KR102063217B1 - 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102063217B1
KR102063217B1 KR1020177024183A KR20177024183A KR102063217B1 KR 102063217 B1 KR102063217 B1 KR 102063217B1 KR 1020177024183 A KR1020177024183 A KR 1020177024183A KR 20177024183 A KR20177024183 A KR 20177024183A KR 102063217 B1 KR102063217 B1 KR 102063217B1
Authority
KR
South Korea
Prior art keywords
frame
sta
field
information
feedback
Prior art date
Application number
KR1020177024183A
Other languages
English (en)
Other versions
KR20170117445A (ko
Inventor
천진영
류기선
조한규
이욱봉
최진수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20170117445A publication Critical patent/KR20170117445A/ko
Application granted granted Critical
Publication of KR102063217B1 publication Critical patent/KR102063217B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04W72/042
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

본 발명의 일 실시예에 따른, WLAN(Wireless LAN) 시스템에서 하향링크(DL: Downink) 채널 상태에 관한 피드백 정보를 전송하기 위한 STA(Station)의 사운딩 방법에 있어서, NDP(Null data packet) 프레임의 전송을 알리는 NDPA(NDP announcement) 프레임을 수신하는 단계; 상기 NDP 프레임을 수신하는 단계; 상기 STA에 할당된 자원 할당 정보가 포함된 트리거 프레임을 수신하는 단계; 상기 NDP 프레임에 포함된 트레이닝 필드를 기초로 채널 상태 정보를 생성하는 단계; 및 상기 채널 상태 정보가 포함된 피드백 프레임을 상기 자원 할당 정보가 지시하는 주파수 자원을 이용하여 상향링크(UL: Uplink) 다중 사용자(MU: Multi-User) 전송하는 단계; 를 포함할 수 있다.

Description

무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 STA이 측정한 채널 상태를 상향링크(Uplink) 다중 사용자(multi-user) 전송하기 위한 채널 사운딩 방법 및 이를 지원하는 장치에 관한 것이다.
와이파이(Wi-Fi)는 2.4GHz, 5GHz 또는 60GHz 주파수 대역에서 기기가 인터넷에 접속 가능하게 하는 WLAN(Wireless Local Area Network) 기술이다.
WLAN은 IEEE(institute of electrical and electronic engineers) 802.11 표준에 기반한다. IEEE 802.11의 WNG SC(Wireless Next Generation Standing Committee)는 차세대 WLAN(wireless local area network)을 중장기적으로 고민하는 애드혹 위원회(committee)이다.
IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 최대 600Mbps 데이터 처리 속도(data rate)를 제공하는 고처리율(HT: High Throughput)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다.
WLAN의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, 초고처리율(VHT: Very High Throughput)를 지원하는 차세대 WLAN 시스템은 IEEE 802.11n WLAN 시스템의 다음 버전으로서, IEEE 802.11ac가 새롭게 제정되었다. IEEE 802.11ac는 80MHz 대역폭 전송 및/또는 더 높은 대역폭 전송(예를 들어, 160MHz)을 통해 1Gbps 이상의 데이터 처리 속도를 지원하고, 주로 5 GHz 대역에서 동작한다.
최근에는 IEEE 802.11ac이 지원하는 데이터 처리 속도보다 더 높은 처리율을 지원하기 위한 새로운 WLAN 시스템에 대한 필요성이 대두되고 있다.
일명 IEEE 802.11ax 또는 고효율(HEW: High Efficiency) WLAN라고 불리는 차세대 WLAN 태스크 그룹에서 주로 논의되는 IEEE 802.11ax의 범위(scope)는 1) 2.4GHz 및 5GHz 등의 대역에서 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area throughput) 향상, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상 등을 포함한다.
IEEE 802.11ax에서 주로 고려되는 시나리오는 AP(access point)와 STA(station)이 많은 밀집 환경이며, IEEE 802.11ax는 이러한 상황에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput) 개선에 대해 논의한다. 특히, 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.
IEEE 802.11ax에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA가 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 수행되고 있다.
앞으로 IEEE 802.11ax에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩(cellular offloading) 등에 대한 논의가 활발할 것으로 예상된다. 이러한 IEEE 802.11ax의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰 셀(small cell) 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, IEEE 802.11ax를 기반한 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.
본 발명의 목적은 차세대 무선 통신 시스템에서 적용 가능한 새로운 사운딩 프로토콜을 제안하며, 사운딩 프로토콜을 위해 송수신되는 프레임들의 HE(High Efficiency) 포맷을 제안함을 목적으로 한다.
또한, 본 발명의 목적은 차세대 무선 통신 시스템에서 STA들이 측정한 채널 상태 정보를 상향링크 다중 사용자 전송하기 위한 효율적인 방법을 제안함을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제를 해결하기 위하여, WLAN(Wireless LAN) 시스템에서 하향링크(DL: Downlink) 채널 상태에 관한 피드백 정보를 전송하기 위한 STA(Station)의 사운딩 방법에 있어서, NDP(Null data packet) 프레임의 전송을 알리는 NDPA(NDP announcement) 프레임을 수신하는 단계; 상기 NDP 프레임을 수신하는 단계; 상기 STA에 할당된 자원 할당 정보가 포함된 트리거 프레임을 수신하는 단계; 상기 NDP 프레임에 포함된 트레이닝 필드를 기초로 채널 상태 정보를 생성하는 단계; 및 상기 채널 상태 정보가 포함된 피드백 프레임을 상기 자원 할당 정보가 지시하는 주파수 자원을 이용하여 상향링크(UL: Uplink) 다중 사용자(MU: Multi-User) 전송하는 단계; 를 포함할 수 있다.
또한, 상기 NDPA 프레임, 상기 NDP 프레임 및 상기 트리거 프레임은, 하나의 DL PPDU에 포함되어 수신되거나 서로 다른 DL PPDU들에 각각 포함되어 수신될 수 있다.
또한, 상기 NDPA 프레임, 상기 NDP 프레임 및 상기 트리거 프레임이 상기 서로 다른 DL PPPDU들에 각각 포함되어 수신되는 경우, 상기 서로 다른 DL PPDU들은 SIFS(Short interframe space) 간격으로 상기 STA에 수신될 수 있다.
또한, 상기 자원 할당 정보는 상기 피드백 프레임을 UL MU 전송하기 위해 상기 STA에 할당된 자원 유닛의 개수를 지시할 수 있다.
또한, 상기 자원 유닛은 26개의 서브 캐리어들로 구성된 26톤 자원 유닛일 수 있다.
또한, 상기 자원 할당 정보의 비트 값은 상기 STA에 할당된 자원 유닛의 개수를 지시할 수 있다.
또한, 상기 자원 할당 정보는 상기 피드백 프레임의 UL MU 전송을 위해 할당되는 자원 유닛들과 순차적으로 대응되는 복수의 비트들을 포함하며, 상기 복수의 비트들 각각의 비트 값은, 각 비트와 대응되는 자원 유닛이 할당되는 STA이 다른 STA으로 변경됨에 따라 이전 비트의 비트 값과 다른 비트 값으로 스위칭될 수 있다.
또한, 상기 피드백 프레임의 UL MU 전송을 위해 할당되는 자원 유닛들에 각각 서로 다른 인덱스가 할당되는 경우, 상기 자원 할당 정보는 상기 STA에 할당된 자원 유닛의 인덱스 정보를 포함할 수 있다.
또한, 상기 채널 상태 정보는 공간 스트림에 대해 기설정된 주파수 단위로 생성한 피드백 값을 포함하며, 상기 피드백 값은 상기 공간 스트림에 대한 상기 기설정된 주파수 단위의 SNR(Signal to Noise Ratio) 또는 빔포밍 피드백 행렬일 수 있다.
또한, 상기 기설정된 주파수 단위는 상기 NDP 프레임을 나르는 DL PPDU의 전체 전송 채널일 수 있다.
또한, 상기 기설정된 주파수 단위는 26톤 자원 유닛 또는 20MHz 채널일 수 있다.
또한, 상기 NDPA 프레임은 상기 STA이 측정해야 할 주파수 대역의 지시 정보를 포함할 수 있다.
또한, 상기 채널 상태 정보를 생성하는 단계는, 상기 지시 정보가 지시하는 상기 주파수 대역에 대한 상기 채널 상태 정보를 생성하는 단계일 수 있다.
또한, 상기 채널 상태를 측정하는 단계는, 소정의 크기의 주파수 대역에 대한 상기 채널 상태 정보를 생성하는 단계이고, 상기 소정의 크기는 상기 NDP 프레임이 전송되는 데 사용되는 주파수 대역의 크기와 같거나 작을 수 있다.
또한, 상기 생성된 채널 상태 정보는 상기 소정의 크기의 주파수 대역에 대한 빔포밍 피드백 행렬 정보일 수 있다.
또한, 상기 NDP 프레임의 상기 트레이닝 필드는 HE-LTF(High Efficiency-Long Training Field)일 수 있다.
또한, 본 발명의 다른 실시예에 따른 WLAN(Wireless LAN) 시스템에서 STA(Station) 장치에 있어서, 무선 신호를 송수신하는, RF 유닛; 및 상기 RF 유닛을 제어하는, 프로세서; 를 포함하고, 상기 프로세서는, NDP(Null data packet) 프레임의 전송을 알리는 NDPA(NDP announcement) 프레임을 수신하고, 상기 NDP 프레임을 수신하고, 상기 STA에 할당된 자원 할당 정보가 포함된 트리거 프레임을 수신하고, 상기 NDP 프레임에 포함된 트레이닝 필드를 기초로 채널 상태 정보를 생성하고, 및 상기 채널 상태 정보가 포함된 피드백 프레임을 상기 자원 할당 정보가 지시하는 주파수 자원을 이용하여 상향링크(UL: Uplink) 다중 사용자(MU: Multi-User) 전송할 수 있다.
이외에 본 발명의 다른 효과들에 대해서는 이하의 실시예들에서 추가로 설명하도록 한다.
본 발명의 일 실시예에 따르면, OFDMA 기술이 적용되는 차세대 WLAN 시스템에서 효율적으로 적용될 수 있는 사운딩 프로토콜이 제안된다.
또한, 본 발명의 일 실시예에 따르면, AP는 STA들의 UL MU 피드백 프레임 전송을 위한 트리거 정보를 전송해주므로, 각 STA은 피드백 프레임의 UL MU 전송이 가능하다.
또한, 본 발명의 일 실시예에 따르면, STA들이 DL 채널에 대한 피드백 프레임을 UL MU 전송할 수 있으므로, AP는 보다 신속하게 DL 채널에 대한 채널 상태 정보를 획득할 수 있다.
이외에 본 발명의 다른 효과들에 대해서는 이하의 실시예들에서 추가로 설명하도록 한다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 5는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 채널 사운딩(sounding) 방법을 개념적으로 나타내는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT NDPA 프레임을 예시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 NDP PPDU을 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT 압축된 빔포밍(VHT compressed beamforming) 프레임 포맷을 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 빔포밍 보고 폴(Beamforming Report Poll) 프레임 포맷을 예시하는 도면이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 21 내지 도 23은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 24는 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 25 내지 27은 본 발명의 일 실시예에 따른 OFDMA 다중 사용자(multi-user) 전송 방식에서 자원 할당 단위를 예시하는 도면이다.
도 28은 본 발명의 일 실시예에 따른 사운딩 프로토콜을 예시한 도면이다.
도 29는 본 발명의 제1 실시예에 따른 사운딩 프로토콜을 예시한 도면이다.
도 30은 본 발명의 제2 및 제3 실시예에 따른 사운딩 프로토콜을 예시한 도면이다.
도 31은 본 발명의 일 실시예에 따른 NDPA 프레임, NDP 프레임 및 트리거 프레임에 각각 포함되는 정보를 예시한 도면이다.
도 32는 본 발명의 제3 실시예에 따른 사운딩 프로토콜에서 송수신되는 DL PPDU 포맷을 예시한다.
도 33은 도 32(a)의 DL PPDU 포맷의 구체적인 실시예를 도시한 도면이다.
도 34는 본 발명의 일 실시예에 따른 STA 장치의 사운딩 방법을 나타낸 순서도이다.
도 35는 본 발명의 일 실시예에 따른 각 STA 장치의 블록도이다.
발명의 실시를 위한 최선의 형태
본 명세서에서 사용되는 용어는 본 명세서에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 실시예의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 아닌 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
더욱이, 이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 실시예를 상세하게 설명하지만, 실시예들에 의해 제한되거나 한정되는 것은 아니다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, IEEE 802.11 시스템을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1 은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
IEEE 802.11 구조는 복수개의 구성요소들로 구성될 수 있고, 이들의 상호작용에 의해 상위계층에 대해 트랜스패런트(transparent)한 스테이션(STA: Station) 이동성을 지원하는 무선 통신 시스템이 제공될 수 있다. 기본 서비스 세트(BSS: Basic Service Set)는 IEEE 802.11 시스템에서의 기본적인 구성 블록에 해당할 수 있다.
도 1 에서는 3개의 BSS(BSS 1 내지 BSS 3)가 존재하고 각각의 BSS의 멤버로서 2개의 STA이 포함되는 것(STA 1 및 STA 2 는 BSS 1에 포함되고, STA 3 및 STA 4는 BSS 2에 포함되며, STA 5 및 STA 6은 BSS 3에 포함됨)을 예시적으로 도시한다.
도 1 에서 BSS를 나타내는 타원은 해당 BSS에 포함된 STA들이 통신을 유지하는 커버리지 영역을 나타내는 것으로도 이해될 수 있다. 이 영역을 기본 서비스 영역(BSA: Basic Service Area)이라고 칭할 수 있다. STA가 BSA 밖으로 이동하게 되면 해당 BSA 내의 다른 STA들과 직접적으로 통신할 수 없게 된다.
IEEE 802.11 시스템에서 가장 기본적인 타입의 BSS는 독립적인 BSS(IBSS: Independent BSS)이다. 예를 들어, IBSS는 2 개의 STA만으로 구성된 최소의 형태를 가질 수 있다. 또한, 가장 단순한 형태이고 다른 구성요소들이 생략되어 있는 도 1 의 BSS 3이 IBSS의 대표적인 예시에 해당할 수 있다. 이러한 구성은 STA들이 직접 통신할 수 있는 경우에 가능하다. 또한, 이러한 형태의 LAN은 미리 계획되어서 구성되는 것이 아니라 LAN이 필요한 경우에 구성될 수 있으며, 이를 애드-혹(ad-hoc) 네트워크라고 칭할 수도 있다.
STA의 켜지거나 꺼짐, STA가 BSS 영역에 들어오거나 나감 등에 의해서, BSS에서의 STA의 멤버십이 동적으로 변경될 수 있다. BSS의 멤버가 되기 위해서는, STA는 동기화 과정을 이용하여 BSS에 조인할 수 있다. BSS 기반 구조의 모든 서비스에 액세스하기 위해서는, STA는 BSS에 연계(associated)되어야 한다. 이러한 연계(association)는 동적으로 설정될 수 있고, 분배 시스템 서비스(DSS: Distribution System Service)의 이용을 포함할 수 있다.
802.11 시스템에서 직접적인 STA-대-STA의 거리는 물리 계층(PHY: physical) 성능에 의해서 제한될 수 있다. 어떠한 경우에는 이러한 거리의 한계가 충분할 수도 있지만, 경우에 따라서는 보다 먼 거리의 STA 간의 통신이 필요할 수도 있다. 확장된 커버리지를 지원하기 위해서 분배 시스템(DS: Distribution System)이 구성될 수 있다.
DS는 BSS들이 상호 연결되는 구조를 의미한다. 구체적으로, 도 1 과 같이 BSS가 독립적으로 존재하는 대신에, 복수개의 BSS들로 구성된 네트워크의 확장된 형태의 구성요소로서 BSS가 존재할 수도 있다.
DS는 논리적인 개념이며 분배 시스템 매체(DSM: Distribution System Medium)의 특성에 의해서 특정될 수 있다. 이와 관련하여, IEEE 802.11 표준에서는 무선 매체(WM: Wireless Medium)와 분배 시스템 매체(DSM: Distribution System Medium)을 논리적으로 구분하고 있다. 각각의 논리적 매체는 상이한 목적을 위해서 사용되며, 상이한 구성요소에 의해서 사용된다. IEEE 802.11 표준의 정의에서는 이러한 매체들이 동일한 것으로 제한하지도 않고 상이한 것으로 제한하지도 않는다. 이와 같이 복수개의 매체들이 논리적으로 상이하다는 점에서, IEEE 802.11 시스템의 구조(DS 구조 또는 다른 네트워크 구조)의 유연성이 설명될 수 있다. 즉, IEEE 802.11 시스템 구조는 다양하게 구현될 수 있으며, 각각의 구현예의 물리적인 특성에 의해서 독립적으로 해당 시스템 구조가 특정될 수 있다.
DS는 복수개의 BSS들의 끊김 없는(seamless) 통합을 제공하고 목적지로의 어드레스를 다루는 데에 필요한 논리적 서비스들을 제공함으로써 이동 장치를 지원할 수 있다.
AP는, 연계된 STA들에 대해서 WM을 통해서 DS로의 액세스를 가능하게 하고 STA 기능성을 가지는 개체를 의미한다. AP를 통해서 BSS 및 DS 간의 데이터 이동이 수행될 수 있다. 예를 들어, 도 1에서 도시하는 STA 2 및 STA 3은 STA의 기능성을 가지면서, 연계된 STA들(STA 1 및 STA 4)가 DS로 액세스하도록 하는 기능을 제공한다. 또한, 모든 AP는 기본적으로 STA에 해당하므로, 모든 AP는 어드레스 가능한 개체이다. WM 상에서의 통신을 위해 AP에 의해서 사용되는 어드레스와 DSM 상에서의 통신을 위해 AP에 의해서 사용되는 어드레스는 반드시 동일할 필요는 없다.
AP에 연계된 STA들 중의 하나로부터 그 AP의 STA 어드레스로 전송되는 데이터는, 항상 비제어 포트(uncontrolled port)에서 수신되고 IEEE 802.1X 포트 액세스 개체에 의해서 처리될 수 있다. 또한, 제어 포트(controlled port)가 인증되면 전송 데이터(또는 프레임)는 DS로 전달될 수 있다.
임의의(arbitrary) 크기 및 복잡도를 가지는 무선 네트워크가 DS 및 BSS들로 구성될 수 있다. IEEE 802.11 시스템에서는 이러한 방식의 네트워크를 확장된 서비스 세트(ESS: Extended Service Set) 네트워크라고 칭한다. ESS는 하나의 DS에 연결된 BSS들의 집합에 해당할 수 있다. 그러나, ESS는 DS를 포함하지는 않는다. ESS 네트워크는 논리 링크 제어(LLC: Logical Link Control) 계층에서 IBSS 네트워크로 보이는 점이 특징이다. ESS에 포함되는 STA들은 서로 통신할 수 있고, 이동 STA들은 LLC에 트랜스패런트(transparent)하게 하나의 BSS에서 다른 BSS로(동일한 ESS 내에서) 이동할 수 있다.
IEEE 802.11 시스템에서는 도 1 에서의 BSS들의 상대적인 물리적 위치에 대해서 아무것도 가정하지 않으며, 다음과 같은 형태가 모두 가능하다.
구체적으로, BSS들은 부분적으로 중첩될 수 있고, 이는 연속적인 커버리지를 제공하기 위해서 일반적으로 이용되는 형태이다. 또한, BSS들은 물리적으로 연결되어 있지 않을 수 있고, 논리적으로는 BSS들 간의 거리에 제한은 없다. 또한, BSS들은 물리적으로 동일한 위치에 위치할 수 있고, 이는 리던던시(redundancy)를 제공하기 위해서 이용될 수 있다. 또한, 하나 (또는 하나 이상의) IBSS 또는 ESS 네트워크들이 하나 또는 그 이상의 ESS 네트워크로서 동일한 공간에 물리적으로 존재할 수 있다. 이는 ESS 네트워크가 존재하는 위치에 ad-hoc 네트워크가 동작하는 경우나, 상이한 기관(organizations)에 의해서 물리적으로 중첩되는 IEEE 802.11 네트워크들이 구성되는 경우나, 동일한 위치에서 2 이상의 상이한 액세스 및 보안 정책이 필요한 경우 등에서의 ESS 네트워크 형태에 해당할 수 있다.
WLAN 시스템에서 STA은 IEEE 802.11의 매체 접속 제어(MAC: Medium Access Control)/PHY 규정에 따라 동작하는 장치이다. STA의 기능이 AP와 개별적으로 구분되지 않는 한, STA는 AP STA과 비-AP STA(non-AP STA)를 포함할 수 있다. 다만, STA과 AP 간에 통신이 수행된다고 할 때, STA은 non-AP STA으로 이해될 수 있다. 도 1의 예시에서 STA 1, STA 4, STA 5 및 STA 6은 non-AP STA에 해당하고, STA 2 및 STA 3은 AP STA 에 해당한다.
Non-AP STA는 랩탑 컴퓨터, 이동 전화기와 같이 일반적으로 사용자가 직접 다루는 장치에 해당한다. 이하의 설명에서 non-AP STA는 무선 장치(wireless device), 단말(terminal), 사용자 장치(UE: User Equipment), 이동국(MS: Mobile Station), 이동 단말(Mobile Terminal), 무선 단말(wireless terminal), 무선 송수신 유닛(WTRU: Wireless Transmit/Receive Unit), 네트워크 인터페이스 장치(network interface device), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치 등으로 칭할 수도 있다.
또한, AP는 다른 무선 통신 분야에서의 기지국(BS: Base Station), 노드-B(Node-B), 발전된 노드-B(eNB: evolved Node-B), 기저 송수신 시스템(BTS: Base Transceiver System), 펨토 기지국(Femto BS) 등에 대응하는 개념이다.
이하, 본 명세서에서 하향링크(DL: downlink)는 AP에서 non-AP STA로의 통신을 의미하며, 상향링크(UL: uplink)는 non-AP STA에서 AP로의 통신을 의미한다. 하향링크에서 송신기는 AP의 일부이고, 수신기는 non-AP STA의 일부일 수 있다. 상향링크에서 송신기는 non-AP STA의 일부이고, 수신기는 AP의 일부일 수 있다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 2를 참조하면, IEEE 802.11 시스템의 계층 아키텍처는 MAC 부계층(MAC sublayer)과 PHY 부계층(PHY sublayer)을 포함할 수 있다.
PHY sublayer은 PLCP(Physical Layer Convergence Procedure) 개체(entity)와 PMD(Physical Medium Dependent) 개체로 구분될 수도 있다. 이 경우, PLCP 개체는 MAC sublayer와 데이터 프레임을 연결하는 역할을 수행하고, PMD 개체는 2개 또는 그 이상의 STA과 데이터를 무선으로 송수신하는 역할을 수행한다.
MAC sublayer과 PHY sublayer 모두 관리 개체(Management Entity)를 포함할 수 있으며, 각각 MAC 서브계층 관리 개체(MLME: MAC Sublayer Management Entity)과 PHY 서브계층 관리 개체(PLME: Physical Sublayer Management Entity)로 지칭할 수 있다. 이들 관리 개체은 계층 관리 함수의 동작을 통해 계층 관리 서비스 인터페이스를 제공한다. MLME는 PLME와 연결되어 MAC sublayer의 관리 동작(management operation)을 수행할 수 있고, 마찬가지로 PLME도 MLME와 연결되어 PHY sublayer의 관리 동작(management operation)을 수행할 수 있다.
정확한 MAC 동작을 제공하기 위하여, SME(Station Management Entity)가 각 STA 내에 존재할 수 있다. SME는 각 계층과 독립적인 관리 개체로서, MLME와 PLME로부터 계층 기반 상태 정보를 수집하거나 각 계층의 특정 파라미터들의 값을 설정한다. SME는 일반 시스템 관리 개체들을 대신하여 이러한 기능을 수행할 수 있으며, 표준 관리 프로토콜을 구현할 수 있다.
MLME, PLME 및 SME은 프리미티브(primitive)를 기반의 다양한 방법으로 상호 작용(interact)할 수 있다. 구체적으로, XX-GET.request 프리미티브는 관리 정보 베이스 속성(MIB attribute: Management Information Base attribute)의 값을 요청하기 위해 사용되고, XX-GET.confirm 프리미티브는 상태가 'SUCCESS'라면, 해당 MIB 속성 값을 리턴(return)하고, 그 외의 경우에는 상태 필드에 오류 표시를 하여 리턴한다. XX-SET.request 프리미티브는 지정된 MIB 속성을 주어진 값으로 설정하도록 요청하기 위해 사용된다. MIB 속성이 특정 동작으로 의미하고 있다면, 이 요청은 그 특정 동작의 실행을 요청한다. 그리고, XX-SET.confirm 프리미티브는 상태가 'SUCCESS'라면, 이는 지정된 MIB 속성이 요청된 값으로 설정되었음을 의미한다. 그 외의 경우에는, 상태 필드는 오류 상황을 나타낸다. 이 MIB 속성이 특정 동작을 의미한다면, 이 프리미티브는 해당 동작의 수행된 것을 확인해 줄 수 있다.
각 sublayer에서의 동작을 간략하게 설명하면 다음과 같다.
MAC sublayer는 상위 계층(예를 들어, LLC 계층)으로부터 전달 받은 MAC 서비스 데이터 유닛(MSDU: MAC Service Data Unit) 또는 MSDU의 조각(fragment)에 MAC 헤더(header)와 프레임 체크 시퀀스(FCS: Frame Check Sequence)을 부착하여 하나 이상의 MAC 프로토콜 데이터 유닛(MPDU: MAC Protocol Data Unit)을 생성한다. 생성된 MPDU는 PHY sublayer로 전달된다.
A-MSDU(aggregated MSDU) 기법(scheme)이 사용되는 경우, 복수 개의 MSDU는 단일의 A-MSDU(aggregated MSDU)로 병합될 수 있다. MSDU 병합 동작은 MAC 상위 계층에서 수행될 수 있다. A-MSDU는 단일의 MPDU(조각화(fragment)되지 않는 경우)로 PHY sublayer로 전달된다.
PHY sublayer는 MAC sublayer으로부터 전달 받은 물리 서비스 데이터 유닛(PSDU: Physical Service Data Unit)에 물리 계층 송수신기에 의해 필요한 정보를 포함하는 부가필드를 덧붙여 물리 프로토콜 데이터 유닛(PPDU: Physical Protocol Data Unit)을 생성한다. PPDU는 무선 매체를 통해 전송된다.
PSDU는 PHY sublayer가 MAC sublayer로부터 수신한 것이고, MPDU는 MAC sublayer가 PHY sublayer로 전송한 것이므로, PSDU는 실질적으로 MPDU와 동일하다.
A-MPDU(aggregated MPDU) 기법(scheme)이 사용되는 경우, 복수의 MPDU(이때, 각 MPDU는 A-MSDU를 나를 수 있다.)는 단일의 A-MPDU로 병합될 수 있다. MPDU 병합 동작은 MAC 하위 계층에서 수행될 수 있다. A-MPDU는 다양한 타입의 MPDU(예를 들어, QoS 데이터, ACK(Acknowledge), 블록 ACK(BlockAck) 등)이 병합될 수 있다. PHY sublayer는 MAC sublayer로부터 단일의 PSDU로써 A-MPDU를 수신한다. 즉, PSDU는 복수의 MPDU로 구성된다. 따라서, A-MPDU는 단일의 PPDU 내에서 무선 매체를 통해 전송된다.
PPDU(Physical Protocol Data Unit) 포맷
PPDU(Physical Protocol Data Unit)는 물리 계층에서 발생되는 데이터 블록을 의미한다. 이하, 본 발명이 적용될 수 있는 IEEE 802.11 WLAN 시스템을 기초로 PPDU 포맷을 설명한다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 3의 (a)는 IEEE 802.11a/g 시스템을 지원하기 위한 non-HT 포맷 PPDU을 예시한다. non-HT PPDU은 레거시(legacy) PPDU으로도 불릴 수 있다.
도 3의 (a)를 참조하면, non-HT 포맷 PPDU은 L-STF(Legacy(또는, Non-HT) Short Training field), L-LTF(Legacy(또는, Non-HT) Long Training field) 및 L-SIG(Legacy(또는 Non-HT) SIGNAL) 필드로 구성되는 레가시 포맷 프리앰블과 데이터 필드를 포함하여 구성된다.
L-STF는 짧은 트레이닝 OFDM(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF는 프레임 타이밍 획득(frame timing acquisition), 자동 이득 제어(AGC: Automatic Gain Control), 다이버시티 검출(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 추정(channel estimation)을 위해 사용될 수 있다.
L-SIG 필드는 데이터 필드의 복조 및 디코딩을 위한 제어 정보를 전송하기 위하여 사용될 수 있다.
L-SIG 필드는 4 비트의 레이트(Rate) 필드, 1비트의 예비(Reserved) 비트, 12 비트의 길이(Length) 필드, 1비트의 패리티 비트, 6비트의 신호 테일(Signal Tail) 필드로 구성될 수 있다.
레이트 필드는 전송율 정보를 포함하고, 길이 필드는 PSDU의 옥텟의 수를 지시한다.
도 3의 (b)는 IEEE 802.11n 시스템 및 IEEE 802.11a/g 시스템을 모두 지원하기 위한 HT 혼합 포맷 PPDU(HT-mixed format PPDU)을 예시한다.
도 3의 (b)를 참조하면, HT 혼합 포맷 PPDU은 L-STF, L-LTF 및 L-SIG 필드로 구성되는 레가시 포맷 프리앰블과 HT-SIG(HT-Signal) 필드, HT-STF(HT Short Training field), HT-LTF(HT Long Training field)로 구성되는 HT 포맷 프리앰블 및 데이터 필드를 포함하여 구성된다.
L-STF, L-LTF 및 L-SIG 필드는 하위 호환성(backward compatibility)를 위한 레가시 필드를 의미하므로, L-STF부터 L-SIG 필드까지 non-HT 포맷과 동일하다. L-STA은 HT 혼합 PPDU를 수신하여도 L-LTF, L-LTF 및 L-SIG 필드를 통해 데이터 필드를 해석할 수 있다. 다만 L-LTF는 HT-STA이 HT 혼합 PPDU를 수신하고 L-SIG 필드 및 HT-SIG 필드를 복조하기 위하여 수행할 채널 추정을 위한 정보를 더 포함할 수 있다.
HT-STA는 레가시 필드 뒤에 오는 HT-SIG 필드 이용하여 HT-혼합 포맷 PPDU임을 알 수 있으며, 이를 기반으로 데이터 필드를 디코딩할 수 있다.
HT-LTF 필드는 데이터 필드의 복조를 위한 채널 추정에 사용될 수 있다. IEEE 802.11n은 SU-MIMO(Single-User Multi-Input and Multi-Output)를 지원하므로 복수의 공간 스트림으로 전송되는 데이터 필드 각각에 대하여 채널 추정을 위해 HT-LTF 필드는 복수로 구성될 수 있다.
HT-LTF 필드는 공간 스트림에 대한 채널 추정을 위하여 사용되는 데이터 HT-LTF(data HT-LTF)와 풀 채널 사운딩(full channel sounding)을 위해 추가적으로 사용되는 확장 HT-LTF(extension HT-LTF)로 구성될 수 있다. 따라서, 복수의 HT-LTF는 전송되는 공간 스트림의 개수보다 같거나 많을 수 있다.
HT-혼합 포맷 PPDU은 L-STA도 수신하여 데이터를 획득할 수 있도록 하기 위해 L-STF, L-LTF 및 L-SIG 필드가 가장 먼저 전송된다. 이후 HT-STA을 위하여 전송되는 데이터의 복조 및 디코딩을 위해 HT-SIG 필드가 전송된다.
HT-SIG 필드까지는 빔포밍을 수행하지 않고 전송하여 L-STA 및 HT-STA이 해당 PPDU를 수신하여 데이터를 획득할 수 있도록 하고, 이후 전송되는 HT-STF, HT-LTF 및 데이터 필드는 프리코딩을 통한 무선 신호 전송이 수행된다. 여기서 프리코딩을 하여 수신하는 STA에서 프리코딩에 의한 전력이 가변 되는 부분을 감안할 수 있도록 HT-STF 필드를 전송하고 그 이후에 복수의 HT-LTF 및 데이터 필드를 전송한다.
아래 표 1은 HT-SIG 필드를 예시하는 표이다.
Figure 112017083533677-pct00001
도 3의 (c)는 IEEE 802.11n 시스템만을 지원하기 위한 HT-GF 포맷 PPDU(HT-greenfield format PPDU)을 예시한다.
도 3의 (c)를 참조하면, HT-GF 포맷 PPDU은 HT-GF-STF, HT-LTF1, HT-SIG 필드, 복수의 HT-LTF2 및 데이터 필드를 포함한다.
HT-GF-STF는 프레임 타이밍 획득 및 AGC를 위해 사용된다.
HT-LTF1는 채널 추정을 위해 사용된다.
HT-SIG 필드는 데이터 필드의 복조 및 디코딩을 위해 사용된다.
HT-LTF2는 데이터 필드의 복조를 위한 채널 추정에 사용된다. 마찬가지로 HT-STA은 SU-MIMO를 사용하므로 복수의 공간 스트림으로 전송되는 데이터 필드 각각에 대하여 채널 추정을 요하므로 HT-LTF2는 복수로 구성될 수 있다.
복수의 HT-LTF2는 HT 혼합 PPDU의 HT-LTF 필드와 유사하게 복수의 Data HT-LTF와 복수의 확장 HT-LTF로 구성될 수 있다.
도 3의 (a) 내지 (c)에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU) 필드, 테일 비트(Tail bits), 패딩 비트(padding bits)를 포함할 수 있다. 데이터 필드의 모든 비트는 스크램블된다.
도 3(d)는 데이터 필드에 포함되는 서비스 필드를 나타낸다. 서비스 필드는 16 비트를 가진다. 각 비트는 0번부터 15번까지 부여되며, 0번 비트부터 순차적으로 전송된다. 0번부터 6번 비트는 0으로 설정되고, 수신단 내 디스크램블러(descrambler)를 동기화하기 위하여 사용된다.
IEEE 802.11ac WLAN 시스템은 무선채널을 효율적으로 이용하기 위하여 복수의 STA들이 동시에 채널에 액세스하는 하향링크 MU-MIMO(Multi User Multiple Input Multiple Output) 방식의 전송을 지원한다. MU-MIMO 전송 방식에 따르면, AP가 MIMO 페어링(pairing)된 하나 이상의 STA에게 동시에 패킷을 전송할 수 있다.
DL MU 전송(downlink multi-user transmission)은 하나 이상의 안테나를 통해 AP가 동일한 시간 자원을 통해 PPDU를 복수의 non-AP STA에게 전송하는 기술을 의미한다.
이하, MU PPDU는 MU-MIMO 기술 또는 OFDMA 기술을 이용하여 하나 이상의 STA을 위한 하나 이상의 PSDU를 전달하는 PPDU를 의미한다. 그리고, SU PPDU는 하나의 PSDU만을 전달할 수 있거나 PSDU가 존재하지 않는 포맷을 가진 PPDU를 의미한다.
MU-MIMO 전송을 위하여 802.11n 제어 정보의 크기에 비하여 STA에 전송되는 제어 정보의 크기가 상대적으로 클 수 있다. MU-MIMO 지원을 위해 추가적으로 요구되는 제어 정보의 일례로, 각 STA에 의해 수신되는 공간적 스트림(spatial stream)의 수를 지시하는 정보, 각 STA에 전송되는 데이터의 변조 및 코딩 관련 정보 등이 이에 해당될 수 있다.
따라서, 복수의 STA에 동시에 데이터 서비스를 제공하기 위하여 MU-MIMO 전송이 수행될 때, 전송되는 제어 정보의 크기는 수신하는 STA의 수에 따라 증가될 수 있다.
이와 같이 증가되는 제어 정보의 크기를 효율적으로 전송하기 위하여, MU-MIMO 전송을 위해 요구되는 복수의 제어 정보는 모든 STA에 공통으로 요구되는 공통 제어 정보(common control information)와 특정 STA에 개별적으로 요구되는 전용 제어 정보(dedicated control information)의 두 가지 타입의 정보로 구분하여 전송될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 4(a)는 IEEE 802.11ac 시스템을 지원하기 위한 VHT 포맷 PPDU(VHT format PPDU)을 예시한다.
도 4(a)를 참조하면, VHT 포맷 PPDU은 L-STF, L-LTF 및 L-SIG 필드로 구성되는 레가시 포맷 프리앰블과 VHT-SIG-A(VHT-Signal-A) 필드, VHT-STF(VHT Short Training field), VHT-LTF(VHT Long Training field), VHT-SIG-B(VHT-Signal-B) 필드로 구성되는 VHT 포맷 프리앰블 및 데이터 필드를 포함하여 구성된다.
L-STF, L-LTF 및 L-SIG는 하위 호환성(backward compatibility)를 위한 레가시 필드를 의미하므로, L-STF부터 L-SIG 필드까지 non-HT 포맷과 동일하다. 다만, L-LTF는 L-SIG 필드 및 VHT-SIG-A 필드를 복조하기 위하여 수행할 채널 추정을 위한 정보를 더 포함할 수 있다.
L-STF, L-LTF, L-SIG 필드 및 VHT-SIG-A 필드는 20MHz 채널 단위로 반복되어 전송될 수 있다. 예를 들어, PPDU가 4개의 20MHz 채널(즉, 80 MHz 대역폭)을 통해 전송될 때, L-STF, L-LTF, L-SIG 필드 및 VHT-SIG-A 필드는 매 20MHz 채널에서 반복되어 전송될 수 있다.
VHT-STA는 레가시 필드 뒤에 오는 VHT-SIG-A 필드 이용하여 VHT 포맷 PPDU임을 알 수 있으며, 이를 기반으로 데이터 필드를 디코딩할 수 있다.
VHT 포맷 PPDU은 L-STA도 수신하여 데이터를 획득할 수 있도록 하기 위해 L-STF, L-LTF 및 L-SIG 필드가 가장 먼저 전송된다. 이후, VHT-STA을 위하여 전송되는 데이터의 복조 및 디코딩을 위해 VHT-SIG-A 필드가 전송된다.
VHT-SIG-A 필드는 AP와 MIMO 페이링된(paired) VHT STA들에게 공통되는 제어 정보 전송을 위한 필드로서, 이는 수신된 VHT 포맷 PPDU를 해석하기 위한 제어 정보를 포함하고 있다.
VHT-SIG-A 필드는 VHT-SIG-A1 필드와 VHT-SIG-A2 필드를 포함할 수 있다.
VHT-SIG-A1 필드는 사용하는 채널 대역폭(BW: bandwidth) 정보, 시공간 블록 코딩(STBC: Space Time Block Coding)의 적용 여부, MU-MIMO에서 그룹핑된 STA들의 그룹의 지시하기 위한 그룹 식별 정보(Group ID: Group Identifier), 사용되는 스트림의 개수(NSTS: Number of space-time stream)/부분 AID(Partial AID(association Identifier))에 대한 정보 및 전송 파워 세이브 금지(Transmit power save forbidden) 정보를 포함할 수 있다. 여기서, Group ID는 MU-MIMO 전송을 지원하기 위해 전송 대상 STA 그룹에 대하여 할당되는 식별자를 의미하며, 현재 사용된 MIMO 전송 방법이 MU-MIMO인지 또는 SU-MIMO 인지 여부를 나타낼 수 있다.
표 2은 VHT-SIG-A1 필드를 예시하는 표이다.
Figure 112017083533677-pct00002
VHT-SIG-A2 필드는 짧은 보호구간(GI: Guard Interval) 사용 여부에 대한 정보, 포워드 에러 정정(FEC: Forward Error Correction) 정보, 단일 사용자에 대한 MCS(Modulation and Coding Scheme)에 관한 정보, 복수 사용자에 대한 채널 코딩의 종류에 관한 정보, 빔포밍 관련 정보, CRC(Cyclic Redundancy Checking)를 위한 여분 비트(redundancy bits)와 컨벌루셔널 디코딩(convolutional decoder)의 테일 비트(tail bit) 등을 포함할 수 있다.
표 3은 VHT-SIG-A2 필드를 예시하는 표이다.
Figure 112017083533677-pct00003
VHT-STF는 MIMO 전송에 있어서 AGC 추정의 성능을 개선하기 위해 사용된다.
VHT-LTF는 VHT-STA이 MIMO 채널을 추정하는데 사용된다. VHT WLAN 시스템은 MU-MIMO를 지원하기 때문에, VHT-LTF는 PPDU가 전송되는 공간 스트림의 개수만큼 설정될 수 있다. 추가적으로, 풀 채널 사운딩(full channel sounding)이 지원되는 경우, VHT-LTF의 수는 더 많아질 수 있다.
VHT-SIG-B 필드는 MU-MIMO 페어링된 복수의 VHT-STA이 PPDU를 수신하여 데이터를 획득하는데 필요한 전용 제어 정보를 포함한다. 따라서, VHT-SIG-A 필드에 포함된 공통 제어 정보(common control information)가 현재 수신된 PPDU가 MU-MIMO 전송을 지시한 경우에만, VHT-STA은 VHT-SIG-B 필드를 디코딩(decoding)하도록 설계될 수 있다. 반면, 공통 제어 정보가 현재 수신된 PPDU가 단일 VHT-STA을 위한 것(SU-MIMO를 포함)임을 지시한 경우 STA은 VHT-SIG-B 필드를 디코딩하지 않도록 설계될 수 있다.
VHT-SIG-B 필드는 VHT-SIG-B 길이(Length) 필드, VHT-MCS 필드, 예비(Reserved) 필드, 테일(Tail) 필드를 포함한다.
VHT-SIG-B 길이(Length) 필드는 A-MPDU의 길이(EOF(end-of-frame) 패딩 이전)를 지시한다. VHT-MCS 필드는 각 VHT-STA들의 변조(modulation), 인코딩(encoding) 및 레이트 매칭(rate-matching)에 대한 정보를 포함한다.
VHT-SIG-B 필드의 크기는 MIMO 전송의 유형(MU-MIMO 또는 SU-MIMO) 및 PPDU 전송을 위해 사용하는 채널 대역폭에 따라 다를 수 있다.
도 4(b)는 PPDU 전송 대역폭에 따른 VHT-SIG-B 필드를 예시한다.
도 4(b)를 참조하면, 40MHz 전송에 있어서, VHT-SIG-B 비트는 2번 반복된다. 80MHz 전송에 있어서, VHT-SIG-B 비트는 4번 반복되고, 0로 셋팅된 패드 비트가 부착된다.
160MHz 전송 및 80+80MHz 에 있어서, 먼저 80MHz 전송과 같이 VHT-SIG-B 비트는 4번 반복되고, 0로 셋팅된 패드 비트가 부착된다. 그리고, 전체 117 비트가 다시 반복된다.
MU-MIMO를 지원하는 시스템에서 동일한 크기의 PPDU를 AP에 페어링된 STA들에게 전송하기 위하여, PPDU를 구성하는 데이터 필드의 비트 크기를 지시하는 정보 및/또는 특정 필드를 구성하는 비트 스트림 크기를 지시하는 정보가 VHT-SIG-A 필드에 포함될 수 있다.
다만, 효과적으로 PPDU 포맷을 사용하기 위하여 L-SIG 필드가 사용될 수도 있다. 동일한 크기의 PPDU가 모든 STA에게 전송되기 위하여 L-SIG 필드 내 포함되어 전송되는 길이 필드(length field) 및 레이트 필드(rate field)가 필요한 정보를 제공하기 위해 사용될 수 있다. 이 경우, MPDU(MAC Protocol Data Unit) 및/또는 A-MPDU(Aggregate MAC Protocol Data Unit)가 MAC 계층의 바이트(또는 옥텟(oct: octet)) 기반으로 설정되므로 물리 계층에서 추가적인 패딩(padding)이 요구될 수 있다.
도 4에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU), 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
위와 같이 여러 가지의 PPDU의 포맷이 혼합되어 사용되기 때문에, STA은 수신한 PPDU의 포맷을 구분할 수 있어야 한다.
여기서, PPDU를 구분한다는 의미(또는, PPDU 포맷을 구분한다는 의미)는 다양한 의미를 가질 수 있다. 예를 들어, PPDU를 구분한다는 의미는 수신한 PPDU가 STA에 의해 디코딩(또는, 해석)이 가능한 PPDU인지 여부에 대하여 판단한다는 의미를 포함할 수 있다. 또한, PPDU를 구분한다는 의미는 수신한 PPDU가 STA에 의해 지원 가능한 PPDU인지 여부에 대하여 판단한다는 의미일 수도 있다. 또한, PPDU를 구분한다는 의미는 수신한 PPDU를 통해 전송된 정보가 어떠한 정보인지를 구분한다는 의미로도 해석될 수 있다.
이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
MAC 프레임 포맷
도 5는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 5를 참조하면, MAC 프레임(즉, MPDU)은 MAC 헤더(MAC Header), 프레임 몸체(Frame Body) 및 프레임 체크 시퀀스(FCS: frame check sequence)로 구성된다.
MAC Header는 프레임 제어(Frame Control) 필드, 지속 시간/식별자(Duration/ID) 필드, 주소 1(Address 1) 필드, 주소 2(Address 2) 필드, 주소 3(Address 3) 필드, 시퀀스 제어(Sequence Control) 필드, 주소 4(Address 4) 필드, QoS 제어(QoS Control) 필드 및 HT 제어(HT Control) 필드를 포함하는 영역으로 정의된다.
Frame Control 필드는 해당 MAC 프레임 특성에 대한 정보를 포함한다. Frame Control 필드에 대한 보다 상세한 설명은 후술한다.
Duration/ID 필드는 해당 MAC 프레임의 타입 및 서브타입에 따른 다른 값을 가지도록 구현될 수 있다.
만약, 해당 MAC 프레임의 타입 및 서브타입이 파워 세이브(PS: power save) 운영을 위한 PS-폴(PS-Poll) 프레임의 경우, Duration/ID 필드는 프레임을 전송한 STA의 AID(association identifier)를 포함하도록 설정될 수 있다. 그 이외의 경우, Duration/ID 필드는 해당 MAC 프레임의 타입 및 서브타입에 따라 특정 지속시간 값을 가지도록 설정될 수 있다. 또한, 프레임이 A-MPDU(aggregate-MPDU) 포맷에 포함된 MPDU인 경우, MAC 헤더에 포함된 Duration/ID 필드는 모두 동일한 값을 가지도록 설정될 수도 있다.
Address 1 필드 내지 Address 4 필드는 BSSID, 소스 주소(SA: source address), 목적 주소(DA: destination address), 전송 STA 주소를 나타내는 전송 주소 (TA: Transmitting Address), 수신 STA 주소를 나타내는 수신 주소(RA: Receiving Address)를 지시하기 위하여 사용된다.
한편, TA 필드로 구현된 주소 필드는 대역폭 시그널링 TA(bandwidth signaling TA) 값으로 설정될 수 있으며, 이 경우 TA 필드는 해당 MAC 프레임이 스크램블링 시퀀스에 추가적인 정보를 담고 있음을 지시할 수 있다. 대역폭 시그널링 TA는 해당 MAC 프레임을 전송하는 STA의 MAC 주소로 표현될 수 있으나, MAC 주소에 포함된 개별/그룹 비트(Individual/Group bit)가 특정 값(예를 들어, '1')으로 설정될 수 있다.
Sequence Control 필드는 시퀀스 넘버(sequence number) 및 조각 넘버(fragment number)를 포함하도록 설정된다. 시퀀스 넘버를 해당 MAC 프레임에 할당된 시퀀스 넘버를 지시할 수 있다. 조각 넘버는 해당 MAC 프레임의 각 조각의 넘버를 지시할 수 있다.
QoS Control 필드는 QoS와 관련된 정보를 포함한다. QoS Control 필드는 서브타입(Subtype) 서브필드에서 QoS 데이터 프레임을 지시하는 경우 포함될 수 있다.
HT Control 필드는 HT 및/또는 VHT 송수신 기법과 관련된 제어 정보를 포함한다. HT Control 필드는 제어 래퍼(Control Wrapper) 프레임에 포함된다. 또한, 오더(Order) 서브필드 값이 1인 QoS 데이터(QoS Data) 프레임, 관리(Management) 프레임에 존재한다.
Frame Body는 MAC 페이로드(payload)로 정의되고, 상위 계층에서 전송하고자 하는 데이터가 위치하게 되며, 가변적인 크기를 가진다. 예를 들어, 최대 MPDU의 크기는 11454 옥텟(octets)이고, 최대 PPDU 크기는 5.484 ms일 수 있다.
FCS는 MAC 풋터(footer)로 정의되고, MAC 프레임의 에러 탐색을 위하여 사용된다.
처음 세 필드(Frame Control 필드, Duration/ID 필드 및 Address 1 필드)와 제일 마지막 필드(FCS 필드)는 최소 프레임 포맷을 구성하며, 모든 프레임에 존재한다. 그 외의 필드는 특정 프레임 타입에서만 존재할 수 있다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 6을 참조하면, Frame Control 필드는 프로토콜 버전(Protocol Version) 서브필드, 타입(Type) 서브필드, 서브타입(Subtype) 서브필드, To DS 서브필드, From DS 서브필드, 추가 조각(More Fragments) 서브필드, 재시도(Retry) 서브필드, 파워 관리(Power Management) 서브필드, 추가 데이터(More Data) 서브필드, 보호된 프레임(Protected Frame) 서브필드 및 오더(Order) 서브필드로 구성된다.
Protocol Version 서브필드는 해당 MAC 프레임에 적용된 WLAN 프로토콜의 버전을 지시할 수 있다.
Type 서브필드 및 Subtype 서브필드는 해당 MAC 프레임의 기능을 식별하는 정보를 지시하도록 설정될 수 있다.
MAC 프레임의 타입은 관리 프레임(Management Frame), 제어 프레임(Control Frame), 데이터 프레임(Data Frame) 3가지의 프레임 타입을 포함할 수 있다.
그리고, 각 프레임 타입들은 다시 서브타입으로 구분될 수 있다.
예를 들어, 제어 프레임(Control frames)은 RTS(request to send) 프레임, CTS(clear-to-send) 프레임, ACK(Acknowledgment) 프레임, PS-Poll 프레임, CF(contention free)-End 프레임, CF-End+CF-ACK 프레임, 블록 ACK 요청(BAR: Block Acknowledgment request) 프레임, 블록 ACK(BA: Block Acknowledgment) 프레임, 제어 래퍼(Control Wrapper(Control+HTcontrol)) 프레임, VHT 널 데이터 패킷 공지(NDPA: Null Data Packet Announcement), 빔포밍 보고 폴(Beamforming Report Poll) 프레임을 포함할 수 있다.
관리 프레임(Management frames)은 비콘(Beacon) 프레임, ATIM(Announcement Traffic Indication Message) 프레임, 연계해제(Disassociation) 프레임, 연계 요청/응답(Association Request/Response) 프레임, 재연계 요청/응답(Reassociation Request/Response) 프레임, 프로브 요청/응답(Probe Request/Response) 프레임, 인증(Authentication) 프레임, 인증해제(Deauthentication) 프레임, 동작(Action) 프레임, 동작 무응답(Action No ACK) 프레임, 타이밍 광고(Timing Advertisement) 프레임을 포함할 수 있다.
To DS 서브필드 및 From DS 서브필드는 해당 MAC 프레임 헤더에 포함된 Address 1 필드 내지 Address 4 필드를 해석하기 위하여 필요한 정보를 포함할 수 있다. Control 프레임의 경우, To DS 서브필드 및 From DS 서브필드는 모두 '0'로 설정된다. Management 프레임의 경우, To DS 서브필드 및 From DS 서브필드는 해당 프레임이 QoS 관리 프레임(QMF: QoS Management frame)이면 순서대로 '1', '0'으로 설정되고, 해당 프레임이 QMF가 아니면 순서대로 모두 '0', '0'로 설정될 수 있다.
More Fragments 서브필드는 해당 MAC 프레임에 이어 전송될 조각(fragment)이 존재하는지 여부를 지시할 수 있다. 현재 MSDU 또는 MMPDU의 또 다른 조각(fragment)가 존재하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'로 설정될 수 있다.
Retry 서브필드는 해당 MAC 프레임이 이전 MAC 프레임의 재전송에 따른 것인지 여부를 지시할 수 있다. 이전 MAC 프레임의 재전송인 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
Power Management 서브필드는 STA의 파워 관리 모드를 지시할 수 있다. Power Management 서브필드 값이 '1'이면 STA이 파워 세이브 모드로 전환하는 것을 지시할 수 있다.
More Data 서브필드는 추가적으로 전송될 MAC 프레임이 존재하는지 여부를 지시할 수 있다. 추가적으로 전송될 MAC 프레임이 존재하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
Protected Frame 서브필드는 프레임 바디(Frame Body) 필드가 암호화되었는지 여부를 지시할 수 있다. Frame Body 필드가 암호화된 인캡슐레이션 알고리즘(cryptographic encapsulation algorithm)에 의해 처리된 정보를 포함하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다.
채널 상태 정보(Channel State Information) 피드백(feedback) 방법
빔포머(Beamformer)가 모든 안테나를 하나의 빔포미(Beamformee)에 할당하여 통신하는 SU-MIMO 기술은 시공간을 이용한 다이버시티 이득(diversity gain)과 스트림(stream) 다중 전송을 통해 채널 용량을 증대시킨다. SU-MIMO 기술은 MIMO 기술을 적용하지 않을 때에 비해 안테나의 개수를 늘림으로써, 공간 자유도를 확장시켜 물리 계층의 성능 향상에 기여할 수 있다.
또한, Beamformer가 복수의 Beamformee에게 안테나를 할당하는 MU-MIMO 기술은 Beamformer에 접속한 복수의 Beamformee들의 다중 접속을 위한 링크 계층 프로토콜을 통하여, Beamformee 당 전송률을 높이거나 채널의 신뢰도를 높임으로써 MIMO 안테나의 성능을 향상시킬 수 있다.
MIMO 환경에서는 Beamformer가 채널 정보를 얼마나 정확히 알고 있는지가 성능에 큰 영향을 미칠 수 있으므로, 채널 정보 획득을 위한 피드백 절차가 요구된다.
채널 정보 획득을 위한 피드백 절차는 크게 두 가지 방식이 지원될 수 있다. 하나는 제어 프레임(Control frame)을 이용하는 방식이며, 남은 하나는 데이터 필드가 포함되지 않은 채널 사운딩(channel sounding) 절차를 이용하는 방식이다. 사운딩은 프리엠블 트레이닝 필드(training field)를 포함하는 PPDU의 데이터 복조 이외의 목적을 위해 채널을 측정하기 위하여 해당 트레이닝 필드(training field)를 이용하는 것을 의미한다.
이하, 제어 프레임(Control frame)을 이용한 채널 정보 피드백 방법과 NDP(null data packet)을 이용한 채널 정보 피드백 방법에 대하여 보다 구체적으로 살펴본다.
1) 제어 프레임(Control frame)을 이용한 피드백 방법
MIMO 환경에서 Beamformer는 MAC 헤더에 포함된 HT control 필드를 통해 채널 상태 정보의 피드백을 지시하거나, Beamformee는 MAC 프레임 헤더에 포함된 HT control 필드를 통해 채널 상태 정보를 보고할 수 있다(도 8 참조). HT control 필드는 Control Wrapper 프레임이나 MAC 헤더의 Order 서브필드가 1로 설정된 QoS Data 프레임, 관리 프레임에 포함될 수 있다.
2) 채널 사운딩(channel sounding)을 이용한 피드백 방법
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 채널 사운딩(sounding) 방법을 개념적으로 나타내는 도면이다.
도 7에서는 사운딩 프로토콜(sounding protocol)을 기초로 Beamformer(예를 들어, AP)와 Beamformee(예를 들어, non-AP STA) 간의 채널 상태 정보(channel state information)를 피드백하는 방법을 예시한다. 사운딩 프로토콜(sounding protocol)은 채널 상태 정보에 대한 정보를 피드백 받는 절차를 의미할 수 있다.
사운딩 프로토콜을 기초로 한 Beamformer와 Beamformee 간의 채널 상태 정보 사운딩 방법을 아래와 같은 단계로 수행될 수 있다.
(1) Beamformer에서 Beamformee의 피드백을 위한 사운딩 전송을 알리는 VHT NDPA(VHT Null Data Packet Announcement) 프레임을 전송한다.
VHT NDPA 프레임은 채널 사운딩이 개시되고, NDP(Null Data Packet)이 전송될 것임을 알리기 위해 사용되는 제어 프레임(control frame)을 의미한다. 다시 말해, NDP을 전송하기 전 VHT NDPA 프레임을 전송함으로써 Beamformee가 NDP 프레임을 수신하기 전 채널 상태 정보를 피드백 하기 위한 준비를 하도록 할 수 있다.
VHT NDPA 프레임은 NDP을 전송할 Beamformee의 AID(association identifier) 정보, 피드백 타입 정보 등을 포함할 수 있다. VHT NDPA 프레임에 대한 보다 상세한 설명은 후술한다.
VHT NDPA 프레임은 MU-MIMO를 사용하여 데이터를 전송하는 경우와 SU-MIMO를 사용하여 데이터를 전송하는 경우 서로 다른 전송 방식으로 전송될 수 있다. 예를 들어, MU-MIMO를 위한 채널 사운딩을 수행하는 경우 VHT NDPA 프레임을 브로드캐스트(broadcast) 방식으로 전송하나, SU-MIMO를 위한 채널 사운딩을 수행하는 경우 하나의 대상 STA으로 VHT NDPA 프레임을 유니캐스트(unicast) 방식으로 전송할 수 있다.
(2) Beamformer는 VHT NDPA 프레임을 전송한 후, SIFS 시간 후에 NDP을 전송한다. NDP은 데이터 필드를 제외한 VHT PPDU 구조를 가진다.
VHT NDPA 프레임을 수신한 Beamformee들은 STA 정보 필드에 포함된 AID12 서브필드 값을 확인하고, 자신이 사운딩 대상 STA인지 확인할 수 있다.
또한, Beamformee들은 NDPA에 포함된 STA Info 필드의 순서를 통해 피드백 순서를 알 수 있다. 도 11에서는 피드백 순서가 Beamformee 1, Beamformee 2, Beamformee 3의 순서로 진행되는 경우를 예시한다.
(3) Beamformee 1은 NDP에 포함된 트레이닝 필드(training field)를 기초로 하향링크 채널 상태 정보를 획득하여, Beamformer에게 전송할 피드백 정보를 생성한다.
Beamformee 1은 NDP 프레임을 수신 후 SIFS 이후에 피드백 정보를 포함한 VHT 압축된 빔포밍(VHT Compressed Beamforming) 프레임을 Beamformer에게 전송한다.
VHT Compressed Beamforming 프레임은 시공간 스트림(space-time stream)에 대한 SNR 값, 서브캐리어(subcarrier)에 대한 압축된 빔포밍 피드백 행렬(compressed beamforming feedback matrix)에 대한 정보 등이 포함될 수 있다. VHT Compressed Beamforming 프레임에 대한 보다 상세한 설명은 후술한다.
(4) Beamformer는 Beamformee 1으로부터 VHT Compressed Beamforming 프레임 수신 후, SIFS 이후에 Beamformee 2로부터 채널 정보를 얻기 위해 빔포밍 보고 폴(Beamforming Report Poll) 프레임을 Beamformee 2에게 전송한다.
Beamforming Report Poll 프레임은 NDP 프레임과 동일한 역할을 수행하는 프레임으로서, Beamformee 2는 전송되는 Beamforming Report Poll 프레임을 기초로 채널 상태를 측정할 수 있다.
Beamforming report poll frame 프레임에 대한 보다 상세한 설명은 후술한다.
(5) Beamforming Report Poll 프레임을 수신한 Beamformee 2는 SIFS 이후에 피드백 정보를 포함한 VHT Compressed Beamforming 프레임을 Beamformer에게 전송한다.
(6) Beamformer는 Beamformee 2로부터 VHT Compressed Beamforming 프레임 수신 후, SIFS 이후에 Beamformee 3로부터 채널 정보를 얻기 위해 Beamforming Report Poll 프레임을 Beamformee 3에게 전송한다.
(7) Beamforming Report Poll 프레임을 수신한 Beamformee 3은 SIFS 이후에 피드백 정보를 포함한 VHT Compressed Beamforming 프레임을 Beamformer에게 전송한다.
이하, 앞서 설명한 채널 사운딩 절차에서 사용되는 프레임에 대하여 살펴본다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT NDPA 프레임을 예시하는 도면이다.
도 8을 참조하면, VHT NDPA 프레임은 프레임 제어(Frame Control) 필드, 지속 시간(Duration) 필드, RA(Receiving Address) 필드, TA(Transmitting Address) 필드, 사운딩 다이얼로그 토큰(Sounding Dialog Token) 필드, STA 정보 1(STA Info 1) 필드 내지 STA 정보 n(STA Info n) 필드 및 FCS로 구성될 수 있다.
RA 필드 값은 VHT NDPA 프레임을 수신하는 수신자 주소(receiver address) 또는 STA 주소를 나타낸다.
VHT NDPA 프레임이 하나의 STA Info 필드를 포함하는 경우, RA 필드 값은 STA Info 필드 내 AID에 의해 식별되는 STA의 주소를 가진다. 예를 들어, SU-MIMO 채널 사운딩을 위하여 하나의 대상 STA으로 VHT NDPA 프레임을 전송하는 경우, AP는 VHT NDPA 프레임을 대상 STA에게 유니캐스트(unicast)로 전송한다.
반면, VHT NDPA 프레임이 하나 이상의 STA Info 필드를 포함하는 경우, RA 필드 값은 브로드캐스트 주소(broadcast address)를 가진다. 예를 들어, MU-MIMO 채널 사운딩을 위하여 적어도 하나 이상의 대상 STA으로 VHT NDPA 프레임을 전송하는 경우, AP는 VHT NDPA 프레임을 브로드캐스팅한다.
TA 필드 값은 VHT NDPA 프레임을 전송하는 송신자 주소(transmitter address) 또는 전송하는 STA의 주소 또는 TA를 시그널링하는 대역폭을 나타낸다.
Sounding Dialog Token 필드는 사운딩 시퀀스(Sounding Sequence) 필드로 불릴 수도 있다. Sounding Dialog Token 필드 내 사운딩 다이얼로그 토큰 번호(Sounding Dialog Token Number) 서브필드는 VHT NDPA 프레임을 식별하기 위하여 Beamformer에 의해 선택된 값을 포함한다.
VHT NDPA 프레임은 적어도 하나의 STA Info 필드를 포함한다. 즉, VHT NDPA 프레임은 사운딩 대상 STA에 대한 정보를 포함하는 STA Info 필드를 포함한다. STA Info 필드는 사운딩 대상 STA 마다 하나씩 포함될 수 있다.
각 STA Info 필드는 AID12 서브필드, 피드백 타입(Feedback Type) 서브필드 및 Nc 인덱스(Nc Index) 서브필드로 구성될 수 있다.
표 4는 VHT NDPA 프레임에 포함되는 STA Info 필드의 서브필드를 나타낸다.
Figure 112017083533677-pct00004
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 다른 필드로 대체되거나, 추가적인 필드가 더 포함될 수 있다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 NDP PPDU을 예시하는 도면이다.
도 9를 참조하면, NDP은 앞서 도 4와 같은 VHT PPDU 포맷에서 데이터 필드가 생략된 포맷을 가질 수 있다. NDP은 특정 프리코딩 행렬(precoding matrix)를 기반으로 프리코딩(precoding)되어 사운딩 대상 STA으로 전송될 수 있다.
NDP의 L-SIG 필드에서 데이터 필드에 포함된 PSDU 길이를 지시하는 길이 필드는 '0'으로 설정된다.
NDP의 VHT-SIG-A 필드에서 NDP 전송을 위해 사용된 전송 기법이 MU-MIMO 인지 또는 SU-MIMO 인지 지시하는 Group ID 필드는 SU-MIMO 전송을 지시하는 값으로 설정된다.
NDP의 VHT-SIG-B 필드의 데이터 비트는 대역폭 별로 고정된 비트 패턴(bit pattern)으로 설정된다.
사운딩 대상 STA은 NDP를 수신하면, NDP의 VHT-LTF 필드를 기반으로 채널을 추정하고 채널 상태 정보를 획득한다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 VHT 압축된 빔포밍(VHT compressed beamforming) 프레임 포맷을 예시하는 도면이다.
도 10을 참조하면, VHT compressed beamforming 프레임은 VHT 기능을 지원하기 위한 VHT 동작(VHT Action) 프레임으로서, Frame Body에 Action 필드를 포함한다. Action 필드는 MAC 프레임의 Frame Body에 포함되어 확장된 관리 동작들을 명시하기 위한 메커니즘을 제공한다.
Action 필드는 카테고리(Category) 필드, VHT 동작(VHT Action) 필드, VHT MIMO 제어(VHT MIMO Control) 필드, VHT 압축된 빔포밍 보고(VHT Compressed Beamforming Report) 필드 및 MU 전용 빔포밍 보고(MU Exclusive Beamforming Report) 필드로 구성된다.
Category 필드는 VHT 카테고리(즉, VHT Action 프레임)를 지시하는 값으로 설정되고, VHT Action 필드는 VHT Compressed Beamforming 프레임을 지시하는 값으로 설정된다.
VHT MIMO Control 필드는 빔포밍 피드백과 관련된 제어 정보를 피드백하기 위하여 사용된다. VHT MIMO Control 필드는 VHT Compressed Beamforming 프레임에 항상 존재할 수 있다.
VHT Compressed Beamforming Report 필드는 데이터를 전송하는데 사용되는 시공간 스트림(space-time stream)에 대한 SNR 정보가 포함된 빔포밍 매트릭에 대한 정보를 피드백하기 위하여 사용된다.
MU Exclusive Beamforming Report 필드는 MU-MIMO 전송을 수행하는 경우 공간적 스트림(spatial stream)에 대한 SNR 정보를 피드백하기 위하여 사용된다.
VHT Compressed Beamforming Report 필드 및 MU Exclusive Beamforming Report 필드의 존재 여부 및 내용(content)은 VHT MIMO Control 필드의 피드백 타입(Feedback Type) 서브필드, 잔여 피드백 세그먼트(Remaining Feedback Segments) 서브필드, 최초 피드백 세그먼트(First Feedback Segment) 서브필드의 값에 따라 결정될 수 있다.
이하, VHT MIMO Control 필드, VHT Compressed Beamforming Report 필드 및 MU Exclusive Beamforming Report 필드에 대하여 보다 구체적으로 살펴본다.
1) VHT MIMO Control 필드는 Nc 인덱스(Nc Index) 서브필드, Nr 인덱스(Nr Index) 서브필드, 채널 폭(Channel Width) 서브필드, 그룹핑(Grouping) 서브필드, 코드북 정보(Codebook Information) 서브필드, 피드백 타입(Feedback Type) 서브필드, 잔여 피드백 세그먼트(Remaining Feedback Segments) 서브필드, 최초 피드백 세그먼트(First Feedback Segment) 서브필드, 예비(reserved) 서브필드 및 사운딩 다이얼로그 토큰 번호(Sounding Dialog Token Number) 서브필드로 구성된다.
표 5는 VHT MIMO Control 필드의 서브필드를 나타낸다.
Figure 112017083533677-pct00005
VHT Compressed Beamforming 프레임이 VHT Compressed Beamforming Report 필드의 전부 또는 일부를 전달하지 않는 경우, Nc Index 서브필드, Channel Width 서브필드, Grouping 서브필드, Codebook Information 서브필드, Feedback Type 서브필드 및 Sounding Dialog Token Number 서브필드는 예비 필드로 설정되고, First Feedback Segment 서브필드는 '0'로 설정되며, Remaining Feedback Segments 서브필드는 '7'로 설정된다.
Sounding Dialog Token Number 서브필드는 사운딩 시퀀스 번호(Sounding Sequence Number) 서브필드로 불릴 수도 있다.
2) VHT compressed beamforming report 필드는 전송 Beamformer가 스티어링 행렬(steering matix) 'Q'를 결정하기 위해 사용하는 압축된 빔포밍 피드백 행렬(comporessed beamforming feedback matrix) 'V'를 각도의 형태로 나타낸 명시적인 피드백 정보를 전달하기 위하여 사용된다.
표 6은 VHT compressed beamforming report 필드의 서브필드를 나타낸다.
Figure 112017083533677-pct00006
표 6을 참조하면, VHT compressed beamforming report 필드에서는 시공간 스트림 각각에 대한 평균 SNR과 각각의 서브캐리어에 대한 압축된 빔포밍 피드백 행렬(Compressed Beamforming Feedback Matrix) 'V'가 포함될 수 있다. 압축된 빔포밍 피드백 행렬은 채널 상황에 대한 정보를 포함한 행렬로서 MIMO를 사용한 전송 방법에서 채널 행렬(즉, 스티어링 행렬(steering matix) 'Q')을 산출하기 위하여 사용된다.
scidx()는 Compressed Beamforming Feedback Matrix 서브필드가 전송되는 서브캐리어를 의미한다. Na는 Nr × Nc 값에 의해 고정된다(예를 들어, Nr × Nc= 2 × 1인 경우, Φ11, Ψ21, ...).
Ns는 Beamformer에게 압축된 빔포밍 피드백 행렬이 전송되는 서브캐리어의 개수를 의미한다. Beamformee는 그룹핑 방법을 사용하여 압축된 빔포밍 피드백 행렬이 전송되는 Ns의 수를 줄일 수 있다. 예를 들어, 복수의 서브캐리어를 하나의 그룹으로 묶고 해당 그룹 별로 압축된 빔포밍 피드백 행렬을 전송함으로써 피드백되는 압축된 빔포밍 피드백 행렬의 개수를 줄일 수 있다. Ns는 VHT MIMO Control 필드에 포함된 Channel Width 서브필드와 Grouping 서브필드로부터 산출될 수 있다.
표 7은 시공간 스트림의 평균 SNR(Average SNR of Space-Time) Stream 서브필드를 예시한다.
Figure 112017083533677-pct00007
표 7을 참조하면, 시공간 스트림 각각에 대한 평균 SNR은 채널에 포함되는 서브캐리어 전체에 대한 평균 SNR 값을 산출하여 그 값을 -128~+128 범위로 매핑하여 산출된다.
3) MU Exclusive Beamforming Report 필드는 델타() SNR의 형태로 나타낸 명시적인 피드백 정보를 전달하기 위하여 사용된다. VHT Compressed Beamforming Report 필드 및 MU Exclusive Beamforming Report 필드 내 정보는 MU Beamformer가 스티어링 행렬(steering matix) 'Q'를 결정하기 위하여 사용될 수 있다.
표 8은 VHT compressed beamforming 프레임에 포함되는 MU Exclusive Beamforming Report 필드의 서브필드를 나타낸다.
Figure 112017083533677-pct00008
표 8을 참조하면, MU Exclusive Beamforming Report 필드에서는 서브캐리어 별로 시공간 스트림 당 SNR이 포함될 수 있다.
각 Delta SNR 서브필드는 -8dB에서 7dB 사이에서 1dB씩 증가되는 값을 가진다.
scidx()는 Delta SNR 서브필드가 전송되는 서브캐리어(들)을 의미하고, Ns는 Beamformer로 Delta SNR 서브필드가 전송되는 서브캐리어의 수를 의미한다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 빔포밍 보고 폴(Beamforming Report Poll) 프레임 포맷을 예시하는 도면이다.
도 11을 참조하면, Beamforming Report Poll 프레임은 프레임 제어(Frame Control) 필드, 지속 시간(Duration) 필드, RA(Receiving Address) 필드, TA(Transmitting Address) 필드, 피드백 세그먼트 재전송 비트맵(Feedback Segment Retransmission Bitmap) 필드 및 FCS를 포함하여 구성된다.
RA 필드 값은 대상 수신자(intended recipient)의 주소를 나타낸다.
TA 필드 값은 Beamforming Report Poll 프레임을 전송하는 STA의 주소 또는 TA를 시그널링하는 대역폭을 나타낸다.
Feedback Segment Retransmission Bitmap 필드는 VHT 압축된 빔포밍 보고(VHT Compressed Beamforming report)에서 요청되는 피드백 세그먼트를 지시한다.
Feedback Segment Retransmission Bitmap 필드 값에서 위치 n의 비트가 '1'이면(LSB 경우 n=0, MSB 경우 n=7), VHT compressed beamforming 프레임의 VHT MIMO Control 필드 내 Remaining Feedback Segments 서브필드에서 n과 상응하는 피드백 세그먼트가 요청된다. 반면, 위치 n의 비트가 '0'이면, VHT MIMO Control 필드 내 Remaining Feedback Segments 서브필드에서 n과 상응하는 피드백 세그먼트가 요청되지 않는다.
하향링크 MU-MIMO 프레임(DL MU-MIMO Frame)
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 12를 참조하면, PPDU은 프리앰블 및 데이터 필드(Data field)를 포함하여 구성된다. 데이터 필드는 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU) 필드, 테일 비트(Tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
AP는 MPDU를 병합(aggregation)하여 A-MPDU(aggregated MPDU) 포맷으로 데이터 프레임을 전송할 수 있다. 이 경우, 스크램블링된 PSDU(scrambled PSDU) 필드는 A-MPDU로 구성될 수 있다.
A-MPDU는 하나 이상의 A-MPDU 서브프레임(A-MPDU subframe)의 배열(sequence)로 구성된다.
VHT PPDU의 경우, 각 A-MPDU 서브프레임의 길이가 4 옥텟의 배수이므로, A-MPDU는 PSDU의 마지막 옥텟에 A-MPDU를 맞추기 위하여 마지막 A-MPDU 서브프레임(A-MPDU subframe) 이후에 0 내지 3 옥텟의 EOF(end-of-frame) 패드(pad)를 포함할 수 있다.
A-MPDU 서브프레임은 MPDU 딜리미터(delimiter)로 구성되고, 선택적으로 MPDU가 MPDU 딜리미터(Delimiter) 이후에 포함될 수 있다. 또한, 하나의 A-MPDU 내 마지막 A-MPDU 서브프레임을 제외하고, 각 A-MPDU 서브프레임의 길이를 4 옥텟의 배수로 만들기 위하여 패드 옥텟이 MPDU 이후에 부착된다.
MPDU Delimiter는 예비(Reserved) 필드, MPDU 길이(MPDU Length) 필드, CRC (cyclic redundancy check) 필드, 딜리미터 시그니처(Delimiter Signature) 필드로 구성된다.
VHT PPDU의 경우, MPDU Delimiter는 EOF(end-of-frame) 필드를 더 포함할 수 있다. MPDU Length 필드가 0이고 패딩하기 위하여 사용되는 A-MPDU 서브프레임, 또는 A-MPDU가 하나의 MPDU만으로 구성되는 경우 해당 MPDU가 실어지는 A-MPDU 서브프레임의 경우, EOF 필드는 '1'로 셋팅된다. 그렇지 않은 경우 '0'으로 셋팅된다.
MPDU Length 필드는 MPDU의 길이에 대한 정보를 포함한다.
해당 A-MPDU 서브프레임에 MPDU가 존재하지 않는 경우 '0'으로 셋팅된다. MPDU Length 필드가 '0' 값을 가지는 A-MPDU 서브프레임은 VHT PPDU 내 가용한 옥텟에 A-MPDU를 맞추기 위해 해당 A-MPDU에 패딩할 때 사용된다.
CRC 필드는 에러 체크를 위한 CRC 정보, Delimiter Signature 필드는 MPDU 딜리미터를 검색하기 위하여 사용되는 패턴 정보를 포함한다.
그리고, MPDU는 MAC 헤더(MAC Header), 프레임 몸체(Frame Body) 및 프레임 체크 시퀀스(FCS)로 구성된다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 13은 해당 PPDU를 수신하는 STA의 개수가 3개이고, 각 STA에 할당되는 공간적 스트림(spatial stream)의 개수가 1이라고 가정하나 AP에 페어링된 STA의 수, 각 STA에 할당되는 공간적 스트림의 수는 이에 한정되지 않는다.
도 13을 참조하면, MU PPDU는 L-TFs 필드(L-STF 필드 및 L-LTF 필드), L-SIG 필드, VHT-SIG-A 필드, VHT-TFs 필드(VHT-STF 필드 및 VHT-LTF 필드), VHT-SIG-B 필드, Service 필드, 하나 이상의 PSDU, padding 필드 및 Tail 비트를 포함하여 구성된다. L-TFs 필드, L-SIG 필드, VHT-SIG-A 필드, VHT-TFs 필드, VHT-SIG-B 필드는 앞서 도 4의 예시와 동일하므로 이하 상세한 설명은 생략한다.
PPDU 지속기간을 지시하기 위한 정보가 L-SIG 필드에 포함될 수 있다. PPDU 내에서, L-SIG 필드에 의해 지시된 PPDU 지속기간은 VHT-SIG-A 필드가 할당된 심볼, VHT-TFs 필드가 할당된 심볼, VHT-SIG-B 필드가 할당된 필드, Service 필드를 구성하는 비트, PSDU를 구성하는 비트, padding 필드를 구성하는 비트 및 Tail 필드를 구성하는 비트를 포함한다. PPDU를 수신하는 STA은 L-SIG 필드에 포함된 PPDU 지속시간을 지시하는 정보를 통해 PPDU의 지속기간에 대한 정보를 획득할 수 있다.
상술한 바와 같이, VHT-SIG-A를 통해 Group ID 정보, 각 사용자 당 시공간 스트림 수 정보가 전송되고, VHT-SIG-B를 통해 코딩(coding) 방법 및 MCS 정보 등이 전송된다. 따라서, Beamformee들은 VHT-SIG-A와 VHT-SIG-B를 확인하고, 자신이 속한 MU MIMO 프레임인지 여부를 알 수 있다. 따라서, 해당 Group ID의 멤버 STA이 아니거나 해당 Group ID의 멤버이나 할당된 스트림 수가 '0'인 STA은 VHT-SIG-A 필드 이후부터 PPDU 끝까지 물리 계층의 수신을 중단하도록 설정함으로써 전력 소모를 절감할 수 있다.
Group ID는 사전에 Beamformer가 전송하는 Group ID Management 프레임을 수신함으로써, Beamformee가 어떤 MU 그룹에 속하는지, 자신이 속하는 그룹 중에서 몇 번째 사용자인지, 즉 어떤 스트림을 통해 PPDU를 수신하는지 알 수 있다.
802.11ac을 기반으로 하는 VHT MU PPDU 내 전송되는 모든 MPDU는 A-MPDU에 포함된다. 도 13의 데이터 필드에서 각 VHT A-MPDU는 서로 다른 스트림으로 전송될 수 있다.
도 13에서 각 STA에 전송되는 데이터의 크기가 상이할 수 있으므로, 각각의 A-MPDU는 서로 다른 비트 크기를 가질 수 있다.
이 경우, Beamformer가 전송하는 복수의 데이터 프레임의 전송이 종료되는 시간은 최대 구간 전송 데이터 프레임의 전송이 종료되는 시간과 동일하도록 널 패딩(null padding)을 수행할 수 있다. 최대 구간 전송 데이터 프레임은 Beamformer에 의해 유효 하향링크 데이터가 가장 오랜 구간 동안 전송되는 프레임일 수 있다. 유효 하향링크 데이터는 널 패딩되지 않은 하향링크 데이터일 수 있다. 예를 들어, 유효 하향링크 데이터는 A-MPDU에 포함되어 전송될 수 있다. 복수의 데이터 프레임 중 최대 구간 전송 데이터 프레임을 제외한 나머지 데이터 프레임은 널 패딩을 수행할 수 있다.
널 패딩을 위해 Beamformer는 A-MPDU 프레임 내 복수의 A-MPDU 서브프레임에서 시간적으로 후순위에 위치한 하나 이상의 A-MPDU 서브프레임을 MPDU delimiter 필드만으로 인코딩하여 채울 수 있다. MPDU 길이가 0인 A-MPDU 서브프레임을 널 서브프레임(Null subframe)으로 지칭할 수 있다.
앞서 살펴본 바와 같이, 널 서브프레임은 MPDU Delimiter의 EOF 필드가 '1'로 셋팅된다. 따라서, 수신측 STA의 MAC 계층에서는 1로 셋팅된 EOF 필드를 감지하면, 물리 계층에 수신을 중단하도록 설정함으로써 전력 소모를 절감할 수 있다.
블록 ACK(Block Ack) 절차
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
802.11ac에서는 MU-MIMO는 AP로부터 클라이언트(즉, non-AP STA)으로 향하는 하향링크에서 정의된다. 이때, 다중 사용자 프레임(multi-user frame)은 다중 수신자에게 동시에 전송되나, 수신 확인(acknowledgement)은 상향링크에서 개별적으로 전송되어야 한다.
802.11ac을 기반으로 하는 VHT MU PPDU 내 전송되는 모든 MPDU는 A-MPDU에 포함되므로, VHT MU PPDU에 대한 즉각적인 응답이 아닌 VHT MU PPDU 내 A-MPDU에 대한 응답은 AP에 의한 블록 ACK 요청(BAR: Block Ack Request) 프레임에 대한 응답으로 전송된다.
먼저, AP는 모든 수신자(즉, STA 1, STA 2, STA 3)에게 VHT MU PPDU(즉, 프리앰블 및 데이터)를 전송한다. VHT MU PPDU는 각 STA에 전송되는 VHT A-MPDU를 포함한다.
AP로부터 VHT MU PPDU를 수신한 STA 1은 SIFS 이후에 블록 ACK(BA: Block Acknowledgement) 프레임을 AP로 전송한다. BA 프레임에 대하여 보다 상세한 설명은 후술한다.
STA 1으로부터 BA를 수신한 AP는 SIFS 이후에 BAR(block acknowledgement request) 프레임을 다음 STA 2로 전송하고, STA 2는 SIFS 이후에 BA 프레임을 AP로 전송한다. STA 2로부터 BA 프레임을 수신한 AP는 SIFS 이후에 BAR 프레임을 STA 3로 전송하고, STA 3은 SIFS 이후에 BA 프레임을 AP로 전송한다.
이러한 과정이 모든 STA들에 대해 수행되면, AP는 다음 MU PPDU를 모든 STA에게 전송한다.
ACK(Acknowledgement)/블록 ACK(Block ACK) 프레임
일반적으로 MPDU의 응답으로 ACK 프레임을 사용하고, A-MPDU의 응답으로 블록 ACK 프레임을 사용한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 15를 참조하면, ACK 프레임은 프레임 제어(Frame Control) 필드, 지속기간(Duration) 필드, RA 필드 및 FCS로 구성된다.
RA 필드는 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임, 블록 ACK 요청(Block Ack Request) 프레임, 블록 ACK(Block Ack) 프레임 또는 PS-Poll 프레임의 제2 주소(Address 2) 필드의 값으로 설정된다.
비 QoS(non-QoS) STA에 의해 ACK 프레임이 전송되는 경우, 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임의 프레임 제어(Frame Control) 필드 내 모어 프래그먼트(More Fragments) 서브필드가 '0'이면, 지속기간(duration) 값은 '0'으로 설정된다.
비 QoS(non-QoS) STA에 의해 전송되지 않는 ACK 프레임에서 지속기간(duration) 값은 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임, 블록 ACK 요청(Block Ack Request) 프레임, 블록 ACK(Block Ack) 프레임 또는 PS-Poll 프레임의 Duration/ID 필드에서 ACK 프레임 전송을 위해 요구되는 시간 및 SIFS 구간을 차감한 값(ms)으로 설정된다. 계산된 지속기간(duration) 값이 정수 값이 아닌 경우, 반올림된다.
이하, 블록 ACK (요청) 프레임에 대하여 살펴본다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 16을 참조하면, 블록 ACK 요청(BAR) 프레임은 프레임 제어(Frame Control) 필드, 지속기간/식별자(Duration/ID) 필드, 수신 주소(RA) 필드, 전송 주소(TA) 필드, BAR 제어(BAR control) 필드, BAR 정보(BAR Information) 필드 및 프레임 체크 시퀀스(FCS)로 구성된다.
RA 필드는 BAR 프레임을 수신하는 STA의 주소로 설정될 수 있다.
TA 필드는 BAR 프레임을 전송하는 STA의 주소로 설정될 수 있다.
BAR control 필드는 BAR Ack 정책(BAR Ack Policy) 서브필드, 다중-TID(Multi-TID) 서브필드, 압축 비트맵(Compressed Bitmap) 서브필드, 예비(Reserved) 서브필드 및 TID 정보(TID_Info) 서브필드를 포함한다.
표 9는 BAR control 필드를 예시하는 표이다.
Figure 112017083533677-pct00009
BAR Information 필드는 BAR 프레임의 타입에 따라 상이한 정보가 포함된다. 이에 대하여 도 17을 참조하여 설명한다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 17(a)는 Basic BAR 프레임 및 Compressed BAR 프레임의 BAR Information 필드를 예시하고, 도 17(b)는 Multi-TID BAR 프레임의 BAR Information 필드를 예시한다.
도 17(a)를 참조하면, Basic BAR 프레임 및 Compressed BAR 프레임의 경우, BAR Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드를 포함한다.
그리고, Block Ack Starting Sequence Control 서브필드는 조각 번호(Fragment Number) 서브필드, 시작 시퀀스 번호(Starting Sequence Number) 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Basic BAR 프레임의 경우, Starting Sequence Number 서브필드는 해당 BAR 프레임이 전송되는 첫 번째 MSDU의 시퀀스 번호를 포함한다. Compressed BAR 프레임의 경우, Starting Sequence Control 서브필드는 해당 BAR 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
도 17(b)를 참조하면, Multi-TID BAR 프레임의 경우, BAR Information 필드는 TID 별 정보(Per TID Info) 서브필드 및 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드가 하나 이상의 TID 별로 반복되어 구성된다.
Per TID Info 서브필드는 예비(Reserved) 서브필드 및 TID 값(TID Value) 서브필드를 포함한다. TID Value 서브필드는 TID 값을 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 및 Starting Sequence Number 서브필드를 포함한다. Fragment Number 서브필드는 0으로 설정된다. Starting Sequence Control 서브필드는 해당 BAR 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 18을 참조하면, 블록 ACK(BA) 프레임은 프레임 제어(Frame Control) 필드, 지속기간/식별자(Duration/ID) 필드, 수신 주소(RA) 필드, 전송 주소(TA) 필드, BA 제어(BA control) 필드, BA 정보(BA Information) 필드 및 프레임 체크 시퀀스(FCS)로 구성된다.
RA 필드는 블록 ACK을 요청한 STA의 주소로 설정될 수 있다.
TA 필드는 BA 프레임을 전송하는 STA의 주소로 설정될 수 있다.
BA control 필드는 BA Ack 정책(BA Ack Policy) 서브필드, 다중-TID(Multi-TID) 서브필드, 압축 비트맵(Compressed Bitmap) 서브필드, 예비(Reserved) 서브필드 및 TID 정보(TID_Info) 서브필드를 포함한다.
표 10은 BA control 필드를 예시하는 표이다.
Figure 112017083533677-pct00010
BA Information 필드는 BA 프레임의 타입에 따라 상이한 정보가 포함된다. 이에 대하여 도 19를 참조하여 설명한다.
도 19는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 19(a)의 Basic BA 프레임의 BA Information 필드를 예시하고, 도 19(b)는 Compressed BA 프레임의 BA Information 필드를 예시하고, 도 19(c)는 Multi-TID BA 프레임의 BA Information 필드를 예시한다.
도 19(a)를 참조하면, Basic BA 프레임의 경우, BA Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드를 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 서브필드 및 Starting Sequence Number 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Starting Sequence Number 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU의 시퀀스 번호를 포함하고, 직전에 수신한 Basic BAR 프레임과 동일한 값으로 설정된다.
Block Ack Bitmap 서브필드는 128 옥텟의 길이로 구성되고, 최대 64개의 MSDU의 수신 상태를 지시하기 위하여 사용된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 MPDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 MPDU가 성공적으로 수신되지 않았음을 지시한다.
도 19(b)를 참조하면, Compressed BA 프레임의 경우, BA Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드를 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 서브필드 및 Starting Sequence Number 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Starting Sequence Number 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함하고, 직전에 수신한 Basic BAR 프레임과 동일한 값으로 설정된다.
Block Ack Bitmap 서브필드는 8 옥텟의 길이로 구성되고, 최대 64개의 MSDU 및 A-MSDU의 수신 상태를 지시하기 위하여 사용된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되지 않았음을 지시한다.
도 19(c)를 참조하면, Multi-TID BA 프레임의 경우, BA Information 필드는 TID 별 정보(Per TID Info) 서브필드, 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드가 하나 이상의 TID 별로 반복되어 구성되고, TID가 증가되는 순서대로 구성된다.
Per TID Info 서브필드는 예비(Reserved) 서브필드 및 TID 값(TID Value) 서브필드를 포함한다. TID Value 서브필드는 TID 값을 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 및 Starting Sequence Number 서브필드를 포함한다. Fragment Number 서브필드는 0으로 설정된다. Starting Sequence Control 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
Block Ack Bitmap 서브필드는 8 옥텟의 길이로 구성된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되지 않았음을 지시한다.
상향링크 다중 사용자 전송 방법
차세대 WiFi에 대한 다양한 분야의 벤더들의 많은 관심과 802.11ac 이후의 높은 스루풋(high throughput) 및 QoE(quality of experience) 성능 향상에 대한 요구가 높아지고 있는 상황에서 차세대 WLAN 시스템인 802.11ax 시스템을 위한 새로운 프레임 포맷 및 뉴머롤로지(numerology)에 대한 논의가 활발히 진행 중이다.
IEEE 802.11ax은 더 높은 데이터 처리율(data rate)을 지원하고 더 높은 사용자 부하(user load)를 처리하기 위한 차세대 WLAN 시스템으로서 최근에 새롭게 제안되고 있는 WLAN 시스템 중 하나로서, 일명 고효율 WLAN(HEW: High Efficiency WLAN)라고 불린다.
IEEE 802.11ax WLAN 시스템은 기존 WLAN 시스템과 동일하게 2.4 GHz 주파수 대역 및 5 GHz 주파수 대역에서 동작할 수 있다. 또한, 그보다 높은 60 GHz 주파수 대역에서도 동작할 수 있다.
IEEE 802.11ax 시스템에서는 평균 스루풋 향상(average throughput enhancement)과 실외 환경에서의 심볼 간 간섭(inter-symbol interference)에 대한 강인한 전송(outdoor robust transmission)을 위해서 기존 IEEE 802.11 OFDM system (IEEE 802.11a, 802.11n, 802.11ac 등)보다 각 대역폭에서 4배 큰 FFT 크기를 사용할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
이하, 본 발명에 HE 포맷 PPDU에 대한 설명에 있어서, 별도의 언급이 없더라도 앞서 설명한 non-HT 포맷 PPDU, HT-mixed 포맷 PPDU, HT-greenfield 포맷 PPDU 및/또는 VHT 포맷 PPDU에 대한 설명이 HE 포맷 PPDU에 대한 설명에 병합될 수 있다.
도 20은 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 20(a)는 HE 포맷 PPDU의 개략적인 구조를 예시하고, 도 20(b) 내지 (d)는 HE 포맷 PPDU의 보다 구체적인 구조를 예시한다.
도 20(a)를 참조하면, HEW를 위한 HE 포맷 PPDU는 크게 레가시 부분(L-part: legacy-part), HE 부분(HE-part) 및 데이터 필드(HE-data)로 구성될 수 있다.
L-part는 기존의 WLAN 시스템에서 유지하는 형태와 동일하게 L-STF 필드, L-LTF 필드 및 L-SIG 필드로 구성된다. L-STF 필드, L-LTF 필드 및 L-SIG 필드를 레가시 프리앰블(legacy preamble)이라고 지칭할 수 있다.
HE-part는 802.11ax 표준을 위하여 새롭게 정의되는 부분으로서, HE-STF 필드, HE-SIG 필드 및 HE-LTF 필드를 포함할 수 있다. 도 25(a)에서는 HE-STF 필드, HE-SIG 필드 및 HE-LTF 필드의 순서를 예시하고 있으나, 이와 상이한 순서로 구성될 수 있다. 또한, HE-LTF는 생략될 수도 있다. HE-STF 필드 및 HE-LTF 필드뿐만 아니라 HE-SIG 필드를 포함하여 HE-preamble로 통칭할 수도 있다.
또한, L-part, HE-part(또는, HE-preamble)을 물리 프리앰블(PHY(physical) preamble)로 통칭할 수 있다.
HE-SIG는 HE-data 필드를 디코딩하기 위한 정보(예를 들어, OFDMA, UL MU MIMO, 향상된 MCS 등)을 포함할 수 있다.
L-part와 HE-part는 서로 다른 FFT(Fast Fourier Transform) 크기(즉, 서브캐리어 간격(spacing))을 가질 수 있으며, 서로 다른 CP(Cyclic Prefix)를 사용할 수도 있다.
802.11ax 시스템에서는 레가시 WLAN 시스템에 비하여 4배 큰(4×) FFT 크기를 사용할 수 있다. 즉, L-part는 1× 심볼 구조로 구성되고, HE-part(특히, HE-preamble 및 HE-data)는 4× 심볼 구조로 구성될 수 있다. 여기서, 1×, 2×, 4× 크기의 FFT는 레가시 WLAN 시스템(예를 들어, IEEE 802.11a, 802.11n, 802.11ac 등)에 대한 상대적인 크기를 의미한다.
예를 들어, L-part에 이용되는 FFT 크기는 20MHz, 40MHz, 80MHz 및 160MHz에서 각각 64, 128, 256, 512라면, HE-part에 이용되는 FFT 크기는 20MHz, 40MHz, 80MHz 및 160MHz에서 각각 256, 512, 1024, 2048일 수 있다.
이와 같이 레가시 WLAN 시스템 보다 FFT 크기가 커지면, 서브캐리어 주파수 간격(subcarrier frequency spacing)이 작아지므로 단위 주파수 당 서브캐리어의 수가 증가되나, OFDM 심볼 길이가 길어진다.
즉, 보다 큰 FFT 크기가 사용된다는 것은 서브캐리어 간격이 좁아진다는 의미이며, 마찬가지로 IDFT(Inverse Discrete Fourier Transform)/DFT(Discrete Fourier Transform) 주기(period)가 늘어난다는 의미이다. 여기서, IDFT/DFT 주기는 OFDM 심볼에서 보호 구간(GI)을 제외한 심볼 길이를 의미할 수 있다.
따라서, HE-part(특히, HE-preamble 및 HE-data)는 L-part에 비하여 4배 큰 FFT 크기가 사용된다면, HE-part의 서브캐리어 간격은 L-part의 서브캐리어 간격의 1/4 배가 되고, HE-part의 IDFT/DFT 주기는 L-part의 IDFT/DFT 주기의 4배가 된다. 예를 들어, L-part의 서브캐리어 간격이 312.5kHz(=20MHz/64, 40MHZ/128, 80MHz/256 및/또는 160MHz/512)라면 HE-part의 서브캐리어 간격은 78.125kHz(=20MHz/256, 40MHZ/512, 80MHz/1024 및/또는 160MHz/2048)일 수 있다. 또한, L-part의 IDFT/DFT 주기가 3.2㎲(=1/312.5kHz)이라면, HE-part의 IDFT/DFT 주기는 12.8㎲(=1/78.125kHz)일 수 있다.
여기서, GI는 0.8㎲, 1.6㎲, 3.2㎲ 중 하나가 사용될 수 있으므로, GI를 포함하는 HE-part의 OFDM 심볼 길이(또는 심볼 간격(symbol interval))은 GI에 따라 13.6㎲, 14.4㎲, 16㎲일 수 있다.
도 20(b)를 참조하면, HE-SIG 필드는 HE-SIG-A 필드와 HE-SIG-B 필드로 구분될 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 12.8㎲ 길이를 가지는 HE-SIG-A 필드, 1 OFDM 심볼의 HE-STF 필드, 하나 이상의 HE-LTF 필드 및 1 OFDM 심볼의 HE-SIG-B 필드를 포함할 수 있다.
또한, HE-part에서 HE-SIG-A 필드는 제외하고 HE-STF 필드부터는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
다만, 도 20(b)와 같이 HE-SIG가 HE-SIG-A 필드와 HE-SIG-B 필드로 구분되어 전송될 때, HE-SIG-A 필드 및 HE-SIG-B 필드의 위치는 도 25(b)와 상이할 수 있다. 예를 들어, HE-SIG-A 필드 다음에 HE-SIG-B 필드가 전송되고, HE-SIG-B 필드 다음에 HE-STF 필드와 HE-LTF 필드가 전송될 수 있다. 이 경우에도 마찬가지로 HE-STF 필드부터는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다.
도 20(c)를 참조하면, HE-SIG 필드는 HE-SIG-A 필드와 HE-SIG-B 필드로 구분되지 않을 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 1 OFDM 심볼의 HE-STF 필드, 1 OFDM 심볼의 HE-SIG 필드 및 하나 이상의 HE-LTF 필드를 포함할 수 있다.
위와 유사하게 HE-part는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
도 20(d)를 참조하면, HE-SIG 필드는 HE-SIG-A 필드와 HE-SIG-B 필드로 구분되지 않으며, HE-LTF 필드는 생략될 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 1 OFDM 심볼의 HE-STF 필드 및 1 OFDM 심볼의 HE-SIG 필드를 포함할 수 있다.
위와 유사하게 HE-part는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
본 발명에 따른 WLAN 시스템을 위한 HE 포맷 PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 예를 들어, HE 포맷 PPDU은 총 4개의 20MHz 채널을 통해 40MHz, 80MHz 또는 160MHz 주파수 대역에서 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
도 21은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 21에서는 하나의 STA에 80MHz가 할당된 경우(또는 80MHz 내 복수의 STA에게 OFDMA 자원 유닛이 할당된 경우) 혹은 복수의 STA에게 각각 80MHz의 서로 다른 스트림이 할당된 경우의 PPDU 포맷을 예시한다.
도 21을 참조하면, L-STF, L-LTF 및 L-SIG은 각 20MHz 채널에서 64 FFT 포인트(또는 64 서브캐리어)에 기반하여 생성된 OFDM 심볼로 전송될 수 있다.
또한, HE-SIG B 필드가 HE-SIG A 필드 다음에 위치할 수 있다. 이 경우, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG B) 이후부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
HE-SIG A 필드는 PPDU를 수신하는 STA들에게 공통으로 전송되는 공통 제어 정보를 포함할 수 있다. HE-SIG A 필드는 1개 내지 3개의 OFDM 심볼에서 전송될 수 있다. HE-SIG A 필드는 20MHz 단위로 복사되어 동일한 정보를 포함한다. 또한, HE-SIG-A 필드는 시스템의 전체 대역폭 정보를 알려준다.
표 11은 HE-SIG A 필드에 포함되는 정보를 예시하는 표이다.
Figure 112017083533677-pct00011
표 11에 예시되는 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 PPDU에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다. HE-SIG A 필드에 포함되는 정보의 또 다른 실시예는 도 34와 관련하여 이하에서 후술하기로 한다.
HE-STF는 MIMO 전송에 있어서 AGC 추정의 성능을 개선하기 위해 사용된다.
HE-SIG B 필드는 각 STA이 자신의 데이터(예를 들어, PSDU)를 수신하기 위하여 요구되는 사용자 특정(user-specific) 정보를 포함할 수 있다. HE-SIG B 필드는 하나 또는 두 개의 OFDM 심볼에서 전송될 수 있다. 예를 들어, HE-SIG B 필드는 해당 PSDU의 변조 및 코딩 기법(MCS) 및 해당 PSDU의 길이에 관한 정보를 포함할 수 있다.
L-STF, L-LTF, L-SIG 및 HE-SIG A 필드는 20MHz 채널 단위로 반복되어 전송될 수 있다. 예를 들어, PPDU가 4개의 20MHz 채널(즉, 80MHz 대역)을 통해 전송될 때, L-STF, L-LTF, L-SIG 및 HE-SIG A 필드는 매 20MHz 채널에서 반복되어 전송될 수 있다.
FFT 크기가 커지면, 기존의 IEEE 802.11a/g/n/ac를 지원하는 레가시 STA은 해당 HE PPDU를 디코딩하지 못할 수 있다. 레가시 STA과 HE STA이 공존(coexistence)하기 위하여, L-STF, L-LTF 및 L-SIG 필드는 레가시 STA이 수신할 수 있도록 20MHz 채널에서 64 FFT를 통해 전송된다. 예를 들어, L-SIG 필드는 하나의 OFDM 심볼을 점유하고, 하나의 OFDM 심볼 시간은 4㎲이며, GI는 0.8㎲일 수 있다.
각 주파수 단위 별 FFT 크기는 HE-STF(또는 HE-SIG A)부터 더욱 커질 수 있다. 예를 들어, 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다. FFT 크기가 커지면, OFDM 서브캐리어 간의 간격이 작아지므로 단위 주파수 당 OFDM 서브캐리어의 수가 증가되나, OFDM 심볼 시간은 길어진다. 시스템의 효율을 향상시키기 위하여 HE-STF 이후의 GI의 길이는 HE-SIG A의 GI의 길이와 동일하게 설정될 수 있다.
HE-SIG A 필드는 HE STA이 HE PPDU를 디코딩하기 위하여 요구되는 정보를 포함할 수 있다. 그러나, HE-SIG A 필드는 레가시 STA과 HE STA이 모두 수신할 수 있도록 20MHz 채널에서 64 FFT를 통해 전송될 수 있다. 이는 HE STA가 HE 포맷 PPDU 뿐만 아니라 기존의 HT/VHT 포맷 PPDU를 수신할 수 있으며, 레가시 STA 및 HE STA이 HT/VHT 포맷 PPDU와 HE 포맷 PPDU를 구분하여야 하기 때문이다.
도 22는 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 22에서는 20MHz 채널들이 각각 서로 다른 STA들(예를 들어, STA 1, STA 2, STA 3 및 STA 4)에 할당되는 경우를 가정한다.
도 22를 참조하면, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG-B)부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG-B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
PPDU에 포함되는 각 필드에서 전송되는 정보는 앞서 도 26의 예시와 동일하므로 이하 설명을 생략한다.
HE-SIG-B 필드는 각 STA에 특정된 정보를 포함할 수 있으나, 전체 밴드(즉, HE-SIG-A 필드에서 지시)에 걸쳐서 인코딩될 수 있다. 즉, HE-SIG-B 필드는 모든 STA에 대한 정보를 포함하며 모든 STA들이 수신하게 된다.
HE-SIG-B 필드는 각 STA 별로 할당되는 주파수 대역폭 정보 및/또는 해당 주파수 대역에서 스트림 정보를 알려줄 수 있다. 예를 들어, 도 27에서 HE-SIG-B는 STA 1는 20MHz, STA 2는 그 다음 20MHz, STA 3는 그 다음 20MHz, STA 4는 그 다음 20MHz가 할당될 수 있다. 또한, STA 1과 STA 2는 40MHz를 할당하고, STA 3와 STA 4는 그 다음 40MHz를 할당할 수 있다. 이 경우, STA 1과 STA 2는 서로 다른 스트림을 할당하고, STA 3와 STA 4는 서로 다른 스트림을 할당할 수 있다.
또한, HE-SIG-C 필드를 정의하여, 도 27의 예시에 HE-SIG C 필드가 추가될 수 있다. 이 경우, HE-SIG-B 필드에서는 전대역에 걸쳐서 모든 STA에 대한 정보가 전송되고, 각 STA에 특정한 제어 정보는 HE-SIG-C 필드를 통해 20MHz 단위로 전송될 수도 있다.
또한, 도 21 및 22의 예시와 상이하게 HE-SIG-B 필드는 전대역에 걸쳐 전송하지 않고 HE-SIG-A 필드와 동일하게 20MHz 단위로 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 23은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 23에서는 20MHz 채널들이 각각 서로 다른 STA들(예를 들어, STA 1, STA 2, STA 3 및 STA 4)에 할당되는 경우를 가정한다.
도 23을 참조하면, HE-SIG-B 필드는 전대역에 걸쳐 전송되지 않고, HE-SIG-A 필드와 동일하게 20MHz 단위로 전송된다. 다만, 이때 HE-SIG-B는 HE-SIG-A 필드와 상이하게 20MHz 단위로 인코딩되어 전송되나, 20MHz 단위로 복제되어 전송되지는 않을 수 있다.
이 경우, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG-B)부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG-B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
PPDU에 포함되는 각 필드에서 전송되는 정보는 앞서 도 26의 예시와 동일하므로 이하 설명을 생략한다.
HE-SIG-A 필드는 20MHz 단위로 복사되어(duplicated) 전송된다.
HE-SIG-B 필드는 각 STA 별로 할당되는 주파수 대역폭 정보 및/또는 해당 주파수 대역에서 스트림 정보를 알려줄 수 있다. HE-SIG-B 필드는 각 STA에 대한 정보를 포함하므로 20MHz 단위의 각 HE-SIG-B 필드 별로 각 STA에 대한 정보가 포함될 수 있다. 이때, 도 23의 예시에서는 각 STA 별로 20MHz가 할당되는 경우를 예시하고 있으나, 예를 들어 STA에 40MHz가 할당되는 경우, 20MHz 단위로 HE-SIG-B 필드가 복사되어 전송될 수도 있다.
각 BSS 별로 서로 다른 대역폭을 지원하는 상황에서 인접한 BSS로부터의 간섭 레벨이 적은 일부의 대역폭을 STA에게 할당하는 경우에 위와 같이 HE-SIG-B 필드를 전대역에 걸쳐서 전송하지 않는 것이 보다 바람직할 수 있다.
이하에서는 설명의 편의를 위해 도 28의 HE 포맷 PPDU를 기준으로 설명하기로 한다.
도 21 내지 도 23에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU, 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
한편, 앞서 도 21 내지 도 23과 같은 HE 포맷 PPDU는 L-SIG 필드의 반복 심볼인 RL-SIG(Repeated L-SIG) 필드를 통해서 구분될 수 있다. RL-SIG 필드는 HE SIG-A 필드 앞에 삽입되며, 각 STA은 RL-SIG 필드를 이용하여 수신된 PPDU의 포맷을 HE 포맷 PPDU로서 구분할 수 있다.
이하, WLAN 시스템에서 다중 사용자(multi-user) 상향링크 전송 방법에 대하여 설명한다.
WLAN 시스템에서 동작하는 AP가 동일한 시간 자원 상에서 복수의 STA으로 데이터를 전송하는 방식을 DL MU 전송(downlink multi-user transmission)이라고 지칭할 수 있다. 반대로, WLAN 시스템에서 동작하는 복수의 STA이 동일한 시간 자원 상에서 AP로 데이터를 전송하는 방식을 UL MU 전송(uplink multi-user transmission)이라고 지칭할 수 있다.
이러한 DL MU 전송 또는 UL MU 전송은 주파수 도메인 또는 공간 도메인(spatial domain) 상에서 다중화될 수 있다.
주파수 도메인 상에서 다중화되는 경우, OFDMA(orthogonal frequency division multiplexing)를 기반으로 복수의 STA 각각에 대해 서로 다른 주파수 자원(예를 들어, 서브캐리어 또는 톤(tone))이 하향링크 또는 상향링크 자원으로 할당될 수 있다. 이러한 동일한 시간 자원에서 서로 다른 주파수 자원을 통한 전송 방식을 'DL/UL MU OFDMA 전송'이라고 지칭할 수 있다.
공간 도메인(spatial domain) 상에서 다중화되는 경우, 복수의 STA 각각에 대해 서로 다른 공간 스트림이 하향링크 또는 상향링크 자원으로 할당될 수 있다. 이러한 동일한 시간 자원에서 서로 다른 공간적 스트림을 통한 전송 식을 'DL/UL MU MIMO' 전송이라고 지칭할 수 있다.
현재 WLAN 시스템에서는 아래와 같은 제약 사항으로 인해 UL MU 전송을 지원하지 못한다.
현재 WLAN 시스템에서는 복수의 STA으로부터 전송되는 상향링크 데이터의 전송 타이밍에 대한 동기화가 지원되지 않는다. 예를 들어, 기존의 WLAN 시스템에서 복수의 STA들이 동일한 시간 자원을 통해 상향링크 데이터를 전송하는 경우를 가정하면, 현재 WLAN 시스템에서는 복수의 STA 각각은 다른 STA의 상향링크 데이터의 전송 타이밍을 알 수 없다. 따라서, AP는 복수의 STA 각각으로부터 동일한 시간 자원 상에서 상향링크 데이터를 수신하기 어렵다.
또한, 현재 WLAN 시스템에서는 복수의 STA에 의해 상향링크 데이터를 전송하기 위해 사용되는 주파수 자원 간의 중첩이 발생될 수 있다. 예를 들어, 복수의 STA 각각의 오실레이터(oscillator)가 다를 경우, 주파수 오프셋(frequency offset)이 다르게 나타날 수 있다. 만약, 주파수 오프셋이 다른 복수의 STA 각각이 서로 다른 주파수 자원을 통해 동시에 상향링크 전송을 수행하는 경우, 복수의 STA 각각에 의해 사용되는 주파수 영역 중 일부가 중첩될 수 있다.
또한, 기존의 WLAN 시스템에서는 복수의 STA 각각에 대한 파워 제어가 수행되지 않는다. 복수의 STA 각각과 AP 사이의 거리와 채널 환경에 종속적으로 AP는 복수의 STA 각각으로부터 서로 다른 파워의 신호를 수신할 수 있다. 이러한 경우, 약한 파워로 도착하는 신호는 강한 파워로 도착하는 신호에 비해 상대적으로 AP에 의해 검출되기 어려울 수 있다.
이에 따라, 본 발명은 WLAN 시스템에서의 UL MU 전송 방법을 제안한다.
도 24는 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 24를 참조하면, AP가 UL MU 전송에 참여하는 STA들에게 UL MU 전송을 준비할 것을 지시하고, 해당 STA들로부터 UL MU 데이터 프레임을 수신하며, UL MU 데이터 프레임에 대한 응답으로 ACK 프레임(BA(Block Ack) 프레임)을 전송한다.
먼저 AP는 UL MU 트리거 프레임(UL MU Trigger frame, 2410)을 전송함으로써, UL MU 데이터를 전송할 STA들에게 UL MU 전송을 준비할 것을 지시한다. 여기서, UL MU 스케줄링 프레임은 'UL MU 스케줄링(scheduling) 프레임'의 용어로 불릴 수도 있다.
여기서, UL MU 트리거 프레임(2410)은 STA 식별자(ID: Identifier)/주소(address) 정보, 각 STA이 사용할 자원 할당 정보, 지속기간(duration) 정보 등과 같은 제어 정보를 포함할 수 있다.
STA ID/주소 정보는 상향링크 데이터를 전송하는 각 STA을 특정하기 위한 식별자 또는 주소에 대한 정보를 의미한다.
자원 할당 정보는 각 STA 별로 할당되는 상향링크 전송 자원(예를 들어, UL MU OFDMA 전송의 경우 각 STA에게 할당되는 주파수/서브캐리어 정보, UL MU MIMO 전송의 경우 각 STA에게 할당되는 스트림 인덱스)에 대한 정보를 의미한다.
지속기간(duration) 정보는 복수의 STA 각각에 의해 전송되는 상향링크 데이터 프레임의 전송을 위한 시간 자원을 결정하기 위한 정보를 의미한다.
예를 들어, 지속 기간 정보는 각 STA의 상향링크 전송을 위해 할당된 TXOP(Transmit Opportunity)의 구간 정보 혹은 상향링크 프레임 길이(frame length)에 대한 정보(예를 들어, 비트 또는 심볼)를 포함할 수 있다.
또한, UL MU 트리거 프레임(2410)은 각 STA 별로 UL MU 데이터 프레임 전송 시 사용해야 할 MCS 정보, 코딩(Coding) 정보 등과 같은 제어 정보를 더 포함할 수도 있다.
위와 같은 제어 정보는 UL MU 트리거 프레임(2410)을 전달하는 PPDU의 HE-part(예를 들어, HE-SIG A 필드 또는 HE-SIG B 필드)나 UL MU 트리거 프레임(2410)의 제어 필드(예를 들어, MAC 프레임의 Frame Control 필드 등)에서 전송될 수 있다.
UL MU 트리거 프레임(2410)을 전달하는 PPDU는 L-part(예를 들어, L-STF 필드, L-LTF 필드, L-SIG 필드 등)으로 시작하는 구조를 가진다. 이에 따라, 레가시 STA들은 L-SIG 필드로부터 L-SIG 보호(L-SIG protection)을 통해 NAV(Network Allocation Vector) 셋팅을 수행할 수 있다. 예를 들어, 레가시 STA들은 L-SIG에서 데이터 길이(length) 및 데이터율(data rate) 정보를 기반으로 NAV 셋팅을 위한 구간(이하, 'L-SIG 보호 구간')을 산출할 수 있다. 그리고, 레가시 STA들은 산출된 L-SIG 보호 구간 동안에는 자신에게 전송될 데이터가 없다고 판단할 수 있다.
예를 들어, L-SIG 보호 구간은 UL MU 트리거 프레임(2410)의 MAC duration 필드 값과 UL MU 트리거 프레임(2410)을 나르는 PPDU의 L-SIG 필드 이후의 잔여 구간의 합으로 결정될 수 있다. 이에 따라, L-SIG 보호 구간은 UL MU 트리거 프레임(2410)의 MAC duration 값에 따라 각 STA에게 전송되는 ACK 프레임(2430)(또는 BA 프레임)을 전송하는 구간까지의 값으로 설정될 수 있다.
이하, 각 STA에게 UL MU 전송을 위한 자원 할당 방법을 보다 구체적으로 살펴본다. 설명의 편의를 위해 제어 정보가 포함되는 필드를 구분하여 설명하나 본 발명이 이에 한정되는 것은 아니다.
제1 필드는 UL MU OFDMA 전송과 UL MU MIMO 전송을 구분하여 지시할 수 있다. 예를 들어, '0'이면 UL MU OFDMA 전송을 지시하고, '1'이면 UL MU MIMO 전송을 지시할 수 있다. 제1 필드의 크기는 1 비트로 구성될 수 있다.
제2 필드(예를 들어, STA ID/주소 필드)는 UL MU 전송에 참여할 STA ID 혹은 STA 주소들을 알려준다. 제2 필드의 크기는 STA ID를 알려주기 위한 비트 수 × UL MU에 참여할 STA 수로 구성될 수 있다. 예를 들어, 제2 필드가 12 비트로 구성되는 경우, 4 비트 별로 각 STA의 ID/주소를 지시할 수 있다.
제3 필드(예를 들어, 자원 할당 필드)는 UL MU 전송을 위해 각 STA에 할당되는 자원 영역을 지시한다. 이때, 각 STA에 할당되는 자원 영역은 앞서 제2 필드의 순서에 따라 각 STA에게 순차적으로 지시될 수 있다.
만약, 제1 필드 값이 '0'인 경우, 제2 필드에 포함된 STA ID/주소의 순서대로 UL MU 전송을 위한 주파수 정보(예를 들어, 주파수 인덱스, 서브캐리어 인덱스 등)를 나타내고, 제1 필드 값이 '1'인 경우, 제2 필드에 포함된 STA ID/주소의 순서대로 UL MU 전송을 위한 MIMO 정보(예를 들어, 스트림 인덱스 등)를 나타낸다.
이때, 하나의 STA에게 여러 개의 인덱스(즉, 주파수/서브캐리어 인덱스 또는 스트림 인덱스)를 알려줄 수도 있으므로, 제3 필드의 크기는 복수의 비트(혹은, 비트맵(bitmap) 형식으로 구성될 수 있음) × UL MU 전송에 참여할 STA 개수로 구성될 수 있다.
예를 들어, 제2 필드가 'STA 1', 'STA 2'의 순서로 설정되고, 제3 필드가 '2', '2'의 순서로 설정된다고 가정한다.
이 경우, 제1 필드가 '0'인 경우, STA 1은 상위(또는, 하위) 주파수 영역부터 주파수 자원이 할당되고, STA 2는 그 다음의 주파수 자원이 순차적으로 할당될 수 있다. 일례로, 80MHz 대역에서 20MHz 단위의 OFDMA를 지원하는 경우, STA 1은 상위(또는, 하위) 40MHz 대역, STA 2는 그 다음의 40MHz 대역을 사용할 수 있다.
반면, 제1 필드가 '1'인 경우, STA 1은 상위(또는, 하위) 스트림이 할당되고, STA 2는 그 다음 스트림이 순차적으로 할당될 수 있다. 이때, 각 스트림에 따른 빔포밍 방식은 사전에 지정되어 있거나, 제3 필드 또는 제4 필드에서 스트림에 따른 빔포밍 방식에 대한 보다 구체적인 정보가 포함될 수도 있다.
각 STA은 AP에 의해 전송되는 UL MU 트리거 프레임(2410)을 기반으로 UL MU 데이터 프레임(UL MU Data frame, 2421, 2422, 2423)을 AP에 전송한다. 여기서, 각 STA은 AP로부터 UL MU 트리거 프레임(2410)을 수신 후 SIFS 이후에 UL MU 데이터 프레임(2421, 2422, 2423)을 AP에 전송할 수 있다.
각 STA은 UL MU 트리거 프레임(2410)의 자원 할당 정보를 기반으로 UL MU OFDMA 전송을 위한 특정한 주파수 자원 또는 UL MU MIMO 전송을 위한 공간적 스트림을 결정할 수 있다.
구체적으로, UL MU OFDMA 전송의 경우, 각 STA은 서로 다른 주파수 자원을 통해 동일한 시간 자원 상에서 상향링크 데이터 프레임을 전송할 수 있다.
여기서, STA 1 내지 STA 3 각각은 UL MU 트리거 프레임(2410)에 포함된 STA ID/주소 정보 및 자원 할당 정보를 기반으로 상향링크 데이터 프레임 전송을 위한 서로 다른 주파수 자원을 할당 받을 수 있다. 예를 들어, STA ID/주소 정보가 STA 1 내지 STA 3을 순차적으로 지시하고, 자원 할당 정보가 주파수 자원 1, 주파수 자원 2, 주파수 자원 3을 순차적으로 지시할 수 있다. 이 경우, STA ID/주소 정보를 기반으로 순차적으로 지시된 STA 1 내지 STA 3은 자원 할당 정보를 기반으로 순차적으로 지시된 주파수 자원 1, 주파수 자원 2, 주파수 자원 3을 각각 할당 받을 수 있다. 즉, STA 1은 주파수 자원 1, STA 2는 주파수 자원 2, STA 3은 주파수 자원 3을 통해 상향링크 데이터 프레임(2421, 2422, 2423)을 AP로 전송할 수 있다.
또한, UL MU MIMO 전송의 경우, 각 STA은 복수의 공간적 스트림 중 적어도 하나의 서로 다른 스트림을 통해 동일한 시간 자원 상에서 상향링크 데이터 프레임을 전송할 수 있다.
여기서, STA 1 내지 STA 3 각각은 UL MU 트리거 프레임(2410)에 포함된 STA ID/주소 정보 및 자원 할당 정보 기반으로 상향링크 데이터 프레임 전송을 위한 공간적 스트림을 할당 받을 수 있다. 예를 들어, STA ID/주소 정보가 STA 1 내지 STA 3을 순차적으로 지시하고, 자원 할당 정보가 공간적 스트림 1, 공간적 스트림 2, 공간적 스트림 3을 순차적으로 지시할 수 있다. 이 경우, STA ID/주소 정보를 기반으로 순차적으로 지시된 STA 1 내지 STA 3은 자원 할당 정보 기반으로 순차적으로 지시된 공간적 스트림 1, 공간적 스트림 2, 공간적 스트림 3을 각각 할당 받을 수 있다. 즉, STA 1은 공간적 스트림 1, STA 2는 공간적 스트림 2, STA 3은 공간적 스트림 3을 통해 상향링크 데이터 프레임(2421, 2422, 2423)을 AP로 전송할 수 있다.
상향링크 데이터 프레임(2421, 2422, 2423)을 전달하는 PPDU는 L-part 없이도 새로운 구조로도 구성이 가능하다.
또한, UL MU MIMO 전송이거나 20MHz 미만의 서브밴드 형태의 UL MU OFDMA 전송의 경우, 상향링크 데이터 프레임(2421, 2422, 2423)을 전달하는 PPDU의 L-part는 SFN 형태(즉, 모든 STA이 동일한 L-part 구성과 내용을 동시에 전송)로 전송될 수 있다. 반면, 20MHz 이상의 서브밴드 형태의 UL MU OFDMA 전송의 경우, 상향링크 데이터 프레임(2421, 2422, 2423)을 전달하는 PPDU의 L-part는 각 STA이 할당된 대역에서 20MHz 단위로 각각 L-part가 전송될 수 있다.
UL MU 트리거 프레임(2410)의 정보로 상향링크 데이터 프레임을 충분히 구성할 수 있다면, 상향링크 데이터 프레임(2421, 2422, 2423)을 전달하는 PPDU 내 HE-SIG 필드(즉, 데이터 프레임의 구성 방식에 대한 제어 정보를 전송하는 영역)도 필요 없을 수 있다. 예를 들어, HE-SIG-A 필드 및/또는 HE-SIG-B가 전송되지 않을 수 있다. 또한, HE-SIG-A 필드와 HE-SIG-C 필드는 전송되고, HE-SIG-B 필드는 전송되지 않을 수 있다.
AP는 각 STA으로부터 수신한 상향링크 데이터 프레임(2421, 2422, 2423)에 대한 응답으로 ACK 프레임(ACK frame, 2430)(또는 BA 프레임)을 전송할 수 있다. 여기서, AP는 각 STA으로부터 상향링크 데이터 프레임(2421, 2422, 2423)을 수신하고 SIFS 이후에 ACK 프레임(2430)을 각 STA에게 전송할 수 있다.
만일, 기존의 ACK 프레임의 구조를 동일하게 이용한다면, 6 옥텟 크기를 가지는 RA 필드에 UL MU 전송에 참여하는 STA들의 AID(혹은, 부분 AID(Partial AID))를 포함하여 구성할 수 있다.
또는, 새로운 구조의 ACK 프레임을 구성한다면 DL SU 전송 또는 DL MU 전송을 위한 형태로 구성이 가능하다.
AP는 수신에 성공한 UL MU 데이터 프레임에 대한 ACK 프레임(2430)만을 해당 STA에게 전송할 수 있다. 또한, AP는 ACK 프레임(2430)을 통해 수신 성공 여부를 ACK 또는 NACK으로 알려줄 수 있다. 만약 ACK 프레임(2430)이 NACK 정보를 포함한다면, NACK에 대한 이유나 그 후의 절차를 위한 정보(예를 들어, UL MU 스케줄링 정보 등)도 포함할 수 있다.
또는, ACK 프레임(2430)을 전달하는 PPDU는 L-part 없이 새로운 구조로 구성할 수도 있다.
ACK 프레임(2430)은 STA ID 혹은 주소 정보를 포함할 수도 있으나, UL MU 트리거 프레임(2410)에서 지시된 STA의 순서를 동일하게 적용한다면, STA ID 혹은 주소 정보를 생략할 수도 있다.
또한, ACK 프레임(2430)의 TXOP(즉, L-SIG 보호 구간)을 연장하여 다음의 UL MU 스케줄링을 위한 프레임이나, 다음의 UL MU 전송을 위한 보정 정보 등을 포함하는 제어 프레임이 TXOP 내 포함될 수도 있다.
한편, UL MU 전송을 위하여 STA들 간에 동기를 맞추는 등의 보정(adjustment) 과정을 추가될 수도 있다.
도 25 내지 27은 본 발명의 일 실시예에 따른 OFDMA 다중 사용자(multi-user) 전송 방식에서 자원 할당 단위를 예시하는 도면이다.
DL/UL OFDMA 전송 방식이 사용될 때, PPDU 대역폭 내에서 n개의 톤(tone)(또는 서브캐리어(subcarrier)) 단위로 복수 개의 자원 유닛(Resource Unit)이 정의될 수 있다.
자원 유닛은 DL/UL OFDMA 전송을 위한 주파수 자원의 할당 단위를 의미한다.
하나의 STA에게 DL/UL 주파수 자원으로 하나 이상의 자원 유닛이 할당되어, 복수 개의 STA에게 각각 서로 다른 자원 유닛이 할당될 수 있다.
도 25에서는 PPDU 대역폭이 20MHz인 경우를 예시한다.
20MHz PPDU 대역폭(bandwidth)의 중심 주파수 영역에는 7개의 DC 톤들이 위치할 수 있다. 또한, 20MHz PPDU 대역폭의 양측에는 6개의 레프트 가드 톤들(left guard tones) 및 5개의 라이트 가드 톤들(right guard tones)이 각각 위치할 수 있다.
도 25(a)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 26개의 톤으로 구성될 수 있다. 또한, 도 25(b)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 52개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 25(c)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 106개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 25(d)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 242개의 톤으로 구성될 수 있다.
26 톤으로 구성된 자원 유닛은 2개의 파일럿 톤을 포함할 수 있으며, 52 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 106 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있다.
도 25(a)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 9개의 STA까지 지원할 수 있다. 또한, 도 25(b)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 5개의 STA까지 지원할 수 있다. 또한, 도 25(c)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 3개의 STA까지 지원할 수 있다. 또한, 25(d)와 같이 자원 유닛이 구성되는 경우, 20MHz 대역은 하나의 STA에게 할당될 수 있다.
DL/UL OFDMA 전송에 참여하는 STA의 수 및/또는 해당 STA이 전송하는 혹은 수신하는 데이터의 양 등에 기반하여 도 25(a) 내지 도 25(d) 중에 어느 하나의 자원 유닛 구성 방식이 적용되거나 또는, 도 25(a) 내지 도 25(d)이 조합된 자원 유닛 구성 방식이 적용될 수 있다.
도 26에서는 PPDU 대역폭이 40MHz인 경우를 예시한다.
40MHz PPDU 대역폭의 중심 주파수 영역에는 5개의 DC 톤들이 위치할 수 있다. 또한, 40MHz PPDU 대역폭의 양측에는 12개의 레프트 가드 톤들 및 11개의 라이트 가드 톤들이 각각 위치할 수 있다.
도 26(a)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 26개의 톤으로 구성될 수 있다. 또한, 도 26(b)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 52개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 26(c)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 106개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 26(d)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 242개의 톤으로 구성될 수 있다. 또한, 도 26(e)과 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 484개의 톤으로 구성될 수 있다.
26 톤으로 구성된 자원 유닛은 2개의 파일럿 톤을 포함할 수 있으며, 52 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 106 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 242 톤으로 구성된 자원 유닛은 8개의 파일럿 톤을 포함할 수 있으며, 484 톤으로 구성된 자원 유닛은 16개의 파일럿 톤을 포함할 수 있다.
도 26(a)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 18개의 STA까지 지원할 수 있다. 또한, 도 26(b)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 10개의 STA까지 지원할 수 있다. 또한, 도 26(c)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 6개의 STA까지 지원할 수 있다. 또한, 26(d)와 같이 자원 유닛이 구성되는 경우, 40MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 2개의 STA까지 지원할 수 있다. 또한, 26(e)와 같이 자원 유닛이 구성되는 경우, 해당 자원 유닛은 40MHz 대역에서 SU DL/UL 전송을 위해 1개의 STA에 할당될 수 있다.
DL/UL OFDMA 전송에 참여하는 STA의 수 및/또는 해당 STA이 전송하는 혹은 수신하는 데이터의 양 등에 기반하여 도 26(a) 내지 도 26(e) 중에 어느 하나의 자원 유닛 구성 방식이 적용되거나 또는, 도 26(a) 내지 도 26(e)이 조합된 자원 유닛 구성 방식이 적용될 수 있다.
도 27에서는 PPDU 대역폭이 80MHz인 경우를 예시한다.
80MHz PPDU 대역폭의 중심 주파수 영역에는 7개의 DC 톤들이 위치할 수 있다. 다만, 80MHz PPDU 대역폭이 하나의 STA에 할당된 경우에(즉, 996 톤으로 구성된 자원 유닛이 하나의 STA에 할당된 경우) 중심 주파수 영역에는 5개의 DC 톤들이 위치할 수 있다. 또한, 80MHz PPDU 대역폭의 양측에는 12개의 레프트 가드 톤들 및 11개의 라이트 가드 톤들이 각각 위치할 수 있다.
도 27(a)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 26개의 톤으로 구성될 수 있다. 또한, 도 27(b)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 52개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 27(c)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 106개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 또한, 도 27(d)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 242개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 도 27(e)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 484개의 톤으로 구성되거나 26개의 톤으로 구성될 수 있다. 도 27(f)와 같은 자원 유닛 구성 방식에 따르면, 하나의 자원 유닛은 996개의 톤으로 구성될 수 있다.
26 톤으로 구성된 자원 유닛은 2개의 파일럿 톤을 포함할 수 있으며, 52 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 106 톤으로 구성된 자원 유닛은 4개의 파일럿 톤을 포함할 수 있으며, 242 톤으로 구성된 자원 유닛은 8개의 파일럿 톤을 포함할 수 있으며, 484 톤으로 구성된 자원 유닛은 16개의 파일럿 톤을 포함할 수 있으며, 996 톤으로 구성된 자원 유닛은 16개의 파일럿 톤을 포함할 수 있다.
도 27(a)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 37개의 STA까지 지원할 수 있다. 또한, 도 27(b)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 21개의 STA까지 지원할 수 있다. 또한, 도 27(c)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 13개의 STA까지 지원할 수 있다. 또한, 27(d)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 5개의 STA까지 지원할 수 있다. 또한, 27(e)와 같이 자원 유닛이 구성되는 경우, 80MHz 대역에서 DL/UL OFDMA 전송을 위해 최대 3개의 STA까지 지원할 수 있다. 또한, 27(f)와 같이 자원 유닛이 구성되는 경우, 해당 자원 유닛은 80MHz 대역에서 SU DL/UL 전송을 위해 1개의 STA에 할당될 수 있다.
DL/UL OFDMA 전송에 참여하는 STA의 수 및/또는 해당 STA이 전송하는 혹은 수신하는 데이터의 양 등에 기반하여 도 27(a) 내지 도 27(f) 중에 어느 하나의 자원 유닛 구성 방식이 적용되거나 또는, 도 27(a) 내지 도 27(f)이 조합된 자원 유닛 구성 방식이 적용될 수 있다.
이외에도 도면에는 도시하지 않았으나, PPDU 대역폭이 160MHz인 경우의 자원 유닛의 구성 방식도 제안될 수 있다. 이 경우, 160MHz PPDU의 대역폭은 도 32에서 상술한 80MHz PPDU 대역폭이 2번 반복된 구조를 가질 수 있다.
상술한 자원 유닛 구성 방식에 따라 결정된 전체 자원 유닛 중 DL/UL OFDMA 전송을 위해 일부의 자원 유닛만이 이용될 수도 있다. 예를 들어, 20MHz 내에서 도 30(a)과 같이 자원 유닛이 구성되는 경우, 9개 미만의 STA에게 각각 하나씩 자원 유닛이 할당되고, 나머지 자원 유닛은 어느 STA에게도 할당되지 않을 수 있다.
DL OFDMA 전송의 경우, PPDU의 데이터 필드는 각 STA에게 할당된 자원 유닛 단위로 주파수 영역(frequency domain)에서 다중화되어 전송된다.
반면, UL OFDMA 전송의 경우, 각 STA 별로 각각 자신이 할당 받은 자원 유닛 단위로 PPDU의 데이터 필드를 구성하고 동시에 AP에게 전송할 수 있다. 이처럼 각 STA이 동시에 PPDU를 전송하므로, 수신단인 AP 입장에서는 각 STA으로부터 전송되는 PPDU의 데이터 필드가 주파수 영역(frequency domain)에서 다중화되어 전송되는 것으로 인식될 수 있다.
또한, DL/UL OFDMA 전송과 DL/UL MU-MIMO 전송이 동시에 지원되는 경우, 하나의 자원 유닛은 공간 영역(spatial domain)에서 복수의 스트림으로 구성될 수 있다. 그리고, 하나의 STA에게 DL/UL 공간 자원(spatial resource)으로서 하나 이상의 스트림이 할당되어, 복수 개의 STA에게 각각 서로 다른 스트림이 할당될 수 있다.
예를 들어, 도 25(c)에서 106 톤으로 구성되는 자원 유닛은 공간 영역(spatial domain)에서 복수의 스트림으로 구성되어 DL/UL OFDMA와 DL/UL MU-MIMO를 동시에 지원할 수 있다.
차세대 시스템의 채널 상태 정보 피드백 방법
앞서 상술한 바와 같이, 차세대 WLAN 시스템에서는 OFDMA 기술이 도입됨에 따라 STA의 UL MU 전송이 가능하게 되었다. 그 결과, DL 채널에 대한 채널 상태 정보(또는 피드백 정보)를 보고하기 위한(또는 피드백하기 위한) 사운딩 프로토콜(또는 시퀀스)에서도, 복수의 STA들이 채널 상태 정보를 동시에 AP로 UL MU 전송하는 것이 가능하게 되었다. 이 경우, 복수의 STA들이 전송하는 채널 상태 정보 간 충돌이 발생하지 않도록 각 STA에 UL MU 전송 자원이 할당될 필요가 있다. 따라서, 차세대 시스템의 사운딩 프로토콜에서는 각 STA에 대한 UL MU 전송 자원의 할당 정보(또는 트리거 정보)가 포함된 트리거 프레임의 송수신 절차가 요구될 수 있으며, 이에 관하여는 도 28에서 상세히 후술하기로 한다.
도 28은 본 발명의 일 실시예에 따른 사운딩 프로토콜을 예시한 도면이다. 본 도면에는 도 7 내지 11에서 상술한 설명이 동일/유사하게 적용될 수 있으며, 이하에서는 도 7 내지 11과의 차이점을 중심으로 설명한다.
도 28을 참조하면, DL 채널에 대한 채널 상태 정보를 획득하기 위해 AP는 NDP 프레임(2820)의 전송을 알리는(또는 사운딩 프로토콜을 개시하는) NDPA 프레임(또는 NDPA 기능/정보)(2810)을 STA들에 전송할 수 있다. NDPA 프레임(2810)에는 사운딩 프로토콜에 관한 제어 정보가 포함되어 있을 수 있다. 예를 들어, NDPA 프레임(2810)에는 어떤 STA이, 어떤 DL 채널을, 어떠한 방식으로 측정할지 등에 관한 피드백 지시 정보(또는 사운딩 지시 정보)가 포함되어 있을 수 있다.
또한, AP는 STA이 측정할 대상 DL 채널에 관한 정보를 지시하는 NDP 프레임(또는 NDP 기능/정보)(2820)을 STA들에 전송할 수 있다. NDP 프레임(2820)에는 측정할 대상 DL 채널에 관한 정보를 지시하는 HE-STF/LTF가 포함되어 있을 수 있다(또는, DL 채널의 사운딩(또는 DL CSI(Channel State Information))을 위한 HE-STF/LTF가 포함되어 있을 수 있다). 이때, NDP 프레임(2820)에는 STA이 채널 상태를 보고할 공간 스트림의 개수와 같거나 보다 많은 수의 HE-LTF가 포함되어 있을 수 있다.
또한, AP는 UL MU 전송을 트리거하는 트리거 프레임(또는 트리거 기능/정보)(2830)을 STA들에 전송할 수 있다. 트리거 프레임(2830)에는 DL 채널에 대한 채널 상태 정보의 UL MU 전송을 위해 각 STA들에 할당된 UL MU 자원에 관한 자원 할당 정보가 포함되어 있을 수 있다. 이때, 각 STA에 할당될 수 있는 주파수 자원 할당 단위에 관한 설명은 도 25 내지 27과 관련하여 상술한 바와 같다.
트리거 프레임(2830)을 수신한 STA들은 NDPA 프레임(2810) 및 트리거 프레임(2830)에서 지시하는 대상 DL 채널을 측정하여 채널 상태 정보를 획득할 수 있다. STA들은 획득한 채널 상태 정보가 포함된 피드백 프레임(또는 빔포밍 프레임/빔포밍 피드백 프레임)(2840)을 생성하고, 자신에게 할당된 UL MU 자원을 이용하여 생성한 피드백 프레임(2840)을 UL MU 전송할 수 있다.
도 7에 도시된 레가시 시스템에서의 사운딩 프로토콜과 비교하면, 본 사운딩 프로토콜에서 STA들은 채널 상태 정보가 포함된 피드백 프레임을 동시에 UL MU 전송하므로, 시간 측면에서 오버헤드가 적다는 효과가 존재한다.
본 명세서에서 제안되는 사운딩 프로토콜에서 NDPA 프레임(2810), NDP 프레임(2820) 및 트리거 프레임(2830)은 실시예에 따라 서로 다른 DL PPDU를 통해 전송될 수 있으며, 또는 하나의 DL PPDU를 통해 전송될 수도 있다.
도 29는 본 발명의 제1 실시예에 따른 사운딩 프로토콜을 예시한 도면이다.
도 29를 참조하면, NDPA 프레임, NDP 프레임 및 트리거 프레임을 각각 서로 다른 DL PPDU들에 포함되어 전송될 수 있으며, 순차적으로 전송될 수 있다. 본 도면에서 preamble은 레가시 프리앰블과 HE 프리앰블이 포함된 물리적 프리앰블을 의미한다. 다만, NDP 프레임이 포함된 DL PPDU의 preamble은 HE-STF 및/또는 HE-LTF가 제외된 HE 프리앰블과 레가시 프리앰블이 포함된 물리적 프리앰블을 의미할 수 있으며, 이때 NDP 프레임에는 HE-STF 및/또는 HE-LTF가 포함될 수 있다. 즉, NDP 프레임이 포함된 DL PPDU는 레가시 프리앰블부터 HE-STF 및/또는 HE-LTF까지 포함되며, PPDU에서 데이터 부분만 제외된 물리적 프리앰블을 의미할 수 있다.
이때, 각 DL PPDU들은 순차적으로(또는 연속적으로) 일정한 시간 간격(예를 들어, SIFS(Short interframe space))을 두고 DL 전송될 수 있다. 예를 들어, NDPA 프레임이 포함된 제1 DL PPDU가 전송되고 SIFS 후에 NDP 프레임이 포함된 제2 DL PPDU가 전송될 수 있다. 또한, 제2 DL PPDU가 전송되고 SIFS 후에 트리거 프레임이 포함된 제3 DL PPDU가 전송될 수 있다. 또한, 제3 DL PPDU가 전송되고 SIFS 후에 피드백 프레임이 포함된 UL PPDU가 전송될 수 있다.
이렇듯, NDPA 프레임, NDP 프레임 및 트리거 프레임이 각각 서로 다른 DL PPDU에 실려 전송되는 경우, 오버헤드가 크다는 문제점이 존재한다. 상술한 예의 경우, 제2 DL PPDU의 preamble과 제3 DL PPDU의 preamble, 그리고 2번의 SIFS로 인해 시간 측면에서 오버헤드가 매우 크다는 것을 확인할 수 있다.
따라서, 이러한 오버헤드를 줄이기 위해 본 명세서에서는 NDPA 프레임, NDP 프레임 및 트리거 프레임을 하나 또는 두 개의 DL PPDU에 함께 포함하여 전송하고, 이 경우 중복되는 정보는 삭제하여 전송하는 방법을 제안한다. 이와 관련된 보다 상세한 설명은 도 30과 관련하여 이하에서 상세히 후술하기로 한다.
도 30은 본 발명의 제2 및 제3 실시예에 따른 사운딩 프로토콜을 예시한 도면이다. 보다 상세하게는, 도 30(a)는 본 발명의 제2 실시예에 따른 사운딩 프로토콜, 도 30(b)는 본 발명의 제3 실시예에 따른 사운딩 프로토콜을 각각 예시한 도면이다.
도 30(a)를 참조하면, 도 29에서 상술한 오버헤드를 줄이기 위해, AP는 NDP 프레임과 트리거 프레임을 하나의 DL PPDU를 통해 전송할 수 있다. 다시 말하면, AP는 오버헤드를 줄이기 위해 NDP 프레임과 트리거 프레임을 결합하여 하나의 DL PPDU를 통해 전송할 수 있다. 이는, AP가 NDP 프레임의 기능(또는 NDP 기능) 및 트리거 프레임의 기능(또는 트리거 기능)을 함께 수행하는 적어도 하나의 프레임을 생성하고, 해당 프레임을 하나의 DL PPDU를 통해 전송한다고 표현될 수도 있다.
예를 들어, AP는 NDPA 프레임이 포함된 제1 DL PPDU를 전송하고 SIFS 후에, NPD 프레임(NDP 기능)과 트레거 프레임(트리거 기능)이 포함된 제2 DL PPDU를 전송할 수 있다. 제1 및 제2 DL PPDU를 수신한 STA(들)은 측정을 지시 받은 DL 채널에 대한 채널 상태 정보가 포함된 피드백 프레임을 생성하고, 생성된 피드백 프레임이 실린 UL (SU/MU) PPDU를 AP로 전송할 수 있다.
제2 실시예의 경우, NDP 프레임과 트리거 프레임이 서로 다른 DL PPDU를 통해 전송되는 경우에 발생할 수 있는 오버헤드(SIFS 및 NDP 프레임을 포함하는 DL PPDU의 물리 프리앰블)가 제거된다는 장점이 존재한다.
도 30(b)를 참조하면, 도 29에서 상술한 오버헤드를 줄이기 위해, AP는 NDPA 프레임, NDP 프레임과 트리거 프레임을 하나의 DL PPDU를 통해 전송할 수 있다. 다시 말하면, AP는 오버헤드를 줄이기 위해 NDPA 프레임, NDP 프레임과 트리거 프레임을 결합하여 하나의 DL PPDU를 통해 전송할 수 있다. 이는, AP가 NDPA 프레임의 기능(또는 NDPA 기능), NDP 프레임의 기능(또는 NDP 기능) 및 트리거 프레임의 기능(또는 트리거 기능)을 모두 수행하는 적어도 하나의 프레임을 생성하고, 해당 프레임을 하나의 DL PPDU를 통해 전송한다고 표현될 수도 있다.
예를 들어, AP는 NDPA 프레임(NDPA 기능), NDP 프레임(NDP 기능) 및 트리거 프레임(트리거 기능)이 모두 포함된 DL PPDU를 STA(들)로 전송할 수 있으며, 이로부터 SIFS 후에 STA(들)은 측정을 지시 받은 DL 채널에 대한 채널 상태 정보가 포함된 피드백 프레임이 실린 UL (SU/MU) PPDU를 AP로 전송할 수 있다.
제3 실시예의 경우, NDPA 프레임, NDP 프레임 및 트리거 프레임이 서로 다른 DL PPDU를 통해 전송되는 경우에 발생할 수 있는 오버헤드(2번의 SIFS 및 NDP/트리거 프레임을 포함하는 DL PPDU들의 물리 프리앰블)가 제거된다는 장점이 존재한다.
다만, AP가 NDPA 프레임, NDP 프레임 및 트리거 프레임을 단순히 결합하여 전송하는 경우, 각 프레임 별로 존재하는 동일한 정보가 하나의 DL PPDU 내에서 중복되어 존재한다는 오버헤드가 발생한다. 또한, 차세대 WLAN 시스템에 OFDMA 기술이 도입됨에 따라, AP는 STA에게 어떤 주파수 자원 유닛(예를 들어, 20MHz 채널에서 좌측으로부터 2번째 및 3번째에 위치한 26톤 자원 유닛들)을 측정하여 피드백할지를 지시하는 주파수 정보를 추가로 전송해야 할 수도 있다. 따라서, 이하에서는 제2 또는 제3 실시예에서 송수신되는 프레임에 포함될 수 있는 정보를 제안한다.
도 31은 본 발명의 일 실시예에 따른 NDPA 프레임, NDP 프레임 및 트리거 프레임에 각각 포함되는 정보를 예시한 도면이다.
도 31을 참조하면, NDPA 프레임(또는 NDPA 기능)에는 사운딩 (다이얼로그) 토큰 정보(또는 필드), STA의 AID 정보(또는 필드), Nc index 정보(또는 필드) 외에 주파수 정보(또는 필드)가 추가로 포함될 수 있다. 여기서 주파수 정보는 앞서 상술한 바와 같이 STA이 채널 상태를 보고할 측정 대상인 주파수 자원 유닛을 지시하는 정보를 나타낼 수 있다. 따라서, 주파수 정보를 수신한 STA은, 수신한 주파수 정보가 지시하는 주파수 자원 유닛의 채널 상태를 측정하여 AP에 피드백(또는 보고)할 수 있다. 이러한 주파수 정보는 실시예에 따라 NDPA 프레임에 선택적으로 포함될 수 있다. 한편, 본 도면에 도시한 NDPA 프레임은 실시예에 불과하며, 도시된 정보(또는 필드) 중 일부 정보(또는 필드)가 제외되거나 새로운 정보가 포함되어 NDPA 프레임이 구성될 수도 있다.
트리거 프레임의 경우, AID 정보(또는 필드)는 NDPA 프레임에 포함되어 있는 STA의 AID 정보(또는 필드)와 중복되므로 해당 AID 정보는 제외되어 구성될 수 있다. 또한, 만일 STA이 피드백 프레임을 피드백 프레임을 UL MU 전송하기 위해 할당된 주파수/공간 자원이 미리 설정되어 있는 경우(즉, 기설정된 크기의 주파수 자원 유닛으로 고정되어 있는 경우), 트리거 프레임은 자원 할당 정보 역시 제외되어 구성될 수 있다.
이렇듯 트리거 프레임의 일부 정보가 제외되어 구성되는 경우, 제외된 정보만큼 트리거 프레임의 구성 비트 수가 줄어들게 된다. 따라서, 제2 또는 제3 실시예에 따라 사운딩 프로토콜을 수행하는 경우, AP는 트리거 프레임을 NDPA 프레임 및/또는 NDP 프레임과 결합하여 하나의 프레임으로 구성하는 것이 가능하다.
이하에서는 제3 실시예의 사운딩 프로토콜에서 송수신되는 DL PPDU 포맷에 대해 보다 상세히 살펴보기로 한다. 즉, 이하에서는 NDPA 프레임, NDP 프레임 및 트리거 프레임이 하나의 DL PPDU를 통해 전송되는 경우 DL PPDU의 포맷에 대해 상세히 살펴보기로 한다.
도 32는 본 발명의 제3 실시예에 따른 사운딩 프로토콜에서 송수신되는 DL PPDU 포맷을 예시한다. 도 33은 도 32(a)의 DL PPDU 포맷의 구체적인 실시예를 도시한 도면이다. 본 도면들에서 L preamble은 레가시 프리앰블을 의미한다. 또한 본 도면들에서 트리거 프레임은 NDPA 기능 및 트리거 기능을 수행하는 프레임을 의미할 수 있다. 즉, 본 도면들에서 트리거 프레임은 NDPA 프레임 및 트리거 프레임이 결합되어 구성된 프레임을 의미할 수 있다.
도 32(a)를 참조하면, 채널 사운딩을 위한 DL PPDU에서 트리거 프레임은 HE-STF 및 HE-LTF 앞에 위치하여 구성될 수 있다. 즉, 채널 사운딩을 위한 DL PPDU는 레가시 프리앰블, 트리거 프레임, HE-STF 및 HE-LTF 순으로 구성될 수 있다. 트리거 프레임 뒤에 위치하는 HE-STF 및 HE-LTF는 STA들이 DL 채널 상태를 측정하기 위한 정보로 사용될 수 있다.
트리거 프레임은 PHY 구조 또는 MAC 구조로 구성될 수 있다. 보다 상세하게는, 도 33(a)를 참조하면, PHY 구조의 트리거 프레임은 HE-SIG A 필드와 HE-SIG B 필드로 구성될 수 있다. 이때 트리거 정보는 HE-SIG B 필드에 포함될 수 있으며, NDPA 정보는 HE-SIG A 필드 또는 HE-SIG B 필드에 포함될 수 있다. 또한, 도 33(b)를 참조하면, MAC 구조의 트리거 프레임은 레가시 프리앰블(L-STF/LTF/SIG)를 제외한 PPDU 구조로 구성될 수 있다. 예를 들어, MAC 구조의 트리거 프레임은 트리거 정보가 포함된 HE 프레임 포맷으로 구성될 수 있다. 또는 MAC 구조의 트리거 프레임은 outdoor 환경의 강인한(robust) 전송을 위해 HE-프리앰블 및 트리거 정보가 포함된 HE-프레임이 포함되어 구성될 수 있다.
채널 상태의 측정(또는 보고)을 지시 받지 않은 STA(들)(즉, NDPA 프레임(또는 정보)의 AID 필드에 AID가 포함되어 있지 않은 STA(들))은 HE-SIG A/B 필드가 지시하는 TXOP duration(도 33(a) 참조)이나 트리거 프레임이 지시하는 MAC duration으로(도 33(b) 참조) NAV setting을 할 수 있다.
또한, 채널 상태의 측정(또는 보고)을 지시 받은 STA(들)(즉, NDPA 프레임(또는 정보)의 AID 필드에 AID가 포함되어 있는 STA(들))은 L-SIG duration을 읽고 트리거 프레임의 길이를 알 수 있다. 보다 상세하게는, 33(a)의 경우, STA(들)은 레가시 프리앰블에서 L-SIG duration을 읽고, PHY 구조로 구성된 트리거 프레임에 해당하는 HE-SIG A/B 필드의 길이를 알 수 있다. 혹은 33(b)의 실시예의 경우, STA(들)은 L-SIG duration을 읽고 MAC 구조로 구성된 트리거 프레임의 길이를 알 수 있다. 또한 상기 STA(들)은 트리거 프레임(또는 정보)을 읽어 해당 프레임이 DL 채널 상태를 측정을 지시하는 프레임임을 알 수 있다. 나아가, STA(들)은 트리거 프레임(또는 정보)을 통해, 트리거 프레임 뒤에 DL 채널 상태 측정을 위한 HE-STF/LTF가 포함되어 있으며, 그 구성이 어떠한지 알 수 있다. 그 결과, STA(들)은 해당 HE-STF/LTF를 이용하여 DL 채널 상태를 측정하고, 측정한 결과를 피드백 프레임으로서 AP로 UL 전송할 수 있다.
또한, 도 33에는 도시하지 않았으나, 채널 측정을 지시 받은 STA이 채널 측정을 준비하는 시간을 벌어주기 위해, 트리거 프레임 뒤에 위치한 HE-STF/LTF는 트리거 프레임의 바로 뒤에 전송되지 않고 SIFS의 간격을 두고 전송될 수도 있다. 이때, AP는 SIFS의 간격을 비워두거나(즉, SIFS 동안 아무런 신호도 전송하지 않거나) 더미 신호를 전송할 수도 있다. 혹은 AP는 트리거 프레임과 HE-STF/LTF 사이에 뒤에 MAC or PHY padding을 추가함으로써 STA의 채널 측정 준비 시간을 벌어줄 수도 있다.
다시 도 32(b)를 참조하면, 채널 사운딩을 위한 DL PPDU에서 트리거 프레임은 32(a)에서와 달리, HE-STF 및 HE-LTF 뒤에 위치하여 구성될 수 있다. 즉, 채널 사운딩을 위한 DL PPDU는 레가시 프리앰블, HE-SIG 필드(예를 들어, HE-SIG A/B/C 필드), HE-STF, HE-LTF 및 트리거 프레임 순으로 구성될 수 있다. 트리거 프레임 뒤에 위치하는 HE-STF 및 HE-LTF는 STA들이 DL 채널 상태를 측정하기 위한 정보로 사용될 수 있다.
본 실시예에서 트리거 프레임이 포함된 DL PPDU는 802.11ax 시스템에서 제안되는 DL MU PPDU(트리거 프레임이 포함된 DL MU PPDU) 구조로 구성될 수 있다. 다만, 트리거 프레임 앞에 위치하는 HE-STF/LTF는 STA이 트리거 프레임을 읽기 위한 용도뿐 아니라, DL 채널 상태를 측정하기 위한 용도로 그 기능이 확장될 수 있다.
예를 들어, 트리거 프레임은 1개의 공간 스트림을 통해 전송되더라도 HE-LTF에는 8개의 공간 스트림에 관한 채널 정보가 모두 실려 전송될 수 있다. 이를 위해, HE-LTF는 측정할 공간 스트림 개수와 같거나 보다 많은 개수로 DL PPDU에 포함되어 전송될 수 있다. 따라서 상기 예의 경우, 8개(혹은 8개 이상)의 HE-LTF가 DL PPDU에 포함되어 전송될 수 있다. 해당 HE-LTF를 수신한 STA은 트리거 프레임을 읽기 위해 트리거 프레임이 전송된 1개의 공간 스트림에 대한 채널을 추정할 수 있으며, DL 채널 상태를 측정하기 위해 8개의 공간 스트림들의 채널을 추정/측정하고, 해당 채널에 대한 채널 상태 정보를 생성할 수 있다.
만일, AP가 전체 공간 스트림들 중 일부 공간 스트림에 대해서만 채널 상태 정보를 보고할 것을 지시한 경우(예를 들어, NDPA 프레임(또는 정보)를 통해 지시), STA은 AP가 지정해 준 공간 스트림에 대해서만 채널을 추정/측정하고, 측정 결과를 AP에 피드백할 수 있다. AP가 채널 측정 영역(주파수/공간 스트림)을 지시하는 실시예는 이하에서 보다 상세히 후술하기로 한다.
피드백 프레임의 UL MU 전송
STA들이 충돌 없이 피드백 프레임을 동시에 UL MU 전송하기 위해서는, 각 STA들은 자신에게 할당된 자원 유닛이 무엇인지 알고 있어야 한다. 이를 위해, 일 실시예로서, 각 STA은 피드백 프레임 전송을 위한 자원 할당 정보(또는 트리거 정보)를 트리거 프레임을 통해 AP로부터 직접 수신할 수 있다. 또는, 다른 실시예로서, 시그널링 오버헤드를 줄이고자, 피드백 프레임 전송을 위해 각 STA에 할당된 자원 유닛이 사전에 미리 결정되어 있을 수 있다. 또는, 각 STA이 미리 설정된 수학식에 따라 계산하여 피드백 프레임 전송을 위한 자원 할당 정보를 직접 획득/추측할 수도 있다.
피드백 프레임 전송을 위해 각 STA에 할당되는 주파수 자원의 최소 단위로서 주파수 유닛(Frequency Unit)이 정의될 수 있다. 여기서, 주파수 유닛은 도 25 내지 27에서 상술한 자원 유닛과 대응되는 개념일 수 있다. 따라서, 주파수 유닛은 26톤, 52톤, 106톤, 242톤, 484톤 또는 996톤 자원 유닛에 해당할 수 있다. 이하에선 설명의 편의를 위해 주파수 유닛이 26톤 자원 유닛인 경우를 기준으로 설명한다.
주파수 유닛은 소정의 개수씩 AID 필드에 포함된 STA AID 순서대로 순차적으로 할당될 수 있으며, 각 STA에 할당되는 주파수 유닛의 할당 개수는 아래에서 제안되는 방법에 의해 결정될 수 있다.
1. STA 수만큼 나눠서 할당하는 방법
AP는 피드백 프레임의 UL MU 전송을 위해 STA들에게 할당할 수 있는 전체 주파수 유닛들을 STA 수로 나눈 개수의 주파수 유닛들을 각 STA에 할당할 수 있다. 즉, (전체 주파수 유닛 개수/STA 수 = x, x는 자연수)인 경우, AP는 x개의 주파수 유닛을 각 STA에게 할당할 수 있다. 전체 할당 가능한 주파수 유닛 개수가 STA 수로 나눠 떨어지지 않을 경우에는 중간에 위치한 주파수 유닛을 어느 STA에도 할당하지 않고 비워두거나, 특정 STA에 몰아서 할당해줄 수 있다. 예를 들어, AP는 특정 STA에는 전체 할당 가능한 주파수 유닛들을 STA 수로 나눈 수를 올림(즉, (ceiling(x) = y))한 수(y)만큼 주파수 유닛을 할당할 수 있으며, 나머지 STA에는 내림(즉, (floor(x) = z))한 수(z)만큼 주파수 유닛을 할당할 수 있다.
이렇듯, 할당 개수가 결정된 주파수 유닛들은 주파수 도메인에서 순차적으로 각 STA에 할당될 수 있다. 예를 들어, STA 1~3 각각에 피드백 프레임 전송을 위한 26톤 자원 유닛이 3개씩 할당된 경우, STA 1에는 20MHz 채널에서 첫 번째~세 번째에 위치한 26톤 자원 유닛들이, STA 2에는 20MHz 채널에서 네 번째~여섯 번째에 위치한 26톤 자원 유닛들이, STA 3에는 20MHz 채널에서 일곱 번째~아홉 번째 위치한 26톤 자원 유닛들이 각각 할당될 수 있다.
따라서, 각 STA은 NDPA 프레임 또는 트리거 프레임에 포함된 AID 필드에서 자신의 AID 앞에 나열된 다른 AID에 대응되는 STA들에게 할당된 주파수 유닛의 개수를 누적하여 계산함으로써 자신에게 할당된 주파수 유닛의 위치를 알아낼 수 있다.
2. Feedback 양에 따라 할당하는 방법
AP는 각 STA이 전송해야 할 피드백 정보량을 기초로 각 STA에 할당하는 주파수 유닛의 개수를 결정할 수 있다. 보다 상세하게는, AP는 각 STA이 전송해야 할 피드백 정보량(또는 채널 상태 정보량)과 비례하게 각 STA에 할당되는 주파수 유닛의 개수를 결정할 수 있다.
일 실시예로서, AP는 각 STA이 피드백해야 할 공간 스트림 개수를 기초로 각 STA에 할당하는 주파수 유닛의 개수를 결정할 수 있다. 보다 상세하게는, AP는 각 STA이 피드백해야 할 공간 스트림 개수와 비례하게 각 STA에 할당되는 주파수 유닛의 개수를 결정할 수 있다. 예를 들어, AP는 STA 1에게 1개의 공간 스트림에 대한 채널 상태를, STA 2에게 8개의 공간 스트림에 대한 채널 상태를 피드백할 것을 지시할 수 있다. 이 경우, STA 1은 1개의 공간 스트림에 대한 채널 상태 정보를, STA 2는 8개의 공간 스트림에 대한 채널 상태 정보를 UL MU 전송해야 하므로, STA 2가 전송해야 할 피드백 정보량은 STA 1보다 많을 수 있다. 따라서, AP는 STA 1에는 1개의 주파수 유닛을, STA 2에는 8개의 주파수 유닛을 각각 할당할 수 있다.
다른 실시예로서, AP는 각 STA이 피드백 값을 생성하는 피드백 단위를 기초로 각 STA에 할당하는 주파수 유닛의 개수를 결정할 수 있다. 보다 상세하게는, AP는 각 STA이 피드백 값을 생성하게 되는 피드백 단위에 반비례하게 각 STA에 할당되는 주파수 유닛의 개수를 결정할 수 있다. 여기서 피드백 값은 MCS 레벨 또는 공간 스트림에 대한 기설정된 피드백 단위의 SNR(Signal to Noise Ratio) 또는 빔포밍 피드백 행렬(또는 빔포밍 피드백 벡터)을 포함할 수 있으며, 빔포밍 방법이 변경된다면 변경된 빔포밍 방법에 대한 빔포밍 피드백 값을 모두 포함할 수 있다.
STA이 피드백 값을 생성해야 하는 피드백 단위가 커질수록 피드백 해야 하는 정보량은 줄어들고, 피드백 단위가 작을수록 피드백 해야 하는 정보량은 늘어난다. 예를 들어, STA이 피드백 값을 생성해야 하는 피드백 단위가 26톤인 경우를 가정해볼 수 있다. 이 경우, STA은 26톤마다 하나의 피드백 값을 생성(또는 획득)해야 하며, 20MHz 채널에 대해 피드백하려면 STA은 총 9개의 피드백 값을 생성(또는 획득)하여 채널 상태 정보로서 AP로 전송해야 한다. 반대로, STA이 피드백 값을 생성해야 하는 피드백 단위가 20MHz 채널인 경우를 가정해볼 수 있다. 이 경우, STA은 20MHz 채널에 대한 총 1개의 피드백 값을 생성(또는 획득)하여 채널 상태 정보로서 AP로 전송해야 한다. 즉, STA이 피드백해야 하는(또는 피드백 값을 생성해야 하는) 피드백 단위가 클수록 피드백 정보량(또는 채널 상태 정보량)은 적으므로, AP는 피드백 생성 피드백 단위가 26톤인 경우에 20MHz 채널인 경우보다 더 많은 주파수 유닛을 할당한다.
다른 실시예로서, STA들은 UL MU 피드백 프레임의 길이를 AP로부터 지시받아 알기 때문에, 자신이 전송해야 할 피드백 정보(또는 채널 상태 정보)를 지시 받은 UL MU 피드백 프레임 길이에 맞춰 전송하기 위해 필요한 주파수 유닛의 개수를 직접 계산할 수 있다. 또한, STA은 자신에게 할당된 주파수 유닛의 개수뿐만 아니라 AID 필드에서 자신의 AID 앞에 나열된 AID(들)과 대응되는 다른 STA(들)에 할당된 주파수 유닛의 개수도 누적하여 계산해서 자신에게 할당된 주파수 유닛의 위치를 알아낼 수 있다.
3. AP가 직접 할당해주는 방법
AP가 직접 각 STA에 적어도 하나의 주파수 유닛을 할당하고, 주파수 유닛의 할당 정보(또는 자원 할당 정보)를 트리거 프레임을 통해 각 STA에 전송해줄 수 있다. 이때, 주파수 유닛의 할당 정보는 다양한 실시예로서 시그널링될 수 있다.
일 실시예로서, 자원 할당 정보는 비트 값으로 STA에 할당된 주파수 유닛의 개수를 지시하도록 시그널링될 수 있다. 예를 들어, 20MHz 채널의 9개의 26톤 자원 유닛들이 주파수 유닛으로서 각 STA에 할당된 경우, 자원 할당 정보는 3bits의 비트 사이즈로 구성될 수 있다. 이 경우, 자원 할당 정보의 비트 값 ‘000’부터 ‘111’은 각각 1/2/3/4/5/6/7/9개의 주파수 유닛(또는 26톤 자원 유닛)의 할당을 지시할 수 있다. 즉, ‘000’인 자원 할당 정보를 수신한 STA은 자신에게 할당된 주파수 유닛(또는 26톤 자원 유닛)이 1개임을 인식하고, 이를 이용하여 피드백 프레임을 UL MU 전송할 수 있다.
다른 실시예로서, 주파수 유닛의 할당 정보는 토글링 방식으로 STA에 할당된 주파수 유닛의 개수를 지시하도록 시그널링될 수 있다. 예를 들어, 20MHz 채널의 9개의 26톤 자원 유닛들이 주파수 유닛으로서 각 STA에 할당된 경우, 자원 할당 정보는 9개의 26톤 자원 유닛들과 순차적으로 대응되는 9bits로 구성될 수 있다. 이 경우, 자원 할당 정보를 구성하는 복수의 비트들 각각의 비트 값은, 각 비트와 대응되는 자원 유닛이 할당되는 STA이 다른 STA으로 변경됨에 따라 이전 비트의 비트 값과 다른 비트 값으로 스위칭될 수 있다. 예를 들어, ‘000110011’인 자원 할당 정보는, AID 필드에 포함된 STA 순서대로 각각 3/2/2/2개의 주파수 유닛들이 할당되었음을 지시할 수 있다.
4. AP가 주파수 유닛의 인덱스를 지시하는 방법
상술한 실시예들에서 각 STA은 자신에게 할당된 주파수 유닛의 채널 상의 위치는 AID 필드를 통해 자신의 AID 앞에 나열된 AID와 대응되는 다른 STA들에게 할당된 주파수 유닛의 개수를 누적하여 계산함으로써 직접 획득(또는 계산)할 수 있다. 그러나, 이러한 정보도 AP가 직접 트리거 정보로서 각 STA에게 explicit하게 지시해줄 수도 있다. 이 경우, 채널에 존재하는 주파수 유닛(또는 자원 유닛)들 각각에는 위치 별로 서로 다른 인덱스가 할당될 수 있으며, AP는 이러한 인덱스를 STA에게 전송해줌으로써 각 STA에 할당된 주파수 유닛의 위치를 지시할 수 있다.
AP가 각 STA에게 주파수 채널 상에서 연속적으로 위치하는 주파수 유닛들을 할당한다고 가정할 때, AP는 STA에게 연속적으로 할당된 주파수 유닛들 중 시작점(또는 최좌측또는 최우측)에 위치한 주파수 유닛의 인덱스만을 알려줄 수 있다. 이 경우, 상술한 실시예들을 따를 때, 각 STA은 자신에게 할당된 주파수 유닛의 개수를 알 수 있으므로, 시작점으로부터 자신에게 할당된 주파수 유닛의 개수만큼 카운팅하여 자신에게 할당된 주파수 유닛을 알 수 있다.
또는, 각 STA은 상술한 실시예를 적용하지 않고, 자신에게 할당된 주파수 유닛의 시작점 인덱스와 다음 순서의 STA에 할당된 주파수 유닛의 시작점 인덱스를 읽음으로써 자신에게 할당된 주파수 유닛의 개수 및 위치를 알 수 있다. 또는, AP가 시작점 인덱스 대신 각 STA에 할당된 주파수 유닛들 중 끝지점(또는 마지막)에 위치한 주파수 유닛의 인덱스를 알려줄 수도 있다. 이 경우, 각 STA은 수신한 AID 필드에서 자신의 AID 이전의 AID와 대응되는 STA의 끝지점 인덱스를 추가로 읽어와 자신에게 할당된 주파수 유닛의 개수 및 위치를 알 수 있다.
이상으로, 피드백 프레임을 UL MU 전송하기 위해 각 STA에 UL MU 자원을 할당 및 지시하는 방법에 관하여 살펴보았다. 상술한 실시예들에 따라 각 STA에 피드백 프레임 전송을 위한 주파수 유닛이 할당된다. 이때, STA에 할당되는 총 주파수 유닛의 개수가 채널에 포함된 주파수 유닛의 개수보다 많아지는 경우가 발생할 수 있다. 이 경우, 일부 STA은 다음 기회에 피드백 프레임을 전송할 수 있다. 이를 위해, AP는 UL MU 피드백 프레임을 수신하고 SIFS 후에 Beamforming report poll frame 혹은 Polling/ACK 역할을 하는 트리거 프레임을 전송해줄 수 있으며, 트리거 프레임에 포함되는 정보는 다음과 같을 수 있다.
- 이전 피드백한 정보들에 대한 ACK 정보
- 다음 피드백할 STA들의 AID(UL MU 전송을 시작할 STA의 AID만 알려줄 수도 있다), 각 STA에 대해 re-ordering된 인덱스 정보(만약 각 STA에 할당된 주파수 유닛의 시작점 혹은 끝지점 인덱스를 알려주는 경우)
DL 채널 측정 피드백 단위 결정 방법
본 실시예에서는 DL 채널을 측정/피드백하는 주파수 단위를 ‘피드백 유닛’으로 정의하고, 피드백 유닛을 결정하는 다양한 방법에 관하여 상세히 설명하기로 한다.
기존 시스템에서는 피드백 유닛이 1~4개의 서브캐리어였다. 따라서 최대 피드백 값의 전송 개수는 데이터 서브 캐리어 개수만큼으로 피드백 오버헤드가 많았다.
차세대 WLAN 시스템인 802.11ax에서는 기존 시스템보다 서브 캐리어의 개수가 더 늘어나기 때문에 기존 시스템의 방식을 유지한다면 피드백 오버헤드가 최대 4배까지 늘어날 수 있고, 인접 서브 캐리어의 채널은 비슷하다고 볼 수 있기 때문에 필요에 따라 아래의 실시예들과 같이 피드백 유닛을 설정함으로써 피드백 정보량을 줄일 수 있다.
(1) UL MU PPDU의 전체 전송 대역이 하나의 피드백 유닛으로 설정될 수 있다. 이 경우, STA은 하나의 피드백 값만을 AP에 보고하게 된다.
(2) 26톤 자원 유닛이 하나의 피드백 유닛으로 설정될 수 있다. 이 경우, STA은 피드백 프레임을 나르는 UL MU PPDU의 전체 전송 대역이 20MHz 대역이라면 총 9개의 피드백 값을 AP에 보고하게 된다. 이때, STA은 9개의 피드백 값들을 모두 보고하거나, AP의 지시에 의해 일부 피드백 값만을 보고할 수도 있는데, 이와 관련하여서는 이하에서 상세히 후술한다.
(3) 20MHz 서브 채널이 하나의 피드백 유닛으로 설정될 수 있다. 이 경우, 예를 들어, 피드백 프레임을 나르는 UL MU PPDU의 전체 전송 대역이 80MHz 대역이라면, 각 STA은 총 4개의 피드백 값을 AP에 보고하게 된다. 이 경우에도, STA은 4개의 피드백 값들을 모두 보고하거나, AP의 지시에 의해 일부 피드백 값만을 보고할 수도 있는데, 이와 관련하여서는 이하에서 상세히 후술한다.
DL 채널 측정 방법
기존 시스템에서는 STA은 DL/UL PPDU의 전체 전송 대역의 HE-LTF를 측정해서 피드백했으나, 차세대 WLAN 시스템인 802.11ax에서는 OFDMA 기술이 도입되었으므로, AP는 STA들에게 일부 주파수 대역만 측정하여 보고할 것을 요청할 수 있다. 즉, 차세대 WLAN 시스템에서 AP는 주파수 전대역뿐만 아니라, 일부 대역을 측정해서 보고할 것을 STA에 지시할 수 있다. 즉, STA들이 보고할 측정 대역 자원은 주파수 전대역으로 전송되는 NDP 프레임의 주파수 자원 크기보다 같거나 작게 설정될 수 있다. 특히, 전대역으로 전송되는 NDP 프레임의 주파수 자원과 동일한 크기의 자원에 대한 빔포밍 피드백 행렬을 생성하여 전송하는 경우(또는 피드백 프레임을 통해 전송하는 경우) 그 오버헤드가 적지 않기 때문에, STA들이 보고할(또는 피드백할/빔포밍 피드백 행렬을 전송할) 측정 대역 자원은 NDP 프레임의 자원 크기와 같거나, 이보다 작게 설정될 수 있다.
예를 들어, AP는 80MHz 대역 중 특정 20MHz 대역만 채널 상태를 측정하여 보고할 것을 STA에 지시할 수 있다. 혹은 피드백 유닛이 26톤 자원 유닛을 기반으로 설정된다면, AP는 특정 피드백 유닛에 대한 채널 상태를 측정하여 보고할 것을 STA에 지시할 수도 있다. 예를 들어, 피드백 유닛을 구별하기 위해 각 26톤 자원 유닛에 인덱스가 할당된다면, AP는 STA이 보고/측정할 피드백 유닛의 인덱스를 STA에 전송해줌으로써, STA이 측정할 피드백 유닛을 지시할 수 있다.
다른 실시예로는, AP는 STA이 측정한 대역 중에 채널 상태가 좋은 대역에 대해서만 피드백할 것을 지시할 수도 있다. 이 경우, STA은 채널 상태가 좋은 대역에 대한 정보와 해당 대역의 피드백 값을 함께 전송할 수 있다. 예를 들어, 20MHz 채널에서 26톤 자원 유닛 기반의 피드백 유닛이 9개 설정되었다고 할 때, AP는 9개의 피드백 유닛들 중 채널 상태가 가장 좋은 피드백 유닛에 대해서만 보고하라고 STA에 지시할 수 있다. 이 경우, STA은 채널 상태가 가장 좋은 피드백 유닛에 대한 정보(예를 들어, 해당 피드백 유닛의 인덱스 또는 위치 정보)와 해당 피드백 유닛에 대해 측정한 피드백 값을 피드백 프레임에 실어 UL MU 전송할 수 있다.
도 34는 본 발명의 일 실시예에 따른 STA 장치의 사운딩 방법을 나타낸 순서도이다. 본 순서도와 관련하여 상술한 실시예들이 동일하게 적용될 수 있다. 따라서, 이하에서는 중복되는 설명은 생략하기로 한다.
도 34를 참조하면, 우선 STA은 NDP 프레임의 전송을 알리는 NDPA 프레임을 AP로부터 수신할 수 있다(S3410). 이때, STA에 수신되는 NDPA 프레임에는 사운딩 프로토콜에 관한 다양한 제어 정보가 포함되어 있을 수 있다. 예를 들어, NDPA 프레임에는 어떤 STA이, 어떤 DL 채널을, 어떠한 방식으로 측정할지 등에 관한 피드백 지시 정보(또는 사운딩 지시 정보)가 포함되어 있을 수 있다.
다음으로, STA은 NDP 프레임을 AP로부터 수신할 수 있다(S3420). 이때, STA에 수신되는 NDP 프레임에는 STA이 측정할 대상 DL 채널에 관한 정보를 지시하는 HE-STF/LTF가 포함되어 있을 수 있다(또는, DL 채널의 사운딩(또는 DL CSI(Channel State Information))을 위한 HE-STF/LTF가 포함되어 있을 수 있다). 또한, NDP 프레임에는 STA이 채널 상태를 보고할 공간 스트림의 개수와 같거나 보다 많은 수의 HE-LTF가 포함되어 있을 수 있다.
다음으로, STA은 트리거 프레임을 AP로부터 수신할 수 있다(S3430). 이때 STA에 수신되는 트리거 프레임에는, STA들이 DL 채널에 대한 채널 상태 정보를 UL MU 전송할 수 있도록 각 STA들에 할당된 UL MU 자원에 관한 자원 할당 정보가 포함되어 있을 수 있다.
다음으로, STA은 NDP 프레임에 포함된 트레이닝 필드를 기초로 채널 상태 정보를 생성할 수 있다(S3440). 보다 상세하게는, STA은 NDP 프레임에 포함된 HE-LTF를 기초로 측정 대상 DL 채널의 상태를 측정하고, 측정 결과가 포함된 채널 상태 정보를 생성할 수 있다. 이때, 만일 AP가 일부 주파수 대역에 대해서만 피드백할 것을 지시했던 경우에는(NDPA 프레임을 통해), STA은 해당 대역에 대한 채널 상태 정보만을 생성할 수 있다.
다음으로, STA은 생성한 채널 상태 정보가 포함된 피드백 프레임을 UL MU 전송할 수 있다(S3450). 이때, STA은 S3430 단계에서 수신한 트리거 프레임에 의해 지시받은 UL MU 자원을 이용하여 상기 피드백 프레임을 UL MU 전송할 수 있다.
본 순서도에서 NDPA 프레임, NDP 프레임 및 트리거 프레임은 일정한 시간 간격(예를 들어, SIFS)으로 순차적으로 STA에 수신되는 경우를 기준으로 설명하였으나(즉, 서로 다른 DL PPDU를 통해 STA에 수신), 이에 한정되는 것은 아니며, 오버헤드를 줄이기 위해 NDPA 프레임, NDP 프레임 및 트리거 프레임은 하나의 DL PPDU에 실려 STA들에 수신될 수 있음은 앞서 상술한 바와 같다. 이 경우, AP는 각 프레임에 존재하는 동일한 정보를 중복하여 전송하지 않도록, 이를 편집하여 전송할 수 있음은 앞서 상술한 바와 같다.
도 35는 본 발명의 일 실시예에 따른 각 STA 장치의 블록도이다.
도 35에서, STA 장치(3510)는 메모리(3512), 프로세서(3511) 및 RF 유닛(3513)을 포함할 수 있다. 그리고 상술한 바와 같이 STA 장치는 HE STA 장치로서, AP 또는 non-AP STA가 될 수 있다.
RF 유닛(3513)은 프로세서(3511)와 연결되어 무선 신호를 송신/수신할 수 있다. RF 유닛(3513)은 프로세서(3511)로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송할 수 있다.
프로세서(3511)는 RF 유닛(3513)과 연결되어 IEEE 802.11 시스템에 따른 물리 계층 및/또는 MAC 계층을 구현할 수 있다. 프로세서(3511)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 STA(3510)의 동작을 구현하는 모듈이 메모리(3512)에 저장되고, 프로세서(3511)에 의하여 실행될 수 있다.
메모리(3512)는 프로세서(3511)와 연결되어, 프로세서(3511)를 구동하기 위한 다양한 정보를 저장한다. 메모리(3512)는 프로세서(3511)의 내부에 포함되거나 또는 프로세서(3511)의 외부에 설치되어 프로세서(3511)와 공지의 수단에 의해 연결될 수 있다.
또한, STA 장치(3510)는 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 포함할 수 있다.
도 35의 STA 장치(3510)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
발명의 실시를 위한 형태
본 발명에 관한 모든 실시예가 발명의 실시를 위한 최선의 형태에서 설명되었다.
본 발명의 무선 통신 시스템에서 프레임 전송 방안은 IEEE 802.11 시스템에 적용되는 예를 중심으로 설명하였으나, IEEE 802.11 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (17)

  1. WLAN(Wireless LAN) 시스템에서 하향링크(DL: Downlink) 채널 상태에 관한 피드백 정보를 전송하기 위한 STA(Station)의 사운딩 방법에 있어서,
    NDP(Null data packet) 프레임의 전송을 알리는 NDPA(NDP announcement) 프레임을 수신하는 단계;
    상기 NDP 프레임을 수신하는 단계;
    상기 STA에 할당된 자원 할당 정보가 포함된 트리거 프레임을 수신하는 단계;
    상기 NDP 프레임에 포함된 트레이닝 필드를 기초로 채널 상태 정보를 생성하는 단계; 및
    상기 채널 상태 정보가 포함된 피드백 프레임을 상기 자원 할당 정보가 지시하는 주파수 자원을 이용하여 상향링크(UL: Uplink) 다중 사용자(MU: Multi-User) 전송하는 단계; 를 포함하되,
    상기 NDPA 프레임은 상기 STA이 측정해야 할 타겟 주파수 대역의 지시 정보를 포함하고,
    상기 타겟 주파수 대역은 NDP 프레임의 전송에 사용되는 주파수 대역의 일부 주파수 대역이며,
    상기 주파수 대역의 지시 정보는 상기 STA이 측정해야 할 26톤 자원 유닛의 인덱스를 지시하는, STA 장치의 사운딩 방법.
  2. 제 1 항에 있어서,
    상기 NDPA 프레임, 상기 NDP 프레임 및 상기 트리거 프레임은, 하나의 DL PPDU에 포함되어 수신되거나 서로 다른 DL PPDU들에 각각 포함되어 수신되는, STA 장치의 사운딩 방법.
  3. 제 1 항에 있어서,
    상기 NDPA 프레임, 상기 NDP 프레임 및 상기 트리거 프레임이 서로 다른 DL PPPDU들에 각각 포함되어 수신되는 경우,
    상기 서로 다른 DL PPDU들은 SIFS(Short interframe space) 간격으로 상기 STA에 수신되는, STA 장치의 사운딩 방법.
  4. 제 1 항에 있어서,
    상기 자원 할당 정보는 상기 피드백 프레임을 UL MU 전송하기 위해 상기 STA에 할당된 자원 유닛의 개수를 지시하는, STA 장치의 사운딩 방법.
  5. 제 4 항에 있어서,
    상기 자원 유닛은 26개의 서브 캐리어들로 구성된 26톤 자원 유닛인, STA 장치의 사운딩 방법.
  6. 제 4 항에 있어서,
    상기 자원 할당 정보의 비트 값은 상기 STA에 할당된 자원 유닛의 개수를 지시하는, STA 장치의 사운딩 방법.
  7. 제 4 항에 있어서,
    상기 자원 할당 정보는 상기 피드백 프레임의 UL MU 전송을 위해 할당되는 자원 유닛들과 순차적으로 대응되는 복수의 비트들을 포함하며,
    상기 복수의 비트들 각각의 비트 값은, 각 비트와 대응되는 자원 유닛이 할당되는 STA이 다른 STA으로 변경됨에 따라 이전 비트의 비트 값과 다른 비트 값으로 스위칭되는, STA 장치의 사운딩 방법.
  8. 제 4 항에 있어서,
    상기 피드백 프레임의 UL MU 전송을 위해 할당되는 자원 유닛들에 각각 서로 다른 인덱스가 할당되는 경우,
    상기 자원 할당 정보는 상기 STA에 할당된 자원 유닛의 인덱스 정보를 포함하는, STA 장치의 사운딩 방법.
  9. 제 1 항에 있어서,
    상기 채널 상태 정보는 공간 스트림에 대해 기설정된 주파수 단위로 생성한 피드백 값을 포함하며,
    상기 피드백 값은 상기 공간 스트림에 대한 상기 기설정된 주파수 단위의 SNR(Signal to Noise Ratio) 또는 빔포밍 피드백 행렬인, STA 장치의 사운딩 방법.
  10. 제 9 항에 있어서,
    상기 기설정된 주파수 단위는, 26톤 자원 유닛, 20MHz 채널 또는 상기 NDP 프레임을 나르는 DL PPDU의 전체 전송 채널인, STA 장치의 사운딩 방법.
  11. 삭제
  12. 삭제
  13. 제 1 항에 있어서,
    상기 채널 상태 정보는 상기 타겟 주파수 대역에 대하여 생성되는, STA 장치의 사운딩 방법.
  14. 제 13 항에 있어서,
    상기 생성된 채널 상태 정보는 상기 타겟 주파수 대역에 대한 빔포밍 피드백 행렬 정보인, STA 장치의 사운딩 방법.
  15. WLAN(Wireless LAN) 시스템에서 STA(Station) 장치에 있어서,
    무선 신호를 송수신하는, RF 유닛; 및
    상기 RF 유닛을 제어하는, 프로세서; 를 포함하고,
    상기 프로세서는,
    NDP(Null data packet) 프레임의 전송을 알리는 NDPA(NDP announcement) 프레임을 수신하고,
    상기 NDP 프레임을 수신하고,
    상기 STA에 할당된 자원 할당 정보가 포함된 트리거 프레임을 수신하고,
    상기 NDP 프레임에 포함된 트레이닝 필드를 기초로 채널 상태 정보를 생성하고,
    상기 채널 상태 정보가 포함된 피드백 프레임을 상기 자원 할당 정보가 지시하는 주파수 자원을 이용하여 상향링크(UL: Uplink) 다중 사용자(MU: Multi-User) 전송하되,
    상기 NDPA 프레임은 상기 STA이 측정해야 할 타겟 주파수 대역의 지시 정보를 포함하고,
    상기 타겟 주파수 대역은 NDP 프레임의 전송에 사용되는 주파수 대역의 일부 주파수 대역이며,
    상기 주파수 대역의 지시 정보는 상기 STA이 측정해야 할 26톤 자원 유닛의 인덱스를 지시하는, STA 장치.
  16. 삭제
  17. 삭제
KR1020177024183A 2015-04-16 2016-04-15 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치 KR102063217B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562148184P 2015-04-16 2015-04-16
US62/148,184 2015-04-16
PCT/KR2016/003963 WO2016167608A1 (ko) 2015-04-16 2016-04-15 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20170117445A KR20170117445A (ko) 2017-10-23
KR102063217B1 true KR102063217B1 (ko) 2020-01-07

Family

ID=57125859

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177024183A KR102063217B1 (ko) 2015-04-16 2016-04-15 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US10826588B2 (ko)
JP (1) JP6484725B2 (ko)
KR (1) KR102063217B1 (ko)
CN (1) CN107534472B (ko)
WO (1) WO2016167608A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270892A1 (ko) * 2021-06-22 2022-12-29 엘지전자 주식회사 무선랜 시스템에서 센싱에 대한 측정 보고 방법 및 장치

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876544B2 (en) * 2015-04-30 2018-01-23 Intel IP Corporation Apparatus, system and method of multi-user wireless communication
WO2016173103A1 (zh) 2015-04-30 2016-11-03 华为技术有限公司 Wlan系统的资源指示方法及装置
CN107637005B (zh) * 2015-05-15 2021-06-04 韦勒斯标准与技术协会公司 用于多用户上行链路传输的无线通信终端和无线通信方法
EP3306975B1 (en) * 2015-06-25 2021-12-15 Huawei Technologies Co., Ltd. Wlan link self-adaptation method and network device
CN107710803B (zh) 2015-07-02 2021-05-11 华为技术有限公司 传输信道状态信息的方法、接入点和站点
WO2017007266A1 (ko) * 2015-07-07 2017-01-12 엘지전자 주식회사 무선랜 시스템에서 사운딩 동작 방법 및 이를 위한 장치
CN115189729B (zh) * 2015-07-10 2023-09-26 交互数字专利控股公司 针对ofdma wlan的统一反馈
US10205570B2 (en) * 2015-11-30 2019-02-12 Lg Electronics Inc. Method and apparatus for configuring pilot sequence in WLAN system
JP6726749B2 (ja) 2016-01-14 2020-07-22 インターデイジタル パテント ホールディングス インコーポレイテッド 無線ローカルエリアネットワークにおける制御および動作
US11131743B2 (en) 2016-02-28 2021-09-28 Qualcomm Incorporated Unicast and broadcast protocol for wireless local area network ranging and direction finding
US10104635B2 (en) * 2016-02-28 2018-10-16 Qualcomm Incorporated Unicast and broadcast protocol for wireless local area network ranging and direction finding
KR20220066990A (ko) * 2016-06-21 2022-05-24 마벨 아시아 피티이 엘티디. 전송을 위한 방법 및 장치
EP3484229B1 (en) 2016-07-06 2022-05-11 Wilus Institute of Standards and Technology Inc. Wireless communication terminal using trigger information
CN109792415B (zh) * 2016-10-24 2022-05-24 英特尔公司 用于wlan距离估计的压缩csi反馈
WO2018088807A1 (ko) * 2016-11-08 2018-05-17 (주)휴맥스 장거리 전송을 위한 무선 통신 단말과의 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US10924955B2 (en) 2016-11-18 2021-02-16 Lg Electronics Inc. Method for reporting channel information in wireless LAN system and device therefor
US10880771B2 (en) 2016-11-30 2020-12-29 Intel IP Corporation Null data packet announcement based range estimation
KR20230152188A (ko) * 2016-12-21 2023-11-02 주식회사 윌러스표준기술연구소 집합 mpdu 및 이에 대한 응답 프레임의 전송 방법 및 이를 이용한 무선 통신 단말
EP4243550A1 (en) * 2017-01-09 2023-09-13 Wilus Institute of Standards and Technology Inc. Wireless communication method using txop and wireless communication terminal using same
CN108366395B (zh) * 2017-01-26 2023-04-28 中兴通讯股份有限公司 一种配置无线发送接收参数的方法、装置及系统
WO2018144074A1 (en) * 2017-02-02 2018-08-09 Intel IP Corporation Null data packet feedback reports
US10897285B2 (en) * 2017-02-15 2021-01-19 Qualcomm Incorporated Distributed multi-user (MU) wireless communication
WO2018156211A1 (en) * 2017-02-21 2018-08-30 Intel IP Corporation Control fields for null data packet feedback reports
CN109547072B (zh) * 2017-09-22 2021-03-30 华为技术有限公司 信道探测的方法、通信设备和计算机可读存储介质
MX2020003914A (es) * 2017-10-02 2020-08-20 Sony Corp Aparato y metodo de comunicacion inalambrica, y programa.
US10667265B2 (en) * 2018-01-17 2020-05-26 Intel IP Corporation Enhanced tone mapping for trigger-based null data packet feedback
EP3873001B1 (en) * 2018-04-12 2022-05-25 LG Electronics Inc. Signal transmission/reception method in wireless lan system, and device therefor
US11096132B2 (en) * 2018-07-26 2021-08-17 Mediatek Singapore Pte. Ltd. Joint sounding for multi-user communication in multi-AP WLAN
EP3903426B1 (en) * 2019-01-17 2023-10-25 Huawei Technologies Co., Ltd. Device and method for reduced feedback channel sounding for next generation wifi
JP2020136822A (ja) * 2019-02-15 2020-08-31 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
US11310267B2 (en) * 2019-04-29 2022-04-19 Semiconductor Components Industries, Llc Secure channel state information with adaptive obfuscation
WO2020252741A1 (zh) * 2019-06-20 2020-12-24 北京小米移动软件有限公司 接收状态反馈方法和装置
JP7212595B2 (ja) * 2019-07-29 2023-01-25 アンリツ株式会社 測定装置とその測定対象表示方法
US11387937B2 (en) * 2019-08-07 2022-07-12 Huawei Technologies Co., Ltd. Preamble with detectable WLAN version identification
CN113115590B (zh) * 2019-11-11 2023-04-11 北京小米移动软件有限公司 混合自动重传请求反馈的传输方法、装置及通信设备
KR20220103972A (ko) * 2019-11-22 2022-07-25 엘지전자 주식회사 무선 통신 시스템에서 프리앰블을 구성하기 위한 기법
CN114846833A (zh) * 2019-12-31 2022-08-02 华为技术有限公司 Wi-Fi信道测量方法、装置和系统
US20210281384A1 (en) * 2020-03-03 2021-09-09 Mediatek Singapore Pte. Ltd. Enhanced Resource Unit Allocation Subfield Design For Extreme High-Throughput Systems
US11489761B2 (en) * 2020-04-23 2022-11-01 Code On Network Coding, Llc Method and apparatus for coded multipath network communication
US11882598B2 (en) 2020-04-30 2024-01-23 Mediatek Singapore Pte. Ltd. Preamble puncturing support for wide bandwidth transmission in wireless communications
DE102021110917A1 (de) * 2020-04-30 2021-11-04 Mediatek Singapore Pte. Ltd. Präambel-Punktierungsunterstützung für eine Breitbandübertragung in Funkkommunikationen
CN114158288A (zh) * 2020-06-17 2022-03-08 北京小米移动软件有限公司 通信方法及设备、电子设备以及计算机可读存储介质
CN112040527B (zh) * 2020-09-07 2022-06-03 重庆科华安全设备有限责任公司 一种用于井下巷道环境的长单链结构的无线通信组网方法
US20220116179A1 (en) * 2020-10-13 2022-04-14 Nxp Usa, Inc. Sounding to mixed bandwidth stations
US11336487B1 (en) * 2021-04-30 2022-05-17 Hewlett Packard Enterprise Development Lp Optimized high-efficiency (HE) sounding for multi-link device networks
US11405084B1 (en) * 2021-04-30 2022-08-02 Hewlett Packard Enterprise Development Lp Sounding for uplink multi-user transmission beamforming in wireless networks
WO2023018087A1 (ko) * 2021-08-10 2023-02-16 엘지전자 주식회사 무선랜 시스템에서 ndpa 프레임에서 su/mu 송신을 위한 피드백 시 다양한 ng 값을 지시하는 방법 및 장치
CN115913301A (zh) * 2021-08-31 2023-04-04 华为技术有限公司 波束成型报告的反馈方法及装置
WO2023123000A1 (zh) * 2021-12-28 2023-07-06 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
CN116724591A (zh) * 2022-01-06 2023-09-08 北京小米移动软件有限公司 Wlan感知测量方法及装置、电子设备及存储介质
WO2023137592A1 (zh) * 2022-01-18 2023-07-27 北京小米移动软件有限公司 Wlan感知测量方法及装置、电子设备及存储介质
WO2023169191A1 (zh) * 2022-03-11 2023-09-14 华为技术有限公司 通信方法和通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099345B1 (ko) * 2010-12-01 2011-12-26 엘지전자 주식회사 무선랜 시스템에서 채널 사운딩 방법 및 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8532221B2 (en) * 2010-02-10 2013-09-10 Marvell World Trade Ltd. Transmission protection for wireless communications
US8923219B2 (en) * 2010-02-17 2014-12-30 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
US9674890B2 (en) * 2010-10-08 2017-06-06 Lg Electronics Inc. Method of link adaptation in wireless local area network and apparatus for the same
US9350428B2 (en) * 2010-12-01 2016-05-24 Lg Electronics Inc. Method and apparatus of link adaptation in wireless local area network
EP3531781B1 (en) * 2011-01-03 2020-12-02 Aegis 11 S.A. Channel sounding method in wireless local area network system and apparatus for supporting the same
US9179300B2 (en) * 2011-03-02 2015-11-03 Qualcomm Incorporated Station-centric multi-user multiple input multiple output (MU-MIMO)
JP5961691B2 (ja) * 2011-08-07 2016-08-02 エルジー エレクトロニクス インコーポレイティド 周波数選択伝送に基づくフレーム送受信方法及び装置
WO2013077688A1 (ko) 2011-11-24 2013-05-30 엘지전자 주식회사 채널 상태 정보를 피드백 하는 방법 및 장치
EP2820909B1 (en) * 2012-03-01 2017-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
KR20150035721A (ko) * 2012-07-13 2015-04-07 엘지전자 주식회사 무선랜 시스템에서 널 데이터 패킷 프레임을 이용하는 채널 액세스 방법 및 장치
CN105376032A (zh) * 2014-08-25 2016-03-02 华为技术有限公司 一种用于无线局域网络中传输数据的方法和装置
KR102367780B1 (ko) * 2014-09-12 2022-02-25 삼성전자주식회사 무선 통신시스템의 채널 정보 피드백을 위한 장치 및 방법
US20160204960A1 (en) * 2015-01-14 2016-07-14 Newracom, Inc. Sounding method
US10200101B2 (en) * 2015-03-02 2019-02-05 Qualcomm Incorporated Methods and apparatus for channel state information sounding and feedback
US9788317B2 (en) * 2015-03-30 2017-10-10 Intel IP Corporation Access point (AP), user station (STA) and method for channel sounding using sounding trigger frames
US10313976B2 (en) * 2015-04-03 2019-06-04 Newracom, Inc. OFDMA sounding for WLAN system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099345B1 (ko) * 2010-12-01 2011-12-26 엘지전자 주식회사 무선랜 시스템에서 채널 사운딩 방법 및 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IEEE P802.11ac™/D7.0 (2013.09.) 1부.*
Kiseon Ryu et al., ‘UL MU Procedure’, IEEE 802.11-15/0365r0 (2015.03.09.) 1부.*
Shahrnaz Azizi et al., ‘OFDMA Numerology and Structure’, IEEE 802.11-15/0330r1 (2015.03.09.) 1부.*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270892A1 (ko) * 2021-06-22 2022-12-29 엘지전자 주식회사 무선랜 시스템에서 센싱에 대한 측정 보고 방법 및 장치

Also Published As

Publication number Publication date
JP2018518085A (ja) 2018-07-05
US10826588B2 (en) 2020-11-03
CN107534472B (zh) 2020-09-11
US20180138959A1 (en) 2018-05-17
KR20170117445A (ko) 2017-10-23
WO2016167608A1 (ko) 2016-10-20
CN107534472A (zh) 2018-01-02
JP6484725B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
KR102063217B1 (ko) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
US10863490B2 (en) Method for feeding back channel state in wireless communication system and device therefor
US11095417B2 (en) Method for transmitting data in wireless communication system and apparatus therefor
US11032811B2 (en) Data transmission method in wireless communication system and device therefor
US10728799B2 (en) Method for transmitting data in wireless communication system and device therefor
US10548146B2 (en) Channel sounding method in wireless communication system and device for same
KR102051028B1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
KR102451044B1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
KR102232863B1 (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 이를 위한 장치
KR20200091968A (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10320601B2 (en) Transmitting/receiving device and method in wireless communication system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant