WO2016029683A1 - 一种用于无线局域网络中传输数据的方法和装置 - Google Patents

一种用于无线局域网络中传输数据的方法和装置 Download PDF

Info

Publication number
WO2016029683A1
WO2016029683A1 PCT/CN2015/074486 CN2015074486W WO2016029683A1 WO 2016029683 A1 WO2016029683 A1 WO 2016029683A1 CN 2015074486 W CN2015074486 W CN 2015074486W WO 2016029683 A1 WO2016029683 A1 WO 2016029683A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
workstation
downlink data
data frame
channel resource
Prior art date
Application number
PCT/CN2015/074486
Other languages
English (en)
French (fr)
Inventor
树贵明
丁志明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2017109386A priority Critical patent/RU2017109386A/ru
Priority to KR1020177004652A priority patent/KR20170034410A/ko
Priority to JP2017511266A priority patent/JP2017529774A/ja
Priority to US15/505,720 priority patent/US20170367077A1/en
Priority to EP15835770.7A priority patent/EP3174233A4/en
Publication of WO2016029683A1 publication Critical patent/WO2016029683A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0094Bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and apparatus for transmitting data in a wireless local area network.
  • An Access Point can utilize Multi-User Multiple-Input Multiple-Output (MU MIMO) or Orthogonal Frequency Division Multiple Access (OFDMA).
  • MU MIMO Multi-User Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the technology simultaneously sends downlink data frames to multiple stations (Stations, referred to as STAs).
  • STAs stations
  • the access point Before sending the downlink data frame, the access point can measure the downlink channel of the workstation first.
  • the access point can measure the downlink channel by using the channel measurement mechanism defined in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. As shown in Figure 1, the access point first sends an empty data packet.
  • the Null Data Packet Announce (NDPA) message is sent to multiple workstations to inform the workstation that channel measurements will be made next.
  • NDPA Null Data Packet Announce
  • the access point sends a null data packet (NDP) message to the workstation, and the workstation measures the downlink channel through the training sequence in the NDP message, and sequentially performs channel state information (Channel State Information, Referred to as CSI) to the access point.
  • NDP null data packet
  • CSI Channel State Information
  • the access point can send downlink data frames to multiple workstations using MU MIMO or OFDMA techniques based on the CSI fed back by the workstation.
  • the access point After the downlink data frame is sent to the multiple workstations, the access point sends a confirmation request message to the multiple workstations in sequence through the Short Interframe Space (SIFS) to request the workstation to feedback whether the downlink data frame is successfully received.
  • the acknowledge request message may be BlockAckReq (Block Acknowledgement Request, block acknowledgement request; in the IEEE 802.11 standard, BlockAckReq may be abbreviated as BAR).
  • the multiple workstations After receiving the acknowledgment request message, the multiple workstations send back an acknowledgment message to the AP in a time-sharing manner, and the acknowledgment message may be BlockAck (Block Acknowledgement, block acknowledgment; In the IEEE 802.11 standard, BlockAck can be abbreviated as BA), as shown in Figure 2.
  • BlockAck Block Acknowledgement, block acknowledgment; In the IEEE 802.11 standard, BlockAck can be abbreviated as BA
  • Embodiments of the present invention provide a method and apparatus for confirming transmission of downlink data frames by multiple workstations in a wireless local area network, which can save time required for multiple workstations to feedback acknowledgement messages.
  • a first aspect of an embodiment of the present invention discloses a method for confirming transmission of a downlink data frame by a plurality of workstations in a wireless local area network, the method comprising: accessing an access point to each of the plurality of workstations The workstation sends a corresponding downlink data frame; after the access point sends the corresponding downlink data frame to each workstation, the access point receives the multiple workstations, where the access point is the multiple A confirmation message sent in parallel on the channel resources allocated by the workstation.
  • the access point after the access point sends the corresponding downlink data frame to the each workstation, the access point receives the multiple workstations to send in parallel before the acknowledgment message, the method further includes: after a preset time, the access point sends an acknowledgment request message to the multiple workstations, where the acknowledgment request message includes channel resource information, the channel resource The information is used to indicate channel resources allocated by the access point to the multiple workstations.
  • the access point receives the multiple workstations, and the channel allocated by the access point to the multiple workstations
  • the acknowledgment message sent in parallel is specifically: the access point receives the plurality of workstations, and sends an acknowledgement message in parallel on the channel resource indicated by the channel resource information included in the acknowledgment request message. .
  • the acknowledgement request message is a block acknowledgement request message BlockAckReq.
  • the BlockAckReq includes subchannel index information and frame check sequence FCS information, where the subchannel index information is located in the FCS The front of the information.
  • the downlink data frame includes information for identifying a channel resource allocated to a workstation corresponding to the downlink data frame.
  • the information is located in a physical frame convergence protocol header PLCP Header of the downlink data frame.
  • a second aspect of the embodiments of the present invention discloses a method for confirming transmission of a downlink data frame by a workstation in a wireless local area network, where the method includes: receiving, by the workstation, a downlink data frame sent by the access point; After receiving the downlink data frame sent by the access point, the workstation sends an acknowledgement message to the access point on the channel resource allocated by the access point for the workstation.
  • the workstation after the workstation receives the downlink data frame sent by the access point, the workstation allocates a channel allocated by the access point to the workstation And the method further includes: after the preset time, the workstation receives the confirmation request message sent by the access point, where the confirmation request message includes Channel resource information, where the channel resource information is used to indicate a channel resource allocated by the access point to the workstation.
  • the workstation sends an acknowledgement to the access point on a channel resource allocated by the access point to the workstation
  • the message is specifically: the workstation sends an acknowledgement message to the access point on the channel resource indicated by the channel resource information included in the acknowledge request message.
  • the acknowledgement request message is a block acknowledgement request message BlockAckReq.
  • the BlockAckReq includes subchannel index information and frame check sequence FCS information, where the subchannel index information is located in the FCS The front of the information.
  • the downlink data frame includes information for identifying a channel resource allocated by the access point to the workstation.
  • the information is located in a physical frame convergence protocol header PLCP Header of the downlink data frame.
  • a third aspect of an embodiment of the present invention discloses an access point including: a transceiver, a processor, and a bus; the transceiver and the processor implement communication through the bus; the transceiver is in the process Receiving, by the control of the device, a corresponding downlink data frame to each of the plurality of workstations; the transceiver, configured to receive the plurality of workstations after transmitting the downlink data frame to each workstation, An acknowledgement message sent by the access point to the channel resources allocated by the multiple workstations in parallel.
  • the transceiver is further configured to send an acknowledgement request message to the multiple workstations, where the acknowledgement request message includes channel resource information,
  • the channel resource information is used to indicate channel resources allocated by the access point to the multiple workstations.
  • the acknowledgement request message is a block acknowledgement request message BlockAckReq.
  • the BlockAckReq includes subchannel index information and frame check sequence FCS information, where the subchannel index information is located in the FCS The front of the information.
  • the downlink data frame includes information for identifying a channel resource allocated to a workstation corresponding to the downlink data frame.
  • the information is located in a physical frame convergence protocol header PLCP Header of the downlink data frame.
  • the access point is One of a laptop, router, set-top box, and mobile phone.
  • a fourth aspect of an embodiment of the present invention discloses a workstation including: a transceiver, a processor, and a bus; the transceiver and the processor implement communication through the bus; and the transceiver receives an address sent by an access point a downlink data frame; the transceiver is configured, under the control of the processor, to receive, after receiving the downlink data frame sent by the access point, on a channel resource allocated by the access point to the workstation, The access point sends an acknowledgement message.
  • the transceiver is further configured to receive an acknowledgment request message sent by the access point, where the acknowledgment request message includes channel resource information, where The channel resource information is used to indicate a channel resource allocated by the access point to the workstation.
  • the acknowledgment request message is a block acknowledgment request message BlockAckReq.
  • the BlockAckReq includes subchannel index information and frame check sequence FCS information, where the subchannel index information is located in the FCS The front of the information.
  • the downlink data frame includes information for identifying a channel resource allocated by the access point to the workstation.
  • the information is located in a physical frame convergence protocol header PLCP Header of the downlink data frame.
  • the fifth implementation manner of the fourth aspect One of a laptop, router, set-top box, and mobile phone.
  • a method and apparatus for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network to access each of the multiple workstations through an access point
  • the workstation sends a corresponding downlink data frame; after the access point sends the corresponding downlink data frame to each workstation, the access point receives the multiple workstations, where the access point is the multiple
  • the acknowledgement message sent in parallel on the channel resources allocated by the workstation can save the time required for multiple workstations to feedback the confirmation message.
  • 1 is a schematic diagram of a channel measurement mechanism defined by the IEEE 802.11 standard
  • FIG. 2 is a schematic diagram of multiple workstation STAs feeding back an acknowledgement message to an access point AP;
  • FIG. 3 is a downlink number of multiple workstations used in a wireless local area network according to an embodiment of the present invention
  • FIG. 4 is another schematic diagram of a method for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a BlockAckReq frame format according to an embodiment of the present invention.
  • FIG. 6 is still another schematic diagram of a method for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention.
  • FIG. 7b is still another schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a method for confirming transmission of a downlink data frame by a workstation in a wireless local area network according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an access point according to an embodiment of the present invention.
  • Figure 10 is a schematic illustration of a workstation in accordance with an embodiment of the present invention.
  • an access point may be a router, a mobile phone, a notebook computer, a set top box, or any other suitable device configured to communicate via a wireless medium or a limited medium; a station (Station, referred to as STA) It can be a router, cell phone, laptop, set top box, or any other suitable device configured to communicate via wireless medium or limited medium.
  • an embodiment of the present invention provides a method 300 for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network.
  • the execution device of the method 300 may be an access point, and the method 300 includes The following steps:
  • S302 The access point sends a corresponding downlink data frame to each of the multiple workstations.
  • the access point may use multiple-user multiple-input multiple-output (Multi-User Multiple-Input Multiple-Output) (OFDM-MIMO) or Orthogonal Frequency Division Multiple Access (OFDMA) technology to the multiple Each workstation in the workstation sends downstream data frames in parallel.
  • the access point may also send corresponding downlink data frames to each of the plurality of workstations in sequence.
  • the “plurality” can be understood as “two or more.”
  • “multiple workstations” can include two workstations or more.
  • the access point allocates channel resources for each of the multiple workstations, which can be implemented in different manners.
  • the access point may include channel resource information in the acknowledgment request message sent to the multiple workstations, where the channel resource information is used to indicate that the access point allocates channel resources for each of the multiple workstations;
  • the channel resource information may be included in the corresponding downlink data frame sent to each of the multiple workstations, where the channel resource information is used to indicate the channel resource allocated by the access point to the workstation that receives the corresponding downlink data frame.
  • the plurality of workstations use the channel resources indicated by the channel resource information allocated by the access point, and may use an OFDMA technology to send an acknowledgement message to the access point in parallel to inform the access point whether the downlink data frame is successfully received.
  • the method provided by the embodiment of the present invention sends a corresponding downlink data frame to each of the multiple workstations through the access point; after the access point sends the corresponding downlink data frame to each workstation, the access The point receives the plurality of workstations, and sends an acknowledgement message in parallel to the channel resources allocated by the access point for the plurality of workstations, so that the time for the plurality of workstations to feed back the confirmation message can be saved.
  • multiple workstations send acknowledgement messages to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which also improves channel utilization.
  • FIG. 4 is a schematic diagram of confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention, after the downlink data frame is sent to the multiple workstations by the access point, Before the access point receives the acknowledgement message sent by the multiple workstations in parallel, the method further includes:
  • the access point After the preset time, the access point sends an acknowledgement request message to the multiple workstations, where the acknowledgement request message includes channel resource information, where the channel resource information is used to indicate that the access point is allocated to the multiple workstations. Channel resources.
  • the preset time may be a Short Interframe Space (SIFS).
  • SIFS Short Interframe Space
  • the SIFS values can be different. For example, in the IEEE 802.11a standard, the value of SIFS is 16 ⁇ s, and in the IEEE 802.11g standard, the value of SIFS is 10 ⁇ s.
  • the access point may send a confirmation request message to the multiple workstations in a multicast manner, or may send a confirmation request message to the corresponding workstation in a unicast manner.
  • the channel resource information included in the acknowledgment request message indicates that the access point allocates channel resources for the multiple workstations; the access point adopts unicast mode.
  • the acknowledgment request message is sent to the corresponding station in the plurality of workstations in sequence, the channel resource information included in the acknowledgment request message indicates that the access point is a channel resource allocated by the corresponding workstation.
  • the acknowledgment request message may be a block acknowledgment request message BlockAckReq, and when the access point sends the acknowledgment request message to the multiple workstations in the multicast mode, the block acknowledgment request message BlockAckReq includes the indication that the access point is the plurality of Channel resource information of the channel resources allocated by the workstation; when the access point sends the acknowledgment request message to the corresponding workstations of the multiple workstations in a unicast manner, the acknowledgment request message includes a channel indicating that the access point is allocated to the corresponding workstation. Channel resource information of the resource.
  • the access point After the access point sends a downlink data frame to each of the multiple workstations, the access point receives the multiple workstations, and uses the channel resource indicated by the channel resource information included in the block acknowledgement request message BlockAckReq to access the A confirmation message sent in parallel.
  • BlockAckReq frame format includes 2 bytes of frame control Frame Control field (Field; in the communication standard, Field can be translated as a field, can also be translated as a field; Frame Control Frame Control field can also be called Frame Control Frame Control information), 2 words The frame duration Duration/ID field of the section, the 6-byte receiver address RA field, the 6-byte sender address TA field, the 2-byte BAR Control field, and the BAR information field of the indefinite number of bytes, N-byte Sub-Channel-Index field (Sub-Channel-Index field can also be called Sub-Channel-Index information) And a 4-byte FCS (Frame Check Sequence) field, where N is a positive integer.
  • Frame Control Frame Control field in the communication standard, Field can be translated as a field, can also be translated as a field; Frame Control Frame Control field can also be called Frame Control Frame Control information
  • the frame duration Duration/ID field of the section the 6-byte receiver address RA field, the 6-byte sender address TA field, the 2-byte B
  • the N-byte sub-channel index field is a field added in the BlockAckReq frame format in the embodiment of the present invention, and N can set the number of bytes according to actual needs. For example, N can set the byte according to the number of workstations. number.
  • the subchannel index field is used to indicate a channel resource allocated by the access point to the workstation. Specifically, the subchannel index field may carry channel resource information used to indicate channel resources allocated by the access point to the workstation. For example, the access point may send BlockAckReq to the corresponding workstation in unicast mode, and N may be 2 bytes with a total of 16 binary bits.
  • the 2-byte subchannel index field divides channel resources of 0 MHz to 40 MHz into 16 subchannels, each of which has a width of 2.5 MHz.
  • the 16 subchannels are numbered 1 to 16 in order of frequency from low to high. If the access point allocates the 10th subchannel to the corresponding workstation, the 10th bit of the 16 binary bits can be set to 1, and the remaining binary bits are set to 0, thereby indicating that the corresponding workstation is assigned the 10th.
  • the workstation uses the 10th sub-channel feedback acknowledgement message, and so on, the access point can allocate channel resources to all stations receiving the downlink data frame, so that the multiple workstations use the allocated channel resources to the access point in parallel
  • a confirmation message is sent back, wherein the confirmation message can be a BlockAck.
  • the access point may send BlockAckReq to multiple workstations in multicast mode. If the access point allocates channel resources to m workstations at the same time, N needs to include at least 2m bytes to indicate that the access point is m.
  • the channel resource allocated by the workstation, m is a positive integer greater than 1.
  • the subchannel index Sub-Channel-Index field added in the BlockAckReq frame format may be located in front of the FCS field.
  • the subchannel index field may be located before the FCS field of the BlockAckReq frame format and after the BAR Information field; it may be understood that the subchannel index field may also be located before the BAR Information field of the BlockAckReq frame format and after the BAR Control field. This embodiment of the present invention does not limit this.
  • the subchannel index field may also be used to indicate an index number, and the workstation may query the allocated channel resource from the data table local to the server or the workstation according to the index number.
  • the subchannel index field is channel resource information included in the acknowledgment request message, and the channel resource information is used to indicate an index number, so that the workstation can query the allocated channel resource from the data table of the server or the workstation local according to the index number.
  • a channel resource of 0 MHz to 40 MHz is divided into 16 subchannels, each of which has a width of 2.5 MHz.
  • the 16 subchannels are in descending order of frequency
  • the number is from 1 to 16.
  • the access point sends BlockAckReq to the corresponding workstation in unicast mode.
  • N can be 1 byte, that is, there are 8 binary bits.
  • the first to fourth digits of the eight binary digits indicate the starting subchannel number of the channel resource allocated by the access point for the corresponding workstation, and the fifth to eighth digits indicate that the access point is allocated to the corresponding workstation.
  • the terminating subchannel number of the channel resource For example, the 1-byte sub-channel index field is 01100010, and the corresponding workstation queries from the data table according to the indicated index number, and the 1st to 4th bits 0010 indicate that the access point allocates a channel for the corresponding workstation.
  • the starting subchannel number of the resource is 2, the 5th bit to the 8th bit 0110, indicating that the terminating subchannel number of the channel resource allocated by the access point for the corresponding station is 6.
  • the 1-byte sub-channel index field 01100010 indicates that the channel resources corresponding to the second sub-channel to the sixth sub-channel are allocated to the workstation.
  • the access point may allocate channel resources to all stations that receive the downlink data frame, so that the multiple workstations send back an acknowledgement message to the access point in parallel using the allocated channel resources, where the acknowledgement message may be a BlockAck.
  • the access point sends BlockAckReq to multiple workstations in multicast mode. If the access point allocates channel resources to m stations at the same time, N needs to contain at least m bytes to indicate that the access point is m workstations.
  • the allocated channel resource, m is a positive integer greater than one.
  • the method provided by the embodiment of the present invention sends a corresponding downlink data frame to each of the multiple workstations through the access point; after the access point sends the corresponding downlink data frame to each workstation, the access The point receives the plurality of workstations, and sends an acknowledgement message in parallel to the channel resources allocated by the access point for the plurality of workstations, so that the time for the plurality of workstations to feed back the confirmation message can be saved.
  • multiple workstations send acknowledgement messages to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which also improves channel utilization.
  • FIG. 6 is another schematic diagram of confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention, where an access point sends a corresponding downlink data frame to each workstation of multiple workstations, in a corresponding downlink.
  • Channel resource information for identifying a station allocated for the downlink data frame is added to the data frame.
  • the workstation parses the channel resource indicated by the channel resource information included in the corresponding downlink data frame. In this way, the access point can allocate channel resources to each of the plurality of workstations, and the plurality of workstations can use the channel resources allocated by the access point for the multiple workstations to send confirmation to the access point in parallel.
  • the channel resource information assigned to the workstation corresponding to the downlink data frame is a Sub-Channel-Index field.
  • FIG. 7a is a schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention.
  • the subchannel index field may be located in a PLCP Header (Physical Layer Convergence Procedure Header) of the downlink data frame. unit).
  • the frame format of the downlink data frame at the physical layer includes a PLCP Preamble field, a PLCP Header field, and a Data field.
  • the PLCP Preamble includes L-STF (Legacy Short Training Field) and L-LTF (Legacy Long Training Field).
  • the PLCP Header field includes an L-SIG (Legacy Signal) field.
  • the PLCP Header may further include a HEW SIG (High Efficiency WLAN Signal) field.
  • the added subchannel index field may be located within the PLCP Header field.
  • the subchannel index field may be located after the L-SIG field and before the HEW SIG field.
  • the subchannel index field may also be located before the L-SIG field. This embodiment of the present invention does not limit this.
  • FIG. 7b is still another schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention.
  • the subchannel index field may be located in an L-SIG field of a PLCP Header, specifically, at the L-SIG.
  • the subchannel index field is added to the field.
  • the subchannel index field may also be located in the HEW SIG field of the PLCP header, specifically, the subchannel index field is added in the HEW SIG field.
  • FIG. 7a and FIG. 7b are schematic diagrams of the frame format of the downlink data frame in the physical layer.
  • the HEW SIG field may be located after the L-SIG field, and the HEW SIG field may also be located before the L-SIG field.
  • This embodiment of the present invention is not limited thereto.
  • the information about the channel resource used for sending the acknowledgment message allocated by the access point to the workstation corresponding to the downlink data frame may be carried in the header of the physical layer frame format of the downlink data frame, and may also be carried in the The head of the Media Access Control (MAC) layer frame format of the downlink data frame. In this case, the specific carrying manner of the information, and the information is placed in the header of the physical layer frame format of the downlink data frame. similar.
  • MAC Media Access Control
  • the number of bytes of the subchannel index field is N, and N can set the word according to actual needs.
  • the number of sections, such as N, can be set according to the number of workstations.
  • the subchannel index field is used to indicate a channel resource allocated by the access point to the workstation.
  • the subchannel index field may carry channel resource information indicating a channel resource allocated by the access point to the corresponding workstation.
  • N can be 1 byte, that is, there are 8 binary bits.
  • the 1-byte subchannel index field divides channel resources of 0 MHz to 20 MHz into 8 subchannels, each of which has a width of 2.5 MHz.
  • the eight subchannels are numbered 1 to 8 in order of frequency from low to high.
  • the access point may allocate channel resources to all workstations that receive the corresponding downlink data frame, so that all workstations that receive the corresponding downlink data frame send back an acknowledgement message to the access point in parallel using the allocated channel resources, where
  • the confirmation message can be BlockAck.
  • the subchannel index field may also be used to indicate an index number, and the workstation may query the allocated channel resource from the data table local to the server or the workstation according to the index number.
  • the subchannel index field is channel resource information included in the downlink data frame, where the channel resource information is used to indicate an index number, so that the workstation can query the allocated channel resource from the data table of the server or the workstation local according to the index number.
  • a channel resource of 0 MHz to 40 MHz is divided into 16 subchannels, each of which has a width of 2.5 MHz.
  • the 16 subchannels are numbered 1 to 16 in order of frequency from low to high.
  • N can be 1 byte, that is, there are 8 binary bits.
  • the first to fourth digits of the eight binary digits indicate the starting subchannel number of the channel resource allocated by the access point for the corresponding workstation, and the fifth to eighth digits indicate that the access point is allocated to the corresponding workstation.
  • the terminating subchannel number of the channel resource For example, the 1-byte sub-channel index field is 01100010, and the corresponding workstation queries from the data table according to the indicated index number, and the 1st to 4th bits 0010 indicate that the access point allocates a channel for the corresponding workstation.
  • the starting subchannel number of the resource is 2, the 5th bit to the 8th bit 0110, indicating that the terminating subchannel number of the channel resource allocated by the access point for the corresponding station is 6.
  • the 1-byte sub-channel index field 01100010 indicates that the channel resources corresponding to the second sub-channel to the sixth sub-channel are allocated to the workstation.
  • the access point may allocate channel resources to all stations that receive downlink data frames, so that the workstation receiving the downlink data frame sends an acknowledgement message to the access point in parallel using the allocated channel resources, where the acknowledgement message may be BlockAck. .
  • the method provided by the embodiment of the present invention sends a corresponding downlink data frame to each of the multiple workstations through the access point; after the access point sends the corresponding downlink data frame to each workstation, the access The point receives the plurality of workstations, and sends an acknowledgement message in parallel to the channel resources allocated by the access point for the plurality of workstations, so that the time for the plurality of workstations to feed back the confirmation message can be saved.
  • multiple workstations send acknowledgement messages to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which also improves channel utilization.
  • the operating frequency range of IEEE 802.11n includes 2.4 GHz to 2.4835 GHz and 5.150 GHz to 5.850 GHz.
  • the channel resources of 0 MHz to 20 MHz or 0 MHz to 40 MHz described above refer to channel resources having a bandwidth of 20 MHz or 40 MHz starting from 2.4 GHz or starting from 5.150 GHz.
  • the method for confirming the transmission of downlink data frames by multiple workstations in a wireless local area network is described above.
  • the following describes the embodiment of the present invention from the perspective of a workstation. method.
  • FIG. 8 is a schematic diagram of a method for confirming transmission of a downlink data frame by a workstation in a wireless local area network according to an embodiment of the present invention.
  • the method 800 execution device can be a workstation, and the method 800 includes the following steps:
  • S802 The workstation receives the downlink data frame sent by the access point.
  • the access point allocates channel resources to the workstation, which can be implemented in different manners.
  • the access point may include channel resource information in the acknowledgment request message sent to the workstation, where the channel resource information is used to indicate the channel resource allocated by the access point to the workstation; and the access point may also be sent in the downlink sent for the workstation.
  • the data frame includes channel resource information, where the channel resource information is used to indicate a channel resource allocated by the access point to the workstation.
  • the workstation uses the channel resource indicated by the channel resource information allocated by the access point, and sends an acknowledgement message to the access point to inform the access point whether the downlink data frame is successfully received.
  • the method provided by the embodiment of the present invention receives a downlink data frame sent by an access point through a workstation; After receiving the downlink data frame sent by the access point, the workstation sends an acknowledgement message to the access point on the channel resource allocated by the access point for the workstation, where the channel resource is allocated to the workstation through the access point.
  • the workstation sends an acknowledgement message to the access point on the channel resource allocated by the access point for the workstation, where the channel resource is allocated to the workstation through the access point.
  • channel utilization can be improved.
  • multiple workstations send an acknowledgement message to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which can save time required for feedback confirmation messages.
  • FIG. 4 is a schematic diagram of confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention, after the plurality of workstations receive downlink data frames sent by the access point, the multiple workstations are Before the access point sends the acknowledgement message to the access point in parallel, the method further includes:
  • the workstation After the preset time, the workstation receives the acknowledgment request message sent by the access point, where the acknowledgment request message includes channel resource information, where the channel resource information is used to indicate the channel resource allocated by the access point to the workstation.
  • the preset time may be SIFS.
  • the SIFS values can be different. For example, in the IEEE 802.11a standard, the value of SIFS is 16 ⁇ s, and in the IEEE 802.11g standard, the value of SIFS is 10 ⁇ s.
  • the acknowledgment request message may be a block acknowledgment request message BlockAckReq, where the block acknowledgment request message BlockAckReq includes channel resource information indicating a channel resource allocated by the access point to the plurality of stations.
  • BlockAckReq includes channel resource information indicating a channel resource allocated by the access point to the plurality of stations.
  • the access point After the access point sends a downlink data frame to each of the plurality of workstations, the access point receives an acknowledgement message sent by the multiple workstations in parallel, wherein the plurality of workstations use the block to confirm the request message included in the BlockAckReq
  • the channel resource indicated by the channel resource information sends an acknowledgement message to the access point in parallel.
  • FIG. 5 is a schematic diagram of a BlockAckReq frame format provided by an embodiment of the present invention.
  • FIG. 5 For a specific implementation manner, refer to the foregoing method for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network, A description of BlockAckReq from the perspective of the access point.
  • FIG. 6 is another schematic diagram of confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention, where an access point sends corresponding downlink data to each workstation of multiple workstations.
  • the frame adds channel resource information for identifying a station corresponding to the downlink data frame in the corresponding downlink data frame.
  • the workstation parses the channel resource indicated by the channel resource information included in the corresponding downlink data frame. In this way, the access point can allocate channel resources to each of the plurality of workstations, and the plurality of workstations can use the channel resources allocated by the access point for the multiple workstations to send confirmation to the access point in parallel.
  • the acknowledgement message may be a BlcokAck.
  • the channel resource information used to identify the workstation corresponding to the downlink data frame is a Sub-Channel-Index field.
  • FIG. 7 is a schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention
  • FIG. 7b is another schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention.
  • the description of the frame format of the downlink data frame in the physical layer is performed by the access point angle.
  • the method provided by the embodiment of the present invention receives a downlink data frame sent by an access point through a workstation; after receiving, by the workstation, a downlink data frame sent by the access point, the workstation is on a channel resource allocated by the access point to the workstation.
  • Sending an acknowledgment message to the access point which allocates channel resources to the workstation through the access point, instead of the manner in which the access point and the workstation contend for using channel resources, can improve channel utilization.
  • multiple workstations send acknowledgment messages to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which can save time required for confirming feedback.
  • FIG. 9 is a schematic diagram of an access point 900 according to an embodiment of the present invention.
  • the access point 900 includes:
  • Transceiver 902 and processor 904 communicate via bus 906;
  • the transceiver 902 under the control of the processor 904, sends a corresponding downlink data frame to each of the plurality of workstations;
  • the transceiver 902 is configured to: after sending the downlink data frame to the multiple workstations, receive the confirmation message that the multiple workstations send in parallel on the channel resources allocated by the access point for the multiple workstations.
  • the access point allocates channel resources for each of the multiple workstations, which can be implemented in different manners.
  • the access point may include channel resource information in the acknowledgment request message sent to the multiple workstations, where the channel resource information is used to indicate that the access point allocates channel resources for each of the multiple workstations;
  • the channel resource information may be included in the corresponding downlink data frame sent to each of the multiple workstations, where the channel resource information is used to indicate the channel resource allocated by the access point to the workstation that receives the corresponding downlink data frame.
  • the plurality of workstations use the channel resources indicated by the channel resource information allocated by the access point, and may use an OFDMA technology to send an acknowledgement message to the access point in parallel to inform the access point whether the downlink data frame is successfully received.
  • the access point may be one of a laptop, a router, a set top box, and a mobile phone.
  • the access point provided by the embodiment of the present invention includes a transceiver 902, a processor 904, and a bus 906; the transceiver 902 and the processor 904 implement communication through the bus 906; and the transceiver 902 is under the control of the processor 904 to multiple workstations.
  • Each workstation sends a corresponding downlink data frame; the transceiver 902 is configured to receive, after sending the downlink data frame to the multiple workstations, the multiple workstations, where the access point allocates the multiple workstations On the channel resource, the acknowledgment message is sent in parallel, which can save time for multiple workstations to feedback the acknowledgment message.
  • a plurality of workstations send an acknowledgement message to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which also improves channel utilization.
  • the transceiver 902 is configured to send an acknowledgement request message to the multiple workstations, where the acknowledgement request message is sent.
  • the channel resource information is used to indicate the channel resource allocated by the access point to the multiple workstations.
  • the transceiver 902 may send a confirmation request message to the multiple workstations after a preset time.
  • the preset time can be SIFS.
  • the SIFS values can be different. For example, in the IEEE 802.11a standard, the value of SIFS is 16 ⁇ s, and in the IEEE 802.11g standard, the value of SIFS is 10 ⁇ s.
  • the acknowledgment request message may be a block acknowledgment request message BlockAckReq, where the block acknowledgment request message BlockAckReq includes channel resource information indicating a channel resource allocated by the access point to the plurality of stations.
  • BlockAckReq includes channel resource information indicating a channel resource allocated by the access point to the plurality of stations.
  • FIG. 5 is a schematic diagram of a BlockAckReq frame format provided by an embodiment of the present invention.
  • FIG. 5 For a specific implementation manner, refer to the foregoing method for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network, A description of BlockAckReq from the perspective of the access point.
  • FIG. 6 is another schematic diagram of confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention, where an access point sends a corresponding downlink data frame to each workstation of multiple workstations, in a corresponding downlink.
  • Channel resource information for identifying a station allocated for the downlink data frame is added to the data frame.
  • the workstation parses the channel resource indicated by the channel resource information included in the corresponding downlink data frame. In this way, the access point can allocate channel resources to each of the plurality of workstations, and the plurality of workstations can use the channel resources allocated by the access point for the multiple workstations to send confirmation to the access point in parallel.
  • the acknowledgement message may be a BlcokAck.
  • the channel resource information used to identify the workstation corresponding to the downlink data frame is a Sub-Channel-Index field.
  • FIG. 7 is a schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention
  • FIG. 7b is another schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention.
  • the description of the frame format of the downlink data frame in the physical layer is performed by the access point angle.
  • FIG. 10 is a schematic diagram of a workstation 1000 according to an embodiment of the present invention.
  • the workstation 1000 includes:
  • transceiver 1002 a transceiver 1002, a processor 1004, and a bus 1006;
  • the transceiver 1002 and the processor 1004 implement communication via the bus 1006;
  • the transceiver 1002 receives the downlink data frame sent by the access point;
  • the transceiver 1002 is configured to send, after receiving the downlink data frame sent by the access point, the channel resource allocated by the access point to the workstation to the access point, under the control of the processor 1004. Confirm the message.
  • the access point allocates channel resources to the workstation, which can be implemented in different manners.
  • the access point may include channel resource information in the acknowledgment request message sent to the workstation, where the channel resource information is used to indicate the channel resource allocated by the access point to the workstation; and the access point may also be sent in the downlink sent for the workstation.
  • the data frame includes channel resource information, where the channel resource information is used to indicate a channel resource allocated by the access point to the workstation.
  • the workstation uses the channel resource indicated by the channel resource information allocated by the access point, and sends an acknowledgement message to the access point to inform the access point whether the downlink data frame is successfully received.
  • the workstation can be one of a laptop, a router, a set top box, and a mobile phone.
  • the workstation provided by the embodiment of the present invention includes a transceiver 1002, a processor 1004, and a bus 1006; the transceiver 1002 and the processor 1004 implement communication through the bus 1006; the transceiver 1002 receives a downlink data frame sent by the access point; the transceiver 1002 is Controlling, by the processor 1004, after receiving the downlink data frame sent by the access point, sending an acknowledgement message to the access point in parallel on the channel resource allocated by the access point for the workstation, This way of allocating channel resources to the workstation through the access point, rather than the way in which the access point and the workstation compete to use channel resources, can improve channel utilization. In addition, when there are multiple workstations, multiple workstations send acknowledgment messages to the access point in parallel on the channel resources allocated by the access point for the multiple workstations, which can save time required for confirming feedback.
  • the transceiver 1002 is configured to receive an acknowledgement request message sent by the access point, where the acknowledgement request The message includes channel resource information, where the channel resource information is used to indicate channel resources allocated by the access point to the multiple workstations.
  • the transceiver 1002 may receive the confirmation request message sent by the access point after a preset time.
  • the preset time can be SIFS.
  • the SIFS values can be different. For example, in the IEEE 802.11a standard, the value of SIFS is 16 ⁇ s, and in the IEEE 802.11g standard, the value of SIFS is 10 ⁇ s.
  • the acknowledgment request message may be a block acknowledgment request message BlockAckReq, where the block acknowledgment request message BlockAckReq includes channel resource information indicating a channel resource allocated by the access point to the plurality of stations.
  • BlockAckReq includes channel resource information indicating a channel resource allocated by the access point to the plurality of stations.
  • the access point After the access point sends a downlink data frame to each of the multiple workstations, the access point receives an acknowledgement message sent by the multiple workstations in parallel, wherein the multiple workstations use the block to confirm The channel resource indicated by the channel resource information included in the request message BlockAckReq is sent to the access point in parallel to send an acknowledgement message.
  • FIG. 5 is a schematic diagram of a BlockAckReq frame format provided by an embodiment of the present invention.
  • FIG. 5 For a specific implementation manner, refer to the foregoing method for confirming transmission of a downlink data frame by multiple workstations in a wireless local area network, A description of BlockAckReq from the perspective of the access point.
  • FIG. 6 is another schematic diagram of confirming transmission of a downlink data frame by multiple workstations in a wireless local area network according to an embodiment of the present invention, where an access point sends a corresponding downlink data frame to each workstation of multiple workstations, in a corresponding downlink.
  • Channel resource information for identifying a station allocated for the downlink data frame is added to the data frame.
  • the workstation parses the channel resource indicated by the channel resource information included in the corresponding downlink data frame. In this way, the access point can allocate channel resources to each of the plurality of workstations, and the plurality of workstations can use the channel resources allocated by the access point for the multiple workstations to send confirmation to the access point in parallel.
  • the acknowledgement message may be a BlcokAck.
  • the channel resource information used to identify the workstation corresponding to the downlink data frame is a Sub-Channel-Index field.
  • FIG. 7 is a schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention
  • FIG. 7b is another schematic diagram of a frame format of a downlink data frame in a physical layer according to an embodiment of the present invention.
  • the description of the frame format of the downlink data frame in the physical layer is performed by the access point angle.
  • processors (904 and 1004) can adopt a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC) or baseband processing.
  • the buses (906 and 1006) may include a path for communication between the processor and the transceiver.
  • the transceiver can be an antenna.
  • the access point and the workstation in the foregoing embodiment may also be a mobile phone, such as a smart phone, which not only has the function of an access point, but also has the function of a workstation, so that the smart phone can act as an access.
  • a mobile phone such as a smart phone
  • the smartphone can also act as a workstation to communicate with access points such as other mobile phones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法和装置。该方法包括:接入点向所述多个工作站中的每一工作站发送对应的下行数据帧;在所述接入点向所述每一工作站发送对应的下行数据帧后,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。通过本发明实施例提供的方法和装置,能够节省多个工作站反馈确认消息需要的时间。

Description

一种用于无线局域网络中传输数据的方法和装置
本申请要求于2014年08月25日提交中国专利局,申请号为201410422580.3、发明名称为“一种用于无线局域网络中传输数据的方法和装置”的中国专利申请,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种用于无线局域网络中传输数据的方法和装置。
背景技术
接入点(Access Point,简称AP)可以利用多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,简称MU MIMO)或正交频分多址(Orthogonal Frequency Division Multiple Access,简称OFDMA)技术向多个工作站(Station,简称STA)同时发送下行数据帧。在发送下行数据帧前,接入点可以先对工作站的下行信道进行测量。接入点可以采用电气和电子工程师协会(Institute of Electrical and Electronics Engineers,简称IEEE)802.11标准中定义的信道测量机制对下行信道进行测量,如图1所示,接入点首先发送一个空数据包通知(Null Data Packet Announce,简称NDPA)消息给多个工作站,通知工作站接下来将做信道测量。然后接入点发送一个空数据包(Null Data Packet,简称NDP)消息给上述工作站,工作站通过NDP消息中的训练序列对下行信道进行测量,并依次将信道测量结果信道状态信息(Channel State Information,简称CSI)反馈给接入点。接入点根据工作站反馈的CSI,可以利用MU MIMO或OFDMA技术向多个工作站发送下行数据帧。
接入点向多个工作站发送下行数据帧后,经过短帧间间隔(Short Interframe Space,简称SIFS)依次向该多个工作站发送确认请求消息,以请求工作站反馈是否成功接收到下行数据帧。其中该确认请求消息可以为BlockAckReq(Block Acknowledgement Request,块确认请求;在IEEE 802.11标准中,BlockAckReq又可以简写为BAR)。该多个工作站接收到确认请求消息后,分时依次向AP发回确认消息,该确认消息可以为BlockAck(Block Acknowledgement,块确认; 在IEEE 802.11标准中,BlockAck又可以简写为BA),如图2所示。多个STA收到确认请求后,向AP发回确认消息的反馈时间比较长。
发明内容
本发明实施例提供了一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法和装置,能够节省多个工作站反馈确认消息需要的时间。
本发明实施例的第一方面公开了一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法,所述方法包括:接入点向所述多个工作站中的每一工作站发送对应的下行数据帧;在所述接入点向所述每一工作站发送对应的下行数据帧后,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。
结合第一方面,在第一方面的第一种实现方式中,在所述接入点向所述每一工作站发送对应的下行数据帧之后,所述接入点接收所述多个工作站并行发送的确认消息之前,所述方法还包括:经过预设时间后,所述接入点向所述多个工作站发送确认请求消息,其中,所述确认请求消息中包括信道资源信息,所述信道资源信息用于指示所述接入点为所述多个工作站分配的信道资源。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息,具体为:所述接入点接收所述多个工作站,在所述确认请求消息包括的所述信道资源信息指示的所述信道资源上,并行发送的确认消息。
结合第一方面的第一种实现方式或第一方面的第二种实现方式,在第一方面的第三种实现方式中,所述确认请求消息为块确认请求消息BlockAckReq。
结合第一方面的第三种实现方式,在第一方面的第四种实现方式中,所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
结合第一方面,在第一方面的第五种实现方式中,所述下行数据帧中包括用于标识为所述下行数据帧对应的工作站分配的信道资源的信息。
结合第一方面的第五种实现方式,在第一方面的第六种实现方式中,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
本发明实施例的第二方面公开了一种用于无线局域网络中工作站对下行数据帧的传输进行确认的方法,所述方法包括:工作站接收接入点发送的下行数据帧;在所述工作站接收所述接入点发送的下行数据帧后,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息。
结合第二方面,在第二方面的第一种实现方式中,在所述工作站接收所述接入点发送的下行数据帧后,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息之前,所述方法还包括:经过预设时间后,所述工作站接收所述接入点发送的确认请求消息,其中,所述确认请求消息中包含信道资源信息,所述信道资源信息用于指示所述接入点为所述工作站分配的信道资源。
结合第二方面的第一种实现方式,在第二方面的第二种实现方式中,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息具体为:所述工作站在所述确认请求消息包括的所述信道资源信息指示的所述信道资源上,向所述接入点发送确认消息。
结合第二方面的第一种实现方式或第二方面的第二种实现方式,在第二方面的第三种实现方式中,所述确认请求消息为块确认请求消息BlockAckReq。
结合第二方面的第三种实现方式,在第二方面的第四种实现方式中,所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
结合第二方面,在第二方面的第五种实现方式中,所述下行数据帧中包括用于标识所述接入点为所述工作站分配的信道资源的信息。
结合第二方面的第五种实现方式,在第二方面的第六种实现方式中,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
本发明实施例的第三方面公开了一种接入点,包括:收发器、处理器和总线;所述收发器和所述处理器通过所述总线实现通信;所述收发器在所述处理 器的控制下,向多个工作站中每一工作站发送对应的下行数据帧;所述收发器,用于在向所述每一工作站发送下行数据帧后,接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。
结合第三方面,在第三方面的第一种实现方式中,所述收发器还用于向所述多个工作站发送确认请求消息,其中,所述确认请求消息中包括信道资源信息,所述信道资源信息用于指示所述接入点为所述多个工作站分配的信道资源。
结合第三方面的第一种实现方式,在第三方面的第二种实现方式中,所述确认请求消息为块确认请求消息BlockAckReq。
结合第三方面的第二种实现方式,在第三方面的第三种实现方式中,所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
结合第三方面,在第三方面的第四种实现方式中,所述下行数据帧中包括用于标识为所述下行数据帧对应的工作站分配的信道资源的信息。
结合第三方面的第四种实现方式,在第三方面的第五种实现方式中,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
结合第三方面或第三方面的第一种实现方式至第三方面的第五种实现方式中的任一种实现方式,在第三方面的第六种实现方式中,所述接入点为笔记本电脑、路由器、机顶盒和手机中的一种。
本发明实施例的第四方面公开了一种工作站,包括:收发器、处理器和总线;所述收发器和所述处理器通过所述总线实现通信;所述收发器接收接入点发送的下行数据帧;所述收发器在所述处理器的控制下,用于在接收所述接入点发送的下行数据帧后,在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息。
结合第四方面,在第四方面的第一种实现方式中,所述收发器还用于接收所述接入点发送的确认请求消息,其中,所述确认请求消息中包括信道资源信息,所述信道资源信息用于指示所述接入点为所述工作站分配的信道资源。
结合第四方面的第一种实现方式,在第四方面的第二种实现方式中,所述 确认请求消息为块确认请求消息BlockAckReq。
结合第四方面的第二种实现方式,在第四方面的第三种实现方式中,所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
结合第四方面,在第四方面的第四种实现方式中,所述下行数据帧中包括用于标识所述接入点为所述工作站分配的信道资源的信息。
结合第四方面的第四种实现方式,在第四方面的第五种实现方式中,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
结合第四方面或第四方面的第一种实现方式至第四方面的第五种实现方式中的任一种实现方式,在第四方面的第六种实现方式中,所述接入点为笔记本电脑、路由器、机顶盒和手机中的一种。
在上述技术方案中,本发明实施例提供的一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法和装置,通过接入点向所述多个工作站中的每一工作站发送对应的下行数据帧;在所述接入点向所述每一工作站发送对应的下行数据帧后,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息,能够节省多个工作站反馈确认消息需要的时间。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是IEEE 802.11标准定义的信道测量机制示意图;
图2是多个工作站STA向接入点AP反馈确认消息的示意图;
图3是本发明实施例提供的一种用于无线局域网络中多个工作站对下行数 据帧的传输进行确认的方法的示意图;
图4是本发明实施例提供的一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的又一示意图;
图5是本发明实施例提供的BlockAckReq帧格式示意图;
图6是本发明实施例的一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的再一示意图;
图7a是本发明实施例提供的下行数据帧在物理层的帧格式示意图;
图7b是本发明实施例提供的下行数据帧在物理层的帧格式又一示意图;
图8是本发明实施例提供的一种用于无线局域网络中工作站对下行数据帧的传输进行确认的方法的示意图;
图9是本发明实施例的一种接入点的示意图;
图10是本发明实施例的一种工作站的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例中接入点(Access Point,简称AP)可以为路由器、手机、笔记本电脑、机顶盒、或者被配置为经由无线介质或者有限介质进行通信的任何其他适当的设备;工作站(Station,简称STA)可以为路由器、手机、笔记本电脑、机顶盒、或者被配置为经由无线介质或者有限介质进行通信的任何其他适当的设备。
参见图3,本发明实施例提供了一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法300,该方法300的执行设备可以为接入点,所述方法300包括以下步骤:
S302:接入点向所述多个工作站中的每一工作站发送对应的下行数据帧。
其中,接入点可以利用多用户多输入多输出(Multi-User Multiple-Input Multiple-Output,简称MU MIMO)或正交频分多址(Orthogonal Frequency Division Multiple Access,简称OFDMA)技术向该多个工作站中的每一工作站并行发送下行数据帧。接入点也可以依次向该多个工作站中的每一工作站发送对应的下行数据帧。
该“多个”可以理解为“两个或更多”。例如“多个工作站”可包括两个工作站或更多工作站。
S304:在所述接入点向所述每一工作站发送对应的下行数据帧后,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。
其中,接入点为该多个工作站中的每一工作站分配信道资源,可以通过不同的方式实现。接入点可以在向该多个工作站发送的确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该多个工作站中每一工作站分配的信道资源;接入点也可以在向该多个工作站中每一工作站发送的对应的下行数据帧中包括信道资源信息,该信道资源信息用于指示该接入点为接收该对应下行数据帧的工作站分配的信道资源。该多个工作站使用该接入点分配的信道资源信息指示的信道资源,可以采用OFDMA技术,并行向该接入点发送确认消息,以告知该接入点是否成功接收到下行数据帧。
本发明实施例提供的方法,通过接入点向该多个工作站中的每一工作站发送对应的下行数据帧;在该接入点向该每一工作站发送对应的下行数据帧后,该接入点接收该多个工作站,在该接入点为该多个工作站分配的信道资源上,并行发送的确认消息,这样可以节省多个工作站反馈确认消息的时间。另,多个工作站,在该接入点为该多个工作站分配的信道资源上,并行向接入点发送确认消息,这种方式也提高了信道利用率。
图4给出了本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的示意图,其中,在该接入点向该多个工作站发送下行数据帧之后, 该接入点接收该多个工作站并行发送的确认消息之前,该方法还包括:
经过预设时间后,该接入点向该多个工作站发送确认请求消息,其中,该确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该多个工作站分配的信道资源。
其中,该预设时间可以为短帧间间隔(Short Interframe Space,简称SIFS)。在不同的IEEE 802.11标准中,SIFS值可以不同。例如,在IEEE 802.11a标准中,SIFS的值为16μs,在IEEE 802.11g标准中,SIFS的值为10μs。
其中,接入点可以以多播(multicast)的方式发送确认请求消息给该多个工作站,也可以以单播(unicast)的方式发送确认请求消息给对应的工作站。接入点采用多播方式向该多个工作站发送确认请求消息时,该确认请求消息中包含的信道资源信息指示该接入点为该多个工作站分配的信道资源;接入点采用单播方式依次向多个工作站中对应的工作站发送确认请求消息时,该确认请求消息中包含的信道资源信息指示该接入点为对应的工作站分配的信道资源。
具体的,该确认请求消息可以为块确认请求消息BlockAckReq,接入点采用多播方式向该多个工作站发送确认请求消息时,该块确认请求消息BlockAckReq中包含指示该接入点为该多个工作站分配的信道资源的信道资源信息;接入点采用单播方式依次向多个工作站中对应的工作站发送确认请求消息时,该确认请求消息中包含指示该接入点为对应的工作站分配的信道资源的信道资源信息。该接入点向该多个工作站中每一工作站发送下行数据帧后,该接入点接收该多个工作站,使用块确认请求消息BlockAckReq中包含的信道资源信息指示的信道资源,向该接入点并行发送的确认消息。
如图5所示,为本发明实施例提供的BlockAckReq帧格式示意图。BlockAckReq帧格式包括2个字节的帧控制Frame Control字段(Field;在通信标准中,Field可译作字段,也可译作域;帧控制Frame Control字段也可以叫做帧控制Frame Control信息),2个字节的帧持续时间Duration/ID字段,6个字节的接收端地址RA字段,6个字节的发送端地址TA字段,2个字节的BAR Control字段,不定字节数的BAR Information字段,N个字节的Sub-Channel-Index(子信道索引)字段(Sub-Channel-Index字段也可以叫做Sub-Channel-Index信息) 和4字节的FCS(Frame Check Sequence,帧校验序列)字段,N为正整数。
其中,N个字节的子信道索引字段是本发明实施例在BlockAckReq帧格式中增加的字段,N可以根据实际需要来设定字节数,如N可以根据工作站的个数来设定字节数。该子信道索引字段用于指示接入点为工作站分配的信道资源。具体的,该子信道索引字段可以携带用于指示接入点分配给工作站的信道资源的信道资源信息。例如,接入点可以采用单播方式发送BlockAckReq给对应的工作站,N可以是2个字节,共有16个二进制位。该2个字节的子信道索引字段将0MHz至40MHz的信道资源,划分为16个子信道,每个子信道的宽度为2.5MHz。该16个子信道按频率大小从低到高依次编号为1~16。如果接入点为对应的工作站分配第10个子信道,则可以将该16个二进制位中的第10位设置为1,其余的二进制位设置为0,以此表示为对应的工作站分配了第10个子信道,该工作站使用第10个子信道反馈确认消息,依次类推,接入点可以为所有接收下行数据帧的工作站分配信道资源,以使得该多个工作站采用分配的信道资源并行向该接入点发回确认消息,其中,该确认消息可以是BlockAck。类似地,接入点可以采用多播方式发送BlockAckReq给多个工作站,如果接入点同时为m个工作站分配信道资源,则N至少需要包含2m个字节,用于指示接入点为m个工作站分配的信道资源,m为大于1的正整数。
具体的,在BlockAckReq帧格式中增加的子信道索引Sub-Channel-Index字段可以位于FCS字段的前面。例如子信道索引字段可以位于BlockAckReq帧格式的FCS字段之前、BAR Information字段之后的位置;可以理解的,该子信道索引字段也可以位于BlockAckReq帧格式的BAR Information字段之前、BAR Control字段之后的位置。本发明实施例对此不做限定。
可选的,该子信道索引字段也可以用于指示索引号,工作站根据该索引号可以从服务器或工作站本地的数据表中查询到被分配到的信道资源。该子信道索引字段为确认请求消息中包括的信道资源信息,该信道资源信息用于指示索引号,这样工作站根据该索引号可以从服务器或工作站本地的数据表中查询到被分配到的信道资源。例如,将0MHz至40MHz的信道资源,划分为16个子信道,每个子信道的宽度为2.5MHz。该16个子信道按频率大小从低到高依次 编号为1~16。接入点采用单播方式发送BlockAckReq给对应的工作站,N可以是1个字节,即有8个二进制位。该8个二进制位的第1位至第4位,指示接入点为对应的工作站分配的信道资源的起始子信道编号,第5位至第8位,指示接入点为对应的工作站分配的信道资源的终止子信道编号。例如,该1个字节的子信道索引字段为01100010,该对应的工作站根据指示的索引号从数据表中查询到,第1位至第4位0010表示接入点为对应的工作站分配的信道资源的起始子信道编号是2,第5位至第8位0110,表示接入点为对应的工作站分配的信道资源的终止子信道编号是6。那么该1个字节的子信道索引字段01100010表示,将第2个子信道至第6个子信道对应的信道资源分配给该工作站。依次类推,接入点可以为所有接收下行数据帧的工作站分配信道资源,以使得该多个工作站采用分配的信道资源并行向接入点发回确认消息,其中,该确认消息可以是BlockAck。类似地,接入点采用多播方式发送BlockAckReq给多个工作站,如果接入点同时为m个工作站分配信道资源,则N至少需要包含m个字节,用于指示接入点为m个工作站分配的信道资源,m为大于1的正整数。
本发明实施例提供的方法,通过接入点向该多个工作站中的每一工作站发送对应的下行数据帧;在该接入点向该每一工作站发送对应的下行数据帧后,该接入点接收该多个工作站,在该接入点为该多个工作站分配的信道资源上,并行发送的确认消息,这样可以节省多个工作站反馈确认消息的时间。另,多个工作站,在该接入点为该多个工作站分配的信道资源上,并行向接入点发送确认消息,这种方式也提高了信道利用率。
图6是本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的又一示意图,接入点向多个工作站中每一工作站发送对应的下行数据帧,在对应的下行数据帧中增加用于标识为该下行数据帧对应的工作站分配的信道资源信息。该工作站接收对应的下行数据帧后,解析对应的下行数据帧中包括的信道资源信息指示的信道资源。通过这种方式,接入点可以向多个工作站中的每一工作站分配信道资源,该多个工作站可以采用该接入点为该多个工作站分配的信道资源,并行向该接入点发送确认消息,以告知该接入点是否成功接收到了下行数据帧,其中,该确认消息可以是BlcokAck。具体的,该用于 标识为下行数据帧对应的工作站分配的信道资源信息为子信道索引(Sub-Channel-Index)字段(Field)。
可选的,图7a是本发明实施例提供的下行数据帧在物理层的帧格式示意图,该子信道索引字段可以位于该下行数据帧的PLCP Header(Physical Layer Convergence Procedure Header,物理层汇聚协议头部)。下行数据帧在物理层的帧格式包括PLCP Preamble(PLCP前导码)字段,PLCP Header字段和Data(数据)字段。PLCP Preamble包括L-STF(Legacy Short Training Field,传统短训练字段)和L-LTF(Legacy Long Training Field,传统长训练字段)。PLCP Header字段包括L-SIG(Legacy Signal,传统信号)字段。在继IEEE 802.11ac标准的下一代WLAN(Wireless Local Area Network,无线局域网络)技术标准IEEE802.11ax中,PLCP Header还可以包括HEW SIG(High Efficiency WLAN Signal,高效WLAN信号)字段。该增加的子信道索引字段可以位于PLCP Header字段内。例如,该子信道索引字段可以位于L-SIG字段之后、HEW SIG字段之前的位置。该子信道索引字段也可以位于L-SIG字段之前的位置。本发明实施例对此不做限定。
可选的,图7b给出了本发明实施例的下行数据帧在物理层的帧格式又一示意图,该子信道索引字段可以位于PLCP Header的L-SIG字段内,具体的,在L-SIG字段内增加该子信道索引字段。该子信道索引字段也可以位于PLCP头的HEW SIG字段内,具体的,在HEW SIG字段内增加子信道索引字段。
可以理解的是,图7a和图7b为下行数据帧在物理层的帧格式示意图,HEW SIG字段可以位于L-SIG字段之后的位置,HEW SIG字段也可以位于L-SIG字段之前的位置。本发明实施例对此并不限定。需要说明的是,用于标识接入点为下行数据帧对应的工作站分配的用于发送确认消息的信道资源的信息,可以携带在下行数据帧的物理层帧格式的头部,还可以携带在下行数据帧的媒体访问控制(Media Access Control,简称MAC)层帧格式的头部,这种情况下该信息的具体携带方式,与将该信息放在下行数据帧的物理层帧格式的头部类似。
具体的,该子信道索引字段的字节数为N,N可以根据实际需要来设定字 节数,如N可以根据工作站的个数来设定字节数。该子信道索引字段用于指示接入点为工作站分配的信道资源。可选的,该子信道索引字段可以携带指示接入点分配给对应的工作站的信道资源的信道资源信息。例如,N可以是1个字节,即有8个二进制位。该1个字节的子信道索引字段将0MHz至20MHz的信道资源,划分为8个子信道,每个子信道的宽度为2.5MHz。该8个子信道按频率大小从低到高依次编号为1~8。如果接入点为下行数据帧对应的工作站分配第5个子信道,则可以将该8个二进制位中的第5位设置为1,其余的二进制位设置为0,以此表示为下行数据帧对应的工作站分配了第5个子信道,该工作站使用第5个子信道反馈确认消息。依次类推,接入点可以为所有接收对应的下行数据帧的工作站分配信道资源,以使得所有接收对应的下行数据帧的工作站采用分配的信道资源并行向接入点发回确认消息,其中,该确认消息可以是BlockAck。
可选的,该子信道索引字段也可以用于指示索引号,工作站根据该索引号可以从服务器或工作站本地的数据表中查询到被分配到的信道资源。该子信道索引字段为下行数据帧中包括的信道资源信息,该信道资源信息用于指示索引号,这样工作站根据该索引号可以从服务器或工作站本地的数据表中查询到被分配到的信道资源。例如,将0MHz至40MHz的信道资源,划分为16个子信道,每个子信道的宽度为2.5MHz。该16个子信道按频率大小从低到高依次编号为1~16。N可以是1个字节,即有8个二进制位。该8个二进制位的第1位至第4位,指示接入点为对应的工作站分配的信道资源的起始子信道编号,第5位至第8位,指示接入点为对应的工作站分配的信道资源的终止子信道编号。例如,该1个字节的子信道索引字段为01100010,该对应的工作站根据指示的索引号从数据表中查询到,第1位至第4位0010表示接入点为对应的工作站分配的信道资源的起始子信道编号是2,第5位至第8位0110,表示接入点为对应的工作站分配的信道资源的终止子信道编号是6。那么该1个字节的子信道索引字段01100010表示,将第2个子信道至第6个子信道对应的信道资源分配给该工作站。依次类推,接入点可以为所有接收下行数据帧的工作站分配信道资源,以使得接收下行数据帧的工作站采用分配的信道资源并行向接入点发回确认消息,其中,该确认消息可以是BlockAck。
本发明实施例提供的方法,通过接入点向该多个工作站中的每一工作站发送对应的下行数据帧;在该接入点向该每一工作站发送对应的下行数据帧后,该接入点接收该多个工作站,在该接入点为该多个工作站分配的信道资源上,并行发送的确认消息,这样可以节省多个工作站反馈确认消息的时间。另,多个工作站,在该接入点为该多个工作站分配的信道资源上,并行向接入点发送确认消息,这种方式也提高了信道利用率。
应该理解,以IEEE 802.11n为例,IEEE 802.11n的工作的频带范围包括2.4GHz到2.4835GHz和5.150GHz到5.850GHz。上文所述0MHz到20MHz或0MHz到40MHz的信道资源,指的是从2.4GHz开始或从5.150GHz开始,频带宽度为20MHz或40MHz的信道资源。
上文从接入点的角度描述了根据本发明实施例的一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法,下面将从工作站的角度描述本发明实施例的方法。
图8给出了本发明实施例提供的一种用于无线局域网络中工作站对下行数据帧的传输进行确认的方法的示意图。该方法800执行设备可以是工作站,该方法800包括以下步骤:
S802:工作站接收接入点发送的下行数据帧。
S804:在所述工作站接收所述接入点发送的下行数据帧后,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息。
其中,接入点为工作站分配信道资源,可以通过不同的方式实现。接入点可以在向该工作站发送的确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该工作站分配的信道资源;接入点也可以在为该工作站发送的下行数据帧中包括信道资源信息,该信道资源信息用于指示该接入点为该工作站分配的信道资源。该工作站使用该接入点分配的信道资源信息指示的信道资源,向该接入点发送确认消息,以告知该接入点是否成功接收到下行数据帧。
本发明实施例提供的方法,通过工作站接收接入点发送的下行数据帧;在 该工作站接收该接入点发送的下行数据帧后,该工作站在该接入点为该工作站分配的信道资源上,向该接入点发送确认消息,这种通过接入点为工作站分配信道资源,而不是接入点和工作站竞争使用信道资源的方式,能够提高信道利用率。另,工作站有多个时,多个工作站在该接入点为该多个工作站分配的信道资源上,向该接入点并行发送确认消息,这种方式能够节省反馈确认消息所需的时间。
图4给出了本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的示意图,在该多个工作站接收该接入点发送的下行数据帧后,该多个工作站在该接入点为该多个工作站分配的信道资源上,向该接入点并行发送确认消息之前,该方法还包括:
经过预设时间后,该工作站接收该接入点发送的确认请求消息,其中,该确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该工作站分配的信道资源。
其中,该预设时间可以为SIFS。在不同的IEEE 802.11标准中,SIFS值可以不同。例如,在IEEE 802.11a标准中,SIFS的值为16μs,在IEEE 802.11g标准中,SIFS的值为10μs。
具体的,该确认请求消息可以为块确认请求消息BlockAckReq,该块确认请求消息BlockAckReq包含指示该接入点为该多个工作站分配的信道资源的信道资源信息。该接入点向该多个工作站中每一工作站发送下行数据帧后,该接入点接收该多个工作站并行发送的确认消息,其中,该多个工作站使用该块确认请求消息BlockAckReq中包含的信道资源信息指示的信道资源,向该接入点并行发送确认消息。
图5给出了为本发明实施例提供的BlockAckReq帧格式示意图,具体实现方式,参见上文一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法实施例中,以接入点角度对BlockAckReq的描述。
图6是本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的又一示意图,接入点向多个工作站中每一工作站发送对应的下行数据 帧,在对应的下行数据帧中增加用于标识为该下行数据帧对应的工作站分配的信道资源信息。该工作站接收对应的下行数据帧后,解析对应的下行数据帧中包括的信道资源信息指示的信道资源。通过这种方式,接入点可以向多个工作站中的每一工作站分配信道资源,该多个工作站可以采用该接入点为该多个工作站分配的信道资源,并行向该接入点发送确认消息,以告知该接入点是否成功接收到了下行数据帧,其中,该确认消息可以是BlcokAck。具体的,该用于标识为下行数据帧对应的工作站分配的信道资源信息为子信道索引(Sub-Channel-Index)字段。
图7a是本发明实施例提供的下行数据帧在物理层的帧格式示意图,图7b是本发明实施例的下行数据帧在物理层的帧格式又一示意图,具体实现方式,参见上文一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法实施例中,以接入点角度对下行数据帧在物理层的帧格式的描述。
本发明实施例提供的方法,通过工作站接收接入点发送的下行数据帧;在该工作站接收该接入点发送的下行数据帧后,该工作站在该接入点为该工作站分配的信道资源上,向该接入点发送确认消息,这种通过接入点为工作站分配信道资源,而不是接入点和工作站竞争使用信道资源的方式,能够提高信道利用率。另,工作站有多个时,多个工作站在该接入点为该多个工作站分配的信道资源上,向该接入点并行发送确认消息,这种方式能够节省确认反馈所需的时间。
图9给出了本发明实施例的一种接入点900的示意图,该接入点900包括:
收发器902、处理器904和总线906;
收发器902和处理器904通过总线906实现通信;
收发器902在处理器904的控制下,向多个工作站中每一工作站发送对应的下行数据帧;
收发器902,用于在向所述多个工作站发送下行数据帧后,接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。
其中,接入点为该多个工作站中的每一工作站分配信道资源,可以通过不同的方式实现。接入点可以在向该多个工作站发送的确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该多个工作站中每一工作站分配的信道资源;接入点也可以在向该多个工作站中每一工作站发送的对应的下行数据帧中包括信道资源信息,该信道资源信息用于指示该接入点为接收该对应下行数据帧的工作站分配的信道资源。该多个工作站使用该接入点分配的信道资源信息指示的信道资源,可以采用OFDMA技术,并行向该接入点发送确认消息,以告知该接入点是否成功接收到下行数据帧。。其中,该接入点可以是笔记本电脑、路由器、机顶盒和手机中的一种。
本发明实施例提供的接入点,包括收发器902、处理器904和总线906;收发器902和处理器904通过总线906实现通信;收发器902在处理器904的控制下,向多个工作站中每一工作站发送对应的下行数据帧;收发器902,用于在向所述多个工作站发送下行数据帧后,接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息,这样可以节省多个工作站反馈确认消息的时间。另,多个工作站,在该接入点为该多个工作站分配的信道资源上,并行向该接入点发送确认消息,这种方式也提高了信道利用率。
图4给出了本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的示意图,该收发器902用于向该多个工作站发送确认请求消息,其中,该确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该多个工作站分配的信道资源。
该收发器902在向多个工作站发送下行数据帧后,可以经过预设时间,向该多个工作站发送确认请求消息。该预设时间可以为SIFS。在不同的IEEE 802.11标准中,SIFS值可以是不同的。例如,在IEEE 802.11a标准中,SIFS的值为16μs,在IEEE 802.11g标准中,SIFS的值为10μs。
具体的,该确认请求消息可以为块确认请求消息BlockAckReq,该块确认请求消息BlockAckReq包含指示该接入点为该多个工作站分配的信道资源的信道资源信息。该接入点向该多个工作站中每一工作站发送下行数据帧后,该接入 点接收该多个工作站并行发送的确认消息,其中,该多个工作站使用该块确认请求消息BlockAckReq中包含的信道资源信息指示的信道资源,向该接入点并行发送确认消息。
图5给出了为本发明实施例提供的BlockAckReq帧格式示意图,具体实现方式,参见上文一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法实施例中,以接入点角度对BlockAckReq的描述。
图6是本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的又一示意图,接入点向多个工作站中每一工作站发送对应的下行数据帧,在对应的下行数据帧中增加用于标识为该下行数据帧对应的工作站分配的信道资源信息。该工作站接收对应的下行数据帧后,解析对应的下行数据帧中包括的信道资源信息指示的信道资源。通过这种方式,接入点可以向多个工作站中的每一工作站分配信道资源,该多个工作站可以采用该接入点为该多个工作站分配的信道资源,并行向该接入点发送确认消息,以告知该接入点是否成功接收到了下行数据帧,其中,该确认消息可以是BlcokAck。具体的,该用于标识为下行数据帧对应的工作站分配的信道资源信息为子信道索引(Sub-Channel-Index)字段。
图7a是本发明实施例提供的下行数据帧在物理层的帧格式示意图,图7b是本发明实施例的下行数据帧在物理层的帧格式又一示意图,具体实现方式,参见上文一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法实施例中,以接入点角度对下行数据帧在物理层的帧格式的描述。
图10给出了本发明实施例提供的一种工作站1000的示意图,该工作站1000包括:
收发器1002、处理器1004和总线1006;
收发器1002和处理器1004通过总线1006实现通信;
收发器1002接收接入点发送的下行数据帧;
收发器1002在处理器1004的控制下,用于在接收所述接入点发送的下行数据帧后,在所述接入点为所述工作站分配的信道资源上,向所述接入点发送 确认消息。
其中,接入点为工作站分配信道资源,可以通过不同的方式实现。接入点可以在向该工作站发送的确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该工作站分配的信道资源;接入点也可以在为该工作站发送的下行数据帧中包括信道资源信息,该信道资源信息用于指示该接入点为该工作站分配的信道资源。该工作站使用该接入点分配的信道资源信息指示的信道资源,向该接入点发送确认消息,以告知该接入点是否成功接收到下行数据帧。其中,该工作站可以是笔记本电脑、路由器、机顶盒和手机中的一种
本发明实施例提供的工作站,包括收发器1002、处理器1004和总线1006;收发器1002和处理器1004通过总线1006实现通信;收发器1002接收接入点发送的下行数据帧;收发器1002在处理器1004的控制下,用于在接收所述接入点发送的下行数据帧后,在所述接入点为所述工作站分配的信道资源上,向所述接入点并行发送确认消息,这种通过接入点为工作站分配信道资源,而不是接入点和工作站竞争使用信道资源的方式,能够提高信道利用率。另,工作站有多个时,多个工作站在该接入点为该多个工作站分配的信道资源上,向该接入点并行发送确认消息,这种方式能够节省确认反馈所需的时间。
图4给出了本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的示意图,该收发器1002用于接收该接入点发送的确认请求消息,其中,该确认请求消息中包括信道资源信息,该信道资源信息用于指示该接入点为该多个工作站分配的信道资源。
该收发器1002在接收该接入点发送的数据后,可以经过预设时间,接收该接入点发送的确认请求消息。该预设时间可以为SIFS。在不同的IEEE 802.11标准中,SIFS值可以是不同的。例如,在IEEE 802.11a标准中,SIFS的值为16μs,在IEEE 802.11g标准中,SIFS的值为10μs。
具体的,该确认请求消息可以为块确认请求消息BlockAckReq,该块确认请求消息BlockAckReq包含指示该接入点为该多个工作站分配的信道资源的信道资源信息。该接入点向该多个工作站中每一工作站发送下行数据帧后,该接入点接收该多个工作站并行发送的确认消息,其中,该多个工作站使用该块确认 请求消息BlockAckReq中包含的信道资源信息指示的信道资源,向该接入点并行发送确认消息。
图5给出了为本发明实施例提供的BlockAckReq帧格式示意图,具体实现方式,参见上文一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法实施例中,以接入点角度对BlockAckReq的描述。
图6是本发明实施例的无线局域网络中多个工作站对下行数据帧的传输进行确认的又一示意图,接入点向多个工作站中每一工作站发送对应的下行数据帧,在对应的下行数据帧中增加用于标识为该下行数据帧对应的工作站分配的信道资源信息。该工作站接收对应的下行数据帧后,解析对应的下行数据帧中包括的信道资源信息指示的信道资源。通过这种方式,接入点可以向多个工作站中的每一工作站分配信道资源,该多个工作站可以采用该接入点为该多个工作站分配的信道资源,并行向该接入点发送确认消息,以告知该接入点是否成功接收到了下行数据帧,其中,该确认消息可以是BlcokAck。具体的,该用于标识为下行数据帧对应的工作站分配的信道资源信息为子信道索引(Sub-Channel-Index)字段。
图7a是本发明实施例提供的下行数据帧在物理层的帧格式示意图,图7b是本发明实施例的下行数据帧在物理层的帧格式又一示意图,具体实现方式,参见上文一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法实施例中,以接入点角度对下行数据帧在物理层的帧格式的描述。
本领域普通技术人员可以理解:上述处理器(904和1004)可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC)或基带处理器。总线(906和1006)可包括一通路,用于在处理器和收发器之间实现通信。收发器可以为天线。
可以理解的是,上述实施例中接入点和工作站也可以为一手机,例如智能手机,该智能手机不仅具有接入点的功能,而且也具有工作站的功能,这样该智能手机可以充当接入点,与其他工作站例如其他手机通讯;该智能手机也可以充当工作站,与接入点例如其他手机通讯。
最后应说明的是:以上实施例仅用以示例性说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明及本发明带来的有益效果进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求的范围。

Claims (28)

  1. 一种用于无线局域网络中多个工作站对下行数据帧的传输进行确认的方法,其特征在于,所述方法包括:
    接入点向所述多个工作站中的每一工作站发送对应的下行数据帧;
    在所述接入点向所述每一工作站发送对应的下行数据帧后,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。
  2. 根据权利要求1所述的方法,其特征在于,在所述接入点向所述每一工作站发送对应的下行数据帧之后,所述接入点接收所述多个工作站并行发送的确认消息之前,所述方法还包括:
    经过预设时间后,所述接入点向所述多个工作站发送确认请求消息,其中,所述确认请求消息中包括信道资源信息,所述信道资源信息用于指示所述接入点为所述多个工作站分配的信道资源。
  3. 根据权利要求2所述的方法,其特征在于,所述接入点接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息,具体为:
    所述接入点接收所述多个工作站,在所述确认请求消息包括的所述信道资源信息指示的所述信道资源上,并行发送的确认消息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述确认请求消息为块确认请求消息BlockAckReq。
  5. 根据权利要求4所述的方法,其特征在于:
    所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
  6. 根据权利要求1所述的方法,其特征在于:
    所述下行数据帧中包括用于标识为所述下行数据帧对应的工作站分配的信 道资源的信息。
  7. 根据权利要求6所述的方法,其特征在于,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
  8. 一种用于无线局域网络中工作站对下行数据帧的传输进行确认的方法,其特征在于,所述方法包括:
    工作站接收接入点发送的下行数据帧;
    在所述工作站接收所述接入点发送的下行数据帧后,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息。
  9. 根据权利要求8所述的方法,其特征在于,在所述工作站接收所述接入点发送的下行数据帧后,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息之前,所述方法还包括:
    经过预设时间后,所述工作站接收所述接入点发送的确认请求消息,其中,所述确认请求消息中包含信道资源信息,所述信道资源信息用于指示所述接入点为所述工作站分配的信道资源。
  10. 根据权利要求9所述的方法,其特征在于,所述工作站在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息具体为:
    所述工作站在所述确认请求消息包括的所述信道资源信息指示的所述信道资源上,向所述接入点发送确认消息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述确认请求消息为块确认请求消息BlockAckReq。
  12. 根据权利要求11所述的方法,其特征在于:
    所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
  13. 根据权利要求8所述的方法,其特征在于:
    所述下行数据帧中包括用于标识所述接入点为所述工作站分配的信道资源 的信息。
  14. 根据权利要求13所述的方法,其特征在于,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
  15. 一种接入点,其特征在于,包括:
    收发器、处理器和总线;
    所述收发器和所述处理器通过所述总线实现通信;
    所述收发器在所述处理器的控制下,向多个工作站中每一工作站发送对应的下行数据帧;
    所述收发器,用于在向所述每一工作站发送下行数据帧后,接收所述多个工作站,在所述接入点为所述多个工作站分配的信道资源上,并行发送的确认消息。
  16. 根据权利要求15所述的接入点,其特征在于,所述收发器还用于向所述多个工作站发送确认请求消息,其中,所述确认请求消息中包括信道资源信息,所述信道资源信息用于指示所述接入点为所述多个工作站分配的信道资源。
  17. 根据权利要求16所述的接入点,其特征在于,所述确认请求消息为块确认请求消息BlockAckReq。
  18. 根据权利要求17所述的接入点,其特征在于,所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
  19. 根据权利要求15所述的接入点,其特征在于,所述下行数据帧中包括用于标识为所述下行数据帧对应的工作站分配的信道资源的信息。
  20. 根据权利要求19所述的接入点,其特征在于,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
  21. 根据权利要求15至20任一项所述的接入点,其特征在于,所述接入点为笔记本电脑、路由器、机顶盒和手机中的一种。
  22. 一种工作站,其特征在于,包括:
    收发器、处理器和总线;
    所述收发器和所述处理器通过所述总线实现通信;
    所述收发器接收接入点发送的下行数据帧;
    所述收发器在所述处理器的控制下,用于在接收所述接入点发送的下行数据帧后,在所述接入点为所述工作站分配的信道资源上,向所述接入点发送确认消息。
  23. 根据权利要求22所述的工作站,其特征在于,所述收发器还用于接收所述接入点发送的确认请求消息,其中,所述确认请求消息中包括信道资源信息,所述信道资源信息用于指示所述接入点为所述工作站分配的信道资源。
  24. 根据权利要求23所述的工作站,其特征在于,所述确认请求消息为块确认请求消息BlockAckReq。
  25. 根据权利要求24所述的工作站,其特征在于,所述BlockAckReq中包括子信道索引信息和帧校验序列FCS信息,所述子信道索引信息位于所述FCS信息的前面。
  26. 根据权利要求22所述的工作站,其特征在于,所述下行数据帧中包括用于标识所述接入点为所述工作站分配的信道资源的信息。
  27. 根据权利要求26所述的工作站,其特征在于,所述信息位于所述下行数据帧的物理帧汇聚协议头部PLCP Header。
  28. 根据权利要求22至27任一项所述的工作站,其特征在于,所述接入点为笔记本电脑、路由器、机顶盒和手机中的一种。
PCT/CN2015/074486 2014-08-25 2015-03-18 一种用于无线局域网络中传输数据的方法和装置 WO2016029683A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2017109386A RU2017109386A (ru) 2014-08-25 2015-03-18 Способ и устройство передачи данных, используемые в беспроводной локальной сети
KR1020177004652A KR20170034410A (ko) 2014-08-25 2015-03-18 무선 근거리 통신망에서의 데이터 송신 방법 및 장치
JP2017511266A JP2017529774A (ja) 2014-08-25 2015-03-18 無線ローカルエリアネットワークにおいて使用されるデータ送信方法および装置
US15/505,720 US20170367077A1 (en) 2014-08-25 2015-03-18 Data transmission method and apparatus used in wireless local area network
EP15835770.7A EP3174233A4 (en) 2014-08-25 2015-03-18 Method and apparatus for transmitting data in a wireless local area network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422580.3A CN105376032A (zh) 2014-08-25 2014-08-25 一种用于无线局域网络中传输数据的方法和装置
CN201410422580.3 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016029683A1 true WO2016029683A1 (zh) 2016-03-03

Family

ID=55377872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074486 WO2016029683A1 (zh) 2014-08-25 2015-03-18 一种用于无线局域网络中传输数据的方法和装置

Country Status (7)

Country Link
US (1) US20170367077A1 (zh)
EP (1) EP3174233A4 (zh)
JP (1) JP2017529774A (zh)
KR (1) KR20170034410A (zh)
CN (1) CN105376032A (zh)
RU (1) RU2017109386A (zh)
WO (1) WO2016029683A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484725B2 (ja) * 2015-04-16 2019-03-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるチャネルサウンディング方法及びそのための装置
US10567186B2 (en) * 2015-04-27 2020-02-18 Apple Inc. Multicast reliability enhancement
US11251841B2 (en) 2019-05-07 2022-02-15 Huawei Technologies Co., Ltd. Systems and methods for extremely high throughput sounding process indication
EP3968684B1 (en) * 2019-05-10 2023-10-25 Sony Group Corporation Coordinated transmission performed to simultaneously transmit frames comprising the same data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898910A (zh) * 2003-12-23 2007-01-17 英特尔公司 使用空分多址(sdma)同时和多个移动站通信的无线访问点
CN102387008A (zh) * 2010-09-01 2012-03-21 中兴通讯股份有限公司 多用户反馈确认消息的方法及反馈确认消息的站点
CN102412944A (zh) * 2010-03-29 2012-04-11 英特尔公司 用于无线网络中的有效率的确认的技术
CN102859924A (zh) * 2010-04-23 2013-01-02 高通股份有限公司 用于多用户传输的顺序ack

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200729786A (en) * 2005-11-11 2007-08-01 Ntt Docomo Inc Mobile communication system, mobile station, base stations and control channel allocation method
US10771199B2 (en) * 2008-04-02 2020-09-08 Qualcomm Incorporated Methods and apparatus for reverse link acknowledgement in a wireless local area network (WLAN)
US8804611B2 (en) * 2009-02-12 2014-08-12 Qualcomm Incorporated Method and apparatus for acknowledging successful reception of a data transmission for multi-access compatibility in a wireless communication system
US8411631B2 (en) * 2010-06-11 2013-04-02 Intel Corporation Response mechanisms for wireless networks using wide bandwidth
US9853794B2 (en) * 2013-02-20 2017-12-26 Qualcomm, Incorporated Acknowledgement (ACK) type indication and deferral time determination
KR20160008971A (ko) * 2014-07-15 2016-01-25 뉴라컴 인코포레이티드 하향링크 다중 사용자 전송에 응답하는 상향링크 확인응답
EP3866380B1 (en) * 2014-08-22 2022-10-05 LG Electronics Inc. Method and apparatus for performing signaling for reserved sub-band in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898910A (zh) * 2003-12-23 2007-01-17 英特尔公司 使用空分多址(sdma)同时和多个移动站通信的无线访问点
CN102412944A (zh) * 2010-03-29 2012-04-11 英特尔公司 用于无线网络中的有效率的确认的技术
CN102859924A (zh) * 2010-04-23 2013-01-02 高通股份有限公司 用于多用户传输的顺序ack
CN102387008A (zh) * 2010-09-01 2012-03-21 中兴通讯股份有限公司 多用户反馈确认消息的方法及反馈确认消息的站点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3174233A4 *

Also Published As

Publication number Publication date
US20170367077A1 (en) 2017-12-21
KR20170034410A (ko) 2017-03-28
JP2017529774A (ja) 2017-10-05
EP3174233A4 (en) 2017-07-05
RU2017109386A (ru) 2018-09-27
CN105376032A (zh) 2016-03-02
RU2017109386A3 (zh) 2018-09-27
EP3174233A1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
US10567047B2 (en) Wireless communication method and wireless communication terminal for signaling multi-user packet
CN107078858B (zh) 在无线lan系统中发送和接收多用户块确认帧的方法及其设备
KR102063217B1 (ko) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
US20230353273A1 (en) Aggregated-mpdu, method for transmitting response frame thereto, and wireless communication terminal using same
EP2471193B1 (en) Method and apparatus for multiple frame transmission for supporting mu-mimo
EP3713122B1 (en) Method for replying with acknowledgement frame, apparatus, and data transmission system
EP3151459A1 (en) Resource indication processing method, processing apparatus, access point and site
US10390328B2 (en) Beamforming training in orthogonal frequency division multiple access (OFDMA) communication systems
US10574418B2 (en) Determining channel availability for orthogonal frequency division multiple access operation
US10231148B2 (en) Signaling data unit format parameters for multi-user transmissions
US10812244B2 (en) Acknowledgment of uplink orthogonal frequency division multiple access transmission
WO2023078182A1 (zh) 一种天线信道探测方法、装置和存储介质
WO2016029683A1 (zh) 一种用于无线局域网络中传输数据的方法和装置
US20230276415A1 (en) Method and wireless communication terminal for transmitting and receiving data in wireless communication system
KR102249765B1 (ko) 무선 통신 방법 및 무선 통신 단말
WO2022148234A1 (zh) 组播反馈方法、装置及系统
WO2016138824A1 (zh) 数据发送方法、接收方法、发送装置及接收装置
WO2023036050A1 (zh) 一种通信方法及装置
WO2022164386A1 (en) Communication apparatus and communication method for multi-ap synchronous transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004652

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017511266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017109386

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505720

Country of ref document: US