WO2023160331A1 - 一种天线模式切换方法及相关装置 - Google Patents

一种天线模式切换方法及相关装置 Download PDF

Info

Publication number
WO2023160331A1
WO2023160331A1 PCT/CN2023/073755 CN2023073755W WO2023160331A1 WO 2023160331 A1 WO2023160331 A1 WO 2023160331A1 CN 2023073755 W CN2023073755 W CN 2023073755W WO 2023160331 A1 WO2023160331 A1 WO 2023160331A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
frame
access point
antenna mode
switched
Prior art date
Application number
PCT/CN2023/073755
Other languages
English (en)
French (fr)
Inventor
李文俊
谢春辉
田永刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023160331A1 publication Critical patent/WO2023160331A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna mode switching method and a related device.
  • a wireless local area network (wireless local area network, WLAN) system may include an access point (access point, AP) and a station (station, STA).
  • An access point can communicate with one or more stations.
  • the wireless fidelity (WiFi) 5 protocol supports downlink (down link, DL) multi-user multiple input multiple output (multi-user multiple input multiple output, MU-MIMO)
  • the WiFi 6 protocol supports DL MU-MIMO and uplink (up link, UL) MU-MIMO.
  • the throughput of the WLAN system needs to be improved. Therefore, how to improve the throughput of the WLAN system has become an urgent technical problem to be solved at the current stage.
  • the present application provides an antenna mode switching method and a related device, which improve the throughput of a WLAN system.
  • a method for switching antenna modes includes: an access point generates a first frame; the first frame includes identification information of at least one antenna mode to be switched by a station, and the first frame is a multi-user request to send frame or Trigger frame; the access point sends the first frame to at least one station.
  • the multi-user request to send frame or the trigger frame includes the identification information of the antenna mode to be switched by at least one station, after receiving the multi-user request to send frame or the trigger frame, at least one station can receive the multi-user request to send frame or the trigger frame according to the identification of the antenna mode to be switched The information switches the antenna mode, so that at least one station that switches the antenna mode can have better transmission performance, and thus the throughput of the WLAN system can be improved.
  • the method further includes: the access point sends a second frame to at least one station; the second frame includes identification information of a candidate antenna mode to be switched by at least one station, and the second frame It is an empty data packet notification frame; the access point sends a third frame to at least one station, and the third frame is an empty data packet frame; the access point receives at least one channel measurement report corresponding to at least one station; the channel measurement report corresponding to the station is A channel measurement report obtained by the station performing channel measurement on the third frame in the candidate antenna mode; the access point determines at least one antenna mode to be switched by the station according to at least one channel measurement report.
  • the access point sends a null data packet notification frame to at least one station, because the null data packet notification frame includes identification information of at least one candidate antenna mode to be switched by the station, so at least one station is receiving the null data packet notification frame Then you can switch to the corresponding candidate antenna mode.
  • the access point may send an empty data packet frame to at least one station, so that at least one station performs channel measurement on the empty data packet frame in a corresponding candidate antenna mode to obtain a channel measurement report and report it to the access point, thus The access point may determine the antenna mode to be switched by at least one station according to the at least one channel measurement report. Because the channel measurement report can reflect the channel quality in the candidate antenna mode, when the antenna mode to be switched by the station is determined according to the channel measurement report, the station that switches the antenna mode can have better transmission performance, thereby improving the throughput of the WLAN system quantity.
  • the empty data packet notification frame includes at least one site information field, and one site information field indicates a site Identification information of the candidate antenna mode to be switched. That is, it can be seen that by multiplexing the user information field, the identification information of the candidate antenna mode to be switched by the station is indicated, and the modification of the existing field is avoided. In other words, the existing protocol version can be better compatible.
  • the method further includes: the access point sends a fourth frame to at least one station; the fourth frame is used to instruct the station to feed back the number of antenna modes supported by different numbers of spatial streams, and the fourth frame is a beacon frame; the access point Receive the number of antenna modes supported by different spatial stream numbers of each site; the access point generates a set of identification information of candidate antenna modes for each site according to the number of antenna modes supported by different spatial stream numbers of each site, and an identification of a candidate antenna mode The information set includes identification information of at least one candidate antenna mode.
  • the access point can send a beacon frame to at least one station, because the beacon frame is used to indicate the number of antenna modes supported by different spatial stream numbers fed back by the station, so the access point can receive different spatial stream numbers for each station.
  • the number of supported antenna modes so that according to the number of antenna modes supported by different spatial streams of each site, the identification information set of the candidate antenna modes of each site can be generated, so that the access point can pass the identification information of the candidate antenna modes of the site
  • the set determines the antenna mode to be switched by the station.
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use. That is, it can be seen that after receiving the beacon frame, the station can also know the maximum number of antenna patterns allowed by the access point, so that the sum of the number of antenna patterns supported by different spatial stream numbers fed back by the station does not exceed the maximum number of antenna patterns allowed by the access point.
  • the maximum number of antenna modes used by a site so that after the antenna mode to be switched by the site is determined through the identification information set of the candidate antenna mode of the site, the site that switches the antenna mode can not only have better transmission performance, but also avoid conflicts with the antenna mode.
  • the WLAN device for site communication cannot handle the intermittent link disconnection problem.
  • the first frame is a multi-user request to send frame
  • the multi-user request to send frame includes a first user information list field
  • the first user information list field includes at least one first user information field
  • a first user information field indicates a Identification information of the antenna mode to be switched by the station. That is, it can be seen that by multiplexing the user information field, the identification information of the candidate antenna mode to be switched by the station is indicated, and the modification of the existing field is avoided. In other words, the existing protocol version can be better compatible.
  • the method further includes: the access point receives a fifth frame from the station, the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a transmission permission frame; the access point sends a downlink multi-user multi- Input multiple output messages. That is, it can be seen that the access point can send a downlink multi-user MIMO message to the station after learning that the antenna mode of the station has been switched. In other words, when the station has better transmission performance, the transmission performance of the WLAN system can also be improved. At the same time, multi-user MIMO communication can also improve the transmission performance of the WLAN system. Therefore, when the site has better transmission performance, the throughput of the WLAN system can be further improved by performing downlink multi-user MIMO communication.
  • the first frame is a trigger frame
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • one second user information field indicates an antenna mode to be switched by a station identification information. That is, it can be seen that by multiplexing the user information field, the identification information of the antenna mode to be switched by the station is indicated, and the modification of the existing field is avoided. In other words, the existing protocol version can be better compatible.
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched. That is, it can be seen that by multiplexing the user information field, the maximum power used by the station is indicated, and changes to existing fields are avoided. In other words, it can be better compatible with existing protocol versions.
  • the method further includes: the access point receives an uplink multi-user MIMO message from the station. That is, it can be seen that the access point can receive the uplink multi-user MIMO message from the station. In other words, when the station has better transmission performance, the transmission performance of the WLAN system can also be improved. At the same time, multi-user MIMO communication can also improve the transmission performance of the WLAN system, so when the site has better transmission performance, uplink multi-user MIMO communication, WLAN The throughput of the system can be further improved.
  • a method for switching antenna modes includes: a station receives a first frame from an access point; the first frame includes identification information of an antenna mode to be switched by the station, and the first frame is multi-user Request to send a frame or a trigger frame; the station switches the antenna mode according to the identification information of the antenna mode to be switched by the station.
  • the method further includes: the station receives a second frame from the access point, the second frame is an empty data packet notification frame; the second frame includes candidate antennas to be switched by the station The identification information of the mode; the station receives the third frame from the access point, and the third frame is an empty data packet frame; the station performs channel measurement on the third frame in the antenna mode corresponding to the identification information of the candidate antenna mode to obtain a channel measurement report; the station Send a channel measurement report to the access point.
  • the empty data packet notification frame includes at least one station information field, and one station information field indicates identification information of a candidate antenna mode to be switched by a station.
  • the method further includes: the station receives a fourth frame from the access point; the fourth frame is used to instruct the station to feed back the number of antenna modes supported by different numbers of spatial streams, and the fourth frame is a beacon frame; the station sends a message to the access point The number of antenna modes supported by different spatial stream numbers of the sending station.
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use.
  • the first frame is a multi-user request to send frame
  • the multi-user request to send frame includes a first user information list field
  • the first user information list field includes at least one first user information field
  • a first user information field indicates a Identification information of the antenna mode to be switched by the station.
  • the method further includes: the station sends a fifth frame to the access point, the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a transmission permission frame; Input multiple output messages.
  • the first frame is a trigger frame
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • one second user information field indicates an antenna mode to be switched by a station identification information.
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched.
  • the method further includes: the station sending an uplink multi-user MIMO message to the access point.
  • a communication device is provided, the communication device is an access point, the access point includes a processing module and a transceiver module, and the processing module is used to generate a first frame; the first frame includes at least one antenna mode to be switched by a station Identification information, the first frame is a multi-user request to send frame or trigger frame; the transceiver module is used to send the first frame to at least one station.
  • the transceiver module is further configured to: send a second frame to at least one station; the second frame includes identification information of a candidate antenna mode to be switched by at least one station, and the second frame is an empty data packet notification frame; send at least one The station sends the third frame, and the third frame is an empty data packet frame; receives at least one channel measurement report corresponding to at least one station; the channel measurement report corresponding to the station is the channel obtained by the station performing channel measurement on the third frame in the candidate antenna mode Measurement report; the processing module is further configured to determine the antenna mode to be switched by at least one station according to at least one channel measurement report.
  • the empty data packet notification frame includes at least one station information field, and one station information field indicates identification information of a candidate antenna mode to be switched by a station.
  • the transceiver module is also used to: send a fourth frame to at least one station; the fourth frame is used to instruct the station to feed back the number of antenna modes supported by different spatial stream numbers, and the fourth frame is a beacon frame; receive each station The number of antenna modes supported by different spatial stream numbers; the processing module is also used to generate the identification information set of candidate antenna modes for each site, and the identification information of a candidate antenna mode according to the number of antenna modes supported by different spatial stream numbers for each site The set includes identification information of at least one candidate antenna mode.
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use.
  • the first frame is a multi-user request to send frame
  • the multi-user request to send frame includes a first user information list field
  • the first user information list field includes at least one first user information field
  • a first user information field indicates a Identification information of the antenna mode to be switched by the station.
  • the transceiver module is also used to: receive the fifth frame of the station from the station, the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a transmission permission frame; send a downlink multi-user multiple-input multiple Output message.
  • the first frame is a trigger frame
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • one second user information field indicates an antenna mode to be switched by a station identification information.
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched.
  • the transceiver module is also used to receive uplink multi-user MIMO messages from the station.
  • a communication device is provided.
  • the communication device is a station, and the station includes a processing module and a transceiver module, and the transceiver module is used to receive a first frame from an access point; the first frame includes identification information of an antenna mode to be switched by the station , the first frame is a multi-user request to send frame or a trigger frame; the processing module is configured to switch the antenna mode according to the identification information of the antenna mode to be switched by the station.
  • the transceiver module is also used to: receive a second frame from the access point; the second frame includes identification information of a candidate antenna mode to be switched by the station, and the second frame is an empty data packet notification frame; receive from the access point The third frame, the third frame is an empty data packet frame; the processing module is also used to perform channel measurement on the third frame in the antenna mode corresponding to the identification information of the candidate antenna mode to obtain a channel measurement report; the transceiver module is also used to send a channel measurement report to the third frame The access point sends a channel measurement report.
  • the empty data packet notification frame includes at least one station information field, and one station information field indicates identification information of a candidate antenna mode to be switched by a station.
  • the transceiver module is also used to: receive the fourth frame from the access point; the fourth frame is used to instruct the station to feed back the number of antenna modes supported by different spatial stream numbers, and the fourth frame is a beacon frame; The number of antenna modes supported by different spatial stream numbers of the sending station.
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use.
  • the first frame is a multi-user request to send frame
  • the multi-user request to send frame includes a first user information list field
  • the first user information list field includes at least one first user information field
  • a first user information field indicates a Identification information of the antenna mode to be switched by the station.
  • the transceiver module is also used to: send a fifth frame to the access point, the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a frame allowed to send; receive a downlink multi-user multi- Input multiple output messages.
  • the first frame is a trigger frame
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • one second user information field indicates an antenna mode to be switched by a station identification information.
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched.
  • the transceiver module is also configured to send an uplink multi-user MIMO message to the access point.
  • a communication device is provided, the communication device is an access point, the access point includes a processor and a transceiver, and the processor is used to generate a first frame; the first frame includes at least one antenna mode to be switched by a station The identification information, the first frame is a multi-user request to send frame or a trigger frame; the transceiver is used to send the first frame to at least one station.
  • the transceiver is further configured to: send a second frame to at least one station; the second frame includes at least one station to be switched The identification information of the candidate antenna mode changed, the second frame is an empty data packet notification frame; the third frame is sent to at least one station, and the third frame is an empty data packet frame; at least one channel measurement report corresponding to at least one station is received; the station The corresponding channel measurement report is a channel measurement report obtained by the station performing channel measurement on the third frame in the candidate antenna mode; the processor is further configured to determine at least one antenna mode to be switched by the station according to at least one channel measurement report.
  • the empty data packet notification frame includes at least one station information field, and one station information field indicates identification information of a candidate antenna mode to be switched by a station.
  • the transceiver is also used to: send a fourth frame to at least one station; the fourth frame is used to instruct the station to feed back the number of antenna modes supported by different spatial stream numbers, and the fourth frame is a beacon frame; receive each station The number of antenna modes supported by different spatial stream numbers; the processor is also used to generate the identification information set of candidate antenna modes for each site, and the identification information of a candidate antenna mode according to the number of antenna modes supported by different spatial stream numbers for each site The set includes identification information of at least one candidate antenna mode.
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use.
  • the first frame is a multi-user request to send frame
  • the multi-user request to send frame includes a first user information list field
  • the first user information list field includes at least one first user information field
  • a first user information field indicates a Identification information of the antenna mode to be switched by the station.
  • the transceiver is also used to: receive the fifth frame of the station from the station, the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a frame allowed to send; send a downlink multi-user multiple-input multiple Output message.
  • the first frame is a trigger frame
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • one second user information field indicates an antenna mode to be switched by a station identification information.
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched.
  • the transceiver is also used to receive uplink multi-user MIMO packets from the station.
  • a communication device is provided, the communication device is a station, the station includes a processor and a transceiver, and the transceiver is used to receive a first frame from an access point; the first frame includes identification information of an antenna mode to be switched by the station , the first frame is a multi-user request to send frame or a trigger frame; the processor is configured to switch the antenna mode according to the identification information of the antenna mode to be switched by the station.
  • the transceiver is also configured to: receive a second frame from the access point; the second frame includes identification information of a candidate antenna mode to be switched by the station, and the second frame is an empty data packet notification frame; receive from the access point The third frame, the third frame is an empty data packet frame; the processor is also used to perform channel measurement on the third frame in the antenna mode corresponding to the identification information of the candidate antenna mode to obtain a channel measurement report; the transceiver is also used to send a channel measurement report to The access point sends a channel measurement report.
  • the empty data packet notification frame includes at least one station information field, and one station information field indicates identification information of a candidate antenna mode to be switched by a station.
  • the transceiver is also used to: receive a fourth frame from the access point; the fourth frame is used to instruct the station to feed back the number of antenna modes supported by different spatial stream numbers, and the fourth frame is a beacon frame; to the access point The number of antenna modes supported by different spatial stream numbers of the sending station.
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use.
  • the first frame is a multi-user request to send frame
  • the multi-user request to send frame includes a first user information list field
  • the first user information list field includes at least one first user information field
  • a first user information field indicates a Identification information of the antenna mode to be switched by the station.
  • the transceiver is also used to: send a fifth frame to the access point, where the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a frame allowed to send; receive a downlink multi-user multi- Input multiple output messages.
  • the first frame is a trigger frame
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • one second user information field indicates an antenna mode to be switched by a station identification information.
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched.
  • the transceiver is also configured to send an uplink multi-user MIMO message to the access point.
  • a chip in a seventh aspect, includes at least one logic circuit and an input/output interface.
  • the logic circuit is used to read and execute stored instructions. one method.
  • a computer-readable storage medium characterized in that the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer executes the computer program described in the first aspect or the first aspect. Either of the two methods.
  • a communication device including a processor and a transceiver, where the processor is configured to support the communication device to perform corresponding functions in the method of the first aspect or the second aspect.
  • the transceiver is used to support communication between the communication device and other communication devices other than the communication device.
  • the communication device may also include a memory, which is used to be coupled with the processor, and stores necessary program instructions and data of the communication device.
  • the transceiver may be integrated on the communication device or independent of the communication device, which is not limited here.
  • a computer program product containing instructions, which, when run on a computer, cause the computer to execute the method according to any one of the first aspect or the second aspect.
  • a communication system including the foregoing access point and/or the foregoing station.
  • FIG. 1 is a schematic diagram of communication when both an access point and a station support antenna mode switching provided by an embodiment of the present application;
  • Fig. 2 is the frame structure of a kind of null data packet announcement (null data packet announcement, NDPA) frame;
  • Fig. 3 is the frame structure of a kind of multi-user request to send (multi-user request to send, MU-RTS) frame;
  • FIG. 4 is a frame structure of a trigger frame
  • FIG. 5 is a format of elements included in a beacon frame provided by an embodiment of the present application.
  • Figure 6 is a format of elements included in a probe request frame or an association request frame provided by an embodiment of the present application.
  • FIG. 7 is a network architecture diagram of a WLAN provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure applicable to a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an antenna mode switching method provided in an embodiment of the present application.
  • FIG. 10 is a timing diagram of channel detection provided by an embodiment of the present application.
  • FIG. 11 is a sequence diagram of a downlink multi-user MIMO communication provided by an embodiment of the present application.
  • FIG. 12 is a sequence diagram of an uplink multi-user MIMO communication provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be one or more .
  • words such as “first” and “second” are used to distinguish network elements from identical or similar items with basically the same functions . Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • references to "one embodiment” or “some embodiments” and the like described in the embodiments of the present application mean that specific features, structures or characteristics described in connection with the embodiments are included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Antenna pattern that is, a combination of antennas.
  • FIG. 1 is a schematic diagram of communication when both an access point and a station support antenna mode switching according to an embodiment of the present application.
  • a wireless access point access point, AP
  • station station, STA
  • STA 1 includes 4 antennas, and there are 2*2 antenna combinations, that is, there are 4 antenna modes; similarly, STA2 includes 4 antennas, and there are 2*2 antenna combinations, that is There are 4 types of antenna modes.
  • the identification information of the antenna mode may be the serial number of the antenna mode.
  • the identification information of the candidate antenna mode may be the number of the candidate antenna mode.
  • Each wireless local area network wireless local area network, WLAN
  • WLAN wireless local area network
  • WLAN starts from 802.11a/g, goes through 802.11n, 802.11ac, 802.11ax, and now 802.11be.
  • the allowed transmission bandwidth and number of spatial streams are shown in Table 1 below:
  • 802.11n can also be called high throughput (high throughput, HT); 802.11ac can also be called very high throughput (very high throughput, VHT); 802.11ax can also be called high efficient (high efficient, HE) or Wi-Fi 6; 802.11be can also be called extremely high throughput (EHT) or (Wi-Fi7), and for the standards before HT, such as 802.11a/b/g, etc. are collectively called non-high throughput (Non-HT). Since 80211b adopts non-orthogonal frequency division multiplexing (OFDM) mode, it is not listed in Table 1.
  • OFDM non-orthogonal frequency division multiplexing
  • the spatial stream refers to the number of spatial streams that can be transmitted simultaneously in the space (antenna) dimension, and may also be referred to as a stream for short.
  • the terms "spatial stream” and "stream” have the same meaning.
  • Fig. 2 is a frame structure of a null data packet announcement (NDPA) frame, as shown in Fig. 2, the NDPA frame includes a media access control (media access control, MAC) header (header) , a sounding dialog token with a byte of 1, a station information (STA info) field 1 to STA info n with a byte of 4, and a frame control sequence (FCS) with a byte of 4 ) field.
  • media access control media access control
  • MAC media access control
  • STA info station information
  • FCS frame control sequence
  • the MAC header in Figure 2 includes a frame control (frame control) field with a byte of 2, a length (duration) field with a byte of 2, a receiving address (RA) field with a byte of 6, and a field with a byte of 6. Transmitting Address (TA) field.
  • frame control frame control
  • RA receiving address
  • TA Transmitting Address
  • any field in the STA info1 field to the STA info n field may include an 11-bit associated station ID (associate station ID, AID) 11 field, a 14-bit partial bandwidth information (partial BWinfo) field, and a 12-bit feedback type and group number (feedback type and Ng) field, 1-bit disambiguation (disambiguation) field, 1-bit codebook size (codebook size) field and 3-bit column number (number of columns, Nc) field.
  • the partial BWinfo field may include a 7-bit RU start index (start index) field and a 7-bit resource unit (resource unit, RU) end index (end index) field.
  • Fig. 3 is the frame structure of a kind of multi-user request to send (multi-user request to send, MU-RTS) frame, as shown in Fig. 3, MU-RTS frame includes MAC header, byte is greater than or equal to 8 public information (common info) field, byte is variable (variable) user information list (user info list) field, byte is variable padding (padding) field and byte is 4 FCS field.
  • MU-RTS frame includes MAC header, byte is greater than or equal to 8 public information (common info) field, byte is variable (variable) user information list (user info list) field, byte is variable padding (padding) field and byte is 4 FCS field.
  • the MAC header in Figure 3 includes a frame control field with a byte of 2, a duration field with a byte of 2, an RA field with a byte of 6, and a TA field with a byte of 6.
  • the user info list field in FIG. 3 may include at least one user information (user info) field. It should be understood that, in this application, the user info list field in Figure 3 is equivalent to the first user information list field, and at least one user info field included in the user info list field in Figure 3 is equivalent to at least one first user information field . Secondly, in combination with FIG.
  • the user info field may include a 12-bit associated station ID (associate station ID, AID) 12 field, an 8-bit resource unit allocation (resourceunit allocation, RU allocation) field, and a 1-bit uplink FEC coding type (UL FEC coding type) field, 4-bit uplink high-efficiency modulation and coding scheme (UL HE-modulation and coding scheme, UL HE-MCS) field, 1-bit uplink dual carrier modulation (UL dual carrier modulation, UL DCM) field, 6-bit SS allocation/RA-RU information field, 7-bit uplink target received power (UL target received power) field, a 1-bit reserved (reserved) field, and a trigger dependent user information (trigger dependent user info) field.
  • UL FEC coding type 4-bit uplink high-efficiency modulation and coding scheme
  • UL HE-modulation and coding scheme UL HE-MCS
  • 1-bit uplink dual carrier modulation UL dual carrier modulation, UL DCM
  • the UL FEC coding type field, UL HE-MCS field, UL DCM field, SS allocation/RA-RU information field, and UL target RSSI field are reserved (resv) fields, that is, the number of bits in the resv field is 19.
  • Fig. 4 is a frame structure of a trigger frame.
  • the trigger frame includes a MAC header, a common info field whose byte is greater than or equal to 8, a user info list field whose byte is variable, and a word
  • the padding field is variable and the FCS field is 4 bytes.
  • the MAC header in Figure 4 includes a frame control field with a byte of 2, a duration field with a byte of 2, an RA field with a byte of 6, and a TA field with a byte of 6.
  • the user info list field in FIG. 4 may include at least one user information (user info) field.
  • user info user info
  • the user info list field in Figure 4 is equivalent to the second user information list field
  • at least one user info field included in the user info list field in Figure 4 is equivalent to at least one second user information field .
  • the user info field includes a 12-bit AID12 field, an 8-bit RU allocation field, a 1-bit UL FEC coding type field, a 4-bit UL HE-MCS field, and a 1-bit UL DCM field. field, 6-bit SS allocation/RA-RU information field, 7-bit UL target receive power field, 1-bit reserved (reserved) field and trigger dependent user info field.
  • the 0-90th bits of the UL target receive power field indicate the expected received power
  • the 91-126th bits of the UL target receive power field are reserved bits
  • the 127th bit of the UL target receive power field indicates that the station adopts the maximum power.
  • Fig. 5 is a format of elements included in a beacon frame provided by an embodiment of the present application.
  • the beacon frame includes an element identification (element ID) field with a byte of 1, A length (length) field with a byte of 1 and a maximum antenna mode number (maximum antenna mode number) field with a byte of 1.
  • the element ID field indicates the ID of the tag and differentiates the element (element)
  • the length field indicates the length of the element
  • the maximum antenna mode number field indicates the maximum number of antenna modes that the access point allows the station to use.
  • FIG. 6 is a format of elements included in a probe request (probe request) frame or an association request (association request) frame provided by an embodiment of the present application.
  • the probe request frame or the association request frame can be Including the element ID field with a byte of 1, the length field with a byte of 1, the antenna mode number (1ss antenna mode number) field with a spatial stream number of 1, and the antenna mode number with a spatial stream number of 2 (2ss antenna mode number) field, the number of antenna modes with the number of spatial streams being 3 (3ss antenna mode number) field and the number of antenna modes with the number of spatial streams being 4 (4ss antenna mode number) field.
  • 1ss antenna mode number field, 2ss antenna mode number field, 3ss antenna mode number field and 4ss antenna mode number field are all 1 byte.
  • the element ID field indicates the ID of the tag and distinguishes the element (element), and the length field indicates the length of the element.
  • the 1ss antenna mode number field indicates the number of antenna modes supported by 1 spatial stream
  • the 2ss antenna mode number field indicates the number of antenna modes supported by 2 spatial streams
  • the 3ss antenna mode number field indicates the number of antenna modes supported by 3 spatial streams
  • the 4ss antenna mode number field indicates the number of antenna modes supported by 4 spatial streams.
  • the embodiments of the present application may be applicable to WLAN scenarios, and may be applicable to IEEE 802.11 system standards, such as 802.11ax, 802.11be or standards of the next generation.
  • the embodiments of the present application may also be applicable to wireless local area network systems such as Internet of things (Internet of things, IoT) networks or Internet of Vehicles (Vehicle to X, V2X) networks. middle.
  • LTE system LTE frequency division duplex (frequency division duplex, FDD) system
  • LTE time division duplex time division duplex, TDD
  • universal mobile communication system universal mobile telecommunications system, UMTS
  • worldwide interconnection microwave access worldwide interoperability for microwave access, WiMAX
  • FIG. 7 is a network architecture diagram of a WLAN provided in an embodiment of the present application.
  • FIG. 7 takes the WLAN including one wireless access point (access point, AP) and two stations (station, STA) as an example.
  • the STA associated with the AP can receive the wireless frame sent by the AP, and can also send the wireless frame to the AP. It should be understood that the number of APs and STAs in FIG. 7 is only an example, and may be more or less.
  • the access point can be the access point for the terminal equipment (such as mobile phone) to enter the wired (or wireless) network. It is mainly deployed in the home, inside the building, and inside the park. Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a Wi-Fi chip.
  • the access point may be a device supporting the 802.11be standard.
  • the access point may also be a device supporting various wireless local area networks (WLAN) standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • WLAN wireless local area networks
  • the access point in this application may be a high efficient (HE) AP or an extremely high throughput (EHT) AP, or an access point applicable to a certain future generation of Wi-Fi standards.
  • HE high efficient
  • EHT extremely high throughput
  • the STAs involved in this embodiment of the present application may be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names that have wireless communication functions, where the user terminal may Including various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (user equipment, UE), mobile station (mobile station, MS), terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, GPS device or any device configured for network communication via a wireless medium other suitable equipment, etc.
  • STAs may be routers, switches, and bridges.
  • stations or STAs are collectively referred to as stations or STAs.
  • the APs and STAs involved in this embodiment of the present application may be APs and STAs applicable to the IEEE 802.11 system standard.
  • An AP is a device deployed in a wireless communication network to provide wireless communication functions for its associated STAs.
  • the AP can be used as the center of the communication system. It is usually a network-side product that supports the MAC and PHY of the 802.11 system standard. For example, it can be a base station , a router, a gateway, a repeater, a communication server, a switch or a network bridge and other communication equipment, wherein the base station may include various forms of macro base stations, micro base stations, relay stations, and the like.
  • the devices mentioned above are collectively referred to as APs.
  • the STA is usually a terminal product that supports media access control (media access control, MAC) and physical layer (physical, PHY) of the 802.11 system standard, such as a mobile phone, a notebook computer, and the like.
  • the wireless communication system can be a wireless local area network (WLAN) or a cellular network.
  • WLAN wireless local area network
  • This solution can be implemented by a communication device in the wireless communication system or a chip or a processor in the communication device.
  • the communication device can be a device that supports multiple
  • a wireless communication device that transmits links in parallel is called, for example, a multi-link device (Multi-link device) or a multi-band device (multi-band device). Compared with devices that only support single-link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • a multi-link device includes one or more affiliated STAs (affiliated STAs).
  • An affiliated STA is a logical station that can work on one link.
  • the affiliated station may be an access point (Access Point, AP) or a non-access point station (non-Access Point Station, non-AP STA).
  • AP access point
  • non-AP STA non-Access Point Station
  • a link device can be called a multi-link AP or a multi-link AP device or an AP multi-link device (AP multi-link device)
  • AP multi-link device AP multi-link device
  • a multi-link device that belongs to a non-AP STA can be called a multi-link STA Or multi-link STA device or STA multi-link device (STA multi-link device).
  • the maximum total number of streams supported in MU-MIMO mode is 16, that is, the maximum sum of streams of all users in MU-MIMO mode is 16;
  • Non Multiple User Multiple Input Multiple Output (non-MU-MIMO) mode supports up to 16 streams, that is, the maximum number of streams for a user in non-MU-MIMO mode is 16 ;
  • the maximum number of spatial streams for each user in MU-MIMO mode is 4;
  • a resource unit group includes at least one resource unit (resource unit, RU).
  • resource unit group includes one RU
  • the resource A unit group can also be understood as a resource unit.
  • the resource unit group includes two or more RUs, the resource unit group can be understood as a multiple resource unit (Multiple RU, MRU).
  • MU-MIMO can only be used on resource unit groups greater than or equal to 242, or in other words, the MU-MIMO mode can only be used when the number of subcarriers included in the resource unit group is greater than or equal to 242.
  • the technical solutions provided by the embodiments of the present application are applicable to various system architectures.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the wireless access point, station, etc. in FIG. 7 can be implemented by one device, or jointly implemented by multiple devices, or can be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • the above function can be a network element in a hardware device, a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • FIG. 7 can be implemented by the communication device 800 in FIG. 8 .
  • FIG. 8 is a schematic diagram of a hardware structure applicable to a communication device provided by an embodiment of the present application.
  • the communication device 800 includes at least one processor 801 , a communication line 802 , a memory 803 and at least one communication interface 804 .
  • the processor 801 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 802 may include a path for passing information between the above-described components.
  • the communication interface 804 is any device such as a transceiver (such as an antenna) for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN) and the like.
  • a transceiver such as an antenna
  • WLAN wireless local area networks
  • the memory 803 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer Any other medium accessed, but not limited to.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs
  • the memory may exist independently and be connected to the processor through the communication line 802 . Memory can also be integrated with the processor.
  • the memory provided by the embodiment of the present application may generally be non-volatile.
  • the memory 803 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 801 .
  • the processor 801 is configured to execute computer-executed instructions stored in the memory 803, so as to implement the methods provided in the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 801 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 8 .
  • the communications apparatus 800 may include multiple processors, for example, the processor 801 and the processor 807 in FIG. 8 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 800 may further include an output device 805 and an input device 806 .
  • Output device 805 is in communication with processor 801 and can display information in a variety of ways.
  • the output device 805 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 806 communicates with the processor 801 and can receive user input in various ways.
  • the input device 806 may be a mouse, a keyboard, a touch screen device, or a sensory device, among others.
  • the aforementioned communication device 800 may be a general-purpose device or a special-purpose device.
  • the communication device 800 may be a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device having a structure similar to that shown in FIG. 8 .
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 800 .
  • the processor 801 can read the software program in the memory 803, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 801 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 801, and the processor 801 converts the baseband signal into data and processes the data deal with.
  • the radio frequency circuit and antenna may be arranged independently of the processor performing baseband processing.
  • the radio frequency circuit and antenna may be independent of the communication device and arranged remotely.
  • FIG. 9 is a schematic flowchart of an antenna mode switching method provided in an embodiment of the present application. As shown in Figure 9, the method includes but is not limited to the following steps:
  • the access point generates a first frame, where the first frame includes identification information of an antenna mode to be switched by at least one station, and the first frame is a multi-user request to send frame or a trigger frame.
  • the access point in order to help the access point select an antenna mode with better transmission performance for the station to generate the first frame, the access point needs to know the channel measurement reports of the station in different antenna modes, so as to Report to the station to select an antenna mode with better transmission performance.
  • this solution may also include: the access point sends a second frame to at least one station; the second frame includes identification information of a candidate antenna mode to be switched by at least one station, and the second frame is an empty data packet notification (null data packet announcement, NDPA) frame; the access point sends a third frame to at least one station, and the third frame is a null data packet (null data packet, NDP) frame; the access point receives at least one channel corresponding to at least one station Measurement report, the channel measurement report corresponding to the station is the third frame performed by the station in the candidate antenna mode A channel measurement report obtained by performing channel measurement; the access point determines an antenna mode to be switched by at least one station according to at least one channel measurement report.
  • NDPA empty data packet notification
  • NDP null data packet
  • the access point sends a null data packet notification frame to at least one station, because the null data packet notification frame includes identification information of at least one candidate antenna mode to be switched by the station, so at least one station is receiving the null data packet notification frame Then you can switch to the corresponding candidate antenna mode.
  • the access point may send an empty data packet frame to at least one station, so that at least one station performs channel measurement on the empty data packet frame in a corresponding candidate antenna mode to obtain a channel measurement report and report it to the access point, thus The access point may determine the antenna mode to be switched by at least one station according to the at least one channel measurement report. Because the channel measurement report can reflect the channel quality in the candidate antenna mode, when the antenna mode to be switched by the station is determined according to the channel measurement report, the station that switches the antenna mode can have better transmission performance, thereby improving the throughput of the WLAN system quantity.
  • the empty data packet notification frame includes at least one station information field, and one station information field indicates identification information of a candidate antenna mode to be switched by a station. That is, it can be seen that by multiplexing the user information field, the identification information of the candidate antenna mode to be switched by the station is indicated, and the modification of the existing field is avoided. In other words, the existing protocol version can be better compatible.
  • the station information field may include a partial BWinfo field, and the partial BWinfo field indicates identification information of a candidate antenna mode to be switched by the station.
  • the partial BWinfo field may include the RUend index field. Therefore, the RUend index field indicates the identification information of the candidate antenna mode to be switched by the station.
  • the partial BWinfo field may also include a RU start index field, and the RU start index field may be used to indicate the bandwidth for channel detection. For example, the RU start index field indicates that the bandwidth for channel detection is full bandwidth.
  • the 802.11ax standard stipulates that the value of the RU start index field is 0-73, so in this application, when the RU start index field indicates the bandwidth for channel detection, the value of the RU start index field is between 0-73 Other integers, such as 127.
  • the access point when the access point performs channel detection on multiple stations, it also needs to send a slave trigger (bfrp trigger) frame to the multiple stations.
  • bfrp trigger slave trigger
  • the solution further includes: the access point A subordinate trigger frame is also sent to multiple stations, and the subordinate trigger frame is used to trigger multiple stations to perform uplink multi-user transmission at the same time, that is, to feed back channel measurement reports at the same time, so as to improve the efficiency of channel detection.
  • the access point is a high-efficiency (HE) beamformer (beamformer), and station 1-site n are HE beamformee receivers (beamformee) 1-HE beamformee n.
  • HE high-efficiency
  • station 1-site n are HE beamformee receivers
  • the access point may send NDPA frames to station 1 - station n.
  • SIFS short interframe space
  • the access point sends NDP frames to station 1 - station n.
  • the access point sends a bfrp trigger frame to station 1 - station n.
  • NDPA frames are HENDPA frames
  • NDP frames are HE sounding NDP frames
  • channel measurement reports are high-efficiency beamforming compressed packets (compressed beamforming).
  • the access point when the access point determines the antenna mode to be switched by at least one station according to at least one channel measurement report, it may need to perform multiple channel detections on the same station in different candidate antenna modes to obtain multiple channel channels of the station The measurement report, and according to the multiple channel measurement reports of the station, determine the antenna mode to be switched by the station. In other words, the access point may select a candidate antenna mode with better transmission performance for the station through the multiple channel measurement reports of the station, as the antenna mode to be switched by the station.
  • a channel measurement report may include V matrix (feedback matrix V) information corresponding to a site, the V matrix information is used to determine the Q operation matrix (steering matrix Q) information, and the Q operation matrix information is used to guide subsequent receiving development work to improve the communication performance of the whole system.
  • this solution may further include: the access point associates and stores the V matrix information corresponding to at least one station and the identification information of the candidate antenna mode to be switched by at least one station .
  • the identification information of the candidate antenna mode to be switched at station 0 is 0-3, and the V matrix information is V0[0]-V0[3]; the identification information of the candidate antenna mode to be switched at site 0 is 0-5, V matrix information is V0[0]-V0[5].
  • the identification information of the candidate antenna mode to be switched is 0 and the V matrix information is stored as V0[0], and the rest are similar and will not be described again.
  • Table 2 is the V matrix information corresponding to the site and the identification information storage form of the candidate antenna mode to be switched by the site
  • the access point may also switch antenna modes. For example, the access point can switch to a different antenna mode each time it performs channel sounding. Therefore, the access point may also associate and store the identification information of the antenna mode used by itself, the V matrix information corresponding to at least one station, and the identification information of the candidate antenna mode to be switched by at least one station.
  • the identification information of the candidate antenna mode to be switched is 0-3, and the V matrix information is V0[0,0] -V0[0,3]; at station 0, when the identification information of the antenna mode switched by the access point is 1, the identification information of the candidate antenna mode to be switched is 0-3, and the V matrix information is V0[1,0] -V0[1,3]; at station 1, when the identification information of the antenna mode switched by the access point is 0, the identification information of the candidate antenna mode to be switched is 0-5, and the V matrix information is V0[0,0] -V0[0,5]; at station 1, when the identification information of the antenna mode switched by the access point is 1, the identification information of the candidate antenna mode to be switched is 0-5, and the V matrix information is V0[1,0] -V0[1,5]. For station 0, the identification information of the antenna mode switched by the access point is 0, the identification information of the candidate antenna mode to be switched is 0-3, and the V matrix information is V0[0[0,0] -V0[0
  • Table 3 is the V matrix information corresponding to the station and the identification information storage form of the candidate antenna mode to be switched by the station
  • the access point may store a set of identification information of candidate antenna modes of the station, where a set of identification information of candidate antenna modes includes identification information of at least one candidate antenna mode.
  • the access point may generate a set of identification information of candidate antenna modes for each site according to the number of antenna modes supported by different numbers of spatial streams for each site.
  • the access point can also send the identification information set of the candidate antenna mode of the station to the station, and correspondingly, the station can store the identification information of the candidate antenna mode of the station after receiving the identification information set of the candidate antenna mode of the station A collection of information to prepare the station for antenna mode switching.
  • the solution may further include: the access point sends a fourth frame to at least one station, and the second frame Four frames are used to indicate the number of antenna modes supported by different spatial stream numbers fed back by the station, and the fourth frame is a beacon frame; the access point receives the number of antenna modes supported by different spatial stream numbers of each site; the access point is different according to each site The number of antenna modes supported by the number of spatial streams generates an identification information set of candidate antenna modes for each site.
  • the access point can send a beacon frame to at least one station, because the beacon frame is used to indicate the number of antenna modes supported by different spatial stream numbers fed back by the station, so the access point can receive different spatial stream numbers for each station.
  • the number of supported antenna modes so that according to the number of antenna modes supported by different spatial streams of each site, the identification information set of the candidate antenna modes of each site can be generated, so that the access point can pass the identification information of the candidate antenna modes of the site
  • the set determines the antenna mode to be switched by the station.
  • the access point receives the number of antenna patterns supported by different spatial stream numbers of each station, which may include: the access point receives a probe request frame or an association request frame from each station, and the probe request frame or association request frame includes the station The number of antenna modes supported by different spatial stream numbers.
  • the frame structure of the probe request frame or the association request frame can refer to the above description, and is not limited here. It should be understood that if the station feeds back the number of antenna modes supported by the number of spatial streams being 1-4, the access point may record the number of antenna modes supported by different spatial stream numbers of the station as N1, N2, N3, N4, candidate antenna modes
  • the identification information set of can be recorded as [0, N1+N2+N3+N4-1].
  • the access point generates an identification information set of candidate antenna modes for each site according to the number of antenna modes supported by different spatial stream numbers of each site, which may include: the number of antenna modes supported by the access point according to the different spatial stream numbers of each site.
  • the number of antenna modes generates a set of identification information of candidate antenna modes supported by different spatial stream numbers of each site. Due to the antenna mode supported by low spatial stream, it can also be used when sending high spatial stream.
  • the Nk generation Table only the number of antenna modes supported by k spatial streams, for example, N1 is the number of antenna modes supported by 1 spatial stream, N2 is the number of antenna modes supported by 2 spatial streams, etc.
  • the identification information set of candidate antenna modes supported by one spatial stream can be: [0, N1-1]
  • the identification information set of candidate antenna modes supported by two spatial streams can be: [0, N1+N2-1]
  • the identification information set of candidate antenna modes supported by three spatial streams can be: [0,N1+N2+N3-1]
  • the identification information set of candidate antenna modes supported by four spatial streams can be: [0,N1 +N2+N3+N4-1].
  • the identification information set of the candidate antenna mode supported by 1 spatial stream can be: [0,3], the candidate antenna mode supported by 2 spatial streams
  • the set of identification information of 3 spatial streams can be: [0,7]
  • the set of identification information of candidate antenna modes supported by 3 spatial streams can be: [0,10]
  • the set of identification information of candidate antenna modes supported by 4 spatial streams can be : [0,13].
  • the beacon frame includes the maximum number of antenna modes that the access point allows the station to use, and the sum of the numbers of antenna modes supported by different spatial stream numbers of the station does not exceed the maximum number of antenna modes that the access point allows the station to use. That is, it can be seen that after receiving the beacon frame, the station can also know the maximum number of antenna patterns allowed by the access point, so that the sum of the number of antenna patterns supported by different spatial stream numbers fed back by the station does not exceed the maximum number of antenna patterns allowed by the access point.
  • the maximum number of antenna modes used by a site so that after the antenna mode to be switched by the site is determined through the identification information set of the candidate antenna mode of the site, the site that switches the antenna mode can not only have better transmission performance, but also avoid conflicts with the antenna mode.
  • the WLAN device for site communication cannot handle the intermittent link disconnection problem.
  • the access point allows the maximum number of antenna modes used by the station to be 6, then the sum of N1+N2+N3+N4 does not exceed 6.
  • the first frame in step 901 may be implemented in any of the following manners, which are not limited here.
  • the first frame is a MU-RTS frame.
  • the first frame is a trigger frame, such as a basic trigger frame in the 802.11ax standard.
  • the MU-RTS frame when the first frame is a MU-RTS frame, the MU-RTS frame includes a first user information list field, and the first user information list field includes at least one first user information field, and one first user information field indicates one Identification information of the antenna mode to be switched by the station. That is, it can be seen that by multiplexing the user information field, the identification information of the candidate antenna mode to be switched by the station is indicated, and the modification of the existing field is avoided. In other words, the existing protocol version can be better compatible.
  • the first user information field may include a UL FEC coding type field, a UL HE-MCS field, a UL DCM field, an SS allocation/RA-RU information field, and a UL target RSSI field.
  • the identification information of the antenna mode to be switched by the station can be passed in the UL FEC coding type field, UL HE-MCS field, UL DCM field, SS allocation/RA-RU information field and UL target RSSI field Part of the field to indicate.
  • the identification information of the antenna mode to be switched by the station may be at least one bit.
  • the identification information of the antenna mode to be switched by the station can be indicated by some bits of some fields in the UL FEC coding type field, UL HE-MCS field, UL DCM field, SS allocation/RA-RU information field and UL target RSSI field.
  • the identification information of the antenna mode to be switched by the station can be 7 bits, and the identification information of the antenna mode to be switched by the station can be passed through the UL FEC coding type field, the UL HE-MCS field, the UL DCM field, the SS allocation/RA- The RU information field and the 7 bits of some fields in the UL target RSSI field are used to indicate.
  • the first user information field also indicates that the antenna mode to be switched by the station is enabled.
  • the antenna mode to be switched by the station can be indicated by some fields in the UL FEC coding type field, UL HE-MCS field, UL DCM field, SS allocation/RA-RU information field and UL target RSSI field.
  • the antenna mode enabling of the station to be switched may be at least one bit.
  • the antenna mode to be switched at the site makes The capability can be indicated by some bits of some fields in the UL FEC coding type field, UL HE-MCS field, UL DCM field, SS allocation/RA-RU information field, and UL target RSSI field.
  • the antenna mode enabling of the station can be 1 bit, and the antenna mode enabling of the station to be switched can pass through the UL FEC coding type field, the UL HE-MCS field, the UL DCM field, the SS allocation/RA-RU information field and the Indicated by 1 bit of part of the UL target RSSI field.
  • the antenna mode enablement of the station to be switched is 1 bit
  • the identification information of the antenna mode to be switched by the station is 7 bits
  • the antenna mode enablement of the station to be switched and the identification of the antenna mode to be switched by the station The information can be indicated by, for example, the first 8 bits in the UL FEC coding type field, UL HE-MCS field, UL DCM field, SS allocation/RA-RU information field, and UL target RSSI field.
  • the trigger frame includes a second user information list field
  • the second user information list field includes at least one second user information field
  • a second user information field indicates a site to be switched.
  • the second user information field may include an uplink target receive power (UL target receive power) field. Because the 0-90th bits of the UL target receive power field indicate the expected received power, the 91-126th bits of the UL target receive power field are reserved bits, and the 127th bit of the UL target receive power field indicates that the station adopts the maximum power , so in this application, the 91st-126th bits of the UL target receive power field can be used to indicate the identification information of the antenna mode to be switched by the station. It should be understood that the identification information of the antenna mode to be switched by the station is the number of the antenna mode to be switched by the station. If the number of the antenna mode to be switched by the station is numbered from 0, the 91-126th UL target receive power field The maximum number of bits that can indicate the antenna mode to be switched is 35.
  • UL target receive power uplink target receive power
  • a second user information field also indicates the maximum power when a station uses the antenna mode to be switched. That is, it can be seen that by multiplexing the user information field, the maximum power used by the station is indicated, and changes to existing fields are avoided. In other words, it can be better compatible with existing protocol versions.
  • the 91st-126th bits of the UL target receive power field may also be reused to indicate the maximum power when the station uses the antenna mode to be switched.
  • the station receives the first frame from the access point.
  • the access point sends the first frame to the station.
  • the station in step 902 may be any station in the at least one station in step 901.
  • the steps performed by any one of the at least one station in step 901 after receiving the first frame are similar to steps 902-903, and will not be repeated here.
  • the antenna mode may also be switched, which is not limited here.
  • the station switches the antenna mode according to the identification information of the antenna mode to be switched by the station.
  • the first frame includes identification information of the antenna mode to be switched by at least one station
  • at least one station may switch the antenna mode according to the identification information of the antenna mode to be switched after receiving the first frame, Therefore, at least one station that switches the antenna mode can have better transmission performance, and thus the throughput of the WLAN system can be improved.
  • the solution may further include: the station sends the fifth frame to the access point, and the access point sends the fifth frame from the station to the access point.
  • the fifth frame is received, the fifth frame is used to indicate that the antenna mode of the station has been switched, and the fifth frame is a clear to send (CTS) frame; the station receives a downlink multi-user MIMO message from the access point. That is, it can be seen that after the access point knows that the antenna mode of the station has been switched, it can send The station sends downlink multi-user MIMO packets.
  • the transmission performance of the WLAN system can also be improved.
  • multi-user MIMO communication can also improve the transmission performance of the WLAN system. Therefore, when the site has better transmission performance, the throughput of the WLAN system can be further improved by performing downlink multi-user MIMO communication.
  • the station may send a first response frame to the access point, where the first response frame indicates that the downlink MIMO message has been received .
  • the access point may also receive the first response frame from the station.
  • FIG. 11 is a sequence diagram of a downlink multi-user MIMO communication provided by an embodiment of the present application.
  • the access point may send MU-RTS frames to Station 1 - Station 2.
  • the station 1 - the station 2 can respectively send the CTS frame to the access point.
  • the access point receives the CTS frame, it can send downlink multi-user MIMO messages to site 1-site 2.
  • the station 1 - the station 2 may send the first response frame corresponding to the station 1 - the station 2 to the access point.
  • the downlink multi-user MIMO message is an efficient multi-user data packet (high efficient physical layer protocol data unit, HE PPDU), and the first response frame is an acknowledgment response (acknowledgment response) frame .
  • this solution may further include: the station sends an uplink multi-user MIMO message to the access point. That is, it can be seen that the station sends an uplink multi-user MIMO message to the access point.
  • the transmission performance of the WLAN system can also be improved.
  • multi-user MIMO communication can also improve the transmission performance of the WLAN system. Therefore, when the site has better transmission performance, uplink multi-user MIMO communication can improve the throughput of the WLAN system.
  • the station may receive a second response frame from the access point, where the second response frame indicates that the uplink MIMO packet has take over.
  • the access point may send the second response frame to the station.
  • FIG. 12 is a sequence diagram of an uplink multi-user MIMO communication provided by an embodiment of the present application.
  • the access point may send a trigger frame to station 1 - station n.
  • the station 1-site n may wait for the SIFS, and then send uplink multi-user MIMO messages to the access point respectively.
  • the access point may send the second response frame to the station 1 - the station 2.
  • the uplink multi-user MIMO message is an efficient trigger-based data packet (high efficient trigger based physical layer protocol data unit, HE TB PPDU), and the second response frame is a multi-user block Acknowledgment (multi-STA block aCK, M-BA).
  • the time required for the whole process from the access point sending the trigger frame to the access point sending the M-BA is one transmission opportunity (transmission opportunity, TXOP) time length.
  • TXOP duration refers to a period of time for an access point or station to perform data transmission without interference after obtaining a transmission opportunity.
  • the access point may filter The combination of antenna modes is used to calculate the channel matrix correlation, so as to preselect a configuration combination that is more suitable for downlink multi-user MIMO and/or uplink multi-user MIMO.
  • the antenna mode combination may be, for example:
  • the antenna mode combination may be, for example:
  • ap_antenna_mode + ⁇ STA0,sta_antenna_mode0>,..., ⁇ STAk,antenna_modek> ⁇
  • ap_antenna_mode is the identification information of the antenna mode to be switched by the access point
  • STA0 is the station
  • sta_antenna_mode0 is the identification information of the antenna mode to be switched by the station 0 , the rest are similar and will not be repeated here.
  • the access point can count the packet error rate of each user (PER), such as counting the packet error rate of each user for downlink MIMO packets and/or uplink MIMO packets.
  • PER packet error rate of each user
  • the access point can adjust the modulation and coding scheme (modulation and coding scheme, MCS) of each user in the antenna mode combination according to the packet error rate of each user, such as judging whether the antenna mode combination has performance gain, so as to determine Whether to continue to use the antenna mode combination.
  • MCS modulation and coding scheme
  • each of the above-mentioned implementation devices includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the functional modules of the access point or the station may be divided according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication device 1300 can be applied to the above methods shown in FIGS. 9-12 .
  • the communication device 1300 includes: a processing module 1301 and a transceiver module 1302 .
  • the processing module 1301 may be one or more processors, and the transceiver module 1302 may be a transceiver or a communication interface.
  • the communication device may be used to implement the access point or station involved in any of the above method embodiments, or be used to implement the function of the network element involved in any of the above method embodiments.
  • the network element or network function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the communication device 1300 may further include a storage module 1303 for storing program codes and data of the communication device 1300 .
  • the transceiver module 1302 is used to support communication with access points, etc., and the transceiver module specifically performs the sending and/or receiving actions performed by the station in Figures 9-12, for example, supporting the station to perform step 902, and/or for Other procedures of the techniques described in this article.
  • the processing module 1301 may be used to support the communication device 1300 to perform the processing actions in the above method embodiments, for example, support the station to perform step 903, and/or other processes of the technologies described herein.
  • the station includes a processing module 1301 and a transceiver module 1302.
  • the transceiver module 1302 is configured to receive a first frame from an access point; the first frame includes identification information of an antenna mode to be switched by the station; the processing module 1301 is configured to Identification information of the antenna mode to be switched by the station, and the antenna mode is switched.
  • the transceiver module 1302 is used to support communication with stations, etc., and the transceiver module specifically executes the sending and/or receiving actions performed by the access point in FIGS. other processes.
  • the processing module 1301 may be used to support the communication device 1300 to perform the processing actions in the above method embodiments, for example, support the access point to perform step 901, and/or other processes of the technologies described herein.
  • the access point includes a processing module 1301 and a transceiver module 1302, the processing module 1301 is configured to generate a first frame; the first frame includes identification information of at least one antenna mode to be switched by a station; the transceiver module 1302 is configured to send At least one station sends the first frame.
  • the transceiver module 1302 may be an input/output interface, a pin, a circuit, or a transceiver.
  • the input and output interface can be used to input the data to be processed to the logic circuit, and can output the processing result of the logic circuit to the outside.
  • the input and output interface can be a general purpose input and output (GPIO) interface, which can communicate with multiple peripheral devices (such as display (LCD), camera (camara), radio frequency (radio frequency, RF) module, antenna etc.) to connect.
  • the input and output interfaces are connected with the processor through the bus.
  • the processing module 1301 may be a logic circuit, and the logic circuit may execute stored instructions, so that the chip executes the methods involved in the embodiments shown in FIGS. 9-12 . It can be understood that the instruction can be stored in the storage module.
  • the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be a storage module located outside the chip, such as read-only memory (Read Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), etc. .
  • An embodiment of the present application further provides a communication device, including a processor and a transceiver, and the processor is configured to support the communication device to execute the embodiments shown in FIGS. 9-12 .
  • the transceiver is used to support communication between the communication device and other communication devices other than the communication device.
  • the communication device may also include a memory, which is used to be coupled with the processor, and stores necessary program instructions and data of the communication device.
  • the transceiver may be integrated on the communication device or independent of the communication device, which is not limited here. Exemplarily, in a distributed scenario, the transceiver may be independent from the communication device and arranged in a remote manner.
  • the embodiment of the present application also provides a chip.
  • the chip includes at least one logic circuit and input and output interfaces.
  • the logic circuit is used to read and execute stored instructions. When the instructions are executed, the chip performs as shown in Figures 9-12. Example.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions. When the program instructions are executed by the computer, the computer executes the implementation shown in FIGS. example.
  • the embodiment of the present application also provides a computer program product including instructions, which, when run on a computer, enables the computer to implement the embodiments shown in FIGS. 9-12 .
  • each network element unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software network elements.
  • the above integrated units are realized in the form of software network elements and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially makes a contribution, or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several instructions for In order to make a computer device (it can be a personal computer, a cloud service server, or network equipment, etc.) to execute all or part of the steps of the above-mentioned methods in various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
  • U disk mobile hard disk
  • read-only memory ROM, Read-Only Memory
  • RAM random access memory
  • magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种天线模式切换方法及相关装置,该方法包括:接入点生成第一帧,并向至少一个站点发送第一帧,第一帧为多用户请求发送帧或触发帧,因为多用户请求发送帧或触发帧包括至少一个站点待切换的天线模式的标识信息,所以至少一个站点接收多用户请求发送帧或触发帧后可以根据待切换的天线模式的标识信息切换天线模式,从而可以使得切换天线模式的至少一个站点可以具有更好的传输性能,进而可以提高WLAN系统的吞吐量。

Description

一种天线模式切换方法及相关装置
本申请要求在2022年2月24日提交中国专利局、申请号为202210174927.1、申请名称为“一种天线模式切换方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线模式切换方法及相关装置。
背景技术
目前,无线局域网(wireless local area network,WLAN)系统可以包括接入点(access point,AP)和站点(station,STA)。接入点可以与一个或多个站点通信。如无线保真(wireless fidelity,WiFi)5协议支持下行(down link,DL)多用户多输入多输出(multi-user multiple input multiple output,MU-MIMO),WiFi 6协议支持DL MU-MIMO和上行(up link,UL)MU-MIMO。但是,接入点无论是与一个站点通信,还是与多个站点通信,WLAN系统的吞吐量有待提高。因此,如何提高WLAN系统的吞吐量成为当前阶段亟待解决的技术问题。
发明内容
本申请提供了一种天线模式切换方法及相关装置,提高了WLAN系统的吞吐量。
第一方面,提供一种天线模式切换方法,该方法包括:接入点生成第一帧;第一帧包括至少一个站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧;接入点向至少一个站点发送第一帧。即可以看出,因为多用户请求发送帧或触发帧包括至少一个站点待切换的天线模式的标识信息,所以至少一个站点接收多用户请求发送帧或触发帧后可以根据待切换的天线模式的标识信息切换天线模式,从而可以使得切换天线模式的至少一个站点可以具有更好的传输性能,进而可以提高WLAN系统的吞吐量。
可选的,接入点生成第一帧之前,该方法还包括:接入点向至少一个站点发送第二帧;第二帧包括至少一个站点待切换的候选天线模式的标识信息,第二帧为空数据包通知帧;接入点向至少一个站点发送第三帧,第三帧为空数据分组帧;接入点接收至少一个站点对应的至少一个信道测量报告;站点对应的信道测量报告为站点在候选天线模式下对第三帧进行信道测量得到的信道测量报告;接入点根据至少一个信道测量报告,确定至少一个站点待切换的天线模式。即可以看出,接入点向至少一个站点发送空数据包通知帧,因为空数据包通知帧包括至少一个站点待切换的候选天线模式的标识信息,所以至少一个站点在接收空数据包通知帧后可以切换至相应的候选天线模式。进一步的,接入点可以向至少一个站点发送空数据分组帧,以使得至少一个站点在相应的候选天线模式下对空数据分组帧进行信道测量得到信道测量报告,并上报给接入点,因而接入点可以根据至少一个信道测量报告,确定至少一个站点待切换的天线模式。因为信道测量报告可以反映候选天线模式下信道质量,所以在根据信道测量报告确定站点待切换的天线模式时,可以使得切换天线模式的站点可以具有更好的传输性能,进而可以提高WLAN系统的吞吐量。
可选的,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点 待切换的候选天线模式的标识信息。即可以看出,通过复用用户信息字段,指示了站点待切换的候选天线模式的标识信息,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
可选的,该方法还包括:接入点向至少一个站点发送第四帧;第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;接入点接收每个站点不同空间流数支持的天线模式数目;接入点根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,一个候选天线模式的标识信息集合包括至少一个候选天线模式的标识信息。即可以看出,接入点可以向至少一个站点发送信标帧,因为信标帧用于指示站点反馈不同空间流数支持的天线模式数目,所以接入点可以接收每个站点不同空间流数支持的天线模式数目,从而可以根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,进而使得接入点可以通过站点的候选天线模式的标识信息集合确定出该站点待切换的天线模式。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,站点不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目。即可以看出,站点在接收信标帧后,还可以获知接入点允许该站点使用的最大天线模式数目,使得站点反馈的不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目,从而在通过站点的候选天线模式的标识信息集合确定出该站点待切换的天线模式后,切换天线模式的站点既可以具备较好的传输性能,又可以避免与该站点通信的WLAN设备处理不过来导致的链路闪断问题。
可选的,第一帧为多用户请求发送帧,多用户请求发送帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。即可以看出,通过复用用户信息字段,指示了站点待切换的候选天线模式的标识信息,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
可选的,该方法还包括:接入点从站点接收第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送帧;接入点向站点发送下行多用户多输入多输出报文。即可以看出,接入点在获知站点的天线模式已切换后,可以向站点发送下行多用户多输入多输出报文。换而言之,在站点具有更好的传输性能时,WLAN系统的传输性能也可以得到提高。同时,多用户多输入多输出通信也可以提高WLAN系统的传输性能,所以在站点具有更好的传输性能时进行下行多用户多输入多输出通信,WLAN系统的吞吐量可以得到更多的提高。
可选的,第一帧为触发帧,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。即可以看出,通过复用用户信息字段,指示了站点待切换的天线模式的标识信息,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。即可以看出,通过复用用户信息字段,指示了站点使用的最大功率,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
可选的,该方法还包括:接入点从站点接收上行多用户多输入多输出报文。即可以看出,接入点可以从站点接收上行多用户多输入多输出报文。换而言之,在站点具有更好的传输性能时,WLAN系统的传输性能也可以得到提高。同时,多用户多输入多输出通信也可以提高WLAN系统的传输性能,所以在站点具有更好的传输性能时进行上行多用户多输入多输出通信,WLAN 系统的吞吐量可以得到更多的提高。
下述第二方面-第四方面的有益效果可参见第一方面的有益效果,在此不赘述。
可选的,第二方面,提供一种天线模式切换方法,该方法包括:站点从接入点接收第一帧;第一帧包括站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧;站点根据该站点待切换的天线模式的标识信息,切换天线模式。
可选的,站点从接入点接收第一帧之前,该方法还包括:站点从接入点接收第二帧,第二帧为空数据包通知帧;第二帧包括站点待切换的候选天线模式的标识信息;站点从接入点接收第三帧,第三帧为空数据分组帧;站点在候选天线模式的标识信息对应的天线模式下对第三帧进行信道测量得到信道测量报告;站点向接入点发送信道测量报告。
可选的,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
可选的,该方法还包括:站点从接入点接收第四帧;第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;站点向接入点发送站点不同空间流数支持的天线模式数目。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,站点不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目。
可选的,第一帧为多用户请求发送帧,多用户请求发送帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,该方法还包括:站点向接入点发送第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送帧;站点从接入点接收下行多用户多输入多输出报文。
可选的,第一帧为触发帧,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
可选的,该方法还包括:站点向接入点发送上行多用户多输入多输出报文。
第三方面,提供一种通信装置,通信装置为接入点,接入点包括处理模块和收发模块,处理模块,用于生成第一帧;第一帧包括至少一个站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧;收发模块,用于向至少一个站点发送第一帧。
可选的,收发模块,还用于:向至少一个站点发送第二帧;第二帧包括至少一个站点待切换的候选天线模式的标识信息,第二帧为空数据包通知帧;向至少一个站点发送第三帧,第三帧为空数据分组帧;接收至少一个站点对应的至少一个信道测量报告;站点对应的信道测量报告为站点在候选天线模式下对第三帧进行信道测量得到的信道测量报告;处理模块,还用于根据至少一个信道测量报告,确定至少一个站点待切换的天线模式。
可选的,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
可选的,收发模块,还用于:向至少一个站点发送第四帧;第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;接收每个站点不同空间流数支持的天线模式数目;处理模块,还用于根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,一个候选天线模式的标识信息集合包括至少一个候选天线模式的标识信息。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,站点不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目。
可选的,第一帧为多用户请求发送帧,多用户请求发送帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,收发模块,还用于:从站点接收站点的第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送帧;向站点发送下行多用户多输入多输出报文。
可选的,第一帧为触发帧,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
可选的,收发模块,还用于从站点接收上行多用户多输入多输出报文。
第四方面,提供一种通信装置,通信装置为站点,站点包括处理模块和收发模块,收发模块,用于从接入点接收第一帧;第一帧包括站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧;处理模块,用于根据该站点待切换的天线模式的标识信息,切换天线模式。
可选的,收发模块,还用于:从接入点接收第二帧;第二帧包括站点待切换的候选天线模式的标识信息,第二帧为空数据包通知帧;从接入点接收第三帧,第三帧为空数据分组帧;处理模块,还用于在候选天线模式的标识信息对应的天线模式下对第三帧进行信道测量得到信道测量报告;收发模块,还用于向接入点发送信道测量报告。
可选的,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
可选的,收发模块,还用于:从接入点接收第四帧;第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;向接入点发送站点不同空间流数支持的天线模式数目。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,站点不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目。
可选的,第一帧为多用户请求发送帧,多用户请求发送帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,收发模块,还用于:向接入点发送第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送帧;从接入点接收下行多用户多输入多输出报文。
可选的,第一帧为触发帧,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
可选的,收发模块,还用于向接入点发送上行多用户多输入多输出报文。
第五方面,提供一种通信装置,通信装置为接入点,接入点包括处理器和收发器,处理器,用于生成第一帧;第一帧包括至少一个站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧;收发器,用于向至少一个站点发送第一帧。
可选的,收发器,还用于:向至少一个站点发送第二帧;第二帧包括至少一个站点待切 换的候选天线模式的标识信息,第二帧为空数据包通知帧;向至少一个站点发送第三帧,第三帧为空数据分组帧;接收至少一个站点对应的至少一个信道测量报告;站点对应的信道测量报告为站点在候选天线模式下对第三帧进行信道测量得到的信道测量报告;处理器,还用于根据至少一个信道测量报告,确定至少一个站点待切换的天线模式。
可选的,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
可选的,收发器,还用于:向至少一个站点发送第四帧;第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;接收每个站点不同空间流数支持的天线模式数目;处理器,还用于根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,一个候选天线模式的标识信息集合包括至少一个候选天线模式的标识信息。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,站点不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目。
可选的,第一帧为多用户请求发送帧,多用户请求发送帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,收发器,还用于:从站点接收站点的第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送帧;向站点发送下行多用户多输入多输出报文。
可选的,第一帧为触发帧,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
可选的,收发器,还用于从站点接收上行多用户多输入多输出报文。
第六方面,提供一种通信装置,通信装置为站点,站点包括处理器和收发器,收发器,用于从接入点接收第一帧;第一帧包括站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧;处理器,用于根据该站点待切换的天线模式的标识信息,切换天线模式。
可选的,收发器,还用于:从接入点接收第二帧;第二帧包括站点待切换的候选天线模式的标识信息,第二帧为空数据包通知帧;从接入点接收第三帧,第三帧为空数据分组帧;处理器,还用于在候选天线模式的标识信息对应的天线模式下对第三帧进行信道测量得到信道测量报告;收发器,还用于向接入点发送信道测量报告。
可选的,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
可选的,收发器,还用于:从接入点接收第四帧;第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;向接入点发送站点不同空间流数支持的天线模式数目。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,站点不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目。
可选的,第一帧为多用户请求发送帧,多用户请求发送帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,收发器,还用于:向接入点发送第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送帧;从接入点接收下行多用户多输入多输出报文。
可选的,第一帧为触发帧,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
可选的,收发器,还用于向接入点发送上行多用户多输入多输出报文。
第七方面,提供一种芯片,芯片包括至少一个逻辑电路和输入输出接口,逻辑电路用于读取并执行存储的指令,当指令被运行时,使得芯片执行如第一方面或第二方面任一项的方法。
第八方面,提供一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被计算机执行时,使计算机执行如第一方面或第二方面任一项的方法。
第九方面,提供一种通信装置,包括处理器和收发器,该处理器被配置为支持通信装置执行第一方面或第二方面的方法中相应的功能。该收发器用于支持通信装置与通信装置之外的其它通信装置之间的通信。该通信装置还可以包括存储器,该存储器用于与处理器耦合,其保存通信装置必要的程序指令和数据。其中,收发器可以集成在通信装置上或独立于通信装置,在此不做限制。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面或第二方面任一项的方法。
第十一方面,提供一种通信系统,包括上述接入点和/或上述站点。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍。
其中:
图1为本申请实施例提供的一种接入点和站点均支持天线模式切换时进行通信的示意图;
图2为一种空数据包通知(null data packet announcement,NDPA)帧的帧结构;
图3为一种多用户请求发送(multi-user request to send,MU-RTS)帧的帧结构;
图4为一种触发帧的帧结构;
图5为本申请实施例提供的一种信标(beacon)帧包括的元素的格式;
图6为本申请实施例提供的一种探测请求(probe request)帧或关联请求(association request)帧包括的元素的格式;
图7为本申请实施例提供的一种WLAN的网络架构图;
图8所示为可适用于本申请实施例提供的一种通信装置的硬件结构示意图;
图9为本申请实施例提供的一种天线模式切换方法的流程示意图;
图10为本申请实施例提供的一种信道探测的时序图;
图11为本申请实施例提供的一种下行多用户多输入多输出通信的时序图;
图12为本申请实施例提供的一种上行多用户多输入多输出通信的时序图;
图13为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,本申请实施例中的术语“系统”和“网络”可被互换使用。除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是一个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对网元和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以下的具体实施方式,对本申请的目标、技术方案和有益效果进行了进一步详细说明,所应理解的是,以下仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
下面对本申请所涉及到的一些部分名词(或通信术语)进行解释说明。
1.天线模式
天线模式,即天线的组合。
示例性的,参见图1,图1为本申请实施例提供的一种接入点和站点均支持天线模式切换时进行通信的示意图。如图1所示,无线接入点(access point,AP)包括4个天线,天线的组合可以有2*2种,即天线模式可以有4种。站点(station,STA)1包括4个天线,天线的组合可以有2*2种,即天线模式可以有4种;同理,STA2包括4个天线,天线的组合可以有2*2种,即天线模式可以有4种。
其中,天线模式的标识信息可以为天线模式的编号。同理,候选天线模式的标识信息可以为候选天线模式的编号。
2.各个无线局域网(wireless local area network,WLAN)标准允许传输的带宽和空间流数
WLAN从802.11a/g开始,历经802.11n、802.11ac、802.11ax到现在的802.11be,其允许传输的带宽和空间流数如下表1所示:
表1
其中,802.11n也可称为高吞吐率(high throughput,HT);802.11ac也可称为非常高吞吐率(very high throughput,VHT);802.11ax也可称为高效(high efficient,HE)或者Wi-Fi 6;802.11be也可称为极高吞吐率(extremely high throughput,EHT)或者(Wi-Fi7),而对于HT之前的标准,如802.11a/b/g等统称叫做非高吞吐率(Non-HT)。由于80211b采用非正交频分复用(orthogonal frequency division multiplexing,OFDM)模式,因此没有列在表1中。
其中,空间流指空间(天线)维度上可以同时传输的空间流的数量,也可以简称为流,在本申请中,术语“空间流”和“流”表示同一意义。
3.本申请涉及的无线帧的帧结构
参见图2,图2为一种空数据包通知(null data packet announcement,NDPA)帧的帧结构,如图2所示,NDPA帧包括媒体接入控制(media access control,MAC)头(header)、字节为1的探测对话令牌(sounding dialog token)、字节为4的站点信息(STA info)1字段至STA info n字段、字节为4的帧校验序列(frame control sequence,FCS)字段。
其中,图2中的MAC header包括字节为2的帧控制(frame control)字段、字节为2的长度(duration)字段、字节为6的接收地址(RA)字段和字节为6的发送地址(TA)字段。
其中,STA info1字段至STA info n字段中的任一字段可以包括11比特的关联站标识(associate station ID,AID)11字段、14比特的部分带宽信息(partial BWinfo)字段、12比特的反馈类型和分组数(feedback type and Ng)字段、1比特的消歧(disambiguation)字段、1比特的码本尺寸(codebook size)字段和3比特的列数(number of columns,Nc)字段。
其中,partial BWinfo字段可以包括7比特的RU起始索引(start index)字段和7比特的资源单元(resource unit,RU)结束索引(end index)字段。
参见图3,图3为一种多用户请求发送(multi-user request to send,MU-RTS)帧的帧结构,如图3所示,MU-RTS帧包括MAC header、字节为大于或等于8的公共信息(common info)字段、字节为可变(variable)的用户信息列表(user info list)字段、字节为variable的填充(padding)字段和字节为4的FCS字段。
其中,图3中的MAC header包括字节为2的frame control字段、字节为2的duration字段、字节为6的RA字段和字节为6的TA字段。
其中,图3中的user info list字段可以包括至少一个用户信息(user info)字段。应理解的,在本申请中,图3中的user info list字段相当于第一用户信息列表字段,图3中的user info list字段包括的至少一个user info字段相当于至少一个第一用户信息字段。其次,结合图3,可以看出,user info字段可以包括12比特的关联站标识(associate station ID,AID)12字段、8比特的资源单位分配(resourceunit allocation,RU allocation)字段、1比特的上行FEC编码类型(UL FEC coding type)字段、4比特的上行高效调调制和编码方案(UL HE-modulation and coding scheme,UL HE-MCS)字段、1比特的上行双载波调制(UL dual carrier modulation,UL DCM)字段、6比特的用户站分配/接收地址资源单位信息(SS allocation/RA-RU information)字段、7比特的上行目标接收功率(UL targetreceived power) 字段、1比特的预留(reserved)字段和触发相关用户信息(trigger dependent user info)字段。UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段、UL target RSSI字段为预留(resv)字段,即resv字段的比特数为19。
参见图4,图4为一种触发帧的帧结构,如图4所示,触发帧包括MAC header、字节为大于或等于8的common info字段、字节为variable的user info list字段、字节为variable的padding字段和字节为4的FCS字段。
其中,图4中的MAC header包括字节为2的frame control字段、字节为2的duration字段、字节为6的RA字段和字节为6的TA字段。
其中,图4中的user info list字段可以包括至少一个用户信息(user info)字段。应理解的,在本申请中,图4中的user info list字段相当于第二用户信息列表字段,图4中的user info list字段包括的至少一个user info字段相当于至少一个第二用户信息字段。其次,结合图4,可以看出,user info字段包括12比特的AID12字段、8比特的RU allocation字段、1比特的UL FEC coding type字段、4比特的UL HE-MCS字段、1比特的UL DCM字段、6比特的SS allocation/RA-RU information字段、7比特的UL target receive power字段、1比特的预留(reserved)字段和trigger dependent user info字段。
其中,UL target receive power字段的第0-90个比特指示期望接收功率,UL target receive power字段的第91-126个比特为预留比特,UL target receive power字段的第127个比特指示站点采用最大功率。
参见图5,图5为本申请实施例提供的一种信标(beacon)帧包括的元素的格式,如图5所示,信标帧包括字节为1的元素标识(element ID)字段、字节为1的长度(length)字段和字节为1的最大天线模式数目(maximum antenna mode number)字段。element ID字段指示标记和区分元素(element)的ID,length字段指示该element的长度,maximum antenna mode number字段指示接入点允许站点使用的最大天线模式数目。
参见图6,图6为本申请实施例提供的一种探测请求(probe request)帧或关联请求(association request)帧包括的元素的格式,如图6所示,probe request帧或association request帧可以包括字节为1的element ID字段、字节为1的length字段、空间流数为1的天线模式数目(1ss antenna mode number)字段、空间流数为2的天线模式数目(2ss antenna mode number)字段、空间流数为3的天线模式数目(3ss antenna mode number)字段和空间流数为4的天线模式数目(4ss antenna mode number)字段。1ss antenna mode number字段、2ss antenna mode number字段、3ss antenna mode number字段和4ss antenna mode number字段均为1个字节。
其中,element ID字段指示标记和区分元素(element)的ID,length字段指示该element的长度。1ss antenna mode number字段指示空间流数为1支持的天线模式数目,2ss antenna mode number字段指示空间流数为2支持的天线模式数目,3ss antenna mode number字段指示空间流数为3支持的天线模式数目,4ss antenna mode number字段指示空间流数为4支持的天线模式数目。
上述内容简要阐述了本申请实施例所涉及的名词(通信术语)的含义,为更好地理解本申请实施例的提供的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
应理解的,本申请实施例可以适用于WLAN的场景,可以适用于IEEE 802.11系统标准,例如802.11ax、802.11be或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统 中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的6G通信系统等。
参见图7,图7为本申请实施例提供的一种WLAN的网络架构图。图7以该WLAN包括1个无线接入点(access point,AP)和2个站点(station,STA)为例。与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。应理解,图7中的AP和STA的数量仅是举例,还可以更多或者更少。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有Wi-Fi芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐量(extremely high throughput,EHT)AP,还可以是适用未来某代Wi-Fi标准的接入点。
本申请实施例涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。例如STA可以是路由器、交换机和网桥等,在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请实施例所涉及到的AP和STA可以为适用于IEEE 802.11系统标准的AP和STA。AP是部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该AP可用作该通信系统的中枢,通常为支持802.11系统标准的MAC和PHY的网络侧产品,例如可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,该基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为AP。STA通常为支持802.11系统标准的介质访问控制(media access control,MAC)和物理层(physical,PHY)的终端产品,例如手机、笔记本电脑等。
本方案还可以应用于无线通信系统。该无线通信系统可以为无线局域网(Wireless local area network)或蜂窝网,本方案可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,该通信设备可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(Multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。多链路设备包括一个或多个隶属的站点STA(affiliated STA),隶属的STA是一个逻辑上的站点,可以工作在一条链路上。其中,隶属的站点可以为接入点(Access Point,AP)或非接入点站点(non-Access Point Station,non-AP STA)。为描述方便,本申请将隶属的站点为AP的多 链路设备可以称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device),隶属的站点为non-AP STA的多链路设备可以称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device)。
本方案还可以适用于具有以下一种或多种特征的通信系统:
1.MU-MIMO模式下最多支持的总流数为16,即,MU-MIMO模式下所有用户的流数之和的最大值为16;
2.非多用户多输入多输出(Non Multiple User Multiple Input MultipleOutput,non-MU-MIMO)模式下最多支持16个流,即,non-MU-MIMO模式下一个用户的流数的最大值为16;
3.MU-MIMO模式中每个用户的最大空间流数目为4;
4.MU-MIMO模式在每个资源单元组上支持的最大用户数目为8,其中,一个资源单元组包括至少一个资源单元(resource unit,RU),当资源单元组包括一个RU时,该资源单元组也可以理解为资源单元,当资源单元组包括两个或两个以上RU时,资源单元组可以理解为一个多资源单元(Multiple RU,MRU)。
5.MU-MIMO在大于或等于242的资源单元组上才可以使用,或者说,当资源单元组包括的子载波的数量大于或等于242时才能够使用MU-MIMO模式。
此外,本申请实施例提供的技术方案可适用于多种系统架构。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
可选的,图7中的无线接入点、站点等可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图7中的各设备均可以通过图8中的通信装置800来实现。图8所示为可适用于本申请实施例提供的一种通信装置的硬件结构示意图。该通信装置800包括至少一个处理器801,通信线路802,存储器803以及至少一个通信接口804。
处理器801可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路802可包括一通路,在上述组件之间传送信息。
通信接口804,是任何收发器一类的装置(如天线等),用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器803可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路802与处理器相连接。存储器也可以和处理器集成在一起。 本申请实施例提供的存储器通常可以具有非易失性。其中,存储器803用于存储执行本申请方案的计算机执行指令,并由处理器801来控制执行。处理器801用于执行存储器803中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在一种可能的实施方式中,处理器801可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
在一种可能的实施方式中,通信装置800可以包括多个处理器,例如图8中的处理器801和处理器807。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在一种可能的实施方式中,通信装置800还可以包括输出设备805和输入设备806。输出设备805和处理器801通信,可以以多种方式来显示信息。例如,输出设备805可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备806和处理器801通信,可以以多种方式接收用户的输入。例如,输入设备806可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置800可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置800可以是便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图8中类似结构的设备。本申请实施例不限定通信装置800的类型。
当通信装置开机后,处理器801可以读取存储器803中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器801对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器801,处理器801将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以独立于通信装置,呈拉远式的布置。
以下结合附图,说明本申请实施例提供的技术方案。
参见图9,图9为本申请实施例提供的一种天线模式切换方法的流程示意图。如图9所示,该方法包括但不限于以下步骤:
901.接入点生成第一帧,第一帧包括至少一个站点待切换的天线模式的标识信息,第一帧为多用户请求发送帧或触发帧。
在一种可能的实施方式中,为了帮助接入点给站点选择传输性能更优的天线模式以生成第一帧,接入点需要获知站点在不同天线模式下的信道测量报告,以根据信道测量报告给站点选择传输性能更优的天线模式。因而,在步骤901之前,本方案还可以包括:接入点向至少一个站点发送第二帧;第二帧包括至少一个站点待切换的候选天线模式的标识信息,第二帧为空数据包通知(null data packet announcement,NDPA)帧;接入点向至少一个站点发送第三帧,第三帧为空数据分组(null data packet,NDP)帧;接入点接收至少一个站点对应的至少一个信道测量报告,该站点对应的信道测量报告为该站点在候选天线模式下对第三帧进 行信道测量得到的信道测量报告;接入点根据至少一个信道测量报告,确定至少一个站点待切换的天线模式。即可以看出,接入点向至少一个站点发送空数据包通知帧,因为空数据包通知帧包括至少一个站点待切换的候选天线模式的标识信息,所以至少一个站点在接收空数据包通知帧后可以切换至相应的候选天线模式。进一步的,接入点可以向至少一个站点发送空数据分组帧,以使得至少一个站点在相应的候选天线模式下对空数据分组帧进行信道测量得到信道测量报告,并上报给接入点,因而接入点可以根据至少一个信道测量报告,确定至少一个站点待切换的天线模式。因为信道测量报告可以反映候选天线模式下信道质量,所以在根据信道测量报告确定站点待切换的天线模式时,可以使得切换天线模式的站点可以具有更好的传输性能,进而可以提高WLAN系统的吞吐量。
其中,空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。即可以看出,通过复用用户信息字段,指示了站点待切换的候选天线模式的标识信息,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
在一种可能的实施方式中,站点信息字段可以包括partial BWinfo字段,partial BWinfo字段指示站点待切换的候选天线模式的标识信息。其中,partial BWinfo字段可以包括RUend index字段。因此,RUend index字段指示站点待切换的候选天线模式的标识信息。另外,partial BWinfo字段还可以包括RU start index字段,可以采用RU start index字段指示进行信道探测的带宽,如,RU start index字段指示进行信道探测的带宽为全带宽。因为802.11ax标准中规定RU start index字段的取值为0-73,所以本申请中,在RU start index字段指示进行信道探测的带宽的情况下,RU start index字段的取值为0-73之外的其他整数,如127。
其中,802.11ax标准中接入点对多个站点进行信道探测时,还需要向多个站点发送从属触发(bfrp trigger)帧。具体的,在一种可能的实施方式中,在接入点向多个站点发送NDP帧后,在接入点接收多个站点对应的多个信道测量报告之前,本方案还包括:接入点还向多个站点发送从属触发帧,该从属触发帧用于触发多个站点同时进行上行多用户传输,即同时反馈信道测量报告,以提高信道探测的效率。
示例性的,针对802.11ax标准,接入点进行信道探测的时序图,可以参见图10。图10中,接入点为高效(HE)波束成型发送者(beamformer),站点1-站点n为HE波束成型接收者(beamformee)1-HE beamformee n。如图10所示,接入点可以向站点1-站点n发送NDPA帧。接着,在等待短帧间间隔(short interframe space,SIFS)后,接入点向站点1-站点n发送NDP帧。然后,在等待SIFS后,接入点向站点1-站点n发送bfrp trigger帧。紧接着,在等待SIFS后,接入点接收站点1-站点n的信道测量报告。应理解的,在802.11ax标准中,NDPA帧为HENDPA帧,NDP帧为HE探测(sounding)NDP帧,信道测量报告为高效波束成型压缩包(compressed beamforming)。
可选的,接入点根据至少一个信道测量报告,确定至少一个站点待切换的天线模式时,可能需要对不同候选天线模式下的同一站点进行多次的信道探测,以得到站点的多个信道测量报告,并根据该站点的多个信道测量报告,确定该站点待切换的天线模式。换句话来说,接入点可以通过该站点的多个信道测量报告为该站点选择传输性能更优的候选天线模式,以作为该站点待切换的天线模式。
其中,一个信道测量报告可以包括一个站点对应的V矩阵(feedback matrix V)信息,V矩阵信息用于确定Q操作矩阵(steering matrix Q)信息,Q操作矩阵信息用于指导后续的收 发工作以提高整个系统的通信性能。在接入点接收至少一个站点对应的至少一个信道测量报告之后,本方案还可以包括:接入点将至少一个站点对应的V矩阵信息和至少一个站点待切换的候选天线模式的标识信息关联存储。
示例性的,参见表2,站点0待切换的候选天线模式的标识信息为0-3,V矩阵信息为V0[0]-V0[3];站点0待切换的候选天线模式的标识信息为0-5,V矩阵信息为V0[0]-V0[5]。而对于站点0,待切换的候选天线模式的标识信息为0和V矩阵信息为V0[0]关联存储,其余类似,不再赘述。
表2为站点对应的V矩阵信息和站点待切换的候选天线模式的标识信息存储形式
在一种可能的实施方式中,接入点也可以进行天线模式的切换。比如,接入点每进行一次信道探测,均可以切换至不同的天线模式。因此,接入点还可以将自己使用的天线模式的标识信息、至少一个站点对应的V矩阵信息和至少一个站点待切换的候选天线模式的标识信息关联存储。
示例性的,参见表3,在站点0,接入点切换的天线模式的标识信息为0时,待切换的候选天线模式的标识信息为0-3,V矩阵信息为V0[0,0]-V0[0,3];在站点0,接入点切换的天线模式的标识信息为1时,待切换的候选天线模式的标识信息为0-3,V矩阵信息为V0[1,0]-V0[1,3];在站点1,接入点切换的天线模式的标识信息为0时,待切换的候选天线模式的标识信息为0-5,V矩阵信息为V0[0,0]-V0[0,5];在站点1,接入点切换的天线模式的标识信息为1时,待切换的候选天线模式的标识信息为0-5,V矩阵信息为V0[1,0]-V0[1,5]。而对于站点0,接入点切换的天线模式的标识信息为0、待切换的候选天线模式的标识信息为0、V矩阵信息为V0[0,0]关联存储,其余类似,不再赘述。
表3为站点对应的V矩阵信息和站点待切换的候选天线模式的标识信息存储形式

可选的,为了更好的进行信道探测,接入点可以存储站点的候选天线模式的标识信息集合,一个候选天线模式的标识信息集合包括至少一个候选天线模式的标识信息。具体的,接入点可以根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合。当然,接入点还可以向站点发送该站点的候选天线模式的标识信息集合,相应的,该站点在接收该站点的候选天线模式的标识信息集合后,可以存储该站点的候选天线模式的标识信息集合,以为站点进行天线模式的切换做准备。因此,在这种情况下,当接入点进行信道探测之前,即接入点向至少一个站点发送第二帧之前,本方案还可以包括:接入点向至少一个站点发送第四帧,第四帧用于指示站点反馈不同空间流数支持的天线模式数目,第四帧为信标帧;接入点接收每个站点不同空间流数支持的天线模式数目;接入点根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合。即可以看出,接入点可以向至少一个站点发送信标帧,因为信标帧用于指示站点反馈不同空间流数支持的天线模式数目,所以接入点可以接收每个站点不同空间流数支持的天线模式数目,从而可以根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,进而使得接入点可以通过站点的候选天线模式的标识信息集合确定出该站点待切换的天线模式。
其中,信标帧的帧结构可以参见上述描述,在此不做限定。
可选的,接入点接收每个站点不同空间流数支持的天线模式数目,可以包括:接入点从每个站点接收probe request帧或association request帧,probe request帧或association request帧包括该站点不同空间流数支持的天线模式数目。其中,probe request帧或association request帧,其帧结构可以参见上述描述,在此不做限定。应理解的,若站点反馈了空间流数为1-4所支持的天线模式数目,接入点可以将站点不同空间流数支持的天线模式数目记作N1,N2,N3,N4,候选天线模式的标识信息集合可以记作[0,N1+N2+N3+N4-1]。
可选的,接入点根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,可以包括:接入点根据每个站点不同空间流数支持的天线模式数目,生成每个站点不同空间流数支持的候选天线模式的标识信息集合。由于低空间流支持的天线模式,发送高空间流时也可以使用,为了避免同一种天线模式重复占用编号,约定Nk代 表仅k个空间流支持的天线模式数目,如N1为1个空间流支持的天线模式数目,N2为2个空间流支持的天线模式数目等。因此,1个空间流支持的候选天线模式的标识信息集合可以为:[0,N1-1],2个空间流支持的候选天线模式的标识信息集合可以为:[0,N1+N2-1],3个空间流支持的候选天线模式的标识信息集合可以为:[0,N1+N2+N3-1],4个空间流支持的候选天线模式的标识信息集合可以为:[0,N1+N2+N3+N4-1]。
示例性的,N1=N2=4,N3=N4=3,此时,1个空间流支持的候选天线模式的标识信息集合可以为:[0,3],2个空间流支持的候选天线模式的标识信息集合可以为:[0,7],3个空间流支持的候选天线模式的标识信息集合可以为:[0,10],4个空间流支持的候选天线模式的标识信息集合可以为:[0,13]。
可选的,信标帧包括接入点允许站点使用的最大天线模式数目,该站点不同空间流数支持的天线模式数目的总和不超过接入点允许该站点使用的最大天线模式数目。即可以看出,站点在接收信标帧后,还可以获知接入点允许该站点使用的最大天线模式数目,使得站点反馈的不同空间流数支持的天线模式数目的总和不超过接入点允许站点使用的最大天线模式数目,从而在通过站点的候选天线模式的标识信息集合确定出该站点待切换的天线模式后,切换天线模式的站点既可以具备较好的传输性能,又可以避免与该站点通信的WLAN设备处理不过来导致的链路闪断问题。
示例性的,接入点允许站点使用的最大天线模式数目为6,那么,N1+N2+N3+N4的总和不超过6。
可选的,步骤901中的第一帧可以通过以下任意方式实现,在此不做限定。
方式1.1、第一帧为MU-RTS帧。
方式1.2、第一帧为触发帧,如,802.11ax标准中的基于触发(basic trigger)帧。
其中,在第一帧为MU-RTS帧的情况下,MU-RTS帧包括第一用户信息列表字段,第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。即可以看出,通过复用用户信息字段,指示了站点待切换的候选天线模式的标识信息,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
在一种可能的实施方式中,第一用户信息字段可以包括UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段。应理解的,在本申请中,站点待切换的天线模式的标识信息可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中的部分字段来指示。
示例性的,站点待切换的天线模式的标识信息可以为至少一个比特。站点待切换的天线模式的标识信息可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中部分字段的部分比特来指示。具体的,站点待切换的天线模式的标识信息可以为7个比特,站点待切换的天线模式的标识信息可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中部分字段的7个比特来指示。
另外,第一用户信息字段还指示站点待切换的天线模式使能。站点待切换的天线模式使能可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中的部分字段来指示。
示例性的,站点待切换的天线模式使能可以为至少一个比特。站点待切换的天线模式使 能可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中部分字段的部分比特来指示。具体的,站点的天线模式使能可以为1个比特,站点待切换的天线模式使能可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中部分字段的1个比特来指示。
示例性的,当站点待切换的天线模式使能为1个比特,站点待切换的天线模式的标识信息为7个比特时,站点待切换的天线模式使能和站点待切换的天线模式的标识信息例如可以通过UL FEC coding type字段、UL HE-MCS字段、UL DCM字段、SS allocation/RA-RU information字段和UL target RSSI字段中的前8个比特指示。
其中,在第一帧为触发帧的情况下,触发帧包括第二用户信息列表字段,第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。即可以看出,通过复用用户信息字段,指示了站点待切换的天线模式的标识信息,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
在一种可能的实施方式中,第二用户信息字段可以包括上行目标接收功率(UL target receive power)字段。因为UL target receive power字段的第0-90个比特指示期望接收功率,UL target receive power字段的第91-126个比特为预留比特,UL target receive power字段的第127个比特指示站点采用最大功率,所以在本申请中,可以采用UL target receive power字段的第91-126个比特指示站点待切换的天线模式的标识信息。应理解的,站点待切换的天线模式的标识信息即站点待切换的天线模式的编号,若站点待切换的天线模式的编号是从0开始编号的,UL target receive power字段的第91-126个比特最大可以指示待切换的天线模式的编号为35。
可选的,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。即可以看出,通过复用用户信息字段,指示了站点使用的最大功率,避免了对现有字段的改动,换而言之,可以更好的兼容现有的协议版本。
在一种可能的实施方式中,还可以复用UL target receive power字段的第91-126个比特指示站点使用待切换的天线模式时的最大功率。
902.站点从接入点接收第一帧。
相应的,接入点向站点发送第一帧。应理解的,步骤902的站点可以为步骤901的至少一个站点中的任意一个站点。换句话来说,步骤901的至少一个站点中的任意一个站点在接收第一帧后执行的步骤与步骤902-步骤903类似,在此不加赘述。
另外,在一种可能的实施方式中,接入点在向站点发送第一帧之前,也可以进行天线模式的切换,在此不做限定。
903.站点根据该站点待切换的天线模式的标识信息,切换天线模式。
即可以看出,上述技术方案中,因为第一帧包括至少一个站点待切换的天线模式的标识信息,所以至少一个站点接收第一帧后可以根据待切换的天线模式的标识信息切换天线模式,从而可以使得切换天线模式的至少一个站点可以具有更好的传输性能,进而可以提高WLAN系统的吞吐量。
在一种可能的实施方式中,在第一帧为MU-RTS帧的情况下,站点在执行步骤903之后,本方案还可以包括:站点向接入点发送第五帧,接入点从站点接收第五帧,第五帧用于指示站点的天线模式已切换,第五帧为允许发送(clear to send,CTS)帧;站点从接入点接收下行多用户多输入多输出报文。即可以看出,接入点在获知站点的天线模式已切换后,可以向 站点发送下行多用户多输入多输出报文。换而言之,在站点具有更好的传输性能时,WLAN系统的传输性能也可以得到提高。同时,多用户多输入多输出通信也可以提高WLAN系统的传输性能,所以在站点具有更好的传输性能时进行下行多用户多输入多输出通信,WLAN系统的吞吐量可以得到更多的提高。
可选的,在站点从接入点接收下行多用户多输入多输出报文之后,站点可以向接入点发送第一应答帧,第一应答帧指示下行多用户多输入多输出报文已接收。相应的,接入点从站点接收下行多用户多输入多输出报文之后,接入点还可以从站点接收第一应答帧。
为了更好的理解接入点从发送第一帧至接收下行多用户多输入多输出报文的过程,下面以接入点向站点1-站点2发送MU-RTS帧为例,通过时序图来说明相关步骤之间的关系。具体的,参见图11,图11为本申请实施例提供的一种下行多用户多输入多输出通信的时序图。如图11所示,接入点可以向站点1-站点2发送MU-RTS帧。在站点1-站点2接收MU-RTS帧后,可以分别向接入点发送CTS帧。在接入点接收到CTS帧后,可以向站点1-站点2发送下行多用户多输入多输出报文。当站点1-站点2接收下行多用户多输入多输出报文后,可以向接入点发送站点1-站点2对应的第一应答帧。应理解的,在802.11ax标准中,下行多用户多输入多输出报文为高效多用户数据分组(high efficient physical layer protocol data unit,HE PPDU),第一应答帧为确认响应(acknowledgement response)帧。
在又一种可能的实施方式中,在第一帧为触发帧的情况下,站点在执行步骤903之后,本方案还可以包括:站点向接入点发送上行多用户多输入多输出报文。即可以看出,站点向接入点发送上行多用户多输入多输出报文。换而言之,在站点具有更好的传输性能时,WLAN系统的传输性能也可以得到提高。同时,多用户多输入多输出通信也可以提高WLAN系统的传输性能,所以在站点具有更好的传输性能时进行上行多用户多输入多输出通信,WLAN系统的吞吐量可以得到更多的提高。
可选的,在站点向接入点发送上行多用户多输入多输出报文之后,站点可以从接入点接收第二应答帧,该第二应答帧指示上行多用户多输入多输出报文已接收。相应的,接入点从站点接收上行多用户多输入多输出报文之后,接入点可以向站点发送第二应答帧。
为了更好的理解接入点从发送第一帧至发送上行多用户多输入多输出报文的过程,下面以接入点向站点1-站点n发送触发帧为例,通过时序图来说明相关步骤之间的关系。具体的,参见图12,图12为本申请实施例提供的一种上行多用户多输入多输出通信的时序图。如图12所示,接入点可以向站点1-站点n发送触发帧。在站点1-站点n接收触发帧后,可以等待SIFS后,分别向接入点发送上行多用户多输入多输出报文。在接入点接收到上行多用户多输入多输出报文后,可以向站点1-站点2发送第二应答帧。应理解的,在802.11ax标准中,上行多用户多输入多输出报文为高效基于触发的数据分组(high efficient trigger based physical layer protocol data unit,HE TB PPDU),第二应答帧为多用户块确认(multi-STA block aCK,M-BA)。另外,在802.11ax标准中,从接入点发送触发帧至接入点发送M-BA整个过程所需时长为一个传输机会(transmission opportunity,TXOP)时长。其中,TXOP时长是指一个接入点或站点获得一个传输机会后,不受干扰地进行数据传输的一段时间。
在一种可能的实施方式中,在站点从接入点接收下行多用户多输入多输出报文,或,站点向接入点发送上行多用户多输入多输出报文之前,接入点可筛选天线模式组合,以计算信道矩阵相关性,从而预选出较合适做下行多用户多输入多输出和/或上行多用户多输入多输出的配置组合。
示例性的,若仅站点支持天线模式的切换,天线模式组合例如可以为:
{<STA0,sta_antenna_mode0>,…,<STAk,antenna_modek>},其中,STA0即站点0,sta_antenna_mode0即站点0待切换的天线模式的标识信息,其余类似,在此不加赘述。
又示例性的,若接入点和站点均支持天线模式的切换,天线模式组合例如可以为:
ap_antenna_mode+{<STA0,sta_antenna_mode0>,…,<STAk,antenna_modek>},其中,ap_antenna_mode即接入点待切换的天线模式的标识信息,STA0即站点0,sta_antenna_mode0即站点0待切换的天线模式的标识信息,其余类似,在此不加赘述。
另外,在站点从接入点接收下行多用户多输入多输出报文,或,站点向接入点发送上行多用户多输入多输出报文之后,接入点可统计每个用户的误包率(PER),如针对下行多用户多输入多输出报文和/或上行多用户多输入多输出报文,统计每个用户的误包率。应理解的,接入点可以根据每个用户的误包率调整天线模式组合中各用户的调制与编码方案(modulation and coding scheme,MCS),如判断该天线模式组合是否有性能增益,从而决定是否需要继续采用该天线模式组合。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入点或站点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的模块的情况下,参见图13,图13为本申请实施例提供的一种通信装置的结构示意图。该通信装置1300可应用于上述图9-图12所示的方法中,如图13所示,该通信装置1300包括:处理模块1301和收发模块1302。处理模块1301可以是一个或多个处理器,收发模块1302可以是收发器或者通信接口。该通信装置可用于实现上述任一方法实施例中涉及接入点或站点,或用于实现上述任一方法实施例中涉及网元的功能。该网元或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,该通信装置1300还可以包括存储模块1303,用于存储通信装置1300的程序代码和数据。
一种实例,当该通信装置作为站点或为应用于站点中的芯片,并执行上述方法实施例中由站点执行的步骤。收发模块1302用于支持与接入点等之间的通信,收发模块具体执行图9-图12中由站点执行的发送和/或接收的动作,例如支持站点执行步骤902,和/或用于本文中所描述的技术的其他过程。处理模块1301可用于支持通信装置1300执行上述方法实施例中的处理动作,例如,支持站点执行步骤903,和/或本文所描述的技术的其它过程。
示例性的,站点包括处理模块1301和收发模块1302,收发模块1302,用于从接入点接收第一帧;第一帧包括站点待切换的天线模式的标识信息;处理模块1301,用于根据该站点待切换的天线模式的标识信息,切换天线模式。
一种实例,当该通信装置作为接入点或为应用于接入点中的芯片,并执行上述方法实施 例中由接入点执行的步骤。收发模块1302用于支持与站点等之间的通信,收发模块具体执行图9-图12中由接入点执行的发送和/或接收的动作,例如支持接入点本文中所描述的技术的其他过程。处理模块1301可用于支持通信装置1300执行上述方法实施例中的处理动作,例如,支持接入点执行步骤901,和/或本文所描述的技术的其它过程。
示例性的,接入点包括处理模块1301和收发模块1302,处理模块1301,用于生成第一帧;第一帧包括至少一个站点待切换的天线模式的标识信息;收发模块1302,用于向至少一个站点发送第一帧。
在一种可能的实施方式中,当站点或接入点为芯片时,收发模块1302可以是输入输出接口、管脚、电路或收发器等。如输入输出接口可用于输入待处理的数据至逻辑电路,并可以向外输出逻辑电路的处理结果。具体实现中,输入输出接口可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块、天线等等)连接。输入输出接口通过总线与处理器相连。
处理模块1301可以是逻辑电路,该逻辑电路可以执行存储的指令,使得该芯片执行图9-图12所示实施例涉及的方法。可以理解的,该指令可以存储在存储模块中。
该存储模块可以为该芯片内的存储模块,如寄存器、缓存等。存储模块也可以是位于芯片外部的存储模块,如只读存储器(Read Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)等。
需要说明的,逻辑电路、输入输出接口各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请实施例还提供一种通信装置,包括处理器和收发器,该处理器被配置为支持通信装置执行如图9-图12所示实施例。该收发器用于支持通信装置与通信装置之外的其它通信装置之间的通信。该通信装置还可以包括存储器,该存储器用于与处理器耦合,其保存通信装置必要的程序指令和数据。其中,收发器可以集成在通信装置上或独立于通信装置,在此不做限制。示例性的,在分布式场景中,收发器可以独立于通信装置,呈拉远式的布置。
本申请实施例还提供一种芯片,芯片包括至少一个逻辑电路和输入输出接口,逻辑电路用于读取并执行存储的指令,当指令被运行时,使得芯片执行如图9-图12所示实施例。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被计算机执行时,使计算机执行如图9-图12所示实施例。
本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行实现如图9-图12所示实施例。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目标。另外,在本申请各个实施例中的各网元单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件网元单元的形式实现。
上述集成的单元如果以软件网元单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,云服 务器,或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种天线模式切换方法,其特征在于,所述方法包括:
    接入点生成第一帧;所述第一帧包括至少一个站点待切换的天线模式的标识信息,所述第一帧为多用户请求发送帧或触发帧;
    所述接入点向至少一个所述站点发送所述第一帧。
  2. 根据权利要求1所述的方法,其特征在于,所述接入点生成第一帧之前,所述方法还包括:
    所述接入点向所述至少一个站点发送第二帧;所述第二帧包括至少一个所述站点待切换的候选天线模式的标识信息,所述第二帧为空数据包通知帧;
    所述接入点向至少一个所述站点发送第三帧,所述第三帧为空数据分组帧;
    所述接入点接收至少一个所述站点对应的至少一个信道测量报告;所述站点对应的信道测量报告为所述站点在候选天线模式下对所述第三帧进行信道测量得到的信道测量报告;
    所述接入点根据所述至少一个信道测量报告,确定至少一个所述站点待切换的天线模式。
  3. 根据权利要求2所述的方法,其特征在于,所述空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述接入点向至少一个所述站点发送第四帧;所述第四帧用于指示所述站点反馈不同空间流数支持的天线模式数目,所述第四帧为信标帧;
    所述接入点接收每个站点不同空间流数支持的天线模式数目;
    所述接入点根据每个站点不同空间流数支持的天线模式数目,生成每个站点的候选天线模式的标识信息集合,一个候选天线模式的标识信息集合包括至少一个候选天线模式的标识信息。
  5. 根据权利要求4所述的方法,其特征在于,所述信标帧包括所述接入点允许所述站点使用的最大天线模式数目,所述站点不同空间流数支持的天线模式数目的总和不超过所述接入点允许所述站点使用的最大天线模式数目。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,第一帧为多用户请求发送帧,所述多用户请求发送帧包括第一用户信息列表字段,所述第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于,所述方法还包括:
    所述接入点从所述站点接收第五帧,所述第五帧用于指示所述站点的天线模式已切换,所述第五帧为允许发送帧;
    所述接入点向所述站点发送下行多用户多输入多输出报文。
  8. 根据权利要求1-5任意一项所述的方法,其特征在于,第一帧为触发帧,所述触发帧包括第二用户信息列表字段,所述第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
  9. 根据权利要求8所述的方法,其特征在于,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
  10. 根据权利要求1-5、8、9任意一项所述的方法,其特征在于,所述方法还包括:
    所述接入点从所述站点接收上行多用户多输入多输出报文。
  11. 一种天线模式切换方法,其特征在于,所述方法包括:
    站点从接入点接收第一帧;所述第一帧包括所述站点待切换的天线模式的标识信息,所 述第一帧为多用户请求发送帧或触发帧;
    所述站点根据所述站点待切换的天线模式的标识信息,切换天线模式。
  12. 根据权利要求11所述的方法,其特征在于,所述站点从接入点接收第一帧之前,所述方法还包括:
    所述站点从所述接入点接收第二帧;所述第二帧包括所述站点待切换的候选天线模式的标识信息,所述第二帧为空数据包通知帧;
    所述站点从所述接入点接收第三帧,所述第三帧为空数据分组帧;
    所述站点在所述候选天线模式的标识信息对应的天线模式下对所述第三帧进行信道测量得到信道测量报告;
    所述站点向所述接入点发送所述信道测量报告。
  13. 根据权利要求12所述的方法,其特征在于,所述空数据包通知帧包括至少一个站点信息字段,一个站点信息字段指示一个站点待切换的候选天线模式的标识信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述站点从所述接入点接收第四帧;所述第四帧用于指示所述站点反馈不同空间流数支持的天线模式数目,所述第四帧为信标帧;
    所述站点向所述接入点发送所述站点不同空间流数支持的天线模式数目。
  15. 根据权利要求14所述的方法,其特征在于,所述信标帧包括所述接入点允许所述站点使用的最大天线模式数目,所述站点不同空间流数支持的天线模式数目的总和不超过所述接入点允许所述站点使用的最大天线模式数目。
  16. 根据权利要求11-15任意一项所述的方法,其特征在于,第一帧为多用户请求发送帧,所述多用户请求发送帧包括第一用户信息列表字段,所述第一用户信息列表字段包括至少一个第一用户信息字段,一个第一用户信息字段指示一个站点待切换的天线模式的标识信息。
  17. 根据权利要求11-16任意一项所述的方法,其特征在于,所述方法还包括:
    所述站点向所述接入点发送第五帧,所述第五帧用于指示所述站点的天线模式已切换,所述第五帧为允许发送帧;
    所述站点从所述接入点接收下行多用户多输入多输出报文。
  18. 根据权利要求11-15任意一项所述的方法,其特征在于,第一帧为触发帧,所述触发帧包括第二用户信息列表字段,所述第二用户信息列表字段包括至少一个第二用户信息字段,一个第二用户信息字段指示一个站点待切换的天线模式的标识信息。
  19. 根据权利要求18所述的方法,其特征在于,一个第二用户信息字段还指示一个站点使用待切换的天线模式时的最大功率。
  20. 根据权利要求11-15、18-19任意一项所述的方法,其特征在于,所述方法还包括:
    所述站点向所述接入点发送上行多用户多输入多输出报文。
  21. 一种通信装置,其特征在于,所述通信装置为接入点,所述接入点包括处理器和收发器,
    所述处理器,用于生成第一帧;所述第一帧包括至少一个站点待切换的天线模式的标识信息;
    所述收发器,用于向至少一个所述站点发送所述第一帧。
  22. 一种通信装置,其特征在于,所述通信装置为站点,所述站点包括处理器和收发器,
    所述收发器,用于从接入点接收第一帧;所述第一帧包括所述站点待切换的天线模式的标识信息;
    所述处理器,用于根据所述站点待切换的天线模式的标识信息,切换天线模式。
  23. 一种芯片,其特征在于,所述芯片包括至少一个逻辑电路和输入输出接口,所述逻辑电路用于读取并执行存储的指令,当所述指令被运行时,使得所述芯片执行如权利要求1-20任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1-20任一项所述的方法。
PCT/CN2023/073755 2022-02-24 2023-01-30 一种天线模式切换方法及相关装置 WO2023160331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210174927.1 2022-02-24
CN202210174927.1A CN116707591A (zh) 2022-02-24 2022-02-24 一种天线模式切换方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023160331A1 true WO2023160331A1 (zh) 2023-08-31

Family

ID=87764714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073755 WO2023160331A1 (zh) 2022-02-24 2023-01-30 一种天线模式切换方法及相关装置

Country Status (2)

Country Link
CN (1) CN116707591A (zh)
WO (1) WO2023160331A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409403A (zh) * 2015-03-30 2017-11-28 英特尔Ip公司 用于使用探测触发帧的信道探测的接入点(ap)、用户台站(sta)和方法
CN110168959A (zh) * 2017-01-13 2019-08-23 高通股份有限公司 高效波束成形技术
CN110326230A (zh) * 2017-02-06 2019-10-11 高通股份有限公司 用于周期性波束成形训练的快速波束完善阶段
CN110730050A (zh) * 2018-07-17 2020-01-24 华为技术有限公司 一种通信方法及装置
CN111344960A (zh) * 2017-02-14 2020-06-26 艾锐势有限责任公司 接收天线模式的动态选择
CN113766647A (zh) * 2020-06-05 2021-12-07 华为技术有限公司 发送触发帧的方法、接收触发帧的方法和通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409403A (zh) * 2015-03-30 2017-11-28 英特尔Ip公司 用于使用探测触发帧的信道探测的接入点(ap)、用户台站(sta)和方法
CN110168959A (zh) * 2017-01-13 2019-08-23 高通股份有限公司 高效波束成形技术
CN110326230A (zh) * 2017-02-06 2019-10-11 高通股份有限公司 用于周期性波束成形训练的快速波束完善阶段
CN111344960A (zh) * 2017-02-14 2020-06-26 艾锐势有限责任公司 接收天线模式的动态选择
CN110730050A (zh) * 2018-07-17 2020-01-24 华为技术有限公司 一种通信方法及装置
CN113766647A (zh) * 2020-06-05 2021-12-07 华为技术有限公司 发送触发帧的方法、接收触发帧的方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"RAN4#81 Meeting report", 3GPP DRAFT; R4-1700401, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Athens, Greece; 20170213 - 20170217, 22 February 2017 (2017-02-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051237658 *

Also Published As

Publication number Publication date
CN116707591A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US11638238B2 (en) Trigger frame based method and device for communications
US10819471B2 (en) Protocols for multiple user frame exchanges
KR101825082B1 (ko) 다중 사용자 프레임 교환들에 대한 프로토콜들
US9179300B2 (en) Station-centric multi-user multiple input multiple output (MU-MIMO)
US9819770B2 (en) Legacy-compatible control frames
US20120087300A1 (en) Method and apparatus for transmitting frame in wireless local area network (wlan) system
US11917547B2 (en) Power save for multi-user (MU) operation
WO2017036257A1 (zh) 一种无线局域网中触发帧传输的方法和装置
WO2023078182A1 (zh) 一种天线信道探测方法、装置和存储介质
WO2017041590A1 (zh) 一种传输信道状态信息的方法和装置
KR20230017195A (ko) 선호 링크 정보 전송 방법
CN114630357A (zh) 信道探测方法及相关装置
US20210368391A1 (en) Communication device, communication method thereof, information processing device, control method thereof, and computer-readable storage medium
US20230354276A1 (en) Time resource allocation and receiving method and related apparatus
EP3391700B1 (en) Aparatuses and methods for indicating periodic allocations
US20230209518A1 (en) Communication method and apparatus
JP7433770B2 (ja) 通信装置、情報処理装置、制御方法、及び、プログラム
WO2023160331A1 (zh) 一种天线模式切换方法及相关装置
TWI834354B (zh) 一種天線通道探測方法、裝置和儲存介質
WO2023058544A1 (ja) 通信装置、制御方法、及び、プログラム
US20240097842A1 (en) Ppdu transmission method and related apparatus
WO2024109468A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2023142975A1 (zh) 一种信道探测方法及装置
KR20230126705A (ko) 무선랜 시스템에서 320mhz 채널 간 변경을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758956

Country of ref document: EP

Kind code of ref document: A1