WO2022148234A1 - 组播反馈方法、装置及系统 - Google Patents

组播反馈方法、装置及系统 Download PDF

Info

Publication number
WO2022148234A1
WO2022148234A1 PCT/CN2021/139821 CN2021139821W WO2022148234A1 WO 2022148234 A1 WO2022148234 A1 WO 2022148234A1 CN 2021139821 W CN2021139821 W CN 2021139821W WO 2022148234 A1 WO2022148234 A1 WO 2022148234A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
multicast
feedback
data frame
access point
Prior art date
Application number
PCT/CN2021/139821
Other languages
English (en)
French (fr)
Inventor
陈光霁
杨博
杨永超
季晨荷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022148234A1 publication Critical patent/WO2022148234A1/zh
Priority to US18/348,423 priority Critical patent/US20230354383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of wireless fidelity technologies, and in particular, to a method, apparatus and system for multicast feedback.
  • the typical transmission model of wireless local area network is the point-to-point unicast transmission mode.
  • the access point (AP) in the unicast transmission mode can pass the The link quality status of the channel can be obtained by answering feedback, so that retransmission can be performed according to the link quality status, or the modulation and coding scheme (MCS) can be adjusted to achieve rate adaptation.
  • MCS modulation and coding scheme
  • the channel quality is also unstable.
  • the AP may need to perform rate adaptation or retransmission according to the channel quality. Therefore, for multicast transmission, it is necessary to design a reasonable feedback mechanism, so that the AP can obtain the channel quality status.
  • the present application provides a multicast feedback method, device and system, which can realize sending feedback in a multicast transmission scenario, so that an access point can retransmit or adjust the rate according to the feedback, thereby improving transmission reliability and transmission efficiency.
  • a multicast feedback method is provided.
  • the method can be executed by an access point, and can also be executed by a component of the access point, such as a processor, a chip, or a chip system of the access point.
  • the access point performs this method as an example for description.
  • the method includes: an access point sending a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to schedule multiple sites in a multicast group to feed back whether the multicast data frame is correctly decoded.
  • the first subcarrier is a subcarrier associated with the first site in the first subcarrier set
  • the second subcarrier is a subcarrier associated with the first site in the second subcarrier set
  • the first site is the multiple sites any of the .
  • the access point schedules the stations in the multicast group to reply to the multicast feedback report frame, and knows whether the stations in the multicast group correctly decode the multicast data frames by detecting energy on the subcarriers associated with the stations. . Since the access point can determine the incorrectly decoded sites and the correctly decoded sites in the multicast group, it can retransmit the multicast data frame for the incorrectly decoded sites to improve transmission reliability, or it can The transmission rate can be adjusted to improve the transmission efficiency.
  • the multicast feedback method further includes: the access point sending a block ack request trigger frame, where the block ack request trigger frame is used for scheduling At least one second site feeds back the sequence number index of the medium access control protocol data unit MPDU that is decoded incorrectly in the AMPDU on the respective associated resource unit RU, and the second site is a site that does not correctly decode the AMPDU among multiple sites;
  • the in-point receives a block acknowledgment frame from the at least one second station on a RU associated with each of the at least one second station, where the block acknowledgment frame is used to indicate an erroneously decoded MPDU in the AMPDU.
  • the present application provides a two-level feedback mechanism.
  • the access point can first trigger the frame to schedule the stations in the multicast group to reply to the multicast through the multicast feedback. Feedback report frames, so as to know the stations in the multicast group that did not decode the AMPDU correctly.
  • the access point triggers the frame scheduling through the block acknowledgment request to send back the sequence number index of the MPDU that is decoded incorrectly. Therefore, the access point can retransmit the MPDU with an error in decoding to improve the transmission reliability, or it can also adjust the link rate to improve the transmission efficiency.
  • the access point filters out STAs with correct decoding through the first-level feedback, so in the second-level feedback, it can avoid allocating RUs for the STAs with correct decoding, which can effectively reduce the block acknowledgment request trigger frame in the second-level feedback The overhead of interacting with the block ack frame.
  • the number of RUs that can be used to feed back MPDUs with decoding errors is 18.
  • the AP needs to send 4 MU-BAR trigger frame, correspondingly, the STA in the multicast group needs to reply the BA frame regardless of whether the AMPDU is correctly decoded or not.
  • the AP within a certain PER range, the AP only needs to send two block acknowledgment trigger frames, and the STA that correctly decodes the AMPDU does not need to reply to the BA frame, thereby reducing the transmission overhead of the control frame.
  • a multicast feedback method is provided.
  • the method can be executed by the first site, and can also be executed by a component of the first site, such as a processor, chip, or chip system of the first site.
  • the first site performs this method as an example for description.
  • the method includes: a first site receives a multicast data frame from an access point and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to schedule multiple sites in a multicast group to feedback whether the multicast data frame is correctly decoded ; After that, when the first site determines that the multiple sites include the first site, and the first site does not correctly decode the multicast data frame, it sends a multicast feedback report frame to the access point on the second subcarrier, and the second subcarrier sends a multicast feedback report frame to the access point.
  • the carrier is a subcarrier associated with the first station in the second set of subcarriers.
  • the multicast feedback method further includes: the first station receives a block acknowledgment request trigger frame from the access point, and the block acknowledgment request The trigger frame is used to schedule the first site on the resource unit RU associated with the first site to feed back the sequence number index of the medium access control protocol data unit MPDU that is decoded incorrectly in the AMPDU; the first site is on the RU associated with the first site, The block acknowledgment frame is sent to the access point, and the block acknowledgment frame is used to indicate the decoding error MPDU in the AMPDU.
  • the multicast feedback trigger frame includes a third field, the third field is used to indicate the first network allocation vector NAV, and the duration of the first NAV is one of the following and: the duration of the multicast feedback report frame, the duration of the block acknowledgement request trigger frame, the duration of the block acknowledgement frame, and the short frame interval SIFS.
  • the multicast feedback report frame is the reply frame of the multicast feedback trigger frame.
  • the multicast feedback trigger frame includes a third field, the third field is used to indicate the first network allocation vector NAV, and the duration of the first NAV is the multicast feedback report The sum of the frame duration and the short frame interval SIFS.
  • the multicast feedback report frame is the reply frame of the multicast feedback trigger frame.
  • the access point can protect the channel in the feedback process, reduce the interference of non-multicast sites on the feedback process, improve the feedback efficiency, and reduce the Feedback delay, so that the access point can retransmit the erroneous MPDU in time, reduce the delay of the multicast service, or adjust the transmission rate in time to improve the transmission rate of the multicast service.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is multicast replay. Send confirmation request.
  • the stations in the multicast group can determine the type of the multicast feedback trigger frame, and then perform feedback according to the feedback trigger frame.
  • the multicast feedback trigger frame includes a second field, and the second field is used to indicate the multicast data frame.
  • the multicast data frame can be clearly indicated, so that the stations in the multicast group can determine that the multicast data indicated by the multicast feedback trigger frame needs to be fed back Whether the frame is correctly decoded, so as to feed back the multicast data frame, so that the access point and the station have the same understanding of the feedback object, and improve the feedback accuracy.
  • the second field includes a first subfield and a second subfield, and the first subfield is used to carry the sequence number index of the starting data frame in the multicast data frame , and the second subfield is used to carry the sequence number index of the end data frame in the multicast data frame.
  • the second field includes a first subfield and a second subfield
  • the first subfield is used to carry the sequence number index of the starting data frame in the multicast data frame
  • the second subfield is used to carry the number of data frames included in the multicast data frame.
  • the second field includes a first subfield and a second subfield
  • the first subfield is used to carry the number of data frames included in the multicast data frame
  • the second subfield is used to carry the sequence number index of the end data frame in the multicast data frame.
  • the multicast feedback trigger frame is an empty data packet feedback report polling trigger NFRP frame.
  • a multicast feedback method is provided, and the method can be executed by an access point or by a component of the access point, such as a processor, chip, or chip system of the access point, etc.
  • the access point performs this method as an example for description.
  • the method includes: an access point sending a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to configure at least one resource unit RU, and the RU is used for the stations in the multicast group to perform uplink orthogonal frequency division multiplexing A block acknowledgment frame that transmits a multicast data frame during the random access UORA process; the access point receives a block acknowledgment frame from the first site through the first RU during the UORA process, and the block acknowledgment frame is used to indicate the translation of the multicast data frame.
  • the first RU is one of at least one RU configured for the multicast feedback trigger frame.
  • the access point pre-configures at least one RU for decoding the wrong multicast site to feed back the block acknowledgment frame, so as to obtain the transmission status of the multicast data frame, so as to retransmit the decoding in the multicast data frame.
  • Incorrect data frames improve transmission reliability, or adjust the link transmission rate to improve transmission efficiency.
  • only the wrongly decoded multicast station feeds back the block acknowledgment frame, and the correctly decoded multicast STA may not give feedback, which is compared with the traditional GCR MU-BAR feedback method defined in the 802.11ax standard.
  • the correct decoding multicast STA will also feed back the block acknowledgment frame, which can reduce the transmission overhead of the control frame.
  • a multicast feedback method is provided, and the method can be executed by the first site, and can also be executed by a component of the first site, such as a processor, chip, or chip system of the first site.
  • the first site performs this method as an example for description.
  • the method includes: a first station receives a multicast data frame from an access point and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to configure at least one resource unit RU, and the RU is used for the stations in the multicast group to perform uplink Orthogonal frequency division multiple access random access UORA, UORA is used to transmit the block acknowledgment frame of the multicast data frame; when the first station does not correctly decode the multicast data frame, the first RU sends it to the access point during the UORA process
  • the block acknowledgment frame of the multicast data frame, the block acknowledgment frame is used to indicate the data frame with decoding error in the multicast data frame, and the first RU is one of at least one RU configured in the multicast feedback trigger frame.
  • the first station sends the block acknowledgment frame of the multicast data frame to the access point through the first RU in the UORA process, including: the first station selects a random number in the contention window, and the random number is less than When the number is equal to or equal to the total number of at least one RU configured in the multicast feedback trigger frame, a first RU is selected from the at least one RU, and a block acknowledgment frame of the multicast data frame is sent to the access point on the first RU.
  • the multicast data frame is an aggregated media access control protocol data unit AMPDU, and the data frame is a media access control protocol data unit MPDU.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is uplink orthogonal Frequency Division Multiple Access Random Access - Negative Acknowledgement Polling.
  • a communication apparatus for implementing the above-mentioned various methods.
  • the communication device may be the access point in the first aspect or the third aspect, or a device including the access point, or a device included in the access point, such as a chip; or, the communication device may be the first The first site in the second aspect or the fourth aspect, or a device including the first site, or a device included in the first site, such as a chip.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a processing module and a transceiver module.
  • the transceiver module also referred to as a transceiver unit, is used to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manners.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module may be used to implement the processing functions in any of the foregoing aspects and any possible implementation manners thereof.
  • the transceiver module includes a sending module and a receiving module, which are respectively used to implement the sending and receiving functions in any of the above aspects and any possible implementation manners.
  • the communication device provided in the fifth aspect is used to execute any of the above aspects or any possible implementation manner of any aspect, and for details, refer to any of the foregoing aspects or any possible implementation manner of any aspect, which will not be repeated here.
  • a communication device comprising: a processor and a memory; the memory is used for storing computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device may be the access point in the first aspect or the third aspect, or a device including the access point, or a device included in the access point, such as a chip; or, the communication device may be the first The first site in the second aspect or the fourth aspect, or a device including the first site, or a device included in the first site, such as a chip.
  • a communication device comprising: a processor and a communication interface; the communication interface is used to communicate with modules other than the communication device; the processor is configured to execute a computer program or instructions to enable the communication device A method as described in any of the preceding aspects is performed.
  • the communication device may be the access point in the first aspect or the third aspect, or a device including the access point, or a device included in the access point, such as a chip; or, the communication device may be the first The first site in the second aspect or the fourth aspect, or a device including the first site, or a device included in the first site, such as a chip.
  • a communication device comprising: an interface circuit and a logic circuit, the interface circuit is used for acquiring input information and/or outputting output information; the logic circuit is used for executing any of the above-mentioned aspects or any possibility of any of the above-mentioned aspects.
  • the input information is processed and/or the output information is generated.
  • the communication device may be the access point in the first aspect or the third aspect, or a device including the access point, or a device included in the access point, such as a chip; or, the communication device may be the first The first site in the second aspect or the fourth aspect, or a device including the first site, or a device included in the first site, such as a chip.
  • the communication device is the access point in the first aspect, or a device including the access point, or a device included in the access point:
  • the output information may be a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to schedule multiple sites in a multicast group to feedback whether the multicast data frame is decoded correctly .
  • the input information may be: at least one block acknowledgment frame of the second station, where the block acknowledgment frame is used to indicate a decoding error MPDU in the AMPDU.
  • the processing according to the input information may be: determining the retransmitted MPDU or the modulated transmission rate according to the block acknowledgment frame.
  • the communication device may be the first site in the second aspect, or a device including the first site, or a device included in the first site:
  • the input information may be: a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to schedule multiple sites in a multicast group to feedback whether the multicast data frame is decoded correct.
  • processing according to the input information may be: the multiple sites in the multicast group in which the multicast feedback triggers frame scheduling includes the first site, and when the first site does not correctly decode the multicast data frame, the second A multicast feedback report frame is sent to the access point on the subcarrier, and the second subcarrier is a subcarrier associated with the first station in the second subcarrier set.
  • the output information may be: a block acknowledgment frame, the block acknowledgment frame is used to indicate an erroneously decoded MPDU in the AMPDU.
  • the communication device is the access point in the third aspect, or a device including the access point, or a device included in the access point:
  • the output information may be: a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to configure at least one resource unit RU, and the RU is used for the uplink of a site in the multicast group Block acknowledgment frame for transmitting multicast data frame in the process of orthogonal frequency division multiple access random access UORA.
  • the input information may be: a block acknowledgement frame, where the block acknowledgement frame is used to indicate a decoding error data frame in the multicast data frame.
  • the processing according to the input information may be: determining the retransmitted data frame or the modulated transmission rate according to the block acknowledgment frame.
  • the communication device may be the first site in the fourth aspect, or a device including the first site, or a device included in the first site:
  • the input information may be: a multicast data frame and a multicast feedback trigger frame
  • the multicast feedback trigger frame is used to configure at least one resource unit RU
  • the RU is used for the uplink of the site in the multicast group Block acknowledgment frame for transmitting multicast data frame in the process of orthogonal frequency division multiple access random access UORA.
  • the processing according to the input information may be: when the first site does not correctly decode the multicast data frame, the first RU sends a block acknowledgment frame of the multicast data frame to the access point in the UORA process, and the block acknowledgment frame is sent to the access point.
  • the frame is used to indicate a data frame with decoding errors in the multicast data frame
  • the first RU is one of at least one RU configured for the multicast feedback trigger frame.
  • the output information may be: a block acknowledgment frame, where the block acknowledgment frame is used to indicate an erroneously decoded data frame in the multicast data frame.
  • a communication device comprising: at least one processor; the processor is configured to execute a computer program or instruction stored in a memory, so that the communication device executes the method described in any one of the above aspects.
  • the memory may be coupled to the processor, or it may be independent of the processor.
  • the communication device may be the access point in the first aspect or the third aspect, or a device including the access point, or a device included in the access point, such as a chip; or, the communication device may be the first The first site in the second aspect or the fourth aspect, or a device including the first site, or a device included in the first site, such as a chip.
  • a computer-readable storage medium having instructions stored therein, when executed on a communication device, enables the communication device to perform the method described in any of the above aspects.
  • a computer program product comprising instructions which, when executed on a communication device, enable the communication device to perform the method of any of the preceding aspects.
  • a twelfth aspect provides a communication apparatus (for example, the communication apparatus may be a chip or a chip system), the communication apparatus includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device includes memory for holding necessary program instructions and data.
  • the device when it is a system-on-a-chip, it may consist of a chip or may contain a chip and other discrete devices.
  • the above-mentioned sending action/function may be understood as output information
  • the above-mentioned receiving action/function may be understood as input information
  • the technical effect brought by any one of the design methods in the fifth aspect to the twelfth aspect can refer to the technical effects brought by different design methods in the first aspect or the second aspect or the third aspect or the fourth aspect , and will not be repeated here.
  • a thirteenth aspect provides a communication system, where the communication system includes the access point described in the first aspect and the first station described in the second aspect; or, the communication system includes the access point described in the third aspect above. In point and the first site described in the fourth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the application.
  • Fig. 2 is a kind of network architecture diagram of multi-link communication provided by this application;
  • FIG. 3 is a schematic structural diagram of a WLAN device provided by the present application.
  • FIG. 4 is a schematic structural diagram of a user information field of a NFRP frame provided by the application.
  • FIG. 5 is a schematic diagram of a frame structure of an NDP feedback report response frame provided by the present application.
  • FIG. 6 is a schematic diagram of the setting of a network allocation vector NAV provided by the present application.
  • FIG. 7a is a schematic diagram of a unicast transmission provided by the present application.
  • FIG. 7b is a schematic diagram of multicast transmission provided by the application.
  • Fig. 8 is a kind of BAR frame-based multicast feedback flow schematic diagram provided by this application.
  • FIG. 9 is a schematic flow chart of a MU-BAR frame-based multicast feedback process provided by the present application.
  • FIG. 10 is a schematic flowchart of a multicast feedback method provided by the application.
  • 11a is a schematic diagram of a partial frame structure of a multicast feedback trigger frame provided by the application.
  • 11b is a schematic diagram of a partial frame structure of another multicast feedback trigger frame provided by the present application.
  • FIG. 13 is a schematic diagram of a multicast feedback process provided by this application.
  • 15 is a schematic diagram of the arrangement of a first NAV provided by the application.
  • 16 is a schematic diagram of the arrangement of another first NAV provided by the application.
  • 17 is a schematic flowchart of another multicast feedback method provided by this application.
  • FIG. 18 is a schematic diagram of RU distribution provided by this application.
  • 19 is a schematic diagram of a partial frame structure of yet another multicast feedback trigger frame provided by the application.
  • FIG. 20 is a schematic diagram of another multicast feedback process provided by this application.
  • 21 is a schematic structural diagram of an access point provided by the application.
  • 22 is a schematic structural diagram of a first site provided by the application.
  • FIG. 23 is a schematic structural diagram of a communication device provided by this application.
  • At least one (a) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, a and b and c, where a, b, c Can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the embodiments of the present application may be applicable to a wireless local area network (wireless local area network, WLAN) scenario, and may be applicable to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 system standard, such as the 802.11a/b/g standard , the 802.11n standard, the 802.11ac standard, the 802.11ax standard, or its next generation, such as the 802.11be standard or a next-generation standard.
  • IEEE Institute of Electrical and Electronics Engineers
  • the embodiments of the present application may also be applied to a wireless local area network system such as an Internet of Things (Internet of Things, IoT) network or a Vehicle to X (V2X) network.
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, for example, a long term evolution (long term evolution, LTE) system, an LTE frequency division duplex (frequency division duplex, FDD) system, an LTE time division duplex (time division duplex) system duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, and the future fifth generation (5th generation, 5G) communication system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • the present application provides a WLAN communication system to which the embodiments of the present application are applicable.
  • the WLAN communication system includes at least one wireless access point (access point, AP) and multiple stations (station, STA) associated with the AP.
  • access point access point
  • STA stations
  • the STA involved in this embodiment of the present application may also be called a terminal, and the two may be replaced by each other, which is not specifically limited by the method provided in the present application.
  • FIG. 1 shows an architecture diagram of a WLAN communication system provided by the present application.
  • FIG. 1 takes as an example that the WLAN includes one AP, and the AP is associated with STA1 , STA2 , STA3 , STA4 , and STA5 .
  • the AP may schedule radio resources for STAs associated with it, and/or unassociated STAs, and transmit data for the STAs on the scheduled radio resources.
  • the AP may schedule radio resources for STA1, STA2, STA3, STA4, and STA5, and transmit data for STA1, STA2, STA3, STA4, and STA5 on the scheduled radio resources, including uplink data information and/or downlink data information.
  • the embodiments of the present application may be applicable to communication between AP and STA, for example, multicast communication between AP and STA1, STA2, and STA3, and unicast communication between AP and STA4 or STA5; It is applicable to the communication between STA and STA, for example, the communication between STA4 and STA5.
  • the AP and the STA in this embodiment of the present application may be wireless communication devices that support multiple links to transmit in parallel. For example, it is called a multi-link device (MLD) or a multi-band device (MBD), which has higher transmission efficiency and higher throughput.
  • MLD multi-link device
  • MBD multi-band device
  • an AP that supports multiple-link communication can be called an MLD AP, and a STA that supports multiple-link communication, that is, a multi-link STA, can be called a non-Access Point Station (non-Access Point Station, non-AP).
  • STA it should be understood that the number of APs and STAs in FIG. 1 is only an example, and may be more or less.
  • FIG. 2 is a network architecture diagram of a multi-link communication according to an embodiment of the present application. It is shown that a multi-link device in a wireless local area network communicates with other devices through multiple links.
  • Figure 2 shows a schematic diagram of a multi-link AP device 101 communicating with a multi-link STA 102.
  • the multi-link AP device 101 includes a AP101-1 and AP101-2
  • the multilink STA102 includes subordinate STA102-1 and STA102-2
  • the multilink AP device 101 and the multilink STA102 use link 1 and link 2 for parallel communication.
  • the multi-link device in this embodiment of the present application may be a device with a single antenna, or may be a device with multiple antennas. For example, it may be a device with more than two antennas. This embodiment of the present application does not limit the number of antennas included in the multi-link device.
  • the multi-link device may allow services of the same access type to be transmitted on different links, and even allow the same data packets to be transmitted on different links; it may also not allow services of the same access type It is transmitted on different links, but allows services of different access types to be transmitted on different links.
  • the possible frequency bands for multi-link devices to work include: sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • the STA involved in the embodiments of the present application may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, and user equipment supporting wireless fidelity (WiFi) communication functions wherein the user terminals may include various wireless communication Functional handheld devices, in-vehicle devices, wearable devices, internet of things (IoT) devices, computing devices or other processing devices connected to wireless modems, and various forms of user equipment (UE), mobile mobile station (MS), terminal (terminal), terminal equipment (terminal equipment), portable communication device, hand-held, portable computing device, entertainment device, gaming device or system, global positioning system device or configured via a wireless medium Any other suitable device for network communication, etc.
  • the STA can support the 802.11be standard.
  • the STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other WLAN standards.
  • the AP involved in this embodiment of the present application may be a device that is deployed in a wireless communication network to provide wireless communication functions to its associated STAs, and is mainly deployed in homes, buildings, and campuses, with a typical coverage radius ranging from tens of meters to hundreds of meters. , of course, can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired network and wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to Ethernet.
  • the AP may be a communication device such as a base station with a WiFi chip, a router, a gateway, a repeater, a communication server, a switch or a bridge, wherein the base station may include various forms of macro base station, micro base station, repeater station Wait.
  • the AP can support the 802.11be standard.
  • the AP can also support WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the APs and STAs involved in this application may be collectively referred to as WLAN devices.
  • the WLAN devices may adopt the composition shown in FIG. 3 , or include the components shown in FIG. 3 .
  • the WLAN device 300 may be a STA or a chip or a chip system (or referred to as a system on a chip) in a STA; it may also be an AP or an AP A chip or a system on a chip (or called a system on a chip).
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the WLAN device 300 includes a processor 301 , a transceiver 302 and a communication line 303 . Further, the WLAN device 300 may further include a memory 304 . The processor 301 , the memory 304 and the transceiver 302 may be connected through a communication line 303 .
  • the processor 301 is a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processing (DSP), a microprocessor, a microcontroller, Programmable logic device (PLD) or any combination thereof.
  • the processor 301 may also be other apparatuses with processing functions, such as circuits, devices or software modules, which are not limited.
  • Transceiver 302 for communicating with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), WLAN, or the like.
  • Transceiver 302 may be a module, circuit, transceiver, or any device capable of communicating.
  • the communication line 303 is used to transmit information between various components included in the WLAN device 300 .
  • Memory 304 for storing instructions.
  • the instructions may be computer programs.
  • the memory 304 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or a random access memory (RAM) or a random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 304 may exist independently of the processor 301 , or may be integrated with the processor 301 .
  • the memory 304 may be used to store instructions or program code or some data or the like.
  • the memory 304 may be located in the WLAN device 300, or may be located outside the WLAN device 300, which is not limited.
  • the processor 301 is configured to execute the instructions stored in the memory 304 to implement the methods provided by the following embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the WLAN device 300 includes multiple processors, for example, in addition to the processor 301 in FIG. 3 , a processor 307 may also be included.
  • the WLAN device 300 further includes an output device 305 and an input device 306 .
  • the input device 306 is a device such as a keyboard, a mouse, a microphone or a joystick
  • the output device 305 is a device such as a display screen, a speaker, and the like.
  • composition shown in FIG. 3 does not constitute a limitation on the WLAN device, and in addition to the components shown in FIG. 3, the WLAN device may include more or less components than those shown in the figure, or a combination certain components, or different component arrangements.
  • NDP Null data packet
  • NDP Feedback NDP Feedback
  • NDP feedback is an efficient 1-bit feedback mechanism defined in the 802.11ax standard.
  • the feedback type supported by the NDP feedback mechanism defined in the 802.11ax standard is a feedback resource request (RR).
  • the basic principle of the feedback resource request is as follows: the AP sends an NDP Feedback Report Poll (NFRP) trigger (Trigger) frame to its associated STA, and the NFRP trigger frame includes an initial association identifier (association identifier, AID), bandwidth , and multiplexing flag (Multiplexing Flag) and other information.
  • NFRP NDP Feedback Report Poll
  • the NFRP trigger frame includes an initial association identifier (association identifier, AID), bandwidth , and multiplexing flag (Multiplexing Flag) and other information.
  • association AID association identifier
  • bandwidth bandwidth
  • Multiplexing flag Multiplexing flag
  • the initial AID and multiplexing flag information are included in the user information field (User Info field) of the NFRP trigger frame.
  • the user information field includes an initial 12-bit initial AID (Starting AID) field, a 9-bit reserved field (Reserved), a 4-bit Feedback Type field, a 7-bit reserved field (Reserved), and a 7-bit reserved field (Reserved).
  • the initial AID field indicates the AID of the starting STA scheduled by the AP
  • the feedback type field indicates the feedback type supported by the current NFRP trigger frame, when the value of this field is 0, it indicates that the feedback type is resource request
  • the uplink target received power indicates that the AP expects The received power of the feedback signal
  • the multiplexing flag field is used to determine the number of stations scheduled by the AP.
  • the STA After the STA receives the NFRP trigger frame, it determines the number of stations N_STA scheduled by the AP according to the bandwidth and multiplexing flag information in it. STA scheduled by the AP. Exemplarily, the number of stations N_STA scheduled by the AP satisfies the following formula (1):
  • N_STA 18*2 BW *(MultiplexingFlag+1) (1)
  • BW indicates the channel bandwidth. For example, if BW is equal to 0, the indicated channel bandwidth is 20MHz, if BW is equal to 1, the indicated channel bandwidth is 40MHz, if BW is equal to 2, the indicated channel bandwidth is 80MHz, and BW is equal to 3, and the indicated channel bandwidth is 80+80MHz. , or 160MHz; MultiplexingFlag is the value of the multiplexing flag field in the NFRP trigger frame.
  • the scheduled STA decides whether to send an NDP Feedback Report Response (NFRR) frame to the AP according to whether it has data to send. For example, when the scheduled STA has no data to send, it does not send an NDP Feedback Report Response frame. , or, when the scheduled STA has data to be sent, it sends an NDP feedback report response frame.
  • NFRR NDP Feedback Report Response
  • the frame structure of the NDP feedback report response frame is similar to a high efficiency (High efficiency, HE) trigger-based (Trigger-Based, TB) physical layer protocol data unit (physical protocol data unit, PPDU) ) (that is, HE TB PPDU) frame structure, the difference is: the NDP feedback report response frame does not include the data (Data) field, and the duration of the data packet extension (PE) field is 0 microseconds (microsecond, us).
  • HE High efficiency
  • TB physical layer protocol data unit
  • PE data packet extension
  • the frame structure of the NDP feedback report response frame is shown in Figure 5, including: a traditional short training field (legacy-short training field, L-STF), a traditional long training field (legacy-long training field, L- LTF), legacy signaling field (legacy-signal field, L-SIG), repeated legacy signaling field (repeated legacy-signal field, RL-SIG), high efficient-signal field A (high efficient-signal field A, HE- SIG A), high efficient-short training field (HE-STF), high efficient-long training field (HE-LTF), data packet extension (PE), the PE
  • the duration is 0us, which can also be understood as the NDP feedback report response frame does not include PE.
  • the AP Before sending the NFRP trigger frame, the AP will configure two subcarrier sets NDP_TONE_SET_0 and NDP_TONE_SET_1 to its scheduled STAs through the broadcast frame. Each STA scheduled by the AP has an associated subcarrier in NDP_TONE_SET_0 and an associated subcarrier in NDP_TONE_SET_1. Carrier, for the scheduled STA to send the NDP feedback report response frame.
  • the scheduled STA When the scheduled STA has data to be sent, it can send an NDP feedback report response frame to the AP on the subcarrier associated with it in NDP_TONE_SET_0, indicating that the RR fed back by the STA is between 1 and the RR buffer threshold.
  • the feedback state of the NDP feedback report response frame is state 0; alternatively, the NDP feedback report response frame can be sent to the AP on the subcarrier associated with it in NDP_TONE_SET_1, indicating that the RR fed back by the STA is greater than the RR buffer threshold.
  • the feedback status of the NDP feedback report response frame is status 1.
  • STA1 scheduled by the AP has data to be sent, if the RR determined by the STA is between 1 and the RR buffer threshold, STA1 sends an NDP feedback report response frame to the AP on subcarrier 11 in NDP_TONE_SET_0; When the RR is greater than the RR buffer threshold, STA1 sends an NDP feedback report response frame to the AP on subcarrier 12 in NDP_TONE_SET_1.
  • Uplink OFDMA random access (UL OFDMA-based Random Access, UORA):
  • OFDMA refers to uplink orthogonal frequency division multiple access (orthogonal frequency division multiple access, OFDMA).
  • UORA is an OFDMA-based uplink random access mechanism defined in the 802.11ax standard.
  • the basic principle is as follows:
  • the AP allocates a resource unit (RU) for random access through a trigger frame.
  • the trigger frame includes one or more user information fields (user info fields, UIFs), each UIF is configured with one RU, and multiple UIFs are allowed to configure multiple consecutive RUs of the same size.
  • each UIF includes an "AID12" field. When the "AID12" field is set to 0, it indicates that the RU currently configured by the UIF is the RU allocated to the STA associated with the AP; when the "AID12" field is set to 2045, it indicates that the current UIF-configured RUs are RUs allocated to unassociated STAs.
  • one RU includes multiple subcarriers, and different RUs include different multiple subcarriers. Further, multiple subcarriers included in one RU are mutually orthogonal.
  • the AP does not specify which STA the RU allocated by the trigger frame is allocated to.
  • the STA that receives the trigger frame can pass the OFDMA contention window (OCW) and OFDMA random access back-off (OFDMA random access) backoff, OBO), select the RU allocated by the trigger frame for uplink transmission.
  • OFDMA contention window OCW
  • OFDMA random access back-off OFDMA random access backoff
  • a STA that supports UORA can randomly select a value in [0, OCW] as the initial value of the OBO counter, and after receiving the UORA trigger frame, subtract the total number of RUs configured in the UORA trigger frame from the initial value of the OBO counter. , if the result is less than or equal to 0, the STA randomly selects a UR from the RUs configured in the UORA trigger frame for uplink transmission; if the result is greater than 0, it continues to back off and waits for the next UORA trigger frame.
  • ADMDU Aggregate-MAC protocol data unit
  • the MAC refers to a media access control (media access control, MAC).
  • APMDU is a physical layer data frame or physical layer formed by encapsulating a MAC service data unit (MAC service data unit, MSDU) or an aggregate-MAC service data unit (aggregate-MAC service data unit, AMSDU) to obtain an MDPU, and then aggregating multiple MDPUs. layer message.
  • MAC service data unit MSDU
  • aggregate-MAC service data unit aggregate-MAC service data unit
  • the sender only needs to perform one channel contention or backoff, that is, multiple MPDUs can be sent at the same time, thereby reducing the channel resource consumption caused by sending each MDPU separately.
  • the receiving end After receiving the AMPDU, the receiving end decodes each MPDU in the AMPDU, and sends feedback for each MPDU.
  • the feedback of multiple MDPUs included in the AMPDU is completed through one BA frame, thereby reducing the number of feedback frames.
  • the BA frame may include a block acknowledgment bitmap (bitmap) to feed back the decoding status of each MPDU.
  • NAV Network allocation vector
  • NAV is a method for virtual carrier sense defined by WLAN. After a WLAN device competes to obtain a channel, it usually sends one or more frames. When the NAV method is used, the WLAN device that obtains the channel can set the NAV in the Duration field of the MAC frame header included in each frame it sends to Notify other WLAN devices that the WLAN device that currently obtains the channel will use the channel for the duration, and other WLAN devices listening to the frame will keep silent for the duration, that is, stop contending for the channel.
  • STAa competes for the channel, it sends a request to send (request to send, RTS) frame in a broadcast manner.
  • RTS request to send
  • the NAV1 is set in the RTS frame to instruct the STA1 to send a data frame to the designated receiving end (STAb) within the duration indicated by the NAV1.
  • STAb After receiving the RTS frame and the short interframe space (SIFS) interval, STAb sends a clear to send (CTS) frame in a broadcast manner to confirm the transmission of STAa, and NAV2 is set in the CTS frame to indicate the use of The duration of the channel, the start time of the duration indicated by NAV2 is the end time of the CTS frame, and the end time of the duration indicated by NAV2 and NAV1 is the same.
  • STAa sends a data (Data) frame to STAb, and STAb replies with an acknowledgement (acknowledgement, ACK) frame to STAa.
  • Data data
  • ACK acknowledgement
  • NAV is also included in the data frame sent by STAa and the ACK frame sent by STAb, but it is not shown in FIG. 6 .
  • Other STAs that receive the RTS frame or CTS frame within the duration indicated by NAV1 keep silent, and other STAs start to contend for the channel after the DIFS time when the duration indicated by NAV1 ends.
  • Unicast refers to the point-to-point transmission mode, that is, one sender corresponds to one receiver.
  • the sender can be WLAN device 1
  • the receiver can be only WLAN device 2, at this time, it can be considered that WLAN device 1 Unicast transmission with WLAN device 2.
  • Multicast refers to the transmission mode of many-to-multipoint. Unless otherwise specified, the multicast referred to in this application refers to the multicast transmission between the AP and multiple STAs, that is, the AP only needs to send one piece of data to all the STAs in the multicast group. Exemplarily, as shown in FIG. 7b, it is assumed that there is AP1, and there are 5 STAs from STA1 to STA5. AP1 can be used as the sender. When AP1 needs to send the same data to STA1, STA2, and STA5, the receiver can include STA1. , STA2, and STA5, or in other words, the STAs in the multicast group may include STA1, STA2, and STA5.
  • the quality of wireless channels is unstable.
  • APs need to perform rate adaptation and retransmission according to channel quality conditions.
  • the AP can obtain the link quality of the channel and the reliability of data transmission through the response feedback of the STA.
  • the reliability of transmission can be ensured through retransmission, and on the other hand, the modulation
  • the adjustment of the coding scheme (modulation and coding scheme, MCS) realizes link rate adaptation and ensures efficient transmission.
  • the traditional IEEE 802.11 does not define an effective response feedback mechanism, which brings two typical problems: 1) The multicast STA does not have any response feedback and cannot ensure the reliability of the multicast scenario through retransmission; 2) Multicast data streams are sent at a fixed minimum rate, and link quality information cannot be obtained to achieve rate adaptation, making it difficult to take advantage of the potential advantages of multicast transmission efficiency.
  • the multicast STA involved in this application refers to the STA in the multicast group, or in other words, the STA serving as the receiving end in multicast transmission.
  • the three descriptions can be replaced with each other, which is not specifically limited in this application.
  • an effective option is for the AP to convert multicast packets into unicast packets for transmission, and use the ACK feedback and replay of the unicast transmission mode.
  • the transmission guarantees the reliability of each terminal, and the response feedback mechanism in the unicast scenario can be used to realize rate adaptation, and select the appropriate transmission rate for users with different channel qualities.
  • converting a multicast packet into a unicast packet will result in repeated packet transmission.
  • the bandwidth resources or delay required by unicast compared to multicast increases with the number of STAs in the multicast group. It is large and sharply increased, which makes it difficult to apply this scheme to scenarios with high user density.
  • 802.11bc regards the optimization of the transmission and feedback method of multicast services as one of the main topics of discussion.
  • the 802.11aa standard proposes a groupcast retries (GCR) feedback mechanism, which extends the existing BA mechanism of the 802.11 standard to the scenario of group addressed transmission service (GATS). , that is, extending the BA mechanism to multicast scenarios.
  • GCR groupcast retries
  • the AP sends a multicast AMPDU to the STAs in the multicast group, and then uses a block ACK request frame (block ACK request, BAR) to poll some or all STAs in the multicast group, and receives a BAR.
  • BAR block ACK request
  • the STA of the frame will reply to the AP with a BA frame to inform the AP of the decoding situation of the multicast AMPDU.
  • the AP first sends the multicast AMPDU, and then sends BAR1 to STA1, and STA1 replies BA1 to the AP after receiving BAR1. .
  • AP continues to send BAR2 to STA2, and STA2 replies BA2 to AP after receiving BAR1.
  • AP continues to send BAR3 to STA3, and STA2 replies BA3 to AP after receiving BAR3.
  • the 802.11ax standard optimizes the GCR feedback mechanism and defines the GCR MU-BAR mechanism, where MU refers to multi-user (MU).
  • MU refers to multi-user
  • the AAP sends a multicast AMPDU to the STAs in the multicast group, and then uses the MU-BAR frame to schedule multiple STAs in the multicast group to reply to BA frames on the RUs allocated to them.
  • the AP first sends the multicast AMPDU, and then sends the MU-BAR frame, in the MU-BAR frame, respectively: STA1, STA2, and STA3 allocate RUs.
  • STA1, STA2, and STA3 After receiving the MU-BAR frame, STA1, STA2, and STA3 reply to the AP with BA1, BA2, and BA3 on the RUs allocated by the AP, respectively.
  • the AP can request multiple multicast STAs to feed back BA frames through one MU-BAR frame, which can reduce the transmission overhead of GCR control frames compared to the solution shown in FIG. 8 .
  • the number of multicast STAs for which a MU-BAR frame requests feedback is limited.
  • the AP still needs to send multiple MU-BARs. Interaction of multiple rounds of GCR control frames. For example, when the channel bandwidth is 40MHz, there are 18 available RUs that can be allocated to STAs to feed back BA frames.
  • the present application provides a multicast feedback method, which can feed back the multicast data frame with low transmission overhead, so that the access point obtains the channel quality status according to the feedback from the station.
  • each field involved in this application is only an exemplary description, and this application does not limit the length of each field to the length given in this application, and its length may be longer than the length given in this application or Shorter.
  • the access point and/or the STA may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or various Variation of operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • FIG. 10 it is a schematic flowchart of the multicast feedback method provided by the embodiment of the present application.
  • the method provided by the embodiment of the present application is applied to the application scenario shown in FIG. 1 as an example.
  • the embodiments of the present application can also be applied to other possible communication scenarios or communication systems. As long as the scenario of feeding back multicast data frames is involved, feedback can be implemented by the methods provided in the embodiments of the present application.
  • the service transmission method provided by this application includes the following steps:
  • An access point sends a multicast data frame.
  • the first station receives the multicast data frame from the access point.
  • the first site is any site among multiple sites in the multicast group.
  • the multicast data frame sent by the access point can be received by multiple sites in the multicast group.
  • the sites in the multicast group include the first site, and the first site receives the multicast data frame.
  • the multicast data frame is taken as an example for description, and the following embodiments also take the first site as the main body to describe the operations implemented by the sites in the multicast group.
  • the multicast data frame is composed of multiple data frames, for example, the multicast data frame is AMPDU, and the data frames constituting the multicast data frame are multiple MPDUs.
  • the data frame when the multicast data frame is composed of multiple data frames, the data frame may also be referred to as a sub-data frame of the multicast data frame.
  • the MPDU when the multicast data frame is an AMPDU, the MPDU may also be referred to as an AMPDU sub data frame.
  • the multicast data frame includes only one data frame, for example, the data frame is an MPDU, and the multicast data frame includes only one MPDU, or in other words, the multicast data frame is an MPDU.
  • the access point sends a multicast feedback trigger frame.
  • the first station receives the multicast feedback trigger frame from the access point.
  • the multicast feedback trigger frame is used to schedule multiple sites in the multicast group to feedback whether the multicast data frame is correctly decoded.
  • this application denotes the number of all sites in a multicast group as N, that is, the multicast group includes N sites in total; the multicast feedback triggers frame scheduling of multiple sites in the multicast group
  • the number is denoted as M, that is, M sites in the multicast feedback trigger frame scheduling multicast group feedback whether the multicast data frame is decoded correctly, and the M sites include the first site.
  • N and M are positive integers greater than 1, and M is less than or equal to N.
  • the value of M is positively related to the channel bandwidth. That is to say, the number of stations in a multicast group whose multicast feedback triggers frame scheduling is positively correlated with the channel bandwidth, that is, the greater the channel bandwidth, the greater the number of stations whose multicast feedback triggers frame scheduling. many.
  • the value of M and the channel bandwidth satisfy the following formula (2):
  • C is a constant value of 18, indicating the minimum number of sites that can be scheduled at a time when the bandwidth is 20MHz;
  • BW indicates the channel bandwidth, for example, if BW is equal to 0, the indicated channel bandwidth is 20MHz, and BW is equal to 1, indicating that the channel bandwidth is 40MHz, BW is equal to 2, indicates that the channel bandwidth is 80MHz, and BW is equal to 3, indicating that the channel bandwidth is 80+80MHz, or 160MHz;
  • the value of MultiplexingFlag is 0 or 1.
  • the access point can schedule a maximum of 72 stations in the multicast group to feedback whether the multicast data frame is through one multicast feedback trigger frame. Decoding is correct.
  • the number of RUs that can be used for feedback is 18, that is, one MU-BAR frame can schedule up to 18 site feedback groups in the multicast group Whether the broadcast data frame is decoded correctly.
  • the access point only needs to send one multicast feedback trigger frame, and the 60 sites can be scheduled for feedback; if the solution shown in Figure 9 is used, To schedule all 60 stations for feedback, the access point needs to send four MU-BAR frames. It can be obtained that the overhead of the control frame can be reduced by the solution of the present application.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is a multicast retransmission confirmation request.
  • the stations in the multicast group can determine the type of the multicast feedback trigger frame, and then can perform feedback according to the feedback trigger frame.
  • the multicast feedback trigger frame is an NFRP trigger frame
  • the first field is a feedback type field in the user information field of the NFRP trigger frame
  • the structure of the user information field can refer to FIG.
  • the first value can be any one of 1-15. Taking the first value equal to 1 as an example, the value of the feedback type field and the corresponding feedback type are shown in Table 1 below.
  • the present application can multiplex the feedback type field of the NFRP trigger frame, and use a reserved value of the feedback type field in the 802.11ax standard to represent the multicast retransmission confirmation request to indicate whether the scheduled STA feedbacks the multicast data frame or not. Decoding is correct.
  • the multicast feedback trigger frame includes a second field for indicating a multicast data frame. Through the second field, the multicast data frame can be clearly indicated, so that the stations in the multicast group can determine that the multicast data frame indicated by the multicast feedback trigger frame needs to be fed back, so as to feed back the multicast data frame, thereby making The access point and the station have the same understanding of the feedback object, which improves the feedback accuracy.
  • the multicast feedback trigger frame is an NFRP trigger frame
  • the second field is a field in a user information field of the NFRP trigger frame. That is to say, the present application extends a second field in the user information field of the NFRP trigger frame defined by the 802.11ax standard, which is used to indicate the multicast data frame that needs to be fed back.
  • the structure of the user information field of the NFRP trigger frame may be as shown in FIG. 11a.
  • the second field may be set as the index of the multicast data frame.
  • the second field can be set as the sequence number index of the MPDU;
  • the second field can be set as the index of the AMPDU, that is, the AMPDU can be numbered.
  • the index is used to uniquely identify the AMPDU, and the feedback AMPDU can be uniquely determined by setting the second field as the index of the AMPDU.
  • the second field may include a first subfield and a second subfield, where the first subfield is used to carry the sequence number index of the starting data frame in the multicast data frame, and the second subfield is used to carry Sequence number index of the end data frame in the multicast data frame.
  • the first subfield may be referred to as a Block ACK Starting Sequence (Block ACK Starting Sequence) field
  • the second subfield may be referred to as a Block ACK Ending Sequence (Block ACK Ending Sequence) field.
  • the structure of the user information field of the NFRP trigger frame may be as shown in Figure 11b.
  • both the block acknowledgment start sequence field and the block acknowledgment end sequence field can be set to the sequence number index of the MPDU;
  • the Block Ack Start Sequence field may be set to the sequence number index of the start MPDU in the AMPDU, and the Block Ack End Sequence field may be set to the sequence number index of the end MPDU in the AMPDU.
  • the second field may include a first subfield and a second subfield, where the first subfield is used to carry the sequence number index of the starting data frame in the multicast data frame, and the second subfield is used for The number of data frames included in the bearer multicast data frame.
  • the first subfield when the multicast data frame is an MPDU, the first subfield may be set to the sequence number index of the MPDU, and the second subfield may be set to 1, indicating that the multicast data frame includes one data frame; the multicast data frame is In the case of AMPDU, the first subfield may be set to the sequence number index of the starting MPDU in the AMPDU, and the second subfield may be set to the number of MPDUs included in the AMPDU.
  • the second field may include a first subfield and a second subfield, the first subfield is used to carry the number of data frames included in the multicast data frame, and the second subfield is used to carry Sequence number index of the end data frame in the multicast data frame.
  • the first subfield when the multicast data frame is an MPDU, the first subfield may be set to 1, indicating that the multicast data frame includes one data frame, and the second subfield may be set to the sequence number index of the MPDU; the multicast data frame is In the case of AMPDU, the first subfield may be set to the number of MPDUs included in the AMPDU, and the second subfield may be set to the sequence number index of the ending MPDU in the AMPDU.
  • serial number index involved in this application may also be referred to as a “serial number”, and the two may be replaced by each other, which is not specifically limited in this application.
  • the first site determines whether the M sites whose multicast feedback triggers frame scheduling includes the first site.
  • the multicast feedback trigger frame may include an initial AID
  • the first station determines whether the AID of the first station is greater than or equal to the initial AID and less than the initial AID and sum of M. If yes, the first site is a site whose multicast feedback triggers frame scheduling; if not, the first site is not a site whose multicast feedback triggers frame scheduling.
  • This application is described by taking the first site as an example where the multicast feedback triggers frame scheduling, that is, the M sites where the multicast feedback triggers frame scheduling includes the first site.
  • step S1004a is performed; if the multicast data frame is not correctly decoded, the In other words, if the decoding of the multicast data frame is wrong, the following steps S1004b or S1004c are executed.
  • the first station sends a multicast feedback report frame to the access point on the first subcarrier.
  • the first subcarrier is a subcarrier associated with the first site in the first subcarrier set, and the first subcarrier set is used to carry the multicast feedback report frame during correct decoding.
  • the first set of subcarriers may be configured by the access point before step S1002.
  • the first subcarrier set includes N subcarriers, which are respectively associated with N sites in the multicast group, that is, one site in the multicast group is associated with one subcarrier in the first subcarrier set, and different sites are associated with different subcarriers . That is, when a certain station in the multicast group correctly decodes the multicast data frame, it sends the multicast feedback data frame to the access point on the subcarriers associated with it in the first subcarrier set.
  • the first station sends a multicast feedback report frame to the access point on the second subcarrier.
  • the second subcarrier is a subcarrier associated with the first site in the second subcarrier set, and the second subcarrier set is used to carry the multicast feedback report frame when decoding is incorrect.
  • the second set of subcarriers may be configured by the access point before step S1002.
  • the second subcarrier set includes N subcarriers, which are respectively associated with N sites in the multicast group, that is, one site in the multicast group is associated with one subcarrier in the second subcarrier set, and different sites are associated with different subcarriers . That is to say, when a certain station in the multicast group does not correctly decode the multicast data frame, it sends the multicast feedback data frame to the access point on the subcarriers associated with it in the second subcarrier set.
  • the first set of subcarriers and the second set of subcarriers are configured by the access point through one broadcast frame, or may be configured through two broadcast frames, which are not specifically limited in this application.
  • the first station does not send a multicast feedback report frame to the access point on the first subcarrier and the second subcarrier.
  • the first sub-carrier and the second sub-carrier may refer to the foregoing description, which will not be repeated here. That is to say, when the first station does not correctly decode the multicast data frame, it may not reply the multicast feedback report frame to the access point.
  • the multicast feedback report frame involved in the present application is a null data frame, that is, does not include a data field, which may also be referred to as a null data packet feedback report (NDP Feedback Report) frame.
  • NDP Feedback Report null data packet feedback report
  • the structure of the multicast feedback report frame may be as shown in FIG. 5 .
  • the multicast feedback report frame can be regarded as a reply frame of the multicast feedback trigger frame.
  • the multicast feedback report frame is a frame triggered by the multicast feedback trigger frame.
  • the access point After it sends the multicast feedback trigger frame, it can perform energy detection on the subcarriers included in the first subcarrier set and the second subcarrier set.
  • the access point may perform the following step S1005a:
  • the access point detects energy on the first subcarrier, and determines that the first station correctly decodes the multicast data frame.
  • the first set of subcarriers is configured by the access point, and on the side of the access point, the stations associated with the subcarriers in the first set of subcarriers can be determined. Therefore, the access point detects on the first subcarrier When the energy is reached, since it can be determined that the first subcarrier is associated with the first station, it can be determined that the first station correctly decodes the multicast data frame.
  • step S1004b When the first station performs step S1004b, the access point performs the following step S1005b:
  • the access point detects energy on the second subcarrier, and determines that the first station does not correctly decode the multicast data frame.
  • the second set of subcarriers is configured by the access point, and on the side of the access point, the stations associated with the subcarriers in the second set of subcarriers can be determined. Therefore, the access point detects on the second subcarrier When the energy is reached, since it can be determined that the second subcarrier is associated with the first station, it can be determined that the first station correctly decodes the multicast data frame.
  • step S1004c When the first station performs step S1004c, the access point performs the following step S1005c:
  • the access point detects no energy on both the first subcarrier and the second subcarrier, and determines that the first station does not correctly decode the multicast data frame.
  • the access point can determine, among the M stations that the multicast feedback triggers frame scheduling, the stations that correctly decode the multicast data frame, and the stations that do not correctly decode the multicast data frame.
  • M the above solution may be repeatedly executed from step S1002 to schedule other stations except the M stations scheduled this time among the N stations in the multicast group for feedback.
  • M the access point can determine, among the N sites in the multicast group, the sites that correctly decode the multicast data frame and the sites that do not correctly decode the multicast data frame.
  • the access point schedules the stations in the multicast group to reply to the multicast feedback report frame, and learns the information of Whether the station decodes the MPDU correctly. Afterwards, the access point can retransmit the MPDU for the incorrectly decoded station to improve the transmission reliability, or it can also adjust the link rate to improve the transmission efficiency.
  • the access point can learn, among the N sites in the multicast group, the sites that do not correctly decode the AMPDU. Further, in order to know that the AMPDU is not correctly decoded coded MPDU, as shown in Figure 12, the method provided by this application further includes the following steps S1006-S1007:
  • the access point sends a block ACK request (block ACK request, BAR) trigger frame.
  • the first station receives the block ack request trigger frame from the access point.
  • the block acknowledgment request trigger frame is used to schedule at least one second station to feed back the sequence number index of the erroneously decoded MPDU in the AMPDU on its associated RU.
  • the second site is a site that does not correctly decode the AMPDU among the N sites in the multicast group.
  • this application denotes the number of sites in the multicast group that do not correctly decode AMPDUs as P, that is, the multicast group includes P sites that do not correctly decode AMPDUs; the block acknowledgment request triggers the frame
  • P the number of sites in the multicast group that do not correctly decode AMPDUs
  • K the number of the scheduled at least one second station
  • P and K are positive integers, and K is less than or equal to P.
  • the first site is used as an example for the block acknowledgment request trigger frame to be used for scheduling one site of the at least one second site. That is to say, in this scenario, the first site also acts as the second site.
  • the block ack request trigger frame is used to schedule the first site to feed back AMPDUs on the RU associated with the first site. The index of the sequence number of the MPDU that was decoded incorrectly.
  • the block ack request trigger frame includes the AID of each of the K second sites, and the RU associated with each second site, or in other words, the RU allocated for each second site.
  • the confirmation request trigger frame may be a MU-BAR trigger frame in the 802.11ax standard, or a trigger frame obtained by extending or pruning the MU-BAR trigger frame in the 802.11ax standard.
  • block acknowledgment request trigger frame sent by the access point can be received by the K second stations, and the embodiment of the present application uses the first station among the K second stations as an example for description. It should be understood that multiple second sites in the K second sites have the same or similar processing actions, and can all execute the functions or actions implemented by the first sites provided in the following embodiments of the present application.
  • the first site sends a block acknowledgement frame (block acknowledgement, BA) to the access point on the RU associated with the first site.
  • the access point receives the block acknowledgment frame from the first site on the RU associated with the first site.
  • the RU associated with the first site is the RU allocated for the first site in the block acknowledgment request trigger frame.
  • the block acknowledgment frame is used to indicate an MPDU that the first station decodes error in the AMPDU.
  • the block ack frame may include a block ack bitmap (Block ACK Bitmap), that is, a bitmap is used to indicate a decoding error MPDU. Specifically, each bit in the block acknowledgment bitmap corresponds to one MPDU in the AMPDU.
  • the sequence number indices are 10-14 respectively
  • the first station decodes the MPDUs with the sequence number indices 10, 13, and 14 errors as an example, if the bit is 1, it means that the corresponding MPDU is decoded. If the code is wrong, then the block confirmation bitmap can be: 10011. Among them, from left to right, the first 1 indicates that the MPDU with sequence number index 10 is decoded incorrectly, the second and third 0 indicate that the MPDU with sequence number index 11 and 12 is correctly decoded, and the last two 1s indicate the sequence number respectively. MPDUs with indices 13 and 14 were decoded incorrectly.
  • the access point can determine that among the K stations that do not correctly decode the AMPDU, each station decodes the wrong MDPU.
  • K is less than P
  • the above steps S1006 and S1007 may be repeatedly performed to schedule other stations except the K stations scheduled this time among the P stations that do not correctly decode the AMPDU to feed back the sequence index of the MPDU that is decoded incorrectly.
  • P equals K
  • the access point can determine that of all the stations that did not decode the AMPDU correctly, each station decoded the wrong MDPU.
  • the present application provides a two-level feedback mechanism.
  • the access point can first trigger the frame scheduling through the multicast feedback.
  • the stations in the multicast group reply to the multicast feedback report frame, so as to know the stations in the multicast group that did not decode the AMPDU correctly.
  • the access point triggers the frame scheduling through the block acknowledgment request to send back the sequence number index of the MPDU that is decoded incorrectly. Therefore, the access point can retransmit the MPDU with an error in decoding to improve the transmission reliability, or it can also adjust the link rate to improve the transmission efficiency.
  • the AP first sends the multicast data frame AMPDU, and then sends the multicast feedback trigger.
  • frame assuming that STA1 decodes the AMPDU correctly, and STA2 and STA3 do not decode the AMPDU correctly
  • STA2 and STA3 respectively send a group message to the AP on the subcarriers associated with them in the second subcarrier set.
  • broadcast feedback report frame After receiving the multicast feedback trigger frame, STA1 sends a multicast feedback report frame to the AP on the subcarriers associated with it in the first subcarrier set.
  • the access point can determine that STA2 and STA3 have not decoded the AMPDU correctly, thereby sending a block acknowledgment trigger frame, and scheduling STA2 and STA3 to feed back the erroneously decoded MPDU in the AMPDU on their associated RUs. index of.
  • STA2 and STA3 respectively send a block acknowledgment frame on their associated RUs to indicate the MPDU with an error in decoding.
  • FIG. 14 it is a schematic time sequence diagram of the communication flow shown in FIG. 13 .
  • the description is given by taking an example that the multicast feedback trigger frame is an NFRP frame, the multicast feedback report frame is an NDP, and the block acknowledgment request trigger frame is a MU-BAR.
  • the access point filters out the STAs with correct decoding through the first-level feedback, so in the second-level feedback, it is possible to avoid allocating RUs for the STAs with correct decoding, so that The overhead of the interaction between the BAR trigger frame and the BA frame in the second-level feedback can be effectively reduced.
  • the number of RUs that can be used to feed back MPDUs with decoding errors is 18.
  • the AP needs to send 4 MU-BAR trigger frame, correspondingly, the STA in the multicast group needs to reply the BA frame regardless of whether the AMPDU is correctly decoded or not.
  • the AP within a certain packet error ratio (PER) range, the AP only needs to send two block acknowledgment trigger frames, and the STA that correctly decodes the AMPDU does not need to reply to the BA frame.
  • PER packet error ratio
  • the multicast feedback process provided by the present application has been introduced above.
  • the present application considers the scenario where there are non-multicast sites in the coverage of the access point.
  • the data transmission initiated by the non-multicast site on the channel may interfere with each frame involved in the above process. Based on Therefore, the present application performs channel protection through the NAV mechanism, thereby improving the reliability of the above feedback process.
  • the multicast feedback trigger frame sent by the access point may include a third field, where the third field is used to indicate the first NAV.
  • the third field may be a duration (Duration) field in the header of the multicast feedback trigger frame.
  • the duration of the first NAV is the sum of the duration of the multicast feedback report frame and the SIFS
  • the multicast feedback report frame is a reply frame of the multicast feedback trigger frame.
  • the STAs in the multicast group include STA1 and STA2, and there is a non-multicast station STA3 within the coverage of the AP as an example, after the AP sends the MPDU, it sends the group.
  • the multicast feedback trigger frame indicates the first NAV, STA1 and STA2 send the multicast feedback report frame (indicated by NDP in Figure 15) according to the scheduling of the AP in the first NAV, and STA3 is in the first NAV Keep silent.
  • the duration of the first NAV is the sum of the following items: the duration of the multicast feedback report frame, the duration of the block acknowledgement request trigger frame, the duration of the block acknowledgement frame, and SIFS.
  • the duration of the first NAV is:
  • the duration of the first NAV is:
  • L is the number of frame acknowledgment trigger frames sent by the access point.
  • the STAs in the multicast group include STA1 and STA2, and there is a non-multicast station STA3 in the coverage area of the AP as an example, after the AP sends the AMPDU, it sends the group
  • the multicast feedback trigger frame indicates the first NAV
  • STA1 and STA2 send the multicast feedback report frame (indicated by NDP in Figure 16) according to the scheduling of the AP in the first NAV.
  • AP sends a block ack request trigger frame and schedules STA2 to feed back a block acknowledgment frame.
  • STA2 receives the block ack request trigger frame, it sends a block ack frame according to the AP's scheduling to indicate the MPDU with decoding error, and STA3 keeps silent in the first NAV .
  • the access point can protect the channel in the feedback process, reduce the interference of non-multicast sites on the feedback process, improve the feedback efficiency, and reduce the feedback delay. Therefore, the access point can retransmit the erroneous MPDU in time, reduce the delay of the multicast service, or adjust the transmission rate in time to improve the transmission rate of the multicast service.
  • the present application also provides a multicast feedback method, which selects an appropriate MCS at the access point, controls the PER of a single transmission within a certain range, and ensures that there are only a few multicast STAs
  • a multicast feedback method which selects an appropriate MCS at the access point, controls the PER of a single transmission within a certain range, and ensures that there are only a few multicast STAs
  • decoding errors with the help of uplink OFDMA random access, that is, the idea of UORA, at least one RU is pre-allocated for multicast STAs that do not correctly decode the multicast data frame to feed back information about decoding errors.
  • the multicast feedback method includes the following steps:
  • An access point sends a multicast data frame.
  • the first station receives the multicast data frame from the access point.
  • the first site is any site among multiple sites in the multicast group.
  • the multicast data frame is composed of multiple data frames, for example, the multicast data frame is AMPDU, and the data frames constituting the multicast data frame are multiple MPDUs.
  • the multicast data frame includes only one data frame, for example, the data frame is an MPDU, and the multicast data frame includes only one MPDU, or in other words, the multicast data frame is an MPDU.
  • step S1701 For the specific details of step S1701, reference may be made to the relevant description of the above-mentioned step S1001, which will not be repeated here.
  • the access point sends a multicast feedback trigger frame.
  • the first station receives the multicast feedback trigger frame from the access point.
  • the multicast feedback trigger frame is used to configure at least one RU, and the RU is used for the station in the multicast group to transmit the block acknowledgment frame of the multicast data frame in the UORA process, and the block acknowledgment frame of the multicast data frame is used for Indicates data frames with decoding errors in multicast data frames.
  • the “multicast feedback trigger frame” involved in the method shown in FIG. 17 may also be referred to as: “uplink OFDMA random access-negative acknowledgment poll trigger (UORA-NACK Poll Trigger) frame”, two can be replaced with each other, which is not specifically limited in this application.
  • uplink OFDMA random access-negative acknowledgment poll trigger (UORA-NACK Poll Trigger) frame two can be replaced with each other, which is not specifically limited in this application.
  • the multicast feedback trigger frame may include at least one user information field (user info field, UIF), each user information field is used to configure one RU, allowing multiple UIFs to be configured consecutively with the same size ru.
  • UIF user info field
  • each UIF includes an "AID12" field, and the "AID12" field is set to 0, indicating that the RU currently configured by the UIF is the RU allocated to the STA associated with the AP.
  • the multicast feedback trigger frame including three UIFs, and these three UIFs are respectively configured with RU1, RU2, and RU3 as an example, the setting of the "AID12" field in the UIF and the schematic diagram of the distribution of RUs can be shown in Figure 18. .
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the current multicast feedback trigger frame is uplink orthogonal frequency division multiple access random access- Negative acknowledgment poll, ie UORA-NACK Poll.
  • the multicast feedback trigger frame may be a newly defined MU-BAR trigger frame, including a BAR control field, and the first field may be a BAR type (BAR Type) in the BAR control (BAR control) field. ) field.
  • BAR Type BAR type in the BAR control (BAR control) field.
  • the format of the BAR control field may be as shown in FIG. 19, including a 1-bit BAR acknowledgment policy (BAR ACK Policy) field, a 4-bit BAR Type (BAR Type) field, and a 7-bit reserved (Reserved) field. , and a 4-bit service identification information (TID_INFO) field, where TID refers to a service identifier (traffic identifier, TID).
  • BAR ACK Policy BAR acknowledgment policy
  • BAR Type 4-bit BAR Type
  • Reserved reserved
  • TID_INFO 4-bit service identification information
  • the BAR ACK Policy (BAR ACK Policy) field is used to indicate whether the sender needs the receiver to respond immediately (immediate acknowledgement), when the value is 1, it means it is required, and when the value is 0, it means no need;
  • the service identification information ( The function of the TID_INFO) field is related to the BAR frame type.
  • the BAR Type field indicates the type of the current MU-BAR trigger frame.
  • the first value may be any one of 0, 4, 5, or 7-9. Taking the first value equal to 0 as an example, the value of the BAR type field and its corresponding feedback type are shown in Table 2 below.
  • the present application can multiplex the BAR type field of the MMU-BAR trigger frame, and use a reserved value of the BAR type field in the 802.11ax standard to indicate uplink OFDM random access-negative acknowledgment polling.
  • the multicast feedback trigger frame may be a newly defined basic trigger (Basic Trigger) frame, and the present application does not specifically limit the form of the multicast feedback trigger frame.
  • Basic Trigger basic trigger
  • step S1703 After the first station receives the multicast feedback trigger frame, if the multicast data frame is not correctly decoded, the following step S1703 is performed.
  • stations in the multicast group that do not correctly decode the multicast data frame have the same or similar processing actions, and can all perform the functions or actions implemented by the first station provided in the following embodiments of the present application.
  • the first site sends a block acknowledgment frame BA of the multicast data frame to the access point through the first RU in the UORA process.
  • the access point receives the BA from the first site in the UORA process through the first RU.
  • the first RU is one of at least one RU configured in the multicast feedback trigger frame.
  • the block acknowledgment frame is used to indicate a data frame that is decoded incorrectly by the first station in the multicast data frame.
  • the block acknowledgment frame may include a block acknowledgment bitmap (Block ACK Bitmap), that is, a data frame with a decoding error in the multicast data frame is indicated by a bitmap, and reference may be made to the relevant description in the above step S1007, here No longer.
  • Block ACK Bitmap Block ACK Bitmap
  • the first station sends the block acknowledgment frame of the multicast data frame to the access point through the first RU in the UORA process, which may include: the first station selects a random number in the contention window, and the random number is less than or When equal to the total number of at least one RU configured in the multicast feedback trigger frame, a first RU is selected from the at least one RU, and then the first station sends a block acknowledgment frame of the multicast data frame to the access point on the first RU.
  • the access point preconfigures at least one RU for decoding the wrong multicast STA feedback block acknowledgment frame, so as to obtain the transmission status of the multicast data frame, so as to retransmit the decoding in the multicast data frame Incorrect data frames, improve transmission reliability, or adjust the link transmission rate to improve transmission efficiency.
  • the wrongly decoded multicast STA feeds back the block acknowledgment frame, and the correctly decoded multicast STA may not perform feedback, which is compared with the traditional GCR MU-BAR feedback method defined in the 802.11ax standard.
  • the correct decoding multicast STA will also feed back the block acknowledgment frame, which can reduce the transmission overhead of the control frame.
  • the access point may send a NACK frame to notify the STAs in the multicast group that have not correctly decoded the multicast data frame to retransmit the BACK frame.
  • the STAs in the multicast group include STA1, STA2, and STA3, STA2 correctly decodes the multicast data frame, and STA1 and STA3 do not correctly decode the multicast data frame as an example, the AP sends an AMPDU.
  • the multicast feedback trigger frame is sent.
  • STA1 and STA3 select one RU from the RUs configured in the multicast feedback trigger frame to send the block acknowledgement frame. Assuming that the RUs selected by STA1 and STA3 are the same, and the access point cannot correctly decode the block acknowledgment frame fed back by STA1 and STA3, the access point sends a NACK frame. After STA1 and STA3 receive the NACK frame, they re-select the RU and The block acknowledgment frame is retransmitted on the RU.
  • the access point can instruct the multiple multicast sites to retransmit the block ack frame, so as to ensure that the access point correctly decodes the block ack frame and obtains the group The transmission situation of the broadcast data frame, and then retransmission or rate adjustment is performed according to the transmission situation.
  • the methods and/or steps implemented by the access point can also be implemented by components (such as chips or circuits) that can be used for the access point; the methods and/or steps implemented by the station
  • the steps may also be implemented with components (eg chips or circuits) available for the site.
  • the solution provided by the present application has been introduced above mainly from the perspective of interaction between various devices.
  • the present application also provides a communication device, which is used to implement the above-mentioned various methods.
  • the communication device may be the access point in the foregoing method embodiment, or a device including the foregoing access point, or a component usable for the access point; or, the communication device may be the first station in the foregoing method embodiment , or a device comprising the above-mentioned first site, or a component that can be used in the first site.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device may be divided into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 21 shows a schematic structural diagram of an access point 210 .
  • the access point 210 includes a processing module 2101 and a transceiver module 2102 .
  • the access point 210 may also include a storage module (not shown in FIG. 21 ) for storing program instructions and data.
  • the transceiving module 2102 which may also be referred to as a transceiving unit, is used to implement sending and/or receiving functions.
  • the transceiver module 2102 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 2102 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the access point in the above method embodiments, and/or to support the methods described herein.
  • the processing module 2101 can be used to perform the steps of the processing class (eg, determination, acquisition, etc.) performed by the access point in the above method embodiments, and/or other processes used to support the technology described herein .
  • the transceiver module 2102 is used to send the multicast data frame; the transceiver module 2102 is also used to send the multicast feedback trigger frame, and the multicast feedback trigger frame is used to schedule multiple sites in the multicast group to feedback whether the multicast data frame is translated or not.
  • the code is correct; the processing module 2101 is used to determine that the first site has not correctly decoded the multicast data frame when energy is not detected on the first subcarrier and the second subcarrier; When energy is detected on the two subcarriers, it is determined that the first station does not correctly decode the multicast data frame.
  • the first subcarrier is a subcarrier associated with the first site in the first subcarrier set, the second subcarrier is a subcarrier associated with the first site in the second subcarrier set, and the first site is one of multiple sites any one of .
  • the transceiver module 2102 is further configured to send a block ack request trigger frame, and the block ack request trigger frame is used to schedule at least one second station on the respective associated resource unit RU to feed back decoding errors in the AMPDU
  • the serial number index of the medium access control protocol data unit MPDU, and the second site is a site that does not correctly decode the AMPDU among multiple sites; the transceiver module 2102 is also used to receive data from at least one of the RUs associated with the second site. At least one block acknowledgment frame of the second station, where the block acknowledgment frame is used to indicate an erroneously decoded MPDU in the AMPDU.
  • the multicast feedback trigger frame includes a third field, where the third field is used to indicate the first network allocation vector NAV, and the duration of the first NAV is the sum of the following items: duration of the multicast feedback report frame , the duration of the block acknowledgment request trigger frame, the duration of the block acknowledgment frame, and the short frame interval SIFS, wherein the multicast feedback report frame is a reply frame of the multicast feedback trigger frame.
  • the multicast feedback trigger frame includes a third field, the third field is used to indicate the first network allocation vector NAV, and the duration of the first NAV is the duration of the multicast feedback report frame and the short frame interval SIFS.
  • the multicast feedback report frame is a reply frame of the multicast feedback trigger frame.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is a multicast retransmission confirmation request.
  • the multicast feedback trigger frame includes a second field, and the second field is used to indicate the multicast data frame.
  • the second field includes a first subfield and a second subfield
  • the first subfield is used to carry the sequence number index of the starting data frame in the multicast data frame
  • the second subfield is used to carry the group The index of the sequence number of the end data frame in the broadcast data frame.
  • the processing module 2101 is used to generate a multicast data frame and a multicast feedback trigger frame; the transceiver module 2102 is used to send a multicast data frame and the multicast feedback trigger frame, and the multicast feedback trigger frame is used to configure at least one resource unit RU, the RU is used by the stations in the multicast group to transmit the block acknowledgment frame of the multicast data frame in the UORA process of uplink orthogonal frequency division multiple access; A block acknowledgment frame is received from the first site, where the block acknowledgment frame is used to indicate a data frame with decoding errors in the multicast data frame, and the first RU is one of at least one RU configured for the multicast feedback trigger frame.
  • the multicast data frame is an aggregated media access control protocol data unit AMPDU, and the data frame is a media access control protocol data unit MPDU.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is uplink orthogonal frequency division multiple access random access - Negative answer polling.
  • the access point 210 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other functions that may provide the above-described functions device.
  • ASIC application-specific integrated circuit
  • the access point 210 may take the form of the WLAN device 300 shown in FIG. 3 .
  • the function/implementation process of the processing module 2101 in FIG. 21 can be implemented by the processor 301 in the WLAN device 300 shown in FIG. 3 calling the computer execution instructions stored in the memory 304, and the transceiver module in FIG. 21
  • the function/implementation process of 2102 may be implemented by the transceiver 302 in the WLAN device 300 shown in FIG. 3 .
  • the function/implementation process of the processing module 2101 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the transceiver module 2102
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the access point 210 provided in this embodiment can perform the above-mentioned multicast feedback method, the technical effect that can be obtained may refer to the above-mentioned method embodiments, and details are not repeated here.
  • FIG. 22 shows a schematic structural diagram of a first site 220 .
  • the first station 220 includes a processing module 2201 and a transceiver module 2202 .
  • the first site 220 may also include a storage module (not shown in FIG. 22 ) for storing program instructions and data.
  • the transceiving module 2202 which may also be referred to as a transceiving unit, is used to implement sending and/or receiving functions.
  • the transceiver module 2202 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 2202 may include a receiving module and a sending module, which are respectively configured to perform the steps of receiving and sending performed by the first station in the above method embodiments, and/or to support the steps described herein.
  • the processing module 2201 can be used to perform the steps of the processing class (such as determination, acquisition, etc.) performed by the first site in the above method embodiments, and/or to support other processes of the technology described herein .
  • the transceiver module 2202 is used to receive the multicast data frame from the access point; the transceiver module 2202 is also used to receive the multicast feedback trigger frame from the access point, and the multicast feedback trigger frame is used to schedule the multicast data frames in the multicast group. Multiple sites feed back whether the multicast data frame is correctly decoded; the transceiver module 2202 is further configured to, when the processing module 2201 determines that the multiple sites include the first site, and the first site does not correctly decode the multicast data frame, the second A multicast feedback report frame is sent to the access point on the subcarrier, and the second subcarrier is a subcarrier associated with the first station in the second subcarrier set.
  • the transceiver module 2202 is further configured to receive a block acknowledgment request trigger frame from the access point, where the block acknowledgment request trigger frame is used to schedule the first site on the resource unit RU associated with the first site, Feedback the sequence number index of the medium access control protocol data unit MPDU with the decoding error in the AMPDU; the transceiver module 2202 is further configured to send a block acknowledgment frame to the access point on the RU associated with the first site, and the block acknowledgment frame is used to indicate Decoding error MPDU in AMPDU.
  • the multicast feedback trigger frame includes a third field, where the third field is used to indicate the first network allocation vector NAV, and the duration of the first NAV is the sum of the following items: duration of the multicast feedback report frame , the duration of the block acknowledgment request trigger frame, the duration of the block acknowledgment frame, and the short frame interval SIFS, wherein the multicast feedback report frame is a reply frame of the multicast feedback trigger frame.
  • the multicast feedback trigger frame includes a third field, the third field is used to indicate the first network allocation vector NAV, and the duration of the first NAV is the duration of the multicast feedback report frame and the short frame interval SIFS.
  • the multicast feedback report frame is a reply frame of the multicast feedback trigger frame.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is a multicast retransmission confirmation request.
  • the multicast feedback trigger frame includes a second field, and the second field is used to indicate the multicast data frame.
  • the second field includes a first subfield and a second subfield
  • the first subfield is used to carry the sequence number index of the starting data frame in the multicast data frame
  • the second subfield is used to carry the group The index of the sequence number of the end data frame in the broadcast data frame.
  • the transceiver module 2202 is used to receive the multicast data frame from the access point; the transceiver module 2202 is also used to receive the multicast feedback trigger frame from the access point, and the multicast feedback trigger frame is used to configure at least one resource unit RU,
  • the RU is used for the stations in the multicast group to perform uplink orthogonal frequency division multiple access random access UORA, and the UORA is used to transmit the block acknowledgment frame of the multicast data frame; the transceiver module 2202 is used to decode the group incorrectly in the processing module 2201.
  • the first RU sends the block acknowledgment frame of the multicast data frame to the access point in the UORA process.
  • the block acknowledgment frame is used to indicate the data frame with decoding error in the multicast data frame.
  • One of the at least one RU that broadcasts the feedback trigger frame configuration is used to indicate the data frame with decoding error in the multicast data frame.
  • the processing module 2201 is configured to select a random number in the contention window, and when the random number is less than or equal to the total number of at least one RU configured in the multicast feedback trigger frame, select the first RU from the at least one RU A RU; a transceiver module 2202, configured to send a block acknowledgment frame of a multicast data frame to the access point on the first RU.
  • the multicast data frame is an aggregated media access control protocol data unit AMPDU, and the data frame is a media access control protocol data unit MPDU.
  • the multicast feedback trigger frame includes a first field, and when the value of the first field is a first value, it indicates that the type of the multicast feedback trigger frame is uplink orthogonal frequency division multiple access random access - Negative answer polling.
  • the first site 220 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other functions that may provide the above-described functions device.
  • ASIC application-specific integrated circuit
  • the first station 220 may take the form of the WLAN device 300 shown in FIG. 3 .
  • the function/implementation process of the processing module 2201 in FIG. 22 can be implemented by the processor 301 in the WLAN device 300 shown in FIG. 3 calling the computer execution instructions stored in the memory 304, and the transceiver module in FIG. 22
  • the function/implementation process of 2202 may be implemented by the transceiver 302 in the WLAN device 300 shown in FIG. 3 .
  • the function/implementation process of the processing module 2201 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the transceiver module 2202
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the first station 220 provided in this embodiment can execute the foregoing multicast feedback method, reference can be made to the foregoing method embodiments for technical effects that can be obtained, and details are not described herein again.
  • the access point and the first site described in the embodiments of the present application may also be implemented using the following: one or more field programmable gate arrays (FPGA), programmable A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable A programmable logic device
  • state machine gate logic
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication apparatus to execute the method in any of the above method embodiments.
  • the memory may also not be in the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly obtained from memory read, or possibly through other devices) and transferred to the processor.
  • the interface circuit is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly obtained from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, where the communication interface is used to communicate with modules other than the communication device.
  • the communication device may be a chip or a chip system, and when the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the embodiments of the present application also provide a communication device (for example, the communication device may be a chip or a chip system), the communication device includes an interface circuit and a logic circuit, the interface circuit is used to obtain input information and /or outputting output information; the logic circuit is configured to execute the method in any of the above method embodiments, and process and/or generate output information according to the input information.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes an interface circuit and a logic circuit, the interface circuit is used to obtain input information and /or outputting output information; the logic circuit is configured to execute the method in any of the above method embodiments, and process and/or generate output information according to the input information.
  • the output information may be a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to schedule multiple sites in a multicast group to feedback whether the multicast data frame is decoded correctly .
  • the input information may be: at least one block acknowledgment frame of the second station, where the block acknowledgment frame is used to indicate a decoding error MPDU in the AMPDU.
  • the processing according to the input information may be: determining the retransmitted MPDU or the modulated transmission rate according to the block acknowledgment frame.
  • the output information may be: a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to configure at least one resource unit RU, and the RU is used for the uplink of a site in the multicast group Block acknowledgment frame for transmitting multicast data frame in the process of orthogonal frequency division multiple access random access UORA.
  • the input information may be: a block acknowledgement frame, where the block acknowledgement frame is used to indicate a decoding error data frame in the multicast data frame.
  • the processing according to the input information may be: determining the retransmitted data frame or modulating the transmission rate according to the block acknowledgment frame.
  • the input information may be: a multicast data frame and a multicast feedback trigger frame, where the multicast feedback trigger frame is used to schedule multiple sites in a multicast group to feedback whether the multicast data frame is decoded correct.
  • processing according to the input information may be: the multiple sites in the multicast group in which the multicast feedback triggers frame scheduling includes the first site, and when the first site does not correctly decode the multicast data frame, the second A multicast feedback report frame is sent to the access point on the subcarrier, and the second subcarrier is a subcarrier associated with the first station in the second subcarrier set.
  • the output information may be: a block acknowledgment frame, the block acknowledgment frame is used to indicate an erroneously decoded MPDU in the AMPDU.
  • the input information may be: a multicast data frame and a multicast feedback trigger frame
  • the multicast feedback trigger frame is used to configure at least one resource unit RU
  • the RU is used for the uplink of the site in the multicast group Block acknowledgment frame for transmitting multicast data frame in the process of orthogonal frequency division multiple access random access UORA.
  • the processing according to the input information may be: when the first site does not correctly decode the multicast data frame, the first RU sends a block acknowledgment frame of the multicast data frame to the access point in the UORA process, and the block acknowledgment frame is sent to the access point.
  • the frame is used to indicate a data frame with decoding errors in the multicast data frame
  • the first RU is one of at least one RU configured for the multicast feedback trigger frame.
  • the output information may be: a block acknowledgment frame, where the block acknowledgment frame is used to indicate an erroneously decoded data frame in the multicast data frame.
  • the communication device provided in this embodiment can execute the methods in the foregoing method embodiments, so the technical effects that can be obtained may refer to the foregoing method embodiments, which will not be repeated here.
  • the access point and the first site described in the embodiments of the present application may be implemented by a general bus architecture.
  • FIG. 23 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application, where the communication apparatus 1000 includes a processor 1001 and a transceiver 1002 .
  • the communication apparatus 1000 may be an access point or a first station, or a chip therein.
  • FIG. 23 shows only the main components of the communication device 1000 .
  • the communication device may further include a memory 1003, and an input and output device (not shown).
  • the processor 1001 is mainly used for processing communication protocols and communication data, and controlling the entire communication device, executing software programs, and processing data of the software programs.
  • the memory 1003 is mainly used to store software programs and data.
  • the transceiver 1002 may include a radio frequency circuit and an antenna, and the radio frequency circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1001, the transceiver 1002, and the memory 1003 may be connected through a communication bus.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001.
  • the processor 1001 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided and deleted according to actual needs.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线保真WIFI技术领域,尤其涉及一种组播反馈方法、装置及系统,能够实现组播传输场景下的发送反馈。该方法中,接入点发送组播数据帧和组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈组播数据帧是否译码正确。第一站点收到该组播数据帧和组播反馈触发帧后,若第一站点为组播反馈触发帧调度的站点,且第一站点未正确译码组播数据帧时,在第二子载波上发送组播反馈报告帧,相应的,接入点在第二子载波上检测到能量时,确定第一站点未正确译码组播数据帧;或者,在第一子载波和第二子载波上均不发送组播反馈报告帧,相应的,接入点在第一子载波和第二子载波上均未检测到能量时,确定第一站点未正确译码组播数据帧。

Description

组播反馈方法、装置及系统
本申请要求于2021年01月08日提交国家知识产权局、申请号为202110026480.9、申请名称为“组播反馈方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线保真技术领域,尤其涉及组播反馈方法、装置及系统。
背景技术
无线局域网(wireless local area network,WLAN)典型的传输模型为点对点的单播传输模式。在小尺度快衰落、遮挡与阴影衰落、同频干扰等因素导致无线信道质量不稳定的情况下,单播传输模式中的接入点(access point,AP)可以通过站点(station,STA)的应答反馈获得信道的链路质量状况,从而可以根据链路质量状况进行重传,或调整调制编码方案(modulation and coding scheme,MCS),以实现速率自适应。
随着WLAN技术的飞速发展和广泛应用,诸如视频会议、虚拟现实(virtual reality,)教学、电子书包等新型业务逐渐涌现,这些业务通常具有大容量、用户高度密集等特点。针对这类新型业务,为了提升频谱资源的利用效率,缓解网络高吞吐量性能要求与短缺的频谱资源之间的矛盾,点对多点的组播传输被广泛应用。
在组播传输场景中,同样存在信道质量不稳定的情况,为了保证传输可靠性,AP可能需要根据信道质量状况进行速率自适应或重传,因此,对于组播传输,有必要设计一种合理的反馈机制,以使AP获得信道质量状况。
发明内容
本申请提供一种组播反馈方法、装置及系统,能够实现组播传输场景下的发送反馈,从而使得接入点根据该反馈进行重传或调整速率,提高传输可靠性和传输效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供了一种组播反馈方法,该方法可以由接入点执行,也可以由接入点的部件,例如接入点的处理器、芯片、或芯片系统等执行,本申请以接入点执行该方法为例进行说明。该方法包括:接入点发送组播数据帧以及组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确。之后,接入点在第一子载波和第二子载波上均未检测到能量时,确定第一站点未正确译码所述组播数据帧;或者,接入点在第二子载波上检测到能量时,确定第一站点未正确译码所述组播数据帧。其中,第一子载波为第一子载波集合中与第一站点关联的子载波,第二子载波为第二子载波集合中与第一站点关联的子载波,第一站点为该多个站点中的任意一个。
基于该方案,接入点调度组播组内的站点回复组播反馈报告帧,并通过在站点关联的子载波上是否检测到能量,获知组播组内的站点是否正确译码组播数据帧。由于接入点可以确定组播组内未正确译码的站点以及正确译码的站点,从而可以为未正确译码的站点重传组播数据帧,提高传输可靠性,或者,也可以对链路速率进行调整,提高传输效率。
在一些可能的设计中,组播数据帧为聚合媒体接入控制协议数据单元AMPDU时,该组播反馈方法还包括:接入点发送块确认请求触发帧,该块确认请求触发帧用于调度至少一个第二站点在各自关联的资源单元RU上,反馈AMPDU中译码错误的媒体接入控制协议数据 单元MPDU的序号索引,第二站点为多个站点中未正确译码AMPDU的站点;接入点在至少一个第二站点各自关联的RU上,接收来自至少一个第二站点的块确认帧,该块确认帧用于指示AMPDU中译码错误的MPDU。
基于该可能的设计,在组播数据帧为AMPDU时,本申请提供两级反馈机制,第一级反馈中,接入点可以先通过组播反馈触发帧调度组播组内的站点回复组播反馈报告帧,从而获知组播组内未正确译码AMPDU的站点。第二级反馈中,接入点通过块确认请求触发帧调度未正确译码AMPDU的站点反馈译码出错的MPDU的序号索引。从而接入点可以重传译码出错的MPDU,提高传输可靠性,或者,也可以对链路速率进行调整,提高传输效率。此外,接入点通过第一级反馈过滤掉译码正确的STA,因此在第二级反馈中可以避免为译码正确的STA分配RU,从而可以有效降低第二级反馈中块确认请求触发帧与块确认帧交互的开销。
以信道带宽为40MHz为例,假设组播组内共包括60个STA,可用于反馈译码错误的MPDU的RU数目为18,基于802.11ax标准中的GCR MU-BAR反馈机制,AP需要发送4个MU-BAR触发帧,相应的,组播组内的STA无论是否正确译码AMPDU,均需要回复BA帧。基于本申请的方案,在一定的PER范围内,AP发送两个块确认触发帧即可,且正确译码AMPDU的STA无需回复BA帧,从而降低了控制帧的传输开销。
第二方面,提供了一种组播反馈方法,该方法可以由第一站点执行,也可以由第一站点的部件,例如第一站点的处理器、芯片、或芯片系统等执行,本申请以第一站点执行该方法为例进行说明。该方法包括:第一站点接收来自接入点的组播数据帧以及组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈组播数据帧是否译码正确;之后,第一站点在确定多个站点包括第一站点,且第一站点未正确译码组播数据帧时,在第二子载波上向接入点发送组播反馈报告帧,第二子载波为第二子载波集合中与第一站点关联的子载波。
在一些可能的设计中,组播数据帧为聚合媒体接入控制协议数据单元AMPDU时,该组播反馈方法还包括:第一站点接收来自接入点的块确认请求触发帧,该块确认请求触发帧用于调度第一站点在第一站点关联的资源单元RU上,反馈AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引;第一站点在第一站点关联的RU上,向接入点发送块确认帧,块确认帧用于指示AMPDU中译码错误的MPDU。
其中,第二方面的任一种可能的设计所带来的技术效果可参见上述第一方面相应的设计所带来的技术效果,此处不再赘述。
结合上述第一方面或第二方面,在一些可能的设计中,组播反馈触发帧包括第三字段,第三字段用于指示第一网络分配矢量NAV,第一NAV的时长为以下多项之和:组播反馈报告帧的时长、块确认请求触发帧的时长、块确认帧的时长、以及短帧间隔SIFS,组播反馈报告帧为组播反馈触发帧的回复帧。
结合上述第一方面或第二方面,在一些可能的设计中,组播反馈触发帧包括第三字段,第三字段用于指示第一网络分配矢量NAV,第一NAV的时长为组播反馈报告帧的时长以及短帧间隔SIFS之和,组播反馈报告帧为组播反馈触发帧的回复帧。
基于该两种可能的设计,接入点通过在组播反馈触发帧中指示第一NAV,可以在反馈流程中对信道进行保护,降低非组播站点对反馈流程的干扰,提高反馈效率,降低反馈时延,从而使得接入点能够及时重传出错的MPDU,降低组播业务时延,或者能够及时调整传输速率,提高组播业务传输速率。
结合上述第一方面或第二方面,在一些可能的设计中,组播反馈触发帧包括第一字段,第一字段的值为第一数值时,指示组播反馈触发帧的类型为组播重传确认请求。
基于该可能的设计,通过在组播反馈触发帧中携带该第一字段,组播组内的站点可以确定组播反馈触发帧的类型,进而可以根据该反馈触发帧进行反馈。
结合上述第一方面或第二方面,在一些可能的设计中,组播反馈触发帧包括第二字段,第二字段用于指示组播数据帧。
基于该可能的设计,通过在组播反馈触发帧中携带该第二字段,可以明确指示组播数据帧,使得组播组内的站点能够确定需要反馈组播反馈触发帧所指示的组播数据帧是否正确译码,从而对该组播数据帧进行反馈,进而使得接入点与站点对反馈对象的理解一致,提高反馈准确性。
结合上述第一方面或第二方面,在一些可能的设计中,第二字段包括第一子字段和第二子字段,第一子字段用于承载组播数据帧中起始数据帧的序号索引,第二子字段用于承载组播数据帧中结尾数据帧的序号索引。
结合上述第一方面或第二方面,在一些可能的设计中,第二字段包括第一子字段和第二子字段,第一子字段用于承载组播数据帧中起始数据帧的序号索引,该第二子字段用于承载组播数据帧包括的数据帧的个数。
结合上述第一方面或第二方面,在一些可能的设计中,第二字段包括第一子字段和第二子字段,第一子字段用于承载组播数据帧包括的数据帧的个数,该第二子字段用于承载组播数据帧中结尾数据帧的序号索引。
结合上述第一方面或第二方面,在一些可能的设计中,上述组播反馈触发帧为空数据包反馈报告轮询触发NFRP帧。
第三方面,提供了一种组播反馈方法,该方法可以由接入点执行,也可以由接入点的部件,例如接入点的处理器、芯片、或芯片系统等执行,本申请以接入点执行该方法为例进行说明。该方法包括:接入点发送组播数据帧以及组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输组播数据帧的块确认帧;接入点通过第一RU在UORA过程中接收来自第一站点的块确认帧,块确认帧用于指示组播数据帧中译码错误的数据帧,第一RU为组播反馈触发帧配置的至少一个RU中的一个。
基于该方案,一方面,接入点预先配置至少一个RU,用于译码错误的组播站点反馈块确认帧,从而获取组播数据帧的传输情况,以便重传组播数据帧中译码错误的数据帧,提高传输可靠性,或者,调整链路传输速率,提高传输效率。另一方面,本申请中仅是译码错误的组播站点反馈块确认帧,译码正确的组播STA可以不进行反馈,从而相比于802.11ax标准中定义的传统GCR MU-BAR反馈方法中,译码正确的组播STA也会反馈块确认帧的方案来说,可以降低控制帧的传输开销。
第四方面,提供了一种组播反馈方法,该方法可以由第一站点执行,也可以由第一站点的部件,例如第一站点的处理器、芯片、或芯片系统等执行,本申请以第一站点执行该方法为例进行说明。该方法包括:第一站点接收来自接入点的组播数据帧以及组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,RU用于组播组内的站点进行上行正交频分多址随机接入UORA,UORA用于传输组播数据帧的块确认帧;第一站点未正确译码组播数据帧时,通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧,第一RU为组播反馈触发帧配置的至少一个RU中的一个。其中,第四方面所带来的技术效果可参见上述第三方面所带来的技术效果,此处不再赘述。
在一些可能的设计中,第一站点通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧,包括:第一站点在竞争窗口中选择一个随机数,该随机数小于或等于组播反馈触发帧配置的至少一个RU的总数时,从该至少一个RU中选择第一RU,并在第一RU上向接入点发送组播数据帧的块确认帧。
结合上述第三方面或第四方面,在一些可能的设计中,组播数据帧为聚合媒体接入控制协议数据单元AMPDU,数据帧为媒体接入控制协议数据单元MPDU。
结合上述第三方面或第四方面,在一些可能的设计中,组播反馈触发帧包括第一字段,第一字段的值为第一数值时,指示组播反馈触发帧的类型为上行正交频分多址随机接入-否定应答轮询。
第五方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第三方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块和收发模块。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。
在一些可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
其中,第五方面提供的通信装置用于执行上述任一方面或任一方面任意可能的实现方式,具体细节可参见上述任一方面或任一方面任意可能的实现方式,此处不再赘述。
第六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置,比如芯片。
第七方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置,比如芯片。
第八方面,提供一种通信装置,包括:接口电路和逻辑电路,该接口电路,用于获取输入信息和/或输出输出信息;该逻辑电路用于执行上述任一方面或任一方面任意可能的实现方式所述的方法,根据输入信息进行处理和/或生成输出信息。该通信装置可以为上述第一方面或第三方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置,比如芯片。
该通信装置为上述第一方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置时:
在一些可能的设计中,输出信息可以为组播数据帧和组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确。
在一些可能的设计中,输入信息可以为:至少一个第二站点的块确认帧,该块确认帧用于指示AMPDU中译码错误的MPDU。相应的,根据输入信息进行处理,可以为:根据块确认帧确定重传的MPDU或调制传输速率。
该通信装置可以为上述第二方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置时:
在一些可能的设计中,输入信息可以为:组播数据帧和组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确。相应的,根据输入信息进行处理,可以为:该组播反馈触发帧调度的组播组内的多个站点包括第一站点,且第一站点未正确译码组播数据帧时,在第二子载波上向接入点发送组播反馈报告帧,第二子载波为第二子载波集合中与第一站点关联的子载波。
在一些可能的设计中,输出信息可以为:块确认帧,该块确认帧用于指示AMPDU中译码错误的MPDU。
该通信装置为上述第三方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置时:
在一些可能的设计中,输出信息可以为:组播数据帧和组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,该RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输组播数据帧的块确认帧。
在一些可能的设计中,输入信息可以为:块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧。相应的,根据输入信息进行处理,可以为:根据块确认帧确定重传的数据帧或调制传输速率。
该通信装置可以为上述第四方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置时:
在一些可能的设计中,输入信息可以为:组播数据帧和组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,该RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输组播数据帧的块确认帧。相应的,根据输入信息进行处理,可以为:第一站点未正确译码组播数据帧时,通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧,第一RU为组播反馈触发帧配置的至少一个RU中的一个。
在一些可能的设计中,输出信息可以为:块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧。
第九方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面或第三方面中的接入点,或者包含上述接入点的装置,或者上述接入点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的第一站点,或者包含上述第一站点的装置,或者上述第一站点中包含的装置,比如芯片。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当 其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行上述任一方面所述的方法。
第十二方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第五方面至第十二方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出信息,上述的接收动作/功能可以理解为输入信息。
其中,第五方面至第十二方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或第四方面中不同设计方式所带来的技术效果,在此不再赘述。
第十三方面,提供一种通信系统,该通信系统包括上述第一方面所述的接入点和第二方面所述的第一站点;或者,该通信系统包括上述第三方面所述的接入点和第四方面所述的第一站点。
附图说明
图1为本申请提供的一种通信系统的结构示意图;
图2为本申请提供的一种多链路通信的网络架构图;
图3为本申请提供的一种WLAN设备的结构示意图;
图4为本申请提供的一种NFRP帧的用户信息字段的结构示意图;
图5为本申请提供的一种NDP反馈报告响应帧的帧结构示意图;
图6为本申请提供的一种网络分配向量NAV的设置示意图;
图7a为本申请提供的一种单播传输示意图;
图7b为本申请提供的一种组播传输示意图;
图8为本申请提供的一种基于BAR帧的组播反馈流程示意图;
图9为本申请提供的一种基于MU-BAR帧的组播反馈流程示意图;
图10为本申请提供的一种组播反馈方法的流程示意图;
图11a为本申请提供的一种组播反馈触发帧的局部帧结构示意图;
图11b为本申请提供的另一种组播反馈触发帧的局部帧结构示意图;
图12为本申请提供的另一种组播反馈方法的流程示意图;
图13为本申请提供的一种组播反馈流程示意图;
图14为本申请提供的一种组播反馈的时序图;
图15为本申请提供的一种第一NAV的设置示意图;
图16为本申请提供的另一种第一NAV的设置示意图;
图17为本申请提供的又一种组播反馈方法的流程示意图;
图18为本申请提供的RU分布的示意图;
图19为本申请提供的又一种组播反馈触发帧的局部帧结构示意图;
图20为本申请提供的另一种组播反馈流程示意图;
图21为申请提供的一种接入点的结构示意图;
图22为本申请提供的一种第一站点的结构示意图;
图23为本申请提供的一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,a和b和c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.11系统标准,例如802.11a/b/g标准、802.11n标准、802.11ac标准、802.11ax标准,或其下一代,例如802.11be标准或更下一代的标准中。或者,本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的第五代(5th generation,5G)通信系统等。
首先,本申请提供一种本申请实施例适用的WLAN通信系统,该WLAN通信系统包括至少一个无线接入点(access point,AP),以及AP关联的多个站点(station,STA)。需要说明的是,本申请实施例涉及的STA也可以称为终端,这两者可以相互替换,本申请提供的方法对此不做具体限定。
作为一种示例,请参见图1,示出了本申请提供的WLAN通信系统的架构图。图1以该WLAN包括一个AP,该AP关联STA1、STA2、STA3、STA4、以及STA5为例。AP可为与其关联的STA,和/或未关联的STA调度无线资源,并在调度的无线资源上为该STA传输数据。例如AP可为STA1、STA2、STA3、STA4、以及STA5调度无线资源,并在调度的无线资源上为STA1、STA2、STA3、STA4、以及STA5传输数据,包括上行数据信息和/或下行数据信息。
另外,本申请实施例可以适用于AP与STA之间的通信,例如,AP与STA1、STA2、以及STA3之间的组播通信,以及,AP与STA4或STA5之间的单播通信;也可以适用于STA与STA之间的通信,例如,STA4和STA5之间的通信。且本申请实施例中的AP和STA可以是支持多条链路并行进行传输的无线通信设备。例如,称为多链路设备(Multi-link device, MLD)或多频段设备(multi-band device,MBD),具有更高的传输效率和更高的吞吐量。在本文中,支持多条链路通信的AP可称为MLD AP,支持多条链路通信的STA即多链路STA,可称为非接入点站点(non-Access Point Station,non-AP STA),应理解,图1中的AP和STA的数量仅是举例,还可以更多或者更少。
请参见图2,为本申请实施例提供的一种多链路通信的网络架构图。示意无线局域网中多链路设备与其他设备通过多条链路进行通信,如图2示出了一种多链路AP设备101和多链路STA102通信的示意图,多链路AP设备101包括隶属的AP101-1和AP101-2,多链路STA102包括隶属的STA102-1和STA102-2,且多链路AP设备101和多链路STA102采用链路1和链路2进行并行通信。
本申请实施例中的多链路设备可以是单个天线的设备,也可以是多天线的设备。例如,可以是两个以上天线的设备。本申请实施例对于多链路设备包括的天线的数目并不进行限定。在本申请的实施例中,多链路设备可以允许同一接入类型的业务在不同链路上传输,甚至允许相同的数据包在不同链路上传输;也可以不允许同一接入类型的业务在不同链路上传输,但允许不同接入类型的业务在不同的链路上传输。多链路设备工作的可以频段包括:sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz。
本申请实施例涉及的STA可以为无线通讯芯片、无线传感器或无线通信终端。例如支持无线保真(wireless fidelity,WiFi)通讯功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。此外,STA可以支持802.11be制式。STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
本申请实施例涉及的AP可以为一种部署在无线通信网络中为其关联的STA提供无线通信功能的装置,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,AP可以是带有WiFi芯片的基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。此外,AP可以支持802.11be制式。AP也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等WLAN制式。
在一些实施例中,本申请涉及的AP和STA可以统称为WLAN设备,具体实现时,WLAN设备可以采用图3所示的组成结构,或者包括图3所示的部件。
参见图3,为本申请实施例提供的一种WLAN设备300的组成示意图,该WLAN设备300可以为STA或者STA中的芯片或者芯片系统(或称为片上系统);也可以为AP或者AP中的芯片或者芯片系统(或称为片上系统)。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
如图3所示,该WLAN设备300包括处理器301,收发器302以及通信线路303。进一步的,该WLAN设备300还可以包括存储器304。其中,处理器301,存储器304以及收发器302之间可以通过通信线路303连接。
其中,处理器301是中央处理器(central processing unit,CPU)、通用处理器网络处理器 (network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器301还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
收发器302,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),WLAN等。收发器302可以是模块、电路、收发器或者任何能够实现通信的装置。
通信线路303,用于在WLAN设备300所包括的各部件之间传送信息。
存储器304,用于存储指令。其中,指令可以是计算机程序。
其中,存储器304可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,不予限制。
需要指出的是,存储器304可以独立于处理器301存在,也可以和处理器301集成在一起。存储器304可以用于存储指令或者程序代码或者一些数据等。存储器304可以位于WLAN设备300内,也可以位于WLAN设备300外,不予限制。处理器301,用于执行存储器304中存储的指令,以实现本申请下述实施例提供的方法。
在一种示例中,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
作为一种可选的实现方式,WLAN设备300包括多个处理器,例如,除图3中的处理器301之外,还可以包括处理器307。
作为一种可选的实现方式,WLAN设备300还包括输出设备305和输入设备306。示例性地,输入设备306是键盘、鼠标、麦克风或操作杆等设备,输出设备305是显示屏、扬声器(speaker)等设备。
可以理解的是,图3中示出的组成结构并不构成对该WLAN设备的限定,除图3所示部件之外,该WLAN设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
以上对本申请提供的WLAN通信系统和WLAN设备进行了介绍,下面为了方便理解本申请实施例的技术方案,给出本申请相关技术的简要介绍如下。
1、空数据包(null data packet,NDP)反馈(NDP Feedback):
NDP反馈是802.11ax标准中定义的一种高效的1比特反馈机制。目前,802.11ax标准中定义的NDP反馈机制支持的反馈类型为反馈资源请求(resource request,RR)。
反馈资源请求的基本原理如下:AP向其关联的STA发送NDP反馈报告轮询(NDP Feedback Report Poll,NFRP)触发(Trigger)帧,该NFRP触发帧包括初始关联标识(association identifier,AID)、带宽、以及复用标志(Multiplexing Flag)等信息。其中,初始AID和复用标志信息包含于NFRP触发帧的用户信息字段(User Info field)中。
示例性的,参见图4,为NFRP触发帧的用户信息字段的格式。该用户信息字段包括初始12比特的初始AID(Starting AID)字段、9比特的预留字段(Reserved)、4比特的反馈类型(Feedback Type)字段、7比特的预留字段(Reserved)、7比特的上行目标接收功率(UL Target Receive Power)字段、以及1比特的复用标志字段(Multiplexing Flag)。
其中,初始AID字段指示AP调度的起始STA的AID;反馈类型字段指示当前NFRP触 发帧支持的反馈类型,该字段的值为0时,表示反馈类型为资源请求;上行目标接收功率指示AP期望的反馈信号的接收功率;复用标志字段用于确定AP调度的站点数目。
STA收到NFRP触发帧后,根据其中的带宽和复用标志信息确定AP调度的站点数目N_STA,若该STA的AID大于或等于起始AID,且小于起始AID+N_STA,表示该STA是被AP调度的STA。示例性的,AP调度的站点数目N_STA满足如下公式(1):
N_STA=18*2 BW*(MultiplexingFlag+1)      (1)
其中,BW指示信道带宽,例如,BW等于0,指示信道带宽为20MHz,BW等于1,指示信道带宽为40MHz,BW等于2,指示信道带宽为80MHz,BW等于3,指示信道带宽为80+80MHz,或者说为160MHz;MultiplexingFlag是NFRP触发帧中复用标志字段的值。
被调度的STA根据自身是否有待发送的数据决定是否向AP发送NDP反馈报告响应(NDP Feedback Report Response,NFRR)帧,例如,被调度的STA没有待发送的数据时,不发送NDP反馈报告响应帧,或者,被调度的STA有待发送的数据时,发送NDP反馈报告响应帧。
具体的,在802.11ax标准中,该NDP反馈报告响应帧的帧结构类似于高效率(High efficiency,HE)基于触发(Trigger-Based,TB)的物理层协议数据单元(physical protocol data unit,PPDU)(即HE TB PPDU)的帧结构,区别在于:NDP反馈报告响应帧不包括数据(Data)字段,数据分组扩展(packet extension,PE)字段的时长为0微秒(microsecond,us)。
示例性的,该NDP反馈报告响应帧的帧结构如图5所示,包括:传统短训练字段(legacy-short training field,L-STF)、传统长训练字段(legacy-long training field,L-LTF)、传统信令字段(legacy-signal field,L-SIG)、重复传统信令域(repeated legacy-signal field,RL-SIG)、高效信令字段A(high efficient-signal field A,HE-SIG A)、高效短训练域(high efficient-short training field,HE-STF)、高效长训练域(high efficient-long training field,HE-LTF)、数据分组扩展(packet extension,PE),该PE的时长为0us,也可以理解为NDP反馈报告响应帧不包括PE。
在发送NFRP触发帧之前,AP会通过广播帧向其调度的STA配置NDP_TONE_SET_0和NDP_TONE_SET_1两个子载波集合,AP调度的每个STA在NDP_TONE_SET_0中有一个关联的子载波,在NDP_TONE_SET_1中也有一个关联的子载波,用于被调度的STA发送NDP反馈报告响应帧。
示例性的,以AP调度的STA包括STA1、STA2、以及STA3为例,该NDP_TONE_SET_0可以包括STA1关联的子载波11、STA2关联的子载波21、以及STA3关联的子载波31;该NDP_TONE_SET_1可以包括STA1关联的子载波12、STA2关联的子载波22、以及STA3关联的子载波32。
被调度的STA有待发送的数据时,可以在NDP_TONE_SET_0中与其关联的子载波上向AP发送NDP反馈报告响应帧,表示该STA反馈的RR在1和RR缓存阈值之间,该场景下,可以认为NDP反馈报告响应帧的反馈状态为状态0;或者,可以在NDP_TONE_SET_1中与其关联的子载波上向AP发送NDP反馈报告响应帧,表示该STA反馈的RR大于RR缓存阈值,该场景下,可以认为NDP反馈报告响应帧的反馈状态为状态1。
示例性的,AP调度的STA1有待发送的数据时,若STA确定的RR在1和RR缓存阈值之间,STA1在NDP_TONE_SET_0中的子载波11上向AP发送NDP反馈报告响应帧;若STA确定的RR大于RR缓存阈值,STA1在NDP_TONE_SET_1中的子载波12上向AP发送NDP反馈报告响应帧。
2、上行OFDMA随机接入(UL OFDMA-based Random Access,UORA):
其中,OFDMA指上行正交频分多址(orthogonal frequency division multiple access,OFDMA)。
UORA是802.11ax标准中定义的一种基于OFDMA的上行随机接入机制。其基本原理如下:
AP通过触发帧分配用于随机接入的资源单元(resource unit,RU)。具体的,该触发帧包括一个或多个用户信息字段(user info field,UIF),每个UIF配置一个RU,允许多个UIF配置连续的多个大小相同的RU。此外,每个UIF包括一个“AID12”字段,该“AID12”字段设置为0时,表示当前UIF配置的RU是分配给AP关联的STA的RU;该“AID12”字段设置为2045时,表示当前UIF配置的RU是分配给未关联STA的RU。
其中,一个RU包括多个子载波,不同RU包括的多个子载波不同。进一步的,一个RU包括的多个子载波是相互正交的。
需要说明的是,AP不会指定该触发帧分配的RU是分配给哪个STA,收到该触发帧的STA可以通过OFDMA竞争窗口(OFDMA contention window,OCW)和OFDMA随机接入退避(OFDMA random access backoff,OBO),选择该触发帧分配的RU进行上行发送。
具体的,支持UORA的STA可以在[0,OCW]内随机选取一个值作为OBO计数器的初始值,收到UORA的触发帧后,用OBO计数器的初始值减去UORA的触发帧配置的RU总数,若结果小于或等于0,该STA在UORA的触发帧配置的RU中随机选择一个UR进行上行发送;若结果大于0,则继续退避等待下一个UORA触发帧。
3、聚合MAC协议数据单元(aggregate-MAC protocol data unit,APMDU):
其中,MAC指媒体接入控制(media access control,MAC)。
APMDU是将MAC服务数据单元(MAC service data unit,MSDU)或聚合MAC服务数据单元(aggregate-MAC service data unit,AMSDU)封装得到MDPU,再将多个MDPU聚合而成的物理层数据帧或物理层报文。
对于AMPDU,发送端只需进行一次信道竞争或退避,即可以同时发送多个MPDU,从而减小单独发送每个MDPU带来的信道资源消耗。
4、块确认(block acknowledgement,BA):
接收端收到AMPDU后,对该AMPDU中的每个MPDU进行译码,并针对每个MPDU发送进行反馈。BA机制中,通过一个BA帧完成AMPDU包括的多个MDPU的反馈,降低反馈帧的数量。具体的,BA帧可以包括块确认位图(bitmap)来反馈每个MPDU的译码情况。
5、网络分配向量(network allocation vector,NAV):
NAV是WLAN定义的一种用于虚拟载波监听的方法。某个WLAN设备竞争获得信道后,通常会发送一个或多个帧,采用NAV方法时,获得信道的WLAN设备可以在其发送的每个帧包括的MAC帧头部的Duration字段中设置NAV,以通知其他WLAN设备,当前获得信道的WLAN设备使用该信道的持续时间,其他侦听到该帧的WLAN设备会在该持续时间内保持静默,即停止竞争信道。
示例性的,如图6所示,以STAa竞争到信道,且STAa和STAb进行数据传输为例,STAa在竞争到信道后,以广播的方式发送请求发送(request to send,RTS)帧,该RTS帧中设置NAV1以指示该STA1在NAV1指示的时长内向指定接收端(STAb)发送数据帧。STAb接收到RTS帧并间隔短帧间隔(short interframe space,SIFS)后,以广播的方式发送清除发 送(clear to send,CTS)帧,以确认STAa的发送,该CTS帧中设置NAV2以指示使用信道的持续时间,该NAV2指示的持续时间的开始时刻为CTS帧的结束时刻,NAV2和NAV1指示的持续时间的结束时刻相同。之后,STAa向STAb发送数据(Data)帧,STAb向STAa回复确认(acknowledgement,ACK)帧。
可以理解的是,在STAa发送的数据帧和STAb发送的ACK帧中也包括NAV,只是图6中未示出。在NAV1指示的持续时间内接收到RTS帧或者CTS帧的其他STA保持静默,在NAV1指示的持续时间结束的DIFS时间后其他STA开始竞争信道。
6、单播、组播:
单播指点对点的传输模式,即一个发送端对应一个接收端。示例性的,如图7a所示,假设存在WLAN设备1至WLAN设备6共6个WLAN设备,发送端可以为WLAN设备1,接收端可以仅为WLAN设备2,此时,可以认为WLAN设备1与WLAN设备2之间进行单播传输。
组播指点多对多点的传输模式。除特殊说明外,本申请涉及的组播指AP与多个STA之间的组播传输,即AP只需要发送一份数据给组播组内的所有STA。示例性的,如图7b所示,假设存在AP1,以及STA1至STA5共5个STA,AP1可以作为发送端,在AP1需要向STA1、STA2、以及STA5发送相同的数据时,接收端可以包括STA1、STA2、以及STA5,或者说,组播组内的STA可以包括STA1、STA2、以及STA5。
在WLAN中,由于小尺度快衰落、遮挡与阴影衰落、同频干扰等因素,无线信道质量不稳定,为了保证传输的可靠性,AP需要根据信道质量状况进行速率自适应和重传。在单播传输中,AP可通过STA的应答反馈获得信道的链路质量和数据传输的可靠性,基于应答反馈机制,一方面可通过重传保证传输的可靠性,另一方面可通过对调制编码方案(modulation and coding scheme,MCS)的调整实现链路速率自适应,保证高效传输。对于组播传输,传统的IEEE 802.11没有定义有效的应答反馈机制,这带来了两个典型问题:1)组播STA没有任何应答反馈,无法通过重传保证组播场景的可靠性;2)组播数据流以固定的最低速率发送,无法获知链路质量信息以实现速率自适应,难以发挥组播传输效率方面的潜在优势。
需要说明的是,本申请涉及的组播STA指组播组内的STA,或者说,在组播传输中作为接收端的STA,三种描述可以相互替换,本申请对此不做具体限定。
对于组播业务的可靠性问题,在传统的802.11标准中,针对低负载场景,一种有效的选择是AP将组播报文转成单播报文发送,利用单播传输模式的ACK反馈以及重传保障每个终端的可靠性,并且可利用单播场景下的应答反馈机制实现速率自适应,为不同信道质量的用户选择合适的传输速率。然而,将组播报文转换成单播报文会导致报文重复传输,对于相同的数据流,单播相比于组播所需要的带宽资源或时延随着组播组内STA数量的增大而急剧增大,导致该方案难以应用于用户高密的场景。
当前在WLAN网络中存在诸多用户高密场景下的组播业务,如VR教学、视频会议以及电子书包等,这些业务需要AP支撑的STA数目较多,且对可靠性、吞吐量以及时延等指标提出了极致的需求,因此为了在WLAN网络中为高密场景下的组播业务提供高效可靠传输保证,802.11bc将组播业务的发送反馈方法优化作为主要的讨论主题之一。
目前,802.11aa标准中提出了一种组播重传(groupcast retries,GCR)反馈机制,该机制将802.11标准已有的BA机制,扩展到组地址传输服务(group addressed transmission service,GATS)的场景,即将BA机制扩展到组播场景。
具体的,该反馈机制下,AP向组播组内的STA发送组播AMPDU,之后,使用块确认请 求帧(block ACK request,BAR)轮询组播组内的部分或全部STA,收到BAR帧的STA经过SIFS时间后,向AP回复BA帧,以告知AP组播AMPDU的译码情况。
示例性的,如图8所示,以组播组内的STA包括STA1、STA2、以及STA3为例,AP首先发送组播AMPDU,之后向STA1发送BAR1,STA1在收到BAR1后向AP回复BA1。收到BA1后,AP继续向STA2发送BAR2,STA2在收到BAR1后向AP回复BA2。同样地,收到BA2后,AP继续向STA3发送BAR3,STA2在收到BAR3后向AP回复BA3。
由图8可知,该反馈机制中,AP以轮询的方式请求组播STA逐个反馈BA帧,随着组播STA数目的增多,该机制中AP与组播STA交互的BAR帧与BA帧的数目也随之增多,将该反馈机制应用于用户高密场景,会引入巨大的GCR控制帧传输开销。
为了降低GCR控制帧的传输开销,802.11ax标准对GCR反馈机制进行了优化,定义了GCR MU-BAR机制,其中,MU指多用户(multi-user,MU)。在GCR MU-BAR机制中,AAP向组播组内的STA发送组播AMPDU,之后,使用MU-BAR帧调度组播组内的多个STA在为其分配的RU上回复BA帧。
示例性的,如图9所示,以组播组内的STA包括STA1、STA2、以及STA3为例,AP首先发送组播AMPDU,之后发送MU-BAR帧,在该MU-BAR帧中分别为STA1、STA2、以及STA3分配RU,STA1、STA2、以及STA3收到MU-BAR帧后,在AP为其分配的RU上分别向AP回复BA1、BA2、以及BA3。
由图9可知,该反馈机制中,AP可以通过一个MU-BAR帧请求多个组播STA反馈BA帧,相比于图8所示的方案,能够降低GCR控制帧的传输开销。然而,一个MU-BAR帧请求反馈的组播STA的数目有限,在用户高密场景下,若要保证AP收集到所有组播STA的BA帧,仍然需要AP发送多个MU-BAR,即需要进行多轮GCR控制帧的交互。例如,信道带宽为40MHz的情况下,有18个可用的RU能够分配给STA反馈BA帧,考虑VR教学这一典型的用户高密场景,假设存在60个组播STA,为了保证AP收到该60个组播STA的BA帧,共需要进行4轮MU-BAR帧与BA帧的交互,仍然存在较大的传输开销。
基于此,本申请提供一种组播反馈方法,能够以较低的传输开销对组播数据帧进行反馈,使得接入点根据站点的反馈获得信道质量状况。
下面结合附图对本申请实施例提供的技术方案进行介绍。
需要说明的是,本申请涉及到的各个字段长度仅为示例性说明,本申请并不限定各个字段的长度一定为本申请给出的长度,其长度可以比本申请给出的长度更长或更短。
需要说明的是,本申请下述实施例中,各个装置之间的消息名称、各参数的名称、或各信息的名称等只是一个示例,在其他的实施例中也可以是其他的名称,本申请所提供的方法对此不作具体限定。
可以理解的,本申请实施例中,接入点和/或STA可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
请参见图10,为本申请实施例提供的组播反馈方法的示意性流程图。下文均以本申请实施例提供的方法应用于图1所示的应用场景为例。当然本申请实施例也可以应用在其他可能通信场景或者通信系统中,只要涉及到对组播数据帧进行反馈的场景,都可以通过本申请实施例提供的方法实现反馈。
具体的,如图10所示,本申请提供的业务传输方法包括如下步骤:
S1001、接入点发送组播数据帧。相应的,第一站点接收来自接入点的组播数据帧。
其中,第一站点为组播组内的多个站点中的任意一个站点。
可以理解的是,接入点发送的该组播数据帧能够被组播组内的多个站点接收,本申请实施例以该组播组内的站点包括第一站点,第一站点接收到该组播数据帧为例进行说明,下述实施例也以第一站点为主体对组播组内的站点所实现的操作进行说明。
应理解,组播组内的多个站点具有相同或类似的处理动作,均可执行本申请提供的第一站点实现的功能或动作。
在一些实施例中,该组播数据帧由多个数据帧组成,例如,组播数据帧为AMPDU,构成组播数据帧的数据帧为多个MPDU。
作为一种示例,该组播数据帧由多个数据帧组成时,该数据帧也可以称为组播数据帧的子数据帧,例如,组播数据帧为AMPDU时,MPDU也可以称为AMPDU的子数据帧。
在另一些实施例中,该组播数据帧仅包括一个数据帧,例如,数据帧为MPDU,该组播数据帧仅包括一个MPDU,或者说,该组播数据帧为MPDU。
S1002、接入点发送组播反馈触发帧。相应的,第一站点接收来自接入点的组播反馈触发帧。
其中,该组播反馈触发帧用于调度组播组内的多个站点反馈组播数据帧是否译码正确。
为了便于描述,本申请将组播组内的所有站点的数目记为N,即该组播组内共包括N个站点;将该组播反馈触发帧调度的组播组内的多个站点的数目记为M,即组播反馈触发帧调度组播组内的M个站点反馈组播数据帧是否译码正确,该M个站点中包括第一站点。其中,N、M为大于1的正整数,M小于或等于N。
在一些实施例中,M的取值与信道带宽正相关。也就是说,一个组播反馈触发帧调度的组播组内反馈组播数据帧是否译码正确的站点数目与信道带宽正相关,即信道带宽越大,组播反馈触发帧调度的站点数目越多。
作为一种示例,M的取值与信道带宽满足如下公式(2):
M=C*2 BW*(MultiplexingFlag+1)      (2)
其中,C为常数取值为18,表示带宽为20MHz时,单次可调度的最小站点数目;BW指示信道带宽,例如,BW等于0,指示信道带宽为20MHz,BW等于1,指示信道带宽为40MHz,BW等于2,指示信道带宽为80MHz,BW等于3,指示信道带宽为80+80MHz,或者说为160MHz;MultiplexingFlag的取值为0或1。
示例性的,以信道带宽为40MHz为例,M的最大值为72,即本申请中接入点通过一个组播反馈触发帧最多可以调度组播组内的72个站点反馈组播数据帧是否译码正确。而对于图9所述的GCR MU-BAR反馈方案,在信道带宽为40MHz时,可以用于反馈的RU数目为18,即一个MU-BAR帧最多可以调度组播组内的18个站点反馈组播数据帧是否译码正确。假设一个组播组内共包括60个站点,通过本申请的方案,接入点仅需发送一个组播反馈触发帧,即可调度该60个站点进行反馈;若使用图9所示的方案,若要调度全部60个站点进行反馈,接入点需发送四个MU-BAR帧。由此可得,通过本申请的方案可以降低控制帧的开销。
在一些实施例中,该组播反馈触发帧包括第一字段,该第一字段的值为第一数值时,指示组播反馈触发帧的类型为组播重传确认请求。通过该第一字段,组播组内的站点可以确定组播反馈触发帧的类型,进而可以根据该反馈触发帧进行反馈。
作为一种示例,该组播反馈触发帧为NFRP触发帧,该第一字段为NFRP触发帧的用户信息字段中的反馈类型字段,用户信息字段的结构可参考图4,在此不再赘述。进一步的,第 一数值可以为1-15中的任意一个。以第一数值等于1为例,该反馈类型字段的取值及其对应的反馈类型如下表1所示。
表1
Figure PCTCN2021139821-appb-000001
也就是说,本申请可以复用NFRP触发帧的反馈类型字段,使用802.11ax标准中反馈类型字段的一个预留值表示组播重传确认请求,以指示被调度的STA反馈组播数据帧是否译码正确。
在一些实施例中,该组播反馈触发帧包括第二字段,该第二字段用于指示组播数据帧。通过该第二字段,可以明确指示组播数据帧,使得组播组内的站点能够确定需要反馈组播反馈触发帧所指示的组播数据帧,从而对该组播数据帧进行反馈,进而使得接入点与站点对反馈对象的理解一致,提高反馈准确性。
作为一种示例,该组播反馈触发帧为NFRP触发帧,该第二字段为NFRP触发帧的用户信息字段中的字段。也就是说,本申请在802.11ax标准定义的NFRP触发帧的用户信息字段中扩展了一个第二字段,用于指示需要反馈的组播数据帧。
示例性的,NFRP触发帧的用户信息字段的结构可以如图11a所示。其中,第二字段可以设置为组播数据帧的索引。例如,组播数据帧为MPDU时,第二字段可以设置为该MPDU的序号索引;组播数据帧为AMPDU时,第二字段可以设置为AMPDU的索引,即可以对AMPDU进行编号,一个AMPDU的索引用于唯一标识该AMPDU,通过在将第二字段设置为AMPDU的索引,即可唯一确定反馈的AMPDU。
作为一种示例,该第二字段可以包括第一子字段和第二子字段,该第一子字段用于承载组播数据帧中起始数据帧的序号索引,该第二子字段用于承载组播数据帧中结尾数据帧的序号索引。
示例性的,该第一子字段可以称为块确认起始序列(Block ACK Starting Sequence)字段,该第二子字段可以称为块确认结尾序列(Block ACK Ending Sequence)字段。NFRP触发帧的用户信息字段的结构可以如图11b所示。
示例性的,对于图11b所示的结构,组播数据帧为MPDU时,块确认起始序列字段和块确认结尾序列字段均可以设置为该MPDU的序号索引;组播数据帧为AMPDU时,块确认起始序列字段可以设置为AMPDU中起始MPDU的序号索引,块确认结尾序列字段可以设置为AMPDU中结尾MPDU的序号索引。
作为另一种示例,该第二字段可以包括第一子字段和第二子字段,该第一子字段用于承载组播数据帧中起始数据帧的序号索引,该第二子字段用于承载组播数据帧包括的数据帧的个数。
示例性的,组播数据帧为MPDU时,第一子字段可以设置为该MPDU的序号索引,第 二子字段可以设置为1,指示组播数据帧包括1个数据帧;组播数据帧为AMPDU时,第一子字段可以设置为AMPDU中起始MPDU的序号索引,第二子字段可以设置为AMPDU包括的MPDU个数。
作为又一种示例,该第二字段可以包括第一子字段和第二子字段,该第一子字段用于承载组播数据帧包括的数据帧的个数,该第二子字段用于承载组播数据帧中结尾数据帧的序号索引。
示例性的,组播数据帧为MPDU时,第一子字段可以设置为1,指示组播数据帧包括1个数据帧,第二子字段可以设置为该MPDU的序号索引;组播数据帧为AMPDU时,第一子字段可以设置为AMPDU包括的MPDU个数,第二子字段可以设置为AMPDU中结尾MPDU的序号索引。
需要说明的是,本申请涉及的“序号索引”,也可以称为“序列号”,二者可以相互替换,本申请对此不做具体限定。
S1003、第一站点确定组播反馈触发帧调度的M个站点是否包括第一站点。
在一些实施例中,组播反馈触发帧可以包括起始AID,第一站点接收到组播反馈触发帧后,判断第一站点的AID是否大于或等于该起始AID,且小于起始AID与M之和。若是,第一站点是组播反馈触发帧调度的站点,若否,第一站点不是该组播反馈触发帧调度的站点。本申请以第一站点是组播反馈触发帧调度的站点为例进行说明,即组播反馈触发帧调度的M个站点包括第一站点。
在一些实施例中,第一站点确定组播反馈触发帧调度的M个站点包括第一站点后,若正确译码组播数据帧,执行下述步骤S1004a;若未正确译组播数据帧,或者说对组播数据帧译码错误,执行下述步骤S1004b或S1004c。
S1004a、第一站点在第一子载波上向接入点发送组播反馈报告帧。
其中,第一子载波为第一子载波集合中与第一站点关联的子载波,该第一子载波集合用于正确译码时承载组播反馈报告帧。
在一些实施例中,该第一子载波集合可以是接入点在步骤S1002之前配置的。该第一子载波集合中包括N个子载波,分别关联组播组内的N个站点,即组播组内的一个站点关联第一子载波集合中的一个子载波,不同站点关联的子载波不同。也就是说,组播组内的某个站点正确译码组播数据帧时,在第一子载波集合中与其关联的子载波上向接入点发送组播反馈数据帧。
S1004b、第一站点在第二子载波上向接入点发送组播反馈报告帧。
其中,第二子载波为第二子载波集合中与第一站点关联的子载波,该第二子载波集合用于未正确译码时承载组播反馈报告帧。
在一些实施例中,该第二子载波集合可以是接入点在步骤S1002之前配置的。该第二子载波集合中包括N个子载波,分别关联组播组内的N个站点,即组播组内的一个站点关联第二子载波集合中的一个子载波,不同站点关联的子载波不同。也就是说,组播组内的某个站点未正确译码组播数据帧时,在第二子载波集合中与其关联的子载波上向接入点发送组播反馈数据帧。
在一些实施例中,第一子载波集合和第二子载波集合是接入点通过一个广播帧配置的,也可以是通过两个广播帧配置的,本申请对此不做具体限定。
S1004c、第一站点不在第一子载波和第二子载波上向接入点发送组播反馈报告帧。
其中,第一子载波和第二子载波可参见前述说明,在此不再赘述。也就是说,第一站点 未正确译码组播数据帧时,可以不向接入点回复组播反馈报告帧。
在一些实施例中,本申请涉及的组播反馈报告帧为空数据帧,即不包括数据字段,其也可以称为空数据包反馈报告(NDP Feedback Report)帧。示例性的,该组播反馈报告帧的结构可以如图5所示。
可以理解的,该组播反馈报告帧可以认为是组播反馈触发帧的回复帧。或者说,该组播反馈报告帧是组播反馈触发帧所触发的帧。
对于接入点,其发送组播反馈触发帧后,可以在第一子载波集合和第二子载波集合包括的子载波上进行能量检测。
在第一站点执行步骤S1004a时,接入点可以执行下述步骤S1005a:
S1005a、接入点在第一子载波上检测到能量,确定第一站点正确译码组播数据帧。
可以理解的,第一子载波集合是接入点配置的,在接入点侧,能够确定第一子载波集合中的子载波所关联的站点,因此,接入点在第一子载波上检测到能量时,由于能够确定第一子载波关联第一站点,从而可以确定第一站点正确译码组播数据帧。
在第一站点执行步骤S1004b时,接入点执行如下步骤S1005b:
S1005b、接入点在第二子载波上检测到能量,确定第一站点未正确译码组播数据帧。
可以理解的,第二子载波集合是接入点配置的,在接入点侧,能够确定第二子载波集合中的子载波所关联的站点,因此,接入点在第二子载波上检测到能量时,由于能够确定第二子载波关联第一站点,从而可以确定第一站点正确译码组播数据帧。
在第一站点执行步骤S1004c时,接入点执行如下步骤S1005c:
S1005c、接入点在第一子载波和第二子载波上均未检测到能量,确定第一站点未正确译码组播数据帧。
通过上述方案,接入点能够确定组播反馈触发帧调度的M个站点中,正确译码组播数据帧的站点,以及未正确译码组播数据帧的站点。在M小于N时,可以从步骤S1002开始重复执行上述方案,以调度组播组内的N个站点中除本次调度的M个站点之外的其他站点进行反馈。在M等于N时,接入点能够确定组播组内的N个站点中,正确译码组播数据帧的站点,以及未正确译码组播数据帧的站点。
基于上述方案,在组播数据帧为MPDU时,接入点调度组播组内的站点回复组播反馈报告帧,并通过在站点关联的子载波上是否检测到能量,获知组播组内的站点是否正确译码MPDU。之后,接入点可以为未正确译码的站点重传MPDU,提高传输可靠性,或者,也可以对链路速率进行调整,提高传输效率。
在一些实施例中,组播数据帧为AMPDU时,通过上述方案接入点可以获知组播组内的N个站点中,未正确译码AMPDU的站点,进一步地,为了获知AMPDU中未正确译码的MPDU,如图12所示,本申请提供的方法还包括如下步骤S1006-S1007:
S1006、接入点发送块确认请求(block ACK request,BAR)触发帧。相应的,第一站点接收来自接入点的块确认请求触发帧。
其中,该块确认请求触发帧用于调度至少一个第二站点在各自关联的RU上,反馈AMPDU中译码错误的MPDU的序号索引。第二站点为组播组内的N个站点中,未正确译码AMPDU的站点。
为了便于描述,本申请将组播组内的未正确译码AMPDU的站点的数目记为P,即该组播组内共包括P个未正确译码AMPDU的站点;将该块确认请求触发帧调度的至少一个第二站点的数目记为K,即块确认请求触发帧调度组播组组内未正确译码AMPDU的K个站点反 馈译码错误的MPDU的序号索引。其中,P、K为正整数,K小于或等于P。
需要说明的是,本申请中以第一站点为块确认请求触发帧用于调度至少一个第二站点中的一个站点为例进行说明。也就是说,在该场景下,第一站点也作为第二站点,此外,对于第一站点来说,该块确认请求触发帧用于调度第一站点在第一站点关联的RU上,反馈AMPDU中译码错误的MPDU的序号索引。
在一些实施例中,该块确认请求触发帧包括K个第二站点中每个第二站点的AID,以及每个第二站点关联的RU,或者说,为每个第二站点分配的RU。
作为一种示例,该确认请求触发帧可以是802.11ax标准中的MU-BAR触发帧,或者是对802.11ax标准中的MU-BAR触发帧进行扩展或删减后得到的触发帧。
可以理解的是,接入点发送的该块确认请求触发帧能够被该K个第二站点接收,本申请实施例以该K个第二站点中的第一站点为例进行说明。应理解,该K个第二站点中的多个第二站点具有相同或类似的处理动作,均可执行本申请下述实施例提供的第一站点实现的功能或动作。
S1007、第一站点在第一站点关联的RU上,向接入点发送块确认帧(block acknowledgement,BA)。相应的,接入点在第一站点关联的RU上,接收来自第一站点的块确认帧。
其中,第一站点关联的RU即为块确认请求触发帧中为第一站点分配的RU。
其中,该块确认帧用于指示AMPDU中第一站点译码错误的MPDU。作为一种示例,该块确认帧可以包括块确认位图(Block ACK Bitmap),即用位图指示译码错误的MPDU。具体的,块确认位图中的每个比特对应AMPDU中的一个MPDU,某个比特为1时,表示该比特对应的MPDU译码错误,该比特为0时,表示该比特对应的MPDU译码正确;或者,某个比特为0时,表示该比特对应的MPDU译码错误,该比特为1时,表示该比特对应的MPDU译码正确。
示例性的,以AMPDU包括5个MPDU,序号索引分别是10-14,且第一站点对序号索引为10、13、14的MPDU译码出错为例,若以比特为1表示对应的MPDU译码出错,那么块确认位图可以为:10011。其中,从左至右,第一个1指示序号索引为10的MPDU译码错误,第二个和第三个0分别指示序号索引11和12的MPDU译码正确,最后两个1分别指示序号索引为13和14的MPDU译码错误。
通过上述步骤S1006和S1007,接入点能够确定未正确译码AMPDU的K个站点中,每个站点译码错误的MDPU。在K小于P时,可以重复执行上述步骤S1006和S1007,以调度未正确译码AMPDU的P个站点中除本次调度的K个站点之外的其他站点反馈译码出错的MPDU的序号索引。在P等于K时,接入点能够确定所有未正确译码AMPDU的站点中,每个站点译码错误的MDPU。
基于上述方案,在组播数据帧为AMPDU时,本申请提供两级反馈机制,第一级反馈中,接入点可以先通过组播反馈触发帧调度组播组内的站点回复组播反馈报告帧,从而获知组播组内未正确译码AMPDU的站点。第二级反馈中,接入点通过块确认请求触发帧调度未正确译码AMPDU的站点反馈译码出错的MPDU的序号索引。从而接入点可以重传译码出错的MPDU,提高传输可靠性,或者,也可以对链路速率进行调整,提高传输效率。
示例性的,参见图13,以组播组内包括STA1、STA2、以及STA3共三个STA为例,在上述两级反馈机制中,AP首先发送组播数据帧AMPDU,再发送组播反馈触发帧,假设STA1正确译码AMPDU,STA2和STA3未正确译码AMPDU,则STA2和STA3在收到组播反馈 触发帧后,分别在第二子载波集合中与其关联的子载波上向AP发送组播反馈报告帧。STA1在收到组播反馈触发帧后,在第一子载波集合中与其关联的子载波上向AP发送组播反馈报告帧。
相应的,根据检测到能量的子载波,接入点可以确定STA2和STA3未正确译码AMPDU,从而发送块确认触发帧,调度STA2和STA3在各自关联的RU上反馈AMPDU中译码出错的MPDU的索引。STA2和STA3收到该块确认触发帧后,分别在其关联的RU上发送块确认帧,以指示译码出错的MPDU。
参见图14,为图13所示的通信流程的时序示意图。其中,以组播反馈触发帧为NFRP帧、组播反馈报告帧为NDP、块确认请求触发帧为MU-BAR为例进行说明。
基于本申请的方案,在组播数据帧为AMPDU时,接入点通过第一级反馈过滤掉译码正确的STA,因此在第二级反馈中可以避免为译码正确的STA分配RU,从而可以有效降低第二级反馈中BAR触发帧与BA帧交互的开销。
以信道带宽为40MHz为例,假设组播组内共包括60个STA,可用于反馈译码错误的MPDU的RU数目为18,基于802.11ax标准中的GCR MU-BAR反馈机制,AP需要发送4个MU-BAR触发帧,相应的,组播组内的STA无论是否正确译码AMPDU,均需要回复BA帧。基于本申请的方案,在一定的错包率(packet error ratio,PER)范围内,AP发送两个块确认触发帧即可,且正确译码AMPDU的STA无需回复BA帧。
上述对本申请提供的组播反馈流程进行了介绍。此外,本申请考虑到接入点的覆盖范围存在非组播站点的场景,该场景下,非组播站点在信道上发起的数据传输可能会对上述流程中涉及到的各个帧产生干扰,基于此,本申请通过NAV机制来进行信道保护,从而提高上述反馈流程的可靠性。
在一些实施例中,接入点发送的组播反馈触发帧可以包括第三字段,该第三字段用于指示第一NAV。示例性的,该第三字段可以为组播反馈触发帧头部的持续时间(Duration)字段。
作为一种示例,在组播数据帧为MPDU时,该第一NAV的时长为组播反馈报告帧的时长以及SIFS之和,该组播反馈报告帧为组播反馈触发帧的回复帧。示例性的,如图15所示,以组播数据帧为MPDU,组播组内的STA包括STA1和STA2,AP的覆盖范围内存在非组播站点STA3为例,AP发送MPDU后,发送组播反馈触发帧,该组播反馈触发帧中指示第一NAV,STA1和STA2在第一NAV内根据AP的调度发送组播反馈报告帧(图15中以NDP表示),STA3在第一NAV内保持静默。
作为另一种示例,在组播数据帧为AMPDU时,该第一NAV的时长为以下多项之和:组播反馈报告帧的时长、块确认请求触发帧的时长、块确认帧的时长、以及SIFS。
示例性的,在上述流程中,若一个块确认请求触发帧能够调度组播组内所有未正确译码AMPDU的站点回复块确认帧,则第一NAV的时长为:
一个组播反馈报告帧的时长+一个块确认请求触发帧的时长+一个块确认帧的时长+3个SIFS;
若需要多个块确认请求帧才能调度组播组内所有未正确译码AMPDU的站点回复块确认帧,则第一NAV的时长为:
一个组播反馈报告帧的时长+L个块确认请求触发帧的时长+L个块确认帧的时长+(2L+1)个SIFS。
其中,L为接入点发送的块确认请求触发帧的个数。
示例性的,如图16所示,以组播数据帧为AMPDU,组播组内的STA包括STA1和STA2,AP的覆盖范围内存在非组播站点STA3为例,AP发送AMPDU后,发送组播反馈触发帧,该组播反馈触发帧中指示第一NAV,STA1和STA2在第一NAV内根据AP的调度发送组播反馈报告帧(图16中以NDP表示),若STA2未正确译码AMPDU,AP发送块确认请求触发帧调度STA2反馈块确认帧,STA2收到块确认请求触发帧后,根据AP的调度发送块确认帧以指示译码出错的MPDU,STA3在第一NAV内保持静默。
基于该方案,接入点通过在组播反馈触发帧中指示第一NAV,可以在反馈流程中对信道进行保护,降低非组播站点对反馈流程的干扰,提高反馈效率,降低反馈时延,从而使得接入点能够及时重传出错的MPDU,降低组播业务时延,或者能够及时调整传输速率,提高组播业务传输速率。
除上述介绍的组播反馈方法外,本申请还提供一种组播反馈方法,该方法在接入点选择合适的MCS,将单次传输的PER控制在一定范围内,保证只有少数组播STA译码出错的场景下,借助上行OFDMA随机接入,即UORA的思想,预先分配至少一个RU,用于未正确译码组播数据帧的组播STA反馈译码出错的信息。
具体的,参见图17,该组播反馈方法包括如下步骤:
S1701、接入点发送组播数据帧。相应的,第一站点接收来自接入点的组播数据帧。
其中,第一站点为组播组内的多个站点中的任意一个站点。
在一些实施例中,该组播数据帧由多个数据帧组成,例如,组播数据帧为AMPDU,构成组播数据帧的数据帧为多个MPDU。
在另一些实施例中,该组播数据帧仅包括一个数据帧,例如,数据帧为MPDU,该组播数据帧仅包括一个MPDU,或者说,该组播数据帧为MPDU。
其中,步骤S1701的具体细节可参考上述步骤S1001的相关说明,在此不再赘述。
S1702、接入点发送组播反馈触发帧。相应的,第一站点接收来自接入点的组播反馈触发帧。
其中,该组播反馈触发帧用于配置至少一个RU,该RU用于组播组内的站点在UORA过程中传输组播数据帧的块确认帧,该组播数据帧的块确认帧用于指示组播数据帧中译码错误的数据帧。
在一些实施例中,图17所示的方法中涉及的“组播反馈触发帧”也可以称为:“上行OFDMA随机接入-否定应答轮询触发(UORA-NACK Poll Trigger)帧”,二者可以相互替换,本申请对此不做具体限定。
在一些实施例中,该组播反馈触发帧可以包括至少一个用户信息字段(user info field,UIF),每个用户信息字段用于配置一个RU,允许多个UIF配置连续的多个大小相同的RU。此外,每个UIF包括一个“AID12”字段,该“AID12”字段设置为0,表示当前UIF配置的RU是分配给AP关联的STA的RU。
示例性的,以组播反馈触发帧包括三个UIF,这三个UIF分别配置RU1、RU2、以及RU3为例,则UIF中“AID12”字段的设置以及RU的分布示意图可如图18所示。
在一些实施例中,该组播反馈触发帧包括第一字段,该第一字段的值为第一数值时,指示当前组播反馈触发帧的类型为上行正交频分多址随机接入-否定应答轮询,即UORA-NACK Poll。
在一些实施例中,该组播反馈触发帧可以是一种新定义的MU-BAR触发帧,包括BAR控制字段,该第一字段可以是BAR控制(BAR control)字段中的BAR类型(BAR Type)字 段。
示例性的,BAR控制字段的格式可以如图19所示,包括1比特的BAR确认策略(BAR ACK Policy)字段、4比特的BAR类型(BAR Type)字段、7比特的预留(Reserved)字段、以及4比特的业务标识信息(TID_INFO)字段,其中,TID指业务标识(traffic identifier,TID)。
其中,BAR确认策略(BAR ACK Policy)字段用于指示发送端是否需要接收端立即进行应答反馈(immediate acknowledgement),取值为1时表示需要,取值为0时表示不需要;业务标识信息(TID_INFO)字段的功能与BAR帧类型相关,具体描述可参考802.11ax标准中的相关介绍,在此不予赘述。BAR类型字段指示当前MU-BAR触发帧的类型。进一步的,第一数值可以是0、4、5、或7-9中的任意一个。以第一数值等于0为例,该BAR类型字段的取值及其对应的反馈类型如下表2所示。
表2
Figure PCTCN2021139821-appb-000002
也就是说,本申请可以复用MMU-BAR触发帧的BAR类型字段,使用802.11ax标准中BAR类型字段的一个预留值表示上行正交频分多址随机接入-否定应答轮询。
在一些实施例中,该组播反馈触发帧可以是一种新定义的基本触发(Basic Trigger)帧,本申请对该组播反馈触发帧的形式不做具体限定。
第一站点收到该组播反馈触发帧后,若未正确译码组播数据帧,执行下述步骤S1703。
应理解,组播组中未正确译码组播数据帧的站点具有相同或类似的处理动作,均可执行本申请下述实施例提供的第一站点实现的功能或动作。
S1703、第一站点通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧BA。相应的,接入点通过第一RU在UORA过程中接收来自第一站点的BA。
其中,第一RU为组播反馈触发帧配置的至少一个RU中的一个。块确认帧用于指示组播数据帧中第一站点译码错误的数据帧。
作为一种示例,该块确认帧可以包括块确认位图(Block ACK Bitmap),即用位图指示组 播数据帧中译码错误的数据帧,可参考上述步骤S1007中的相关说明,在此不再赘述。
在一些实施例中,第一站点通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧,可以包括:第一站点在竞争窗口中选择一个随机数,随机数小于或等于组播反馈触发帧配置的至少一个RU的总数时,从至少一个RU中选择第一RU,之后,第一站点在第一RU上向接入点发送组播数据帧的块确认帧。
基于该方案,一方面,接入点预先配置至少一个RU,用于译码错误的组播STA反馈块确认帧,从而获取组播数据帧的传输情况,以便重传组播数据帧中译码错误的数据帧,提高传输可靠性,或者,调整链路传输速率,提高传输效率。另一方面,本申请中仅是译码错误的组播STA反馈块确认帧,译码正确的组播STA可以不进行反馈,从而相比于802.11ax标准中定义的传统GCR MU-BAR反馈方法中,译码正确的组播STA也会反馈块确认帧的方案来说,可以降低控制帧的传输开销。
在一些实施例中,组播组内可能存在多个站点未正确译码组播数据帧,且这多个站点可能会选择相同的RU发送块确认帧,从而会导致反馈出现冲突,使得接入点无法正确收集反馈信息。在该场景下,接入点在无法正确译码组播STA反馈的块确认帧时,可以发送NACK帧,通知组播组内未正确译码组播数据帧的STA重传块确认帧。
示例性的,如图20所示,以组播组内的STA包括STA1、STA2、STA3,STA2正确译码组播数据帧,STA1和STA3未正确译码组播数据帧为例,AP发送AMPDU后,发送组播反馈触发帧,STA1和STA3收到组播反馈触发帧后,从组播反馈触发帧配置的RU中选择一个RU发送块确认帧。假设STA1和STA3选择的RU相同,接入点无法正确译码STA1和STA3反馈的块确认帧,则接入点发送NACK帧,STA1和STA3收到NACK帧后,重新选择RU并在重新选择的RU上重传块确认帧。
基于该方案,在多个组播站点发送的块确认帧发生冲突时,接入点可以指示该多个组播站点重传块确认帧,从而保证接入点正确译码块确认帧,获取组播数据帧的传输情况,进而根据该传输情况进行重传或速率调整。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由接入点实现的方法和/或步骤,也可以由可用于该接入点的部件(例如芯片或者电路)实现;由站点实现的方法和/或步骤,也可以有可用于该站点的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的接入点,或者包含上述接入点的装置,或者为可用于接入点的部件;或者,该通信装置可以为上述方法实施例中的第一站点,或者包含上述第一站点的装置,或者为可用于第一站点的部件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在一种实施场景下,以通信装置为上述方法实施例中的接入点为例,图21示出了一种接入点210的结构示意图。该接入点210包括处理模块2101和收发模块2102。
在一些实施例中,该接入点210还可以包括存储模块(图21中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块2102,也可以称为收发单元用以实现发送和/或接收功能。该收发模块2102可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块2102,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由接入点执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块2101,可以用于执行上述方法实施例中由接入点执行的处理类(例如确定、获取等)的步骤,和/或用于支持本文所描述的技术的其它过程。
在一种实施场景中:
收发模块2102,用于发送组播数据帧;收发模块2102,还用于发送组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈组播数据帧是否译码正确;处理模块2101,用于在第一子载波和第二子载波上均未检测到能量时,确定第一站点未正确译码组播数据帧;或者,处理模块2101,用于在第二子载波上检测到能量时,确定第一站点未正确译码组播数据帧。其中,第一子载波为第一子载波集合中与第一站点关联的子载波,第二子载波为第二子载波集合中与第一站点关联的子载波,第一站点为多个站点中的任意一个。
作为一种可能的实现方式,收发模块2102,还用于发送块确认请求触发帧,块确认请求触发帧用于调度至少一个第二站点在各自关联的资源单元RU上,反馈AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引,第二站点为多个站点中未正确译码AMPDU的站点;收发模块2102,还用于在至少一个第二站点各自关联的RU上,接收来自至少一个第二站点的块确认帧,块确认帧用于指示AMPDU中译码错误的MPDU。
作为一种可能的实现方式,组播反馈触发帧包括第三字段,第三字段用于指示第一网络分配矢量NAV,第一NAV的时长为以下多项之和:组播反馈报告帧的时长、块确认请求触发帧的时长、块确认帧的时长、以及短帧间隔SIFS,其中,该组播反馈报告帧为组播反馈触发帧的回复帧。
作为一种可能的实现方式,组播反馈触发帧包括第三字段,第三字段用于指示第一网络分配矢量NAV,第一NAV的时长为组播反馈报告帧的时长以及短帧间隔SIFS之和,其中,该组播反馈报告帧为组播反馈触发帧的回复帧。
作为一种可能的实现方式,组播反馈触发帧包括第一字段,第一字段的值为第一数值时,指示组播反馈触发帧的类型为组播重传确认请求。
作为一种可能的实现方式,组播反馈触发帧包括第二字段,第二字段用于指示组播数据帧。
作为一种可能的实现方式,第二字段包括第一子字段和第二子字段,第一子字段用于承载组播数据帧中起始数据帧的序号索引,第二子字段用于承载组播数据帧中结尾数据帧的序号索引。
在另一种实施场景中:
处理模块2101,用于生成组播数据帧和组播反馈触发帧;收发模块2102,用于发送组播数据帧和该组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输组播数据帧的块确认帧;收发模块2102,还用于通过第一RU在UORA过程中接收来自第一站点的块确认帧,块确认帧用于指示组播数据帧中译码错误的数据帧,该第一RU为组播反馈触发帧配置的至少一个RU中的一个。
作为一种可能的实现方式,该组播数据帧为聚合媒体接入控制协议数据单元AMPDU,数据帧为媒体接入控制协议数据单元MPDU。
作为一种可能的实现方式,该组播反馈触发帧包括第一字段,第一字段的值为第一数值时,指示该组播反馈触发帧的类型为上行正交频分多址随机接入-否定应答轮询。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该接入点210以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该接入点210可以采用图3所示的WLAN设备300的形式。
作为一种示例,图21中的处理模块2101的功能/实现过程可以通过图3所示的WLAN设备300中的处理器301调用存储器304中存储的计算机执行指令来实现,图21中的收发模块2102的功能/实现过程可以通过图3所示的WLAN设备300中的收发器302来实现。
在一些实施例中,当图21中的接入点210是芯片或芯片系统时,处理模块2101的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,收发模块2102的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的接入点210可执行上述组播反馈方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一种实施场景下,以通信装置为上述方法实施例中的第一站点为例,图22示出了一种第一站点220的结构示意图。该第一站点220包括处理模块2201和收发模块2202。
在一些实施例中,该第一站点220还可以包括存储模块(图22中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块2202,也可以称为收发单元用以实现发送和/或接收功能。该收发模块2202可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块2202,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一站点执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块2201,可以用于执行上述方法实施例中由第一站点执行的处理类(例如确定、获取等)的步骤,和/或用于支持本文所描述的技术的其它过程。
在一种实施场景中:
收发模块2202,用于接收来自接入点的组播数据帧;收发模块2202,还用于接收来自接入点的组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈组播数据帧是否译码正确;收发模块2202,还用于在处理模块2201确定多个站点包括第一站点,且第一站 点未正确译码组播数据帧时,在第二子载波上向接入点发送组播反馈报告帧,第二子载波为第二子载波集合中与第一站点关联的子载波。
作为一种可能的实现方式,收发模块2202,还用于接收来自接入点的块确认请求触发帧,该块确认请求触发帧用于调度第一站点在第一站点关联的资源单元RU上,反馈AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引;收发模块2202,还用于在第一站点关联的RU上,向接入点发送块确认帧,块确认帧用于指示AMPDU中译码错误的MPDU。
作为一种可能的实现方式,组播反馈触发帧包括第三字段,第三字段用于指示第一网络分配矢量NAV,第一NAV的时长为以下多项之和:组播反馈报告帧的时长、块确认请求触发帧的时长、块确认帧的时长、以及短帧间隔SIFS,其中,该组播反馈报告帧为组播反馈触发帧的回复帧。
作为一种可能的实现方式,组播反馈触发帧包括第三字段,第三字段用于指示第一网络分配矢量NAV,第一NAV的时长为组播反馈报告帧的时长以及短帧间隔SIFS之和,其中,该组播反馈报告帧为组播反馈触发帧的回复帧。
作为一种可能的实现方式,组播反馈触发帧包括第一字段,第一字段的值为第一数值时,指示组播反馈触发帧的类型为组播重传确认请求。
作为一种可能的实现方式,组播反馈触发帧包括第二字段,第二字段用于指示组播数据帧。
作为一种可能的实现方式,第二字段包括第一子字段和第二子字段,第一子字段用于承载组播数据帧中起始数据帧的序号索引,第二子字段用于承载组播数据帧中结尾数据帧的序号索引。
在另一种实施场景中:
收发模块2202,用于接收来自接入点的组播数据帧;收发模块2202,还用于接收来自接入点的组播反馈触发帧,组播反馈触发帧用于配置至少一个资源单元RU,RU用于组播组内的站点进行上行正交频分多址随机接入UORA,UORA用于传输组播数据帧的块确认帧;收发模块2202,用于在处理模块2201未正确译码组播数据帧时,通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧,块确认帧用于指示组播数据帧中译码错误的数据帧,第一RU为组播反馈触发帧配置的至少一个RU中的一个。
作为一种可能的实现方式,处理模块2201,用于在竞争窗口中选择一个随机数,随机数小于或等于组播反馈触发帧配置的至少一个RU的总数时,从该至少一个RU中选择第一RU;收发模块2202,用于在该第一RU上向接入点发送组播数据帧的块确认帧。
作为一种可能的实现方式,该组播数据帧为聚合媒体接入控制协议数据单元AMPDU,数据帧为媒体接入控制协议数据单元MPDU。
作为一种可能的实现方式,该组播反馈触发帧包括第一字段,第一字段的值为第一数值时,指示该组播反馈触发帧的类型为上行正交频分多址随机接入-否定应答轮询。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该第一站点220以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该第一站点220可以采用 图3所示的WLAN设备300的形式。
作为一种示例,图22中的处理模块2201的功能/实现过程可以通过图3所示的WLAN设备300中的处理器301调用存储器304中存储的计算机执行指令来实现,图22中的收发模块2202的功能/实现过程可以通过图3所示的WLAN设备300中的收发器302来实现。
在一些实施例中,当图22中的第一站点220是芯片或芯片系统时,处理模块2201的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,收发模块2202的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的第一站点220可执行上述组播反馈方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的接入点和第一站点,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在一些实施例中,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括接口电路和逻辑电路,该接口电路用于获取输入信息和/或输出输出信息;该逻辑电路,用于执行上述任一方法实施例中的方法,根据输入信息进行处理和/或生成输出信息。
该通信装置用于实现上述方法实施例中的接入点的功能时:
在一些可能的设计中,输出信息可以为组播数据帧和组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确。
在一些可能的设计中,输入信息可以为:至少一个第二站点的块确认帧,该块确认帧用于指示AMPDU中译码错误的MPDU。相应的,根据输入信息进行处理,可以为:根据块确认帧确定重传的MPDU或调制传输速率。
或者,该通信装置用于实现上述方法实施例中的接入点的功能时:
在一些可能的设计中,输出信息可以为:组播数据帧和组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,该RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输组播数据帧的块确认帧。
在一些可能的设计中,输入信息可以为:块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧。相应的,根据输入信息进行处理,可以为:根据块确认帧确定重传的数 据帧或调制传输速率。
该通信装置用于实现上述方法实施例中的第一站点的功能时:
在一些可能的设计中,输入信息可以为:组播数据帧和组播反馈触发帧,该组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确。相应的,根据输入信息进行处理,可以为:该组播反馈触发帧调度的组播组内的多个站点包括第一站点,且第一站点未正确译码组播数据帧时,在第二子载波上向接入点发送组播反馈报告帧,第二子载波为第二子载波集合中与第一站点关联的子载波。
在一些可能的设计中,输出信息可以为:块确认帧,该块确认帧用于指示AMPDU中译码错误的MPDU。
或者,该通信装置用于实现上述方法实施例中的第一站点的功能时:
在一些可能的设计中,输入信息可以为:组播数据帧和组播反馈触发帧,该组播反馈触发帧用于配置至少一个资源单元RU,该RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输组播数据帧的块确认帧。相应的,根据输入信息进行处理,可以为:第一站点未正确译码组播数据帧时,通过第一RU在UORA过程中向接入点发送组播数据帧的块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧,第一RU为组播反馈触发帧配置的至少一个RU中的一个。
在一些可能的设计中,输出信息可以为:块确认帧,该块确认帧用于指示组播数据帧中译码错误的数据帧。
其中,本实施例提供的通信装置可执行上述方法实施例中的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的接入点和第一站点,可以由一般性的总线体系结构来实现。
为了便于说明,参见图23,图23是本申请实施例提供的通信装置1000的结构示意图,该通信装置1000包括处理器1001和收发器1002。该通信装置1000可以为接入点或第一站点,或其中的芯片。图23仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
其中,处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先 后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种组播反馈方法,其特征在于,所述方法包括:
    接入点发送组播数据帧;
    所述接入点发送组播反馈触发帧,所述组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确;
    所述接入点在第一子载波和第二子载波上均未检测到能量时,确定第一站点未正确译码所述组播数据帧;
    或者,所述接入点在第二子载波上检测到能量时,确定第一站点未正确译码所述组播数据帧;
    其中,所述第一子载波为第一子载波集合中与所述第一站点关联的子载波,所述第二子载波为第二子载波集合中与所述第一站点关联的子载波,所述第一站点为所述多个站点中的任意一个。
  2. 根据权利要求1所述的方法,其特征在于,所述组播数据帧为聚合媒体接入控制协议数据单元AMPDU时,所述方法还包括:
    所述接入点发送块确认请求触发帧,所述块确认请求触发帧用于调度至少一个第二站点在各自关联的资源单元RU上,反馈所述AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引,所述第二站点为所述多个站点中未正确译码所述AMPDU的站点;
    所述接入点在所述至少一个第二站点各自关联的RU上,接收来自所述至少一个第二站点的块确认帧,所述块确认帧用于指示所述AMPDU中译码错误的MPDU。
  3. 一种组播反馈方法,其特征在于,所述方法包括:
    第一站点接收来自接入点的组播数据帧;
    所述第一站点接收来自所述接入点的组播反馈触发帧,所述组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确;
    所述多个站点包括所述第一站点,且所述第一站点未正确译码所述组播数据帧时,所述第一站点在第二子载波上向所述接入点发送组播反馈报告帧,所述第二子载波为第二子载波集合中与所述第一站点关联的子载波。
  4. 根据权利要求3所述的方法,其特征在于,所述组播数据帧为聚合媒体接入控制协议数据单元AMPDU时,所述方法还包括:
    所述第一站点接收来自所述接入点的块确认请求触发帧,所述块确认请求触发帧用于调度所述第一站点在所述第一站点关联的资源单元RU上,反馈所述AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引;
    所述第一站点在所述第一站点关联的RU上,向所述接入点发送块确认帧,所述块确认帧用于指示所述AMPDU中译码错误的MPDU。
  5. 根据权利要求2或4所述的方法,其特征在于,所述组播反馈触发帧包括第三字段,所述第三字段用于指示第一网络分配矢量NAV,所述第一NAV的时长为以下多项之和:组播反馈报告帧的时长、所述块确认请求触发帧的时长、所述块确认帧的时长、以及短帧间隔SIFS,所述组播反馈报告帧为所述组播反馈触发帧的回复帧。
  6. 根据权利要求1或3所述的方法,其特征在于,所述组播反馈触发帧包括第三字段,所述第三字段用于指示第一网络分配矢量NAV,所述第一NAV的时长为组播反馈报告帧的时长以及短帧间隔SIFS之和,所述组播反馈报告帧为所述组播反馈触发帧的回复帧。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述组播反馈触发帧包括第一字 段,所述第一字段的值为第一数值时,指示所述组播反馈触发帧的类型为组播重传确认请求。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述组播反馈触发帧包括第二字段,所述第二字段用于指示所述组播数据帧。
  9. 根据权利要求8所述的方法,其特征在于,所述第二字段包括第一子字段和第二子字段,所述第一子字段用于承载所述组播数据帧中起始数据帧的序号索引,所述第二子字段用于承载所述组播数据帧中结尾数据帧的序号索引。
  10. 一种组播反馈方法,其特征在于,所述方法包括:
    接入点发送组播数据帧;
    所述接入点发送组播反馈触发帧,所述组播反馈触发帧用于配置至少一个资源单元RU,所述RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输所述组播数据帧的块确认帧;
    所述接入点通过第一RU在所述UORA过程中接收来自第一站点的块确认帧,所述块确认帧用于指示所述组播数据帧中译码错误的数据帧,所述第一RU为所述至少一个RU中的一个。
  11. 一种组播反馈方法,其特征在于,所述方法包括:
    第一站点接收来自接入点的组播数据帧;
    所述第一站点接收来自所述接入点的组播反馈触发帧,所述组播反馈触发帧用于配置至少一个资源单元RU,所述RU用于组播组内的站点进行上行正交频分多址随机接入UORA,所述UORA用于传输所述组播数据帧的块确认帧;
    所述第一站点未正确译码所述组播数据帧时,通过第一RU在所述UORA过程中向所述接入点发送所述组播数据帧的块确认帧,所述块确认帧用于指示所述组播数据帧中译码错误的数据帧,所述第一RU为所述至少一个RU中的一个。
  12. 根据权利要求11所述的方法,其特征在于,第一站点通过第一RU在所述UORA过程中向所述接入点发送所述组播数据帧的块确认帧,包括:
    所述第一站点在竞争窗口中选择一个随机数,所述随机数小于或等于所述至少一个RU的总数时,从所述至少一个RU中选择所述第一RU;
    所述第一站点在所述第一RU上向所述接入点发送所述组播数据帧的块确认帧。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述组播数据帧为聚合媒体接入控制协议数据单元AMPDU,所述数据帧为媒体接入控制协议数据单元MPDU。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述组播反馈触发帧包括第一字段,所述第一字段的值为第一数值时,指示所述组播反馈触发帧的类型为上行正交频分多址随机接入-否定应答轮询。
  15. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块:
    所述收发模块,用于发送组播数据帧;
    所述收发模块,还用于发送组播反馈触发帧,所述组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确;
    所述处理模块,用于在第一子载波和第二子载波上均未检测到能量时,确定第一站点未正确译码所述组播数据帧;
    或者,所述处理模块,用于在第二子载波上检测到能量时,确定第一站点未正确译码所述组播数据帧;
    其中,所述第一子载波为第一子载波集合中与所述第一站点关联的子载波,所述第二子 载波为第二子载波集合中与所述第一站点关联的子载波,所述第一站点为所述多个站点中的任意一个。
  16. 根据权利要求15所述的通信装置,其特征在于,所述组播数据帧为聚合媒体接入控制协议数据单元AMPDU时,
    所述收发模块,还用于发送块确认请求触发帧,所述块确认请求触发帧用于调度至少一个第二站点在各自关联的资源单元RU上,反馈所述AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引,所述第二站点为所述多个站点中未正确译码所述AMPDU的站点;
    所述收发模块,还用于在所述至少一个第二站点各自关联的RU上,接收来自所述至少一个第二站点的块确认帧,所述块确认帧用于指示所述AMPDU中译码错误的MPDU。
  17. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自接入点的组播数据帧;
    所述收发模块,还用于接收来自所述接入点的组播反馈触发帧,所述组播反馈触发帧用于调度组播组内的多个站点反馈所述组播数据帧是否译码正确;
    所述收发模块,还用于在所述处理模块确定所述多个站点包括所述通信装置,且所述通信装置未正确译码所述组播数据帧时,在第二子载波上向所述接入点发送组播反馈报告帧,所述第二子载波为第二子载波集合中与所述通信装置关联的子载波。
  18. 根据权利要求17所述的通信装置,其特征在于,所述组播数据帧为聚合媒体接入控制协议数据单元AMPDU时,
    所述收发模块,还用于接收来自所述接入点的块确认请求触发帧,所述块确认请求触发帧用于调度所述通信装置在所述通信装置关联的资源单元RU上,反馈所述AMPDU中译码错误的媒体接入控制协议数据单元MPDU的序号索引;
    所述收发模块,还用于在所述通信装置关联的RU上,向所述接入点发送块确认帧,所述块确认帧用于指示所述AMPDU中译码错误的MPDU。
  19. 根据权利要求16或18所述的通信装置,其特征在于,所述组播反馈触发帧包括第三字段,所述第三字段用于指示第一网络分配矢量NAV,所述第一NAV的时长为以下多项之和:组播反馈报告帧的时长、所述块确认请求触发帧的时长、所述块确认帧的时长、以及短帧间隔SIFS,所述组播反馈报告帧为所述组播反馈触发帧的回复帧。
  20. 根据权利要求15或17所述的通信装置,其特征在于,所述组播反馈触发帧包括第三字段,所述第三字段用于指示第一网络分配矢量NAV,所述第一NAV的时长为组播反馈报告帧的时长以及短帧间隔SIFS之和,所述组播反馈报告帧为所述组播反馈触发帧的回复帧。
  21. 根据权利要求15-20任一项所述的通信装置,其特征在于,所述组播反馈触发帧包括第一字段,所述第一字段的值为第一数值时,指示所述组播反馈触发帧的类型为组播重传确认请求。
  22. 根据权利要求15-21任一项所述的通信装置,其特征在于,所述组播反馈触发帧包括第二字段,所述第二字段用于指示所述组播数据帧。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第二字段包括第一子字段和第二子字段,所述第一子字段用于承载所述组播数据帧中起始数据帧的序号索引,所述第二子字段用于承载所述组播数据帧中结尾数据帧的序号索引。
  24. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于生成组播数据帧和组播反馈触发帧;
    所述收发模块,用于发送组播数据帧;
    所述收发模块,还用于发送组播反馈触发帧,所述组播反馈触发帧用于配置至少一个资源单元RU,所述RU用于组播组内的站点在上行正交频分多址随机接入UORA过程中传输所述组播数据帧的块确认帧;
    所述收发模块,还用于通过第一RU在所述UORA过程中接收来自第一站点的块确认帧,所述块确认帧用于指示所述组播数据帧中译码错误的数据帧,所述第一RU为所述至少一个RU中的一个。
  25. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自接入点的组播数据帧;
    所述收发模块,还用于接收来自所述接入点的组播反馈触发帧,所述组播反馈触发帧用于配置至少一个资源单元RU,所述RU用于组播组内的站点进行上行正交频分多址随机接入UORA,所述UORA用于传输所述组播数据帧的块确认帧;
    所述收发模块,用于在所述处理模块未正确译码所述组播数据帧时,通过第一RU在所述UORA过程中向所述接入点发送所述组播数据帧的块确认帧,所述块确认帧用于指示所述组播数据帧中译码错误的数据帧,所述第一RU为所述至少一个RU中的一个。
  26. 根据权利要求25所述的通信装置,其特征在于,
    所述处理模块,用于在竞争窗口中选择一个随机数,所述随机数小于或等于所述至少一个RU的总数时,从所述至少一个RU中选择所述第一RU;
    所述收发模块,用于在所述第一RU上向所述接入点发送所述组播数据帧的块确认帧。
  27. 根据权利要求24-26任一项所述的通信装置,其特征在于,所述组播数据帧为聚合媒体接入控制协议数据单元AMPDU,所述数据帧为媒体接入控制协议数据单元MPDU。
  28. 根据权利要求24-27任一项所述的通信装置,其特征在于,所述组播反馈触发帧包括第一字段,所述第一字段的值为第一数值时,指示所述组播反馈触发帧的类型为上行正交频分多址随机接入-否定应答轮询。
  29. 一种通信装置,其特征在于,所述通信装置包括:处理器和通信接口;
    所述通信接口,用于与所述通信装置之外的模块通信;
    所述处理器用于执行计算机执行指令,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-14中任一项所述的方法。
  31. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于执行存储器中存储的计算机执行指令,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,以使所述通信装置执行如权利要求10-14中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,以使如权利要求1-9中任一项所述的方法被执行,或者,以使如权利要求10-14中任一项所述的方法被执行。
  33. 一种计算机程序,其特征在于,当所述计算机程序在通信装置上运行时,以使如权利要求1-9中任一项所述的方法被执行,或者,以使如权利要求10-14中任一项所述的方法 被执行。
PCT/CN2021/139821 2021-01-08 2021-12-20 组播反馈方法、装置及系统 WO2022148234A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/348,423 US20230354383A1 (en) 2021-01-08 2023-07-07 Groupcast feedback method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110026480.9A CN114760012A (zh) 2021-01-08 2021-01-08 组播反馈方法、装置及系统
CN202110026480.9 2021-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/348,423 Continuation US20230354383A1 (en) 2021-01-08 2023-07-07 Groupcast feedback method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022148234A1 true WO2022148234A1 (zh) 2022-07-14

Family

ID=82325499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139821 WO2022148234A1 (zh) 2021-01-08 2021-12-20 组播反馈方法、装置及系统

Country Status (3)

Country Link
US (1) US20230354383A1 (zh)
CN (1) CN114760012A (zh)
WO (1) WO2022148234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033591A (zh) * 2023-03-30 2023-04-28 上海朗力半导体有限公司 一种组播处理方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931874A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 无线系统中多播应答的方法及装置
CN107645759A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 一种组播数据传输的应答方法及装置
WO2019124822A1 (ko) * 2017-12-19 2019-06-27 엘지전자 주식회사 무선 랜에서 프레임을 송신 또는 수신하기 위한 방법 및 이를 위한 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898798A (zh) * 2016-05-30 2016-08-24 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置和接入点
CN116232555A (zh) * 2019-03-15 2023-06-06 华为技术有限公司 数据传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931874A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 无线系统中多播应答的方法及装置
CN107645759A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 一种组播数据传输的应答方法及装置
WO2019124822A1 (ko) * 2017-12-19 2019-06-27 엘지전자 주식회사 무선 랜에서 프레임을 송신 또는 수신하기 위한 방법 및 이를 위한 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033591A (zh) * 2023-03-30 2023-04-28 上海朗力半导体有限公司 一种组播处理方法、装置及系统
CN116033591B (zh) * 2023-03-30 2023-08-08 上海朗力半导体有限公司 一种组播处理方法、装置及系统

Also Published As

Publication number Publication date
CN114760012A (zh) 2022-07-15
US20230354383A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11700637B2 (en) Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (WLAN) system
US11356947B2 (en) Wireless communication method and wireless communication terminal, which use discontinuous channel
US10567047B2 (en) Wireless communication method and wireless communication terminal for signaling multi-user packet
JP7394920B2 (ja) 通信装置、通信方法および集積回路
US11750323B2 (en) Method and system for wireless local area network (WLAN) long symbol duration migration
US10057806B2 (en) Multi-user communication in wireless networks
RU2680193C2 (ru) Способ передачи данных в системе беспроводной связи и устройство для его осуществления
CN107925514B (zh) 使用触发信息的无线通信方法、和无线通信终端
US20230354383A1 (en) Groupcast feedback method, apparatus, and system
KR102577875B1 (ko) 무선 통신 방법 및 무선 통신 단말
WO2022249633A1 (ja) 端末、基地局、及び、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917274

Country of ref document: EP

Kind code of ref document: A1