WO2023078182A1 - 一种天线信道探测方法、装置和存储介质 - Google Patents

一种天线信道探测方法、装置和存储介质 Download PDF

Info

Publication number
WO2023078182A1
WO2023078182A1 PCT/CN2022/128386 CN2022128386W WO2023078182A1 WO 2023078182 A1 WO2023078182 A1 WO 2023078182A1 CN 2022128386 W CN2022128386 W CN 2022128386W WO 2023078182 A1 WO2023078182 A1 WO 2023078182A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
antenna
frame
ppdu
field
Prior art date
Application number
PCT/CN2022/128386
Other languages
English (en)
French (fr)
Inventor
于健
阮卫
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078182A1 publication Critical patent/WO2023078182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the communication field, and in particular to an antenna channel detection method, device and storage medium.
  • Wireless local area network starts from 802.11a/b/g, goes through 802.11n, 802.11ac, to 802.11ax.
  • 802.11a/b/g only supports a single spatial stream, and does not support multiple input multiple output (MIMO).
  • 802.11n supports MIMO with up to 4 space-time streams, while 802.11ac and 802.11ax support up to 8 space-time streams.
  • the next-generation standard of 802.11ax, 802.11be is under discussion, and the maximum number of space-time streams is further increased to 16.
  • space-time streams take into account different spatial streams (SS) and space-time block coding (STBC) in the time dimension.
  • STBC space-time block coding
  • a device may be equipped with more antennas (or more precisely antenna elements) than RF chains, and an antenna combination (or antenna pattern) is selected according to an antenna-based selection process Transfer data to further improve transfer performance. For example, by selecting the antenna pattern, the condition number of the equivalent channel at both ends of the transceiver can be made smaller, the equivalent channel can be improved, more spatial streams can be transmitted, the system throughput can be improved, and so on.
  • the device may select an antenna combination according to the results of antenna channel detection corresponding to different antenna combinations (or antenna patterns (antenna patterns)).
  • introducing more spatial streams means introducing more antennas
  • the existing technology is only applicable to the standard 802.11n, and only supports an antenna selection process of up to 4 radio frequency chains, 8 antennas, and 16 antenna combinations.
  • the 802.11be standard will introduce 16 spatial streams and support up to 16 radio frequency chains, and MIMO technology will introduce more antennas. Therefore, how to make the antenna selection process applicable to large-scale antennas has become an urgent problem to be solved.
  • Embodiments of the present application provide an antenna channel detection method, device, and storage medium, which are used for antenna channel detection, and are suitable for antenna channel detection in large-scale antenna scenarios, so that the antenna channel detection results can be used in large-scale antenna scenarios Make antenna selection.
  • an embodiment of the present application provides a method for detecting an antenna channel.
  • a first communication device sends a first frame to a second communication device.
  • the first frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the first communication device sends a first physical layer protocol data unit (physical layer protocol data unit, PPDU) to the second communication device.
  • the first PPDU is used by the second communication device to perform channel detection of the transmitting antenna, and the first PPDU includes a first identification field, where the first identification field is used to indicate the identification of the first transmitting antenna combination.
  • the first PPDU may include a data field.
  • the first PPDU may also not include a data field, for example, the first PPDU may be an NDP that does not include a data field. Since NDP does not include a data field, this saves overhead.
  • the second communication device since the NDP includes the first identification field indicating the identification of the first transmitting antenna combination, the second communication device determines the corresponding relationship between the channel detection result of the transmitting antenna corresponding to the NDP and the identification of the transmitting antenna combination, Furthermore, the second communication device may determine the identity of the transmission antenna combination selected based on one or more transmission antenna channel detection results, so as to prevent the second communication device from matching the selected transmission antenna channel detection result with the transmission antenna combination incorrectly, Therefore, it is possible to perform antenna selection according to antenna channel detection results in a large-scale antenna scenario.
  • the first communication device may send one or more PPDUs to the second communication device, and the first PPDU is one of the one or more PPDUs.
  • the second communication device may perform transmission antenna channel detection based on the received one or more PPDUs, and obtain a transmission antenna channel detection result. Further, the second communication device can select a transmission antenna combination according to the obtained transmission antenna channel detection result, and indicate the identity of the selected transmission antenna combination to the first communication device, so that in a large-scale antenna scenario, according to the antenna Channel sounding results for antenna selection.
  • the first communication device receives the second frame from the second communication device.
  • the second frame includes the first antenna selection feedback result.
  • the first antenna selection feedback result includes a third identification field, where the third identification field may be used to carry the identification of the transmitting antenna combination selected by the second communication device.
  • the transmitting antenna combination selected by the second communication device is the first transmitting antenna combination
  • the third identification field may be used to indicate the identity of the first transmitting antenna combination.
  • the first communication device receives the third frame including the third indication information.
  • the third indication information is used to request the first communication device to send information for performing channel detection of the transmitting antenna.
  • the third indication information is carried in the high-efficiency variant field of the third frame. Since the number of bits used to carry the relevant commands of the antenna selection process in the high-efficiency variant field is relatively large, the solution provided by this application can support more PPDUs (for example, the number of PPDUs that can be supported exceeds 16), thereby supporting More antenna combinations (the number of antenna combinations that can be supported exceeds 16), so that antenna selection can be performed according to antenna channel detection results in large-scale antenna scenarios.
  • the first communication device and the second communication device may negotiate, and through the negotiation, the second communication device knows the combination of transmitting antennas supported by the first communication device, and after negotiation, the first communication device and the second communication device
  • the communication device sets a group identifier for the combination of transmitting antennas supported by the first communication device. For example, before the first communication device sends the first frame to the second communication device, the first communication device sends a fourth frame to the second communication device, the fourth frame includes a fourth identification field, and the fourth identification field is used to indicate that the first communication An identifier of at least one transmit antenna combination supported by the device, where the identifier of the at least one transmit antenna combination includes an identifier of the first transmit antenna combination.
  • the first communication device may also indicate to the second communication device the combination of transmitting antennas corresponding to the identification of the combination of transmitting antennas supported by itself. In this way, the first communication device may know the sending antenna combination identifier of each sending antenna combination, so as to carry it when sending the PPDU. Moreover, the second communication device may determine which antennas are specifically included in the first transmitting antenna combination identifier according to the first transmitting antenna combination identifier indicated by the first identifier field in the received first PPDU. It can be seen that, through negotiation, the second communication device can acquire more information related to antenna combinations, and subsequently can obtain more information related to links, so as to provide assistance for other subsequent procedures.
  • the ninth frame includes seventh indication information, and the seventh indication
  • the information is used to indicate the total number of transmit antenna combinations supported by the first communication device.
  • the second communication device can estimate the overhead and duration of the transmit antenna selection process according to the seventh indication information, and the second communication device can also decide whether to cooperate with the first communication device based on the total number of transmit antenna combinations supported by the first communication device. establish a relationship between them.
  • the embodiment of the present application provides an antenna channel detection method, in which the second communication device receives the first frame from the first communication device, the first frame includes the first indication information, and the first indication information notifies the second The communication device performs transmission antenna channel detection.
  • the second communication device receives the first physical layer protocol data unit PPDU from the first communication device.
  • the first PPDU is used by the second communication device to perform channel detection of the transmitting antenna, and the first PPDU includes a first identification field, where the first identification field is used to indicate the identification of the first transmitting antenna combination.
  • the first PPDU may include a data field.
  • the first PPDU may also not include a data field, for example, the first PPDU may be NDP. Since NDP does not include a data field, this saves overhead.
  • the second communication device since the NDP includes the first identification field indicating the identification of the first transmitting antenna combination, the second communication device determines the corresponding relationship between the channel detection result of the transmitting antenna corresponding to the NDP and the identification of the transmitting antenna combination, Furthermore, the second communication device may determine the identity of the transmission antenna combination selected based on one or more transmission antenna channel detection results, so as to prevent the second communication device from matching the selected transmission antenna channel detection result with the transmission antenna combination incorrectly, Therefore, it is possible to perform antenna selection according to antenna channel detection results in a large-scale antenna scenario.
  • the first communication device may send one or more PPDUs to the second communication device, and the first PPDU is one of the one or more PPDUs.
  • the second communication device may perform transmission antenna channel detection based on the received one or more PPDUs, and obtain a transmission antenna channel detection result. Further, the second communication device can select a transmission antenna combination according to the obtained transmission antenna channel detection result, and indicate the identity of the selected transmission antenna combination to the first communication device, so that in a large-scale antenna scenario, according to the antenna Channel sounding results for antenna selection.
  • the second communication device sends the second frame to the first communication device.
  • the second frame includes the first antenna selection feedback result.
  • the first antenna selection feedback result includes a third identification field, where the third identification field may be used to carry the identification of the transmitting antenna combination selected by the second communication device.
  • the transmitting antenna combination selected by the second communication device is the first transmitting antenna combination
  • the third identification field may be used to indicate the identity of the first transmitting antenna combination.
  • the second communication device before the second communication device receives the first frame, the second communication device sends a third frame including third indication information, and the third indication information is used to request the first communication device to transmit an antenna channel detected information.
  • the third indication information is carried in the high-efficiency variant field of the third frame. Since the number of bits used to carry the relevant commands of the antenna selection process in the high-efficiency variant field is relatively large, the solution provided by this application can support more PPDUs (for example, the number of PPDUs that can be supported exceeds 16), thereby supporting More antenna combinations (the number of antenna combinations that can be supported exceeds 16), so that antenna selection can be performed according to antenna channel detection results in large-scale antenna scenarios.
  • the first communication device and the second communication device may negotiate, and through the negotiation, the second communication device knows the combination of transmitting antennas supported by the first communication device, and after negotiation, the first communication device and the second communication device The communication device sets a group identifier for the combination of transmitting antennas supported by the first communication device.
  • the second communication device receives a fourth frame from the first communication device, the fourth frame includes a fourth identification field, and the fourth identification field is used to indicate that the first communication device supports at least An identification of a combination of transmitting antennas, at least one identification of a combination of transmitting antennas includes an identification of a first combination of transmitting antennas.
  • the second communication device may also receive from the first communication device the sending antenna combination corresponding to the identifier of the sending antenna combination supported by the first communication device.
  • the first communication device may know the sending antenna combination identifier of each sending antenna combination, so as to carry it when sending the PPDU.
  • the second communication device may determine which antennas are specifically included in the first transmitting antenna combination identifier according to the first transmitting antenna combination identifier indicated by the first identifier field in the received first PPDU. It can be seen that, through negotiation, the second communication device can acquire more information related to antenna combinations, and subsequently can obtain more information related to links, so as to provide assistance for other subsequent processes.
  • the second communication device before the second communication device receives the first frame, the second communication device receives a ninth frame from the first communication device, the ninth frame includes seventh indication information, and the seventh indication information is used to indicate The total number of transmit antenna combinations supported by the first communication device.
  • the second communication device can estimate the overhead and duration of the transmit antenna selection process according to the seventh indication information, and the second communication device can also decide whether to cooperate with the first communication device based on the total number of transmit antenna combinations supported by the first communication device. establish a relationship between them.
  • the present application further provides a possible implementation manner, where the first identification field is located in the first PPDU preamble.
  • the first identification field includes: in the preamble: some or all bits in the general signaling field, and/or, some or all bits in the very high throughput signaling field.
  • the present application can use the field in the preamble of the existing NDP to carry the content of the first identification field, so that the content of the first identification field can be changed Well, it is compatible with the existing technology, and can also achieve the purpose of carrying the identity of the first transmitting antenna combination in the NDP.
  • the purpose of adding the first identification field in the NDP is achieved through the bits in these fields, which can be better compatible with the existing technology.
  • the first identification field may include: some bits or all bits in the general signaling field, and/or part of the next-generation signaling field bit or all bits.
  • the present application further provides a possible implementation manner, where the PPDU includes a data field and a preamble.
  • the first identification field may include a preamble, or some or all bits of at least one item in the data field.
  • the identification information of the first transmitting antenna combination is carried in at least one of the common signaling field, the very high throughput signaling field, or the aggregation control subfield of the data field.
  • the aggregation control subfield of the data field can also be used as the first identification field, In this way, on the one hand, more options can be provided for setting the position of the first identification field; on the other hand, since the existing field can be used to carry the content of the first identification field, it can be better compatible with the existing technology.
  • the first identification field may include: at least one of the general signaling field, the next-generation signaling field, or the aggregation control subfield of the data field Some or all of the bits.
  • the present application further provides a possible implementation manner, where the first frame further includes the number of NDPs.
  • the second communication device can determine the number of NDPs to be received subsequently based on the first frame, so as to check whether NDPs are missed.
  • the present application also provides a possible implementation manner, the first frame further includes a second identification field, and the first frame further includes a second identification field.
  • the second identification field is used to indicate the identification of the first transmitting antenna combination.
  • the second identifier field in the first frame may include identifiers of multiple transmit antenna combinations, for example, may include multiple transmit antenna combinations corresponding to multiple consecutive PPDUs sent subsequently in the first frame.
  • the first identification field in the first PPDU can carry some of the bits corresponding to the identification of the first transmitting antenna combination, thereby saving the number of bits occupied by the first identification field in the first PPDU, while the second communication
  • the device may combine the first identification field and the second identification field to determine all the bits corresponding to the identification of the first transmitting antenna combination, and then indicate to the first communication device the combination of transmitting antennas selected by the second communication device (for example, the second communication device Selecting all bits of the first combination of transmitting antennas), so that the first communication device determines the combination of transmitting antennas selected by the second communication device according to all bits of the combination of transmitting antennas fed back by the second communication device.
  • this application also provides a possible implementation manner, the first indication information and/or the number of NDPs carried Because: at least one station information field of the first frame includes the second indication information.
  • the second identification field includes some or all bits in at least one station information field including the second indication information in the first frame.
  • the second indication information indicates that the site information field includes information related to antenna selection. In this way, the second communication device may determine antenna selection-related information carried in the site information field carrying the second indication information when the second indication information is recognized, and then acquire antenna selection-related information from the site information field.
  • the second indication information can distinguish the site information field carrying antenna selection-related information from the site information field corresponding to a certain other conventional site, so that in the solution of using the site information field to carry antenna selection-related information, the conventional It affects the site information field corresponding to a certain site to achieve the purpose of being compatible with existing standards.
  • the second indication information is carried in the site information field Association ID field.
  • the second indication information includes one of: 2008-2043 or 2046.
  • the second communication device can determine according to the association identification field whether the site information field carries information related to antenna selection or site information corresponding to a certain second communication device. It can be seen that this solution can be better than the existing technology. compatible.
  • the present application also provides a possible implementation manner, where the second frame includes a MIMO control field,
  • the third identification field includes some or all bits in the MIMO control field.
  • MIMO Control multiple-input multiple-output control
  • the third indication information is carried in the aggregation control subfield At least one of the following contents of the : Control Identifier field, Antenna Selection Command field, or Antenna Selection Data field. Since the antenna selection command field and the antenna selection data field are divided in the existing standard, the antenna selection command field and the antenna selection data field are also divided into the A-control subfield in the high-efficiency variant, which can be compared with the command in the existing standard The form is more compatible.
  • the present application also provides a possible implementation manner, the space occupied by the antenna selection command field and the antenna selection data field
  • the number of bits is greater than 7 bits.
  • the number of bits occupied by the antenna selection data field is greater than 4 bits. Number of bits occupied by the antenna selection command field and the antenna selection data field: no more than 26 bits.
  • 802.11n Compared with the flow design of antenna selection based on the High Throughput Control (HTC) field in 802.11n, 802.11n supports up to 4 radio frequency chains, 8 antennas, and 16 antenna combinations. Therefore, the embodiment of the present application can carry more types of antenna selection commands through the MPDU shown in FIG. The number of supported PPDUs exceeds 16), so that more antenna combinations can be supported (the number of antenna combinations that can be supported exceeds 16).
  • HTC High Throughput Control
  • the present application also provides a possible implementation manner, where the first transmitting antenna combination is the One of k 1 transmit antenna combinations, where k 1 is a positive integer.
  • the first transmitting antenna combination is the One of k 1 transmit antenna combinations, where k 1 is a positive integer.
  • the second communication device receives two PPDUs containing the same antenna combination identification at different time points. If the detected channel changes, due to the The antenna combination identifiers included in the two PPDUs are the same, so the second communication device determines that the antenna combination has not changed, and therefore can determine that the channel itself has changed.
  • the first identification field includes: the first transmitting antenna combination All the bits corresponding to the identifier.
  • the second communication device can uniquely determine the identifier of a transmitting antenna combination according to the first identifier field carried in the PPDU.
  • the first identification field includes: the first transmitting antenna combination Part of the bits corresponding to the identifier. In this way, bits in the PPDU preamble can be saved.
  • the second communication device sends the first communication device
  • the third frame may also include the number of PPDUs.
  • the first communication device may determine how many PPDUs to send based on the number of PPDUs carried in the third frame, so that the first communication device may determine the number of PPDUs to be sent subsequently based on the requirements of the second communication device.
  • the number of PPDUs, so that the number of PPDUs subsequently sent by the first communication device matches the requirements of the second communication device as much as possible.
  • the first identification field includes: the first transmitting antenna combination The group identifier of the PPDU, and/or the sequence number of the first PPDU. This increases the flexibility of the scheme.
  • the embodiment of the present application provides an antenna channel detection method, in which the first communication device sends an eleventh frame to the second communication device, the eleventh frame includes first indication information, and the first indication information notifies the second
  • the second communication device performs channel detection of the transmitting antenna.
  • the first communication device sends a third physical layer protocol data unit PPDU to the second communication device; the third PPDU is used by the second communication device to detect a transmission antenna channel.
  • the third PPDU includes M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field. Because the first communication device can aggregate the PPDUs corresponding to the M1 groups of transmitting antenna combinations that need to be transmitted into one PPDU, thereby saving overhead, thereby improving antenna selection efficiency and system throughput.
  • the embodiment of the present application provides an antenna channel detection method, in which the second communication device receives the eleventh frame from the first communication device, the eleventh frame includes the first indication information, and the first indication information notifies The second communication device performs transmission antenna channel detection.
  • the second communication device receives the third PPDU from the first communication device; the third PPDU is used by the second communication device to detect the channel of the transmitting antenna.
  • the third PPDU includes M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field. Because the first communication device can aggregate the PPDUs corresponding to the M1 groups of transmitting antenna combinations that need to be transmitted into one PPDU, thereby saving overhead, thereby improving antenna selection efficiency and system throughput.
  • the present application also provides a possible implementation, where the third PPDU includes a preamble; the preamble includes the following At least one of the fields: legacy short training field, legacy long training field, legacy signaling field, repeated legacy signaling field, general signaling field, or very high throughput signaling field. In this way, only one copy of the part shared by each sending antenna combination can be sent, thereby saving overhead.
  • this application also provides a possible implementation, where any two of the M1 first information fields The duration of the packet extension field in the first information field is the same. In this way, the consistency of the receiving process can be improved.
  • this application also provides a possible implementation, where at least two of the M1 first information fields
  • the duration of the packet extension field in the first information field is different.
  • a data packet extension field other than the last data packet extension field may be shorter than the last data packet extension field, which is enough for the first communication device to switch antennas, so that signaling transmission efficiency can be improved.
  • the embodiment of the present application provides an antenna channel detection method, in which the first communication device sends a fifth frame to the second communication device, the fifth frame includes fourth indication information, and the fourth indication information indicates that the first The communication device performs receiving antenna channel detection.
  • the first communication device receives the second PPDU from the second communication device; the second PPDU is used for the first communication device to detect the receiving antenna channel, and the second PPDU includes a fifth identification field, and the fifth identification field is used to indicate the first receiving antenna Combination ID.
  • the second PPDU may include a data field.
  • the second PPDU may also not include a data field, for example, the second PPDU may be NDP. Since NDP does not include a data field, this saves overhead.
  • the first communication device may perform receiving antenna channel detection on the first receiving antenna combination according to the second PPDU, to obtain a receiving antenna channel detection result corresponding to the first receiving antenna combination. Since the NDP includes a fifth identification field indicating the identification of the first receiving antenna combination, the first communication device determines the corresponding relationship between the channel detection result of the receiving antenna corresponding to the NDP and the identification of the receiving antenna combination, and then the first communication device can Determining the identity of the receiving antenna combination selected based on the channel detection results of one or more receiving antennas, so as to prevent the first communication device from matching the selected receiving antenna channel detection results with the receiving antenna combination incorrectly, thereby realizing large-scale In the antenna scenario, the antenna is selected according to the result of the antenna channel detection.
  • the second communication device may send one or more PPDUs to the first communication device, and the second PPDU is one of the one or more PPDUs.
  • the first communication device may perform receiving antenna channel detection based on the received one or more PPDUs, and obtain a receiving antenna channel detection result. Further, the first communication device can select a receiving antenna combination according to the obtained receiving antenna channel detection result, and indicate the identity of the selected receiving antenna combination to the second communication device, so that in a large-scale antenna scenario, according to the antenna Channel sounding results for antenna selection. For example, the first communication device sends a sixth frame to the second communication device, where the sixth frame includes the second antenna selection feedback result.
  • the second antenna selection feedback result includes a seventh identification field, where the seventh identification field may be used to carry the identification of the receiving antenna combination selected by the first communication device.
  • the receiving antenna combination selected by the first communication device is the first receiving antenna combination
  • the seventh identification field may be used to indicate the identity of the first receiving antenna combination.
  • the first communication device before sending the fifth frame to the second communication device, the first communication device further includes: the first communication device receives a seventh frame including sixth indication information, and the sixth indication information is used to request the A communication device sends information for channel sounding of a receiving antenna.
  • the sixth indication information is carried in the high-efficiency variant field of the seventh frame. Since the number of bits used to carry the relevant commands of the antenna selection process in the high-efficiency variant field is relatively large, the solution provided by this application can support more PPDUs (for example, the number of PPDUs that can be supported exceeds 16), thereby supporting More antenna combinations (the number of antenna combinations that can be supported exceeds 16), so that antenna selection can be performed according to antenna channel detection results in large-scale antenna scenarios.
  • the first communication device and the second communication device may negotiate, and through the negotiation, the second communication device knows the combination of receiving antennas supported by the first communication device, and after negotiation, the first communication device and the second communication device The communication device sets a group identifier for the combination of receiving antennas supported by the first communication device.
  • the first communication device before the first communication device sends the fifth frame to the second communication device, it further includes: the first communication device sends an eighth frame to the second communication device, and the eighth frame includes the eighth identification field, the eighth identification field is used to indicate the identification of at least one receiving antenna combination supported by the first communication device, and the identification of the at least one receiving antenna combination includes the identification of the first receiving antenna combination.
  • the first communication device may also indicate to the second communication device the receiving antenna combination corresponding to the identifier of the receiving antenna combination supported by itself. In this way, the second communication device may carry the identifier of the receiving antenna combination when sending the PPDU. Moreover, the second communication device may determine which antennas are specifically included in the first receiving antenna combination. It can be seen that, through negotiation, the second communication device can acquire more information related to antenna combinations, and subsequently can obtain more information related to links, so as to provide assistance for other subsequent procedures.
  • the method before the first communication device sends the fifth frame to the second communication device, the method further includes: the first communication device sends a tenth frame to the second communication device, the tenth frame includes eighth indication information, The eighth indication information is used to indicate the total number of receiving antenna combinations supported by the first communication device.
  • the second communication device can estimate the overhead and duration of the receiving antenna selection process according to the eighth indication information, and the second communication device can also decide whether to cooperate with the first communication device based on the total number of receiving antenna combinations supported by the first communication device. establish a relationship between them.
  • the embodiment of the present application provides an antenna channel detection method.
  • the second communication device receives the fifth frame from the first communication device, the fifth frame includes fourth indication information, and the fourth indication information indicates the A communication device performs receiving antenna channel detection.
  • the second communication device sends a second PPDU to the first communication device; the second PPDU is used for the first communication device to perform receiving antenna channel detection, and the second PPDU includes a fifth identification field, and the fifth identification field is used to indicate the combination of the first receiving antenna logo.
  • the second PPDU may include a data field.
  • the second PPDU may also not include a data field, for example, the second PPDU may be NDP. Since NDP does not include a data field, this saves overhead.
  • the first communication device since the NDP includes the fifth identification field indicating the identification of the first receiving antenna combination, the first communication device determines the corresponding relationship between the channel detection result of the receiving antenna corresponding to the NDP and the identification of the receiving antenna combination, Furthermore, the first communication device may determine the identity of the receiving antenna combination selected based on the channel detection results of one or more receiving antennas, so as to prevent the first communication device from matching the selected receiving antenna channel detection results with the receiving antenna combination incorrectly, Therefore, it is possible to perform antenna selection according to antenna channel detection results in a large-scale antenna scenario.
  • the second communication device may send one or more PPDUs to the first communication device, and the second PPDU is one of the one or more PPDUs.
  • the first communication device may perform receiving antenna channel detection based on the received one or more PPDUs, and obtain a receiving antenna channel detection result. Further, the first communication device can select a receiving antenna combination according to the obtained receiving antenna channel detection result, and indicate the identity of the selected receiving antenna combination to the second communication device, so that in a large-scale antenna scenario, according to the antenna Channel sounding results for antenna selection.
  • the second communication device receives the sixth frame from the first communication device, and the sixth frame includes the second antenna selection feedback result.
  • the second antenna selection feedback result includes a seventh identification field, where the seventh identification field may be used to carry the identification of the receiving antenna combination selected by the first communication device.
  • the receiving antenna combination selected by the first communication device is the first receiving antenna combination
  • the seventh identification field may be used to indicate the identity of the first receiving antenna combination.
  • the second communication device before the second communication device receives the fifth frame from the first communication device, it further includes: the second communication device sends a seventh frame including sixth indication information, and the sixth indication information is used to request The first communication device sends information for performing channel detection of the receiving antenna.
  • the sixth indication information is carried in the high-efficiency variant field of the seventh frame. Since the number of bits used to carry the relevant commands of the antenna selection process in the high-efficiency variant field is relatively large, the solution provided by this application can support more PPDUs (for example, the number of PPDUs that can be supported exceeds 16), thereby supporting More antenna combinations (the number of antenna combinations that can be supported exceeds 16), so that antenna selection can be performed according to antenna channel detection results in large-scale antenna scenarios.
  • the first communication device and the second communication device may negotiate, and through the negotiation, the second communication device knows the combination of receiving antennas supported by the first communication device, and after negotiation, the first communication device and the second communication device The communication device sets a group identifier for the combination of receiving antennas supported by the first communication device.
  • the eighth identification field is used to indicate the identification of at least one receiving antenna combination supported by the first communication device, where the identification of the at least one receiving antenna combination includes the identification of the first receiving antenna combination.
  • the first communication device may also indicate to the second communication device the receiving antenna combination corresponding to the identifier of the receiving antenna combination supported by itself. In this way, the second communication device may carry the identifier of the receiving antenna combination when sending the PPDU. Moreover, the second communication device may determine which antennas are specifically included in the first receiving antenna combination. It can be seen that, through negotiation, the second communication device can acquire more information related to antenna combinations, and subsequently can obtain more information related to links, so as to provide assistance for other subsequent processes.
  • the second communication device before the first communication device sends the fifth frame to the second communication device, the second communication device receives the tenth frame from the first communication device, the tenth frame includes the eighth indication information, and the eighth The indication information is used to indicate the total number of receiving antenna combinations supported by the first communication device.
  • the second communication device can estimate the overhead and duration of the receiving antenna selection process according to the eighth indication information, and the second communication device can also decide whether to cooperate with the first communication device based on the total number of receiving antenna combinations supported by the first communication device. establish a relationship between them.
  • the present application further provides a possible implementation manner, where the fifth identification field is located in the second PPDU preamble.
  • the fifth identification field is the preamble: some or all bits in the general signaling field, and/or, some or all bits in the very high throughput signaling field.
  • the second PPDU is NDP
  • the present application can use the field in the preamble of the existing NDP to carry the content of the fifth identification field, so that the content of the fifth identification field can be changed Well, it is compatible with the existing technology, and can also achieve the purpose of carrying the identity of the first receiving antenna combination in the NDP.
  • the purpose of adding the first identification field in the NDP is achieved by using the bits in these fields, which can be better compatible with the existing technology.
  • the fifth identification field may include: some bits or all bits in the general signaling field, and/or part of the next-generation signaling field bit or all bits.
  • the present application further provides a possible implementation manner, where the PPDU includes a data field and a preamble.
  • the fifth identification field includes a preamble, or some or all bits in at least one of the data fields.
  • the identification information of the first receiving antenna combination is carried in at least one of the common signaling field, the very high throughput signaling field, or the aggregation control subfield of the data field.
  • the aggregation control subfield of the data field can also be used as the fifth identification field, In this way, on the one hand, more options can be provided for setting the position of the fifth identification field; on the other hand, since the existing field can be used to carry the content of the fifth identification field, it can be better compatible with the existing technology.
  • the identification information of the first receiving antenna combination is carried in: the general signaling field, the next-generation signaling field, or the aggregation control subfield of the data field at least one.
  • the present application further provides a possible implementation manner, where the fifth frame further includes the number of NDPs.
  • the second communication device can determine the number of NDPs to be received subsequently based on the first frame, so as to check whether NDPs are missed.
  • the present application also provides a possible implementation manner, the fifth frame further includes a sixth identification field, and the fifth frame further includes a sixth identification field.
  • the six identification fields are used to indicate the identification of the first receiving antenna combination.
  • the sixth identification field in the fifth frame may include identifications of multiple receiving antenna combinations, for example, may include multiple receiving antenna combinations corresponding to multiple consecutive PPDUs sent subsequently in the fifth frame.
  • the fifth identification field in the second PPDU can carry some of the bits corresponding to the identification of the first receiving antenna combination, thereby saving the number of bits occupied by the fifth identification field in the second PPDU, while the first communication
  • the device may combine the fifth identification field and the sixth identification field to determine all the bits corresponding to the identification of the first receiving antenna combination, and then indicate to the first communication device the combination of transmitting antennas selected by the second communication device (for example, the second communication device Selecting all bits of the first combination of transmitting antennas), so that the first communication device determines the combination of transmitting antennas selected by the second communication device according to all bits of the combination of transmitting antennas fed back by the second communication device.
  • the present application also provides a possible implementation manner, where the fourth indication information and/or the number of NDPs carry Because: at least one station information field of the fifth frame includes the fifth indication information.
  • the sixth identification field includes some or all bits in at least one station information field of the fifth frame that includes the fifth indication information.
  • the fifth indication information indicates that the station information field includes information related to antenna selection. In this way, the second communication device may determine that the information related to antenna selection is carried in the site information field carrying the fifth indication information when the fifth indication information is recognized, and then obtain the antenna selection related information from the site information field.
  • the present application also provides a possible implementation manner, the fifth indication information is carried in the site information field Association ID field.
  • the fifth indication information includes one of: 2008-2043 or 2046.
  • the second communication device can determine according to the association identification field whether the site information field carries information related to antenna selection or site information corresponding to a certain second communication device. It can be seen that this solution can be better than the existing technology. compatible.
  • the present application also provides a possible implementation, where the fourth indication information is carried in the triggering of the fifth frame.
  • the fifth frame may also be the second trigger frame, and through this solution, bits in the existing second trigger frame may be used to achieve the purpose of adding antenna selection-related information in the second trigger frame, which is compatible with the prior art.
  • the present application also provides a possible implementation, the sixth frame includes the MIMO Control field, and the seventh identification The field includes some or all bits in the MIMO Control field.
  • the purpose of adding the third identification field in the second frame can be realized by using the bits in the existing multiple-input multiple-output control (MIMO Control) field. This solution will not increase the length of the second frame additionally, and can be more Good compatibility with existing technologies.
  • the sixth indication information is carried in the A-control subfield At least one of the following in .
  • a control identifier field, an antenna selection command field, or an antenna selection data field Since the antenna selection command field and the antenna selection data field are divided in the existing standard, the antenna selection command field and the antenna selection data field are also divided into the A-control subfield in the high-efficiency variant, which can be compared with the command in the existing standard The form is more compatible.
  • the sixth indication information is carried in at least one of the control identifier field, the antenna selection command field, or the antenna selection data field in the A-control subfield, which may be compatible with the prior art.
  • the present application also provides a possible implementation manner, where the antenna selection command field and the antenna selection data field occupy The number of bits is greater than 7 bits.
  • the number of bits occupied by the antenna selection data field is greater than 4 bits. Number of bits occupied by the antenna selection command field and the antenna selection data field: no more than 26 bits.
  • 802.11n Compared with the flow design of antenna selection based on the High Throughput Control (HTC) field in 802.11n, 802.11n supports up to 4 radio frequency chains, 8 antennas, and 16 antenna combinations. Therefore, the embodiment of the present application can carry more types of antenna selection commands through the MPDU shown in FIG. The number of supported PPDUs exceeds 16), so that more antenna combinations can be supported (the number of antenna combinations that can be supported exceeds 16).
  • HTC High Throughput Control
  • the present application also provides a possible implementation manner, where the first receiving antenna combination is the One of k 2 receiving antenna combinations, where k 2 is a positive integer. There is a one-to-one correspondence between the k 2 receiving antenna combinations and the identities of the k 2 receiving antenna combinations. Since the receiving antenna combination and the identification of the receiving antenna combination have a one-to-one correspondence, the second communication device receives two PPDUs containing the same antenna combination identification at different time points. If the detected channel changes, due to the The antenna combination identifiers included in the two PPDUs are the same, so the second communication device determines that the antenna combination has not changed, and therefore can determine that the channel itself has changed.
  • the present application also provides a possible implementation manner, the fifth identification field includes: the first receiving antenna combination All the bits corresponding to the identifier. In this way, the second communication device can uniquely determine the identifier of a receiving antenna combination according to the first identifier field carried in the PPDU.
  • the fifth identification field includes: the first receiving antenna combination Part of the bits corresponding to the identifier. In this way, bits in the PPDU preamble can be saved.
  • the second communication device sends the The seventh frame also includes: the number of PPDUs.
  • the first communication device can determine the number of PPDUs to be sent by the second communication device based on the number of PPDUs carried in the seventh frame, so that the number of PPDUs to be sent by the second communication device determined by the first communication device is as close as possible to the number of PPDUs to be sent by the second communication device. The requirements of the two communication devices are matched.
  • the fifth identification field includes: the first receiving antenna combination The group identifier of the PPDU, and/or the sequence number of the second PPDU. This increases the flexibility of the scheme.
  • the embodiment of the present application provides an antenna channel detection method, in which the first communication device sends a twelfth frame to the second communication device, the twelfth frame includes fourth indication information, and the fourth indication information indicates the pair
  • the first communication device performs receiving antenna channel detection.
  • the first communication device receives the fourth PPDU from the second communication device; the fourth PPDU is used by the second communication device to detect channels of receiving antennas.
  • the fourth PPPDU includes M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field.
  • the second communication device can aggregate the PPDUs corresponding to M2 sets of receiving antenna combinations that need to be sent into one PPDU, it can save overhead, thereby improving the efficiency of antenna selection and system throughput.
  • the embodiment of the present application provides an antenna channel detection method, in which the second communication device receives the twelfth frame from the first communication device, the twelfth frame includes fourth indication information, and the fourth indication information indicates Perform receiving antenna channel detection on the first communication device.
  • the second communication device sends a fourth PPDU to the first communication device; the fourth PPDU is used by the second communication device to detect channels of receiving antennas.
  • the fourth PPDU includes M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field.
  • the second communication device can aggregate the PPDUs corresponding to M2 sets of receiving antenna combinations that need to be sent into one PPDU, it can save overhead, thereby improving the efficiency of antenna selection and system throughput.
  • the fourth PPDU includes a preamble; the preamble includes the following At least one of the fields: Legacy Short Training Field L-STF, Legacy Long Training Field L-LTF, Legacy Signaling Field L-SIG, Repeated Legacy Signaling Field RL-SIG, Universal Signaling Field U-SIG, or Very High throughput signaling field EHT-SIG.
  • the preamble includes the following At least one of the fields: Legacy Short Training Field L-STF, Legacy Long Training Field L-LTF, Legacy Signaling Field L-SIG, Repeated Legacy Signaling Field RL-SIG, Universal Signaling Field U-SIG, or Very High throughput signaling field EHT-SIG.
  • the present application also provides a possible implementation manner, any two of the M 2 second information fields
  • the duration of the data packet extension field in the second information field is the same. In this way, the consistency of the receiving process can be improved.
  • the present application also provides a possible implementation manner, at least two of the M 2 second information fields
  • the duration of the data packet extension field in the second information field is different.
  • a data packet extension field other than the last data packet extension field may be shorter than the last data packet extension field, which is enough for the first communication device to switch antennas, so that signaling transmission efficiency can be improved.
  • a communication device including a communication unit and a processing unit.
  • the communication device may be the above-mentioned first communication device, or may be the above-mentioned second communication device.
  • the communications device may implement any one of the first aspect to the eighth aspect above, and any implementation manner of any one aspect.
  • the communication unit is used to perform functions related to transmission and reception.
  • the communication unit includes a receiving unit and a sending unit.
  • the communication device is a communication chip
  • the processing unit may be a processing circuit, one or more processors or processor cores
  • the communication unit may be an interface circuit, an input/output circuit or a port of the communication chip.
  • the communication unit may be a transmitter and a receiver, or the communication unit may be a transmitter and a receiver.
  • the communication device further includes various modules that can be used to implement any one of the foregoing first to eighth aspects, and any implementation manner of any one aspect.
  • a communication device including a processor and a transceiver.
  • the communication device may be the above-mentioned first communication device, or may be the above-mentioned second communication device.
  • storage is also included.
  • the memory is used to store computer programs or instructions, and the processor is used to call and run the computer programs or instructions from the memory.
  • the communication device executes the first aspect to the first aspect above. Any one of the eight aspects, and any implementation of any one aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the transceiver may include a transmitter (transmitter) and a receiver (receiver).
  • a communication device including a processor.
  • the communication device may be the above-mentioned first communication device, or may be the above-mentioned second communication device.
  • the processor is coupled with the memory, and may be used to implement any one of the first aspect to the eighth aspect, and any implementation manner of any one aspect.
  • the communication device may be the above-mentioned first communication device, or may be the above-mentioned second communication device.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pipe feet or related circuits, etc.
  • a processor may also be embodied as processing circuitry or logic circuitry.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pipe feet or related circuits, etc.
  • a processor may also be embodied as processing circuitry or logic circuitry.
  • a system in a twelfth aspect, includes the above-mentioned first communication device and the second communication device.
  • a computer program product includes: a computer program (also referred to as code, or instruction), which, when the computer program is executed, causes the computer to execute the above-mentioned first aspect to the eighth aspect.
  • a computer program also referred to as code, or instruction
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the computer executes the above-mentioned first aspect to the first aspect. Any one of the eight aspects, and any implementation of any one aspect.
  • a chip system may include a processing circuit.
  • the processing circuit may be used to execute any one of the first aspect to the eighth aspect above, and any implementation manner of any one aspect through an interface circuit.
  • the chip system further includes a memory.
  • Memory used to store computer programs (also called code, or instructions).
  • the processing circuit may be used to call and run the computer program from the memory, so that the device installed with the system-on-a-chip executes any one of the first to eighth aspects, and any implementation manner of any one aspect.
  • a sixteenth aspect provides a processing device, including: an interface circuit and a processing circuit.
  • Interface circuitry may include input circuitry and output circuitry.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that any one of the first aspect to the eighth aspect, and any implementation manner of any one aspect are realized.
  • the above-mentioned processing device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the present application does not limit the specific implementation manners of the processor and various circuits.
  • the communication device may be a part of the first communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processing circuitry may be logic circuitry on the chip.
  • the communication device may be a part of the second communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processing circuitry may be logic circuitry on the chip.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of another system architecture provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of signaling interaction of an antenna channel detection method provided by the implementation of the present application.
  • FIG. 5 is a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • FIG. 6 is a schematic structural diagram of an MPDU that can carry a third frame provided by the implementation of the present application.
  • FIG. 7 is a schematic structural diagram of the first frame provided by the implementation of the present application when the first frame is an NDPA frame;
  • Fig. 8a is a schematic structural diagram of the first PPDU in the case where the first PPDU provided by the implementation of the present application is NDP;
  • Fig. 8b is a schematic structural diagram of the first PPDU in the case where the first PPDU provided by the implementation of the present application is an NG detection NDP;
  • FIG. 8c is a schematic structural diagram of the first PPDU including the data field provided by the implementation of the present application.
  • FIG. 9 is a schematic structural diagram of the MIMO Control field in the second frame when the second frame provided by the implementation of the present application is a beamforming report frame;
  • FIG. 10 is a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • FIG. 11 is a schematic diagram of a frame structure of a third PPDU provided by the implementation of the present application.
  • FIG. 12 is a schematic diagram of signaling interaction of an antenna channel detection method provided by the implementation of the present application.
  • FIG. 13 is a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • FIG. 14 is a schematic structural diagram of a second trigger frame provided by the implementation of the present application.
  • FIG. 15 is a schematic structural diagram of the fifth frame provided by the implementation of the present application in the case where the fifth frame is an NDPA frame;
  • Fig. 16a is a schematic structural diagram of the second PPDU in the case where the second PPDU provided by the implementation of the present application is NDP;
  • FIG. 16b is a schematic structural diagram of the second PPDU in the case where the second PPDU provided by the implementation of the present application is NDP;
  • Fig. 16c is a schematic structural diagram of a second PPDU including a data field provided by the implementation of the present application.
  • FIG. 17 is a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • FIG. 18 is a schematic diagram of a frame structure of a fourth PPDU provided by the implementation of the present application.
  • FIG. 19 is a schematic diagram of a frame structure of another fourth PPDU provided by the implementation of the present application.
  • FIG. 20 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 exemplarily shows a schematic diagram of a communication system architecture applicable to this embodiment of the present application.
  • the communication system includes a first communication device 101 and a second communication device 102 .
  • An embodiment of the present application provides an antenna selection solution, which may be used to select an antenna for a device.
  • antenna selection for the first communication device 101 is taken as an example for description. If it is necessary to select an antenna for the second communication device 102, the antenna selection process of the second communication device 102 may refer to the antenna selection process of the first communication device 101, which will not be repeated here.
  • the first communication device 101 may include a transmitting antenna and a receiving antenna.
  • a solution for selecting a transmitting antenna of the first communication device 101 is provided.
  • the first communication device 101 sends the first frame to the second communication device 102 .
  • the first frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the first communication device 101 sends a first physical layer protocol data unit (physical layer protocol data unit, PPDU) to the second communication device 102.
  • the first PPDU includes a first identification field, where the first identification field is used to indicate the identification of the first transmitting antenna combination.
  • the first PPDU may be a PPDU including a data field.
  • the first PPDU may not include a data field, for example, the first PPDU is a null data packet (null data packet, NDP).
  • NDP null data packet
  • the NDP may also be referred to as an empty data packet. NDP may not include a data field.
  • the first PPDU is an NDP
  • the NDP since the NDP does not include a data field, overhead can be saved.
  • the number of PPDUs used for transmitting antenna channel detection is also large, and the overhead of transmitting antenna selection increases accordingly.
  • the solution of transmitting antenna channel detection through NDP can save more overhead in a large-scale antenna scenario.
  • the NDP since the NDP does not include the data field, the NDP cannot carry the sequence number information of the PPDU, and the second communication device can only deduce the NDP based on the order of the NDP received by itself.
  • the sequence number information of the corresponding PPDU since the second communication device misses receiving a certain NDP, the second communication device cannot correctly infer the sequence number information of the PPDU corresponding to the received NDP, and thus cannot correctly feed back the transmit antenna channel to the first communication device side.
  • the corresponding relationship between the detection result and the sequence number information of the PPDU may lead to the failure of the selection of the transmitting antenna at the side of the first communication device.
  • the error probability of the second communication device determining the sequence number information of the PPDU corresponding to the NDP will be greater.
  • a first identification field for indicating the identification of the first transmitting antenna combination is added to the NDP, so that the second communication device can determine the first transmitting antenna combination corresponding to the received NDP , and then the second communication device may determine the channel detection result of the transmission antenna obtained according to the NDP as: the result of the channel detection of the transmission antenna corresponding to the identification of the first combination of transmission antennas.
  • the second communication device can determine the correspondence between the NDP-corresponding transmission antenna channel detection result and the identification of the transmission antenna combination, the second communication device can then determine the transmission antenna combination selected based on one or more transmission antenna channel detection results , so as to prevent the second communication device from matching the selected transmission antenna channel detection result with the transmission antenna combination incorrectly, so as to implement antenna selection according to the antenna channel detection result in a large-scale antenna scenario. It is also convenient for the second communication device and the first communication device to perform antenna selection error recovery (for example, even if the second communication device makes a mistake in the sequence number information of the PPDU, it can correctly determine the combination ID of the transmitting antenna according to the information in the PPDU indicating the combination ID of the transmitting antenna. The identifier of the transmit antenna combination corresponding to the PPDU).
  • the above content takes the antenna selection process of the transmitting antenna on the first communication device side as an example to introduce, and this embodiment of the present application may also provide a solution for selecting a receiving antenna of the first communication device. Subsequent content will describe the two schemes in detail. I won't go into details here.
  • wireless local area network wireless local area network
  • GSM global mobile communication
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • wideband code division multiple access wideband5code division multiple access
  • WCDMA wideband5code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution, LTE
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex
  • TDD universal mobile telecommunications system
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interconnection microwave access
  • wireless local area network wireless local area network
  • the embodiments of the present application can be applied to any protocol in the IEEE 802.11 series protocols currently adopted by the WLAN.
  • Including 802.11be it may also apply to standards after 802.11be.
  • a WLAN may include one or more basic service sets (basic service set, BSS), and the network nodes in the basic service set include an access point (access point, AP) and a station (station, STA).
  • FIG. 2 exemplarily shows a schematic diagram of another system architecture provided by an embodiment of the present application.
  • the communication system includes one or more APs, and may also include one or more STAs.
  • FIG. 1 takes two APs (for example, AP201 and AP202 in FIG. 2 ) and three STAs (for example, STA203 , STA204 and STA205 in FIG. 2 ) as an example.
  • the first communication device 101 in FIG. 1 may be the AP or the STA in FIG. 2 .
  • the second communication device 102 in FIG. 2 may be the AP or the STA in FIG. 2 .
  • both the first communication device 101 and the second communication device 102 in FIG. 1 may be APs, for example, the first communication device 101 is an AP201, and the second communication device 102 is an AP202.
  • both the first communication device 101 and the second communication device 102 in FIG. 1 may be STAs, for example, the first communication device 101 is an STA204, and the second communication device 102 is an STA205.
  • the solution provided by the embodiment of the present application may also be applicable to communication between one AP and one or more STAs, and also applicable to communication between multiple APs and one or more STAs.
  • the communication between AP201 and STA203 in FIG. 2 may be an AP and an STA respectively.
  • the first communication device 101 may be a STA203
  • the second communication device may be an AP201.
  • the first communication device 101 is an AP201
  • the second communication device 102 is a STA203.
  • the following is an exemplary description, only taking the first communication device 101 as an AP and the second communication device 102 as an example to describe the application scenario of the embodiment of the present application and the method of the embodiment of the present application.
  • the STA in the embodiment of the present application may also be called a system, a user unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or User equipment (user equipment, UE).
  • the STA can be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Wi-Fi) communication-capable handheld devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the station may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • the site can be a tablet computer supporting the Wi-Fi communication function, a set-top box supporting the Wi-Fi communication function, a smart TV supporting the Wi-Fi communication function, a smart wearable device supporting the Wi-Fi communication function, a Wi-Fi In-vehicle communication devices with communication functions, computers supporting Wi-Fi communication functions, etc.
  • the station may support the 802.11be standard.
  • the station can also support multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • WLAN wireless local area networks
  • the access point in this application may be an extremely high throughput (extremely high throughput, EHT) STA, or an STA applicable to a certain future generation of Wi-Fi standards.
  • EHT extremely high throughput
  • the AP can be used to communicate with the access terminal (such as STA) through the wireless local area network, and transmit the data of the access terminal to the network side, or transmit the data from the network side to the access terminal.
  • AP is also called wireless access point or hotspot etc.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings, and campuses, and can also be deployed outdoors.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a communication server, router, switch, bridge, computer, mobile phone, etc. with a wireless fidelity (wireless fidelity, WiFi) chip.
  • the AP may be a device supporting multiple WLAN standards such as 802.11.
  • Various standards can be used for wireless communication between the AP and the STA. For example, a single-user multiple-input multiple-output (SU-MIMO) technology or a multi-user multiple-input multiple-output (MU -MIMO) technology for wireless communication.
  • SU-MIMO single-user multiple-input multiple-output
  • MU -MIMO multi-user multiple-input multiple-output
  • access points and stations can be devices applied in the Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT, internet of things), smart cameras in smart homes, smart remote controls, smart water meters and electricity meters, And sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras in smart homes smart remote controls
  • smart water meters and electricity meters smart cities, etc.
  • a communication device provided in the embodiment of the present application may be a wireless communication device that supports multiple links for parallel transmission, for example, it is called a multi-link device (Multi-link device) or a multi-band device (multi-band device) ). Compared with devices that only support single-link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • Multi-link device multi-link device
  • multi-band device multi-band device
  • a multi-link device includes one or more affiliated STAs (affiliated STAs).
  • An affiliated STA is a logical station that can work on one link.
  • the affiliated station may be an access point (Access Point, AP) or a non-Access Point Station (non-Access Point Station, non-AP STA).
  • the multi-link device whose affiliated station is AP can be called multi-link AP or multi-link AP device or AP multi-link device (AP multi-link device), and the affiliated station is non-AP STA
  • the multi-link device may be called a multi-link STA or a multi-link STA device or an STA multi-link device (STA multi-link device).
  • FIG. 3 exemplarily shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device shown in FIG. 3 may be a schematic diagram of the internal structure of the first communication device 101 in FIG.
  • the schematic diagram of the internal structure of the second communication device 102 in FIG. 2 may also be the schematic diagram of the internal structure of the AP in FIG. 2 (such as AP201 or AP202 in FIG. 2 ), and may also be the STA in FIG. , STA204 or STA205) internal structure diagram.
  • the communication device shown in FIG. 3 may include multiple antennas, and may be a device with more than two antennas.
  • the communication device includes a physical layer (physical layer, PHY) processing circuit, a media access control (media access control, MAC) processing circuit, a memory, a controller, a scheduler, and a processor.
  • PHY physical layer
  • MAC media access control
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used to process MAC layer signals
  • the memory can be used to store signaling information, etc.
  • the controller is a component that can be controlled
  • the scheduler is a component that can The component that performs scheduling
  • the processor can be used to parse signaling information, process related data, etc.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • FIG. 4 exemplarily shows a schematic diagram of signaling interaction of an antenna channel detection method provided by the implementation of the present application.
  • FIG. 4 shows the interaction between the first communication device and the second communication device as an example.
  • the first communication device may also be called an antenna selection sender
  • the second communication device may also be called an antenna selection responder.
  • the first communication device in FIG. 4 may be the first communication device in FIG. 1 , or the AP or STA in FIG. 2 , or the communication device in FIG. 3 .
  • the second communication device in FIG. 4 may be the aforementioned second communication device in FIG. 1 , may also be the AP or STA in FIG. 2 , or may be the communication device in FIG. 3 .
  • the first communication device and the second communication device in FIG. 4 may both be APs, or both be STAs, or be APs and STAs respectively.
  • the first communication device is an AP and the second communication device is an STA as an example. exhibit.
  • the solution provided by the embodiment of the present application may be applicable to the process of detecting the channel of the transmitting antenna between the AP and a single STA, and may also be applicable to the process of detecting the channel of the transmitting antenna between the AP and multiple STAs.
  • FIG. 4 is illustrated by taking the flow of transmitting antenna channel detection between the AP and multiple STAs (such as STA203, STA204 and STA205 in FIG. 4) as an example.
  • the method includes:
  • the first communication device sends a first frame to the second communication device, where the first frame includes first indication information, and the first indication information notifies the second communication device to perform transmission antenna channel detection.
  • the second communication device receives the first frame from the first communication device.
  • the first communication device sends a first physical layer protocol data unit (PHY protocol data unit, PPDU) to the second communication device.
  • the first PPDU is used by the second communication device to perform channel detection of the transmitting antenna.
  • the first PPDU includes a first identification field, where the first identification field is used to indicate the identification of the first transmitting antenna combination.
  • the second communication device receives the first PPDU from the first communication device.
  • the first communication device may send one or more PPDUs after a short inter-frame space (short inter-frame space, SIFS), and adjacent PPDUs
  • SIFS short inter-frame space
  • the intervals can also be separated by SIFS.
  • SIFS is taken as an example, and other durations, such as 25 microseconds, can also be used, and the scheme of the present invention does not limit this.
  • the first PPDU is one of the one or more PPDUs sent by the first communication device in S402.
  • the PPDU in this embodiment of the present application may also be referred to as a physical layer data packet, or a physical layer data packet.
  • the first PPDU in S402 may be a PPDU including a data field.
  • the first PPDU in S402 may not include a data field
  • the first PPDU is a null data packet (null data packet, NDP) that does not include a data field.
  • NDP does not contain a data (data) field, which is a special case of PPDU and can usually be used for channel sounding (Channel Sounding). Since the NDP does not include a data field, using the NDP as the first PPDU can save overhead.
  • the number of first PPDUs used for transmitting antenna channel detection is also large, and the overhead of transmitting antenna selection increases accordingly.
  • the scheme of transmitting antenna channel detection through NDP can save more overhead in a large-scale antenna scenario.
  • the first communication device may send one or more PPDUs to the second communication device, and the first PPDU is one of the one or more PPDUs.
  • the PPDUs in the one or more PPDUs may include their respective first identification fields, and the first identification fields of the PPDUs in the one or more PPDUs are used to indicate the identification of the transmitting antenna combination corresponding to the PPDU. For example, since the first PPDU is used for transmitting antenna channel detection for the first transmitting antenna combination, the first identifier field in the first PPDU indicates the identifier of the first transmitting antenna combination.
  • another PPDU except the first PPPDU among the one or more PPDUs is a PPDU used for transmitting antenna channel detection for the second transmitting antenna combination, then the first identification field in the PPDU indicates that the second transmitting Identification of the antenna combination.
  • the PPDU sent by the first communication device to the second communication device may also be understood as a detection PPDU, which is a PPDU used for antenna channel detection.
  • the second communication device may perform transmission antenna channel detection based on the received one or more PPDUs, and obtain a transmission antenna channel detection result.
  • the second communication device may select a transmission antenna combination according to the obtained transmission antenna channel detection result, and indicate the identifier of the selected transmission antenna combination to the first communication device. For example, by executing S403 after S402:
  • the second communication device sends the second frame.
  • the second frame includes a first antenna selection feedback result
  • the first antenna selection feedback result includes a third identification field.
  • the third identification field is used to indicate the identification of the first transmitting antenna combination.
  • the third identification field in S403 may be used to carry the identification of the transmitting antenna combination selected by the second communication device.
  • the transmitting antenna combination selected by the second communication device is the first transmitting antenna combination
  • the third identification field may be used to indicate the identity of the first transmitting antenna combination.
  • the transmission antenna combination selected by the second communication device is shown as an example.
  • the second communication device may also select other transmission antenna combinations (in this case , the third identification field needs to indicate the other combination of transmitting antennas), which is not limited in this embodiment of the present application.
  • the second communication device performs transmission antenna channel detection according to the first PPDU, obtains a first antenna selection feedback result, and carries the first antenna selection feedback result in the second frame for transmission.
  • the first communication device receives the second frame from the second communication device.
  • the second communication device that detects the channel of the transmitting antenna may be a device with antenna selection capabilities (Antenna Selection Capability, ASEL) capabilities (Capabilities).
  • the antenna selection function sender (such as the first communication device) can use the NDP detection PPDU to perform ASEL channel detection, and the corresponding English can be: "ASEL transmitter uses NDP sounding PPDUs for the ASEL sounding".
  • the second frame can also be ASEL feedback (feedback).
  • one or more second communication devices may perform transmission antenna channel detection according to the first PPDU, and obtain an antenna selection feedback result.
  • a second communication device is used as an example for introduction.
  • the antenna selection feedback result of the transmitting antenna of STA203 (second communication device) in FIG. 4 is called the first antenna selection feedback result.
  • the antenna selection feedback results fed back by different second communication devices may be different or the same, which is not limited by this embodiment of the present application.
  • the combinations of transmitting antennas of the first communication device selected by different second communication devices may be different or the same, which is not limited by this embodiment of the present application.
  • STA203 the second communication device
  • STA204 may select the first transmission antenna combination, and may also select other transmission antenna combinations.
  • the second communication device determines the channel detection result and the transmitting antenna channel detection result corresponding to the PPDU corresponding to the PPDU.
  • the corresponding relationship between the combined identifiers, and then the second communication device can determine the identifier of the combination of transmitting antennas selected based on the channel detection results of one or more transmitting antennas, so as to prevent the second communication device from using the channel detection results of the selected transmitting antennas Combining matching errors with the transmitting antenna, so that antenna selection can be performed based on the antenna channel detection results in a large-scale antenna scenario.
  • the first communication device may send to the second communication device one or more PPDUs for the second communication device to perform transmission antenna channel detection.
  • Each PPDU may correspond to an antenna combination of a group of transmit antennas.
  • An antenna combination of each group of transmitting antennas corresponds to an antenna combination identifier (identified as an antenna combination identification (Identification, ID) in FIG. 4 ).
  • the antenna combination IDs schematically shown in FIG. 4 are antenna combination IDs 0, 1...R. R can be a positive integer.
  • the PPDUs schematically shown in Fig. 4 are respectively: PPDU(i 0 ), PPDU(i 1 )...PPDU(i R ).
  • the antenna combination identifiers corresponding to the continuous PPDUs sent by the first communication device can be arranged arbitrarily, such as discontinuously, or not according to Arranged in ascending order.
  • the transmit antenna combination of 0 transmits PPDU(i 0 ).
  • the first communications apparatus includes k1 sending antenna combinations.
  • k 1 is a positive integer.
  • R in FIG. 4 may be a positive integer not greater than k1 .
  • R can be equal to k 1 or smaller than k 1 .
  • the identifiers of the two transmitting antenna combinations corresponding to any two transmitting antenna combinations may be different.
  • the two transmitting antenna combinations corresponding to the identifiers of any two transmitting antenna combinations may be different.
  • the first transmitting antenna combination is one of k 1 transmitting antenna combinations, and the first transmitting antenna combination will be used as an example for introduction later.
  • the identifier of the first transmitting antenna combination may be a sequence number of the first PPDU corresponding to the first transmitting antenna combination.
  • the first identification field may indicate the sequence of the first PPDU among the R PPDUs sent by the first communication device.
  • the PPDU sent by the first communication device in S402 is an NDP, it may also be understood that: the first identification field may indicate the order of the current NDP among the R NDPs sent by the first communication device.
  • the second communication device can determine the corresponding relationship between the first PPDU and the antenna selection feedback result of the transmitting antenna according to the sequence number corresponding to the first PPDU indicated by the first identification field, so that the second communication device can indicate to the first communication device
  • the serial number of the PPDU corresponding to the transmitting antenna combination selected by the second communication device (for example, the second communication device selects the first transmitting antenna combination), so that the first communication device can correctly determine the second communication device according to the serial number of the PPDU fed back by the second communication device.
  • the combination of transmitting antennas selected by the device can realize the antenna selection scheme based on the antenna channel detection results in a large-scale antenna scenario.
  • the identifier of the first sending antenna combination may be a group identifier of the first sending antenna combination.
  • the first communication device side may acquire the correspondence between the sending antenna combination and the group identifier of the sending antenna combination. Furthermore, when the first communication device sends the PPDU in the above S402, it may carry indication information for indicating the identity of the transmitting antenna combination corresponding to the PPDU.
  • the second communication device side may obtain the corresponding relationship between the transmitting antenna combination and the group identifier of the transmitting antenna combination, or may not acquire (or not know) the corresponding relationship between the antenna combination and the group identifier of the transmitting antenna combination. Since the PPDU received by the second communication device carries indication information indicating the identity of the transmit antenna combination corresponding to the PPDU, the second communication device can determine the The PPDU corresponds to the corresponding relationship between the antenna selection feedback result of the transmitting antenna and the combination of transmitting antennas, so that the second communication device can indicate to the first communication device the combination of transmitting antennas selected by the second communication device (for example, the second communication device selects The first transmitting antenna combination) corresponds to the identification of the transmitting antenna combination, so that the first communication device can correctly determine the transmitting antenna combination selected by the second communication device according to the identification of the transmitting antenna combination fed back by the second communication device. In large-scale antenna scenarios, antenna selection is performed based on the antenna channel detection results.
  • the identification of the antenna combination may also include the following possible implementation manners:
  • the first communication device may negotiate with the second communication device, through which the first communication device side may inform the second communication device side of the total number of transmit antenna combinations supported by the first communication device side. For example, the first communication device sends a ninth frame to the second communication device, where the ninth frame includes seventh indication information, and the seventh indication information is used to indicate the total number of transmitting antenna combinations supported by the first communication device.
  • the ninth frame may be an MPDU.
  • the second communication device can estimate the overhead and duration of the transmit antenna selection process according to the seventh indication information, and the second communication device can also decide whether to cooperate with the first communication device based on the total number of transmit antenna combinations supported by the first communication device. establish a relationship between them.
  • the first communication device side may set the group identifier of the transmission antenna combination for the transmission antenna combination supported by the first communication device.
  • the second communication device may not acquire (or not know) the corresponding relationship between the antenna combination and the group identifier of the transmitting antenna combination.
  • the second communication device receives two PPDUs containing the same antenna combination identification at different time points. If the detected channel changes, due to the The antenna combination identifiers included in the two PPDUs are the same, so the second communication device can determine that the channel itself has changed.
  • the corresponding relationship between the transmitting antenna combination and the group identifier on the first communication device side may be specified in advance (for example, may be specified in a standard). This correspondence can be preset on the side of the first communication device, or can be sent to the first communication device by other communication devices. In this way, the first communication device can know the ID of each transmission antenna combination, so that when sending PPDU carry.
  • the corresponding relationship may not be preset on the side of the second communication device, or may be preset on the side of the second communication device, or may be sent to the second communication device by another communication device.
  • the second communication device may The first transmit antenna combination identifier indicated by the first identifier field in a PPDU determines which antennas are specifically included in the first transmit antenna combination identifier.
  • the second communication device receives two PPDUs containing the same antenna combination identification at different time points, if the detected channel changes, Since the antenna combination identifiers included in the two PPDUs are the same, the second communication device may determine that the channel itself has changed. Further, the second communication device may also determine the specific transmitting antenna combination corresponding to the transmitting antenna combination identifier, so as to obtain more link-related information, and thus provide assistance for other subsequent procedures.
  • the first communication device negotiates with the second communication device to determine the group identifier of the first sending antenna combination.
  • the first communication device and the second communication device can negotiate, and through the negotiation, the second communication device knows the transmission antenna combination supported by the first communication device, and after negotiation, the first communication device and the second communication device are supported by the first communication device
  • the transmit antenna combination sets a group ID.
  • the first communication device sends the fourth frame to the second communication device.
  • the second communication device receives the fourth frame.
  • the fourth frame may be an MPDU.
  • the fourth frame includes a fourth identification field, and the fourth identification field is used to indicate the identification of at least one transmission antenna combination supported by the first communication device, and the identification of the at least one transmission antenna combination includes the identification of the first transmission antenna combination.
  • the first communication device may know the sending antenna combination identifier of each sending antenna combination, so as to carry it when sending the PPDU.
  • the second communication device may determine which antennas are specifically included in the first transmitting antenna combination identifier according to the first transmitting antenna combination identifier indicated by the first identifier field in the received first PPDU. It can be seen that, through negotiation, the second communication device can acquire more information related to antenna combinations, and subsequently can obtain more information related to links, so as to provide assistance for other subsequent procedures.
  • the identification of the first transmit antenna combination can include: the sequence number of the first PPDU corresponding to the first transmit antenna combination, and the first transmission Group ID for the antenna combination. In this way, the first transmitting antenna combination can be indicated more accurately, and the solution flexibility can be improved.
  • the identifier of the first transmitting antenna combination may be expressed as one or more characters, or as one or more bits, for example, may be expressed as one or more bits corresponding to binary.
  • the information carried in the first identification field may be all or part of the bits corresponding to the identification of the first transmitting antenna combination, which will be introduced respectively below.
  • the first identification field includes: all bits corresponding to the identification of the first transmitting antenna combination. That is to say, the first identification field carries all bits corresponding to the identification of the first transmitting antenna combination. In this way, the second communication device can uniquely determine the identifier of a transmitting antenna combination according to the first identifier field carried in the PPDU.
  • the first identification field includes: some bits corresponding to the identification of the first transmitting antenna combination. In this way, the number of bits occupied by the first identification field in the PPDU can be saved.
  • this implementation may have the following situations:
  • the first identification field When the number of transmitting antenna combinations is large, and because the first identification field only carries some bits corresponding to the identification of the first transmitting antenna combination, it may result in two PPDUs among the multiple PPDUs sent by the first communication device, The two PPDUs are used to indicate that the field carrying the identifier of the transmitting antenna combination is the same.
  • the first communication device carries all the bits of the identification of the transmit antenna combination corresponding to the PPDU in the above-mentioned first frame, so that the second communication device can , and the field used to indicate the identity of the transmit antenna combination in the PPDU determines all the bits of the identity of the transmit antenna combination corresponding to the PPDU, so that the second communication device can indicate all the bits of the identity of the selected first transmit antenna combination to the first communication device.
  • the second communication device may feed back to the first communication device the sequence of the PPDU corresponding to the selected first transmission antenna combination and the part of bits corresponding to the identifier of the first transmission antenna combination carried in the PPDU, so that The first communication device determines the first sending antenna combination in combination with the sequence of the PPDUs sent and the partial bits corresponding to the identifier of the first sending antenna combination.
  • FIG. 5 exemplarily shows a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • Figure 5 adds S501 and S502 on the basis of Figure 4 .
  • S501 and S502 are optional steps, not mandatory.
  • the first communication device may perform the above S401 and S402, and the second communication device may perform S403.
  • the frame involved in the embodiment of the present application will be further introduced below with reference to the schematic diagram of signaling interaction shown in FIG. 5 .
  • the method includes:
  • the first communication device sends a first trigger frame.
  • the first trigger frame may be used to notify the second communication device that a receiving antenna needs to be selected.
  • the second communication device sends a third frame.
  • the third frame includes third indication information.
  • the third indication information is used to request to perform channel detection of the transmitting antenna.
  • the first communication device receives the third frame.
  • the second communication device may send the third frame based on the trigger of the first trigger frame in S501, or may send the third frame by itself.
  • the embodiment of this application is not limited.
  • the frame used by STA203 (the second communication device) to request the first communication device to send the information for transmitting antenna channel detection is called the third frame.
  • the third frame may be referred to as a transmit antenna selection sounding request (transmit antenna selection sounding request).
  • the third indication information is used to instruct the first communication apparatus to send information for performing channel detection of the transmitting antenna.
  • the information for performing channel sounding of the transmitting antenna can be understood as: continuous sounding (Sounding) PPDU.
  • the third frame may further include the number of PPDUs requested to be sent by the first telecommunications apparatus.
  • the first communication device can determine how many PPDUs to send based on the number of PPDUs carried in the third frame, so that the first communication device can determine the number of PPDUs to be sent subsequently based on the needs of the second communication device, so that the first communication device can subsequently send
  • the number of PPDUs to be sent matches the requirements of the second communication device as much as possible.
  • the number of PPDUs sent by the first communication device may be the same as or different from the number of PPDUs sent by the first communication device required in the third frame.
  • AP and STA can transmit control signaling, management signaling or data through Medium Access Control (MAC) Protocol Data Unit (MAC Protocol Data Unit, MPDU) (or MAC frame for short).
  • MAC Medium Access Control
  • MPDU Medium Access Control Protocol Data Unit
  • the third frame may be carried in an MPDU whose MAC frame header carries a High Throughput Control (High Throughput Control, HTC) field.
  • FIG. 6 exemplarily shows a schematic structural diagram of an MPDU that can carry a third frame provided by the implementation of the present application.
  • the MPDU may include a frame header, a frame body (frame body) and a frame check sequence.
  • the frame header may include frame control (frame control), corresponding address information, sequence control information (sequence control) and the like.
  • the frame body can be used to carry data or some management and control information passed down from the upper layer.
  • the frame check sequence (frame check sequence, FCS) can be used to check whether the MPDU is transmitted correctly.
  • the MPDU includes a high throughput control (high throughput control, HT control) field.
  • the HT control field is currently divided into three variants, high throughput variant, very high throughput variant and high efficiency variant.
  • the variant related to the third frame is a high-efficiency variant, and it can also be understood that the third indication information is carried in the high-efficiency variant field of the third frame.
  • the efficient variant of the HT control field includes an Aggregated Control (A-control) subfield. It can also be said that the A-Control subfield in the HE variant HT control field.
  • the corresponding English can be written as: "The format of the A-Control subfield of the HE variant HT Control field".
  • the A-Control subfield can carry 1 to N 1 pieces of control information through a structure of one or more control identifier fields plus a control information field.
  • N 1 may be a positive integer, and in the example of FIG. 6 , N 1 is an integer greater than 2.
  • the control identifier field may be used to indicate the type of the control information, and may also determine the length of the corresponding control information.
  • the control information field can be divided into an antenna selection command field and an antenna selection data field.
  • the third indication information is carried in at least one of the control identifier field, the antenna selection command field, or the antenna selection data field of the A-control subfield.
  • control ID value of the control identifier field that has not been used in the standard can be used to indicate the transmission antenna selection process in the embodiment of the application.
  • control ID value of the control identifier field can be 9, 11-14 kind of.
  • the length of the control information field can be at most 26 bits.
  • the number of bits occupied by the antenna selection command field and the antenna selection data field may be greater than 7 bits. Number of bits occupied by the antenna selection command field and the antenna selection data field: no more than 26 bits. The number of bits occupied by the antenna selection data field may be greater than 4 bits.
  • the antenna selection command field and the antenna selection data field in FIG. 6 can be set according to actual needs.
  • Table 1 exemplarily shows an example of a possible antenna selection command field and antenna selection data field. Take the content of the second row in Table 1 as an example for an exemplary introduction. As shown in Table 1, when the antenna selection command field is 0, it means that the current frame is used for transmitting antenna channel detection, and the antenna selection data field can indicate the remaining unavailable The number of PPDUs transmitted. The contents of the remaining lines are only examples and will not be described again.
  • Table 1 An example of a possible antenna selection command field and antenna selection data field
  • 802.11n supports up to 4 radio frequency chains, 8 antennas, and 16 antenna combinations, while in the embodiment of the present application Due to the large number of bits in the control information field, the embodiment of the present application can carry more types of antenna selection commands through the MPDU shown in Figure 6, and the antenna selection data field is also larger than 4 bits, so more PPDUs can be supported (the number of PPDUs that can be supported exceeds 16), so that more antenna combinations can be supported (the number of antenna combinations that can be supported exceeds 16).
  • HTC High Throughput Control
  • the A-control subfield is also divided into the antenna selection command field and the antenna selection data field in the high-efficiency variant, which can be compared with the existing standard.
  • the command form is more compatible.
  • the first communication device may send the first frame based on the third frame sent by the second communication device, or may send the first frame by itself, which is not limited in this embodiment of the present application.
  • the first frame may be a frame including first indication information for notifying the second communication device to perform channel detection of the transmitting antenna, for example, the first frame may be a null data packet announcement (null data packet announcement, NDPA) frame.
  • NDPA null data packet announcement
  • the first frame includes first indication information.
  • the first frame may also include the number of NDPs, and/or, a second identification field.
  • the second identification field is used to indicate the identification of the first transmitting antenna combination. In this way, the second communication device can determine the number of NDPs to be received subsequently based on the first frame, so as to check whether NDPs are missed.
  • the second identification field may include: all bits corresponding to the identification of the first transmitting antenna combination.
  • the first identification field in the first PPDU subsequently sent by the first communication device may carry some bits corresponding to the identification of the first transmitting antenna combination, thereby reducing the number of bits occupied by the first identification field in the first PPDU.
  • the second communication device may determine all bits of the identifier of the first transmit antenna combination corresponding to the first PPDU in combination with the second identifier field and the first identifier field.
  • Figure 7 exemplarily shows a schematic structural diagram of the first frame provided by the implementation of the present application when the first frame is an NDPA frame, the second identification field and the number of NDPs are not necessarily included in the NDPA frame, Figure 7
  • the first frame includes the second identification field, the number of NDPs, and the first indication information as an example.
  • the NDPA frame may include frame control (Frame Control), duration (Duration), receiving address, sending address, sounding dialog token (sounding dialog token), one or more station information (such as in Figure 7 Station information 1 (STA Info 1), station information 2 (STA Info 2), station information 3 (STA Info 3) ... station information N 2 (STA Info N 2 )), may also include a frame check sequence.
  • the specific association identifier of the station information field may be used to indicate that the information in the station information field is information related to antenna selection.
  • the first indication information, the number of NDPs, or the second identification field may be carried in: at least one station information field including the second indication information in the first frame.
  • the second indication information indicates that the site information field includes information related to antenna selection.
  • the second communication device may determine antenna selection-related information carried in the site information field carrying the second indication information when the second indication information is recognized, and then acquire antenna selection-related information from the site information field.
  • the second indication information can distinguish the site information field carrying antenna selection-related information from the site information field corresponding to a certain other conventional site, so that in the solution of using the site information field to carry antenna selection-related information, the conventional It affects the site information field corresponding to a certain site to achieve the purpose of being compatible with existing standards.
  • the second indication information may be carried in an association identification field in the site information field.
  • the second indication information includes: one of 2008-2043 or 2046.
  • the association identification field is any one of 2008-2043 or 2046, it means that the information related to antenna selection is transmitted in the station information field.
  • the second communication device can determine according to the association identification field whether the site information field carries information related to antenna selection or site information corresponding to a certain second communication device. It can be seen that this solution can be better than the existing technology. compatible.
  • FIG. 7 it is shown by taking the site information 1 field and the site information 2 field carrying information related to antenna selection as an example.
  • the first indication information may also be referred to as antenna selection type, indication information of antenna selection NDPA variation, or NDPA frame variation subtype.
  • the first indication information is also used to indicate that the variant of the NDPA frame is an antenna selection variant.
  • the NDPA frame instructing the second communication device to perform antenna selection will be followed by multiple (more than 1) NDPs
  • the NDPA frame instructing the second communication device to perform channel detection will be followed by 1 NDP
  • the NDPA frame will be followed by The number of NDPs will affect the time until the second communication device receives the NDP and the feedback from the second communication device, so in the embodiment of the present application, the first indication information can be used to indicate to the second communication device that the variant of the NDPA frame is an antenna Choose a variant.
  • the information carried by the specific association identification field can also have a similar effect, that is, when the second communication device recognizes the specific association identification (second indication information), because The second indication information indicates that the station information field includes information related to antenna selection, so the second communication device may also determine that the variant of the NDPA frame is an antenna selection variant according to the second indication information.
  • the NDPA frame with the HT control field is no longer supported.
  • the site information field of the NDPA frame carries the corresponding antenna selection related information, so that the required information for antenna selection can be realized.
  • the association identifier of the association identifier field in the site information field is a special association identifier, and multiple second communication devices can read the contents of the site information field.
  • FIG. 7 also shows a schematic diagram of the information carried by the conventional site information field.
  • the information of the conventional site carried by the site information N 2 field is taken as an example.
  • N 2 may be an integer greater than 1.
  • the association identification field of the N 2 field of the site information carries the association identification of the site.
  • the station information N2 field may also include partial bandwidth information (Partial BW Info), which is used to indicate the resource used by the STA to feed back channel state information, which may be the start index (start index) of the resource unit (resource unit, RU)
  • the end index (end index) to RU indicates a continuous piece of RU.
  • the number of grouping (number of grouping, Ng) is used to indicate that Ng subcarriers are divided into one group, and the group of subcarriers only needs to feed back channel state information uniformly, which is used to reduce the number of bits occupied by feedback.
  • the codebook size is used to indicate the precision of quantization, and different precisions correspond to different overheads.
  • the first frame may also be used to notify which or which second communication apparatuses perform transmitting antenna channel detection.
  • the association identification field of the site information field of the NDPA frame can carry the association identification of the second communication device that needs to perform channel detection of the transmitting antenna.
  • the second communication device determines that its own association identification is carried by an association identification field in the NDPA frame If the associated identifier matches, the second communication device may determine that it needs to perform channel detection of the transmitting antenna.
  • the number of bits in each field in FIG. 7 is an example, and the specific number of bits is not limited by the solution of the present invention.
  • the NDPA frame in the embodiment of the present application can also use the NDPA frame structure adopted in the current IEEE 802.11ac, IEEE 802.11ax, and IEEE 802.11be standards, and can also redefine a new NDPA frame, and carry relevant information in the newly defined public field middle.
  • the first PPDU sent by the first communication device may not include a data field, such as an NDP, or may include a data field.
  • FIG. 8a and FIG. 8b below exemplarily show a structural diagram of the first PPDU in the case that the first PPDU is NDP
  • FIG. 8c exemplarily shows a structural schematic diagram of the first PPDU including a data field.
  • the NDP shown in FIG. 8a may be a detection PPDU of the 802.11be standard.
  • the NDP shown in Figure 8a can be an EHT sounding PPDU, also called EHT sounding NDP (EHT sounding NDP), or EHT NDP.
  • EHT sounding NDP is a transmission mode of EHT MU PPDU, which is used for channel detection and helps the first communication device obtain channel state information between the transmitting and receiving ends, and then perform beamforming and resource scheduling.
  • the EHT sounding NDP may include a preamble and a packet extension (Packet Extension, PE).
  • the first identification field is located in the preamble of the first PPDU.
  • the preamble may include a traditional preamble.
  • the legacy preamble can include legacy-short training field (Legacy Short Training Field, L-STF), legacy-long training field (Legacy Long Training Field, L-LTF) and legacy-signaling field (Legacy Signal Field, L-STF) -SIG).
  • L-STF legacy-short training field
  • L-LTF legacy-long training field
  • L-signaling field Legacy Signal Field
  • L-STF legacy-signaling field
  • the legacy preamble is used to ensure the coexistence of new devices with legacy devices.
  • the L-SIG may contain a length field, which may indirectly indicate the duration of the part behind the L-SIG in the PPDU.
  • the preamble may also contain a repetition (Repeated L-SIG, RL-SIG) of the traditional signaling field, which is used to enhance the reliability of the traditional signaling field.
  • it can also provide an automatic detection method for the receiving end to help the second communication device identify that the data packet is an EHT PPDU by detecting whether the two symbols are the same, the remainder of the length in the L-SIG, and the like.
  • the preamble may also include a Universal Signal Field (U-SIG), which may exist in PPDUs in the 802.11be standard and several subsequent generations of standards.
  • U-SIG can indicate which generation standard PPDU the PPDU is EHT PPDU and later.
  • the preamble may also include an extremely high throughput signal field (EHT-SIG) following the U-SIG.
  • EHT-SIG extremely high throughput signal field
  • Both the U-SIG and the EHT-SIG can carry signaling information required for demodulation of subsequent data fields.
  • the first identification field may include some or all bits in the U-SIG, and/or, some or all bits in the EHT-SIG.
  • the U-SIG field can contain two symbols, and the EHT-SIG field can contain one symbol.
  • B20-B24 in the first symbol of U-SIG, B14-B15 in the EHT-SIG field are: ignore (Disregard);
  • B25 in the first symbol of the U-SIG field, the second symbol in the U-SIG field B2 and B8 are: Validate.
  • ignore and confirm are two types of reserved bits. In the embodiment of the present application, these reserved bits in the existing standard can be used as the bits in the first identification field.
  • B20-B24 of the first symbol of U-SIG, B14-B15 of the EHT-SIG field, B25 of the first symbol of the U-SIG field, and B2 of the second symbol of the U-SIG field can be used.
  • One or more bits in B8 are used as bits in the first identification field. This makes it compatible with existing technologies.
  • EHT sounding NDP can also include Extreme High Throughput Short Training Field (EHT-STF) and Extreme High Throughput Long Training Field (EHT-LTF).
  • EHT-STF and EHT-LTF can be used for automatic gain control and channel estimation respectively.
  • the data packet extension can provide more time for the second communication device to process the data.
  • the first PPDU is introduced by taking EHT sounding NDP as an example, and the embodiment of the present application is also applicable to standards after EHT, for example, it can be applicable to next generation (next generation, NG) sounding (sounding) NDP.
  • Fig. 8 b exemplarily shows a schematic structural diagram of the first PPDU in the case where the first PPDU is NG sounding NDP.
  • the NG sounding NDP may include a preamble and a packet extension (Packet Extension, PE ).
  • the first identification field is located in the preamble of the first PPDU.
  • the preamble may include a traditional preamble.
  • the traditional preamble can include the traditional-short training field (Legacy Short Training Field, L-STF), the traditional-long training field (Legacy Long Training Field, L-LTF), the traditional-signaling field (Legacy Signal Field, L-STF) -SIG), the repetition of the traditional signaling field (Repeated L-SIG, RL-SIG), the universal signaling field (Universal signal field, U-SIG), and the next generation signal field (next generation signal field, NG-SIG) .
  • the first identification field may be: some or all bits in the U-SIG, and/or, some or all bits in the NG-SIG. That is to say, one or more bits in U-SIG and NG-SIG are used as the first identification field.
  • NG sounding NDP can also include a very high throughput short training field (next generation Short Training Field, NG-STF) and a very high throughput long training field (next generation Long Training Field, NG-LTF).
  • NG-STF and NG-LTF can be used for automatic gain control and channel estimation respectively.
  • the data packet extension can provide more time for the second communication device to process the data.
  • Fig. 8c exemplarily shows a structural diagram of a first PPDU including a data field.
  • FIG. 8c shows an example of adding a data field on the basis of FIG. 8b.
  • the first PPDU shown in FIG. 8c may also be called an MPDU.
  • a data field (data) is added compared to the first PPDU shown in Fig. 8b.
  • the data field may include an A-control subfield.
  • A-control subfield in FIG. 8c reference may be made to the related description of the A-control subfield in FIG. 6 above.
  • the first identification field may be: some or all bits in at least one of the U-SIG, NG-SIG, or data fields.
  • the first identification field may be bits in the control identifier field, the antenna selection command field, and the antenna selection data field in FIG. 8c.
  • control identifier field can be one of 9, 11-14
  • antenna selection command field can define a new identifier to indicate that the antenna selection command field is used to indicate that the current first PPDU is
  • the first PPDU of antenna channel detection is sent, and the antenna selection data field may indicate the identifier of the first PPDU (for example, may indicate the sequence number of the first PPDU).
  • the first identification field may also include some bits in the A-control subfield.
  • the identifier of the PPDU may also include some bits in the A-control subfield.
  • FIG. 8c shows an example in which the first PPDU is a next-generation PPDU, and the first PPDU in this embodiment of the present application may also be an EHT PPDU including a data field.
  • the first PPDU may be an EHT MPDU including a data field.
  • a specific structural form may be to add a data field to the structure shown in FIG. 8a, and the data field may include an A-control subfield.
  • the A-control subfield refer to the related description of the A-control subfield in FIG. 6 .
  • the first identification field may be: some or all bits in at least one of the U-SIG, EHT-SIG or data fields. Relevant content can refer to the foregoing discussion, and will not be repeated here.
  • the second frame may include a MIMO Control control field.
  • the MIMO control field is located in the frame body, for example, it can be carried in the frame body of an Action frame or an Action No ACK frame.
  • FIG. 9 exemplarily shows a structural diagram of the MIMO Control field in the second frame in the case that the second frame is a beamforming report frame. It should be noted that, in order to reflect the frame structure more clearly, the frame structure is divided into three lines in FIG. 9 for illustration.
  • the third identification field may include some or all bits in the MIMO Control field.
  • the third identification field includes: all bits corresponding to the identification of the first transmitting antenna combination.
  • the first communication device may determine, according to the third identification field in the second frame, that the transmission antenna combination selected by the second communication device is the first transmission antenna combination.
  • the purpose of adding the third identification field in the second frame can be realized by using bits in the existing multiple-input multiple-output control (MIMO Control) field, and this scheme will not increase the length of the second frame additionally, and can be more Good compatibility with existing technologies.
  • MIMO Control multiple-input multiple-output control
  • the third identification field may include two parts: the antenna combination identification field and the detection PPDU sequence number field, wherein the antenna combination identification field may carry the group identification of the first transmitting antenna combination, and the detection PPDU sequence number The field may carry the sequence number of the first PPDU corresponding to the first transmit antenna combination.
  • the third identification field includes the antenna combination identification field and the detection PPDU sequence number field as an example.
  • the third identification field may also include only one of the antenna combination identification field and the detection PPDU sequence number field.
  • the second frame may also include an antenna selection failure feedback field.
  • an antenna selection failure feedback field When the value of this field is set to 1, it means that the antenna selection failed this time; if it is set to 0, it means that the antenna selection is successful this time.
  • the antenna selection failure feedback field can also be carried in the MIMO control field.
  • the second frame may further include: at least one of a compressed beamforming report, a multi-user dedicated beamforming report, and a channel quality status report.
  • the channel quality status report may include at least one item of channel state information (channel state information, CSI) or channel quality information (channel quality information, CQI) corresponding to the PPDU.
  • one or more of the compressed beamforming report, the multi-user dedicated beamforming report, and the channel quality status report may be carried in other fields in the second frame except the MIMO Control field.
  • at least one of the antenna combination identification field and the detection PPDU sequence number field included in the third identification field may also be set in other fields, for example, the detection PPDU sequence number field may be located in the A-control subfield.
  • the antenna selection process can match the current channel detection process, and the changes to the equipment at both ends of the transceiver are small, and the implementation is relatively simple.
  • the second communication device may feed back one antenna selection feedback result, or may feed back multiple antenna selection feedback results.
  • the second communication device may select a group of transmitting antennas based on the entire bandwidth.
  • the first combination of transmitting antennas selected by the second communication device is based on the entire bandwidth.
  • the second communication device may respectively select a group of transmitting antennas based on each sub-bandwidth.
  • the first combination of transmitting antennas corresponds to one sub-bandwidth, that is, the first combination of transmitting antennas is made based on one sub-bandwidth. choose.
  • the two groups of transmit antenna combinations selected by the second communication device based on the two sub-bandwidths may be the same or different, which is not limited by this embodiment of the present application.
  • the second communication device may also feed back the selected transmit antenna combination based on different spatial stream numbers, and may also feed back the selected transmit antenna combination based on at least one of the channel condition number or signal-to-noise ratio.
  • the application embodiment does not limit this.
  • the first communication device may send a first trigger frame to trigger the multiple second communication devices to simultaneously feed back their respective antenna selection feedback results.
  • N 3 is a positive integer.
  • FIG. 10 exemplarily shows a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • the interaction between the first communication device and the second communication device is shown as an example.
  • the first communication device may also be called an antenna selection sender
  • the second communication device may also be called an antenna selection responder.
  • the first communication device in FIG. 10 may be the first communication device in FIG. 1 , or the AP or STA in FIG. 2 , or the communication device in FIG. 3 .
  • the second communication device in FIG. 10 may be the aforementioned second communication device in FIG. 1 , may also be the AP or STA in FIG. 2 , or may be the communication device in FIG. 3 .
  • the first communication device and the second communication device in FIG. 10 may both be APs, or both be STAs, or be APs and STAs respectively.
  • the first communication device is an AP and the second communication device is an STA as an example. exhibit.
  • the solution provided by the embodiment of the present application may be applicable to the process of detecting the channel of the transmitting antenna between the AP and a single STA, and may also be applicable to the process of detecting the channel of the transmitting antenna between the AP and multiple STAs.
  • FIG. 10 is illustrated by taking the flow of transmitting antenna channel detection between the AP and multiple STAs (such as STA203, STA204 and STA205 in FIG. 10) as an example.
  • the method includes:
  • the first communication device sends an eleventh frame to the second communication device, where the eleventh frame includes first indication information, and the first indication information notifies the second communication device to perform transmission antenna channel detection.
  • the second communication device receives the eleventh frame from the first communication device.
  • the first communication device sends a third PPDU to the second communication device.
  • the third PPDU is used by the second communication device to perform channel detection of the transmitting antenna.
  • the second communication device receives the third PPDU from the first communication device.
  • the third PPDU may include M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the second communication device feeds back an antenna selection feedback result.
  • the first communication device can aggregate the PPDUs corresponding to the M1 groups of transmitting antenna combinations that need to be sent in S602 into one PPDU, thereby saving overhead, thereby improving the efficiency of antenna selection and improving the efficiency of antenna selection. system throughput.
  • FIG. 11 exemplarily shows a frame structure diagram of a third PPDU.
  • the third PPDU may include M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations.
  • M 1 is an integer greater than 1.
  • the first information field is used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field. Any two first information fields use different transmit antenna combinations.
  • the third PPDU may further include a preamble.
  • the preamble includes at least one of the following fields: L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, or EHT-SIG.
  • L-STF Low-power F
  • L-LTF Low-power F
  • L-SIG Low-power SIG
  • RL-SIG Low-power SIG
  • U-SIG User Service
  • EHT-SIG EHT-SIG
  • M 1 PPDUs corresponding to the M 1 groups of transmit antenna combinations that originally need to be sent are aggregated into a third PPDU, so that (M 1 -1) preambles can be omitted.
  • each first information field may include a data packet extension field, such as the data packet extension 0,
  • the duration of any two data extensions in other data packet extensions (data packet extension 0 to data packet extension (M 1 -1)) except the last data packet extension M 1 can be the same, and these data packet extensions
  • the duration of the field can be used to provide more processing time for the second communication device.
  • it can provide time for the first communication device to switch antennas.
  • this part of the duration can be set shorter, which is enough for the first communication device to switch antennas.
  • the duration of the data packet extension fields in at least two of the M1 first information fields may be different, for example, the duration of the data packet extension M1 may also be the same as the duration of the data packet extension 1
  • the duration of the data packet extension M1 can be set slightly longer, and the duration of the data packet extension 1 can be set slightly shorter, which is enough for the first communication device to switch the antenna.
  • the duration of any two data extensions in other data packet extensions (data packet extension 0 to data packet extension (M 1 -1)) except the last data packet extension M 1 can be the same, It can also be different.
  • the durations of the data packet extension fields in any two first information fields among the M 1 first information fields are the same. In this way, the consistency of the receiving process can be improved.
  • the preamble (L-STF to EHT-SIG) in the third PPDU has a total of 36 microseconds
  • the duration of the data packet extension M 1 is 16 microseconds
  • the SIFS is 16 microseconds
  • the data extension field included in an information field is 16 microseconds)
  • FIG. 11 is only an example of a possible PPDU structure of the third PPDU, and in this example, the EHT-SIG is transmitted once.
  • EHT-SIGs may also appear in groups, for example, each first information field includes one EHT-SIG.
  • FIG. 10 shows that the first communication device transmits a third PPDU as an example. In practical applications, in S602, the first communication device may send one or more third PPDUs, and each third PPDU includes the first The number of information fields can be the same or different.
  • Fig. 10 of the embodiment of the present application provides an implementation manner in which the PPDUs sent by the first communication device can be aggregated, and this implementation manner can be combined with the antenna selection scheme provided in the preceding Fig. 4 or Fig. 5 can also be implemented separately.
  • the eleventh frame in S601 in this embodiment of the present application may be an NDPA frame.
  • the relevant content of S601 please refer to the relevant content of the foregoing S401, and for the relevant content of the eleventh frame, please refer to the relevant introduction of the foregoing first frame.
  • the relevant content of S603 refer to the relevant content of the foregoing S403, and for the relevant content of the antenna selection feedback result, refer to the relevant introduction of the foregoing second frame.
  • the number of NDPs mentioned in FIG. 4 or FIG. 5 may be equal to the number of first information fields mentioned in FIG. 10 .
  • the structure of the aforementioned first PPDU can refer to the structure of the third PPDU, that is, the aforementioned first PPDU can also include the first information field corresponding to multiple transmit antenna combinations, for example, the first PPDU includes the first transmit antenna The corresponding first information field further includes a first information field corresponding to the second transmitting antenna.
  • a preamble is included in the first PPDU.
  • the U-SIG in the preamble can be placed in each first information field.
  • the first identification field may be carried in each first information field.
  • FIG. 12 exemplarily shows a schematic diagram of signaling interaction of a receiving antenna channel detection method provided by the implementation of the present application.
  • FIG. 12 is shown by taking the interaction between the first communication device and the second communication device as an example.
  • the first communication device may also be called an antenna selection sender
  • the second communication device may also be called an antenna selection responder.
  • the first communication device in FIG. 12 may be the first communication device in FIG. 1 , or the AP or STA in FIG. 2 , or the communication device in FIG. 3 .
  • the second communication device in FIG. 12 may be the second communication device in FIG. 1 , or the AP or STA in FIG. 2 , or the communication device in FIG. 3 .
  • the first communication device and the second communication device in FIG. 12 may both be APs, or both be STAs, or be APs and STAs respectively.
  • the first communication device is an AP and the second communication device is an STA as an example. exhibit.
  • FIG. 12 is illustrated by taking the process of performing receiving antenna channel detection between an AP and a STA (such as STA203 in FIG. 12 ) as an example.
  • the solution provided in FIG. 12 is used to select the receiving antenna on the first communication device side.
  • the schemes provided in FIG. 4 and FIG. 10 are used to select the transmitting antenna on the first communication device side.
  • the scheme in FIG. 12 can be used in combination with FIG. 4 or FIG. 10 , and can also be implemented independently.
  • the scheme in FIG. 4 or FIG. 10 can also be implemented independently, and can also be used in combination with the scheme in FIG. 12 .
  • the first communication device may select a transmitting antenna through the scheme in FIG. 4 and select a receiving antenna through the scheme in FIG. 12 .
  • the scheme in FIG. 10 and FIG. 12 are used in combination, the first communication device may select a transmitting antenna through the scheme in FIG. 10 and select a receiving antenna through the scheme in FIG. 12 .
  • the method includes:
  • the first communication device sends a fifth frame to the second communication device, where the fifth frame includes fourth indication information, and the fourth indication information notifies the second communication device to perform receiving antenna channel detection on the first communication device.
  • the second communication device receives the fifth frame from the first communication device.
  • the fifth frame may be implemented in various manners.
  • the fifth frame may be the second trigger frame, or the fifth frame may be an NDPA frame. It will be introduced in detail later, and will not be elaborated here.
  • the second communication device sends a second PPDU to the first communication device.
  • the second PPDU is used for the second communication device to perform channel detection of the receiving antenna.
  • the second PPDU includes a fifth identification field, where the fifth identification field is used to indicate the identification of the first receiving antenna combination.
  • the first communication device receives the second PPDU from the second communication device.
  • the second communication device after the first communication device sends the fifth frame, after a short inter-frame space (short inter-frame space, SIFS), the second communication device sends one or more PPDUs, Adjacent PPDUs can also be separated by SIFS.
  • the second PPDU is one of the one or more PPDUs sent by the second communication device in S702.
  • the second PPDU in S702 may be a PPDU including a data field.
  • the second PPDU in S702 may not include a data field, for example, the second PPDU is an NDP that does not include a data field. Since the NDP does not include a data field, using the NDP as the second PPDU can save overhead. Especially in a scenario applicable to large-scale antennas, due to the large number of antenna combinations, the number of second PPDUs used for receiving antenna channel detection is also large, and the overhead of receiving antenna selection increases accordingly. The scheme of receiving antenna channel detection through NDP can save more overhead in large-scale antenna scenarios.
  • the second communication device may send one or more PPDUs to the first communication device, and the second PPDU is one of the one or more PPDUs.
  • the PPDUs in the one or more PPDUs may include a fifth identification field, and the respective fifth identification fields in the PPDUs in the one or more PPDUs are used to indicate the identification of the receiving antenna combination corresponding to the PPDU. For example, since the second PPDU is used to perform receiving antenna channel detection on the first receiving antenna combination, the fifth identification field in the second PPDU indicates the identification of the first receiving antenna combination.
  • the other PPDU except the second PPDU among the one or more PPDUs is a PPDU used for receiving antenna channel detection for the second receiving antenna combination, then the fifth identification field in the PPDU indicates that the second receiving antenna Identification of the antenna combination.
  • the PPDU sent by the second communication device to the first communication device may also be understood as a detection PPDU, which is a PPDU used for antenna channel detection.
  • S703 is executed after S702:
  • the first communication device performs receiving antenna channel detection according to the second PPDU, and obtains a second antenna selection feedback result.
  • the first communication device may receive multiple PPDUs sent by the second communication device through different combinations of receiving antennas, thereby performing receiving antenna channel detection on different combinations of receiving antennas, and obtaining a second antenna selection feedback result.
  • the first communication device that performs receiving antenna channel detection may be a device with antenna selection capabilities (Antenna Selection Capability, ASEL) capabilities (Capabilities).
  • ASEL antenna Selection Capability
  • Capabilities The transmitting end of the antenna selection function (such as the second communication device) may use the NDP detection PPDU to perform ASEL channel detection.
  • the first communication device may perform receiving antenna channel detection based on the received one or more PPDUs, and obtain one or more receiving antenna channel detection results. Further, the first communication device may select a receiving antenna combination according to the obtained receiving antenna channel detection result.
  • the first communication device may indicate the identifier of the selected receiving antenna combination to the second communication device.
  • the first communication device may also send the second antenna selection feedback result in the sixth frame.
  • the first communication device sends the sixth frame.
  • the sixth frame includes the second antenna selection feedback result
  • the second antenna selection feedback result includes a seventh identification field, where the seventh identification field is used to indicate the identification of the first receiving antenna combination.
  • the seventh identification field may be used to carry the identification of the receiving antenna combination selected by the first communication device.
  • the receiving antenna combination selected by the first communication device is the first receiving antenna combination
  • the seventh identification field may be used to indicate the identity of the first receiving antenna combination.
  • the receiving antenna combination selected by the first communication device is shown as an example.
  • the first communication device may also select other receiving antenna combinations (in this case hereinafter, the seventh identification field needs to indicate the other combination of receiving antennas), which is not limited in this embodiment of the present application.
  • the selected transmitting antenna of the first communication device and the selected receiving antenna of the first communication device may be the same or different, that is to say, the first transmitting antenna combination and the first receiving antenna combination may be the same
  • One antenna combination may also be different antenna combinations, which are not limited in this embodiment of the present application.
  • the second communication device receives the sixth frame from the first communication device.
  • the first communication device may or may not send the sixth frame.
  • S403 is optional.
  • the first communication device performs receiving antenna channel detection according to the second PPDU, obtains a second antenna selection feedback result, and receives data from the second communication device according to the selected first receiving antenna combination.
  • the first communication device may perform receiving antenna channel detection according to PPDUs from one or more second communication devices, and obtain an antenna selection feedback result.
  • a second communication device is used as an example for introduction, and solutions of other second communication devices are similar, and details are not repeated here.
  • the antenna selection feedback results corresponding to different second communication devices may be different or the same, which is not limited by this embodiment of the present application.
  • the combination of receiving antennas of the first communication device corresponding to different second communication devices may be different or the same, which is not limited by this embodiment of the present application.
  • STA203 the second communication device
  • other second communication devices may select the first receiving antenna combination, and may also select other receiving antenna combinations.
  • the first communication device can determine the identification of the first receiving antenna combination corresponding to the received second PPDU, Furthermore, the first communication device may determine the channel detection result of the receiving antenna obtained according to the NDP as: the result of channel detection of the receiving antenna corresponding to the identifier of the first receiving antenna combination. Therefore, the first communication device can determine the identification of the receiving antenna combination selected based on the channel detection results of one or more receiving antennas, and then receive the received data from the second communication device according to the receiving antenna combination corresponding to the identification of the selected receiving antenna combination. data, so that antenna selection can be performed based on antenna channel detection results in large-scale antenna scenarios.
  • the second communication device may send one or more PPDUs to the first communication device for performing receiving antenna channel detection on the first communication device.
  • Each PPDU may correspond to an antenna combination of a group of receiving antennas.
  • An antenna combination of each group of receiving antennas corresponds to an antenna combination identifier (identified as an antenna combination identifier (Identification, ID) in FIG. 12 ).
  • the antenna combination IDs schematically shown in FIG. 12 are antenna combination IDs 0, 1...R. R can be a positive integer. It should be noted that there is no necessary relationship between the number of transmitting antenna combinations and the number of receiving antenna combinations of the first communication device, which may be the same or different.
  • the (R+1) group of receiving antenna combinations shown in FIG. 12 is only example.
  • the PPDUs schematically shown in Fig. 12 are respectively: PPDU(j 0 ), PPDU(j 1 )...PPDU(j R ).
  • the first communication device may select a group of receiving antenna combinations of the first communication device according to the channel detection results of the R receiving antennas, for example, select the first receiving antenna combination, and then use the first receiving antenna combination to receive information from the first receiving antenna combination.
  • the data of the two communication devices may also indicate the selected first receiving antenna combination to the second communication device.
  • the antenna combination identifiers used by the first communication device to connect consecutive PPDUs can be arranged arbitrarily, such as discontinuously, or not according to Arranged in ascending order.
  • the first communication device includes k 2 receiving antenna combinations.
  • k 2 is a positive integer.
  • R in FIG. 12 may be a positive integer not greater than k2 .
  • R can be equal to k 2 or smaller than k 2 .
  • the identifiers of the two receiving antenna combinations corresponding to any two receiving antenna combinations may be different.
  • the two receiving antenna combinations corresponding to the identifiers of any two receiving antenna combinations may be different.
  • the first receiving antenna combination is one of k 2 receiving antenna combinations, and the first receiving antenna combination will be used as an example for introduction later.
  • the identifier of the first receiving antenna combination may be a sequence number of the second PPDU corresponding to the first receiving antenna combination.
  • the fifth identification field may indicate the order of the second PPDU among the R PPDUs sent by the second communication device.
  • the PPDU sent by the first communication device in S702 is an NDP, it may also be understood that: the fifth identification field may indicate the order of the current NDP among the R NDPs sent by the second communication device.
  • the first communication device can determine the corresponding relationship between the second PPDU and the antenna selection feedback result of the receiving antenna according to the sequence number corresponding to the second PPDU indicated by the fifth identification field, so that the first communication device can determine that based on one or more The identification of the receiving antenna combination selected as a result of the channel detection of the receiving antennas, and then the receiving antenna combination corresponding to the identification of the selected receiving antenna combination receives the data from the second communication device, so that the large-scale antenna scenario can be realized. Antenna selection is performed according to antenna channel detection results.
  • the identifier of the first receiving antenna combination may be a group identifier of the first receiving antenna combination.
  • the related content of the group identifier of the first receiving antenna combination refer to the foregoing related content about the group identifier of the first transmitting antenna combination, and for embodiment c2, refer to the above-mentioned embodiment a2.
  • the identification of the receiving antenna combination may also include the following possible implementation manners:
  • the first communication device may negotiate with the second communication device, through which the first communication device side may inform the second communication device side of the total number of receiving antenna combinations supported by the first communication device side.
  • the first communication device sends a tenth frame to the second communication device, the tenth frame includes eighth indication information, and the eighth indication information is used to indicate the total number of receiving antenna combinations supported by the first communication device.
  • the tenth frame may be an MPDU.
  • the second communication device can estimate the overhead and duration of the receiving antenna selection process according to the eighth indication information, and the second communication device can also decide whether to cooperate with the first communication device based on the total number of receiving antenna combinations supported by the first communication device. establish a relationship between them.
  • the corresponding relationship between the receiving antenna combination and the group identifier on the first communication device side may be specified in advance (for example, may be specified in a standard).
  • the corresponding relationship can be preset on the first communication device side, or can be sent to the first communication device by other communication devices. In this way, the first communication device can know the receiving antenna combination identification of each receiving antenna combination, so that when sending PPDU carry.
  • the first communication device negotiates with the second communication device to determine the group identifier of the first receiving antenna combination.
  • the first communication device and the second communication device can negotiate, and through the negotiation, the second communication device knows the receiving antenna combination supported by the first communication device, and after negotiation, the first communication device and the second communication device are supported by the first communication device
  • the receive antenna combination sets a group ID.
  • the first communication device sends the eighth frame to the second communication device.
  • the eighth frame may be an MPDU.
  • the second communication device receives the eighth frame.
  • the eighth frame includes an eighth identification field, and the eighth identification field is used to indicate the identification of at least one receiving antenna combination supported by the first communication device, and the identification of the at least one receiving antenna combination includes the identification of the first receiving antenna combination.
  • the second communication device may know the receiving antenna combination identifier of each receiving antenna combination, so as to carry it when sending the PPDU. Moreover, it can be seen that the second communication device can obtain more information related to antenna combinations through negotiation, and subsequently obtain more information related to links, so as to provide assistance for other subsequent processes.
  • the identification of the first receiving antenna combination can include: the sequence number of the second PPDU corresponding to the first receiving antenna combination, and the first receiving antenna combination. Group ID for the antenna combination. In this way, the first receiving antenna combination can be indicated more accurately, and solution flexibility can be improved.
  • the identifier of the first receiving antenna combination may be expressed as one or more characters, or as one or more bits, for example, may be expressed as one or more bits corresponding to binary.
  • the information carried in the fifth identification field may be all or part of the bits corresponding to the identification of the first receiving antenna combination.
  • FIG. 13 exemplarily shows a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • Figure 13 adds S801, S802 and S803 on the basis of Figure 12 .
  • the fifth frame in S701 in FIG. 12 may be an NDPA frame or the second trigger frame
  • S701 may include two implementations of S801 and S803.
  • the second communication device may perform the above S702, and the first communication device may perform S703.
  • the frame involved in the embodiment of the present application will be further introduced below with reference to the schematic diagram of signaling interaction shown in FIG. 13 .
  • the method includes:
  • the first communication device sends a second trigger frame.
  • the second trigger frame may be used to notify the second communication device that a receiving antenna needs to be selected.
  • the second communication device sends a seventh frame.
  • the seventh frame includes sixth indication information.
  • the sixth indication information is used for requesting to perform receiving antenna channel detection.
  • the first communication device receives the seventh frame.
  • the second communication device may send the seventh frame based on the trigger of the second trigger frame in S801, or may send the seventh frame by itself.
  • the embodiment of this application is not limited.
  • the fifth frame in the foregoing S701 in the embodiment of the present application is the second trigger frame in the foregoing S801.
  • the second trigger frame may also include fourth indication information.
  • the fourth indication information may be used to notify the second communication device that it needs to select the transmitting antenna.
  • the fourth indication information is used to indicate that the second trigger frame is a receiving antenna selection variant.
  • the fifth frame may also include the number of NDPs, and/or, a sixth identification field.
  • the sixth identification field is used to indicate the identification of the first receiving antenna combination.
  • FIG. 14 exemplarily shows a schematic structural diagram of a second trigger frame.
  • the information related to the selection of the receiving antenna such as the number of NDPs and/or the sixth identification field, etc., may be carried in some or all of the bits in at least one of the following: the public information field Reserved bits, or reserved bits of the user information list field, public information based on trigger type, or site information based on trigger frame type.
  • the second trigger frame can use the structure in the existing trigger, and its existing fields carry the content related to the selection of the receiving antenna in the embodiment of the present application.
  • the second trigger frame may include a public information field and a user and information list field.
  • the public information field may include at least one of the following contents: trigger frame type (trigger type), uplink (uplink, UL) length (UL length), more trigger frame (more trigger frame), need carrier sense ( carrier sense required), uplink bandwidth (uplink (HE) bandwidth), guard interval (guard interval, GI) + EHT long training sequence type (EHT-LTF Type), multi-user-multiple input multiple output (Multiple User Multiple Input Multiple Output , MU-MIMO) EHT-LTF mode, number of EHT-LTF and midamble period (Number of EHT-LTF Symbols And Midamble Periodicity), uplink space-time block coding (uplink space-time block coding, UL STBC), low Density Parity Check Code (Low Density Parity Check Code, LDPC) Extra Symbol Segment (LDPC Extra Symbol Segment), AP Transmit Power (AP TX Power), Fill Factor Before Forward Error Correction Code (Pre-FEC Padding Factor) , Packet Extension Dis
  • the uplink HE-SIG-A2 reservation may include HE/EHT indication, special user field existence indication, other uplink HE-SIG-A2 reservation (other UL HE-SIG-A2 Reserved ).
  • the user information list field may include one or more user information, such as user information 1 , user information 2 . . . user information M in the figure.
  • One or more user information may be special user information fields, and one or more user information may be EHT variant user information fields.
  • infonation may also be abbreviated as Info, which stands for information.
  • the EHT variant user information field can include the following contents: association identifier (AID12), resource unit allocation (RU Allocation), uplink forward error correction coding type (UL forward error correction coding Type), modulation and coding strategy (UL EHT-modulation and coding scheme), reserved (reserved), spatial stream start value, spatial stream number, uplink target received signal strength indicator (UL target received signal strength indicator), PS160 primary and secondary 160MHz indication, based on Site information of the trigger frame type (trigger dependent user Info).
  • association AID12 association identifier
  • RU Allocation resource unit allocation
  • uplink forward error correction coding type UL forward error correction coding Type
  • modulation and coding strategy UL EHT-modulation and coding scheme
  • reserved reserved (reserved)
  • spatial stream start value spatial stream number
  • uplink target received signal strength indicator UL target received signal strength indicator
  • PS160 primary and secondary 160MHz indication based on Site information of the trigger frame type (trigger dependent user Info).
  • Table 2 exemplarily shows a schematic diagram of the meaning of the value of the trigger frame type of the second trigger frame shown in FIG. 14 . It can be seen from Table 2 that 8-15 of the trigger frame type of the second trigger frame in the current standard is a reserved value.
  • the trigger frame of the second trigger frame can be The value of the frame type is selected from 8-15, so that the value of the trigger frame type of the second trigger frame can indicate that the second trigger frame is used for receiving antenna selection.
  • the value of the trigger frame type of the second trigger frame may be used as a possible implementation manner of the fourth indication information.
  • Table 2 A schematic diagram of the meaning of the value of the trigger frame type of the second trigger frame
  • the seventh frame may be called a receiving antenna selection sounding request (receiver antenna selection sounding request).
  • the seventh frame may further include the number of PPDUs requested to be sent by the second communication device.
  • the first communication device can determine the number of PPDUs to be sent by the second communication device based on the number of PPDUs carried in the seventh frame, so that the number of PPDUs to be sent by the second communication device determined by the first communication device is as close as possible to the number of PPDUs to be sent by the second communication device.
  • the requirements of the two communication devices are matched.
  • the number of PPDUs sent by the second communication device may be the same as or different from the number of PPDUs required in the seventh frame.
  • the seventh frame may be carried in an MPDU whose MAC frame header carries a High Throughput Control (High Throughput Control, HTC) field.
  • the frame structure of the seventh frame may adopt the aforementioned frame structure shown in FIG. 6 .
  • the variant related to the seventh frame is a high-efficiency variant, and it can also be understood that the sixth indication information is carried in the high-efficiency variant field of the seventh frame.
  • the sixth indication information is carried in at least one of the control identifier field, the antenna selection command field, or the antenna selection data field of the A-control subfield.
  • the control ID value of the control identifier field that has not been used in the standard can be used to indicate the receiving antenna selection process in the embodiment of the application.
  • control ID value of the control identifier field can be 9, 11-14 kind of.
  • the length of the control information field can be at most 26 bits.
  • the first communication device may send the NDPA frame based on the seventh frame sent by the second communication device, or may send the NDPA frame by itself, which is not limited in this embodiment of the present application.
  • the fifth frame in S701 may be an NDPA frame.
  • the NDPA frame may be a frame including fourth indication information for notifying the second communication device to perform receiving antenna channel detection.
  • the fifth frame (such as the NDPA frame) may also include the number of NDP, and/or, a sixth identification field.
  • the sixth identification field is used to indicate the identification of the first receiving antenna combination.
  • the sixth identification field may include: all bits corresponding to the identification of the first receiving antenna combination.
  • the fifth identification field in the second PPDU subsequently sent by the second communication device may carry some bits corresponding to the identification of the first receiving antenna combination, thereby reducing the number of bits occupied by the fifth identification field in the second PPDU.
  • the first communication device may determine all bits of the identifier of the first receiving antenna combination corresponding to the second PPDU in combination with the sixth identifier field and the fifth identifier field.
  • Figure 15 exemplarily shows a schematic structural diagram of the fifth frame in the case where the fifth frame is an NDPA frame, the sixth identification field and the number of NDPs are not necessarily included in the NDPA frame, in Figure 15 the fifth frame
  • the sixth identification field, the number of NDPs, and the fourth indication information are included as examples for illustration.
  • the difference between the structure of the NDPA frame shown in Figure 15 and the structure of the NDPA frame shown in Figure 7 is that in Figure 15, the identification of the combination of receiving antennas is shown as an example, and the associated identification field is 2043 is taken as an example for demonstration, and the description of FIG. 7 may be referred to for the remaining contents and beneficial effects.
  • the specific association identifier of the station information field may be used to indicate that the information in the station information field is information related to antenna selection.
  • at least one item of the fourth indication information, the number of NDPs, or the sixth identification field may be carried in: at least one station information field including the fifth indication information in the fifth frame.
  • the fifth indication information indicates that the station information field includes information related to antenna selection.
  • the second communication device may determine that the information related to antenna selection is carried in the site information field carrying the fifth indication information when the fifth indication information is recognized, and then obtain the antenna selection related information from the site information field.
  • the fifth indication information can distinguish the site information field carrying antenna selection-related information from the site information field corresponding to a certain other conventional site, so that in the solution of using the site information field to carry antenna selection-related information, no conventional It affects the site information field corresponding to a certain site to achieve the purpose of being compatible with existing standards.
  • the fifth indication information may be carried in the association identification field in the site information field.
  • the fifth indication information includes: one of 2008-2043 or 2046.
  • the second communication device can determine according to the association identification field whether the site information field carries information related to antenna selection or site information corresponding to a certain second communication device. It can be seen that this solution can be better than the existing technology. compatible.
  • the fourth indication information may also be called antenna selection type, indication information of antenna selection NDPA variation, or NDPA frame variation subtype. The fourth indication information is also used to indicate that the variant of the NDPA frame is an antenna selection variant.
  • the station information field carries the corresponding antenna selection related information, which can realize the indication of the required information for antenna selection.
  • the association identification of the association identification field of the site information field is a special association identification, and multiple second communication devices can read the contents of the site information field.
  • the second PPDU sent by the second communication device may not include a data field, such as NDP, or may include a data field, which will be introduced separately below.
  • the structure of the second PPDU may be the NDP structure shown in FIG. 8a or FIG. 8b.
  • the fifth identification field is located in the preamble of the second PPDU.
  • the fifth identification field may include some or all bits in the U-SIG, and/or, some or all bits in the EHT-SIG. Relevant content can refer to the introduction of the aforementioned FIG. 8a and FIG. 8b , and details are not repeated here.
  • the structure of the second PPDU may be a schematic diagram of the NDP structure shown in FIG. 16a or FIG. 16b.
  • Fig. 16a and Fig. 16b exemplarily show a structural diagram of the second PPDU in the case that the two second PPDUs are NDPs.
  • EHT-SIG field in Figure 16a
  • NG-SIG field in Figure 16b
  • the related introduction in Figure 8b please refer to Figure 8b.
  • the fifth identification field is located in the preamble of the second PPDU.
  • the fifth identification field may include some or all bits in the U-SIG.
  • one or more bits in B20-B24 of the first symbol of the U-SIG; and B25 of the first symbol of the U-SIG field may be used as the fifth identification field.
  • the structure of the second PPDU may be the schematic diagram of the frame structure shown in FIG. 8c.
  • the fifth identification field is located in the preamble of the second PPDU.
  • the fifth identification field may include some or all bits of at least one of the U-SIG, EHT-SIG, or data fields. Relevant content can refer to the introduction of the aforementioned FIG. 8a and FIG. 8b , and details are not repeated here.
  • the structure of the second PPDU may be a schematic diagram of a frame structure shown in FIG. 16c.
  • Fig. 16c exemplarily shows a schematic structural diagram of a second PPDU including a data field.
  • the fifth identification field is located in the preamble of the second PPDU.
  • the fifth identification field may include some or all bits of at least one of the U-SIG or the data field. Relevant content can refer to the foregoing discussion, and will not be repeated here.
  • the sixth frame may be a beamforming report frame, and the frame structure may be the frame structure shown in FIG. 9 above.
  • the sixth frame will be introduced below with reference to the foregoing FIG. 9 .
  • the sixth frame may include a MIMO Control control field.
  • the seventh identification field may include some or all bits in the MIMO Control field.
  • the seventh identification field includes: all bits corresponding to the identification of the first receiving antenna combination. In this way, the second communication device may determine that the receiving antenna combination selected by the first communication device is the first receiving antenna combination according to the seventh identification field in the sixth frame.
  • the seventh identification field may include two parts: the antenna combination identification field and the detection PPDU sequence number field, wherein the antenna combination identification field may carry the group identification of the first receiving antenna combination, and the detection PPDU sequence number The field may carry the sequence number of the second PPDU corresponding to the first receiving antenna combination.
  • the sixth frame may further include an antenna selection failure feedback field.
  • the sixth frame may further include: at least one of a compressed beamforming report, a multi-user dedicated beamforming report, and a channel quality status report.
  • the channel quality status report may include the
  • At least one item of channel state information (channel state information, CSI) or channel quality information (channel quality information, CQI) corresponding to the PPDU.
  • one or more of the compressed beamforming report, the multi-user dedicated beamforming report, and the channel quality status report may be carried in other fields in the sixth frame except the MIMO Control field.
  • at least one of the antenna combination identification field and the detection PPDU sequence number field included in the seventh identification field may also be set in other fields, for example, the detection PPDU sequence number field may be located in the A-control subfield.
  • NDPA low-throughput rate control field
  • a reception based on NDPA (fifth frame) + NDP (PPDU) + feedback (sixth frame) is designed.
  • the antenna selection process design of the antenna, the antenna selection process can match the current channel detection process, and the changes to the equipment at both ends of the transceiver are small, and the implementation is relatively simple.
  • FIG. 17 exemplarily shows a schematic diagram of signaling interaction of another antenna channel detection method provided by the implementation of the present application.
  • FIG. 17 shows the interaction between the first communication device and the second communication device as an example.
  • the first communication device may also be called an antenna selection sender
  • the second communication device may also be called an antenna selection responder.
  • the first communication device in FIG. 17 may be the first communication device in FIG. 1 , or the AP or STA in FIG. 2 , or the communication device in FIG. 3 .
  • the second communication device in FIG. 17 may be the aforementioned second communication device in FIG. 1 , or the AP or STA in FIG. 2 , or the communication device in FIG. 3 .
  • the first communication device and the second communication device in FIG. 17 may both be APs, or both be STAs, or be APs and STAs respectively.
  • the first communication device is an AP and the second communication device is an STA as an example. exhibit.
  • the solution provided by the embodiment of the present application may be applicable to the process of receiving antenna channel detection between the AP and a single STA, and may also be applicable to the process of receiving antenna channel detection between the AP and multiple STAs.
  • FIG. 17 is illustrated by taking the flow of receiving antenna channel detection between the AP and multiple STAs (such as STA203, STA204 and STA205 in FIG. 17) as an example.
  • the scheme provided in FIG. 17 is used to select the receiving antenna on the first communication device side.
  • the schemes provided in FIG. 4 and FIG. 10 are used to select the transmitting antenna on the first communication device side.
  • the scheme in FIG. 17 can be used in combination with FIG. 4 or FIG. 10 , and can also be implemented independently.
  • the solution in FIG. 4 or FIG. 10 can also be implemented independently, and can also be used in combination with the solution in FIG. 17 .
  • the first communication device may select a transmitting antenna through the scheme in FIG. 4 and select a receiving antenna through the scheme in FIG. 17 .
  • the solution in FIG. 10 and FIG. 17 are used in combination, the first communication device may select a transmitting antenna through the solution in FIG. 10 and select a receiving antenna through the solution in FIG. 17 .
  • the method includes:
  • the first communication device sends a twelfth frame to the second communication device, where the twelfth frame includes fourth indication information, and the fourth indication information notifies the second communication device to perform receiving antenna channel detection.
  • the second communication device receives the twelfth frame from the first communication device.
  • the second communication device sends a fourth PPDU to the first communication device.
  • the fourth PPDU is used for receiving antenna channel detection.
  • the first communication device receives the fourth PPDU from the second communication device.
  • the fourth PPDU may include M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the first communication device performs receiving antenna channel detection according to the second PPDU, and obtains a second antenna selection feedback result.
  • the first communication device may also feed back the second antenna selection feedback result to the second communication device.
  • the second communication device can aggregate the PPDUs corresponding to M2 sets of receiving antenna combinations that need to be sent in S902 into one PPDU, thereby saving overhead, thereby improving the efficiency of antenna selection, and improving system throughput.
  • FIG. 18 and FIG. 19 respectively illustrate schematic diagrams of frame structures of two kinds of fourth PPDUs. Compared to FIG. 18 , the EHT-SIG field is not included in FIG. 19 .
  • the fourth PPDU may include M 2 second information fields corresponding to M 2 sets of receiving antenna combinations.
  • M 2 is an integer greater than 1.
  • the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field. Any two second information fields use different receiving antenna combinations.
  • the fourth PPDU may further include a preamble.
  • the preamble includes at least one of the following fields: L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, or EHT-SIG.
  • the fourth PPDU may further include a preamble.
  • the preamble includes at least one of the following fields: L-STF, L-LTF, L-SIG, RL-SIG, or U-SIG.
  • each second information field may include a data packet extension field, such as the data packet extension 0,
  • the duration of any two data extensions in other data packet extensions can be the same, and these data packet extensions
  • the duration of the field can be used to provide more processing time for the second communication device.
  • it can provide time for the first communication device to switch antennas.
  • this part of the duration can be set shorter, which is enough for the first communication device to switch antennas.
  • the duration of the data packet extension field in at least two of the M2 second information fields can be different, for example, the duration of the data packet extension M2 can also be the same as the duration of the data packet extension 1
  • the duration of the data packet extension M2 can be set slightly longer, and the duration of the data packet extension 1 can be set slightly shorter, which is enough for the first communication device to switch the antenna.
  • the duration of any two data extensions in other data packet extensions (data packet extension 0 to data packet extension (M 2 -1)) except the last data packet extension M 2 may be the same, It can also be different.
  • the duration of the data packet extension field in any two of the M 2 second information fields is the same. In this way, the consistency of the receiving process can be improved.
  • the preamble (L-STF to EHT-SIG) in the fourth PPDU has a total of 36 microseconds
  • the duration of the data packet extension M2 is 16 microseconds
  • the SIFS is 16 microseconds
  • FIG. 18 is only an example of a possible frame structure of the fourth PPDU, and in this example, the EHT-SIG is transmitted once. In yet another possible implementation manner, EHT-SIGs may also appear in groups, for example, each second information field includes one EHT-SIG.
  • FIG. 17 shows that the second communication device transmits a fourth PPDU as an example. In practical applications, in S902, the second communication device may send one or more fourth PPDUs, and each fourth PPDU includes the first The numbers of the two information fields may be the same or different.
  • Figure 17 of the embodiment of the present application provides an implementation that can aggregate the PPDUs sent by the second communication device, and this implementation can be combined with the antenna selection scheme provided in Figure 12 or Figure 13 can also be implemented separately.
  • the twelfth frame in S901 in this embodiment of the present application may be an NDPA frame.
  • the relevant content of S901 please refer to the relevant content of the foregoing S701, and for the relevant content of the twelfth frame, please refer to the relevant introduction of the foregoing fifth frame.
  • the relevant content of S903 refer to the relevant content of the foregoing S703
  • the relevant content of the antenna selection feedback result refer to the relevant introduction of the foregoing sixth frame.
  • the number of NDPs mentioned in the aforementioned FIG. 12 or FIG. 13 may be equal to the number of the second information fields mentioned in FIG. 17 .
  • the structure of the aforementioned second PPDU can refer to the structure of the fourth PPDU, that is, the aforementioned second PPDU can also include the second information field corresponding to multiple receiving antenna combinations, for example, the second PPDU includes the first receiving antenna The corresponding second information field further includes a second information field corresponding to the second receiving antenna.
  • a preamble is included in the first PPDU.
  • the U-SIG in the preamble may be placed in each second information field.
  • the fifth identification field may be carried in each second information field.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 20 , FIG. 21 and FIG. 22 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application. These communication devices can be used to implement the functions of the first communication device in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments. These communication devices can also be used to implement the functions of the second communication device in the above method embodiments, so the beneficial effects of the above method embodiments can also be realized.
  • the communication device may be the sending end device or the first communication device as shown in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 10, Figure 12, Figure 13 or Figure 17 , may also be a module (such as a chip) applied to the sending end device or the first communication device.
  • the communication device may be the receiver device or the second communication device as shown in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 10, Figure 12, Figure 13 or Figure 17 , may also be a module (such as a chip) applied to the receiver device or the second communication device.
  • a module such as a chip
  • a communication device 1300 includes a processing unit 1310 and a transceiver unit 1320 .
  • the communication device 1300 is configured to implement the functions of the first communication device in the method embodiments shown in FIG. 4 , FIG. 5 , FIG. 10 , FIG. 12 , FIG. 13 or FIG. 17 .
  • the second communication device sends the first PPDU.
  • the first frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the first PPDU is NDP.
  • the first PPDU is used by the second communication device to perform channel detection of the transmitting antenna, and the first PPDU includes a first identification field, where the first identification field is used to indicate the identification of the first transmitting antenna combination.
  • the processing unit 1310 is further configured to execute, through the transceiver unit 1320 : receiving the second frame from the second communication device.
  • the second frame includes the first antenna selection feedback result
  • the first antenna selection feedback result includes a third identification field, where the third identification field is used to indicate the identification of the first transmitting antenna combination.
  • the frame includes a fourth identification field, where the fourth identification field is used to indicate the identification of at least one transmission antenna combination supported by the first communication device, and the identification of the at least one transmission antenna combination includes the identification of the first transmission antenna combination.
  • the frame includes seventh indication information, and the seventh indication information is used to indicate the total number of transmitting antenna combinations supported by the first communication device.
  • the first indication information is included, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the first communication device sends a third PPDU to the second communication device; the third PPDU is used by the second communication device to detect a transmission antenna channel.
  • the third PPDU includes M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field.
  • the processing unit 1310 is used to execute through the transceiver unit 1320: send the fifth frame to the second communication device, and receive the frame from the second communication device.
  • the fifth frame includes fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • the first communication device states that the second PPDU is an NDP; the second PPDU is used by the first communication device to perform receiving antenna channel detection, and the second PPDU includes a fifth identification field, and the fifth identification field is used to indicate the identification of the first receiving antenna combination.
  • the fourth PPDU of the communication device When the communication device 1300 is used to implement the functions of the first communication device in the method embodiment shown in FIG.
  • the fourth PPDU of the communication device The twelfth frame includes fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • the fourth PPDU is used for the second communication device to detect the receiving antenna channel.
  • the fourth PPPDU includes M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field.
  • a communication device 1300 includes a processing unit 1310 and a transceiver unit 1320 .
  • the communication device 1300 is configured to implement the functions of the second communication device in the method embodiments shown in FIG. 4 , FIG. 5 , FIG. 10 , FIG. 12 , FIG. 13 or FIG. 17 .
  • the processing unit 1310 is used to execute through the transceiver unit 1320: receive the first frame from the first communication device, receive A first PPDU from the first telecommunications device.
  • the first frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the first PPDU is an NDP; the first PPDU is used by the second communication device to detect channels of transmitting antennas, and the first PPDU includes a first identification field, and the first identification field is used to indicate the identification of the first transmitting antenna combination.
  • the processing unit 1310 is also used to execute through the transceiver unit 1320: to perform transmission antenna channel detection according to the first PPDU, and obtain The first antenna selects the feedback result.
  • the processing unit 1310 is specifically configured to execute, through the transceiver unit 1320 : receiving the fourth frame from the first communication device.
  • the fourth frame includes a fourth identification field, and the fourth identification field is used to indicate the identification of at least one transmission antenna combination supported by the first communication device, and the identification of the at least one transmission antenna combination includes the identification of the first transmission antenna combination.
  • the processing unit 1310 is specifically configured to execute through the transceiver unit 1320: receive the ninth frame from the first communication device,
  • the ninth frame includes seventh indication information, and the seventh indication information is used to indicate the total number of transmitting antenna combinations supported by the first communication device.
  • a third PPDU of the communication device When the communication device 1300 is used to realize the function of the second communication device in the method embodiment shown in FIG. A third PPDU of the communication device.
  • the eleventh frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the third PPDU is used by the second communication device to perform channel detection of the transmitting antenna.
  • the third PPDU includes M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field.
  • the processing unit 1310 is used to perform through the transceiver unit 1320: receiving the fifth frame from the first communication device, the first The five frames include fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • the processing unit 1310 is configured to execute through the transceiver unit 1320 : receive the twelfth frame from the first communication device.
  • the twelfth frame includes fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • a fourth PPDU is sent to the first telecommunications device.
  • the fourth PPDU is used for the second communication device to detect the receiving antenna channel.
  • the fourth PPDU includes M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field.
  • processing unit 1310 and the transceiver unit 1320 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 4 , FIG. 5 , FIG. 10 , FIG. 12 , FIG. 13 or FIG.
  • the communication device 1400 includes a processing circuit 1410 and an interface circuit 1420 .
  • the processing circuit 1410 and the interface circuit 1420 are coupled to each other.
  • the interface circuit 1420 may be a transceiver or an input-output interface.
  • the communication device 1400 may further include a memory for storing instructions executed by the processing circuit, or storing input data required by the processing circuit 1410 to execute the instructions, or storing data generated after the processing circuit 1410 executes the instructions.
  • FIG. 5 When the communication device 1400 is used to implement the method shown in FIG. 4, FIG. 5, FIG. 10, FIG. 12, FIG. 13 or FIG. Functions of the transceiver unit 1320 .
  • the communication device 1500 includes a processor 1510 and a communication interface 1520 .
  • the processor 1510 and the communication interface 1520 are coupled to each other.
  • the communication interface 1520 may be a transceiver or an input and output interface.
  • the communication device 1500 may further include a memory 1530 for storing instructions executed by the processor 1510 or storing input data required by the processor 1510 to execute the instructions or storing data generated by the processor 1510 after executing the instructions.
  • FIG. 5 When the communication device 1500 is used to implement the method shown in FIG. 4, FIG. 5, FIG. 10, FIG. 12, FIG. 13 or FIG. Functions of the transceiver unit 1320 .
  • the frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the first indication information is included, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the third PPDU includes M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field.
  • the processor 1510 is used to execute through the communication interface 1520: sending the fifth frame to the second communication device, the fifth The frame includes fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • the fifth identification field is used to indicate the identification of the first receiving antenna combination.
  • the fourth indication information is included, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • a fourth physical layer protocol data unit PPDU is received from the second communication device; the fourth PPDU is used by the second communication device to detect a receiving antenna channel.
  • the fourth PPPDU includes M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field.
  • One frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the frame includes first indication information, and the first indication information notifies the second communication device to perform channel detection of the transmitting antenna.
  • the third PPDU includes M 1 first information fields corresponding to M 1 groups of transmitting antenna combinations; M 1 is an integer greater than 1; the first information fields are used for transmitting antenna channel detection.
  • the first information field includes at least one of an EHT short training field, an EHT long training field, and a data packet extension field.
  • the processor 1510 is used to execute through the communication interface 1520: receiving the fifth frame from the first communication device, the first The five frames include fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • the second PPDU is used by the first communication device to detect the channel of the receiving antenna, and the second PPDU includes a fifth identification field, where the fifth identification field is used to indicate the identification of the first receiving antenna combination.
  • the frame includes fourth indication information, and the fourth indication information indicates to perform receiving antenna channel detection on the first communication device.
  • the fourth physical layer protocol data unit PPDU is sent to the first communication device; the fourth PPDU is used by the second communication device to detect the receiving antenna channel.
  • the fourth PPDU includes M 2 second information fields corresponding to M 2 groups of receiving antenna combinations; M 2 is an integer greater than 1; the second information field is used for receiving antenna channel detection.
  • the second information field includes at least one of an EHT short training field, an EHT long training field and a data packet extension field.
  • the communication device chip When the above communication device is a chip applied to the communication device, the communication device chip implements the functions of the communication device in the above method embodiment.
  • the communication device chip receives information from other modules in the communication device (such as a radio frequency module or an antenna), and the information is sent to the communication device by a network device; or, the communication device chip sends information to other modules in the communication device (such as a radio frequency module or antenna) to transmit information, which is sent by the communication device to the network equipment.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the present application also provides a computer program product, the computer program product including: a computer program or instruction, when the computer program or instruction is run on the computer, the computer is made to execute the steps shown in Figure 4 and Figure 4 . 5.
  • a computer program product including: a computer program or instruction, when the computer program or instruction is run on the computer, the computer is made to execute the steps shown in Figure 4 and Figure 4 . 5.
  • the present application also provides a computer-readable storage medium, the computer-readable medium stores a program or an instruction, and when the program or instruction is run on a computer, the computer is made to execute the The method of any one of the embodiments shown in FIG. 5 , FIG. 10 , FIG. 12 , FIG. 13 or FIG. 17 .
  • the present application further provides a chip system, where the chip system may include a processing circuit and an interface circuit.
  • the processing circuit may execute the method of any one of the embodiments shown in FIG. 4 , FIG. 5 , FIG. 10 , FIG. 12 , FIG. 13 or FIG. 17 through the interface circuit.
  • the chip system further includes a memory. Memory, used to store computer programs (also called code, or instructions).
  • the processing circuit may be used to call and run a computer program from the memory, so that the device installed with the system-on-a-chip executes the method in any one of the embodiments shown in FIG. 4 , FIG. 5 , FIG. 10 , FIG. 12 , FIG. 13 or FIG. 17 .
  • the present application further provides a system, which includes the foregoing first communication device and the second communication device.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory (flash), read-only memory (Read-Only Memory, ROM), programmable read-only memory , erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable programmable read-only memory, registers, hard disk, solid-state drive (solid-state drive, SSD), mobile hard disk, portable read-only memory ( Compact Disc Read-Only Memory, CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC. Additionally, the ASIC may be located in the communication device. Of course, the processor and the storage medium may also exist in the communication device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product consists of one or more computer programs or instructions. When the computer programs or instructions are loaded and executed on the computer, the processes or functions of the embodiments of the present application are executed in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, computer network, network equipment, user equipment, or other programmable apparatus.
  • Computer programs or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer programs or instructions may be Wired or wireless transmission to another website site, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media. Available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; optical media, such as digital video discs; or semiconductor media, such as solid-state hard disks.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B or C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B, and C.

Abstract

一种天线信道探测方法、装置和存储介质,用于在大规模天线场景下进行天线选择。本申请中,第一通信装置向第二通信装置发送第一帧和第一PPDU。第一帧包括通知第二通信装置进行发送天线信道探测的第一指示信息。第一PPDU为NDP。第一PPDU包括用于指示第一发送天线组合的标识的第一标识字段,如此,第二通信装置可以确定出接收到的PPDU对应的发送天线信道探测结果和发送天线组合的标识的对应关系,进而可以确定出基于一个或多个发送天线信道探测结果选择出的发送天线组合标识,从而可以防止第二通信装置将选择出的发送天线信道探测结果和发送天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。

Description

一种天线信道探测方法、装置和存储介质
相关申请的交叉引用
本申请要求在2021年11月03日提交中华人民共和国知识产权局、申请号为202111295867.0、申请名称为“一种天线信道探测方法、装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种天线信道探测方法、装置和存储介质。
背景技术
无线局域网(wirelesslocal area network,WLAN)从802.11a/b/g开始,历经802.11n,802.11ac,到802.11ax。其中802.11a/b/g只支持单空间流,不支持多输入多输出(multiple input multipleoutput,MIMO)。802.11n支持最多4个空时流的MIMO,而802.11ac和802.11ax,最多支持8个空时流。802.11ax的下一代标准802.11be正在讨论中,最大空时流数目进一步提升到16。其中空时流(space-time streams,STS),同时考虑了不同的空间流(spatial stream,SS)和时间维度上的空时块编码(space-time block coding,STBC)。当发送端没有采用STBC时,空时流又可以被称作空间流,而802.11be标准规定不采用STBC,因此可统一称为空间流。
支持多个空间流需要设备包含多个射频链(radio frequency chain,RF chain)。在一些实现中,设备可以配备比射频链数量更多的天线(或者更准确的说天线元件(antenna element)),并根据基于天线选择流程选择出天线组合(或者天线方向图(antenna pattern))传输数据,从而进一步提升传输性能。比如,通过选择天线方向图,可以使得收发两端的等效信道的条件数更小,改善等效信道,传输更多的空间流,提升系统吞吐量等等。
在一些天线选择流程中,设备可以根据不同的天线组合(或者天线方向图(antenna pattern))对应的天线信道探测的结果,进行天线组合的选择。但是,引入更多的空间流数意味着引入更多的天线,而现有技术只适用于标准802.11n,最多只支持4个射频链,8个天线,16个天线组合的天线选择流程。但是802.11be标准要引入16个空间流,最多支持到16个射频链,且MIMO技术会引入更多的天线。因此,如何使天线选择流程适用大规模天线,成为亟需解决的问题。
发明内容
本申请实施例提供一种天线信道探测方法、装置和存储介质,用于进行天线信道探测,且适用于对大规模天线场景进行天线信道探测,从而可以在大规模天线场景下根据天线信道探测结果进行天线选择。
第一方面,本申请实施例提供一种天线信道探测方法,该方法中,第一通信装置向第二通信装置发送第一帧。第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第一通信装置向第二通信装置发送第一物理层协议数据单元(phyical  layer protocol data unit,PPDU)。第一PPDU用于第二通信装置进行发送天线信道探测,第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
第一PPDU可以包括数据字段。第一PPDU也可以不包括数据字段,比如第一PPDU可以为不包括数据字段的NDP。由于NDP不包括数据字段,因此可以节省开销。
进一步,本申请中由于在NDP中包括有指示第一发送天线组合的标识的第一标识字段,因此第二通信装置确定出NDP对应的发送天线信道探测结果和发送天线组合的标识的对应关系,进而第二通信装置可以确定出基于一个或多个发送天线信道探测结果选择出的发送天线组合的标识,从而可以防止第二通信装置将选择出的发送天线信道探测结果和发送天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第一通信装置可以向第二通信装置发送一个或多个PPDU,第一PPDU为该一个或多个PPDU中的一个。第二通信装置可以基于接收到的该一个或多个PPDU进行发送天线信道探测,得到发送天线信道探测结果。进一步,第二通信装置可以根据得到的发送天线信道探测结果选择出发送天线组合,并将该选择出的发送天线组合的标识指示给第一通信装置,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。比如,第一通信装置接收来自第二通信装置的第二帧。第二帧包括第一天线选择反馈结果。第一天线选择反馈结果包括第三标识字段,该第三标识字段可以用于承载第二通信装置选择出的发送天线组合的标识。比如第二通信装置选择的发送天线组合为第一发送天线组合,则该第三标识字段可以用于指示第一发送天线组合的标识。
在一种可能的实施方式中,第一通信装置向第二通信装置发送第一帧之前,第一通信装置接收包括第三指示信息的第三帧。第三指示信息用于请求第一通信装置发送进行发送天线信道探测的信息。其中,第三指示信息承载于第三帧的高效变种字段。由于高效变种字段中用于承载天线选择流程的相关命令的比特位数量较多,因此本申请提供的方案可以支持更多的PPDU的数量(比如可以支持的PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种),从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第一通信装置和第二通信装置可以进行协商,通过协商第二通信装置知道第一通信装置支持的发送天线组合,且经过协商,第一通信装置和第二通信装置为第一通信装置支持的发送天线组合设置一个组标识。比如,第一通信装置向第二通信装置发送第一帧之前,第一通信装置向第二通信装置发送第四帧,第四帧包括第四标识字段,第四标识字段用于指示第一通信装置支持的至少一个发送天线组合的标识,至少一个发送天线组合的标识包括第一发送天线组合的标识。
进一步,第一通信装置还可以将自身支持的发送天线组合的标识对应的发送天线组合指示给第二通信装置。如此,第一通信装置可以知道每种发送天线组合的发送天线组合标识,以便在发送PPDU时携带。而且,第二通信装置可以根据接收到的第一PPDU中的第一标识字段指示的第一发送天线组合标识,确定出第一发送天线组合标识具体包括的天线都有哪些。可以看出,第二通信装置通过协商可以获取更多的天线组合相关的信息,后续可以获得更多的链路相关信息,从而还可以为后续其他流程提供协助。
在一种可能的实施方式中,第一通信装置向第二通信装置发送第一帧之前,第一通信 装置向第二通信装置发送第九帧,第九帧包括第七指示信息,第七指示信息用于指示第一通信装置支持的发送天线组合的总数量。如此,第二通信装置可以根据第七指示信息预估发送天线选择流程的开销以及时长,且第二通信装置还可以基于第一通信装置支持的发送天线组合的总数量决定是否与第一通信装置之间建立关联关系。
第二方面,本申请实施例提供一种天线信道探测方法,该方法中第二通信装置接收来自第一通信装置的第一帧,第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第二通信装置接收来自第一通信装置的第一物理层协议数据单元PPDU。第一PPDU用于第二通信装置进行发送天线信道探测,第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
第一PPDU可以包括数据字段。第一PPDU也可以不包括数据字段,比如第一PPDU可以为NDP。由于NDP不包括数据字段,因此可以节省开销。
进一步,本申请中由于在NDP中包括有指示第一发送天线组合的标识的第一标识字段,因此第二通信装置确定出NDP对应的发送天线信道探测结果和发送天线组合的标识的对应关系,进而第二通信装置可以确定出基于一个或多个发送天线信道探测结果选择出的发送天线组合的标识,从而可以防止第二通信装置将选择出的发送天线信道探测结果和发送天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第一通信装置可以向第二通信装置发送一个或多个PPDU,第一PPDU为该一个或多个PPDU中的一个。第二通信装置可以基于接收到的该一个或多个PPDU进行发送天线信道探测,得到发送天线信道探测结果。进一步,第二通信装置可以根据得到的发送天线信道探测结果选择出发送天线组合,并将该选择出的发送天线组合的标识指示给第一通信装置,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。比如,第二通信装置向第一通信装置发送第二帧。第二帧包括第一天线选择反馈结果。第一天线选择反馈结果包括第三标识字段,该第三标识字段可以用于承载第二通信装置选择出的发送天线组合的标识。比如第二通信装置选择的发送天线组合为第一发送天线组合,则该第三标识字段可以用于指示第一发送天线组合的标识。
在一种可能的实施方式中,第二通信装置接收第一帧之前,第二通信装置发送包括第三指示信息的第三帧,第三指示信息用于请求第一通信装置发送进行发送天线信道探测的信息。其中,第三指示信息承载于第三帧的高效变种字段。由于高效变种字段中用于承载天线选择流程的相关命令的比特位数量较多,因此本申请提供的方案可以支持更多的PPDU的数量(比如可以支持的PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种),从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第一通信装置和第二通信装置可以进行协商,通过协商第二通信装置知道第一通信装置支持的发送天线组合,且经过协商,第一通信装置和第二通信装置为第一通信装置支持的发送天线组合设置一个组标识。
比如,第二通信装置接收第一帧之前,第二通信装置接收来自第一通信装置的第四帧,第四帧包括第四标识字段,第四标识字段用于指示第一通信装置支持的至少一个发送天线组合的标识,至少一个发送天线组合的标识包括第一发送天线组合的标识。
进一步,第二通信装置还可以接收来自第一通信装置的该第一通信装置支持的发送天线组合的标识对应的发送天线组合。如此,第一通信装置可以知道每种发送天线组合的发送天线组合标识,以便在发送PPDU时携带。而且,第二通信装置可以根据接收到的第一PPDU中的第一标识字段指示的第一发送天线组合标识,确定出第一发送天线组合标识具体包括的天线都有哪些。可以看出,第二通信装置通过协商可以获取更多的天线组合相关的信息,后续可以获得更多的链路相关信息,从而还可以为后续其他流程提供协助。
在一种可能的实施方式中,第二通信装置接收第一帧之前,第二通信装置接收来自第一通信装置的第九帧,第九帧包括第七指示信息,第七指示信息用于指示第一通信装置支持的发送天线组合的总数量。如此,第二通信装置可以根据第七指示信息预估发送天线选择流程的开销以及时长,且第二通信装置还可以基于第一通信装置支持的发送天线组合的总数量决定是否与第一通信装置之间建立关联关系。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一标识字段位于第一PPDU前导码。比如,第一标识字段包括前导码中的:通用信令字段中的部分比特或全部比特,和/或,极高吞吐率信令字段中的部分比特或全部比特。
当第一PPDU为NDP的情况下,由于现有的NDP中不携带第一标识字段,而本申请中可以使用现有的NDP的前导码中的字段承载第一标识字段的内容,从而可以更好的与现有技术兼容,且也可以实现在NDP中携带第一发送天线组合的标识的目的。
进一步,由于现有协议中这些字段中有一些预留比特,比如通用信令字段第一个符号的B20-B24、B25以及第二个符号的B2和B8,极高吞吐率信令字段的B14-B15,而本申请实施例中通过这些字段中的比特来实现在NDP中添加第一标识字段的目的,可以更好的与现有技术兼容。
进一步,为了与现有标准保持一致性,本申请适用于下一代标准时,第一标识字段可以包括:通用信令字段中的部分比特或全部比特,和/或,下一代信令字段中的部分比特或全部比特。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,PPDU包括数据字段和前导码。第一标识字段可以包括前导码,或数据字段中的至少一项中的部分比特或全部比特。比如,第一发送天线组合的标识信息承载于:通用信令字段、极高吞吐率信令字段或数据字段的聚合控制子字段中的至少一项。当第一PPDU包括数据字段的情况下,除了前述提及的通用信令字段和极高吞吐率信令字段可以使用之外,数据字段的聚合控制子字段也可以用于作为第一标识字段,如此,一方面可以为第一标识字段的位置的设置提供更多的选择,另一方面,由于可以使用现有的字段承载第一标识字段的内容,从而可以更好的与现有技术兼容。
进一步,为了与现有标准保持一致性,本申请适用于下一代标准时,第一标识字段可以包括:通用信令字段、下一代信令字段或数据字段的聚合控制子字段中的至少一项中的部分比特或全部比特。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一帧还包括NDP的数量。如此,第二通信装置可以基于第一帧确定出后续需要接收的NDP的数量,以便可以核对是否漏收了NDP。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一帧还包括第二标识字段,第二标识字段用于指示第一发送天线组合的标识。第一帧中的第二标识字段可以包括多个发送天线组合的标识,比如可以包括第一帧后续发送的连续的多个PPDU对应的发送天线组合中的多个。如此,第一PPDU中的第一标识字段可以携带第一发送天线组合的标识对应的比特中的部分比特,从而可以节省第一标识字段在第一PPDU中占用的比特位数量,而第二通信装置可以结合第一标识字段和第二标识字段确定出第一发送天线组合的标识对应的全部比特,继而可以向第一通信装置指示第二通信装置选择出的发送天线组合(比如第二通信装置选择第一发送天线组合)的全部比特,以便第一通信装置根据第二通信装置反馈的发送天线组合的全部比特确定出第二通信装置所选择的发送天线组合。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一指示信息和/或NDP的数量承载于:第一帧的至少一个包括第二指示信息的站点信息字段。又一种可能的实施方式中,第二标识字段包括第一帧的至少一个包括第二指示信息的站点信息字段中的部分或全部比特。第二指示信息指示站点信息字段包括天线选择相关信息。如此,第二通信装置可以在识别出第二指示信息的情况下,确定承载有第二指示信息的站点信息字段中承载的为天线选择相关信息,继而从该站点信息字段获取天线选择相关信息。第二指示信息可以将承载天线选择相关信息的站点信息字段和其他常规的某一个站点对应的站点信息字段区别开,从而在通过使用站点信息字段承载天线选择相关信息的方案中,不会对常规的某一个站点对应的站点信息字段造成影响,达到与现有标准兼容的目的。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第二指示信息承载于站点信息字段中的关联标识字段。比如可以使用现有标准中还未指示给某一个特定站点的值作为第二指示信息,第二指示信息包括:2008-2043或2046中的一个。如此,第二通信装置可以根据关联标识字段确定出该站点信息字段承载的是天线选择相关信息还是某个第二通信装置对应的站点信息,可以看出,该方案可以与现有技术更好的兼容。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第二帧包括多输入多输出控制字段,第三标识字段包括多输入多输出控制字段中的部分或全部比特。如此,可以通过使用现有的多输入多输出控制(MIMO Control)字段中的比特实现在第二帧中添加第三标识字段的目的,该方案不会额外增加第二帧的长度,且可以更好的跟现有技术兼容。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第三指示信息承载于聚合控制子字段中的以下内容中的至少一项;控制标识符字段、天线选择命令字段,或天线选择数据字段。由于现有标准中划分了天线选择命令字段和天线选择数据字段,因此在高效变种中对A-control子字段也划分出天线选择命令字段和天线选择数据字段则可以与现有的标准中的命令形式更加兼容。且进一步将第三指示信息承载于A-control子字段中的控制标识符字段、天线选择命令字段,或天线选择数据字段至少一项,由于现有技术中也有天线选择命令字段和天线选择数据字段,因此该方案可以与现有技术兼容。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式, 本申请还提供一种可能的实施方式,天线选择命令字段和天线选择数据字段占用的比特数量大于7比特。天线选择数据字段占用的比特数量大于4比特。天线选择命令字段和天线选择数据字段占用的比特数量:不大于26比特。
相比802.11n中基于高吞吐率控制(HTC)字段的天线选择的流程设计,802.11n中最多支持4个射频链、8个天线、16种天线组合,而本申请实施例中由于控制信息字段的比特位数量较多,因此,本申请实施例可以通过图6所示的MPDU承载更多类型的天线选择命令,天线选择数据字段也大于4比特,因此可以支持更多的PPDU的数量(可以支持的PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种)。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一发送天线组合为第一通信装置的k 1个发送天线组合中的一个,k 1为正整数。k 1个发送天线组合与k 1个发送天线组合的标识一一对应。由于发送天线组合和发送天线组合的标识为一一对应的关系,因此第二通信装置在不同时间点收到包括相同的天线组合标识的两个PPDU,如果探测到的信道发生了变化,由于该两个PPDU包括的天线组合标识相同,因此第二通信装置判定天线组合未发生变化,因此可以判定是信道本身发生了变化。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一标识字段包括:第一发送天线组合的标识对应的全部比特。如此,第二通信装置可以根据PPDU中携带的第一标识字段唯一确定出一个发送天线组合的标识。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一标识字段包括:第一发送天线组合的标识对应的部分比特。如此,可以节省PPDU前导码中的比特位。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第二通信装置向第一通信装置发送的第三帧还可以包括PPDU的数量,如此,第一通信装置可以基于第三帧中携带的PPDU数量确定发送多少个PPDU,从而可以使第一通信装置基于第二通信装置的需求确定后续发送的PPDU数量,以使第一通信装置后续发送的PPDU的数量尽量与第二通信装置的需求匹配。
基于上述第一方面或第二方面,以及第一方面或第二方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一标识字段包括:第一发送天线组合的组标识,和/或第一PPDU的序号。如此可以提高方案的灵活性。
第三方面,本申请实施例提供一种天线信道探测方法,该方法中第一通信装置向第二通信装置发送第十一帧,第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第一通信装置向第二通信装置发送第三物理层协议数据单元PPDU;第三PPDU用于第二通信装置进行发送天线信道探测。其中,第三PPDU包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。由于第一通信装置可以将需要发送M 1组发送天线组合对应的PPDU聚合为一个PPDU,从而可以节省开销,从而可以提升天线选择的效率,提升系统吞吐率。
第四方面,本申请实施例提供一种天线信道探测方法,该方法中第二通信装置接收来自第一通信装置的第十一帧,第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第二通信装置接收来自第一通信装置的第三PPDU;第三PPDU用于第二通信装置进行发送天线信道探测。其中,第三PPDU包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。由于第一通信装置可以将需要发送M 1组发送天线组合对应的PPDU聚合为一个PPDU,从而可以节省开销,从而可以提升天线选择的效率,提升系统吞吐率。
基于上述第三方面或第四方面,以及第三方面或第四方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第三PPDU包括前导码;前导码包括以下字段中的至少一项:传统短训练字段、传统长训练字段、传统信令字段、重复传统信令字段、通用信令字段,或极高吞吐率信令字段。如此可以将各个发送天线组合共用的部分仅发送一份,从而可以节省开销。
基于上述第三方面或第四方面,以及第三方面或第四方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,M 1个第一信息字段中的任两个第一信息字段中的数据包扩展字段的时长相同。如此,可以提高接收流程一致性。
基于上述第三方面或第四方面,以及第三方面或第四方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,M 1个第一信息字段中的至少两个第一信息字段中的数据包扩展字段的时长不同。比如除最后一个数据包扩展字段之外的一个数据包扩展字段可以比最后一个数据包扩展字段短一些,足够第一通信装置切换天线即可,如此可以提高信令发送效率。
第五方面,本申请实施例提供一种天线信道探测方法,该方法中第一通信装置向第二通信装置发送第五帧,第五帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。第一通信装置接收来自第二通信装置的第二PPDU;第二PPDU用于第一通信装置进行接收天线信道探测,第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
第二PPDU可以包括数据字段。第二PPDU也可以不包括数据字段,比如第二PPDU可以为NDP。由于NDP不包括数据字段,因此可以节省开销。
进一步,第一通信装置可以根据第二PPDU对第一接收天线组合进行接收天线信道探测,得到第一接收天线组合对应的接收天线信道探测结果。由于NDP中包括有指示第一接收天线组合的标识的第五标识字段,因此第一通信装置确定出NDP对应的接收天线信道探测结果和接收天线组合的标识的对应关系,进而第一通信装置可以确定出基于一个或多个接收天线信道探测结果选择出的接收天线组合的标识,从而可以防止第一通信装置将选择出的接收天线信道探测结果和接收天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第二通信装置可以向第一通信装置发送一个或多个PPDU,第二PPDU为该一个或多个PPDU中的一个。第一通信装置可以基于接收到的该一个或多个PPDU进行接收天线信道探测,得到接收天线信道探测结果。进一步, 第一通信装置可以根据得到的接收天线信道探测结果选择出接收天线组合,并将该选择出的接收天线组合的标识指示给第二通信装置,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。比如,第一通信装置向第二通信装置发送第六帧,第六帧包括第二天线选择反馈结果。第二天线选择反馈结果包括第七标识字段,该第七标识字段可以用于承载第一通信装置选择出的接收天线组合的标识。比如第一通信装置选择的接收天线组合为第一接收天线组合,则该第七标识字段可以用于指示第一接收天线组合的标识。
在一种可能的实施方式中,第一通信装置向第二通信装置发送第五帧之前,还包括:第一通信装置接收包括第六指示信息的第七帧,第六指示信息用于请求第一通信装置发送进行接收天线信道探测的信息。其中,第六指示信息承载于第七帧的高效变种字段。由于高效变种字段中用于承载天线选择流程的相关命令的比特位数量较多,因此本申请提供的方案可以支持更多的PPDU的数量(比如可以支持的PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种),从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第一通信装置和第二通信装置可以进行协商,通过协商第二通信装置知道第一通信装置支持的接收天线组合,且经过协商,第一通信装置和第二通信装置为第一通信装置支持的接收天线组合设置一个组标识。
比如,在一种可能的实施方式中,第一通信装置向第二通信装置发送第五帧之前,还包括:第一通信装置向第二通信装置发送第八帧,第八帧包括第八标识字段,第八标识字段用于指示第一通信装置支持的至少一个接收天线组合的标识,至少一个接收天线组合的标识包括第一接收天线组合的标识。
进一步,第一通信装置还可以将自身支持的接收天线组合的标识对应的接收天线组合指示给第二通信装置。如此,第二通信装置可以在发送PPDU时携带接收天线组合的标识。而且,第二通信装置可以确定出第一接收天线组合具体包括的天线都有哪些。可以看出,第二通信装置通过协商可以获取更多的天线组合相关的信息,后续可以获得更多的链路相关信息,从而还可以为后续其他流程提供协助。
在一种可能的实施方式中,第一通信装置向第二通信装置发送第五帧之前,还包括:第一通信装置向第二通信装置发送第十帧,第十帧包括第八指示信息,第八指示信息用于指示第一通信装置支持的接收天线组合的总数量。如此,第二通信装置可以根据第八指示信息预估接收天线选择流程的开销以及时长,且第二通信装置还可以基于第一通信装置支持的接收天线组合的总数量决定是否与第一通信装置之间建立关联关系。
第六方面,本申请实施例提供一种天线信道探测方法,该方法中第二通信装置接收来自第一通信装置的第五帧,第五帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。第二通信装置向第一通信装置发送第二PPDU;第二PPDU用于第一通信装置进行接收天线信道探测,第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
第二PPDU可以包括数据字段。第二PPDU也可以不包括数据字段,比如第二PPDU可以为NDP。由于NDP不包括数据字段,因此可以节省开销。
进一步,本申请中由于在NDP中包括有指示第一接收天线组合的标识的第五标识 字段,因此第一通信装置确定出NDP对应的接收天线信道探测结果和接收天线组合的标识的对应关系,进而第一通信装置可以确定出基于一个或多个接收天线信道探测结果选择出的接收天线组合的标识,从而可以防止第一通信装置将选择出的接收天线信道探测结果和接收天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第二通信装置可以向第一通信装置发送一个或多个PPDU,第二PPDU为该一个或多个PPDU中的一个。第一通信装置可以基于接收到的该一个或多个PPDU进行接收天线信道探测,得到接收天线信道探测结果。进一步,第一通信装置可以根据得到的接收天线信道探测结果选择出接收天线组合,并将该选择出的接收天线组合的标识指示给第二通信装置,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。比如,第二通信装置接收来自第一通信装置的第六帧,第六帧包括第二天线选择反馈结果。第二天线选择反馈结果包括第七标识字段,该第七标识字段可以用于承载第一通信装置选择出的接收天线组合的标识。比如第一通信装置选择的接收天线组合为第一接收天线组合,则该第七标识字段可以用于指示第一接收天线组合的标识。
在一种可能的实施方式中,第二通信装置接收来自第一通信装置的第五帧之前,还包括:第二通信装置发送包括第六指示信息的第七帧,第六指示信息用于请求第一通信装置发送进行接收天线信道探测的信息。其中,第六指示信息承载于第七帧的高效变种字段。由于高效变种字段中用于承载天线选择流程的相关命令的比特位数量较多,因此本申请提供的方案可以支持更多的PPDU的数量(比如可以支持的PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种),从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
在一种可能的实施方式中,第一通信装置和第二通信装置可以进行协商,通过协商第二通信装置知道第一通信装置支持的接收天线组合,且经过协商,第一通信装置和第二通信装置为第一通信装置支持的接收天线组合设置一个组标识。
比如,在一种可能的实施方式中,第二通信装置接收来自第一通信装置的第五帧之前,第二通信装置接收来自第一通信装置的第八帧,第八帧包括第八标识字段,第八标识字段用于指示第一通信装置支持的至少一个接收天线组合的标识,至少一个接收天线组合的标识包括第一接收天线组合的标识。
进一步,第一通信装置还可以将自身支持的接收天线组合的标识对应的接收天线组合指示给第二通信装置。如此,第二通信装置可以在发送PPDU时携带接收天线组合的标识。而且,第二通信装置可以确定出第一接收天线组合具体包括的天线都有哪些。可以看出,第二通信装置通过协商可以获取更多的天线组合相关的信息,后续可以获得更多的链路相关信息,从而还可以为后续其他流程提供协助。
在一种可能的实施方式中,第一通信装置向第二通信装置发送第五帧之前,第二通信装置接收来自第一通信装置的第十帧,第十帧包括第八指示信息,第八指示信息用于指示第一通信装置支持的接收天线组合的总数量。如此,第二通信装置可以根据第八指示信息预估接收天线选择流程的开销以及时长,且第二通信装置还可以基于第一通信装置支持的接收天线组合的总数量决定是否与第一通信装置之间建立关联关系。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式, 本申请还提供一种可能的实施方式,第五标识字段位于第二PPDU前导码。比如,第五标识字段为前导码的:通用信令字段中的部分比特或全部比特,和/或,极高吞吐率信令字段中的部分比特或全部比特。当第二PPDU为NDP的情况下,由于现有的NDP中不携带第五标识字段,而本申请中可以使用现有的NDP的前导码中的字段承载第五标识字段的内容,从而可以更好的与现有技术兼容,且也可以实现在NDP中携带第一接收天线组合的标识的目的。
进一步,由于现有协议中这些字段中有一些预留比特,比如通用信令字段第一个符号的B20-B24、B25以及第二个符号的B2和B8,极高吞吐率信令字段的B14-B15,而本申请实施例中通过使用这些字段中的比特来实现在NDP中添加第一标识字段的目的,可以更好的与现有技术兼容。
进一步,为了与现有标准保持一致性,本申请适用于下一代标准时,第五标识字段可以包括:通用信令字段中的部分比特或全部比特,和/或,下一代信令字段中的部分比特或全部比特。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,PPDU包括数据字段和前导码。第五标识字段包括前导码,或数据字段中的至少一项中的部分比特或全部比特。比如,第一接收天线组合的标识信息承载于:通用信令字段、极高吞吐率信令字段或数据字段的聚合控制子字段中的至少一项。当第二PPDU包括数据字段的情况下,除了前述提及的通用信令字段和极高吞吐率信令字段可以使用之外,数据字段的聚合控制子字段也可以用于作为第五标识字段,如此,一方面可以为第五标识字段的位置的设置提供更多的选择,另一方面,由于可以使用现有的字段承载第五标识字段的内容,从而可以更好的与现有技术兼容。
进一步,为了与现有标准保持一致性,本申请适用于下一代标准时,第一接收天线组合的标识信息承载于:通用信令字段、下一代信令字段或数据字段的聚合控制子字段中的至少一项。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第五帧还包括NDP的数量。如此,第二通信装置可以基于第一帧确定出后续需要接收的NDP的数量,以便可以核对是否漏收了NDP。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第五帧还包括第六标识字段,第六标识字段用于指示第一接收天线组合的标识。第五帧中的第六标识字段可以包括多个接收天线组合的标识,比如可以包括第五帧后续发送的连续的多个PPDU对应的接收天线组合中的多个。如此,第二PPDU中的第五标识字段可以携带第一接收天线组合的标识对应的比特中的部分比特,从而可以节省第五标识字段在第二PPDU中占用的比特位数量,而第一通信装置可以结合第五标识字段和第六标识字段确定出第一接收天线组合的标识对应的全部比特,继而可以向第一通信装置指示第二通信装置选择出的发送天线组合(比如第二通信装置选择第一发送天线组合)的全部比特,以便第一通信装置根据第二通信装置反馈的发送天线组合的全部比特确定出第二通信装置所选择的发送天线组合。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第四指示信息和/或NDP的数量承载于:第五帧的至少一个包括第五指示信息的站点信息字段。又一种可能的实施方式中,第六标识字段包括 第五帧的至少一个包括第五指示信息的站点信息字段中的部分或全部比特。第五指示信息指示站点信息字段包括天线选择相关信息。如此,第二通信装置可以在识别出第五指示信息的情况下,确定承载有第五指示信息的站点信息字段中承载的为天线选择相关信息,继而从该站点信息字段获取天线选择相关信息。第五指示信息可以将承载天线选择相关信息的站点信息字段和其他常规的某一个站点对应的站点信息字段区别开,从而在通过使用站点信息字段承载天线选择相关信息的方案中,不会对常规的某一个站点对应的站点信息字段造成影响,达到与现有标准兼容的目的。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第五指示信息承载于站点信息字段中的关联标识字段。比如可以使用现有标准中还未指示给某一个特定站点的值作为第五指示信息,第五指示信息包括:2008-2043或2046中的一个。如此,第二通信装置可以根据关联标识字段确定出该站点信息字段承载的是天线选择相关信息还是某个第二通信装置对应的站点信息,可以看出,该方案可以与现有技术更好的兼容。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第四指示信息承载于第五帧的触发帧类型字段;和/或,NDP的数量和/或第六标识字段,承载于以下内容中的至少一项中的部分或者全部比特:公共信息字段的预留比特、用户信息列表字段的预留比特,基于触发类型的公共信息,或基于触发帧类型的站点信息。第五帧也可以为第二触发帧,通过该方案可以使用现有第二触发帧中的比特以实现在第二触发帧中添加天线选择相关信息的目的,如此可以与现有技术兼容。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第六帧包括MIMO Control字段,第七标识字段包括MIMO Control字段中的部分或全部比特。如此,可以通过使用现有的多输入多输出控制(MIMO Control)字段中的比特实现在第二帧中添加第三标识字段的目的,该方案不会额外增加第二帧的长度,且可以更好的跟现有技术兼容。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第六指示信息承载于A-control子字段中的以下内容中的至少一项。控制标识符字段、天线选择命令字段,或天线选择数据字段。由于现有标准中划分了天线选择命令字段和天线选择数据字段,因此在高效变种中对A-control子字段也划分出天线选择命令字段和天线选择数据字段则可以与现有的标准中的命令形式更加兼容。且进一步将第六指示信息承载于A-control子字段中的控制标识符字段、天线选择命令字段,或天线选择数据字段至少一项,可以与现有技术兼容。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,天线选择命令字段和天线选择数据字段占用的比特数量大于7比特。天线选择数据字段占用的比特数量大于4比特。天线选择命令字段和天线选择数据字段占用的比特数量:不大于26比特。
相比802.11n中基于高吞吐率控制(HTC)字段的天线选择的流程设计,802.11n中最多支持4个射频链、8个天线、16种天线组合,而本申请实施例中由于控制信息字段的比特位数量较多,因此,本申请实施例可以通过图6所示的MPDU承载更多类型的天线选择命令,天线选择数据字段也大于4比特,因此可以支持更多的PPDU的数量(可以支持的 PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种)。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第一接收天线组合为第一通信装置的k 2个接收天线组合中的一个,k 2为正整数。k 2个接收天线组合与k 2个接收天线组合的标识一一对应。由于接收天线组合和接收天线组合的标识为一一对应的关系,因此第二通信装置在不同时间点收到包括相同的天线组合标识的两个PPDU,如果探测到的信道发生了变化,由于该两个PPDU包括的天线组合标识相同,因此第二通信装置判定天线组合未发生变化,因此可以判定是信道本身发生了变化。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第五标识字段包括:第一接收天线组合的标识对应的全部比特。如此,第二通信装置可以根据PPDU中携带的第一标识字段唯一确定出一个接收天线组合的标识。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第五标识字段包括:第一接收天线组合的标识对应的部分比特。如此,可以节省PPDU前导码中的比特位。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第二通信装置向第一通信装置发送的第七帧中还包括:PPDU的数量。如此,第一通信装置可以基于第七帧中携带的PPDU数量确定后续第二通信装置需发送的PPDU数量,以使第一通信装置确定的第二通信装置后续需发送的PPDU的数量尽量与第二通信装置的需求匹配。
基于上述第五方面或第六方面,以及第五方面或第六方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第五标识字段包括:第一接收天线组合的组标识,和/或第二PPDU的序号。如此可以提高方案的灵活性。
第七方面,本申请实施例提供一种天线信道探测方法,该方法中第一通信装置向第二通信装置发送第十二帧,第十二帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。第一通信装置接收来自第二通信装置的第四PPDU;第四PPDU用于第二通信装置进行接收天线信道探测。其中,第四PPPDU包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。第二信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
由于第二通信装置可以将需要发送M 2组接收天线组合对应的PPDU聚合为一个PPDU,从而可以节省开销,从而可以提升天线选择的效率,提升系统吞吐率。
第八方面,本申请实施例提供一种天线信道探测方法,该方法中第二通信装置接收来自第一通信装置的第十二帧,第十二帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。第二通信装置向第一通信装置发送第四PPDU;第四PPDU用于第二通信装置进行接收天线信道探测。其中,第四PPDU包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。第二信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
由于第二通信装置可以将需要发送M 2组接收天线组合对应的PPDU聚合为一个PPDU,从而可以节省开销,从而可以提升天线选择的效率,提升系统吞吐率。
基于上述第七方面或第八方面,以及第七方面或第八方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,第四PPDU包括前导码;前导码包括以下字段中的至少一项:传统短训练字段L-STF、传统长训练字段L-LTF、传统信令字段L-SIG、重复传统信令字段RL-SIG、通用信令字段U-SIG,或极高吞吐率信令字段EHT-SIG。如此可以将各个发送天线组合共用的部分仅发送一份,从而可以节省开销。
基于上述第七方面或第八方面,以及第七方面或第八方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,M 2个第二信息字段中的任两个第二信息字段中的数据包扩展字段的时长相同。如此,可以提高接收流程一致性。
基于上述第七方面或第八方面,以及第七方面或第八方面中的任一种可能的实施方式,本申请还提供一种可能的实施方式,M 2个第二信息字段中的至少两个第二信息字段中的数据包扩展字段的时长不同。比如除最后一个数据包扩展字段之外的一个数据包扩展字段可以比最后一个数据包扩展字段短一些,足够第一通信装置切换天线即可,如此可以提高信令发送效率。
第九方面,提供了一种通信装置,包括通信单元和处理单元。该通信装置可以为上述第一通信装置,也可以为上述第二通信装置。该通信装置可以执行上述第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。通信单元用于执行与发送和接收相关的功能。可选地,通信单元包括接收单元和发送单元。在一种设计中,通信装置为通信芯片,处理单元可以是处理电路、一个或多个处理器或处理器核心,通信单元可以为通信芯片的接口电路、输入输出电路或者端口。
在另一种设计中,通信单元可以为发射器和接收器,或者通信单元为发射机和接收机。
可选的,通信装置还包括可用于执行上述第一方面至第八方面中任一方面,以及任一方面的任一种实施方式的各个模块。
第十方面,提供了一种通信装置,包括处理器和收发器。该通信装置可以为上述第一通信装置,也可以为上述第二通信装置。可选的,还包括存储器。该存储器用于存储计算机程序或指令,该处理器用于从存储器中调用并运行该计算机程序或指令,当处理器执行存储器中的计算机程序或指令时,使得该通信装置执行上述第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器中可以包括,发射机(发射器)和接收机(接收器)。
第十一方面,提供了一种通信装置,包括处理器。该通信装置可以为上述第一通信装置,也可以为上述第二通信装置。该处理器与存储器耦合,可用于执行第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。该通信装置可以为上述第一通信装置,也可以为上述第二通信装置。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为第一通信装置时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在又一种实现方式中,当该通信装置为第一通信装置的芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
在一种实现方式中,该通信装置为第二通信装置时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在又一种实现方式中,当该通信装置为第二通信装置的芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
第十二方面,提供了一种系统,系统包括上述第一通信装置和第二通信装置。
第十三方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。
第十四方面,提供了一种计算机可读存储介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。
第十五方面,提供了一种芯片系统,该芯片系统可以包括处理电路。该处理电路可以用于通过接口电路执行上述第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理电路可以用于从存储器调用并运行计算机程序,使得安装有芯片系统的设备执行第一方面至第八方面中任一方面,以及任一方面的任一种实施方式。
第十六方面,提供了一种处理装置,包括:接口电路和处理电路。接口电路可以包括输入电路和输出电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得第一方面至第八方面中任一方面,以及任一方面的任一种实施方式被实现。
在具体实现过程中,上述处理装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具体实现方式不做限定。
在又一种实现方式中,通信装置可以是第一通信装置中的部分器件,如系统芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理电路可以为该芯片上的逻辑电路。
在又一种实现方式中,通信装置可以是第二通信装置中的部分器件,如系统芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理电路可以为该芯片上的逻辑电路。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为本申请实施例提供的另一种系统架构示意图;
图3为本申请实施例提供的一种通信装置的结构示意图;
图4为本申请实施提供的一种天线信道探测方法的信令交互示意图;
图5为本申请实施提供的又一种天线信道探测方法的信令交互示意图;
图6为本申请实施提供的一种可以承载第三帧的MPDU的结构示意图;
图7为本申请实施提供的第一帧为NDPA帧的情况下第一帧的一种结构示意图;
图8a为本申请实施提供的第一PPDU为NDP的情况下第一PPDU的一种结构示意图;
图8b为本申请实施提供的第一PPDU为NG探测NDP的情况下第一PPDU的一种结构示意图;
图8c为本申请实施提供的包括数据字段的第一PPDU的一种结构示意图;
图9为本申请实施提供的第二帧为波束成形报告帧的情况下第二帧中MIMO Control字段的一种结构示意图;
图10为本申请实施提供的又一种天线信道探测方法的信令交互示意图;
图11为本申请实施提供的一种第三PPDU的帧结构示意图;
图12为本申请实施提供的一种天线信道探测方法的信令交互示意图;
图13为本申请实施提供的又一种天线信道探测方法的信令交互示意图;
图14为本申请实施提供的一种第二触发帧的结构示意图;
图15为本申请实施提供的第五帧为NDPA帧的情况下第五帧的一种结构示意图;
图16a为本申请实施提供的第二PPDU为NDP的情况下第二PPDU的一种结构示意图;
图16b为本申请实施提供的第二PPDU为NDP的情况下第二PPDU的一种结构示意图;
图16c为本申请实施提供的一种包括数据字段的第二PPDU的结构示意图;
图17为本申请实施提供的又一种天线信道探测方法的信令交互示意图;
图18为本申请实施提供的一种第四PPDU的帧结构示意图;
图19为本申请实施提供的又一种第四PPDU的帧结构示意图;
图20为本申请实施例提供的又一种通信装置的架构示意图;
图21为本申请实施例提供的又一种通信装置的架构示意图;
图22为本申请实施例提供的又一种通信装置的架构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示例性示出了本申请实施例适用的一种通信系统架构示意图,如图1所示,该通信系统包括第一通信装置101和第二通信装置102。本申请实施例提供一种天线选择方案,可以用于对设备进行天线选择。本申请实施例中以对第一通信装置101进行天线选择为例进行描述。若需对第二通信装置102进行天线选择,则第二通信装置102的天线选择流程可以参照第一通信装置101的天线选择流程,不再赘述。
第一通信装置101可以包括发送天线和接收天线。本申请实施例中提供一种用于对第一通信装置101的发送天线进行选择的方案,在该方案中,第一通信装置101向第二通信装置102发送第一帧。第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第一通信装置101向第二通信装置102发送第一物理层协议数据单元(phyical layer protocol data unit,PPDU)。第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
一种可能的实施方式中,第一PPDU可以为包括有数据字段的PPDU。
又一种可能的实施方式中,第一PPDU可以不包括数据字段,比如第一PPDU为空数据分组(null data packet,NDP)。本申请实施例中NDP也可以称为空数据包。NDP可以不包括数据字段。
在第一PPDU为NDP的情况下,由于NDP不包括数据字段,因此可以节省开销。尤其是在适用于大规模天线的场景中,由于天线组合的数量较多,导致用于进行发送天线信道探测的PPDU的数量也较多,进行发送天线选择的开销随之增多。而本申请实施例通过NDP进行发送天线信道探测的方案可以在大规模天线场景下节省更多的开销。
另一方面,在目前一种可能的实施方案中,由于NDP中不包括数据字段,因此NDP中无法携带PPDU的序号信息,而第二通信装置只能基于自身收到的NDP的顺序推断该NDP对应的PPDU的序号信息。然而,一旦第二通信装置侧漏收了某个NDP,则第二通信装置就无法正确推断接收到的NDP对应的PPDU的序号信息,进而也无法正确的向第一通信装置侧反馈发送天线信道探测的结果和PPDU的序号信息之间的对应关系,进而可能导致第一通信装置侧的发送天线选择失败。而当在大规模天线的场景中,由于天线组合数量更多,因此第二通信装置确定NDP对应的PPDU的序号信息的错误概率会更大。
针对上述问题,本申请实施例中在NDP中添加了用于指示第一发送天线组合的标识的第一标识字段,从而可以使第二通信装置确定出接收到的NDP对应的第一发送天线组合的标识,进而第二通信装置可以将根据该NDP得到的发送天线信道探测的结果确定为:第一发送天线组合的标识对应的发送天线信道探测的结果。由于第二通信装置可以确定出NDP对应的发送天线信道探测结果和发送天线组合的标识的对应关系,进而第二通信装置可以确定出基于一个或多个发送天线信道探测结果选择出的发送天线组合的标识,从而可以防止第二通信装置将选择出的发送天线信道探测结果和发送天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。还可以方便第二通信装置和第一通信装置进行天线选择的错误恢复(比如即使第二通信装置将PPDU的序号信息弄错,也可以根据该PPDU中指示发送天线组合标识的信息正确的确定出该PPDU对应的发送天线组合的标识)。
以上内容以对第一通信装置侧的发送天线的天线选择流程为例进行介绍,本申请实施例中还可以提供一种用于对第一通信装置的接收天线进行选择的方案。后续内容将分别对两种方案进行进详细描述。在此先不做赘述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wirelesslocal area network,WLAN)通信系统,全球移动通讯(global system of mobilecommunication,GSM)系统、码分多址(code division multiple access,CDMA) 系统、宽带码分多址(wideband5code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
以下作为示例性说明,仅以WLAN系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
具体而言,本申请实施例可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例可以适用于WLAN当前采用的IEEE 802.11系列协议中的任意一种协议。包括802.11be,还可能适用于802.11be以后的标准。WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。
图2示例性示出了本申请实施例提供的另一种系统架构示意图,如图2所示,该通信系统包括一个或多个AP,还可以包括一个或多个STA。图1以两个AP(例如,图2中的AP201和AP202)和三个STA(例如,图2中的STA203、STA204和STA205)为例。图1中的第一通信装置101可以为图2中的AP或STA。图2中的第二通信装置102可以为图2中的AP或STA。
本申请实施例提供的方案适用于AP与AP之间的通信,比如图2中AP201与AP202之间的通信。这种情况下,图1中的第一通信装置101和第二通信装置102可以均为AP,比如第一通信装置101为AP201,第二通信装置102为AP202。
本申请实施例提供的方案还适用于STA与STA之间的通信,比如图2中STA204与STA205之间的通信。这种情况下,图1中的第一通信装置101和第二通信装置102可以均为STA,比如第一通信装置101为STA204,第二通信装置102为STA205。
本申请实施例提供的方案还可以适用于一个AP与一个或多个STA之间的通信,还适用于多个AP与一个或多个STA之间的通信。比如图2中AP201与STA203之间的通信。这种情况下,图1中的第一通信装置101和第二通信装置102可以分别为AP和STA。比如第一通信装置101可以为STA203,第二通信装置为AP201。再比如,第一通信装置101为AP201,第二通信装置102为STA203。
以下作为示例性说明,仅以第一通信装置101为AP,第二通信装置102为STA为例,描述本申请实施例的应用场景以及本申请实施例的方法。
本申请实施例中的STA还可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信装置、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digitalassistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
站点可以为无线通讯芯片、无线传感器或无线通信终端等。例如,站点可以为支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能 的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。
本申请中的接入点可以是极高吞吐量(extremely high throughput,EHT)STA,还可以是适用未来某代Wi-Fi标准的STA。
本申请实施例中AP可用于与接入终端(比如STA)通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。AP也称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的通信服务器、路由器、交换机、网桥、计算机、手机等。可选地,AP可以为支持802.11等多种WLAN制式的设备。
AP和STA之间可以通过各种标准进行无线通信。例如,AP和STA之间可以采用单用户多入多出(single-user multiple-input multiple-output,SU-MIMO)技术或多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例提供的一种通信设备可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(Multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。
多链路设备包括一个或多个隶属的站点STA(affiliated STA),隶属的STA是一个逻辑上的站点,可以工作在一条链路上。其中,隶属的站点可以为接入点(Access Point,AP)或非接入点站点(non-Access Point Station,non-AP STA)。为描述方便,将隶属的站点为AP的多链路设备可以称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device),隶属的站点为non-AP STA的多链路设备可以称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device)。
图3示例性示出了本申请实施例提供的一种通信装置的结构示意图,图3中所示的通信装置可以为图1中的第一通信装置101的内部结构示意图,也可以为图1中的第二通信装置102的内部结构示意图,还可以为图2中的AP(比如图2中的AP201或AP202)的内部结构示意图,还可以为图2中的STA(比如图2中的STA203、STA204或STA205)的内部结构示意图。图3所示的通信装置可以包括多天线,并且可以是两个以上天线的设备。
如图3所示,该通信装置包括物理层(physical layer,PHY)处理电路、媒体接入控制(media access control,MAC)处理电路、存储器、控制器、调度器和处理器。
其中,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号,存储器可以用于存储的信令信息等,控制器为可以进行控制的组件,调度器为可以进行调度的组件,处理器可以用于解析信令信息,处理相关数据等。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
基于上述内容,图4示例性示出了本申请实施提供的一种天线信道探测方法的信令交互示意图。
图4中是以第一通信装置和第二通信装置的交互为例进行展示。本申请实施例中的第一通信装置也可以称为天线选择发送方,第二通信装置也可以称为天线选择响应方。
图4中的第一通信装置可以为前述图1中的第一通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图4中的第二通信装置可以为前述图1中的第二通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图4中的第一通信装置和第二通信装置可以均为AP,或者均为STA,或者分别为AP和STA,图4中以第一通信装置为AP,第二通信装置为STA为例进行展示。
本申请实施例提供的方案可以适用于AP同单个STA之间的发送天线信道探测的流程,也可以适用于AP同多个STA之间的发送天线信道探测的流程。图4是以AP与多个STA(比如图4中的STA203、STA204和STA205)之间执行发送天线信道探测的流程为例进行示意。
如图4所示,该方法包括:
S401,第一通信装置向第二通信装置发送第一帧,第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。
相对应的,第二通信装置接收来自第一通信装置的第一帧。
S402,第一通信装置向第二通信装置发送第一物理层协议数据单元(PHY protocol data unit,PPDU)。第一PPDU用于第二通信装置进行发送天线信道探测。第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
相对应的,第二通信装置接收来自第一通信装置的第一PPDU。
一种可能的实施方式中,S402中,第一通信装置可以在发送第一帧之后,在相隔短帧间距(short inter-frame space,SIFS)之后,发送一个或多个PPDU,相邻PPDU之间也可 以相隔SIFS。图中以SIFS为例,还可以是其他时长,比如25微秒等,本发明方案对此不走限制。第一PPDU为第一通信装置在S402中发送的一个或多个PPDU中的一个。本申请实施例中的PPDU也可以称为物理层数据分组,物理层数据包。
一种可能的实施方式中,S402中的第一PPDU可以为包括有数据字段的PPDU。
又一种可能的实施方式中,S402中的第一PPDU可以不包括数据字段,比如第一PPDU为不包括数据字段的空数据包分组(null data packet,NDP)。NDP不包含数据(data)字段,为PPDU的一种特例,通常可用于信道探测(Channel Sounding)。由于NDP中不包括数据字段,因此采用NDP作为第一PPDU可以节省开销。尤其是在适用于大规模天线的场景中,由于天线组合的数量较多,导致用于进行发送天线信道探测的第一PPDU的数量也较多,进行发送天线选择的开销随之增多。而通过NDP进行发送天线信道探测的方案可以在大规模天线场景下节省更多的开销。
在一种可能的实施方式中,第一通信装置可以向第二通信装置发送一个或多个PPDU,第一PPDU为该一个或多个PPDU中的一个。该一个或多个PPDU中的PPDU可以包括其各自的第一标识字段,该一个或多个PPDU中的PPDU的第一标识字段用于指示该PPDU对应的发送天线组合的标识。比如由于第一PPDU为用于对第一发送天线组合进行发送天线信道探测,因此第一PPDU中的第一标识字段指示第一发送天线组合的标识。再比如,该一个或多个PPDU中的除第一PPPDU外的另一PPDU为用于对第二发送天线组合进行发送天线信道探测的PPDU,则该PPDU中的第一标识字段指示第二发送天线组合的标识。
本申请实施例中第一通信装置向第二通信装置发送的PPDU也可以理解为探测PPDU,用于进行天线信道探测的PPDU。第二通信装置可以基于接收到的该一个或多个PPDU进行发送天线信道探测,得到发送天线信道探测结果。
进一步,第二通信装置可以根据得到的发送天线信道探测结果选择出发送天线组合,并将该选择出的发送天线组合的标识指示给第一通信装置。比如通过在S402之后执行S403:
S403,第二通信装置发送第二帧。第二帧包括第一天线选择反馈结果,第一天线选择反馈结果包括第三标识字段。第三标识字段用于指示第一发送天线组合的标识。
需要说明的是,S403中的第三标识字段可以用于承载第二通信装置选择出的发送天线组合的标识。比如第二通信装置选择的发送天线组合为第一发送天线组合,则该第三标识字段可以用于指示第一发送天线组合的标识。在本申请实施例中是以第二通信装置选择的发送天线组合为第一发送天线组合为例进行展示的,在实际应用中第二通信装置也可能会选择其他的发送天线组合(这种情况下,第三标识字段需指示该其他的发送天线组合),本申请实施例不做限制。
一种可能的实施方式中,S403中,第二通信装置根据第一PPDU进行发送天线信道探测,得到第一天线选择反馈结果,并将第一天线选择反馈结果携带于第二帧进行发送。
相对应的,第一通信装置接收来自第二通信装置的第二帧。
本申请实施例中进行发送天线信道探测的第二通信装置可以为具有天线选择功能(Antenna Selection Capability,ASEL)能力(Capabilities)的装置。天线选择功能发送端(比如第一通信装置)可以使用NDP探测PPDU进行ASEL信道探测,对应英文可以为:“ASEL transmitter uses NDP sounding PPDUs for the ASEL sounding”。第二帧还可以为ASEL  feedback(反馈)。
在一种可能的实施方式中,在S402之后,一个或多个第二通信装置可以根据第一PPDU进行发送天线信道探测,得到天线选择反馈结果。S403中以一个第二通信装置为例进行介绍,为了区别,将图4中的STA203(第二通信装置)的发送天线的天线选择反馈结果称为第一天线选择反馈结果。
需要注意的是,不同的第二通信装置反馈的天线选择反馈结果可能不同,也可能相同,本申请实施例不限制。或者也可以理解为,不同的第二通信装置选择的第一通信装置的发送天线组合可能不同,也可能相同,本申请实施例不限制。比如图4中STA203(第二通信装置)选择第一发送天线组合,而STA204有可能选择第一发送天线组合,也有可能选择其他发送天线组合。
通过上述内容可以看出,本申请实施例中由于在PPDU中包括有指示第一发送天线组合的标识的第一标识字段,因此第二通信装置确定出PPDU对应的发送天线信道探测结果和发送天线组合的标识的对应关系,进而第二通信装置可以确定出基于一个或多个发送天线信道探测结果选择出的发送天线组合的标识,从而可以防止第二通信装置将选择出的发送天线信道探测结果和发送天线组合匹配错误,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
结合图4进行进一步说明,在上述S402中,第一通信装置可以向第二通信装置发送用于第二通信装置进行发送天线信道探测的一个或多个PPDU。每个PPDU可以对应一组发送天线的天线组合。每组发送天线的天线组合对应一个天线组合标识(图4中标识为天线组合标识(Identification,ID))。
图4中示意性示出的天线组合标识为天线组合ID为0、1…R。R可以为正整数。图4中示意性示出的PPDU分别为:PPDU(i 0)、PPDU(i 1)…PPDU(i R)。如图4所示,第一通信装置通过天线组合ID=0的发送天线组合发送PPDU(i 0)。第二通信装置根据PPDU(i 0)进行发送天线信道探测,得到天线组合ID=0的发送天线组合对应的发送天线信道探测结果。类似的,第一通信装置通过天线组合ID=1的发送天线组合发送PPDU(i 1)…第一通信装置通过天线组合ID=R的发送天线组合发送PPDU(i R)。第二通信装置得到天线组合ID=1的发送天线组合对应的发送天线信道探测结果、…天线组合ID=R的发送天线组合对应的发送天线信道探测结果。进一步,第二通信装置可以根据该R个发送天线信道探测结果,选择出一组第一通信装置的发送天线组合,比如选择第一发送天线组合,继而将选择出的该第一发送天线组合指示给第一通信装置,以使第一通信装置通过第一发送天线组合向第二通信装置发送数据。
以上图4中天线组合标识的排序仅仅是一种示例,实际应用中,第一通信装置发出的连续的PPDU对应的天线组合的标识可以是任意排布的,比如不连续的,再比如不按升序排布的。举个例子,比如第一通信装置可以依次:通过天线组合ID=1的发送天线组合发送PPDU(i 1)、通过天线组合ID=R的发送天线组合发送PPDU(i R)、通过天线组合ID=0的发送天线组合发送PPDU(i 0)…。
下面对本申请实施例中提到的发送天线组合的标识的相关内容进行介绍。
一种可能的实施方式中,第一通信装置包括k 1个发送天线组合。k 1为正整数。图4中的R可以为不大于k 1的正整数。R可以等于k 1,也可以小于k 1。k 1个发送天线组合与k 1 个发送天线组合的标识一一对应。也就是说k 1个发送天线组合中的一个发送天线组合对应k 1个发送天线组合的标识中的一个标识,且k 1个发送天线组合的标识中的一个标识对应k 1个发送天线组合中的一个发送天线组合。任两个发送天线组合对应的两个发送天线组合的标识可以不同。任两个发送天线组合的标识对应的两个发送天线组合可以不同。第一发送天线组合为k 1个发送天线组合中的一个,后续以第一发送天线组合为例进行介绍。
发送天线组合的标识有多种实现方式,下面分别进行介绍。
实施方式a1
一种可能的实现方式中,第一发送天线组合的标识可以为该第一发送天线组合对应的第一PPDU的序号。
在实施方式a1中,第一标识字段可以指示该第一PPDU在第一通信装置发送的R个PPDU中的排序。当第一通信装置在S402中发送的PPDU为NDP,也可以理解为:第一标识字段可以指示当前的NDP在第一通信装置发送的R个NDP中的排序。如此,第二通信装置可以根据第一标识字段指示的第一PPDU对应的序号确定第一PPDU与发送天线的天线选择反馈结果之间的对应关系,从而第二通信装置可以向第一通信装置指示第二通信装置选择出的发送天线组合(比如第二通信装置选择第一发送天线组合)对应的PPDU的序号,以便第一通信装置根据第二通信装置反馈的PPDU的序号正确确定出第二通信装置所选择的发送天线组合,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择的方案。
实施方式a2
又一种可能的实现方式中,第一发送天线组合的标识可以为第一发送天线组合的组标识。
第一通信装置侧可以获取发送天线组合和发送天线组合的组标识的对应关系。进而第一通信装置在上述S402中发送PPDU时可以携带用于指示该PPDU对应的发送天线组合的标识的指示信息。
第二通信装置侧可以获取发送天线组合和发送天线组合的组标识的对应关系,也可以不获取(或者说不知道)天线组合和发送天线组合的组标识的对应关系。由于第二通信装置接收的PPDU中携带有指示该PPDU对应的发送天线组合的标识的指示信息,因此第二通信装置无论是否知道天线组合和发送天线组合的组标识的对应关系,均可以确定出该PPDU对应的发送天线的天线选择反馈结果与发送天线组合之间的对应关系,从而第二通信装置可以向第一通信装置指示第二通信装置选择出的发送天线组合(比如第二通信装置选择第一发送天线组合)对应的发送天线组合的标识,以便第一通信装置根据第二通信装置反馈的发送天线组合的标识正确确定出第二通信装置所选择的发送天线组合,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
关于天线组合的标识还可以包括以下可能的实施方式:
实施方式a2-1
第一通信装置可以和第二通信装置进行协商,通过该协商第一通信装置侧可以将第一通信装置侧支持的发送天线组合的总数目告知第二通信装置侧。比如,第一通信装置向第二通信装置发送第九帧,第九帧包括第七指示信息,第七指示信息用于指示第一通信装置支持的发送天线组合的总数量。第九帧可以为MPDU。如此,第二通信装置可以根据第七指示信息预估发送天线选择流程的开销以及时长,且第二通信装置还可以基于第一通信装 置支持的发送天线组合的总数量决定是否与第一通信装置之间建立关联关系。
第一通信装置侧可以为第一通信装置支持的发送天线组合设置发送天线组合的组标识。而第二通信装置可以不获取(或者说不知道)天线组合和发送天线组合的组标识的对应关系。
由于发送天线组合和发送天线组合的标识为一一对应的关系,因此第二通信装置在不同时间点收到包括相同的天线组合标识的两个PPDU,如果探测到的信道发生了变化,由于该两个PPDU包括的天线组合标识相同,因此第二通信装置可以判定是信道本身发生了变化。
实施方式a2-2
本申请实施例可以提前规定(比如可以在标准中规定)第一通信装置侧的发送天线组合和组标识的对应关系。该对应关系可以预置在第一通信装置侧,也可以由其他通信装置发送给第一通信装置,如此,第一通信装置可以知道每种发送天线组合的发送天线组合标识,以便在发送PPDU时携带。
该对应关系可以不预置在第二通信装置侧,也可以预置在第二通信装置侧,也可以由其他通信装置发送给第二通信装置,如此,第二通信装置可以根据接收到的第一PPDU中的第一标识字段指示的第一发送天线组合标识,确定出第一发送天线组合标识具体包括的天线都有哪些。而且,由于发送天线组合和发送天线组合的标识为一一对应的关系,因此第二通信装置在不同时间点收到包括相同的天线组合标识的两个PPDU,如果探测到的信道发生了变化,由于该两个PPDU包括的天线组合标识相同,因此第二通信装置可以判定是信道本身发生了变化。进一步,第二通信装置还可以确定出发送天线组合标识对应的具体的发送天线组合,从而可以得到更多的链路相关的信息,从而可以为后续其他流程提供协助。
实施方式a2-3
第一通信装置和第二通信装置协商确定第一发送天线组合的组标识。
第一通信装置和第二通信装置可以进行协商,通过协商第二通信装置知道第一通信装置支持的发送天线组合,且经过协商,第一通信装置和第二通信装置为第一通信装置支持的发送天线组合设置一个组标识。
比如,第一通信装置向第二通信装置发送第四帧。第二通信装置接收第四帧。第四帧可以为MPDU。第四帧包括第四标识字段,第四标识字段用于指示第一通信装置支持的至少一个发送天线组合的标识,至少一个发送天线组合的标识包括第一发送天线组合的标识。
如此,第一通信装置可以知道每种发送天线组合的发送天线组合标识,以便在发送PPDU时携带。而且,第二通信装置可以根据接收到的第一PPDU中的第一标识字段指示的第一发送天线组合标识,确定出第一发送天线组合标识具体包括的天线都有哪些。可以看出,第二通信装置通过协商可以获取更多的天线组合相关的信息,后续可以获得更多的链路相关信息,从而还可以为后续其他流程提供协助。
值得注意的是,上述实施方式a1和实施方式a2可以单独实施,也可以结合实施,比如第一发送天线组合的标识可以包括:第一发送天线组合对应的第一PPDU的序号,以及第一发送天线组合的组标识。如此,可以更加准确的指示出第一发送天线组合,且可以提高方案灵活性。
本申请实施例中,第一发送天线组合的标识可以表示为一个或多个字符,或者表示为一个或多个比特,比如可以表示为二进制对应的一个或多个比特。第一标识字段承载的信息可以为第一发送天线组合的标识对应的全部比特或部分比特,下面分别进行介绍。
实施方式b1
第一标识字段包括:第一发送天线组合的标识对应的全部比特。也就是说,第一标识字段中承载第一发送天线组合的标识对应的全部比特。如此,第二通信装置可以根据PPDU中携带的第一标识字段唯一确定出一个发送天线组合的标识。
实施方式b2
考虑到PPDU前导码中的比特位比较珍贵,为了节省PPDU前导码中的比特位,第一标识字段包括:第一发送天线组合的标识对应的部分比特。如此,可以节省PPDU中第一标识字段占用的比特位数量。但是这种实施方式可能会存在以下情况:
当发送天线组合的数量较多,而由于第一标识字段仅仅承载了第一发送天线组合的标识对应的部分比特,则有可能会导致第一通信装置发送的多个PPDU中存在两个PPDU,该两个PPDU中用于指示发送天线组合标识的字段中承载内容相同的情况。
这种情况下,可能有多种实现方式:比如第一通信装置在上述第一帧中携带PPDU对应的发送天线组合的标识的全部比特,如此,第二通信装置可以根据接收到的PPDU的顺序,以及PPDU中用于指示发送天线组合标识的字段确定出该PPDU对应的发送天线组合的标识的全部比特,从而可以使第二通信装置将选择出的第一发送天线组合的标识的全部比特指示给第一通信装置。
再比如,第二通信装置可以将选择出的第一发送组合天线对应的该PPDU的顺序,以及该PPDU中携带的第一发送天线组合的标识对应的部分比特反馈给第一通信装置,以使第一通信装置结合发送的PPDU的顺序以及第一发送天线组合的标识对应的部分比特,确定出第一发送天线组合。
基于上述内容,图5示例性示出了本申请实施提供的又一种天线信道探测方法的信令交互示意图。图5在图4的基础上增加了S501和S502。需要说明的是S501和S502为可选的步骤,不是必须的。在S502之后,第一通信装置可以执行上述S401和S402,第二通信装置可以执行S403。下面结合图5所示的信令交互示意图,进一步对本申请实施例中涉及到帧进行介绍。
如图5所示,该方法包括:
S501,第一通信装置发送第一触发帧。
第一触发帧可以用于通知第二通信装置需要进行接收天线选择。
S502,第二通信装置发送第三帧。第三帧包括第三指示信息。第三指示信息用于请求进行发送天线信道探测。
相对应的,第一通信装置接收第三帧。
本申请实施例中第二通信装置可以基于S501中的第一触发帧的触发发送第三帧,也可以自行发送第三帧。本申请实施例不做限制。为了区分,图5中将STA203(第二通信装置)的用于请求第一通信装置发送进行发送天线信道探测的信息的帧称为第三帧。其余第二通信装置发送的用于请求第一通信装置发送进行发送天线信道探测的信息的帧也可以参见第三帧的相关介绍。
第三帧可以称为发送天线选择探测请求(transmit antenna selection sounding request)。又一种可能的实施方式中,也可以理解为第三指示信息用于指示第一通信装置发送进行发送天线信道探测的信息。进行发送天线信道探测的信息可以理解为:连续的探测(Sounding)PPDU。
第三帧中还可以包括请求第一通信装置发送的PPDU的数量。如此,第一通信装置可以基于第三帧中携带的PPDU数量确定发送多少个PPDU,从而可以使第一通信装置基于第二通信装置的需求确定后续发送的PPDU数量,以使第一通信装置后续发送的PPDU的数量尽量与第二通信装置的需求匹配。第一通信装置发送的PPDU的数量可以与第三帧中要求的第一通信装置发送的PPDU的数量相同,也可以不同。
在WLAN中,AP和STA可以通过媒体介入控制(Medium Access Control,MAC)协议数据单元(MAC Protocol Data Unit,MPDU)(或简称MAC帧)来传递控制信令,管理信令或者数据。第三帧可以承载在一个MAC帧头承载高吞吐率控制(High Throughput Control,HTC)字段的MPDU中。
图6示例性示出了本申请实施提供的一种可以承载第三帧的MPDU的结构示意图。如图6所示,该MPDU可以包括帧头,帧体(frame body)和帧校验序列。其中帧头可以包括帧控制(frame control),相应的地址信息,序列控制信息(sequence control)等。帧体可以用来承载上层传递下来的数据或者一些管理和控制信息。帧校验序列(frame check sequence,FCS)可以用来校验该MPDU是否传输正确。
如图6所示,该MPDU包括高吞吐率控制(high throughput control,HT control)字段。该HT control字段当前共分为三个变种,高吞吐率变种,非常高吞吐率变种和高效变种3种形态。第三帧相关的变种为高效变种,也可以理解为,第三指示信息承载于第三帧的高效变种字段。
其中,HT control字段的高效变种包括聚合控制(Aggregated Control,A-control)子字段。也可以说HE变种HT control字段中的A-Control子字段。对应英文可以写为:“The format of the A-Control subfield of the HE variant HT Control field”。
其中,A-Control子字段可以通过一个或多个控制标识符字段加控制信息字段的结构,承载1个到N 1个控制信息。N 1可以为正整数,在图6的示例中,N 1为大于2的整数。其中,控制标识符字段可以用来指示控制信息的类型,也可以决定着相应控制信息的长度。控制信息字段可以划分出天线选择命令字段和天线选择数据字段。其中,第三指示信息承载于A-control子字段的控制标识符字段、天线选择命令字段,或天线选择数据字段中的至少一项。
本申请实施例中可以利用标准中尚未使用的控制标识符字段的控制ID值来指示本申请实施例中的发送天线选择流程,比如控制标识符字段的控制ID值可以为9,11-14中的一种。此时控制信息字段的长度至多可以为26比特。
天线选择命令字段和天线选择数据字段占用的比特数量可以大于7比特。天线选择命令字段和天线选择数据字段占用的比特数量:不大于26比特。天线选择数据字段占用的比特数量可以大于4比特。
本申请实施例中可以根据实际需要对图6中的天线选择命令字段和天线选择数据字段进行设置,表1示例性示出了一种可能的天线选择命令字段和天线选择数据字段的示例。以表1中的第二行内容为例进行示例性介绍,如表1所示,当天线选择命令 字段为0,则表示当前帧用于进行发送天线信道探测,天线选择数据字段可以指示剩余未传输的PPDU的数量。其余行的内容也仅仅为示例,不再进行描述。
表1一种可能的天线选择命令字段和天线选择数据字段的示例
Figure PCTCN2022128386-appb-000001
可以看出,相比802.11n中基于高吞吐率控制(HTC)字段的天线选择的流程设计,802.11n中最多支持4个射频链、8个天线、16种天线组合,而本申请实施例中由于控制信息字段的比特位数量较多,因此,本申请实施例可以通过图6所示的MPDU承载更多类型的天线选择命令,天线选择数据字段也大于4比特,因此可以支持更多的PPDU的数量(可以支持的PPDU数量超过16种),从而可以支持更多的天线组合数的数量(可以支持的天线组合数的数量超过16种)。且由于现有标准中划分了天线选择命令字段和天线选择数据字段,因此在高效变种中对A-control子字段也划分出天线选择命令字段和天线选择数据字段则可以与现有的标准中的命令形式更加兼容。
在上述S401中,第一通信装置可以基于第二通信装置发送的第三帧发送第一帧,也可以自行发送第一帧,本申请实施例中不做限制。第一帧可以为包括有用于通知第二通信装置进行发送天线信道探测的第一指示信息的帧,比如第一帧可以为空数据分组声明(null data Packet announcement,NDPA)帧。
第一帧包括第一指示信息。第一帧还可以包括NDP的数量,和/或,第二标识字段。第二标识字段用于指示第一发送天线组合的标识。如此,第二通信装置可以基于第一帧确定出后续需要接收的NDP的数量,以便可以核对是否漏收了NDP。
一种可能的实施方式中,当NDPA帧包括有第二标识字段,则第二标识字段可以包括:第一发送天线组合的标识对应的全部比特。如此,第一通信装置后续发送的第一PPDU中的第一标识字段中可以承载第一发送天线组合的标识对应的部分比特,从而可以减少第一标识字段在第一PPDU中占用的比特位的数量,而且也可以使第二通信装置结合第二标识字段和第一标识字段确定出第一PPDU对应的第一发送天线组合的标识的全部比特。
图7示例性示出了本申请实施提供的第一帧为NDPA帧的情况下第一帧的一种结构示意图,第二标识字段和NDP的数量并不是必须包括在NDPA帧中的,图7中以第一帧包括第二标识字段、NDP的数量和第一指示信息为例进行展示。
如图7所示,NDPA帧可以包括帧控制(Frame Control)、时长(Duration)、接收地址、发送地址、探测对话令牌(sounding dialog token)、一个或多个站点信息(比如图7中的站点信息1(STA Info 1)、站点信息2(STA Info 2)、站点信息3(STA Info 3)…站点信息N 2(STA Info N 2)),还可以包括帧校验序列。
本申请实施例中可以利用站点信息字段的特定关联标识,指示该站点信息字段的信息为天线选择相关信息。比如,第一指示信息、NDP的数量或第二标识字段中的至少一项可以承载于:第一帧的至少一个包括第二指示信息的站点信息字段。第二指示信息指示站点信息字段包括天线选择相关信息。如此,第二通信装置可以在识别出第二指示信息的情况下,确定承载有第二指示信息的站点信息字段中承载的为天线选择相关信息,继而从该站点信息字段获取天线选择相关信息。第二指示信息可以将承载天线选择相关信息的站点信息字段和其他常规的某一个站点对应的站点信息字段区别开,从而在通过使用站点信息字段承载天线选择相关信息的方案中,不会对常规的某一个站点对应的站点信息字段造成影响,达到与现有标准兼容的目的。
第二指示信息可以承载于站点信息字段中的关联标识字段。第二指示信息包括:2008-2043或2046中的一个。比如当关联标识字段为2008-2043或者2046中的某一个时,表示该站点信息字段中传输的是天线选择相关信息。如此,第二通信装置可以根据关联标识字段确定出该站点信息字段承载的是天线选择相关信息还是某个第二通信装置对应的站点信息,可以看出,该方案可以与现有技术更好的兼容。图7中以站点信息1字段和站点信息2字段承载天线选择相关信息为例进行展示。
第一指示信息还可以称为天线选择类型、天线选择NDPA变种的指示信息、或NDPA帧变种子类型。第一指示信息还用于指示该NDPA帧的变种是天线选择变种。通常来说,指示第二通信装置进行天线选择的NDPA帧后边会跟着多个(超过1个)NDP,指示第二通信装置进行信道探测的NDPA帧后边跟着1个NDP,而NDPA帧后边跟着的NDP的数量会对到第二通信装置接收NDP和第二通信装置的反馈的时间造成影响,因此本申请实施例中可以通过第一指示信息向第二通信装置指示出该NDPA帧的变种是天线选择变种。另外,特定的关联标识字段承载的信息(第二指示信息)也可以起到与之类似的效果,也就是说,当第二通信装置识别出特定的关联标识(第二指示信息)后,由于第二指示信息指示站点信息字段包括天线选择相关信息,因此第二通信装置也可以根据第二指示信息确定该NDPA帧的变种是天线选择变种。
由于从802.11ax标准开始,到802.11be标准,不再支持带HT control字段的NDPA帧,本申请实施例中通过NDPA帧的站点信息字段携带相应的天线选择相关信息,可以实现天线选择所需信息的指示,而且站点信息字段的关联标识字段的关联标识为特殊的关联标识,多个第二通信装置均可以读取到该站点信息字段的内容。
图7中还示出了常规站点信息字段承载的信息的示意图,图7中以站点信息N 2字段承载常规的站点的信息为例进行展示。N 2可以为大于1的整数。如图7所示,该站点信息N 2字段的关联标识字段承载站点的关联标识。该站点信息N 2字段还可以包括部分带宽信息(Partial BW Info),用于指示STA反馈信道状态信息所使用的资源,可以是由资源单元(resource unit,RU)的起始索引(start index)到RU的结束索引(end index)指示连续的一段RU。另外,分组数(number ofgrouping,Ng)用于指示Ng个子载波被分成一组,该组子载波只需要统一反馈信道状态信息即可,用于减少反馈占用的比特位的数量。码本尺寸(codebook size)用于指示量化的精准度,不同的精准度对应不同的开销。
本申请实施例中,第一帧中还可以用于通知哪一个或哪几个第二通信装置进行发送天线信道探测。比如可以通过NDPA帧的站点信息字段的关联标识字段携带需要进行发送天线信道探测的第二通信装置的关联标识,当一个第二通信装置确定自身的关联标识与NDPA帧中的一个关联标识字段携带的关联标识匹配,则该第二通信装置可以确定自己需要进行发送天线信道探测。
图7中每个字段的比特数为举例,具体比特数本发明方案对此不做限制。本申请实施例中的NDPA帧还可以使用当前IEEE 802.11ac,IEEE 802.11ax,IEEE 802.11be标准中采用的NDPA帧结构,还可以重新定义新的NDPA帧,将相关信息携带在新定义的公共字段中。
在上述S402中,第一通信装置发送的第一PPDU可以不包括数据字段,比如为NDP,也可以包括有数据字段。下面图8a和图8b示例性示出了第一PPDU为NDP的情况下第一PPDU的一种结构示意图,图8c示例性示出了包括数据字段的第一PPDU的一种结构示意图。下面结合附图分别进行介绍。
图8a所示的NDP可以为802.11be标准的探测PPDU。图8a所示的NDP可以为EHT探测PPDU,又被称为EHT探测NDP(EHT sounding NDP),或者EHT NDP。EHT sounding NDP是EHT MU PPDU的一种传输模式,用于进行信道探测,帮助第一通信装置获取收发两端之间的信道状态信息,进而进行波束成形和资源调度。
如图8a所示,EHT sounding NDP可以包括前导码以及数据包扩展(Packet Extension,PE)。第一标识字段位于第一PPDU前导码。
其中,前导码可以包括传统前导码。其中,传统前导码可以包括传统-短训练字段(Legacy Short Training Field,L-STF),传统-长训练字段(Legacy Long Training Field,L-LTF)和传统-信令字段(Legacy Signal Field,L-SIG)。传统前导码用于保证新设备同传统设备的共存。其中,L-SIG中可以包含长度字段,可以间接指示该PPDU中L-SIG后边部分的时长。
前导码还可以包含传统信令字段的重复(Repeated L-SIG,RL-SIG),用于增强传统信令字段的可靠性。另外还可以提供了让接收端通过检测两个符号是否相同,L-SIG 中长度的余数等特征,来帮助第二通信装置识别该数据分组是EHT PPDU的自动检测的方法。
前导码还可以包括通用信令字段(Universal signal field,U-SIG),该字段可以存在于802.11be标准及以后若干代标准中的PPDU中。U-SIG可以指示该PPDU为EHT PPDU及以后的哪一代标准的PPDU。
前导码还可以包括在U-SIG后边的极高吞吐量信号域(extremely high throughput signal field,EHT-SIG)。U-SIG和EHT-SIG中都可以携带解调后续数据字段需要的信令信息。
第一标识字段可以包括U-SIG中的部分比特或全部比特,和/或,EHT-SIG中的部分比特或全部比特。EHT sounding NDP中,U-SIG字段可以包含两个符号,EHT-SIG字段可以包含1个符号。当前在U-SIG第一个符号的B20-B24,EHT-SIG字段的B14-B15为:不理会(Disregard);在U-SIG字段第一个符号的B25,U-SIG字段第二个符号的B2,B8为:证实(Validate)。其中不理会和证实是预留比特的两种类型。本申请实施例中可以利用现有的标准中的这些预留比特作为第一标识字段中的比特。本申请实施例中可以利用U-SIG第一个符号的B20-B24、EHT-SIG字段的B14-B15、U-SIG字段第一个符号的B25、U-SIG字段第二个符号的B2,B8中的一个或多个比特作为第一标识字段中的比特。如此可以与现有技术兼容。
EHT sounding NDP还可以包括极高吞吐率短训练字段(Extreme High Throughput Short Training Field,EHT-STF)和极高吞吐率长训练字段(Extreme High Throughput Long Training Field,EHT-LTF)。其中,EHT-STF和EHT-LTF可以分别用于自动增益控制和信道估计。数据包扩展可以为第二通信装置处理数据提供更多的时间。
图8a中以EHT sounding NDP为例对第一PPDU进行介绍,本申请实施例也适用于EHT以后的标准,比如可以适用于下一代(next generation,NG)探测(sounding)NDP。
图8b示例性示出了第一PPDU为NG探测NDP的情况下第一PPDU的一种结构示意图,如图8b所示,该NG sounding NDP中可以包括前导码以及数据包扩展(Packet Extension,PE)。第一标识字段位于第一PPDU前导码。
其中,前导码可以包括传统前导码。其中,传统前导码可以包括传统-短训练字段(Legacy Short Training Field,L-STF),传统-长训练字段(Legacy Long Training Field,L-LTF)、传统-信令字段(Legacy Signal Field,L-SIG)、传统信令字段的重复(Repeated L-SIG,RL-SIG)、通用信令字段(Universal signal field,U-SIG),以及下一代信号域(next generation signal field,NG-SIG)。第一标识字段可以为:U-SIG中的部分比特或全部比特,和/或,NG-SIG中的部分比特或全部比特。也就是说,U-SIG和NG-SIG中的一个或多个比特作为第一标识字段。
NG sounding NDP还可以包括极高吞吐率短训练字段(next generation Short Training Field,NG-STF)和极高吞吐率长训练字段(next generation Long Training Field,NG-LTF)。其中,NG-STF和NG-LTF可以分别用于自动增益控制和信道估计。数据包扩展可以为第二通信装置处理数据提供更多的时间。
图8c示例性示出了第一PPDU包括数据字段的一种结构示意图。图8c是以在图8b的基础上增加了数据字段为例进行展示的。图8c所示的第一PPDU也可以称为MPDU。图8c相比图8b所示的第一PPDU增加了数据字段(data)。数据字段可以包括A-control子字段。图8c的A-control子字段可以参见前述图6的A-control子字段的相关描述。
第一标识字段可以为:U-SIG、NG-SIG或数据字段中的至少一项中的部分或全部比特。比如,第一标识字段可以为图8c中的控制标识符字段、天线选择命令字段和天线选择数据字段中的比特。
举个例子,控制标识符字段可以为9,11-14中的一种,天线选择命令字段可以定义一个新的标识符,用于指示该天线选择命令字段用于指示当前的第一PPDU为进行发送天线信道探测的第一PPDU,天线选择数据字段可以指示第一PPDU的标识(比如可以指示第一PPDU的序号)。
又一种可能的实施方式中,第一标识字段还可以包括A-control子字段中的部分比特,比如可以在A-control子字段中划出部分比特为第一标识字段,用于指示第一PPDU的标识。
图8c是以第一PPDU为下一代PPDU为例进行展示的,本申请实施例中的第一PPDU也可以为包括数据字段的EHT PPDU。比如第一PPDU可以为包括数据字段的EHT MPDU。具体结构形式可以是在图8a所示的结构中增加数据字段,该数据字段可以包括A-control子字段。A-control子字段可以参见前述图6的A-control子字段的相关描述。当第一PPDU为EHT MPDU,第一标识字段可以为:U-SIG、EHT-SIG或数据字段中的至少一项中的部分或全部比特。相关内容可以参见前述论述,不再赘述。
第二帧可以包括MIMO Control控制字段。MIMO control字段位于帧体中,比如可以承载在行动(Action)帧,或者无确认行动(Action No ACK)帧的帧体中。图9示例性示出了上述第二帧为波束成形报告帧的情况下第二帧中MIMO Control字段的一种结构示意图。需要说明的是,为了更清楚的体现帧的结构,在图9中将帧结构分为三行进行示意。
如图9所示,第三标识字段可以包括MIMO Control字段中的部分或全部比特。第三标识字段包括:第一发送天线组合的标识对应的全部比特。如此,第一通信装置可以根据第二帧中的第三标识字段确定出第二通信装置选择出的发送天线组合为第一发送天线组合。而且,可以通过使用现有的多输入多输出控制(MIMO Control)字段中的比特实现在第二帧中添加第三标识字段的目的,该方案不会额外增加第二帧的长度,且可以更好的跟现有技术兼容。
一种可能的实施方式中,第三标识字段可以包括两个部分:分别为天线组合标识字段和探测PPDU序号字段,其中,天线组合标识字段可以承载第一发送天线组合的组标识,探测PPDU序号字段可以承载第一发送天线组合对应的第一PPDU的序号。图9中以第三标识字段包括天线组合标识字段和探测PPDU序号字段为例进行展示,第三标识字段也可以只包括天线组合标识字段和探测PPDU序号字段中的一个字段。
又一种可能的实施方式中,第二帧中还可以包括天线选择失败反馈字段,当该字段的值设置为1,则表示此次天线选择失败,若置0,则表示此次天线选择成功。天线 选择失败反馈字段也可以承载在MIMO control字段。
又一种可能的实施方式中,第二帧中还可以包括:压缩波束成形报告,多用户专用波束成形报告,信道质量状态报告中的至少一种。比如,信道质量状态报告例如可以包括该PPDU对应的信道状态信息(channel state information,CSI)或信道质量信息(channel quality information,CQI)中的至少一项。
其中,压缩波束成形报告,多用户专用波束成形报告,信道质量状态报告中的一种或多种可以承载于第二帧中除了MIMO Control字段之外的其他字段。当然,上述第三标识字段中包括的天线组合标识字段和探测PPDU序号字段中的至少一项也可以设置于其他字段,比如,探测PPDU序号字段可以位于A-control子字段。
通过上述内容可以看出,本申请实施例中在NDPA帧等不支持高吞吐率控制字段的情况下,设计了基于NDPA(第一帧)+NDP(PPDU)+反馈(第二帧)的天线选择流程设计,该天线选择流程可以匹配当前的信道探测流程,而且对收发两端设备的改动小,实现相对简单。
另外,需要说明的是,本申请实施例中第二通信装置可以反馈一个天线选择反馈结果,也可以反馈多个天线选择反馈结果。
比如,第二通信装置可以基于整个带宽选择出一组发送天线,这种情况下,第二通信装置选择出的第一发送天线组合是基于整个带宽做出的选择。再比如,第二通信装置可以基于各个子带宽分别选择出一组发送天线,这种情况下,第一发送天线组合对应一个子带宽,即,第一发送天线组合是基于一个子带宽做出的选择。当然,第二通信装置基于两个子带宽所选择出的两组发送天线组合可能相同,也可能不同,本申请实施例不限制。
另外,第二通信装置还可以基于不同的空间流数分别反馈所选择的发送天线组合,还可以基于信道的条件数或信噪比等中的至少一项分别反馈所选择的发送天线组合,本申请实施例对此不做限制。
另外,又一种可能的实施方式中,当存在多个第二通信装置的情况下,第一通信装置可以发送第一触发帧,触发多个第二通信装置同时反馈各自的天线选择反馈结果。且,图9中的比特数仅仅为示例,N 3为正整数。
基于上述内容,图10示例性示出了本申请实施提供的又一种天线信道探测方法的信令交互示意图。
图10中是以第一通信装置和第二通信装置的交互为例进行展示。本申请实施例中的第一通信装置也可以称为天线选择发送方,第二通信装置也可以称为天线选择响应方。
图10中的第一通信装置可以为前述图1中的第一通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图10中的第二通信装置可以为前述图1中的第二通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图10中的第一通信装置和第二通信装置可以均为AP,或者均为STA,或者分别为AP和STA,图10中以第一通信装置为AP,第二通信装置为STA为例进行展示。
本申请实施例提供的方案可以适用于AP同单个STA之间的发送天线信道探测的流程,也可以适用于AP同多个STA之间的发送天线信道探测的流程。图10是以AP 与多个STA(比如图10中的STA203、STA204和STA205)之间执行发送天线信道探测的流程为例进行示意。
如图10所示,该方法包括:
S601,第一通信装置向第二通信装置发送第十一帧,第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。
相对应的,第二通信装置接收来自第一通信装置的第十一帧。
S602,第一通信装置向第二通信装置发送第三PPDU。第三PPDU用于第二通信装置进行发送天线信道探测。
相对应的,第二通信装置接收来自第一通信装置的第三PPDU。
第三PPDU可以包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。
S603,第二通信装置反馈天线选择反馈结果。
通过上述方案可以看出,本申请实施例中第一通信装置可以将S602中需要发送M 1组发送天线组合对应的PPDU聚合为一个PPDU,从而可以节省开销,从而可以提升天线选择的效率,提升系统吞吐率。
图11示例性示出了一种第三PPDU的帧结构示意图,如图11所示,第三PPDU可以包括M 1组发送天线组合对应的M 1个第一信息字段。M 1为大于1的整数。第一信息字段用于进行发送天线信道探测。
第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。任两个第一信息字段采用的发送天线组合不同,比如图11中示出的三个发送天线组合分别为天线组合ID=0的发送天线组合对应的第一信息字段,天线组合ID=1的发送天线组合对应的第一信息字段,…天线组合ID=M 1的发送天线组合对应的第一信息字段。
如图11所示,第三PPDU还可以包括前导码。前导码包括以下字段中的至少一项:L-STF、L-LTF、L-SIG、RL-SIG、U-SIG,或EHT-SIG。关于前导码的相关描述可以参见前述图8a中的相关描述,在此不再赘述。
通过图11可以看到,S602中把原本需要发送的M 1组发送天线组合对应的M 1个PPDU聚合为一个第三PPDU,从而可以省去(M 1-1)个前导码。
另一方面,从图11可以看出,每个第一信息字段可以包括一个数据包扩展字段,比如图11中示出的天线组合ID=0对应的第一信息字段中的数据包扩展0、天线组合ID=1对应的第一信息字段中的数据包扩展1、…天线组合ID=M 1对应的第一信息字段中的数据包扩展M 1。其中,除了最后一个数据包扩展M 1之外的其他数据包扩展(数据包扩展0至数据包扩展(M 1-1))中的任两个数据扩展的时长可以相同,且这些数据包扩展字段的时长可以用于为第二通信装置提供更多的处理时间,另外,可以给第一通信装置切换天线提供时间,另外,该部分时长可以设置的短一些,足够第一通信装置切换天线即可。
一种可能的实施方式中,M 1个第一信息字段中的至少两个第一信息字段中的数据包扩展字段的时长可以不同,比如数据包扩展M 1的时长也可以与数据包扩展1的时长不同,数据包扩展M 1的时长可以设置的稍长一些,数据包扩展1的时长可以设置的稍短一些,足够第一通信装置切换天线即可。且,该实施方式中,除了最后一个数据包扩展M 1之外的其他数据包扩展(数据包扩展0至数据包扩展(M 1-1))中的任两个数据扩展的时长可 以相同,也可以不同。
又一种可能的实施方式中,M 1个第一信息字段中的任两个第一信息字段中的数据包扩展字段的时长相同。如此,可以提高接收流程一致性。
相比第一通信装置传输M 1个发送天线对应的PPDU,图11所示的方案中仅需传输一个第三PPDU就可以达到传输M 1组用于进行发送天线信道探测的信息的目的,且该方案可以节省(M 1-1)组前导码(L-STF到EHT-SIG),以及短帧间距SIFS。当数据包扩展0至数据包扩展(M 1-1)中任两个的时间均相等,且数据包扩展0的时长比数据包扩展M 1的时长短,则还可以节省数据包扩展M 1与数据包扩展0相差的时间。
举个例子,第三PPDU中前导码(L-STF到EHT-SIG)一共36微秒,数据包扩展M 1的时长为16微秒,SIFS为16微秒,以数据包扩展0至数据包扩展(M 1-1)中任一个的时间为4微秒,M 1=64,则相比传输M 1个发送天线对应的PPDU(该PPDU包括前导码和一个第一信息字段,且该第一信息字段包括的数据扩展字段为16微秒),则通过传输第三PPDU可以节省:36×(64-1)+16×(64-1)+(16-4)×(64-1)=4032微秒。
需要说明的是,图11中仅仅是一种可能的第三PPDU的PPDU结构的示例,该示例中将EHT-SIG传输一次。又一种可能的实施方式中,EHT-SIG也可以按组分别出现,比如每个第一信息字段中均包括一个EHT-SIG。另外,图10中以第一通信装置传输一个第三PPDU为例进行展示,实际应用中,在S602中,第一通信装置可以发送一个或多个第三PPDU,每个第三PPDU包括的第一信息字段的数量可以相同也可以不同。
另外,需要说明的是,本申请实施例的图10提供了一种可以对第一通信装置发送的PPDU进行聚合的实施方式,该实施方式与前述图4或图5提供的天线选择方案可以结合使用,也可以单独实施。本申请实施例中的S601中的第十一帧可以为NDPA帧。
其中,当结合使用时,S601的相关内容可以参见前述S401的相关内容,第十一帧的相关内容可以参见前述第一帧的相关介绍。S603的相关内容可以参见前述S403的相关内容,天线选择反馈结果的相关内容可以参见前述第二帧的相关介绍。当结合使用时,前述图4或图5中提到的NDP的数量可以等同于图10中提到的第一信息字段的数量。当结合使用时,前述第一PPDU的结构可以参照第三PPDU的结构,即前述第一PPDU中也可以包括多个发送天线组合对应的第一信息字段,比如第一PPDU中包括第一发送天线对应的第一信息字段,还包括第二发送天线对应的第一信息字段。第一PPDU中包括一个前导码。另外,可以将前导码中的U-SIG放置于每个第一信息字段中。第一标识字段可以携带于每个第一信息字段。
基于上述内容,图12示例性示出了本申请实施提供的一种接收天线信道探测方法的信令交互示意图。
图12中是以第一通信装置和第二通信装置的交互为例进行展示。本申请实施例中的第一通信装置也可以称为天线选择发送方,第二通信装置也可以称为天线选择响应方。
图12中的第一通信装置可以为前述图1中的第一通信装置,也可以为图2中的 AP或STA,也可以为图3中的通信装置。图12中的第二通信装置可以为前述图1中的第二通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图12中的第一通信装置和第二通信装置可以均为AP,或者均为STA,或者分别为AP和STA,图12中以第一通信装置为AP,第二通信装置为STA为例进行展示。
本申请实施例提供的方案可以适用于AP同单个STA之间的接收天线信道探测的流程,也可以适用于AP同多个STA之间的接收天线信道探测的流程。图12是以AP与一个STA(比如图12中的STA203)之间执行接收天线信道探测的流程为例进行示意。
需要注意的是,图12提供的方案用于对第一通信装置侧接收天线进行选择。图4和图10提供的方案用于对第一通信装置侧发送天线进行选择。图12的方案可以与图4或图10结合使用,也可以独立实施。图4或图10的方案也可以独立实施,也可以与图12的方案结合使用。当图4与图12的方案结合使用的情况下,第一通信装置可以通过图4的方案进行发送天线的选择,通过图12的方案进行接收天线的选择。当图10与图12的方案结合使用的情况下,第一通信装置可以通过图10的方案进行发送天线的选择,通过图12的方案进行接收天线的选择。
如图12所示,该方法包括:
S701,第一通信装置向第二通信装置发送第五帧,第五帧包括第四指示信息,第四指示信息通知第二通信装置对第一通信装置进行接收天线信道探测。
相对应的,第二通信装置接收来自第一通信装置的第五帧。
本申请实施例中第五帧可能有多种实施方式,比如第五帧可以为第二触发帧,或者第五帧为NDPA帧等。后续将详细介绍,在此先不做阐述。
S702,第二通信装置向第一通信装置发送第二PPDU。第二PPDU用于第二通信装置进行接收天线信道探测。第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
相对应的,第一通信装置接收来自第二通信装置的第二PPDU。
一种可能的实施方式中,S702中,第一通信装置可以在发送第五帧之后,在相隔短帧间距(short inter-frame space,SIFS)之后,第二通信装置发送一个或多个PPDU,相邻PPDU之间也可以相隔SIFS。第二PPDU为第二通信装置在S702中发送的一个或多个PPDU中的一个。
一种可能的实施方式中,S702中的第二PPDU可以为包括有数据字段的PPDU。
又一种可能的实施方式中,S702中的第二PPDU可以不包括数据字段,比如第二PPDU为不包括数据字段的NDP。由于NDP中不包括数据字段,因此采用NDP作为第二PPDU可以节省开销。尤其是在适用于大规模天线的场景中,由于天线组合的数量较多,导致用于进行接收天线信道探测的第二PPDU的数量也较多,进行接收天线选择的开销随之增多。而通过NDP进行接收天线信道探测的方案可以在大规模天线场景下节省更多的开销。
在一种可能的实施方式中,第二通信装置可以向第一通信装置发送一个或多个PPDU,第二PPDU为该一个或多个PPDU中的一个。该一个或多个PPDU中的PPDU可以包括第五标识字段,该一个或多个PPDU中的PPDU中其各自的第五标识字段用于指示该PPDU对应的接收天线组合的标识。比如由于第二PPDU用于对第一接收天 线组合进行接收天线信道探测,因此第二PPDU中的第五标识字段指示第一接收天线组合的标识。再比如,该一个或多个PPDU中的除第二PPDU外的另一PPDU为用于对第二接收天线组合进行接收天线信道探测的PPDU,则该PPDU中的第五标识字段指示第二接收天线组合的标识。
本申请实施例中第二通信装置向第一通信装置发送的PPDU也可以理解为探测PPDU,用于进行天线信道探测的PPDU。一种可能的实施方式中,在S702之后执行S703:
S703,第一通信装置根据第二PPDU进行接收天线信道探测,得到第二天线选择反馈结果。
在S703中,第一通信装置可以通过不同的接收天线组合接收第二通信装置发送的多个PPDU,从而对不同的接收天线组合进行接收天线信道探测,得到第二天线选择反馈结果。
本申请实施例中进行接收天线信道探测的第一通信装置可以为具有天线选择功能(Antenna Selection Capability,ASEL)能力(Capabilities)的装置。天线选择功能发送端(比如第二通信装置)可以使用NDP探测PPDU进行ASEL信道探测。
在S703中,第一通信装置可以基于接收到的该一个或多个PPDU进行接收天线信道探测,得到一个或多个接收天线信道探测结果。进一步,第一通信装置可以根据得到的接收天线信道探测结果选择出接收天线组合。
进一步,第一通信装置可以将该选择出的接收天线组合的标识指示给第二通信装置。比如,在S703中,第一通信装置还可以将第二天线选择反馈结果携带于第六帧进行发送。第一通信装置发送第六帧。第六帧包括第二天线选择反馈结果,第二天线选择反馈结果包括第七标识字段,第七标识字段用于指示第一接收天线组合的标识。
需要说明的是,第七标识字段可以用于承载第一通信装置选择出的接收天线组合的标识。比如第一通信装置选择的接收天线组合为第一接收天线组合,则该第七标识字段可以用于指示第一接收天线组合的标识。在本申请实施例中是以第一通信装置选择的接收天线组合为第一接收天线组合为例进行展示的,在实际应用中第一通信装置也可能会选择其他的接收天线组合(这种情况下,第七标识字段需指示该其他的接收天线组合),本申请实施例不做限制。
本申请实施例中选择出的第一通信装置的发送天线和选择出的第一通信装置的接收天线可能相同,也可能不同,也就是说第一发送天线组合和第一接收天线组合可能是同一个天线组合,也可能是不同的天线组合,本申请实施例中不做限制。
相对应的,第二通信装置接收来自第一通信装置的第六帧。
需要注意的是,第一通信装置可以发送第六帧,也可以不发送第六帧。S403是可选的。第一通信装置根据第二PPDU进行接收天线信道探测,得到第二天线选择反馈结果,根据选择出的第一接收天线组合接收来自该第二通信装置的数据。
在一种可能的实施方式中,在S702之后,第一通信装置可以根据来自一个或多个第二通信装置的PPDU进行接收天线信道探测,得到天线选择反馈结果。S703中以一个第二通信装置为例进行介绍,其他第二通信装置的方案与之类似,不再赘述。
需要注意的是,不同的第二通信装置对应的天线选择反馈结果可能不同,也可能相同,本申请实施例不限制。或者也可以理解为,不同的第二通信装置对应的第一通 信装置的接收天线组合可能不同,也可能相同,本申请实施例不限制。比如图12中STA203(第二通信装置)选择第一接收天线组合,而其他第二通信装置有可能选择第一接收天线组合,也有可能选择其他接收天线组合。
通过上述内容可以看出,本申请实施例中由于在第二PPDU中添加了第五标识字段,从而可以使第一通信装置确定出接收到的第二PPDU对应的第一接收天线组合的标识,进而第一通信装置可以将根据该NDP得到的接收天线信道探测的结果确定为:第一接收天线组合的标识对应的接收天线信道探测的结果。从而第一通信装置可以确定出基于一个或多个接收天线信道探测的结果选择出的接收天线组合的标识,继而根据该选择出的接收天线组合的标识对应的接收天线组合接收来自第二通信装置的数据,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
结合图12进行进一步说明,在上述S702中,第二通信装置可以向第一通信装置发送用于对第一通信装置进行接收天线信道探测的一个或多个PPDU。每个PPDU可以对应一组接收天线的天线组合。每组接收天线的天线组合对应一个天线组合标识(图12中标识为天线组合标识(Identification,ID))。
图12中示意性示出的天线组合标识为天线组合ID为0、1…R。R可以为正整数。需要注意的是第一通信装置的发送天线组合的数量和接收天线组合的数量之间没有必然的关系,可能相同,也可能不同,图12中示例出(R+1)组接收天线组合仅仅是示例。图12中示意性示出的PPDU分别为:PPDU(j 0)、PPDU(j 1)…PPDU(j R)。如图12所示,第二通信装置通过天线组合ID=0的接收天线组合发送PPDU(j 0)。第一通信装置根据PPDU(j 0)进行接收天线信道探测,得到天线组合ID=0的接收天线组合对应的接收天线信道探测结果。类似的,第二通信装置通过天线组合ID=1的接收天线组合发送PPDU(j 1)…第二通信装置通过天线组合ID=R的接收天线组合发送PPDU(j R)。第一通信装置得到天线组合ID=1的接收天线组合对应的接收天线信道探测结果、…天线组合ID=R的接收天线组合对应的接收天线信道探测结果。进一步,第一通信装置可以根据该R个接收天线信道探测结果,选择出一组第一通信装置的接收天线组合,比如选择第一接收天线组合,继而通过该第一接收天线组合接收来自该第二通信装置的数据。进一步,第一通信装置还可以将选择出的该第一接收天线组合指示给第二通信装置。
以上图12中天线组合标识的排序仅仅是一种示例,实际应用中,第一通信装置用于接连续的PPDU的天线组合的标识可以是任意排布的,比如不连续的,再比如不按升序排布的。举个例子,比如第二通信装置可以依次:通过天线组合ID=1的发送天线组合接收来自第二通信装置的PPDU(j 1)、通过天线组合ID=R的发送天线组合接收来自第二通信装置的PPDU(j R)、通过天线组合ID=0的发送天线组合接收来自第二通信装置的PPDU(j 0)…。
下面对本申请实施例中提到的接收天线组合的标识的相关内容进行介绍。
一种可能的实施方式中,第一通信装置包括k 2个接收天线组合。k 2为正整数。图12中的R可以为不大于k 2的正整数。R可以等于k 2,也可以小于k 2。k 2个接收天线组合与k 2个接收天线组合的标识一一对应。也就是说k 2个接收天线组合中的一个接收天线组合对应k 2个接收天线组合的标识中的一个标识,且k 2个接收天线组合的标识中的一个标识对 应k 2个接收天线组合中的一个接收天线组合。任两个接收天线组合对应的两个接收天线组合的标识可以不同。任两个接收天线组合的标识对应的两个接收天线组合可以不同。第一接收天线组合为k 2个接收天线组合中的一个,后续以第一接收天线组合为例进行介绍。
接收天线组合的标识有多种实现方式,下面分别进行介绍。
实施方式c1
一种可能的实现方式中,第一接收天线组合的标识可以为该第一接收天线组合对应的第二PPDU的序号。
在实施方式c1中,第五标识字段可以指示该第二PPDU在第二通信装置发送的R个PPDU中的排序。当第一通信装置在S702中发送的PPDU为NDP,也可以理解为:第五标识字段可以指示当前的NDP在第二通信装置发送的R个NDP中的排序。如此,第一通信装置可以根据第五标识字段指示的第二PPDU对应的序号确定第二PPDU与接收天线的天线选择反馈结果之间的对应关系,从而第一通信装置可以确定出基于一个或多个接收天线信道探测的结果选择出的接收天线组合的标识,继而根据该选择出的接收天线组合的标识对应的接收天线组合接收来自第二通信装置的数据,从而可以实现在大规模天线场景下根据天线信道探测结果进行天线选择。
实施方式c2
又一种可能的实现方式中,第一接收天线组合的标识可以为第一接收天线组合的组标识。第一接收天线组合的组标识的相关内容可以参见前述关于第一发送天线组合的组标识的相关内容,实施例方式c2可以参考上述实施方式a2。
关于接收天线组合的标识还可以包括以下可能的实施方式:
实施方式c2-1
第一通信装置可以和第二通信装置进行协商,通过该协商第一通信装置侧可以将第一通信装置侧支持的接收天线组合的总数目告知第二通信装置侧。比如,第一通信装置向第二通信装置发送第十帧,第十帧包括第八指示信息,第八指示信息用于指示第一通信装置支持的接收天线组合的总数量。第十帧可以为MPDU。如此,第二通信装置可以根据第八指示信息预估接收天线选择流程的开销以及时长,且第二通信装置还可以基于第一通信装置支持的接收天线组合的总数量决定是否与第一通信装置之间建立关联关系。
实施例方式c2-1可以参考上述实施方式a2-1,在此不再赘述。
实施方式c2-2
本申请实施例可以提前规定(比如可以在标准中规定)第一通信装置侧的接收天线组合和组标识的对应关系。该对应关系可以预置在第一通信装置侧,也可以由其他通信装置发送给第一通信装置,如此,第一通信装置可以知道每种接收天线组合的接收天线组合标识,以便在发送PPDU时携带。
实施例方式c2-2可以参考上述实施方式a2-2,在此不再赘述。
实施方式c2-3
第一通信装置和第二通信装置协商确定第一接收天线组合的组标识。
第一通信装置和第二通信装置可以进行协商,通过协商第二通信装置知道第一通信装置支持的接收天线组合,且经过协商,第一通信装置和第二通信装置为第一通信装置支持的接收天线组合设置一个组标识。比如,第一通信装置向第二通信装置发送第八帧。第八 帧可以为MPDU。第二通信装置接收第八帧。第八帧包括第八标识字段,第八标识字段用于指示第一通信装置支持的至少一个接收天线组合的标识,至少一个接收天线组合的标识包括第一接收天线组合的标识。
如此,第二通信装置可以知道每种接收天线组合的接收天线组合标识,以便在发送PPDU时携带。而且,可以看出第二通信装置通过协商可以获取更多的天线组合相关的信息,后续可以获得更多的链路相关信息,从而还可以为后续其他流程提供协助。
实施例方式c2-3可以参考上述实施方式a2-3,在此不再赘述。
值得注意的是,上述实施方式c1和实施方式c2可以单独实施,也可以结合实施,比如第一接收天线组合的标识可以包括:第一接收天线组合对应的第二PPDU的序号,以及第一接收天线组合的组标识。如此,可以更加准确的指示出第一接收天线组合,且可以提高方案灵活性。
本申请实施例中,第一接收天线组合的标识可以表示为一个或多个字符,或者表示为一个或多个比特,比如可以表示为二进制对应的一个或多个比特。第五标识字段承载的信息可以为第一接收天线组合的标识对应的全部比特或部分比特。该实施方式与第一发送天线组合的相关内容类似,可以参照前述关于第一发送天线组合的实施方式b1和实施方式b2的相关内容,在此不再赘述。
基于上述内容,图13示例性示出了本申请实施提供的又一种天线信道探测方法的信令交互示意图。图13在图12的基础上增加了S801、S802和S803。由于图12中的S701中的第五帧可以为NDPA帧,也可以为第二触发帧,因此S701可以包括S801和S803两种实施方式。在S801或S803之后,第二通信装置可以执行上述S702,第一通信装置可以执行S703。下面结合图13所示的信令交互示意图,进一步对本申请实施例中涉及到帧进行介绍。
如图13所示,该方法包括:
S801,第一通信装置发送第二触发帧。
第二触发帧可以用于通知第二通信装置需要进行接收天线选择。
S802,第二通信装置发送第七帧。第七帧包括第六指示信息。第六指示信息用于请求进行接收天线信道探测。
相对应的,第一通信装置接收第七帧。
本申请实施例中第二通信装置可以基于S801中的第二触发帧的触发发送第七帧,也可以自行发送第七帧。本申请实施例不做限制。
下面基于图13和图12对涉及到的各个帧结构进行介绍。
一种可能的实施方式中,本申请实施例中上述S701中的第五帧为上述S801中的第二触发帧。第二触发帧还可以包括第四指示信息。第四指示信息可以用于通知第二通信装置需要进行发送天线选择。或者,第四指示信息用于指示该第二触发帧为接收天线选择变种。第五帧还可以包括NDP的数量,和/或,第六标识字段。第六标识字段用于指示第一接收天线组合的标识。
图14示例性示出了一种第二触发帧的一种结构示意图。又一种可能的实施方式中, 接收天线选择的相关信息,比如NDP的数量和/或第六标识字段等,可以承载于以下内容中的至少一项中的部分或者全部比特:公共信息字段的预留比特、或用户信息列表字段的预留比特、基于触发类型的公共信息,或基于触发帧类型的站点信息。
从图14可以看出,该第二触发帧可以使用现有的触发中的结构,在其现有字段承载本申请实施例中接收天线选择相关的内容。如图14所示,第二触发帧可以包括公共信息字段和用户和信息列表字段。
其中,公共信息字段可以包括以下内容中的至少一项:触发帧类型(trigger type)、上行(uplink,UL)长度(UL length)、更多触发帧(more trigger frame)、需要载波侦听(carrier sense required)、上行带宽(uplink(HE)bandwidth)、保护间隔(guard interval,GI)+EHT长训练序列类型(EHT-LTF Type)、多用户-多输入多输出(Multiple User Multiple Input Multiple Output,MU-MIMO)EHT-LTF模式、EHT-LTF个数与中间前导码周期(Number of EHT-LTF Symbols And Midamble Periodicity)、上行空时块编码(uplink space-time block coding,UL STBC)、低密度奇偶校验码(Low Density Parity Check Code,LDPC)额外符号分片(LDPC Extra Symbol Segment)、AP发射功率(AP TX Power)、前向纠错码前的填充因子(Pre-FEC Padding Factor)、包扩展消歧(PE Disambigulty)、上行空间复用(UL Spatial Reuse)、多普勒(Doppler)、上行HE-SIG-A2预留(UL HE-SIG-A2 Reserved)、预留(Reserved)、基于触发帧类型的公共信息(trigger dependent common Info)。
其中,上行HE-SIG-A2预留(UL HE-SIG-A2 Reserved)可以包括HE/EHT指示、特殊用户字段存在指示、其他上行HE-SIG-A2预留(其他UL HE-SIG-A2 Reserved)。
其中,用户信息列表字段可以包括一个或多个用户信息,比如图中的用户信息1、用户信息2…用户信息M。其中一个或多个用户信息可以为特殊用户信息字段,一个或多个用户信息可以为EHT变种用户信息字段。
其中,特殊用户信息字段可以包括:关联标识(AID12)(=2007)、物理层版本标识(physical version ID)、上行EHT带宽扩展(UL EHT BW Extension)、上行EHT空间复用1(UL EHT Spatial Reuse 1)、上行EHT空间复用2(UL EHT Spatial Reuse 2)、通用信令字段不理会和证实指示(U-SIG Disregard And Validate)、预留、基于触发帧类型的站点信息(trigger dependent user Info)。本申请实施例中infonation也可以简写为Info,代表信息。
其中,EHT变种用户信息字段(User Info 2~M)可以包括以下内容:关联标识(AID12)、资源单元分配(RU Allocation)、上行前向纠错编码类型(UL forward error correction coding Type)、调制与编码策略(UL EHT-modulation and coding scheme)、预留(reserved)、空间流开始值、空间流数、上行目标接收信号强度指示(UL target received signal strength indicator)、PS160主次160MHz指示、基于触发帧类型的站点信息(trigger dependent user Info)。
表2示例性示出了一种图14所示的第二触发帧的触发帧类型的值的含义的示意图。从表2中可以看出,目前标准中该第二触发帧的触发帧类型的8-15为预留值,当选择第二触发帧作为第五帧时,可以将该第二触发帧的触发帧类型的值从8-15中选择一个,从而可以通过第二触发帧的触发帧类型的值指示该第二触发帧用于接收天线选择。第二触发帧的触发帧类型的值可以作为第四指示信息的一种可能的实施方式。
表2 一种第二触发帧的触发帧类型的值的含义的示意图
Figure PCTCN2022128386-appb-000002
在上述S802中,第七帧可以称为接收天线选择探测请求(receiver antenna selection sounding request)。第七帧中还可以包括请求第二通信装置发送的PPDU的数量。如此,第一通信装置可以基于第七帧中携带的PPDU数量确定后续第二通信装置需发送的PPDU数量,以使第一通信装置确定的第二通信装置后续需发送的PPDU的数量尽量与第二通信装置的需求匹配。第二通信装置发送的PPDU的数量可以与第七帧中要求的PPDU的数量相同,也可以不同。
第七帧可以承载在一个MAC帧头承载高吞吐率控制(High Throughput Control,HTC)字段的MPDU中。第七帧的帧结构可以采用前述图6所示的帧结构。第七帧相关的变种为高效变种,也可以理解为,第六指示信息承载于第七帧的高效变种字段。其中,第六指示信息承载于A-control子字段的控制标识符字段、天线选择命令字段,或天线选择数据字段中的至少一项。本申请实施例中可以利用标准中尚未使用的控制标识符字段的控制ID值来指示本申请实施例中的接收天线选择流程,比如控制标识符字段的控制ID值可以为9,11-14中的一种。此时控制信息字段的长度至多可以为26比特。关于第七帧为MPDU时,相关的介绍有益效果可以参见前述图6的相关介绍在,在此不再赘述。
在上述S803中,第一通信装置可以基于第二通信装置发送的第七帧发送NDPA帧,也可以自行发送NDPA帧,本申请实施例中不做限制。又一种可能的实施方式中,S701中的第五帧可以为NDPA帧,这种情况下,NDPA帧可以为包括有用于通知第二 通信装置进行接收天线信道探测的第四指示信息的帧。
第五帧(比如NDPA帧)还可以包括NDP的数量,和/或,第六标识字段。第六标识字段用于指示第一接收天线组合的标识。
一种可能的实施方式中,当NDPA帧包括有第六标识字段,则第六标识字段可以包括:第一接收天线组合的标识对应的全部比特。如此,第二通信装置后续发送的第二PPDU中的第五标识字段中可以承载第一接收天线组合的标识对应的部分比特,从而可以减少第五标识字段在第二PPDU中占用的比特位的数量,而且也可以使第一通信装置结合第六标识字段和第五标识字段确定出第二PPDU对应的第一接收天线组合的标识的全部比特。
图15示例性示出了第五帧为NDPA帧的情况下第五帧的一种结构示意图,第六标识字段和NDP的数量并不是必须包括在NDPA帧中的,图15中以第五帧包括第六标识字段、NDP的数量和第四指示信息为例进行展示。图15所示的NDPA帧的结构与前述图7所示的NDPA帧的结构相比,区别之处在于图15中是以包括有接收天线组合的标识为例进行展示的,且关联标识字段是以2043为例进行展示的,其余内容和有益效果可以参见图7的描述。
类似的,本申请实施例中可以利用站点信息字段的特定关联标识,指示该站点信息字段的信息为天线选择相关信息。比如,第四指示信息、NDP的数量或第六标识字段中的至少一项可以承载于:第五帧的至少一个包括第五指示信息的站点信息字段。第五指示信息指示站点信息字段包括天线选择相关信息。如此,第二通信装置可以在识别出第五指示信息的情况下,确定承载有第五指示信息的站点信息字段中承载的为天线选择相关信息,继而从该站点信息字段获取天线选择相关信息。第五指示信息可以将承载天线选择相关信息的站点信息字段和其他常规的某一个站点对应的站点信息字段区别开,从而在通过使用站点信息字段承载天线选择相关信息的方案中,不会对常规的某一个站点对应的站点信息字段造成影响,达到与现有标准兼容的目的。
与图7类似,第五指示信息可以承载于站点信息字段中的关联标识字段。第五指示信息包括:2008-2043或2046中的一个。如此,第二通信装置可以根据关联标识字段确定出该站点信息字段承载的是天线选择相关信息还是某个第二通信装置对应的站点信息,可以看出,该方案可以与现有技术更好的兼容。第四指示信息还可以称为天线选择类型、天线选择NDPA变种的指示信息、或NDPA帧变种子类型。第四指示信息还用于指示该NDPA帧的变种是天线选择变种。
由于从802.11ax标准开始,到802.11be标准,不再支持带HT control字段的NDPA帧,本申请实施例中通过站点信息字段携带相应的天线选择相关信息,可以实现天线选择所需信息的指示,而且站点信息字段的关联标识字段的关联标识为特殊的关联标识,多个第二通信装置均可以读取到该站点信息字段的内容。
在上述S702中,第二通信装置发送的第二PPDU可以不包括数据字段,比如为NDP,也可以包括有数据字段,下面分别进行介绍。
当第二PPDU不包括数据字段的情况下,第二PPDU的结构可以为前述图8a或图8b中展示的NDP结构。当第二PPDU为图8a或图8b所示的NDP的情况下,第五标识字段位于第二PPDU前导码。比如,第五标识字段可以包括U-SIG中的部分比特或全部比特,和/或,EHT-SIG中的部分比特或全部比特。相关内容可以参见前述图8a和图8b的介绍,不再赘述。
又一种可能的实施方式中,当第二PPDU不包括数据字段的情况下,第二PPDU的结构可以为图16a或图16b中展示的NDP结构示意图。图16a和图16b示例性示出了两种第二PPDU为NDP的情况下第二PPDU的一种结构示意图。相比图8a,图16a中没有EHT-SIG字段,其余字段可以参见图8a的相关介绍。相比图8b,图16b中没有NG-SIG字段,其余字段可以参见图8b的相关介绍。当第二PPDU为图16a或图16b所示的NDP的情况下,第五标识字段位于第二PPDU前导码。比如,第五标识字段可以包括U-SIG中的部分比特或全部比特。比如可以利用U-SIG第一个符号的B20-B24;U-SIG字段第一个符号的B25中的一个或多个比特作为第五标识字段。
当第二PPDU包括数据字段的情况下,第二PPDU的结构可以为前述图8c中展示的帧结构示意图。当第二PPDU为图8c所示的帧的情况下,第五标识字段位于第二PPDU前导码。比如,第五标识字段可以包括U-SIG、EHT-SIG或数据字段中的至少一项中的部分或全部比特。相关内容可以参见前述图8a和图8b的介绍,不再赘述。
又一种可能的实施方式中,当第二PPDU包括数据字段的情况下,第二PPDU的结构可以为图16c中展示的帧结构示意图。图16c示例性示出了一种包括数据字段的第二PPDU的结构示意图。相比图8c,图16c中没有NG-SIG字段,其余字段可以参见图8c的相关介绍。当第二PPDU为图16c所示的帧结构的情况下,第五标识字段位于第二PPDU前导码。比如,第五标识字段可以包括U-SIG或数据字段中的至少一项中的部分或全部比特。相关内容可以参见前述论述,不再赘述。
在上述S703中,第六帧可以为波束成形报告帧,帧结构可以为前述图9所示的帧结构。相关介绍也可以参见前述图9的相关描述。下面结合前述图9对第六帧进行介绍。
第六帧可以包括MIMO Control控制字段。其中,第七标识字段可以包括MIMO Control字段中的部分或全部比特。第七标识字段包括:第一接收天线组合的标识对应的全部比特。如此,第二通信装置可以根据第六帧中的第七标识字段确定出第一通信装置选择出的接收天线组合为第一接收天线组合。
一种可能的实施方式中,第七标识字段可以包括两个部分:分别为天线组合标识字段和探测PPDU序号字段,其中,天线组合标识字段可以承载第一接收天线组合的组标识,探测PPDU序号字段可以承载第一接收天线组合对应的第二PPDU的序号。
又一种可能的实施方式中,第六帧中还可以包括天线选择失败反馈字段。又一种可能的实施方式中,第六帧中还可以包括:压缩波束成形报告,多用户专用波束成形报告,信道质量状态报告中的至少一种。比如,信道质量状态报告例如可以包括该
PPDU对应的信道状态信息(channel state information,CSI)或信道质量信息(channel quality information,CQI)中的至少一项。
其中,压缩波束成形报告,多用户专用波束成形报告,信道质量状态报告中的一种或多种可以承载于第六帧中除了MIMO Control字段之外的其他字段。当然,上述第七标识字段中包括的天线组合标识字段和探测PPDU序号字段中的至少一项也可以设置于其他字段,比如,探测PPDU序号字段可以位于A-control子字段。关于第六帧的其他内容可以参见前述图9的相关描述,在此不再赘述。
通过上述内容可以看出,本申请实施例中在NDPA帧等不支持高吞吐率控制字段 的情况下,设计了基于NDPA(第五帧)+NDP(PPDU)+反馈(第六帧)的接收天线的天线选择流程设计,该天线选择流程可以匹配当前的信道探测流程,而且对收发两端设备的改动小,实现相对简单。
基于上述内容,图17示例性示出了本申请实施提供的又一种天线信道探测方法的信令交互示意图。
图17中是以第一通信装置和第二通信装置的交互为例进行展示。本申请实施例中的第一通信装置也可以称为天线选择发送方,第二通信装置也可以称为天线选择响应方。
图17中的第一通信装置可以为前述图1中的第一通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图17中的第二通信装置可以为前述图1中的第二通信装置,也可以为图2中的AP或STA,也可以为图3中的通信装置。图17中的第一通信装置和第二通信装置可以均为AP,或者均为STA,或者分别为AP和STA,图17中以第一通信装置为AP,第二通信装置为STA为例进行展示。
本申请实施例提供的方案可以适用于AP同单个STA之间的接收天线信道探测的流程,也可以适用于AP同多个STA之间的接收天线信道探测的流程。图17是以AP与多个STA(比如图17中的STA203、STA204和STA205)之间执行接收天线信道探测的流程为例进行示意。
需要注意的是,图17提供的方案用于对第一通信装置侧接收天线进行选择。图4和图10提供的方案用于对第一通信装置侧发送天线进行选择。图17的方案可以与图4或图10结合使用,也可以独立实施。图4或图10的方案也可以独立实施,也可以与图17的方案结合使用。当图4与图17的方案结合使用的情况下,第一通信装置可以通过图4的方案进行发送天线的选择,通过图17的方案进行接收天线的选择。当图10与图17的方案结合使用的情况下,第一通信装置可以通过图10的方案进行发送天线的选择,通过图17的方案进行接收天线的选择。
如图17所示,该方法包括:
S901,第一通信装置向第二通信装置发送第十二帧,第十二帧包括第四指示信息,第四指示信息通知第二通信装置进行接收天线信道探测。
相对应的,第二通信装置接收来自第一通信装置的第十二帧。
S902,第二通信装置向第一通信装置发送第四PPDU。第四PPDU用于进行接收天线信道探测。
相对应的,第一通信装置接收来自第二通信装置的第四PPDU。
第四PPDU可以包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。
S903,第一通信装置根据第二PPDU进行接收天线信道探测,得到第二天线选择反馈结果。
进一步,在S903中,第一通信装置还可以将第二天线选择反馈结果反馈给第二通信装置。
通过上述方案可以看出,本申请实施例中第二通信装置可以将S902中需要发送M 2组接收天线组合对应的PPDU聚合为一个PPDU,从而可以节省开销,从而可以提升天线选 择的效率,提升系统吞吐率。
图18和图19分别示例性示出了两种第四PPDU的帧结构示意图。相比图18,图19中不包括EHT-SIG字段。
如图18和图19所示,第四PPDU可以包括M 2组接收天线组合对应的M 2个第二信息字段。M 2为大于1的整数。第二信息字段用于进行接收天线信道探测。
第二信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。任两个第二信息字段采用的接收天线组合不同,比如图18中示出的三个接收天线组合分别为天线组合ID=0的接收天线组合对应的第二信息字段,天线组合ID=1的接收天线组合对应的第二信息字段,…天线组合ID=M 2的接收天线组合对应的第二信息字段。
如图18所示,第四PPDU还可以包括前导码。前导码包括以下字段中的至少一项:L-STF、L-LTF、L-SIG、RL-SIG、U-SIG,或EHT-SIG。如图19所示,第四PPDU还可以包括前导码。前导码包括以下字段中的至少一项:L-STF、L-LTF、L-SIG、RL-SIG、或U-SIG。关于前导码的相关描述可以参见前述图16a中的相关描述,在此不再赘述。
通过图18和图19可以看到,S902中把原本需要发送的M 2组接收天线组合对应的M 2个PPDU聚合为一个第四PPDU,从而可以省去(M 2-1)个前导码。
另一方面,从图18可以看出,每个第二信息字段可以包括一个数据包扩展字段,比如图18中示出的天线组合ID=0对应的第二信息字段中的数据包扩展0、图18中示出的天线组合ID=1对应的第二信息字段中的数据包扩展1、…图18中示出的天线组合ID=M 2对应的第二信息字段中的数据包扩展M 2。其中,除了最后一个数据包扩展M 2之外的其他数据包扩展(数据包扩展0至数据包扩展(M 2-1))中的任两个数据扩展的时长可以相同,且这些数据包扩展字段的时长可以用于为第二通信装置提供更多的处理时间,另外,可以给第一通信装置切换天线提供时间,另外,该部分时长可以设置的短一些,足够第一通信装置切换天线即可。
一种可能的实施方式中,M 2个第二信息字段中的至少两个第二信息字段中的数据包扩展字段的时长可以不同,比如数据包扩展M 2的时长也可以与数据包扩展1的时长不同,数据包扩展M 2的时长可以设置的稍长一些,数据包扩展1的时长可以设置的稍短一些,足够第一通信装置切换天线即可。且,该实施方式中,除了最后一个数据包扩展M 2之外的其他数据包扩展(数据包扩展0至数据包扩展(M 2-1))中的任两个数据扩展的时长可以相同,也可以不同。
又一种可能的实施方式中,M 2个第二信息字段中的任两个第二信息字段中的数据包扩展字段的时长相同。如此,可以提高接收流程一致性。
相比第二通信装置传输M 2个接收天线对应的PPDU,图18所示的方案中仅需传输一个第四PPDU就可以达到传输M 2组用于进行接收天线信道探测的信息的目的,且该方案可以节省(M 2-1)组前导码(L-STF到EHT-SIG),以及短帧间距SIFS。当数据包扩展0至数据包扩展(M 2-1)中任两个的时间均相等,且数据包扩展0的时长比数据包扩展M 2的时长短,则还可以节省数据包扩展M 2与数据包扩展0相差的时间。
举个例子,第四PPDU中前导码(L-STF到EHT-SIG)一共36微秒,数据包扩展M 2的时长为16微秒,SIFS为16微秒,以数据包扩展0至数据包扩展(M 2-1)中任一个的时间为4微秒,M 2=64,则相比传输M 2个接收天线对应的PPDU(该PPDU包括前导码和一个第二信息字段,且该第二信息字段包括的数据扩展字段为16微秒), 则通过传输第四PPDU可以节省:36×(64-1)+16×(64-1)+(16-4)×(64-1)=4032微秒。
需要说明的是,图18中仅仅是一种可能的第四PPDU的帧结构的示例,该示例中将EHT-SIG传输一次。又一种可能的实施方式中,EHT-SIG也可以按组分别出现,比如每个第二信息字段中均包括一个EHT-SIG。另外,图17中以第二通信装置传输一个第四PPDU为例进行展示,实际应用中,在S902中,第二通信装置可以发送一个或多个第四PPDU,每个第四PPDU包括的第二信息字段的数量可以相同也可以不同。
另外,需要说明的是,本申请实施例的图17提供了一种可以对第二通信装置发送的PPDU进行聚合的实施方式,该实施方式与前述图12或图13提供的天线选择方案可以结合使用,也可以单独实施。本申请实施例中的S901中的第十二帧可以为NDPA帧。
其中,当结合使用时,S901的相关内容可以参见前述S701的相关内容,第十二帧的相关内容可以参见前述第五帧的相关介绍。S903的相关内容可以参见前述S703的相关内容,天线选择反馈结果的相关内容可以参见前述第六帧的相关介绍。当结合使用时,前述图12或图13中提到的NDP的数量可以等同于图17中提到的第二信息字段的数量。当结合使用时,前述第二PPDU的结构可以参照第四PPDU的结构,即前述第二PPDU中也可以包括多个接收天线组合对应的第二信息字段,比如第二PPDU中包括第一接收天线对应的第二信息字段,还包括第二接收天线对应的第二信息字段。第一PPDU中包括一个前导码。另外,可以将前导码中的U-SIG放置于每个第二信息字段中。第五标识字段可以携带于每个第二信息字段。
可以理解的是,为了实现上述实施例中功能,通信装置包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图20、图21和图22为本申请的实施例提供的可能的通信装置的一种结构示意图。这些通信装置可以用于实现上述方法实施例中第一通信装置的功能,因此也能实现上述方法实施例所具备的有益效果。这些通信装置也可以用于实现上述方法实施例中第二通信装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1、图2、图3、图4、图5、图10、图12、图13或图17中的发送端设备或第一通信装置,还可以是应用于发送端设备或第一通信装置的模块(如芯片)。在本申请的实施例中,该通信装置可以是如图1、图2、图3、图4、图5、图10、图12、图13或图17中的接收端设备或第二通信装置,还可以是应用于接收端设备或第二通信装置的模块(如芯片)。
如图20所示,通信装置1300包括处理单元1310和收发单元1320。通信装置1300用于实现上述图4、图5、图10、图12、图13或图17所示的方法实施例中第一通信装置的功能。
当通信装置1300用于实现图4或图5所示的方法实施例中第一通信装置的功能时:处理单元1310用于通过收发单元1320执行:向第二通信装置发送第一帧,向第二通信装 置发送第一PPDU。第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第一PPDU为NDP。第一PPDU用于第二通信装置进行发送天线信道探测,第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
当通信装置1300用于实现图4或图5所示的方法实施例中第一通信装置的功能时:处理单元1310还用于通过收发单元1320执行:接收来自第二通信装置的第二帧。第二帧包括第一天线选择反馈结果,第一天线选择反馈结果包括第三标识字段,第三标识字段用于指示第一发送天线组合的标识。
当通信装置1300用于实现图4或图5所示的方法实施例中第一通信装置的功能时:处理单元1310用于通过收发单元1320执行:向第二通信装置发送第四帧,第四帧包括第四标识字段,第四标识字段用于指示第一通信装置支持的至少一个发送天线组合的标识,至少一个发送天线组合的标识包括第一发送天线组合的标识。
当通信装置1300用于实现图4或图5所示的方法实施例中第一通信装置的功能时:处理单元1310用于通过收发单元1320执行:向第二通信装置发送第九帧,第九帧包括第七指示信息,第七指示信息用于指示第一通信装置支持的发送天线组合的总数量。
当通信装置1300用于实现图10所示的方法实施例中第一通信装置的功能时:处理单元1310用于通过收发单元1320执行:向第二通信装置发送第十一帧,第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第一通信装置向第二通信装置发送第三PPDU;第三PPDU用于第二通信装置进行发送天线信道探测。其中,第三PPDU包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
当通信装置1300用于实现图12或图13所示的方法实施例中第一通信装置的功能时:处理单元1310用于通过收发单元1320执行:向第二通信装置发送第五帧,接收来自第二通信装置的第二PPDU。第五帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。第一通信装置述第二PPDU为NDP;第二PPDU用于第一通信装置进行接收天线信道探测,第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
当通信装置1300用于实现图17所示的方法实施例中第一通信装置的功能时:处理单元1310用于通过收发单元1320执行:向第二通信装置发送第十二帧,接收来自第二通信装置的第四PPDU。第十二帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。第四PPDU用于第二通信装置进行接收天线信道探测。其中,第四PPPDU包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。第二信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
如图20所示,通信装置1300包括处理单元1310和收发单元1320。通信装置1300用于实现上述图4、图5、图10、图12、图13或图17所示的方法实施例中第二通信装置的 功能。
当通信装置1300用于实现图4或图5所示的方法实施例中第二通信装置的功能时:处理单元1310用于通过收发单元1320执行:接收来自第一通信装置的第一帧,接收来自第一通信装置的第一PPDU。第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第一PPDU为NDP;第一PPDU用于第二通信装置进行发送天线信道探测,第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
当通信装置1300用于实现图4或图5所示的方法实施例中第二通信装置的功能时:处理单元1310还用于通过收发单元1320执行:根据第一PPDU进行发送天线信道探测,得到第一天线选择反馈结果。发送第二帧,第二帧包括第一天线选择反馈结果,第一天线选择反馈结果包括第三标识字段,第三标识字段用于指示第一发送天线组合的标识。
当通信装置1300用于实现图4或图5所示的方法实施例中第二通信装置的功能时:处理单元1310具体用于通过收发单元1320执行:接收来自第一通信装置的第四帧。第四帧包括第四标识字段,第四标识字段用于指示第一通信装置支持的至少一个发送天线组合的标识,至少一个发送天线组合的标识包括第一发送天线组合的标识。
当通信装置1300用于实现图4或图5所示的方法实施例中第二通信装置的功能时:处理单元1310具体用于通过收发单元1320执行:接收来自第一通信装置的第九帧,第九帧包括第七指示信息,第七指示信息用于指示第一通信装置支持的发送天线组合的总数量。
当通信装置1300用于实现图10所示的方法实施例中第二通信装置的功能时:处理单元1310用于通过收发单元1320执行:接收来自第一通信装置的第十一帧,接收来自第一通信装置的第三PPDU。第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。第三PPDU用于第二通信装置进行发送天线信道探测。其中,第三PPDU包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
当通信装置1300用于实现图12或图13所示的方法实施例中第二通信装置的功能时:处理单元1310用于通过收发单元1320执行:接收来自第一通信装置的第五帧,第五帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。向第一通信装置发送第二PPDU;第二PPDU为空数据分组NDP;第二PPDU用于第一通信装置进行接收天线信道探测,第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
当通信装置1300用于实现图17所示的方法实施例中第二通信装置的功能时:处理单元1310用于通过收发单元1320执行:接收来自第一通信装置的第十二帧。第十二帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。向第一通信装置发送第四PPDU。第四PPDU用于第二通信装置进行接收天线信道探测。其中,第四PPDU包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。第二信息字段包括EHT短训练字段、EHT长训练字段和数 据包扩展字段中的至少一项。
有关上述处理单元1310和收发单元1320更详细的描述可以直接参考图4、图5、图10、图12、图13或图17所示的方法实施例中相关描述直接得到,这里不加赘述。
如图21所示,通信装置1400包括处理电路1410和接口电路1420。处理电路1410和接口电路1420之间相互耦合。可以理解的是,接口电路1420可以为收发器或输入输出接口。可选的,通信装置1400还可以包括存储器,用于存储处理电路执行的指令或存储处理电路1410运行指令所需要的输入数据或存储处理电路1410运行指令后产生的数据。
当通信装置1400用于实现图4、图5、图10、图12、图13或图17所示的方法时,处理电路1410用于实现上述处理单元1310的功能,接口电路1420用于实现上述收发单元1320的功能。
如图22所示,通信装置1500包括处理器1510和通信接口1520。处理器1510和通信接口1520之间相互耦合。可以理解的是,通信接口1520可以为收发器或输入输出接口。可选的,通信装置1500还可以包括存储器1530,用于存储处理器1510执行的指令或存储处理器1510运行指令所需要的输入数据或存储处理器1510运行指令后产生的数据。
当通信装置1500用于实现图4、图5、图10、图12、图13或图17所示的方法时,处理器1510用于实现上述处理单元1310的功能,通信接口1520用于实现上述收发单元1320的功能。
当通信装置1500用于实现图4或图5所示的方法实施例中第一通信装置的功能时:处理器1510用于通过通信接口1520执行:向第二通信装置发送第一帧,第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。向第二通信装置发送第一PPDU;第一PPDU为空数据分组NDP;第一PPDU用于第二通信装置进行发送天线信道探测,第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
当通信装置1500用于实现图10所示的方法实施例中第一通信装置的功能时:处理器1510用于通过通信接口1520执行:向第二通信装置发送第十一帧,第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。向第二通信装置发送第三PPDU;第三PPDU用于第二通信装置进行发送天线信道探测。其中,第三PPDU包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
当通信装置1500用于实现图12或图13所示的方法实施例中第一通信装置的功能时:处理器1510用于通过通信接口1520执行:向第二通信装置发送第五帧,第五帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。接收来自第二通信装置的第二物理层协议数据单元PPDU;第二PPDU为空数据分组NDP;第二PPDU用于第一通信装置进行接收天线信道探测,第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
当通信装置1500用于实现图17所示的方法实施例中第一通信装置的功能时:处理器1510用于通过通信接口1520执行:向第二通信装置发送第十二帧,第十二帧包括第四指 示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。接收来自第二通信装置的第四物理层协议数据单元PPDU;第四PPDU用于第二通信装置进行接收天线信道探测。其中,第四PPPDU包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。第二信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
当通信装置1500用于实现图4或图5所示的方法实施例中第二通信装置的功能时:处理器1510用于通过通信接口1520执行:接收来自第一通信装置的第一帧,第一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。接收来自第一通信装置的第一物理层协议数据单元PPDU;第一PPDU为空数据分组NDP;第一PPDU用于第二通信装置进行发送天线信道探测,第一PPDU包括第一标识字段,第一标识字段用于指示第一发送天线组合的标识。
当通信装置1500用于实现图10所示的方法实施例中第一通信装置的功能时:处理器1510用于通过通信接口1520执行:接收来自第一通信装置的第十一帧,第十一帧包括第一指示信息,第一指示信息通知第二通信装置进行发送天线信道探测。接收来自第一通信装置的第三物理层协议数据单元PPDU;第三PPDU用于第二通信装置进行发送天线信道探测。其中,第三PPDU包括M 1组发送天线组合对应的M 1个第一信息字段;M 1为大于1的整数;第一信息字段用于进行发送天线信道探测。第一信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
当通信装置1500用于实现图12或图13所示的方法实施例中第二通信装置的功能时:处理器1510用于通过通信接口1520执行:接收来自第一通信装置的第五帧,第五帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。向第一通信装置发送第二物理层协议数据单元PPDU;第二PPDU为空数据分组NDP。第二PPDU用于第一通信装置进行接收天线信道探测,第二PPDU包括第五标识字段,第五标识字段用于指示第一接收天线组合的标识。
当通信装置1500用于实现图17所示的方法实施例中第二通信装置的功能时:处理器1510用于通过通信接口1520执行:接收来自第一通信装置的第十二帧,第十二帧包括第四指示信息,第四指示信息指示对第一通信装置进行接收天线信道探测。向第一通信装置发送第四物理层协议数据单元PPDU;第四PPDU用于第二通信装置进行接收天线信道探测。其中,第四PPDU包括M 2组接收天线组合对应的M 2个第二信息字段;M 2为大于1的整数;第二信息字段用于进行接收天线信道探测。第二信息字段包括EHT短训练字段、EHT长训练字段和数据包扩展字段中的至少一项。
当上述通信装置为应用于通信装置的芯片时,该通信装置芯片实现上述方法实施例中通信装置的功能。该通信装置芯片从通信装置中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给通信装置的;或者,该通信装置芯片向通信装置中的其它模块(如射频模块或天线)发送信息,该信息是通信装置发送给网络设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件 或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行图4、图5、图10、图12、图13或图17所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序或指令,当该程序或指令在计算机上运行时,使得该计算机执行图4、图5、图10、图12、图13或图17所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种芯片系统,该芯片系统可以包括处理电路和接口电路。该处理电路可以通过接口电路执行图4、图5、图10、图12、图13或图17所示实施例中任意一个实施例的方法。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理电路可以用于从存储器调用并运行计算机程序,使得安装有芯片系统的设备执行图4、图5、图10、图12、图13或图17所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的第一通信装置和第二通信装置。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存(flash)、只读存储器(Read-Only Memory,ROM)、可编程只读存储器、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦除可编程只读存储器、寄存器、硬盘、固态硬盘(solid-state drive,SSD)、移动硬盘、便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于通信装置中。当然,处理器和存储介质也可以作为分立组件存在于通信装置中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行计算机程序或指令时,全部或部分地执行本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B或C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (31)

  1. 一种天线信道探测方法,其特征在于,包括:
    第一通信装置向第二通信装置发送第一帧,所述第一帧包括第一指示信息,所述第一指示信息通知所述第二通信装置进行发送天线信道探测;
    所述第一通信装置向所述第二通信装置发送第一物理层协议数据单元PPDU;所述第一PPDU为空数据分组NDP;所述第一PPDU用于所述第二通信装置进行发送天线信道探测,所述第一PPDU包括第一标识字段,所述第一标识字段用于指示第一发送天线组合的标识。
  2. 如权利要求1所述的方法,其特征在于,所述第一通信装置向所述第二通信装置发送第一PPDU之后,还包括:
    所述第一通信装置接收来自所述第二通信装置的第二帧,所述第二帧包括第一天线选择反馈结果,所述第一天线选择反馈结果包括第三标识字段,所述第三标识字段用于指示第一发送天线组合的标识。
  3. 如权利要求1-2任一项所述的方法,其特征在于,所述第一通信装置向第二通信装置发送第一帧之前,还包括:
    所述第一通信装置向所述第二通信装置发送第四帧,所述第四帧包括第四标识字段,所述第四标识字段用于指示所述第一通信装置支持的至少一个发送天线组合的标识,所述至少一个发送天线组合的标识包括所述第一发送天线组合的标识。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一通信装置向第二通信装置发送第一帧之前,还包括:
    所述第一通信装置向所述第二通信装置发送第九帧,所述第九帧包括第七指示信息,所述第七指示信息用于指示所述第一通信装置支持的发送天线组合的总数量。
  5. 一种天线信道探测方法,其特征在于,包括:
    第二通信装置接收来自第一通信装置的第一帧,所述第一帧包括第一指示信息,所述第一指示信息通知所述第二通信装置进行发送天线信道探测;
    所述第二通信装置接收来自所述第一通信装置的第一物理层协议数据单元PPDU;所述第一PPDU为空数据分组NDP;所述第一PPDU用于所述第二通信装置进行发送天线信道探测,所述第一PPDU包括第一标识字段,所述第一标识字段用于指示第一发送天线组合的标识。
  6. 如权利要求5所述的方法,其特征在于,所述第二通信装置接收第一PPDU之后,还包括:
    所述第二通信装置根据所述第一PPDU进行发送天线信道探测,得到第一天线选择反馈结果;
    所述第二通信装置发送第二帧,所述第二帧包括所述第一天线选择反馈结果,所述第一天线选择反馈结果包括第三标识字段,所述第三标识字段用于指示第一发送天线组合的标识。
  7. 如权利要求5-6任一项所述的方法,其特征在于,所述第二通信装置接收第一帧之 前,还包括:
    所述第二通信装置接收来自第一通信装置的第四帧,所述第四帧包括第四标识字段,所述第四标识字段用于指示所述第一通信装置支持的至少一个发送天线组合的标识,所述至少一个发送天线组合的标识包括所述第一发送天线组合的标识。
  8. 如权利要求5-7任一项所述的方法,其特征在于,所述第二通信装置接收第一帧之前,还包括:
    所述第二通信装置接收来自所述第一通信装置的第九帧,所述第九帧包括第七指示信息,所述第七指示信息用于指示所述第一通信装置支持的发送天线组合的总数量。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述第一标识字段位于所述第一PPDU前导码。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一帧还包括所述NDP的数量;和/或,
    所述第一帧还包括第二标识字段,所述第二标识字段用于指示所述第一发送天线组合的标识。
  11. 如权利要求10所述的方法,其特征在于,所述第一指示信息和/或所述NDP的数量承载于:所述第一帧的至少一个包括第二指示信息的站点信息字段;所述第二指示信息指示所述站点信息字段包括天线选择相关信息;和/或,
    所述第二标识字段包括所述第一帧的至少一个包括所述第二指示信息的站点信息字段中的部分或全部比特。
  12. 如权利要求11所述的方法,其特征在于,所述第二指示信息承载于所述站点信息字段中的关联标识字段。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述第一发送天线组合为所述第一通信装置的k 1个发送天线组合中的一个,所述k 1为正整数;
    所述k 1个发送天线组合与所述k 1个发送天线组合的标识一一对应。
  14. 一种通信装置,其特征在于,包括:
    收发单元,用于向第二通信装置发送第一帧,所述第一帧包括第一指示信息,所述第一指示信息通知所述第二通信装置进行发送天线信道探测;
    所述收发单元还用于向所述第二通信装置发送第一物理层协议数据单元PPDU;所述第一PPDU为空数据分组NDP;所述第一PPDU用于所述第二通信装置进行发送天线信道探测,所述第一PPDU包括第一标识字段,所述第一标识字段用于指示第一发送天线组合的标识。
  15. 如权利要求14所述的通信装置,其特征在于,所述通信装置向所述第二通信装置发送第一PPDU之后,还包括:
    接收来自所述第二通信装置的第二帧,所述第二帧包括第一天线选择反馈结果,所述第一天线选择反馈结果包括第三标识字段,所述第三标识字段用于指示第一发送天线组合的标识。
  16. 如权利要求14或15所述的通信装置,其特征在于,所述通信装置向第二通信装置发送第一帧之前,还包括:
    向所述第二通信装置发送第四帧,所述第四帧包括第四标识字段,所述第四标识字段用于指示所述通信装置支持的至少一个发送天线组合的标识,所述至少一个发送天线组合的标识包括所述第一发送天线组合的标识。
  17. 如权利要求14-16任一项所述的通信装置,其特征在于,所述通信装置向第二通信装置发送第一帧之前,还包括:
    向所述第二通信装置发送第九帧,所述第九帧包括第七指示信息,所述第七指示信息用于指示所述通信装置支持的发送天线组合的总数量。
  18. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自第一通信装置的第一帧,所述第一帧包括第一指示信息,所述第一指示信息通知所述通信装置进行发送天线信道探测;
    所述收发单元还用于接收来自所述第一通信装置的第一物理层协议数据单元PPDU;所述第一PPDU为空数据分组NDP;所述第一PPDU用于所述通信装置进行发送天线信道探测,所述第一PPDU包括第一标识字段,所述第一标识字段用于指示第一发送天线组合的标识。
  19. 如权利要求18所述的通信装置,其特征在于,所述通信装置接收第一PPDU之后,还包括:
    所述通信装置根据所述第一PPDU进行发送天线信道探测,得到第一天线选择反馈结果;
    发送第二帧,所述第二帧包括所述第一天线选择反馈结果,所述第一天线选择反馈结果包括第三标识字段,所述第三标识字段用于指示第一发送天线组合的标识。
  20. 如权利要求18或19所述的通信装置,其特征在于,所述通信装置接收第一帧之前,还包括:
    接收来自第一通信装置的第四帧,所述第四帧包括第四标识字段,所述第四标识字段用于指示所述第一通信装置支持的至少一个发送天线组合的标识,所述至少一个发送天线组合的标识包括所述第一发送天线组合的标识。
  21. 如权利要求18-20任一项所述的通信装置,其特征在于,所述通信装置接收第一帧之前,还包括:
    接收来自所述第一通信装置的第九帧,所述第九帧包括第七指示信息,所述第七指示信息用于指示所述第一通信装置支持的发送天线组合的总数量。
  22. 如权利要求14-21任一项所述的通信装置,其特征在于,所述第一标识字段位于所述第一PPDU前导码。
  23. 如权利要求14-22任一项所述的通信装置,其特征在于,所述第一帧还包括所述NDP的数量;和/或,
    所述第一帧还包括第二标识字段,所述第二标识字段用于指示所述第一发送天线组合的标识。
  24. 如权利要求23所述的通信装置,其特征在于,所述第一指示信息和/或所述NDP的数量承载于:所述第一帧的至少一个包括第二指示信息的站点信息字段;所述第二指示信息指示所述站点信息字段包括天线选择相关信息;和/或,
    所述第二标识字段包括所述第一帧的至少一个包括所述第二指示信息的站点信息字段中的部分或全部比特。
  25. 如权利要求24所述的通信装置,其特征在于,所述第二指示信息承载于所述站点信息字段中的关联标识字段。
  26. 如权利要求14-25任一项所述的通信装置,其特征在于,所述第一发送天线组合为所述第一通信装置的k 1个发送天线组合中的一个,所述k 1为正整数;
    所述k 1个发送天线组合与所述k 1个发送天线组合的标识一一对应。
  27. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器用于通过所述通信接口执行权利要求1-13任一项所述的方法。
  28. 一种通信装置,其特征在于,所述装置包括处理单元和收发单元,
    所述处理单元用于通过所述收发单元执行权利要求1-13任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使得权利要求1-13任一项所述的方法被执行。
  30. 一种芯片系统,其特征在于,包括处理电路和接口电路:
    所述接口电路,用于输入和/或输出信令或数据;
    所述处理电路,用于执行计算机可执行程序,使得安装有所述芯片系统的设备执行如权利要求1-13任一项所述的方法。
  31. 一种包含程序指令的计算机程序产品,其特征在于,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
PCT/CN2022/128386 2021-11-03 2022-10-28 一种天线信道探测方法、装置和存储介质 WO2023078182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111295867.0A CN114221682A (zh) 2021-11-03 2021-11-03 一种天线信道探测方法、装置和存储介质
CN202111295867.0 2021-11-03

Publications (1)

Publication Number Publication Date
WO2023078182A1 true WO2023078182A1 (zh) 2023-05-11

Family

ID=80696498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128386 WO2023078182A1 (zh) 2021-11-03 2022-10-28 一种天线信道探测方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN114221682A (zh)
WO (1) WO2023078182A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230327743A1 (en) * 2022-03-25 2023-10-12 Mediatek Inc. Adaptive antenna diversity
CN115051764B (zh) * 2022-06-02 2023-10-10 恒玄科技(北京)有限公司 用于WLAN 11ax系统发射通道质量状况监控的系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428168B1 (en) * 2008-02-25 2013-04-23 Marvell International Ltd. Implicit MIMO antenna selection
CN103973353A (zh) * 2009-03-31 2014-08-06 马维尔国际贸易有限公司 用于无线通信的探测和引导协议
US20140294111A1 (en) * 2008-02-01 2014-10-02 Marvell World Trade Ltd. Channel sounding and estimation strategies in mimo systems
US20200059808A1 (en) * 2016-11-18 2020-02-20 Lg Electronics Inc. Method for reporting channel information in wireless lan system and device therefor
US20210044333A1 (en) * 2019-10-25 2021-02-11 Feng Jiang Ndpa for multi-ap coordinated beamforming (cbf) and multi-ap joint transmission (jt) in eht
CN113346937A (zh) * 2020-03-02 2021-09-03 华为技术有限公司 信道探测方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933251B (zh) * 2008-02-01 2014-09-03 马维尔国际贸易有限公司 用于mimo系统中天线选择的信道探测和估计策略
US10200097B2 (en) * 2016-03-28 2019-02-05 Qualcomm Incorporated Enhanced antenna array training
CN107979402B (zh) * 2016-10-25 2020-09-08 华为技术有限公司 一种信道状态信息测量方法及装置
US10567134B1 (en) * 2017-02-16 2020-02-18 Quantenna Communications, Inc. WiFi antenna selection with beamforming

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140294111A1 (en) * 2008-02-01 2014-10-02 Marvell World Trade Ltd. Channel sounding and estimation strategies in mimo systems
US8428168B1 (en) * 2008-02-25 2013-04-23 Marvell International Ltd. Implicit MIMO antenna selection
CN103973353A (zh) * 2009-03-31 2014-08-06 马维尔国际贸易有限公司 用于无线通信的探测和引导协议
US20200059808A1 (en) * 2016-11-18 2020-02-20 Lg Electronics Inc. Method for reporting channel information in wireless lan system and device therefor
US20210044333A1 (en) * 2019-10-25 2021-02-11 Feng Jiang Ndpa for multi-ap coordinated beamforming (cbf) and multi-ap joint transmission (jt) in eht
CN113346937A (zh) * 2020-03-02 2021-09-03 华为技术有限公司 信道探测方法和装置

Also Published As

Publication number Publication date
TW202322585A (zh) 2023-06-01
CN114221682A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US11700637B2 (en) Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (WLAN) system
US11949471B2 (en) Communication of high efficiency (HE) long training fields (LTFs) in a wireless local area network (WLAN)
US10211890B2 (en) Method and device for transferring data from wireless LAN to plurality of STAs
KR101396631B1 (ko) 무선랜 시스템에서 mimo 패킷을 송수신하는 방법 및 장치
EP3298718B1 (en) Techniques for signal extension signaling
KR101420989B1 (ko) 무선랜 시스템에서 채널 사운딩 방법 및 이를 지원하는 장치
US9179300B2 (en) Station-centric multi-user multiple input multiple output (MU-MIMO)
US20160242233A1 (en) Method and apparatus of link adaptation in wireless local area network
US20170245306A1 (en) Method and device for enabling station to receive signal in wireless communication system
WO2023078182A1 (zh) 一种天线信道探测方法、装置和存储介质
WO2016104886A1 (ko) 트리거 프레임을 기반으로 한 데이터 단위의 전송 방법 및 장치
KR20140084171A (ko) 무선랜 시스템에서 상향링크 신호를 처리하는 방법 및 장치
EP3443695B1 (en) Techniques for reporting channel feedback in wireless communications
JP2016534634A (ja) 送信の機会(txop)をシェアすること
US20220255693A1 (en) Backward compatible physical layer convergence procedure (plcp) protocol data unit (ppdu) design in wireless local area network (wlan) system
US20190273520A1 (en) Multi-user interleaving and modulation in a wireless network
US11917547B2 (en) Power save for multi-user (MU) operation
US11765713B2 (en) Method and apparatus for wireless communications
WO2016029683A1 (zh) 一种用于无线局域网络中传输数据的方法和装置
CN107078886A (zh) Plcp服务数据单元(psdu)音调上的控制通道
TWI834354B (zh) 一種天線通道探測方法、裝置和儲存介質
WO2023036050A1 (zh) 一种通信方法及装置
WO2023160331A1 (zh) 一种天线模式切换方法及相关装置
WO2023051286A1 (zh) 一种通信方法、装置及系统
WO2023192447A1 (en) Wlan sensing procedures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889207

Country of ref document: EP

Kind code of ref document: A1