包括9个OFDM符号,在频域分别包括1个RB。并且第一时频资源和第二时频资源在时域包括的OFDM符号相同,在频域包括的RB不同。
再如,图18以具有一个第一时频资源和两个第二时频资源为例。如图18所示,第一时频资源1、第二时频资源1和第二时频资源2在时域分别包括9个OFDM符号,在频域分别包括1个RB。并且第一时频资源1、第二时频资源1和第二时频资源2在时域包括的OFDM符号相同,在频域包括的RB不同。
再如,图19以具有两个第一时频资源和一个第二时频资源为例。如图19所示,第一时频资源1、第一时频资源2和第二时频资源1在时域分别包括9个OFDM符号,在频域分别包括1个不同的RB。并且第一时频资源1、第一时频资源2和第二时频资源1在时域包括的OFDM符号相同,在频域包括的RB不同。
方式②可以使第二时频资源在频域上与对应承载第二时频资源所对应的因子的参考信号资源更加接近,有利于基于参考信号准确地估计第二时频资源上数据对应的等效信道。
③第一时频资源和第二时频资源包括的频域资源组不相同,且第一时频资源和第二时频资源包括时域资源不相同。即按照时域和频域划分第一时频资源和第二时频资源。可选的,第二时频资源在频域上包括的频域资源组可以是第一时频资源的N倍,或
Figure PCTCN2021124088-appb-000170
N为大于1的整数。第二空间资源包括的空间层数量也可以是第一空间资源包括的空间层数量的N倍或
Figure PCTCN2021124088-appb-000171
倍。
例如,图20以具有两个第一时频资源和一个第二时频资源为例。如图20所示,第一时频资源1、第一时频资源2和第二时频资源1分别在时域包括3个OFDM符号。第二时频资 源1在频域包括2个RB,第一时频资源1和第一时频资源2分别在频域包括1个RB,第一时频资源1和第一时频资源2包括的RB不相同。
再如,图21以具有两个第二时频资源和一个第一时频资源为例。如图21所示,第一时频资源1、第二时频资源1和第二时频资源2分别在时域包括3个OFDM符号。第一时频资源1在频域包括2个RB,第二时频资源1和第二时频资源2分别在频域包括1个RB,第二时频资源1和第二时频资源2包括的RB不相同。
在一种可能的实现中,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个第一时频资源以及一个或多个第二时频资源。通过这种划分方法,第一时频资源和第二时频资源将一个时频资源集合进一步划分为粒度更小的时频资源子集,每个时频资源子集仅包含较少的时频资源。不同的时频资源子集对应不同的因子,有利于实现精细化的因子调整,从而尽可能地提升因子带来的功率效率提升。当然,也可以不存在时频资源集合的概念,直接将网络设备调度的下行数据的时频资源划分为一个或多个第一时频资源和一个或多个第二时频资源。
可选的,时频资源集合可以有以下3种划分方式:
①按照频域划分时频资源集合。即不同的时频资源集合的频域资源不同,不同的时频资源集合的时域资源相同。
例如,如图22所示,图22以具有2个时频资源集合为例。其中,时频资源集合1在时域上包括7个符号,时频资源集合2在时域上也包括7个符号。时频资源集合1在频域上包括2个RB。时频资源集合2在频域上包括2个RB。时频资源集合1和时频资源集合2在频域包括的RB不相同。时频资源集合1包括第一时频资源1和第二时域资源1。时频资源集合2包括第一时频资源2和第二时域资源2。时频资源集合1也可以包括多个第一时频资源和多个第二时频资源。时频资源集合2也可以包括多个第一时频资源和多个第二时频资源。图22以时频资源集合1包括一个第一时频资源和一个第二时频资源,时频资源集合2包括一个第一时频资源和一个第二时频资源为例。可选的,用于映射参考信号的时频资源也可以不属于时频资源集合中的资源,图22以用于映射参考信号的时频资源属于时频资源集合中的资源为例。
②按照时域划分时频资源集合。即不同的时频资源集合的时域资源不同,不同的时频资源集合的频域资源相同。
例如,如图23所示,图23以具有2个时频资源集合为例。其中,时频资源集合1在时域上包括4个符号,时频资源集合2在时域上也包括4个符号。时频资源集合1和时频资源集合2在时域包括的符号不相同。时频资源集合1在频域上包括4个RB。时频资源集合2在频域上包括4个RB。时频资源集合1包括第一时频资源1和第二时域资源1。时频资源集合2包括第一时频资源2和第二时域资源2。时频资源集合1也可以包括多个第一时频资源和多个第二时频资源。时频资源集合2也可以包括多个第一时频资源和多个第二时频资源。图23以时频资源集合1包括一个第一时频资源和一个第二时频资源,时频资源集合2包括一个第一时频资源和一个第二时频资源为例。
③按照时域和频域划分时频资源集合。即不同的时频资源集合的时域资源不同,不同的时频资源集合的频域资源不同。
在一种可能的实现中,第二时频资源的数量为协议预先规定的;或者,终端设备接收网络设备发送的指示信息之前,终端设备还可接收网络设备发送的配置信息,该配置信息用于配置第二时频资源的数量。相应地,网络设备可以向终端设备发送该配置信息。
可选的,网络设备和终端设备基于网络设备调度的下行数据的时频资源,以及第二时频资源的数量,确定每个第二时频资源包括的时频资源。
在一种可能的实现中,第二时频资源包含的频域资源数目(或第二时频资源在频域的带宽)是协议规定的或网络设备配置的。例如,第二时频资源包含的频域资源数目可以是1个PRG。可选的,终端设备和网络设备可基于第二时频资源包含的频域资源数目,按照预设的第二时频资源划分方法,在调度的时频资源中划分一个或多个第二时频资源。
在一种可能的实现中,具有一个或多个时频资源集合时,协议可以预先规定时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量;或者,具有一个或多个时频资源集合时,网络设备也可以发送配置信息,以配置时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量。相应地,终端设备可以接收该配置信息。
在一种可能的实现中,网络设备基于网络设备调度的下行数据的时频资源,以及时频资源集合的数量和/或时频资源集合包括的第一时频资源的数量和/或时频资源集合包括的第二时频资源的数量,确定每个时频资源集合中的第一时频资源和/或第二时频资源包括的时频资源。
1302、网络设备基于第二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据。
在一种可能的实现中,如果采用线性预编码算法对数据进行预编码,通过第二因子对数据或参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000172
其中s=(s 1,s 2,…,s L) T表示发送的数据或参考信号。
Figure PCTCN2021124088-appb-000173
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000174
Figure PCTCN2021124088-appb-000175
Figure PCTCN2021124088-appb-000176
表示第k个空间层对应的第二因子,W为线性预编码矩阵。
在一种可能的实现中,如果采用THP预编码算法对数据进行预编码,通过第二因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000177
其中s=(s 1,s 2,…,s L) T表示发送的数据。
Figure PCTCN2021124088-appb-000178
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000179
Figure PCTCN2021124088-appb-000180
Figure PCTCN2021124088-appb-000181
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,如果采用THP预编码算法对数据进行预编码,通过第二因子对参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000182
或者为:
Figure PCTCN2021124088-appb-000183
其中s=(s 1,s 2,…,s L) T表示发送的参考信号。
Figure PCTCN2021124088-appb-000184
为对角矩阵,α为功率调整因子,
Figure PCTCN2021124088-appb-000185
Figure PCTCN2021124088-appb-000186
Figure PCTCN2021124088-appb-000187
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
1303、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据。
如果采用线性预编码算法对数据进行预编码,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000188
其中s=(s 1,s 2,…,s L) T表示发送的数据。
Figure PCTCN2021124088-appb-000189
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000190
Figure PCTCN2021124088-appb-000191
Figure PCTCN2021124088-appb-000192
表示第k个空间层对应的第一因子,W为线性预编码矩阵。
如果采用THP预编码算法对数据进行预编码,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000193
其中s=(s 1,s 2,…,s L) T表示发送的数据。
Figure PCTCN2021124088-appb-000194
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000195
Figure PCTCN2021124088-appb-000196
Figure PCTCN2021124088-appb-000197
表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关。d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,第一因子与以下一项或多项信息有关:第一时频资源上的数据、第一时频资源对应的第一信道矩阵或第一时频资源对应的第一预编码矩阵。其中,该第一时频资源为与该第一因子关联的数据所在的第一时频资源。
在一种可能的实现中,第二因子与以下一项或多项信息有关:第二时频资源上的数据、第二时频资源相关联的参考信号、第二时频资源对应的第二信道矩阵或第二时频资源对应的第二预编码矩阵。其中,该第二时频资源为与该第二因子关联的数据所在的第二时频资源。其中,第一时频资源上的数据可以是第一时频资源上对应的所有空间层上的传输数据符号。第二时频资源上的数据可以是第二时频资源上对应的所有空间层上的传输数据符号。第二时频资源相关联的参考信号可以是第二时频资源上对应的所有空间层所对应的参考信号符号。
基于该可能的实现方式,因子联合考虑了对应的信道矩阵,预编码矩阵以及发送的数据信号,或者因子联合考虑了对应的信道矩阵,预编码矩阵,发送的数据信号以及对应的参考信号,最大限度利用信号和信道特征,实现最佳的干扰规避和信号功率提升,有利于提高系统性能。
1304、终端设备基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据。
本申请实施例中,终端设备接收至少一个参考信号之后,基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据。
1305、终端设备检测第一时频资源和第一空间资源上的数据。
例如,假设具有一个第一空间资源和一个第二空间资源,第一空间资源和第二空间资源均为空间层1,图14a为空间层1上的第一时频资源和第二时频资源的示意图。如图14a所示,第二时频资源1和空间层1上的数据与第二因子t 2相关联,第二时频资源1和空间层1与DMRS1相关联,网络设备基于第二因子t 2对DMRS1进行预编码,并发送预编码后的DMRS1。网络设备基于第二因子t 2对第二时频资源1和空间层1上的数据进行预编码,并在第二时频资源1发送预编码后的数据。第一时频资源1和空间层1上的数据与第一因子t 1相关联,网络设备基于第一因子t 1对第一时频资源1和空间层1上的数据进行预编码,并发送预编码之后的数据。终端设备接收DMRS1之后,基于DMRS1检测第二时频资源1和空间层1上的数据。终端设备还会检测第一时频资源1和空间层1上的数据。
同理,第二时频资源2和空间层1上的数据与第二因子t 4相关联,第二时频资源2和空间层1与DMRS2相关联,网络设备基于第二因子t 4对DMRS2进行预编码,并发送预编码后的DMRS2。网络设备基于第二因子t 4对第二时频资源2和空间层1上的数据进行预编码,并发送预编码之后的数据。第一时频资源2和空间层1上的数据与第一因子t 3相关联,网络设备基于第一因子t 3对第一时频资源2和空间层1上的数据进行预编码,并发送预编码之后的数据。终端设备接收DMRS2之后,基于DMRS2检测第二时频资源2和空间层1上的数 据。终端设备还会检测第一时频资源2和空间层1上的数据。
终端设备基于DMRS1检测第二时频资源1和空间层1上的数据,以及基于DMRS2检测第二时频资源2和空间层1上的数据的具体实现方式可参见下文中图24所对应的实施例中的描述,在此不赘述。终端设备检测第一时频资源1和空间层1上的数据,以及检测第一时频资源2和空间层1上的数据的具体实现方式可参见下文中图24或图25或图27所对应的实施例中的描述,在此不赘述。
基于图13所描述的方法,可以将网络设备调度的时频资源划分为第一时频资源和第二时频资源,从而第一时频资源和第二时频资源上的数据可以使用不同的因子进行预编码,这样能够使因子的粒度更加精细,从而提高系统性能。并且对第二时频资源和第二空间资源进行预编码使用的因子通过参考信号进行承载,网络设备无需指示对第二时频资源和第二空间资源进行预编码使用的因子,这样能够节省指示信令的开销。
请参见图24,图24是本申请实施例提供的另一种数据检测方法的流程示意图。与图13所描述的方法相比,在图24所描述的方法中,网络设备还可通过信令向终端设备指示与第一因子有关的第一信息,从而终端设备可以基于该第一信息来检测第一时频资源和第一空间资源上的数据。如图24所示,该数据检测方法包括如下操作2401~操作2406。其中:
2401、网络设备向终端设备发送指示信息,该指示信息用于指示至少一个第一信息。
其中,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联。
一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层。一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与该第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。本申请实施例中,关于第一时频资源、第一空间资源、第二时频资源、第二空间资源、参考信号、第一因子和第二因子的相关描述,可参见上述图5、图11和图13所对应的实施例中的描述,在此不赘述。
在一种可能的实现中,一个第一因子与一个或多个第二因子相关联,一个第一信息与一个第一因子和第一因子相关联的一个第二因子有关。其中,第一信息有关的第二因子相关联的数据所在的第二时频资源和第二空间资源,为与该第一信息相关联的第二时频资源和第二空间资源。
举例来说,假设具有一个第一空间资源和一个第二空间资源,第一空间资源和第二空间资源均为空间层1,图14a为空间层1上的第一时频资源和第二时频资源的示意图。如图14a所示,第一因子t 1是第一时频资源1和第一空间资源上的数据关联的因子。第二因子t 2是第二时频资源1和第二空间资源上的数据关联的因子。第一因子t 3是第一时频资源2和第一空间资源上的数据关联的因子。第二因子t 4是第二时频资源2和第二空间资源上的关联的因子。其中,第一因子t 1与第二因子t 2相关联。第一因子t 3与第二因子t 4相关联。
指示信息需要指示2个第一信息。第一信息1与第一因子t 1和第二因子t 2有关,第一信息1与第二时频资源1和第二空间资源相关联。DMRS1与第二时频资源1和第二空间资源相关联,因此,DMRS1基于第二因子t 2进行预编码。第一信息2与第一因子t 3和第二因子t 4 有关,第一信息2与第二时频资源2和第二空间资源相关联。DMRS2与第二时频资源2和第二空间资源相关联,因此,DMRS2基于第二因子t 4进行预编码。
再举例来说,假设具有一个第一空间资源,该第一空间资源包括空间层1和空间层2,具有两个第二空间资源,第二空间资源1包括空间层1,第二空间资源2包括空间层2。图14a可以理解为是空间层1上的第一时频资源和第二时频资源的示意图。图14b可以理解为是空间层2上的第一时频资源和第二时频资源的示意图。第二因子t 5是第二时频资源1和第二空间资源2关联的因子。第二因子t 6是第二时频资源2和第二空间资源2关联的因子。其中,第一因子t 1与第二因子t 2以及第二因子t 5相关联。第一因子t 3与第二因子t 4以及第二因子t 6相关联。
对于如图14a和图14b所示的时频资源,指示信息需要指示4个第一信息。第一信息1与第一因子t 1和第二因子t 2有关,第一信息1与第二时频资源1和第二空间资源1相关联。DMRS1与第二时频资源1和第二空间资源1相关联,因此,DMRS1基于第二因子t 2进行预编码。第一信息2与第一因子t 3和第二因子t 4有关,第一信息2与第二时频资源2和第二空间资源1相关联。DMRS2与第二时频资源2和第二空间资源1相关联,因此,DMRS2基于第二因子t 4进行预编码。第一信息3与第一因子t 1和第二因子t 5有关,第一信息3与第二时频资源1和第二空间资源2相关联。DMRS3与第二时频资源1和第二空间资源2相关联,因此,DMRS3基于第二因子t 5进行预编码。第一信息4与第一因子t 3和第二因子t 6有关,第一信息4与DMRS4有关,第一信息4与第二时频资源2和第二空间资源2相关联。DMRS4与第二时频资源2和第二空间资源2相关联,因此,DMRS4基于第二因子t 6进行预编码。
在一种可能的实现中,第一信息为第一因子与该第一因子相关联的第二因子之间的差值,或者,第一信息为第一因子与该第一因子相关联的第二因子之间的商。基于该可能的实现,有利于终端设备准确地检测第一时频资源和第一空间资源上的数据。
举例来说,以图14a为例。第一信息1与第一因子t 1和第二因子t 2有关。第一信息1可以为第一因子t 1和第二因子t 2之间的差值。或者,第一信息1可以为第一因子t 1和第二因子t 2之间的商。
例如,如果第一因子t 1
Figure PCTCN2021124088-appb-000198
第二因子t 2
Figure PCTCN2021124088-appb-000199
或者,第一因子t 1
Figure PCTCN2021124088-appb-000200
第二因子t 2
Figure PCTCN2021124088-appb-000201
则第一信息1可以为第一因子t 1和第二因子t 2之间的差值。如第一信息1可以等于t 1-t 2,或者等于t 2-t 1。如果第一因子t 1
Figure PCTCN2021124088-appb-000202
第二因子t 2
Figure PCTCN2021124088-appb-000203
则第一信息1可以为第一因子t 1和第二因子t 2之间的商。第一信息1可以等于
Figure PCTCN2021124088-appb-000204
或者等于
Figure PCTCN2021124088-appb-000205
可选的,第一信息1也可以等于t 1+t 2,或者第一信息1也可以等于t 1*t 2
同理,第一信息2与第一因子t 3和第二因子t 4有关。第一信息2可以为第一因子t 3和第二因子t 4之间的差值。或者,第一信息2可以为第一因子t 3和第二因子t 4之间的商。或者,第一信息2可以是第一因子t 3和第二因子t 4之和。或者,第一信息2可以是第一因子t 3和第二因子t 4之间的乘积。
在一种实现方式中,一个第二因子可以和一个或多个第一因子相关联。
在一种可能的实现中,指示信息指示的第一信息为第一信息集合中的信息。该第一信息集合也可称为候选信息集合。网络设备和终端设备可基于Q个比特量化得到该第一信息集合,Q为大于0的整数。第一信息集合中包括N=2 Q个第一信息。基于Q个比特量化得到第一信息集合指从0~2π中选择N=2 Q个第一信息。其中,Q可以是协议预先规定的,或者是网络设备通知给终端设备的。
可选的,终端设备也可以不基于Q个比特量化得到第一信息集合。例如,网络设备基于Q个比特量化得到该第一信息集合之后,可将该第一信息集合配置给终端设备。或者,该第一信息集合可以是协议预先规定的。
可选的,网络设备和/或终端设备具体可基于Q个比特均匀量化得到第一信息集合,即从0~2π中选择等间隔的N=2 Q个值。网络设备和/或终端设备量化得到第一信息集合的原理与上述方法实施例中网络设备和/或终端设备量化得到因子集合的原理相同,在此不赘述。
可选的,第一信息集合中的每个值可对应一个第一信息的索引,指示信息指示第一信息时具体可以指示第一信息的索引。或者,第一信息集合中的每个第一信息对应一个用于确定第一信息的参数值,指示信息具体可以指示该参数值的索引。这样终端设备就能基于指示信息指示的参数值确定对应的第一信息。可选的,指示信息可以按照先空间资源再第一时频资源的顺序指示第一信息。或者,可以按照先第一时频资源再空间资源的顺序指示第一信息。网络设备指示第一信息的原理与上述方法实施例中网络设备指示第一因子的原理相同,在此不赘述。
2402、网络设备对至少一个参考信号进行预编码,并向终端设备发送预编码之后的该至少一个参考信号。
2403、网络设备基于第二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据。
2404、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据。
其中,步骤2402~步骤2404的具体实现方式可参见上述图13所描述的方法实施例中步骤1301~步骤1303的具体实现方式,在此不赘述。
2405、终端设备基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据。
2406、终端设备基于第一信息和至少一个参考信号中的目标参考信号,检测经过第一信息有关的第一因子预编码的数据,该目标参考信号关联的第二时频资源和第二空间资源为第一信息关联的第二时频资源和第二空间资源。
其中,步骤2405和步骤2406可以同时执行,或者,步骤2405在步骤2406之前执行,或者,步骤2405在步骤2406之后执行。
下面通过具体的示例对本方案进一步进行说明:
假设具有两个第二空间资源,一个第一空间资源。第二空间资源1包括空间层1,第二空间资源2包括空间层2。第一空间资源包括空间层1和空间层2。图14a为空间层1上的第二时频资源和第一时频资源的示意图。图14b为空间层2上的第二时频资源和第一时频资源的示意图。
网络设备向终端设备发送指示信息,对于如图14a和图14b所示的时频资源,该指示信息需要指示4个第一信息。其中,第一信息1与第一因子t 1和第二因子t 2有关,第一信息1与第二时频资源1和第二空间资源1相关联。第一信息2与第一因子t 3和第二因子t 4有关,第一信息2与第二时频资源2和第二空间资源1相关联。第一信息3与第一因子t 1和第二因子t 5有关,第一信息3与第二时频资源1和第二空间资源2相关联。第一信息4与第一因子t 3和第二因子t 6有关,第一信息4与第二时频资源2和第二空间资源2相关联。
第一信息1为t 1-t 2,或者,第一信息1为
Figure PCTCN2021124088-appb-000206
第一信息2为t 3-t 4,或者,第一信息2为
Figure PCTCN2021124088-appb-000207
第一信息3为t 1-t 5,或者,第一信息3为
Figure PCTCN2021124088-appb-000208
第一信息4为t 3-t 6,或者,第一信息4为
Figure PCTCN2021124088-appb-000209
DMRS1与第二时频资源1和第二空间资源1相关联,网络设备对空间层1对应的DMRS1使用第二因子t 2进行预编码。网络设备在符号0发送预编码后的DMRS1。网络设备对第二时频资源1以及空间层1上的数据采用第二因子t 2进行预编码,并在第二时频资源1发送预编码后的数据。网络设备对第一时频资源1以及空间层1上的数据采用第一因子t 1进行预编码,并在第一时频资源1发送预编码后的数据。同理,DMRS2与第二时频资源2和第二空间资源1相关联,网络设备对空间层1对应的DMRS2使用第二因子t 4进行预编码。网络设备在符号7发送预编码后的DMRS2。网络设备对第二时频资源2以及空间层1上的数据采用第二因子t 4进行预编码,并在第二时频资源2发送预编码后的数据。网络设备对第一时频资源2以及空间层1上的数据采用第一因子t 3进行预编码,并在第一时频资源2发送预编码后的数据。网络设备在空间层2上发送DMRS和数据的原理与网络设备在空间层1上发送DMRS和数据的原理相同,在此不赘述。
终端设备接收指示信息之后,确定第一信息1~第一信息4。终端设备在空间层1上检测到经过预编码的DMRS1之后,基于DMRS1得到第二时频资源1和空间层1对应的等效信道矩阵。终端设备基于第一信息1以及第二时频资源1和空间层1对应的等效信道矩阵,得到第一时频资源1和空间层1对应的等效信道矩阵,进一步基于第一时频资源1和空间层1对应的等效信道矩阵检测第一时频资源1和空间层1上的数据。终端设备基于第二时频资源1和空间层1对应的等效信道矩阵检测第二时频资源1和空间层1上的数据。终端设备在空间层1上检测到经过预编码的DMRS2之后,基于DMRS2得到第二时频资源2和空间层1对应的等效信道矩阵。终端设备基于第一信息2以及第二时频资源2和空间层1对应的等效信道矩阵,得到第一时频资源2和空间层1对应的等效信道矩阵,进一步基于第一时频资源2和空间层1对应的等效信道矩阵检测第一时频资源2和空间层1上的数据。终端设备基于第二时频资源2和空间层1对应的等效信道矩阵检测第二时频资源2和空间层1上的数据。终端设备在空间层2上检测数据的原理与网络设备在空间层1上检测数据的原理相同,在此不赘述。
下面以符号0上的DMRS为例,对终端设备基于DMRS和第一信息,检测基于第一因子进行预编码的数据,以及终端设备基于DMRS检测基于第二因子进行预编码的数据的3种具体实现方式进行详细介绍。
①假设网络设备对数据采用THP预编码算法进行预编码。网络设备可对符号0上的DMRS符号采用线性预编码。对于第k个终端设备,对于一个时频资源集合,假设
Figure PCTCN2021124088-appb-000210
或者
Figure PCTCN2021124088-appb-000211
为第二时频资源和第l个空间层对应的第二因子。网络设备发送的所有终端设备对应的DMRS符号向量为
Figure PCTCN2021124088-appb-000212
其中
Figure PCTCN2021124088-appb-000213
表示第k个终端设备对应的DMRS符号向量。符号0上的DMRS的预编码过程可以为:
Figure PCTCN2021124088-appb-000214
其中,Q矩阵通过对所有终端设备的完整信道矩阵H的共轭转置矩阵进行QR分解得到,即H H=QR。T为块对角矩阵
Figure PCTCN2021124088-appb-000215
Figure PCTCN2021124088-appb-000216
为第k个终端设备对应的第二因子矩阵。对于第k个终端设备,对应L k个空间层,对应的DMRS符号向量为
Figure PCTCN2021124088-appb-000217
Figure PCTCN2021124088-appb-000218
其中
Figure PCTCN2021124088-appb-000219
对应第k个终端第l个DMRS端口对应的DMRS符号,与第k个终端的第l个空间层相对应。通常情况下,不同终端设备对应的参考信号端口是正交端口,则第k个终端设备对应的DMRS预编码过程可以为:
Figure PCTCN2021124088-appb-000220
其中,Q k表示Q矩阵中第k个终端设备对应的预编码向量或预编码子矩阵。Q k对应矩阵Q的部分列向量,即Q=[Q 1,Q 2,…,Q K],
Figure PCTCN2021124088-appb-000221
表示第k个终端设备对应的第二因子矩阵,其主对角线元素对应第k个终端设备每个空间层对应的第二因子。第k个终端设备接收到的DMRS符号向量可以表示为:
Figure PCTCN2021124088-appb-000222
其中,H k为第k个终端设备对应的信道矩阵。参考信号符号向量
Figure PCTCN2021124088-appb-000223
对于收发端是已知的,因此可以通过信道估计算法得到第二时频资源对应的等效信道矩阵
Figure PCTCN2021124088-appb-000224
对于等效信道矩阵
Figure PCTCN2021124088-appb-000225
的第l行(对应第k个终端设备的第l个空间层),假设其主对角元素为
Figure PCTCN2021124088-appb-000226
其中r ll为第k个终端设备的第l个空间层所对应的R矩阵中的主对角线元素。R矩阵通过对所有终端设备的完整信道矩阵H的共轭转置矩阵进行QR分解得到H H=QR。
对于第k个终端设备,对于一个时频资源集合,基于前述公式(10),第k个终端设备在第二时频资源1和第l个空间层上接收到的数据符号可以表示为:
Figure PCTCN2021124088-appb-000227
其中
Figure PCTCN2021124088-appb-000228
为对角矩阵G -1中第k个终端设备的第l个空间层所对应的对角线元素。DMRS估计的等效信道系数
Figure PCTCN2021124088-appb-000229
等于
Figure PCTCN2021124088-appb-000230
通过网络设备发送的通知信令,终端设备可以获知DMRS预编码与数据预编码的功率因子差,即α和β的差异。基于该功率因子差,终端设备可以确定
Figure PCTCN2021124088-appb-000231
终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000232
和接收符号
Figure PCTCN2021124088-appb-000233
结合模操作就能检测到在第二时频资源1和第l个空间层上网络设备发送的数据。
同理,假设
Figure PCTCN2021124088-appb-000234
或者
Figure PCTCN2021124088-appb-000235
为第一时频资源和第l个空间层对应的第一因子。基于前述公式(10),第k个终端设备在第一时频资源1和第l个空间层上接收到的数据符号可以表示为:
Figure PCTCN2021124088-appb-000236
在一种实现方式下,第一时频资源和第二时频资源在时域和频域距离较近,因此信道状态信息接近。通常可以满足
Figure PCTCN2021124088-appb-000237
终端设备基于
Figure PCTCN2021124088-appb-000238
和第一信息可确定
Figure PCTCN2021124088-appb-000239
基于上述公式(34)可知,终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000240
和接收符号向量
Figure PCTCN2021124088-appb-000241
结合模操作就能检测到第一时频资源1和第l个空间层上的网络设备发送的数据。
以终端设备基于第二时频资源1和空间层1对应的等效信道矩阵
Figure PCTCN2021124088-appb-000242
和第一信息1检测第一时频资源1和空间层1上的数据为例。如果t 1
Figure PCTCN2021124088-appb-000243
t 2
Figure PCTCN2021124088-appb-000244
第一信息1为
Figure PCTCN2021124088-appb-000245
那么,
Figure PCTCN2021124088-appb-000246
如果t 1
Figure PCTCN2021124088-appb-000247
t 2
Figure PCTCN2021124088-appb-000248
第一信息1为
Figure PCTCN2021124088-appb-000249
那么,
Figure PCTCN2021124088-appb-000250
如果t 1
Figure PCTCN2021124088-appb-000251
t 2
Figure PCTCN2021124088-appb-000252
第一信息1为
Figure PCTCN2021124088-appb-000253
那么,
Figure PCTCN2021124088-appb-000254
终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000255
和接收符号向量
Figure PCTCN2021124088-appb-000256
就能检测到第一时频资源1和空间层1上的网络设备发送的数据。终端设备基于第二时频资源1和空间层2对应的等效信道矩阵
Figure PCTCN2021124088-appb-000257
和第一信息3检测第一时频资源1和空间层2上的数据同理,在此不赘述。
②假设网络设备对数据采用THP预编码算法进行预编码。网络设备可对符号0上的DMRS采用线性预编码。对于第k个终端设备,对于一个时频资源集合,假设
Figure PCTCN2021124088-appb-000258
或者
Figure PCTCN2021124088-appb-000259
为第二时频资源和第l个空间层对应的第二因子。网络设备发送的DMRS符号向量为
Figure PCTCN2021124088-appb-000260
符号0上的DMRS的预编码过程为:
Figure PCTCN2021124088-appb-000261
其中,Q矩阵通过对所有终端设备的完整信道矩阵H的共轭转置矩阵进行QR分解得到。矩阵B可以表示为B=GR H。G矩阵为对角矩阵,其主对角线元素为R矩阵主对角线元素的倒数,即
Figure PCTCN2021124088-appb-000262
通常情况下,不同终端设备对应的参考信号端口是正交端口,对于第k个终端设备,对应L k个空间层,对应的DMRS符号向量为
Figure PCTCN2021124088-appb-000263
第k个终端设备对应的DMRS的预编码过程可以为:
Figure PCTCN2021124088-appb-000264
其中,F k表示矩阵F=QB -1中第k个终端设备对应的预编码向量或预编码子矩阵。F k对应矩阵F的部分列向量。
Figure PCTCN2021124088-appb-000265
表示第k个终端设备对应的第二因子矩阵,其主对角线元素对应第k个终端设备每个空间层对应的第二因子。第k个终端设备接收到的DMRS符号向量可以表示为:
Figure PCTCN2021124088-appb-000266
其中,H k为第k个终端设备对应的信道矩阵。
Figure PCTCN2021124088-appb-000267
为对角矩阵,其对角线元素是矩阵G -1中第k个终端设备对应的空间层对应的元素。对于第k个终端设备的第l个空间层,接收DMRS符号可以表示为:
Figure PCTCN2021124088-appb-000268
其中
Figure PCTCN2021124088-appb-000269
表示
Figure PCTCN2021124088-appb-000270
中第l行第l列的元素,由于DMRS1符号向量
Figure PCTCN2021124088-appb-000271
对于收发端是已知的,因此可以通过信道估计算法得到第k个终端设备第l个空间层对应的等效信道
Figure PCTCN2021124088-appb-000272
通过网络设备发送的通知信令,终端设备可以获知DMRS1预编码与数据预编码的功率因子差,即α和β的差异。基于该功率因子差,终端设备可以确定第二时频资源1和第l个空间层对应的等效信道矩阵
Figure PCTCN2021124088-appb-000273
的估计结果。基于上述公式(33)可知,终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000274
和接收符号
Figure PCTCN2021124088-appb-000275
就能检测到第二时频资源1和第l个空间层上网络设备发送的数据。
终端设备基于
Figure PCTCN2021124088-appb-000276
和第一信息可确定
Figure PCTCN2021124088-appb-000277
基于上述公式(34)可知,终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000278
和接收符号向量
Figure PCTCN2021124088-appb-000279
就能检测到第一时频资源1和第l个空间层上的网络设备发送的数据。终端设备基于
Figure PCTCN2021124088-appb-000280
和第一信息确定
Figure PCTCN2021124088-appb-000281
的原理与方式①中基于
Figure PCTCN2021124088-appb-000282
和第一信息确定
Figure PCTCN2021124088-appb-000283
的原理相同,在此不赘述。
③假设网络设备对数据采用EZF预编码算法进行预编码。对于第k个终端设备,对于一个时频资源集合,假设
Figure PCTCN2021124088-appb-000284
或者
Figure PCTCN2021124088-appb-000285
为第二时频资源和第l个空间层对应的第二因子。发送端在符号0发送的DMRS的符号向量为
Figure PCTCN2021124088-appb-000286
网络设备对DMRS的预编码过程可以表示为:
Figure PCTCN2021124088-appb-000287
其中,W矩阵基于所有终端设备的完整信道矩阵
Figure PCTCN2021124088-appb-000288
得到。若线性预编码采用EZF算法,第k个终端设备的信道矩阵为H k,其对应的最大L k个特征值所对应的特征向量为
Figure PCTCN2021124088-appb-000289
其中V k的维度为N T×L k,是信道矩阵为H k进行SVD分解或EVD分解得到的。线性预编码矩阵可以表示为:W=V(V HV+δI) -1。其中
Figure PCTCN2021124088-appb-000290
由K个终 端设备对应的
Figure PCTCN2021124088-appb-000291
拼接成的矩阵,维度为N T×L。δ为调整因子,与信噪比相关。β为功率归一化因子,或功率调整因子。通常情况下,不同终端设备对应的参考信号端口是正交端口。对于第k个终端设备,对应L k个空间层,对应的DMRS符号向量为
Figure PCTCN2021124088-appb-000292
第k个终端设备对应的DMRS预编码过程可以为:
Figure PCTCN2021124088-appb-000293
其中,W k表示Q矩阵中第k个终端设备对应的预码向量或预编码子矩阵。W k对应矩阵W的部分列向量。
Figure PCTCN2021124088-appb-000294
表示第k个终端设备对应的第二因子矩阵,其主对角线元素对应第k个终端设备每个空间层对应的第二因子。第k个终端设备接收到的DMRS的符号向量可以表示为:
Figure PCTCN2021124088-appb-000295
其中,H k为第k个终端设备对应的信道矩阵。
Figure PCTCN2021124088-appb-000296
表示等效信道矩阵。
Figure PCTCN2021124088-appb-000297
表示等效干扰信号。
由于参考信号符号向量
Figure PCTCN2021124088-appb-000298
对于收发端是已知的,因此可以通过信道估计算法(如最小二乘LS估计算法或最小均方误差MMSE算法等)得到等效信道矩阵
Figure PCTCN2021124088-appb-000299
的估计结果。
假设网络设备在第二时频资源1和第二空间资源上发送的第k个终端设备对应的数据符号为
Figure PCTCN2021124088-appb-000300
基于前述公式(14),终端设备在第二时频资源1和第二空间资源上接收到的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000301
基于上述公式(42)可知,终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000302
和接收符号
Figure PCTCN2021124088-appb-000303
就能检测到第二时频资源1和第二空间资源上的网络设备发送的数据。
同理,
Figure PCTCN2021124088-appb-000304
为第一时频资源和第l个空间层对应的第一因子,或者
Figure PCTCN2021124088-appb-000305
为第一时频资源和第l个空间层对应的因子,或者
Figure PCTCN2021124088-appb-000306
为第一时频资源和第l个空间层对应的第一因子。网络设备在第一时频资源1和第一空间资源上发送的数据符号向量为
Figure PCTCN2021124088-appb-000307
基于前述公式(14),终端设备在第一时频资源1和第一空间资源上接收到的数据符号向量可以表示为:
Figure PCTCN2021124088-appb-000308
如果t 1
Figure PCTCN2021124088-appb-000309
t 2
Figure PCTCN2021124088-appb-000310
第一信息1为
Figure PCTCN2021124088-appb-000311
那么,对于
Figure PCTCN2021124088-appb-000312
中的第l行第l列元素
Figure PCTCN2021124088-appb-000313
满足
Figure PCTCN2021124088-appb-000314
如果t 1
Figure PCTCN2021124088-appb-000315
t 2
Figure PCTCN2021124088-appb-000316
第一信息1为
Figure PCTCN2021124088-appb-000317
那么,对于
Figure PCTCN2021124088-appb-000318
中的第l行第l列元素
Figure PCTCN2021124088-appb-000319
满足
Figure PCTCN2021124088-appb-000320
如果t 1
Figure PCTCN2021124088-appb-000321
t 2
Figure PCTCN2021124088-appb-000322
第一信息1为
Figure PCTCN2021124088-appb-000323
那么,对于
Figure PCTCN2021124088-appb-000324
中的第l行第l列元素
Figure PCTCN2021124088-appb-000325
满足
Figure PCTCN2021124088-appb-000326
终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000327
和接收符号
Figure PCTCN2021124088-appb-000328
就能检测到第一时频资源1和第一空间资源上的网络设备发送的数据。
可见,通过实施图24所描述的方法,网络设备可以将与第一因子有关的第一信息通过指示信息进行指示,将第二因子通过参考信号承载,这样有利于节省信令开销。
请参见图25,图25是本申请实施例提供的又一种数据检测方法的流程示意图。图25所示的数据检测方法与图24所示的数据检测方法的区别在于,在图25所示的数据检测方法中,第一信息不是通过额外发送指示信息来通知终端设备的,而是通过参考信号来承载第一信息。 如图25所示,该数据检测方法包括如下操作2501~操作2506。其中:
2501、网络设备对至少一个第二参考信号进行预编码,并向终端设备发送预编码之后的该至少一个第二参考信号。
一个第二时频资源和一个第二空间资源与一个第二参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层。一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。本申请实施例中,关于第一时频资源、第一空间资源、第二时频资源、第二空间资源、参考信号、第一因子和第二因子的相关描述,可参见上述图5、图11和图13所对应的实施例中的描述,在此不赘述。
本申请实施例中,网络设备具体基于第二时频资源和第二空间资源上的数据相关联的第二因子,对该第二时频资源和该第二空间资源相关联的第二参考信号进行预编码。也就是说,与第二时频资源和第二空间资源上的数据相关联的第二因子,还用于对与该第二时频资源和该第二空间资源相关联的第二参考信号进行预编码。网络设备基于第二因子对第二参考信号进行预编码的具体实现方式可参见上述图13所对应的方法实施例中网络设备基于第二因子对参考信号进行预编码的具体实现方式,在此不赘述。
2502、网络设备对至少一个第一参考信号进行预编码,并向终端设备发送预编码之后的该至少一个第一参考信号。
其中,一个第一参考信号基于一个第一信息预编码。本申请实施例中,关于第一信息的描述可参见上述图24所对应的实施例中的描述,在此不赘述。
其中,步骤2501和步骤2502可以同时执行,或者,步骤2501可以在步骤2502之前执行,或者,步骤2501可以在步骤2502之后执行。
2503、网络设备基于第二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据。
2504、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据。
步骤2503和步骤2504的具体实现方式可参见上述图13所描述的方法实施例中步骤1302和步骤1303的具体实现方式,在此不赘述。
2505、终端设备基于第二参考信号,检测与该第二参考信号关联的第二时频资源和第二空间资源上的数据。
本申请实施例中,终端设备接收至少一个第二参考信号之后,通过第二因子预编码的参考信号,检测基于该第二因子进行预编码的数据。
2506、终端设备基于至少一个第二参考信号中的目标参考信号和通过该第一信息预编码的第一参考信号,检测基于该第一信息有关的第一因子预编码的数据,该目标参考信号关联的第二时频资源和第二空间资源为第一信息关联的第二时频资源和第二空间资源。
本申请实施例中,终端设备接收至少一个第二参考信号和至少一个第一参考信号之后,基于目标参考信号和通过该第一信息预编码的第一参考信号,检测基于该第一信息有关的第一因子预编码的数据。
其中,步骤2505和步骤2506可以同时执行,或者,步骤2505可以在步骤2506之前执 行,或者,步骤2505可以在步骤2506之后执行。
举例来说,假设具有两个第二空间资源和一个第一空间资源。第二空间资源1包括空间层1,第二空间资源2包括空间层2。第一空间资源包括空间层1和空间层2。图26a示出了空间层1上的第二时频资源和第一时频资源。图26b示出了空间层2上的第二时频资源和第一时频资源。网络设备对第二时频资源1和第二空间资源1上的数据采用第二因子t 2进行预编码。第二时频资源1和第二空间资源1与DMRS1相关联,网络设备对DMRS1通过第二因子t 2进行预编码。网络设备对DMRS2通过第一信息1(即t 1-t 2)进行预编码,并对第一时频资源1和第一空间资源1上的数据采用第一因子t 1进行预编码。第一信息1与第二时频资源1和第二空间资源1相关联。
网络设备对第二时频资源1和第二空间资源2上的数据采用第二因子t 3进行预编码。第二时频资源1和第二空间资源2与DMRS3相关联,网络设备对DMRS3通过第二因子t 3进行预编码。网络设备对DMRS4通过第一信息2(即t 1-t 3)进行预编码。第一信息2与第二时频资源1和第二空间资源2相关联。
终端设备接收DMRS1之后,基于DMRS1得到第二时频资源1和第二空间资源1对应的等效信道矩阵。终端设备基于第二时频资源1和第二空间资源1对应的等效信道矩阵检测第二时频资源1和第二空间资源1上的数据。终端设备基于第二时频资源1和第二空间资源1对应的等效信道矩阵和DMRS2得到第一时频资源1和空间层1对应的等效信道矩阵。终端设备基于第一时频资源1和空间层1对应的等效信道矩阵检测第一时频资源1和空间层1上的数据。
终端设备接收DMRS3之后,基于DMRS3得到第二时频资源1和第二空间资源2对应的等效信道矩阵。终端设备基于第二时频资源1和第二空间资源2对应的等效信道矩阵检测第二时频资源1和第二空间资源2上的数据。终端设备基于第二时频资源1和第二空间资源2对应的等效信道矩阵和DMRS4得到第一时频资源1和空间层2对应的等效信道矩阵。终端设备基于第一时频资源1和空间层2对应的等效信道矩阵检测第一时频资源1和空间层2上的数据。
终端设备检测第二时频资源1和第二空间资源上的数据的具体实现方式可参见上述图24所对应的实施例中的描述,在此不赘述。
假设网络设备对数据采用THP预编码算法进行预编码。终端设备k可以基于DMRS2得到第一信息1。在一种实现方式下,DMRS2可以采用迫零预编码,即预编码矩阵满足W=H H(HH H2I) -1。其中H为所有用户对应的信道矩阵,I为单位矩阵,σ 2为调整因子,与噪声功率,和/或干扰功率有关。第一信息与
Figure PCTCN2021124088-appb-000329
有关。并基于第一信息1和第二时频资源1和空间层1对应的等效信道矩阵
Figure PCTCN2021124088-appb-000330
确定第一时频资源1和空间层1对应的等效信道矩阵
Figure PCTCN2021124088-appb-000331
终端设备基于第一信息1和第二时频资源1和空间层1对应的等效信道矩阵
Figure PCTCN2021124088-appb-000332
确定第一时频资源1和空间层1对应的等效信道矩阵
Figure PCTCN2021124088-appb-000333
的具体实现方式可参见上述图24所对应的实施例中的描述,在此不赘述。基于上述公式(34)可知,终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000334
和接收符号向量
Figure PCTCN2021124088-appb-000335
就能检测到第一时频资源1和空间层1上的数据。终端设备检测第一时频资源1和空间层2上的数据同理,在此不赘述。
假设网络设备对数据采用EZF预编码算法进行预编码。终端设备可以基于DMRS2得到 第一信息1,并基于DMRS4得到第一信息2,并基于第一信息1、第一信息2和第二时频资源1和第二空间资源对应的等效信道矩阵
Figure PCTCN2021124088-appb-000336
确定第一时频资源1和第一空间资源对应的等效信道矩阵
Figure PCTCN2021124088-appb-000337
终端设备确定第一时频资源1和第一空间资源对应的等效信道矩阵
Figure PCTCN2021124088-appb-000338
的具体实现方式可参见上述图24所对应的方法实施例中的描述,在此不赘述。终端设备基于等效信道矩阵
Figure PCTCN2021124088-appb-000339
和接收符号
Figure PCTCN2021124088-appb-000340
就能检测到第一时频资源1和第一空间资源上的网络设备发送的数据。
请参见图27,图27是本申请实施例提供的一种数据检测方法的流程示意图。图27所示的数据检测方法与图24所示的数据检测方法的区别在于,在图27所示的数据检测方法中,指示信息不是指示第一信息,而是指示第一因子。如图27所示,该数据检测方法包括如下操作2701~操作2706。其中:
2701、网络设备向终端设备发送指示信息,该指示信息用于指示至少一个第一因子。
2702、网络设备对至少一个参考信号进行预编码,并向终端设备发送预编码之后的该至少一个参考信号。
本申请实施例中,网络设备调度的下行数据的时频资源被划分为一个或多个第一时频资源和一个或多个第二时频资源。其中,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层。一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。本申请实施例中,关于第一时频资源、第一空间资源、第二时频资源、第二空间资源、参考信号、第一因子和第二因子的相关描述,可参见上述图5、图11和图13所对应的实施例中的描述,在此不赘述。
2703、网络设备基于第二因子对第二时频资源和第二空间资源上的数据进行预编码,并在第二时频资源发送预编码之后的数据。
2704、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据。
2705、终端设备基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据。
步骤2702~步骤2705的具体实现方式可参见步骤1301~步骤1304的具体实现方式,在此不赘述。
2706、终端设备基于第一因子检测基于该第一因子进行预编码的数据。
本申请实施例中,终端设备接收指示信息之后,检测基于该第一因子进行预编码的数据。
其中,步骤2705和步骤2706可以同时执行,或者,步骤2705可以在步骤2706之前执行,或者,步骤2705可以在步骤2706之后执行。
举例来说,假设具有一个第二空间资源和一个第一空间资源。第二空间资源包括空间层1,第一空间资源包括空间层1。图28示出了空间层1上的第二时频资源和第一时频资源。网络设备对DMRS1通过第二因子t 2进行预编码,并在第二时频资源和空间层1上使用第二因子t 2进行预编码。网络设备向终端设备发送指示信息,该指示信息指示第一因子t 1,并且 网络设备在第一时频资源和空间层1上使用第一因子t 1进行预编码。
终端设备接收DMRS1之后,通过DMRS1检测第二时频资源和空间层1上的数据。具体实现原理请参见上述图24对应的实施例中对应的描述,在此不赘述。
终端设备接收第一因子t 1之后,可基于DMRS2预计得到第一时频资源和空间层1对应的等效信道矩阵,并根据第一时频资源和空间层1对应的等效信道矩阵和第一因子t 1检测第一时频资源和空间层1上的数据。终端设备基于DMRS2预计得到第一时频资源和空间层1对应的等效信道矩阵的具体实现原理请参见上述图11对应的实施例中对应的描述,在此不赘述。
请参见图29,图29是本申请实施例提供的又一种数据检测方法的流程示意图。图29所示的数据检测方法与图11所示的数据检测方法的区别在于,在图29所示的数据检测方法中,所有时频资源和空间层对应的因子都通过参考信号进行承载,无需发送额外的信令通知第一因子。如图29所示,该数据检测方法包括如下操作2901~操作2903。其中:
2901、网络设备对至少一个参考信号进行预编码,并向终端设备发送预编码之后的该至少一个参考信号。
一个第一时频资源和一个第一空间资源与一个参考信号相关联,一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。关于第一时频资源、第一空间资源和第一因子的描述可参见上述图5对应的实施例中的描述,在此不赘述。
其中,网络设备对第一时频资源和第一空间资源相关联的参考信号采用该第一时频资源和该第一空间资源上的数据相关联的第一因子进行预编码。
在一种可能的实现中,一个RB包括多个第一时频资源。通过将一个RB划分为多个第一时频资源,这样第一时频资源仅包含较少的时频资源。不同的第一时频资源对应不同的因子,有利于实现精细化的因子调整,从而尽可能地提升因子带来的功率效率提升。
在一种可能的实现中,不同第一时频资源对应的参考信号可以是相同类型的参考信号,也可以是不同类型的参考信号。
举例来说,如图30所示,假设具有2个第一时频资源和2个第一空间资源。每个第一空间资源包括一个空间层。每个第一时频资源在频域上包括4个RB的频域长度,每个第一时频资源的频域资源不同。图30中在频域维度每个格子表示一个RB。每个第一时频资源的时域资源相同,每个第一时频资源在时域上包含一个或多个时间单元。由于每个第一时频资源的时域资源相同,图30只示出频域维度和空域维度,未示出时域维度。如图30所示,白色格子用于映射参考信号。以参考信号为DMRS为例。空间层1和第一个RB上映射DMRS1,空间层2和第一个RB上映射DMRS2,空间层1和第五个RB上映射DMRS3,空间层2和第五个RB上映射DMRS4。
第一时频资源1和空间层1上的数据与因子1关联。第一时频资源2和空间层1与因子2关联。第一时频资源1和空间层2与因子3关联。第一时频资源2和空间层2与因子4关联。
网络设备对DMRS1使用因子1进行预编码,网络设备对DMRS2使用因子3进行预编码,网络设备对DMRS3使用因子2进行预编码,网络设备对DMRS4使用因子4进行预编 码。
网络设备向终端设备发送经过预编码后的DMRS1~DMRS4。终端设备接收DMRS1~DMRS4之后,基于DMRS1检测第一时频资源1和空间层1上的数据。基于DMRS2检测第一时频资源1和空间层2上的数据。基于DMRS3检测第一时频资源2和空间层1上的数据。基于DMRS4检测第一时频资源2和空间层2上的数据。
终端设备基于DMRS检测第一时频资源和空间层上的数据的具体实现方式,可参见上述图24所对应的方法实施例中,终端设备基于DMRS检测第二时频资源1和第二空间资源上的数据的具体实现方式,在此不赘述。
2902、网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在第一时频资源发送预编码之后的数据。
2903、终端设备基于第一时频资源和第一空间资源相关联的参考信号,检测第一时频资源和第一空间资源上的数据。
本申请实施例中,终端设备接收至少一个参考信号之后,基于通过第一时频资源和第一空间资源相关联的参考信号,检测第一时频资源和第一空间资源上的数据。
可见,基于图29所描述的方法,网络设备不需要通过额外的信令指示第一因子,终端设备就能完成对第一时频资源和第一空间资源上的数据的检测,有利于节省信令开销。
请参见图31,图31示出了本申请实施例的一种通信装置的结构示意图。图31所示的通信装置可以用于执行上述图5或图11或图13或图24或图25或图27或图29所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图31所示的通信装置可以包括通信单元3101和处理单元3102。其中,处理单元3102,用于进行数据处理。通信单元3101集成有接收单元和发送单元。通信单元3101也可以称为收发单元。或者,也可将通信单元3101拆分为接收单元和发送单元。下文的处理单元3102和通信单元3101同理,下文不再赘述。其中:
通信单元3101,用于检测第一时频资源和第一空间资源上的数据,一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与该第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。
在一种可能的实现中,通信单元3101,还用于接收经过预编码的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;通信单元3101,还用于基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据。
在一种可能的实现中,通信单元3101,还用于接收网络设备发送的指示信息,该指示信息用于指示至少一个第一信息,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联;通信单元3101检测第一时频资源和第一空间资源上的数据的方式具体为:基于第一信息和至少一个参考信号中的目标参考信号,检测经过该第一信息有关的第一因子预编码的数据,该目标参考信号关联的第二时频资源和第二空间资源 为该第一信息关联的第二时频资源和第二空间资源。
在一种可能的实现中,与第二时频资源和第二空间资源上的数据相关联的第二因子,还用于对与第二时频资源和第二空间资源相关联的参考信号进行预编码。
在一种可能的实现中,一个第一因子与一个或多个第二因子相关联,一个第一信息与一个第一因子和第一因子相关联的一个第二因子有关。
在一种可能的实现中,第一信息为第一因子与第一因子关联的一个第二因子之间的差值,或者,第一信息为第一因子与第一因子关联的一个第二因子之间的商。
在一种可能的实现中,第一因子与以下一项或多项信息有关:第一时频资源上的数据、第一时频资源对应的第一信道矩阵或第一时频资源对应的第一预编码矩阵;第二因子与以下一项或多项信息有关:第二时频资源上的数据、第二时频资源相关联的参考信号、第二时频资源对应的第二信道矩阵或第二时频资源对应的第二预编码矩阵。其中,第一时频资源上的数据可以是第一时频资源上对应的所有空间层上的传输数据符号。第二时频资源上的数据可以是第二时频资源上对应的所有空间层上的传输数据符号。第二时频资源相关联的参考信号可以是第二时频资源上对应的所有空间层所对应的参考信号符号。
在一种可能的实现中,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个第一时频资源以及一个或多个第二时频资源。
在一种可能的实现中,第一时频资源包括的时域资源与第二时频资源包括的时域资源不相同。
在一种可能的实现中,第一时频资源包括的频域资源与第二时频资源包括的频域资源不相同。
在一种可能的实现中,上述至少一个第一信息为第一信息集合中的信息。
在一种可能的实现中,第一时频资源的数量为协议预先规定的;或者,通信单元3101接收网络设备发送的指示信息之前,还用于接收网络设备发送的配置信息,该配置信息用于配置第一时频资源的数量。
在一种可能的实现中,终端设备基于网络设备调度的下行数据的时频资源和第一时频资源的数量,确定每个第一时频资源包括的时频资源。
在一种可能的实现中,第一空间资源的数量为协议预先规定的;或者,通信单元3101接收网络设备发送的指示信息之前,还用于接收网络设备发送的配置信息,该配置信息用于配置第一空间资源的数量。
在一种可能的实现中,终端设备基于终端设备的空间层数量和第一空间资源的数量,确定每个第一空间资源包括的空间层。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000341
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000342
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000343
Figure PCTCN2021124088-appb-000344
Figure PCTCN2021124088-appb-000345
表示第k个空间层对应的第一因子,W为线性预编码矩阵。
在一种可能的实现中,通过第二因子对数据或参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000346
其中,s=(s 1,s 2,…,s L) T表示发送的数据或参考信号,
Figure PCTCN2021124088-appb-000347
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000348
Figure PCTCN2021124088-appb-000349
Figure PCTCN2021124088-appb-000350
表示第k个空间层对应的第二因子,W为线性预编码矩阵。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000351
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000352
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000353
Figure PCTCN2021124088-appb-000354
Figure PCTCN2021124088-appb-000355
表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000356
其中,s=(s 1,s 2,…,s L) T表示发送的数据,
Figure PCTCN2021124088-appb-000357
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000358
Figure PCTCN2021124088-appb-000359
Figure PCTCN2021124088-appb-000360
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000361
或者为:
Figure PCTCN2021124088-appb-000362
其中,s=(s 1,s 2,…,s L) T表示发送的参考信号,
Figure PCTCN2021124088-appb-000363
为对角矩阵,α为功率调整因子,
Figure PCTCN2021124088-appb-000364
Figure PCTCN2021124088-appb-000365
Figure PCTCN2021124088-appb-000366
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
在一种可能的实现中,通信单元3101还可接收经过预编码的至少一个第二参考信号,其中,一个第二时频资源和一个第二空间资源与一个第二参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;通信单元3101还可接收经过预编码的至少一个第一参考信号,其中,一个第一参考信号基于一个第一信息预编码,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联;通信单元3101还可基于第二参考信号,检测与该第二参考信号关联的第二时频资源和第二空间资源上的数据;通信单元3101检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于至少一个第二参考信号中的目标参考信号和通过该第一信息预编码的第一参考信号,检测基于该第一信息有关的第一因子预编码的数据,该目标参考信号关联的第二时频资源和第二空间资源为第一信息关联的第二时频资源和第二空间资源。
在一种可能的实现中,通信单元3101还可接收网络设备发送的指示信息,该指示信息用于指示至少一个第一因子;通信单元3101还可接收经过预编码的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;通信单元3101还可基于参考信号,检测与该参考信号关联的第二时频资源和第二空间资源上的数据;通信单元3101检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于第一因子检测基于该第一因子预编码的数据。
在一种可能的实现中,通信单元3101还可接收网络设备发送的指示信息,该指示信息用于指示至少一个第一因子;通信单元3101检测第一时频资源和第一空间资源上的数据的具体 实现方式为:基于第一因子检测基于该第一因子预编码的数据。
可选的,上述指示信息指示的至少一个第一因子为因子集合中的因子。
可选的,第一空间资源包括一个空间层,上述指示信息指示的至少一个第一因子为量化码本中的因子,量化码本包括P个因子向量,每个因子向量为量化码本的一个向量,一个因子向量包括N个因子,每个因子向量的因子与参考信号端口一一关联,P和N为大于零的整数;指示信息携带因子向量的索引;处理单元3102可基于指示信息携带的因子向量的索引和为终端设备分配的参考信号端口从量化码本中,确定第一因子。
在一种可能的实现中,通信单元3101还可接收经过预编码的至少一个参考信号,一个第一时频资源和一个第一空间资源与一个参考信号相关联;通信单元3101检测第一时频资源和第一空间资源上的数据的具体实现方式为:基于第一时频资源和第一空间资源相关联的参考信号,检测该第一时频资源和该第一空间资源上的数据。
请参见图31,图31示出了本申请实施例的一种通信装置的结构示意图。图31所示的通信装置可以用于执行上述图5或图11或图13或图24或图25或图27或图29所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图31所示的通信装置可以包括通信单元3101和处理单元3102。其中:
处理单元3102,用于基于第一因子对第一时频资源和第一空间资源上的数据进行预编码;通信单元3101,用于在第一时频资源发送预编码之后的数据;一个第一时频资源和一个第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,第一因子为标量,用于对与第一因子相关联的数据进行预编码,一个第一时频资源包括一个或多个频域资源组,一个第一空间资源包括一个或多个空间层。
在一种可能的实现中,处理单元3102,还用于对至少一个参考信号进行预编码;通信单元3101,还用于向终端设备发送预编码之后的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;处理单元3102,还用于基于第二因子对第二时频资源和第二空间资源上的数据进行预编码;通信单元3101,还用于在第二时频资源发送预编码之后的数据。
在一种可能的实现中,通信单元3101,还用于向终端设备发送指示信息,该指示信息用于指示至少一个第一信息,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联。
在一种可能的实现中,与第二时频资源和第二空间资源上的数据相关联的第二因子,还用于对与第二时频资源和第二空间资源相关联的参考信号进行预编码。
在一种可能的实现中,一个第一因子与一个或多个第二因子相关联,一个第一信息与一个第一因子和第一因子相关联的一个第二因子有关。
在一种可能的实现中,第一信息为第一因子与第一因子关联的一个第二因子之间的差值,或者,第一信息为第一因子与第一因子关联的一个第二因子之间的商。
在一种可能的实现中,第一因子与以下一项或多项信息有关:第一时频资源上的数据、第一时频资源对应的第一信道矩阵或第一时频资源对应的第一预编码矩阵;第二因子与以下一项或多项信息有关:第二时频资源上的数据、第二时频资源相关联的参考信号、第二时频 资源对应的第二信道矩阵或第二时频资源对应的第二预编码矩阵。其中,第一时频资源上的数据可以是第一时频资源上对应的所有空间层上的传输数据符号。第二时频资源上的数据可以是第二时频资源上对应的所有空间层上的传输数据符号。第二时频资源相关联的参考信号可以是第二时频资源上对应的所有空间层所对应的参考信号符号。
在一种可能的实现中,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个第一时频资源以及一个或多个第二时频资源。
在一种可能的实现中,第一时频资源包括的时域资源与第二时频资源包括的时域资源不相同。
在一种可能的实现中,第一时频资源包括的频域资源与第二时频资源包括的频域资源不相同。
在一种可能的实现中,至少一个第一信息为第一信息集合中的信息。
在一种可能的实现中,第一时频资源的数量为协议预先规定的;或者,通信单元3101发送指示信息之前,还用于向终端设备发送配置信息,该配置信息用于配置第一时频资源的数量。
在一种可能的实现中,处理单元3102基于网络设备调度的下行数据的时频资源、第一时频资源的数量,确定每个第一时频资源包括的时频资源。
在一种可能的实现中,第一空间资源的数量为协议预先规定的;或者,通信单元3101发送指示信息之前,还用于向终端设备发送配置信息,该配置信息用于配置第一空间资源的数量。
在一种可能的实现中,处理单元3102基于终端设备的空间层数量和第一空间资源的数量,确定第一空间资源包括的空间层。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000367
其中s=(s 1,s 2,…,s L) T表示发送的数据信号,
Figure PCTCN2021124088-appb-000368
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000369
Figure PCTCN2021124088-appb-000370
表示第k个空间层对应的第一因子,W为线性预编码矩阵。
在一种可能的实现中,通过第二因子对数据或参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000371
其中s=(s 1,s 2,…,s L) T表示发送的数据信号或参考信号,
Figure PCTCN2021124088-appb-000372
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000373
Figure PCTCN2021124088-appb-000374
表示第k个空间层对应的第二因子,W为线性预编码矩阵。
在一种可能的实现中,通过第一因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000375
其中s=(s 1,s 2,…,s L) T表示发送的数据信号,
Figure PCTCN2021124088-appb-000376
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000377
Figure PCTCN2021124088-appb-000378
表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关。d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对数据进行预编码的过程为:
Figure PCTCN2021124088-appb-000379
其中s=(s 1,s 2,…,s L) T表示发送的数据信号,
Figure PCTCN2021124088-appb-000380
为对角矩阵,β为功率调整因子,
Figure PCTCN2021124088-appb-000381
Figure PCTCN2021124088-appb-000382
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩 阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
在一种可能的实现中,通过第二因子对参考信号进行预编码的过程为:
Figure PCTCN2021124088-appb-000383
或者为:
Figure PCTCN2021124088-appb-000384
其中s=(s 1,s 2,…,s L) T表示发送的参考信号,
Figure PCTCN2021124088-appb-000385
为对角矩阵,α为功率调整因子,
Figure PCTCN2021124088-appb-000386
Figure PCTCN2021124088-appb-000387
表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
在一种可能的实现中,处理单元3102,还用于对至少一个第二参考信号进行预编码;通信单元3101,还用于向终端设备发送预编码之后的该至少一个第二参考信号,其中,一个第二时频资源和一个第二空间资源与一个第二参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;处理单元3102,还用于对至少一个第一参考信号进行预编码;通信单元3101,还用于向终端设备发送预编码之后的该至少一个第一参考信号,其中,一个第一参考信号基于一个第一信息预编码,一个第一信息与一个第一因子有关,一个第一信息与一个第二时频资源和一个第二空间资源相关联;处理单元3102,还用于基于第二因子对第二时频资源和第二空间资源上的数据进行预编码;通信单元3101,还用于在第二时频资源发送预编码之后的数据。
在一种可能的实现中,通信单元3101,还用于向终端设备发送指示信息,该指示信息用于指示至少一个第一因子;处理单元3102,还用于对至少一个参考信号进行预编码;通信单元3101,还用于向终端设备发送预编码之后的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个参考信号相关联,一个第二时频资源和一个第二空间资源上的数据与一个第二因子相关联,第二因子为标量,用于对与该第二因子相关联的数据进行预编码,一个第二时频资源包括一个或多个频域资源组,一个第二空间资源包括一个或多个空间层;处理单元3102,还用于基于第二因子对第二时频资源和第二空间资源上的数据进行预编码;通信单元3101,还用于在第二时频资源发送预编码之后的数据,一个第二时频资源和一个第二空间资源与一个第二因子相关联。
在一种可能的实现中,通信单元3101,还用于向终端设备发送指示信息,该指示信息用于指示至少一个第一因子。
可选的,上述指示信息指示的至少一个第一因子为因子集合中的因子。
可选的,第一空间资源包括一个空间层,上述指示信息指示的至少一个第一因子为量化码本中的因子,量化码本包括P个因子向量,每个因子向量为量化码本的一个向量,一个因子向量包括N个因子,每个因子向量的因子与参考信号端口一一关联,P和N为大于零的整数;指示信息携带因子向量的索引来指示至少一个第一因子。
在一种可能的实现中,处理单元3102,还用于对至少一个参考信号进行预编码;通信单元3101,还用于向终端设备发送预编码之后的该至少一个参考信号,一个第一时频资源和一个第一空间资源与一个参考信号相关联。
如图32a所示为本申请实施例提供的一种通信装置320,用于实现上述图5或图11或图 13或图24或图25或图27或图29中终端设备的功能。该装置可以是终端设备或用于终端设备的装置。用于终端设备的装置可以为终端设备内的芯片系统或芯片。其中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。或者,通信装置320,用于实现上述图5或图11或图13或图24或图25或图27或图29中网络设备的功能。该装置可以是网络设备或用于网络设备的装置。用于网络设备的装置可以为网络设备内的芯片系统或芯片。其中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置320包括至少一个处理器3220,用于实现本申请实施例提供的方法中终端设备或网络设备的数据处理功能。装置320还可以包括通信接口3210,用于实现本申请实施例提供的方法中终端设备或网络设备的收发操作。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口3210用于装置320中的装置可以和其它设备进行通信。处理器3220利用通信接口3210收发数据,并用于实现上述方法实施例图5或图11或图13或图24或图25或图27或图29所述的方法。
装置320还可以包括至少一个存储器3230,用于存储程序指令和/或数据。存储器3230和处理器3220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器3220可能和存储器3230协同操作。处理器3220可能执行存储器3230中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口3210、处理器3220以及存储器3230之间的具体连接介质。本申请实施例在图32a中以存储器3230、处理器3220以及通信接口3210之间通过总线3240连接,总线在图32a中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图32a中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置320具体是用于终端设备或网络设备的装置时,例如装置320具体是芯片或者芯片系统时,通信接口3210所输出或接收的可以是基带信号。装置320具体是终端设备或网络设备时,通信接口3210所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、操作及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的操作可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
作为示例,图32b为本申请实施例提供的另一种终端设备3200的结构示意图。该终端设备可执行上述方法实施例中终端设备所执行的操作。
为了便于说明,图32b仅示出了终端设备的主要部件。如图32b所示,终端设备3200包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图5或图11或图13或图24或图25或图27或图29所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备3200还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。 需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图32b仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,在本申请实施例中,如图32b所示,可以将具有收发功能的天线和射频电路视为终端设备3200的通信单元3201,将具有处理功能的处理器视为终端设备3200的处理单元3202。
通信单元3201也可以称为收发器、收发机、收发装置、收发单元等,用于实现收发功能。可选的,可以将通信单元3201中用于实现接收功能的器件视为接收单元,将通信单元3201中用于实现发送功能的器件视为发送单元,即通信单元3201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,通信单元3201、处理单元3202可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
其中,通信单元3201可用于执行上述方法实施例中终端设备的收发操作。处理单元3202可用于执行上述方法实施例中终端设备的数据处理操作。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参 照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (46)

  1. 一种数据检测方法,其特征在于,所述方法包括:
    终端设备检测第一时频资源和第一空间资源上的数据,一个所述第一时频资源和一个所述第一空间资源上的数据与一个第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确定的第一因子,所述第一因子为标量,用于对与所述第一因子相关联的数据进行预编码,一个所述第一时频资源包括一个或多个频域资源组,一个所述第一空间资源包括一个或多个空间层。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收经过预编码的至少一个参考信号,一个第二时频资源和一个第二空间资源与一个所述参考信号相关联,一个所述第二时频资源和一个所述第二空间资源上的数据与一个第二因子相关联,所述第二因子为标量,用于对与所述第二因子相关联的数据进行预编码,一个所述第二时频资源包括一个或多个频域资源组,一个所述第二空间资源包括一个或多个空间层;
    所述终端设备基于所述参考信号,检测与所述参考信号关联的第二时频资源和第二空间资源上的数据。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    终端设备接收网络设备发送的指示信息,所述指示信息用于指示至少一个第一信息,一个所述第一信息与一个所述第一因子有关,一个所述第一信息与一个所述第二时频资源和一个所述第二空间资源相关联;
    所述终端设备检测第一时频资源和第一空间资源上的数据,包括:
    所述终端设备基于所述第一信息和所述至少一个参考信号中的目标参考信号,检测经过所述第一信息有关的第一因子预编码的数据,所述目标参考信号关联的第二时频资源和第二空间资源为所述第一信息关联的第二时频资源和第二空间资源。
  4. 根据权利要求2或3所述的方法,其特征在于,与所述第二时频资源和所述第二空间资源上的数据相关联的第二因子,还用于对与所述第二时频资源和所述第二空间资源相关联的参考信号进行预编码。
  5. 根据权利要求3所述的方法,其特征在于,一个所述第一因子与一个或多个所述第二因子相关联,一个所述第一信息与一个所述第一因子和所述第一因子相关联的一个第二因子有关。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信息为所述第一因子与所述第一因子关联的一个第二因子之间的差值,或者,所述第一信息为所述第一因子与所述第一因子关联的一个第二因子之间的商。
  7. 根据权利要求2~6中任意一项所述的方法,其特征在于,所述第一因子与以下一项或 多项信息有关:所述第一时频资源上的数据、所述第一时频资源对应的第一信道矩阵或所述第一时频资源对应的第一预编码矩阵;
    所述第二因子与以下一项或多项信息有关:所述第二时频资源上的数据、所述第二时频资源相关联的参考信号、所述第二时频资源对应的第二信道矩阵或所述第二时频资源对应的第二预编码矩阵。
  8. 根据权利要求2~7中任意一项所述的方法,其特征在于,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个所述第一时频资源以及一个或多个所述第二时频资源。
  9. 根据权利要求2~8中任意一项所述的方法,其特征在于,所述第一时频资源包括的时域资源与所述第二时频资源包括的时域资源不相同。
  10. 根据权利要求2~8中任意一项所述的方法,其特征在于,所述第一时频资源包括的频域资源与所述第二时频资源包括的频域资源不相同。
  11. 根据权利要求3或5所述的方法,其特征在于,所述至少一个第一信息为第一信息集合中的信息。
  12. 根据权利要求1~11中任意一项所述的方法,其特征在于,所述第一时频资源的数量为协议预先规定的;或者,
    所述终端设备接收网络设备发送的指示信息之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于配置所述第一时频资源的数量。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备基于所述网络设备调度的下行数据的时频资源和所述第一时频资源的数量,确定每个所述第一时频资源包括的时频资源。
  14. 根据权利要求1~13中任意一项所述的方法,其特征在于,所述第一空间资源的数量为协议预先规定的;或者,
    所述终端设备接收网络设备发送的指示信息之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于配置所述第一空间资源的数量。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述终端设备基于所述终端设备的空间层数量和所述第一空间资源的数量,确定每个所述第一空间资源包括的空间层。
  16. 根据权利要求1~15中任意一项所述的方法,其特征在于,通过所述第一因子对数据进行预编码的过程为:
    Figure PCTCN2021124088-appb-100001
    其中,s=(s 1,s 2,…,s L) T表示发送的数据,
    Figure PCTCN2021124088-appb-100002
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100003
    Figure PCTCN2021124088-appb-100004
    Figure PCTCN2021124088-appb-100005
    表示第k个空间层对应的第一因子,W为线性预编码矩阵。
  17. 根据权利要求4所述的方法,其特征在于,通过所述第二因子对数据或参考信号进行预编码的过程为:
    Figure PCTCN2021124088-appb-100006
    其中,s=(s 1,s 2,…,s L) T表示发送的数据或参考信号,
    Figure PCTCN2021124088-appb-100007
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100008
    Figure PCTCN2021124088-appb-100009
    Figure PCTCN2021124088-appb-100010
    表示第k个空间层对应的第二因子,W为线性预编码矩阵。
  18. 根据权利要求1~15中任意一项所述的方法,其特征在于,通过所述第一因子对数据进行预编码的过程为:
    Figure PCTCN2021124088-appb-100011
    其中,s=(s 1,s 2,…,s L) T表示发送的数据,
    Figure PCTCN2021124088-appb-100012
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100013
    Figure PCTCN2021124088-appb-100014
    Figure PCTCN2021124088-appb-100015
    表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
  19. 根据权利要求2~11中任意一项所述的方法,其特征在于,通过所述第二因子对数据进行预编码的过程为:
    Figure PCTCN2021124088-appb-100016
    其中,s=(s 1,s 2,…,s L) T表示发送的数据,
    Figure PCTCN2021124088-appb-100017
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100018
    Figure PCTCN2021124088-appb-100019
    Figure PCTCN2021124088-appb-100020
    表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
  20. 根据权利要求4所述的方法,其特征在于,通过所述第二因子对参考信号进行预编码的过程为:
    Figure PCTCN2021124088-appb-100021
    或者为:
    Figure PCTCN2021124088-appb-100022
    其中,s=(s 1,s 2,…,s L) T表示发送的参考信号,
    Figure PCTCN2021124088-appb-100023
    为对角矩阵,α为功率调整因子,
    Figure PCTCN2021124088-appb-100024
    Figure PCTCN2021124088-appb-100025
    Figure PCTCN2021124088-appb-100026
    表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
  21. 一种数据检测方法,其特征在于,所述方法包括:
    网络设备基于第一因子对第一时频资源和第一空间资源上的数据进行预编码,并在所述第一时频资源发送预编码之后的数据;一个所述第一时频资源和一个所述第一空间资源上的数据与一个所述第一因子相关联,不同的第一时频资源和第一空间资源上的数据关联独立确 定的第一因子,所述第一因子为标量,用于对与所述第一因子相关联的数据进行预编码,一个所述第一时频资源包括一个或多个频域资源组,一个所述第一空间资源包括一个或多个空间层。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备对至少一个参考信号进行预编码,并向所述终端设备发送预编码之后的所述至少一个参考信号,一个第二时频资源和一个第二空间资源与一个所述参考信号相关联,一个所述第二时频资源和一个所述第二空间资源上的数据与一个第二因子相关联,所述第二因子为标量,用于对与所述第二因子相关联的数据进行预编码,一个所述第二时频资源包括一个或多个频域资源组,一个所述第二空间资源包括一个或多个空间层;
    所述网络设备基于所述第二因子对所述第二时频资源和所述第二空间资源上的数据进行预编码,并在所述第二时频资源发送预编码之后的数据。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    网络设备向终端设备发送指示信息,所述指示信息用于指示至少一个第一信息,一个所述第一信息与一个所述第一因子有关,一个所述第一信息与一个所述第二时频资源和一个所述第二空间资源相关联。
  24. 根据权利要求22或23所述的方法,其特征在于,与所述第二时频资源和所述第二空间资源上的数据相关联的第二因子,还用于对与所述第二时频资源和所述第二空间资源相关联的参考信号进行预编码。
  25. 根据权利要求23所述的方法,其特征在于,一个所述第一因子与一个或多个所述第二因子相关联,一个所述第一信息与一个所述第一因子和所述第一因子相关联的一个第二因子有关。
  26. 根据权利要求25所述的方法,其特征在于,所述第一信息为所述第一因子与所述第一因子关联的一个第二因子之间的差值,或者,所述第一信息为所述第一因子与所述第一因子关联的一个第二因子之间的商。
  27. 根据权利要求22~26中任意一项所述的方法,其特征在于,
    所述第一因子与以下一项或多项信息有关:所述第一时频资源上的数据、所述第一时频资源对应的第一信道矩阵或所述第一时频资源对应的第一预编码矩阵;
    所述第二因子与以下一项或多项信息有关:所述第二时频资源上的数据、所述第二时频资源相关联的参考信号、所述第二时频资源对应的第二信道矩阵或所述第二时频资源对应的第二预编码矩阵。
  28. 根据权利要求22~27中任意一项所述的方法,其特征在于,具有一个或多个时频资源集合,一个时频资源集合包括一个或多个所述第一时频资源以及一个或多个所述第二时频资源。
  29. 根据权利要求22~28中任意一项所述的方法,其特征在于,所述第一时频资源包括的时域资源与所述第二时频资源包括的时域资源不相同。
  30. 根据权利要求22~28中任意一项所述的方法,其特征在于,所述第一时频资源包括的频域资源与所述第二时频资源包括的频域资源不相同。
  31. 根据权利要求23或25所述的方法,其特征在于,所述至少一个第一信息为第一信息集合中的信息。
  32. 根据权利要求21~31中任意一项所述的方法,其特征在于,所述第一时频资源的数量为协议预先规定的;或者,
    所述网络设备发送指示信息之前,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于配置所述第一时频资源的数量。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    所述网络设备基于所述网络设备调度的下行数据的时频资源、所述第一时频资源的数量,确定每个所述第一时频资源包括的时频资源。
  34. 根据权利要求21~33中任意一项所述的方法,其特征在于,所述第一空间资源的数量为协议预先规定的;或者,
    所述网络设备发送指示信息之前,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于配置所述第一空间资源的数量。
  35. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    所述网络设备基于所述终端设备的空间层数量和所述第一空间资源的数量,确定所述第一空间资源包括的空间层。
  36. 根据权利要求21~35中任意一项所述的方法,其特征在于,通过所述第一因子对数据进行预编码的过程为:
    Figure PCTCN2021124088-appb-100027
    其中,s=(s 1,s 2,…,s L) T表示发送的数据信号,
    Figure PCTCN2021124088-appb-100028
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100029
    Figure PCTCN2021124088-appb-100030
    表示第k个空间层对应的第一因子,W为线性预编码矩阵。
  37. 根据权利要求24所述的方法,其特征在于,通过所述第二因子对数据或参考信号进行预编码的过程为:
    Figure PCTCN2021124088-appb-100031
    其中,s=(s 1,s 2,…,s L) T表示发送的数据信号或参考信号,
    Figure PCTCN2021124088-appb-100032
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100033
    Figure PCTCN2021124088-appb-100034
    表示第k个空间层对应的第二因子,W为线性预 编码矩阵。
  38. 根据权利要求21~35中任意一项所述的方法,其特征在于,通过所述第一因子对数据进行预编码的过程为:
    Figure PCTCN2021124088-appb-100035
    其中,s=(s 1,s 2,…,s L) T表示发送的数据信号,
    Figure PCTCN2021124088-appb-100036
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100037
    Figure PCTCN2021124088-appb-100038
    表示第k个空间层对应的第一因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
  39. 根据权利要求22~31中任意一项所述的方法,其特征在于,通过所述第二因子对数据进行预编码的过程为:
    Figure PCTCN2021124088-appb-100039
    其中,s=(s 1,s 2,…,s L) T表示发送的数据信号,
    Figure PCTCN2021124088-appb-100040
    为对角矩阵,β为功率调整因子,
    Figure PCTCN2021124088-appb-100041
    Figure PCTCN2021124088-appb-100042
    表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关,d=(d 1,d 2,…,d L) T为由于模操作带来的扰动矢量,τ为模操作参数。
  40. 根据权利要求24所述的方法,其特征在于,通过所述第二因子对参考信号进行预编码的过程为:
    Figure PCTCN2021124088-appb-100043
    或者为:
    Figure PCTCN2021124088-appb-100044
    其中,s=(s 1,s 2,…,s L) T表示发送的参考信号,
    Figure PCTCN2021124088-appb-100045
    为对角矩阵,α为功率调整因子,
    Figure PCTCN2021124088-appb-100046
    Figure PCTCN2021124088-appb-100047
    表示第k个空间层对应的第二因子,Q矩阵和B矩阵与信道矩阵H有关。
  41. 一种通信装置,其特征在于,包括用于实现权利要求1-20任意一项所述方法的单元,或包括用于实现权利要求21-40中任意一项所述方法的单元。
  42. 一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如权利要求1-20中任意一项所述的方法被执行,或如权利要求21-40中任意一项所述的方法被执行。
  43. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-20中任意一项所述的方法,或使所述通信装置执行如权利要求21-40中任意一项所述的方法。
  44. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信道或信号,或者发送信道或信号;
    所述存储器,用于存储计算机程序;
    所述处理器,用于从所述存储器调用所述计算机程序执行如权利要求1-20中任意一项所述的方法,或用于从所述存储器调用所述计算机程序执行如权利要求21-40中任意一项所述的方法。
  45. 一种通信装置,其特征在于,包括处理器和通信接口;
    所述通信接口用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1~20任意一项所述的方法,或使得所述通信装置实现权利要求21-40中任意一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1~20任意一项所述的方法,或使得所述通信装置执行权利要求21-40中任意一项所述的方法。
PCT/CN2021/124088 2020-11-30 2021-10-15 一种数据检测方法及通信装置 WO2022111119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011378080.6 2020-11-30
CN202011378080.6A CN114584187A (zh) 2020-11-30 2020-11-30 一种数据检测方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022111119A1 true WO2022111119A1 (zh) 2022-06-02

Family

ID=81754010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124088 WO2022111119A1 (zh) 2020-11-30 2021-10-15 一种数据检测方法及通信装置

Country Status (2)

Country Link
CN (1) CN114584187A (zh)
WO (1) WO2022111119A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118473475A (zh) * 2023-02-09 2024-08-09 华为技术有限公司 通信方法、装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种上行预编码信息指示方法及装置
US20130336280A1 (en) * 2012-06-19 2013-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Signaling of Precoding Vector Pattern in a Lean-Carrier System
WO2019144264A1 (zh) * 2018-01-23 2019-08-01 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020024891A1 (zh) * 2018-07-31 2020-02-06 华为技术有限公司 参考信号的处理方法和装置
EP3627732A1 (en) * 2017-06-16 2020-03-25 Huawei Technologies Co., Ltd. Reference signal sending method, reference signal receiving method, and communication apparatus
US20200119783A1 (en) * 2017-06-16 2020-04-16 Huawei Technologies Co., Ltd. Information transmission method and apparatus
CN111106862A (zh) * 2018-10-26 2020-05-05 索尼公司 电子设备、通信方法以及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种上行预编码信息指示方法及装置
US20130336280A1 (en) * 2012-06-19 2013-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Signaling of Precoding Vector Pattern in a Lean-Carrier System
EP3627732A1 (en) * 2017-06-16 2020-03-25 Huawei Technologies Co., Ltd. Reference signal sending method, reference signal receiving method, and communication apparatus
US20200119783A1 (en) * 2017-06-16 2020-04-16 Huawei Technologies Co., Ltd. Information transmission method and apparatus
WO2019144264A1 (zh) * 2018-01-23 2019-08-01 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020024891A1 (zh) * 2018-07-31 2020-02-06 华为技术有限公司 参考信号的处理方法和装置
CN111106862A (zh) * 2018-10-26 2020-05-05 索尼公司 电子设备、通信方法以及介质

Also Published As

Publication number Publication date
CN114584187A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
JP7216088B2 (ja) 通信方法、通信装置、およびシステム
CN113346935B (zh) 用于码本设计和信令的方法和装置
CN109075828B (zh) 用于实现上行链路mimo的方法和设备
CN112751592B (zh) 上报信道状态信息的方法和通信装置
JP2015518678A (ja) 進歩したアンテナシステムにおけるチャンネル品質情報の決定
CN111342873A (zh) 一种信道测量方法和通信装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
CN112311431B (zh) 一种空频合并系数的指示方法及装置
CN111713054B (zh) 通信方法、通信装置和系统
US20200119796A1 (en) Channel state information transmission method, access network device, and terminal device
US20220385343A1 (en) Information transmission method and apparatus
WO2015165005A1 (zh) 一种多天线数据传输方法、基站、用户设备及系统
WO2014166448A1 (zh) 反馈信道状态信息的方法、终端及获取预编码的基站
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
WO2019153235A1 (en) Apparatuses and methods for non-linear precoding
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2022111119A1 (zh) 一种数据检测方法及通信装置
CN108667490B (zh) 一种信道状态信息反馈方法及装置
CN108282204B (zh) 通信方法、装置及系统
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
CN111756422A (zh) 指示信道状态信息的方法以及通信装置
WO2017166185A1 (zh) 一种协调多用户间干扰的方法及基站
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
WO2024140116A1 (zh) 一种通信方法及装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896621

Country of ref document: EP

Kind code of ref document: A1