WO2020173313A1 - 传输资源指示方法、传输方法、网络设备和终端 - Google Patents

传输资源指示方法、传输方法、网络设备和终端 Download PDF

Info

Publication number
WO2020173313A1
WO2020173313A1 PCT/CN2020/075283 CN2020075283W WO2020173313A1 WO 2020173313 A1 WO2020173313 A1 WO 2020173313A1 CN 2020075283 W CN2020075283 W CN 2020075283W WO 2020173313 A1 WO2020173313 A1 WO 2020173313A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
indication information
bwp
transmission
listening
Prior art date
Application number
PCT/CN2020/075283
Other languages
English (en)
French (fr)
Inventor
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217029183A priority Critical patent/KR20210126090A/ko
Priority to EP20763972.5A priority patent/EP3934146A4/en
Priority to BR112021016997A priority patent/BR112021016997A2/pt
Priority to SG11202109402YA priority patent/SG11202109402YA/en
Priority to JP2021550232A priority patent/JP7278397B2/ja
Publication of WO2020173313A1 publication Critical patent/WO2020173313A1/zh
Priority to US17/412,490 priority patent/US20210385866A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission resource indication method, transmission method, network device, and terminal. Background technique
  • the unlicensed band can be used as a supplement to the licensed band to help operators expand the service.
  • unlicensed frequency bands can work in 5GHz, 37GHz and 60GHz frequency bands.
  • the large bandwidth (80 or 100MHz) of the unlicensed frequency band can reduce the implementation complexity of the base station (gNB) and the user terminal (User Equipment, UE).
  • unlicensed frequency bands are shared by multiple technologies (Radio Access Technologies, RATs), such as WiFi, radar, LTE-LAA, etc., in some countries or regions, unlicensed frequency bands must comply with regulations when used to ensure that all devices are fair Use this resource, such as LBT (listen before talk), MCOT (maximum channel occupancy time) and other rules.
  • LBT listen before talk
  • MCOT maximum channel occupancy time
  • the transmission node needs to send information, it needs to do LBT first, and perform power detection (Energy Detection, ED) on the surrounding nodes. When the detected power is lower than a threshold, the channel is considered to be idle, and the transmission node can Send it. Otherwise, the channel is considered to be busy, and the transit node cannot send.
  • the transmission node can be a base station, UE, WiFi wireless access point (Access Point, AP), etc. After the transmission node starts transmission, the channel occupation time (Channel Occupancy Time, COT) cannot exceed the maximum channel occupation time MCOT
  • the maximum channel bandwidth of each carrier is 400MHz.
  • the maximum bandwidth supported by the UE may be less than 400 MHz, and the UE may work on multiple small bandwidth parts (BWP).
  • Each bandwidth part Points to a value corresponding to the configuration Numerology, bandwidth, bandwidth and frequency domain location of the base station frequency location o need to tell the UE which work in a BWP, i.e. activated (the activate) which BWP.
  • the activation and deactivation of the BWP can be done through Downlink Control Information (DCI) signaling.
  • DCI Downlink Control Information
  • the gNB or UE On the unlicensed frequency band, the gNB or UE also needs to perform channel sensing before transmitting on the activated BWP.
  • the bandwidth of BWP is greater than 20MHz, taking into account the coexistence of WiFi and other nodes, the bandwidth of 20MHz is used for listening. 20MHz can be called a listening subband (LBT subband).
  • the subband may be greater than 20 MHz according to actual conditions. For example, when the minimum bandwidth of the coexistence node is 40 MHz, the LBT subband may be 40 MHz.
  • the BWP bandwidth is 80 MHz, and the gNB or UE needs to listen on four 20 MHz subbands, and then perform data transmission on all subbands where the detected channel is empty.
  • the terminal does not know which LBT subband or Component Carrier (CC) the network device is performing resource transmission on. Therefore, it is necessary to detect all subbands where the detected channel is empty, including the physical downlink control channel (Physical Downlink Control Channel).
  • Downlink Control Channel (PDCCH) blind detection, physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) detection, discovery reference signal (Discovery Reference Signal, DRS) detection (DRS is also called discovery signal (Discovery Signal)), channel status Information (Channel State Information, CSI) measurement and received signal strength (Received Signal Strength Indicator, RSSI) measurement, etc.
  • CSI Channel State Information
  • RSSI Receiveived Signal Strength Indicator
  • the embodiments of the present disclosure provide a transmission resource indication method, transmission method, network device, and terminal, so as to solve the problem of large power consumption of the terminal.
  • embodiments of the present disclosure provide a transmission resource indication method, which is applied to a network device, and includes:
  • the embodiments of the present disclosure also provide a transmission method, which is applied to a terminal, and includes: receiving first indication information sent by a network device, where the first indication information indicates the detected transmission resource through a bitmap, and the transmission The resource is the listening subband of the bandwidth part of the BWP or the component carrier CC of the carrier aggregation;
  • the transmission resource After receiving the first indication information in the COT of the network device, the transmission resource is detected in the remaining COT of the network device.
  • the embodiments of the present disclosure also provide a network device, including:
  • a sending module configured to send first indication information to a terminal, where the first indication information indicates a transmission resource detected by the terminal through a bitmap, and the transmission resource is a listening subband of the bandwidth part BWP or a member of carrier aggregation Carrier CC.
  • an embodiment of the present disclosure further provides a terminal, including:
  • the receiving module is configured to receive first indication information sent by a network device, where the first indication information indicates the detected transmission resource through a bitmap, and the transmission resource is a listening subband of a bandwidth part BWP or a carrier aggregation component carrier CC;
  • the detection module is configured to detect the transmission resource in the remaining COT of the network device after receiving the first indication information in the COT of the network device.
  • embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and when the program is executed by the processor The steps in the above transmission resource indication method are implemented.
  • an embodiment of the present disclosure further provides a terminal, including: a memory, a processor, and a program stored on the memory and running on the processor, and the program is implemented when the processor is executed Steps in the above transmission method.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the steps of the method for indicating transmission resources on the network device side are implemented, or When the program is executed by the processor, the steps of the foregoing terminal-side transmission method are realized.
  • the terminal since the network device indicates the transmission resource detected by the terminal through the bitmap, the terminal can perform the operation on the corresponding transmission resource according to the first indication information in the COT after receiving the first indication information. Detection. Therefore, the transmission resources for terminal detection can be reduced , Thereby reducing the power consumption of the terminal.
  • Figure 1 is a structural diagram of a network system applicable to embodiments of the present disclosure
  • FIG. 2 is a flowchart of a method for indicating transmission resources according to an embodiment of the present disclosure
  • FIG. 3 is an exemplary diagram of the distribution state of listening subbands in a transmission resource indication method provided by an embodiment of the present disclosure
  • Fig. 4 is a flowchart of another transmission resource indication method provided by an embodiment of the present disclosure
  • Fig. 5 is a structure of a network device provided by an embodiment of the present disclosure
  • FIG. 6 is a structure of a terminal provided by an embodiment of the present disclosure.
  • Fig. 7 is a structure of another network device provided by an embodiment of the present disclosure.
  • FIG. 8 is a structure of another terminal provided by an embodiment of the present disclosure. detailed description
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, use “ Words such as “exemplary” or “for example” are intended to present related concepts in a specific manner.
  • the segment transmission time indication method, network equipment, and terminal can be applied in a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved long-term evolution (Evolved Long Term Evolution, eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network device 12, where the terminal 11 may be a user terminal or other terminal side devices , Such as: mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), personal digital assistant (PDA), mobile Internet device (Mobile Internet Device, MID) or wearable device ( It should be noted that the specific type of terminal 11 is not limited in the embodiment of the present disclosure.
  • the above-mentioned network device 12 may be a 5G base station, or a base station of a later version, or a base station in other communication systems, or referred to as Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN), or a secondary node (Secondary Node, SN). It should be noted that in the embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a method for indicating transmission resources provided by an embodiment of the present disclosure. The method is applied to a network device. As shown in FIG. 2, it includes the following steps:
  • Step 201 Send first indication information to the terminal, where the first indication information indicates the transmission resource detected by the terminal through a bitmap, and the transmission resource is the listening subband of the bandwidth part BWP or the component carrier CC of the carrier aggregation o
  • the foregoing first indication information may be used to indicate the BWP resource on the unlicensed frequency band; that is, the foregoing BWP is on the unlicensed frequency band, and the BWP is the activated BWP of the terminal.
  • the above-mentioned first indication information may also be used to indicate a CC.
  • the indicated CC includes a CC of an unlicensed frequency band.
  • the CC of the licensed frequency band may be indicated; in another optional embodiment, the CC of the licensed frequency band may not be indicated. That is, the above-described CC CC comprises a licensed band, or not include the above-described CC CC licensed band of O
  • the terminal needs to be in the CC of the licensed frequency band. To be tested on.
  • the transmission resources indicated by the network equipment to different terminals may be the same or different.
  • the transmission resource indicated by the network device to the terminal may be a full set or a subset of resources for which channel sensing is empty.
  • the transmission resource when the transmission resource is the listening subband of the BWP, the foregoing transmission resource may be all or part of the listening subband in which the channel sensing is empty; when the transmission resource is a carrier
  • the foregoing transmission resources may include all or part of the unlicensed frequency band CC in which channel sensing is empty in the activated CC.
  • the transmission resource when the transmission resource is a carrier aggregated CC, the transmission resource also includes the licensed frequency band CC in the CC configured by the network device for the terminal.
  • the aforementioned terminal detection refers to channel and/or signal detection, which may specifically include physical downlink control channel PDCCH blind detection, PDSCH detection, discovery reference signal DRS detection, channel state information CSI measurement, and received signal strength RSSI At least one of the measurements.
  • the terminal after receiving the first indication information in the (Channel Occupancy Time, COT) of the network device, the terminal detects the transmission resource in the remaining COT of the network device. Specifically, before receiving the first indication information, the terminal performs detection on all transmission resources; after receiving the first indication information, the terminal may perform detection on the transmission resources indicated by the first indication information in the remaining COT of the COT Detection: After the COT ends, the terminal re-detects on all transmission resources.
  • all of the transmission resource all activated CC o refers to transmission resource is active listening subactive BWP BWP subbands or all listeners terminal described in detail with an example:
  • the number of listening subbands of BWP is 4, including listening subband 1, listening subband 2, listening subband 3, and listening subband 4.
  • the network device listens to the listening subband. Band 2 is busy.
  • the COT includes 7 time slots.
  • UE1 and UE2 receive the first indication information sent by the network device in the first slot of the COT, where the first indication information sent by the network device to UE1 indicates that the transmission resource of UE1 is listening Subbands 3 and 4; the first indication information sent by the network device to UE2 indicates that the transmission resources of UE1 are listening subbands 1, 3, and 4.
  • UE1 After UE1 receives the first indication information, it will perform channel and/or signal detection on the listening subbands 3 and 4 in the remaining COT of the network equipment; after UE2 receives the first indication information, it will perform channel and/or signal detection on the remaining COT of the network equipment.
  • COT performs channel and/or signal detection on the listening subbands 1, 3, and 4.
  • UE1 and UE2 both perform channel and/or signal detection on the listening subbands 1, 2, 3, and 4.
  • the network device indicates the new first indication information in the remaining COT of the network device, the channel and/or signal detection is performed according to the transmission resource indicated by the new first indication information. For example, the network device indicates to UE2 that the transmission resources are listening subbands 1 and 3 in time slot 4, and UE2 performs channel and/or signal detection on listening subbands 1 and 3 from time slot 5 until the COT ends.
  • the terminal since the network device indicates the transmission resource detected by the terminal through the bitmap, the terminal can perform the operation on the corresponding transmission resource according to the first indication information in the COT after receiving the first indication information. Detection. Therefore, the number of transmission resources detected by the terminal can be reduced, thereby reducing power consumption of the terminal.
  • the transmission resource is the listening subband of the BWP.
  • the bitmap may indicate the transmission status of all the listening subbands of the BWP; wherein, each bit of the bitmap indicates each detection subband. Whether the subband is used for transmission.
  • the number of bits of the bitmap is the number of listening subbands of the BWP or the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the number of bits of the bitmap is the number of listening subbands of the BWP. If the number of listening subbands of the currently activated BWP is 2, the number of bits of the bitmap is 2; if the number of listening subbands of the currently activated BWP is 4, the number of bits of the bitmap is 4. In this way, the amount of data transmission can be reduced when the number of listening subbands is small.
  • the number of bits of the bitmap is the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the number of bits of the bitmap may be related to the BWP with the largest bandwidth among the BWPs configured by the network equipment for the terminal.
  • the bandwidths of the four BWPs configured by the terminal are 20 MHz, 40 MHz, 80 MHz, and 100 MHz, respectively.
  • the bandwidth of the listening subband as 20 MHz as an example, the number of bits in the bitmap can be 5. In this way, the size of the bitmap can be fixed.
  • each bit indicates the transmission status of the listening subband of the corresponding index to indicate whether the corresponding listening subband is used for transmission.
  • the number of listening subbands of the BWP is 4 and the number of bits of the bitmap is 4, specifically 0 can be used to indicate no transmission, and 1 can be used. Indicates transmission. If the bitmap is 0011, it may indicate that the network device has not transmitted on the listening subband 1, has not transmitted on the listening subband 2, has transmitted on the listening subband 3, and has transmitted on the listening subband 4. In this way, after receiving the first indication information, the terminal can only detect the listening subbands 3 and 4 in the remaining COT of the network device.
  • the above-mentioned transmission resource is a CC of carrier aggregation.
  • the above-mentioned bitmap indicates the transmission status of all CCs configured by the network device for the terminal or all the activated CCs of the terminal; wherein, the bitmap Each bit of corresponding indicates whether each CC is used for transmission.
  • the number of bits of the bitmap may specifically be the number of all CCs configured by the terminal, or the number of all active CCs of the terminal. For example, there is 8 carrier aggregation and only CC1-CC4 are activated. At this time, when the bitmap indicates all CCs configured by the network device for the terminal, the number of bits of the bitmap is 8; when the bitmap indicates that the network device is all active CCs of the terminal, the number of bits of the bitmap is 4.
  • a CC may not be instructed, which can reduce the number of bitmaps.
  • CC1 of the above 4 activated CCs is a licensed frequency band CC. Then the CC1 may not be indicated or indicated as the transmission carrier of the gNB. When CC1 does not indicate, the number of bitmaps mentioned above can be reduced to 3 bits.
  • the first indication information is carried in the dedicated DCI of the terminal.
  • the transmission resource is a CC of carrier aggregation
  • the first indication information is carried in a dedicated DCI or a group common DCI of the terminal.
  • the sending the first indication information to the terminal includes:
  • the first indication information is sent to the terminal on the first CC or the second CC; wherein, the first CC is the CC where the BWP is located, and the second CC is the CC of carrier aggregation except for the CC other than the first CC;
  • the method further includes: Sending second indication information to the terminal on the second cc, where the second indication information indicates the index of the first CC.
  • the terminal may support one or at least two activated BWPs. If the terminal supports at least two activated BWPs, the network device also needs to send third indication information, which indicates the index of the BWP.
  • the aforementioned second CC is a licensed frequency band CC or an unlicensed frequency band CC.
  • the first indication information and the second indication information may be carried in the second CC cross-carrier scheduling a preset field in the DCI downlink control information DCI, or the CC from the second scheduling (filed) o
  • the transmission resource is the listening subband of the BWP and the transmission resource is the CC of the carrier aggregation.
  • the transmission resource is the listening subband of the BWP.
  • the gNB indicates to the UE the LBT subband actually transmitted by the BWP.
  • the actual transmitted LBT subband may be an LBT subband in which all channels detected by the gNB are empty, such as LBT subbands 1, 3, and 4 in FIG. 3.
  • the actually transmitted LBT subband may also be a subset of the LBT subbands where all channels are vacant that the gNB listens to; for example, for UE1, the gNB only works in LBT subbands 3 and 4. To schedule data, only need to indicate LBT subband 3 and 4 to UE1.
  • the gNB uses bitmap in the DCI to indicate to the UE, the DCI may be a UE-specific DCI. Specifically, the transmission LBT subband indicated by the gNB to each UE may be different.
  • the size of the bitmap may be the number of LBT subbands of the currently activated BWP.
  • the size of the bitmap may be a maximum number LBT subband BWP configured for the UE.
  • the gNB configures 4 BWPs for the UE, with bandwidths of 20MHz, 40MHz, 80MHz and 100MHz, and the bitmap size is 5 bits.
  • the advantage of the latter is that the bitmap has a fixed size and does not need to change with the activation of the BWP. Among them, each bit indicates the status of the LBT subband of the corresponding index, that is, transmitting or not transmitting.
  • 1011 represents the LBT subband o 1, 3 and 4 for the actual transmission of LBT subband 3
  • the index of the LBT subband may also be directly indicated to the UE.
  • the LBT subband index indication method is adopted, which requires a large number of bits. For example, in Figure 3, there are a total of 4 LBT subbands, and 2 bits are required to indicate the index of each LBT subband. If the gNB indicates to the UE that the transmitted LBT subbands are 3 and 4, the indication is 1011. If the gNB indicates to the UE that the transmitted LBT subbands are 1, 3, and 4. The indication is 001011.
  • the LBT subband indication can be indicated on the carrier where the BWP is located, or on other aggregated carriers, that is, , Can cross-carrier (cross-carrier) monitoring of subband indications.
  • Other carriers can be unlicensed carriers or licensed carriers.
  • the DCI may be a DCI for cross-carrier scheduling for the indicated carrier, or a specific domain (filed) in the DCI self-scheduled by other carriers. This field needs to be used in conjunction with carrier index instructions. In other words, the gNB needs to indicate to the UE the index of the carrier and the LBT subband that transmits B WP on the carrier. If the UE supports multiple activated BWPs, the corresponding BWP index also needs to be indicated.
  • the UE performs channel and/or signal detection on all subbands before receiving the LBT subband indication.
  • the UE After receiving the LBT subband indication transmitted by the gNB, within the COT of the gNB, the UE is only on the indicated LBT subband Perform channel and/or signal detection.
  • the COT of the gNB ends, the UE performs channel and/or signal detection on all LBT subbands again.
  • the UE receives the gNB transmission LBT subband indication in the first slot of the gNB COT. Before that, all UEs (UE1 and UE2) perform channel and/or signal detection on all LBT subbands, namely LBT subbands 1, 2, 3, and 4.
  • UE1 After receiving the instruction, according to the instruction, UE1 performs channel and/or signal detection on LBT subbands 3 and 4, and UE2 performs channel and/or signal detection on LBT subbands 1, 3, and 4.
  • the UE if the DCI indicates a new LBT subband transmitted by the gNB in the COT of the gNB, the UE performs channel and/or signal detection on the corresponding LBT subband according to the new indication.
  • the LBT subband that the UE needs to perform channel and/or signal detection can be updated multiple times in the COT of the gNB.
  • UE1 and UE2 After the COT of the gNB ends, UE1 and UE2 perform channel and/or signal detection on all LBT subbands again.
  • the transmission resource is a CC of carrier aggregation.
  • the transmission carrier of the gNB may be indicated to the UE, and the indicated transmission carrier may be all carriers whose channel sensing is null, or may be a subset of them.
  • CC1 is the primary carrier
  • CC2-CC4 are the secondary carriers.
  • one of the carriers is in the licensed frequency band, no indication may be given, or the indication may be the transmission carrier of the gNB.
  • the primary carrier is a licensed frequency band carrier, it can be ignored or always indicated as a gNB transmission carrier.
  • the indication of the transmission carrier may be indicated in the UE-specific DCI, or may be indicated in the group common DCI.
  • This indication can be indicated by bitmap or by CC index.
  • the size of bitmap can be the number of all CCs configured by gNB for UE for carrier aggregation, or the number of actually activated CCs, or the number of the first two less authorized The number of CCs in the frequency band.
  • Bitmap can be 4 bits, which respectively represent the status of 4 carriers, where the bit corresponding to CC1 always indicates that the carrier is the transmission carrier of gNB.
  • the bits corresponding to CC2-CC4 indicate the status of these three carriers.
  • only 3 bits can be used to indicate the status of CC2-CC4.
  • all gNBs can indicate the same gNB transmission carrier to all UEs, and can indicate different gNB transmission carriers to different UEs in the UE-specific DCI. If the gNB configures 8 carriers for the UE, and only CC1-CC4 are activated, an 8-bit bitmap can be used to indicate, and all inactive carriers are indicated as non-gNB transmission carriers.
  • the carrier index indication method is adopted, which requires a large number of bits.
  • the UE performs channel and/or signal detection on all CCs before receiving the gNB transmission carrier indication.
  • the UE After receiving the gNB transmission carrier indication, in the gNB COT, the UE only performs channel and/or signal detection on the indicated carrier. And/or signal detection.
  • the COT of the gNB ends, the UE re-detects channels and/or signals on all carriers. If the licensed frequency band carrier is not indicated, the UE will always detect the channel and/or signal on the licensed frequency band by default.
  • the LBT subband or CC transmitted by the UE can also be indicated in the same manner in Uplink Control Information (UCI).
  • UCI Uplink Control Information
  • gNB only needs to receive After the indication, in the COT of the UE, channel and/or signal detection is performed on the indicated LBT subband or CC. At other times, the gNB performs channel and/or signal detection on all LBT subbands scheduled or configured for the UE; or the gNB performs channel and/or signal detection on all CCs scheduled or configured for the UE.
  • the uplink channel and/or signal detection includes but is not limited to physical uplink control channel PUCCH detection, physical uplink shared channel PUSCH detection, sounding reference signal (Sounding Reference Signal) SRS detection, etc.
  • the number of LBT subbands that activate the BWP of the UE is 4, which are LBT subband 1, LBT subband 2, LBT subband 3, and LBT subband 4.
  • the network equipment schedules the UE to perform uplink data transmission on these 4 LBT subbands. If the UE indicates the transmission resource with 4 bits bitmap as 0001, it can indicate that the UE has not transmitted on LBT subband 1, has not transmitted on LBT subband 2, has not transmitted on LBT subband 3, and has transmitted on LBT subband 4. In this way, the network equipment can only detect the listening subband 4 in the remaining COT of the UE after receiving the transmission resource indication. At the same time, the UE can be scheduled only on LBT subband 4 in subsequent scheduling.
  • the CC indication is similar to the LBT subband, and will not be repeated here.
  • FIG. 4 is a flowchart of a transmission method provided by an embodiment of the present disclosure. The method is applied to a terminal. As shown in FIG. 4, it includes the following steps:
  • Step 401 receiving first indication information sent by a network device, the first indication information indicating the detected transmission resource through a bitmap bitmap, and the transmission resource is the listening subband of the bandwidth part BWP or the carrier aggregation component carrier CC;
  • Step 402 After receiving the first indication information in the COT of the network device, detect the transmission resource in the remaining COT of the network device.
  • the BWP is on an unlicensed frequency band, and the BWP is the activated BWP of the terminal.
  • the CC CC includes an unlicensed bands O
  • the method further includes: always detecting the licensed frequency band CC.
  • the transmission resources are all or part of the listening subbands in which channel listening is null.
  • the transmission resource includes all or part of the unlicensed frequency band CC in the CC configured by the network device for the terminal, where channel sensing is empty.
  • the transmission resource further comprises a network device as an authorized terminal of the CC in the configured band CC O
  • the bitmap indicates the transmission status of all the listening subbands of the BWP; wherein, each bit of the bitmap correspondingly indicates whether each listening subband is used for transmission.
  • the number of bits of the bitmap is the number of listening subbands of the BWP or the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the first indication information sent by the receiving network device includes:
  • the first CC is the CC where the BWP is located
  • the second CC is the CC of carrier aggregation except for the CC other than the first CC
  • the method When receiving the first indication information sent by the network device on the second CC, the method further includes:
  • the second CC is a licensed frequency band CC or an unlicensed frequency band CC.
  • bitmap is used to indicate the transmission status of all CCs configured by the network device for the terminal or all active CCs of the terminal;
  • each bit of the bitmap correspondingly indicates whether each CC is used for transmission.
  • the transmission resource is a BWP listening subband
  • the first indication information is carried in the terminal-specific DCI.
  • the first indication information is carried in the terminal-specific DCI or the group public DCI.
  • the detecting the transmission resource includes a physical downlink control channel PDCCH At least one of blind detection, PDSCH detection, discovery reference signal DRS detection, channel state information CSI measurement, and received signal strength RSSI measurement.
  • the method further includes:
  • detection is performed on all listening subbands of the BWP or all currently activated CCs.
  • this embodiment is used as an implementation manner of the terminal corresponding to the embodiment shown in FIG. 2.
  • specific implementation manners please refer to the related description of the embodiment shown in FIG. 2 and achieve the same beneficial effects. In order to avoid repetition Description, not repeat them here.
  • FIG. 5 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 5, the network device 500 includes:
  • the sending module 501 is configured to send first indication information to the terminal, where the first indication information indicates the transmission resource detected by the terminal through a bitmap, and the transmission resource is the listening subband of the bandwidth part BWP or the carrier aggregation Component carrier CC.
  • the BWP is on an unlicensed frequency band, and the BWP is the activated BWP of the terminal.
  • the CC CC includes an unlicensed bands O
  • the bitmap indicates the transmission status of all the listening subbands of the BWP; wherein, each bit of the bitmap correspondingly indicates whether each listening subband is used for transmission.
  • the number of bits of the bitmap is the number of listening subbands of the BWP or the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the sending module is specifically configured to: send to the terminal on the first CC or the second CC Sending the first indication information; wherein, the first CC is the CC where the BWP is located, and the second CC is a CC other than the first CC among the CCs of carrier aggregation;
  • the sending module is also used to:
  • Second send second indication information to the terminal on the second CC, and the second indication message The information indicates the index of the first cc.
  • the second CC is a licensed frequency band CC or an unlicensed frequency band CC.
  • the bitmap indicates the transmission status of all CCs configured by the network device for the terminal or all active CCs of the terminal;
  • each bit of the bitmap correspondingly indicates whether each CC is used for transmission.
  • the transmission resource is a BWP listening subband
  • the first indication information is carried in the terminal-specific DCI.
  • the first indication information is carried in the terminal-specific DCI or the group public DCI.
  • the terminal detection includes at least one of physical downlink control channel PDCCH blind detection, PDSCH detection, discovery reference signal DRS detection, channel state information CSI measurement, and received signal strength RSSI measurement.
  • the network device provided by the embodiment of the present disclosure can implement the various processes implemented by the network device in the method embodiment of FIG. 2.
  • FIG. 6 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • a terminal 600 includes:
  • the receiving module 601 is configured to receive first indication information sent by a network device, where the first indication information indicates a detected transmission resource through a bitmap, and the transmission resource is a listening subband of the bandwidth part BWP or a member of carrier aggregation Carrier CC;
  • the detection module 602 is configured to detect the transmission resource in the remaining COT of the network device after receiving the first indication information in the COT of the network device.
  • the BWP is on an unlicensed frequency band, and the BWP is the activated BWP of the terminal.
  • the CC CC includes an unlicensed bands O
  • the detection module is further configured to: always detect the licensed frequency band CC.
  • the transmission resources are all or part of the listening subbands in which channel listening is empty. Phonon band.
  • the transmission resource includes all or part of the unlicensed frequency band CC in the CC configured by the network device for the terminal, where channel sensing is empty.
  • the transmission resource further comprises a network device as an authorized terminal of the CC in the configured band CC O
  • the bitmap indicates the transmission status of all the listening subbands of the BWP; wherein, each bit of the bitmap correspondingly indicates whether each listening subband is used for transmission.
  • the number of bits of the bitmap is the number of listening subbands of the BWP or the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the receiving module 601 is specifically configured to: receive the network device on the first CC or the second CC The first indication information sent; wherein, the first CC is the CC where the BWP is located, and the second CC is a CC other than the first CC among the CCs of carrier aggregation;
  • the receiving module is further configured to:
  • the second CC is a licensed frequency band CC or an unlicensed frequency band CC.
  • bitmap is used to indicate the transmission status of all CCs configured by the network device for the terminal or all active CCs of the terminal;
  • each bit of the bitmap correspondingly indicates whether each CC is used for transmission.
  • the transmission resource is a BWP listening subband
  • the first indication information is carried in the terminal-specific DCI.
  • the first indication information is carried in the terminal-specific DCI or the group public DCI.
  • the detection of the transmission resource includes at least one of physical downlink control channel PDCCH blind detection, PDSCH detection, discovery reference signal DRS detection, channel state information CSI measurement, and received signal strength RSSI measurement.
  • the detection module 602 is further configured to: before receiving the first indication information in the COT and after the COT ends, on all listening subbands of the BWP or all currently activated CCs Perform testing.
  • the terminal provided by the embodiment of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 4. To avoid repetition, details are not described herein again.
  • FIG. 7 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the network device 700 includes: a processor 701, a transceiver 702, a memory 703, and a bus interface, where:
  • the transceiver 702 is configured to send first indication information to the terminal, where the first indication information indicates the transmission resource detected by the terminal through a bitmap, and the transmission resource is the listening subband of the bandwidth part BWP or the carrier aggregation Component carrier CC.
  • the BWP is on an unlicensed frequency band, and the BWP is the activated BWP of the terminal.
  • the CC CC includes an unlicensed bands O
  • the bitmap indicates the transmission status of all the listening subbands of the BWP; wherein, each bit of the bitmap correspondingly indicates whether each listening subband is used for transmission.
  • the number of bits of the bitmap is the number of listening subbands of the BWP or the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the transceiver 702 is specifically configured to:
  • the first indication information is sent to the terminal on the first CC or the second CC; wherein, the first CC is the CC where the BWP is located, and the second CC is the CC of carrier aggregation except for the CC other than the first CC;
  • the transceiver 702 is further configured to:
  • the second CC is a licensed frequency band CC or an unlicensed frequency band CC.
  • the bitmap indicates the transmission status of all CCs configured by the network device for the terminal or all active CCs of the terminal;
  • each bit of the bitmap correspondingly indicates whether each CC is used for transmission.
  • the transmission resource is a BWP listening subband
  • the first indication information is carried in the terminal-specific DCI.
  • the first indication information is carried in the terminal-specific DCI or the group public DCI.
  • the terminal detection includes at least one of physical downlink control channel PDCCH blind detection, PDSCH detection, discovery reference signal DRS detection, channel state information CSI measurement, and received signal strength RSSI measurement.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting internally required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • an embodiment of the present disclosure further provides a network device, including a processor 701, a memory 703, a computer program stored on the memory 703 and running on the processor 701, and the computer program is executed by the processor 701
  • a network device including a processor 701, a memory 703, a computer program stored on the memory 703 and running on the processor 701, and the computer program is executed by the processor 701
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, User input unit 807, interface unit 808, memory 809, processor 810, power supply 811 and other components.
  • a radio frequency unit 801 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, User input unit 807, interface unit 808, memory 809, processor 810, power supply 811 and other components.
  • the terminal structure shown does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, and a pedometer.
  • the radio frequency unit 801 is configured to receive first indication information sent by a network device, where the first indication information indicates a detected transmission resource through a bitmap, and the transmission resource is a listening subband of the bandwidth part BWP or a member of carrier aggregation Carrier CC;
  • the processor 810 is configured to, after receiving the first indication information in the COT of the network device, detect the transmission resource in the remaining COT of the network device.
  • the BWP is on an unlicensed frequency band, and the BWP is the activated BWP of the terminal.
  • the CC CC includes an unlicensed bands O
  • the processor 810 is further configured to: always detect the licensed frequency band CC.
  • the transmission resources are all or part of the listening subbands in which channel listening is null.
  • the transmission resource includes all or part of the unlicensed frequency band CC in the CC configured by the network device for the terminal, where channel sensing is empty.
  • the transmission resource further comprises a network device as an authorized terminal of the CC in the configured band CC O
  • the bitmap indicates the transmission status of all the listening subbands of the BWP; wherein, each bit of the bitmap correspondingly indicates whether each listening subband is used for transmission.
  • the number of bits of the bitmap is the number of listening subbands of the BWP or the number of listening subbands of the BWP with the largest bandwidth configured by the network device for the terminal.
  • the radio frequency unit 801 is specifically configured to:
  • the first CC is the CC where the BWP is located, and the second CC is a CC other than the first CC in the carrier aggregation CC;
  • the radio frequency unit 801 is further configured to:
  • the second CC is a licensed frequency band CC or an unlicensed frequency band CC.
  • bitmap is used to indicate the transmission status of all CCs configured by the network device for the terminal or all active CCs of the terminal;
  • each bit of the bitmap correspondingly indicates whether each CC is used for transmission.
  • the transmission resource is a BWP listening subband
  • the first indication information is carried in the terminal-specific DCI.
  • the first indication information is carried in the terminal-specific DCI or the group public DCI.
  • the detection of the transmission resource includes at least one of physical downlink control channel PDCCH blind detection, PDSCH detection, discovery reference signal DRS detection, channel state information CSI measurement, and received signal strength RSSI measurement.
  • processor 810 is further configured to:
  • detection is performed on all listening subbands of the BWP or all currently activated CCs.
  • the radio frequency unit 801 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 810; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 802, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 803 can convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into audio signals and output them as sounds. Moreover, the audio input The output unit 803 may also provide audio output related to a specific function performed by the terminal 800 (for example, call signal receiving sound, message receiving sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is used to receive audio or video signals.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 806.
  • the image frame processed by the graphics processor 8041 may be stored in the memory 809 (or other storage medium) or sent via the radio frequency unit 801 or the network module 802.
  • the microphone 8042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 801 for output in the case of a telephone conversation mode.
  • the terminal 800 further includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 8061 and/or when the terminal 800 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 805 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 807 can be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also known as a touch screen, can collect user touch operations on or near it (such as the user’s finger, stylus, etc.) The operation of objects or accessories on the touch panel 8071 or near the touch panel 8071).
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 810 receives and executes the command sent by the processor 810.
  • the touch panel 8071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 807 may also include other input devices 8072.
  • other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 8071 may cover the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it is transmitted to the processor 810 to determine the type of the touch event, and then the processor 810 determines the type of the touch event according to the The type of touch event provides corresponding visual output on the display panel 8061.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 8071 and the display panel 8061 may be integrated. Realize the input and output functions of the terminal, which are not specifically limited here.
  • the interface unit 808 is an interface for connecting an external device and the terminal 800.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 808 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 800 or can be used to connect the terminal 800 to the external device. Transfer data between.
  • the memory 809 can be used to store software programs and various data.
  • the memory 809 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is the control center of the terminal, which uses various interfaces and lines to connect the terminals of the entire terminal. These parts, by running or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809, execute various functions of the terminal and process data, thereby monitoring the terminal as a whole.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modem The adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the terminal 800 may also include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system And other functions.
  • the terminal 800 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 810, a memory 809, and a computer program stored on the memory 809 and capable of running on the processor 810.
  • a terminal including a processor 810, a memory 809, and a computer program stored on the memory 809 and capable of running on the processor 810.
  • the computer program is executed by the processor 810,
  • Each process of the foregoing transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure further provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is executed by a processor
  • the embodiment of the method for indicating transmission resources on the network device side provided by the embodiment of the present disclosure is realized
  • the computer program is executed by the processor, each process of the terminal-side transmission method embodiment provided by the embodiment of the present disclosure is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) to execute the method described in each embodiment of the present disclosure.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输资源指示方法、传输方法、网络设备以及终端,该传输资源指示方法包括:向终端发送第一指示信息,第一指示信息通过位图bitmap指示终端检测的传输资源,传输资源为带宽部分BWP的侦听子带或载波聚合的成员载波CC。

Description

传输资源指示方法、 传输方法、 网络设备和终端 相关申请的交叉引用
本申请主张在 2019 年 2 月 27 日在中国提交的中国专利申请号 No. 201910147710.X的优先权, 其全部内容通过引用包含于此。 技术领域
本公开涉及通信技术领域,尤其涉及一种传输资源指示方法、传输方法、 网络设备和终端。 背景技术
在未来通信系统中, 非授权频段 (unlicensed band) 可以作为授权频段 (licensed band) 的补充帮助运营商对服务进行扩容。 为了与新空口 (New Radio, NR) 部署保持一致并尽可能的最大化基于 NR的非授权接入, 非授权 频段可以工作在 5GHz, 37GHz和 60GHz频段。 非授权频段的大带宽 (80或 者 100MHz) 能够减小基站 (gNB) 和用户终端 (User Equipment, UE) 的实 施复杂度。 由于非授权频段由多种技术 (Radio Access Technologies, RATs) 共用, 例如 WiFi, 雷达, LTE-LAA等, 因此在某些国家或者区域, 非授权频 段在使用时必须符合 regulation以保证所有设备可以公平的使用该资源,例如 LBT ( listen before talk ), 最大信道占用时间 MCOT ( maximum channel occupancy time) 等规则。 当传输节点需要发送信息时, 需要先做 LBT时, 对 周围的节点进行功率检测 ( Energy Detection, ED) , 当检测到的功率低于一 个门限时, 认为信道为空 (idle) , 传输节点可以进行发送。 反之, 则认为信 道为忙, 传输节点不能进行发送。 传输节点可以是基站, UE和 WiFi无线访 问节点 (Access Point, AP)等。传输节点开始传输后,信道占用时间 (Channel Occupancy Time, COT) 不能超过最大信道占用时间 MCOT。
在 NR Rel-15 中, 每个载波最大的信道带宽 (channel bandwidth) 是 400MHz。 但是考虑到 UE能力, UE支持的最大带宽可以小于 400MHz, 且 UE 可以工作在多个小的带宽部分 (bandwidth part, BWP) 上。 每个带宽部 分对应于一个数值配置 Numerology、 带宽 bandwidth 和频域位置 frequency location o 基站需要告诉 UE在哪一个 BWP上工作, 即激活 (activate) 哪一 个 BWP。 BWP 的激活去激活可以通过下行控制信息 (Downlink Control Information, DCI)信令。 UE在收到激活去激活指令后,在相应的激活的 BWP 上进行接收或者传输。
在非授权频段上, gNB或者 UE在激活的 BWP上传输前也需要进行信道 侦听。 当 BWP的带宽大于 20MHz的时候, 考虑到和 WiFi等节点的共存问 题,采用 20MHz的带宽进行侦听。 20MHz可以称为侦听子带 (LBT subband)。 该子带可以根据实际情况大于 20MHz, 例如, 当共存节点的最小带宽为 40MHz时, LBT subband可以为 40MHz。 对于大带宽的 BWP, 例如, BWP 带宽为 80MHz, gNB或者 UE需要在 4个 20MHz的子带上进行侦听, 然后 在所有侦听到信道为空的子带上进行数据传输。
相关技术中, 终端不知道网络设备在哪个 LBT subband 或成员载波 ( Component Carrier, CC) 上进行资源传输, 因此需要对所有侦听到信道为 空的子带进行检测, 包括物理下行控制信道 ( Physical Downlink Control Channel, PDCCH)盲检、物理下行共享信道 (Physical Downlink Shared Channel, PDSCH)检测、 发现参考信号 (Discovery Reference Signal, DRS)检测 (DRS 也被称作发现信号 ( Discovery Signal ) )、 信道状态信息 ( Channel State Information, CSI) 测量和接收信号强度 (Received Signal Strength Indicator, RSSI) 测量等, 这样将会导致终端的耗电量较大。 发明内容
本公开实施例提供一种传输资源指示方法、传输方法、网络设备和终端, 以解决终端的耗电量较大的问题。
第一方面,本公开实施例提供一种传输资源指示方法,应用于网络设备, 包括:
向终端发送第一指示信息, 所述第一指示信息通过位图 bitmap指示所述 终端检测的传输资源,所述传输资源为带宽部分 BWP的侦听子带或载波聚合 的成员载波 CC。 第二方面, 本公开实施例还提供一种传输方法, 应用于终端, 包括: 接收网络设备发送的第一指示信息, 所述第一指示信息通过位图 bitmap 指示检测的传输资源,所述传输资源为带宽部分 BWP的侦听子带或载波聚合 的成员载波 CC ;
在所述网络设备的 COT内接收到所述第一指示信息后,在网络设备剩余 的 COT内对所述传输资源进行检测。
第三方面, 本公开实施例还提供一种网络设备, 包括:
发送模块, 用于向终端发送第一指示信息, 所述第一指示信息通过位图 bitmap指示所述终端检测的传输资源,所述传输资源为带宽部分 BWP的侦听 子带或载波聚合的成员载波 CC。
第四方面, 本公开实施例还提供一种终端, 包括:
接收模块, 用于接收网络设备发送的第一指示信息, 所述第一指示信息 通过位图 bitmap指示检测的传输资源, 所述传输资源为带宽部分 BWP的侦 听子带或载波聚合的成员载波 CC ;
检测模块, 用于在所述网络设备的 COT 内接收到所述第一指示信息后, 在网络设备剩余的 COT内对所述传输资源进行检测。
第五方面, 本公开实施例还提供一种网络设备, 包括: 存储器、 处理器 及存储在所述存储器上并可在所述处理器上运行的程序, 所述程序被所述处 理器执行时实现上述传输资源指示方法中的步骤。
第六方面, 本公开实施例还提供一种终端, 包括: 存储器、 处理器及存 储在所述存储器上并可在所述处理器上运行的程序, 所述程序被所述处理器 执行时实现上述传输方法中的步骤。
第七方面, 本公开实施例还提供一种计算机可读存储介质, 所述计算机 可读存储介质上存储有程序, 所述程序被处理器执行时实现网络设备侧传输 资源指示方法的步骤, 或者所述程序被处理器执行时实现上述终端侧传输方 法的步骤。
本公开实施例, 由于网络设备通过位图 bitmap指示所述终端检测的传输 资源, 从而可以使得终端在接收到第一指示信息后, 在 COT内按照该第一指 示信息在对应的传输资源上进行检测。 因此, 可以减少终端检测的传输资源 的数量, 从而降低终端耗电量。 附图说明
图 1是本公开实施例可应用的一种网络系统的结构图;
图 2是本公开实施例提供的一种传输资源指示方法的流程图;
图 3是本公开实施例提供的一种传输资源指示方法中侦听子带分布状态 示例图;
图 4是本公开实施例提供的另一种传输资源指示方法的流程图; 图 5是本公开实施例提供的一种网络设备的结构;
图 6是本公开实施例提供的一种终端的结构;
图 7是本公开实施例提供的另一种网络设备的结构;
图 8是本公开实施例提供的另一种终端的结构。 具体实施方式
下面将结合本公开实施例中的附图, 对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本公开一部分实施例, 而不是 全部的实施例。 基于本公开中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“包括”以及它的任何变形, 意图 在于覆盖不排他的包含, 例如, 包含了一系列步骤或单元的过程、 方法、 系 统、 产品或设备不必限于清楚地列出的那些步骤或单元, 而是可包括没有清 楚地列出的或对于这些过程、 方法、 产品或设备固有的其它步骤或单元。 此 外, 说明书以及权利要求中使用“和 /或”表示所连接对象的至少其中之一, 例 如 A和 /或 B, 表示包含单独 A, 单独 B, 以及 A和 B都存在三种情况。
在本公开实施例中, “示例性的”或者“例如”等词用于表示作例子、 例证 或说明。 本公开实施例中被描述为“示例性的’’或者“例如”的任何实施例或设 计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言, 使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。 本公开实施例提供的一种非授权频 段的传输时间指示方法、 网络设备和终端可以应用于无线通信系统中。 该无 线通信系统可以为采用 5G系统, 或者演进型长期演进 (Evolved Long Term Evolution, eLTE) 系统, 或者后续演进通信系统。
请参见图 1, 图 1 是本公开实施例可应用的一种网络系统的结构图, 如 图 1所示, 包括终端 11和网络设备 12, 其中, 终端 11可以是用户终端或者 其他终端侧设备, 例如: 手机、 平板电脑 (Tablet Personal Computer)、 膝上 型电脑 (Laptop Computer)、 个人数字助理 (personal digital assistant, 简称 PDA)、移动上网装置 (Mobile Internet Device, MID)或可穿戴式设备 (Wearable Device) 等终端侧设备, 需要说明的是, 在本公开实施例中并不限定终端 11 的具体类型。 上述网络设备 12可以是 5G基站, 或者以后版本的基站, 或者 其他通信系统中的基站, 或者称之为节点 B, 演进节点 B, 或者传输接收点 (Transmission Reception Point, TRP) , 或者接入点 (Access Point, AP) , 或 者所述领域中其他词汇, 只要达到相同的技术效果, 所述网络设备不限于特 定技术词汇。 另外, 上述网络设备 12可以是主节点 (Master Node, MN) , 或者辅节点 ( Secondary Node, SN)。 需要说明的是, 在本公开实施例中仅以 5G基站为例, 但是并不限定网络设备的具体类型。
请参见图 2, 图 2 是本公开实施例提供的一种传输资源指示方法的流程 图, 该方法应用于网络设备, 如图 2所示, 包括以下步骤:
步骤 201, 向终端发送第一指示信息, 所述第一指示信息通过位图 bitmap 指示所述终端检测的传输资源,所述传输资源为带宽部分 BWP的侦听子带或 载波聚合的成员载波 CCo
本公开实施例中, 上述第一指示信息可以用于指示非授权频段上的 BWP 资源; 也就是说, 上述 BWP在非授权频段上, 且所述 BWP为所述终端的激 活 BWP。 若基于载波聚合 (Carrier Aggregation, CA) 的传输, 上述第一指 示信息也可以用于指示 CC, 具体的, 指示的该 CC包括非授权频段的 CC。 另外, 在一可选实施例中, 可以对授权频段的 CC进行指示; 在另一可选实 施例中, 可以不对授权频段的 CC进行指示。 也就是说, 上述 CC包括授权频 段的 CC, 或上述 CC不包括授权频段的 CCo
应理解, 当不对授权频段的 CC进行指示时, 终端需要在授权频段的 CC 上进行检测。
需要说明的是, 网络设备对不同的终端指示的传输资源可以相同也可以 不同。 此外, 若指示的传输资源仅包含非授权频段的资源, 则网络设备对终 端指示的传输资源可以为信道侦听为空的资源的全集或者子集。 例如, 在本 实施例中, 当传输资源为 BWP的侦听子带时, 上述传输资源可以为信道侦听 为空的侦听子带中的全部或者部分侦听子带; 当传输资源为载波聚合的 CC 时, 上述传输资源可以包括激活 CC 中信道侦听为空的全部或者部分非授权 频段 CC。 此外, 当传输资源为载波聚合的 CC时, 传输资源还包括所述网络 设备为所述终端配置的 CC中的授权频段 CC。
在一可选实施例中, 上述终端检测是指信道和 /或信号检测, 具体可以包 括物理下行控制信道 PDCCH盲检、 PDSCH检测、发现参考信号 DRS检测、 信道状态信息 CSI测量和接收信号强度 RSSI测量中的至少一项。
本公开实施例中,终端在所述网络设备的 (Channel Occupancy Time, COT) 内接收到所述第一指示信息后,在网络设备剩余的 COT内对所述传输资源进 行检测。 具体的, 终端在接收到该第一指示信息之前, 在所有传输资源上进 行检测; 终端在接收到该第一指示信息后, 可以在 COT的剩余 COT内按照 第一指示信息指示的传输资源进行检测; 在 COT结束后, 终端重新在所有传 输资源上进行检测。在本实施例中, 所有传输资源是指激活 BWP的所有侦听 子带或者终端的所有激活 CCo 以传输资源是激活 BWP的侦听子带为例进行 详细说明:
如图 3所示, BWP的侦听子带数量有 4个, 包括侦听子带 1、 侦听子带 2、 侦听子带 3和侦听子带 4, 网络设备侦听到侦听子带 2为忙碌状态。 COT 包括 7个时隙 slot, UE1和 UE2在 COT的第一个 slot内接收到网络设备发送 的第一指示信息, 其中, 网络设备发送给 UE1的第一指示信息指示 UE1的传 输资源为侦听子带 3和 4 ; 网络设备发送给 UE2的第一指示信息指示 UE1的 传输资源为侦听子带 1、 3和 4。 UE1接收到第一指示信息后, 将会在网络设 备剩余的 COT内在侦听子带 3和 4上进行信道和 /或信号检测; UE2接收到 第一指示信息后, 将会在网络设备剩余的 COT内在侦听子带 1、 3和 4上进 行信道和 /或信号检测。 本实施方式中, 在 COT开始前、 COT 的第一个 slot 以及 COT结束后, UE1和 UE2均在侦听子带 1、 2、 3和 4上进行信道和 /或 信号检测。
应当说明的是, 若在网络设备剩余的 COT内, 网络设备指示了新的第一 指示信息, 则按照新的第一指示信息指示的传输资源进行信道和 /或信号检测。 例如, 网络设备在时隙 4向 UE2指示传输资源为侦听子带 1和 3, 则 UE2从 时隙 5开始在侦听子带 1和 3上进行信道和 /或信号检测直到 COT结束。
本公开实施例, 由于网络设备通过位图 bitmap指示所述终端检测的传输 资源, 从而可以使得终端在接收到第一指示信息后, 在 COT内按照该第一指 示信息在对应的传输资源上进行检测。 因此, 可以减少终端检测的传输资源 的数量, 从而降低终端耗电量。
应当说明的是, 通过 bitmap指示上述传输资源的方式可以根据实际需要 进行设置, 以下对此进行详细说明:
在一实施方式中上述传输资源为 BWP的侦听子带, 具体的, 上述 bitmap 可以指示所述 BWP所有侦听子带的传输状态; 其中, 所述 bitmap的每一个 比特位对应指示每一个侦听子带是否用于传输。
在本实施方式, 所述 bitmap的比特数为所述 BWP的侦听子带个数或者 所述网络设备为所述终端配置的带宽最大的 BWP的侦听子带个数。
在第一实施方案中:所述 bitmap的比特数为所述 BWP的侦听子带个数。 若当前激活的 BWP的侦听子带个数为 2, 则 bitmap的比特数为 2 ; 若当前激 活的 BWP的侦听子带个数为 4, 则 bitmap的比特数为 4。 这样, 可以在侦听 子带的个数较少的情况下, 减小数据传输量。
在第二实施方案中: 所述 bitmap的比特数为网络设备为所述终端配置的 带宽最大的 BWP的侦听子带个数。 具体的, 该 bitmap的比特数可以与网络 设备为终端配置的 BWP中带宽最大的 BWP相关, 如终端配置的 4个 BWP 的带宽分别是 20MHz、 40MHz、 80MHz 和 100MHz。 以侦听子带的带宽为 20MHz为例,此时 bitmap的比特数可以为 5。这样,可以固定 bitmap的大小。
在本实施例方式中,每个比特位指示了对应索引的侦听子带的传输状态, 以指示对应的侦听子带是否用于传输。如图 3所示, 若所述 BWP的侦听子带 的数量为 4个, bitmap的比特数为 4, 具体可以采用 0表示未传输, 采用 1 表示传输。 若 bitmap为 0011, 可以表示网络设备在侦听子带 1上未传输, 侦 听子带 2上未传输, 侦听子带 3上传输, 侦听子带 4上传输。 这样, 终端可 以在接收到第一指示信息后, 在网络设备剩余的 COT内只对侦听子带 3和 4 进行检测。
在另一实施方式中,上述传输资源为载波聚合的 CC,具体的,上述 bitmap 指示所述网络设备为所述终端配置的所有 CC或者所述终端所有激活 CC的传 输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传 输。
在本实施例中, bitmap的比特数具体可以为所述终端配置的所有 CC的 个数,或所述终端所有激活 CC的个数。例如,有 8个载波聚合,只有 CC1-CC4 激活。此时,当 bitmap指示所述网络设备为所述终端配置的所有 CC时, bitmap 的比特数为 8 ;当 bitmap指示所述网络设备为所述终端所有激活 CC时, bitmap 的比特数为 4。
可选的, 若一个 CC在授权频段上, 则对该 CC可以不进行指示, 这样可 以减少 bitmap的数量。 具体的, 上述 4个激活 CC中 CC1为授权频段 CC。 则该 CC1可以不进行指示, 或者指示为 gNB的传输载波。 当 CC1不进行指 示时, 上述 bitmap的数量可以减为 3bit。
可选的, 当所述传输资源为所述 BWP的侦听子带时, 所述第一指示信息 承载于所述终端的专有 DCI中。 当所述传输资源为载波聚合的 CC时, 所述 第一指示信息承载于所述终端的专有 DCI或者群组公共 (group common) DCI 中。
可选的, 对于基于载波聚合的网络设备, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子带的传输状态时,所述向终端发送第一指示信 息包括:
在第一 CC或第二 CC上向所述终端发送所述第一指示信息; 其中, 所述 第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除所述 第一 CC之外的 CC ;
当在所述第二 CC 上向所述终端发送所述第一指示信息时, 所述方法还 包括: 在所述第二 cc 上向所述终端发送第二指示信息, 所述第二指示信息指 示所述第一 CC的索引。
应当说明的, 终端可以支持一个或者至少两个激活 BWP, 若终端支持至 少两个激活 BWP, 则网络设备还需要发送第三指示信息, 该第三指示信息指 示 BWP的索引。
本实施例中, 上述第二 CC为授权频段 CC或者非授权频段 CC。
具体的, 当在所述第二 CC 上向所述终端发送所述第一指示信息和第二 指示信息时, 上述第一指示信息和第二指示信息可以承载于所述第二 CC 跨 载波调度的下行控制信息 DCI, 或者所述第二 CC 自调度的 DCI中预设的域 (filed) o
为了更好的理解本公开, 以下通过传输资源为 BWP的侦听子带, 传输资 源为载波聚合的 CC两个不同的实现方案进行详细说明。
在第一实施方案中, 传输资源为 BWP的侦听子带。
具体的, gNB向 UE指示所述 BWP实际传输的 LBT subband。 在一可选 实施例中, 该实际传输的 LBT subband可以是 gNB侦听到的所有信道为空的 LBT subband,如图 3中的 LBT subband 1、 3和 4。此外,在另一可选实施中, 该实际传输的 LBT subband 也可以是 gNB 侦听到的所有信道为空的 LBT subband中的一个子集; 例如, 针对 UE1 , gNB只在 LBT subband 3和 4上调 度数据, 则只需要给 UE1指示 LBT subband 3和 4就可以。
gNB在 DCI中使用 bitmap向 UE进行指示,该 DCI可以是 UE-specific DCI。 具体的, gNB指示给每个 UE的传输的 LBT subband可以不同。
在一实施例中, 该 bitmap的大小可以是当前激活 BWP的 LBT subband 的个数。 例如当前 BWP带宽是 80MHz, 则 bitmap大小为 4 bits o 在另一实施 例中,该 bitmap的大小也可以是 UE配置的最大 BWP的 LBT subband个数。 例如 gNB给 UE配置了 4个 BWP, 带宽分别为 20MHz、 40MHz、 80MHz 和 100MHz, 则该 bitmap大小为 5 bits。 后者的好处是此 bitmap大小固定, 不需 要随着激活 BWP 变化。 其中, 每个比特位指示了对应索引的 LBT subband 的状态, 即传输或者未传输。 例如 1011表示了图 3中 LBT subband 1、 3和 4 为实际传输的 LBT subbando 此外, 还可以直接向 UE指示 LBT subband的索引 index, 当需要指示多 个 LBT subband时,采用 LBT subband的索引指示方式,需要的比特数较多。 例如, 在图 3中, 一共 4个 LBT subband, 则需要 2bit指示每个 LBT subband 的索引。若 gNB向 UE指示传输的 LBT subband为 3和 4 ,则该指示为 1011。 若 gNB向 UE指示传输的 LBT subband为 1、 3和 4.则该指示为 001011。
对于基于载波聚合的 gNB, 且 UE 在每个载波上只有一个激活的 BWP 的情况, LBT subband指示可以在该 BWP所在的载波上进行指示, 也可以在 聚合的其他载波上进行指示, 也就是说, 可以跨载波 (cross-carrier) 侦听子 带指示。 其他载波可以是未授权 unlicensed 载波, 也可以是授权 licensed 载 波。 对于 cross-carrier指示, 该 DCI可以是对被指示 carrier进行 cross-carrier 调度的 DCI, 也可以是其他 carrier 自调度的 DCI中的一个特定的域 (filed)。 该域需要与 carrier index指示结合使用。也就是说, gNB需要给 UE指示 carrier 的 index和该 carrier上传输 B WP的 LBT subband。若 UE支持多个激活的 BWP, 则相应的 BWP index也需要进行指示。
可选的, UE在接收到 LBT subband指示之前在所有的 subband上进行信 道和 /或信号检测, 在接收到 gNB传输的 LBT subband指示之后, 在 gNB的 COT内, UE只在指示的 LBT subband上进行信道和 /或信号检测。 当 gNB的 COT结束时, UE重新在所有的 LBT subband上进行信道和 /或信号检测。 如 图 3所示, UE在 gNB的 COT的第一个 slot内接收到 gNB的传输 LBT subband 指示。在此之前,所有 UE(UE1和 UE2)在所有 LBT subband,即 LBT subband 1、 2、 3和 4上进行信道和 /或信号检测。 在收到指示后, 根据指示, UE1在 LBT subband 3和 4上进行信道和 /或信号检测, 而 UE2在 LBT subband 1、 3 和 4上进行信道和 /或信号检测。 此外, 若 DCI在 gNB的 COT内指示了新的 gNB传输的 LBT subband,则 UE根据新的指示在相应的 LBT subband上进行 信道和 /或信号检测。 也就是说, UE 需要进行信道和 /或信号检测的 LBT subband可以在 gNB的 COT内进行多次更新。 当 gNB的 COT结束后, UE1 和 UE2重新在所有的 LBT subband上进行信道和 /或信号检测。
在第二实施方案中, 传输资源为载波聚合的 CC。
具体的, 对于载波聚合的传输, 为了减少 UE的信道和 /或信号检测, gNB 同样可以向 UE指示 gNB的传输载波, 该指示的传输载波可以是所有信道侦 听为空的载波, 也可以是其中的一个子集。
例如有 4个载波进行聚合,其中 CC1是主载波, CC2-CC4分别是辅载波。 若其中一个载波在授权频段, 则可以不进行指示, 或者指示为 gNB的传输载 波。 例如主载波为授权频段载波, 则可以忽略不指示或者一直指示为 gNB的 传输载波。
其中, 传输载波的指示可以在 UE-specific DCI中指示, 也可以在 group common DCI中指示。该指示可以用 bitmap指示, 也可以使用 CC的 index进 行指示。 当使用 bitmap指示时, bitmap的大小可以是 gNB给 UE配置的所有 的进行载波聚合的 CC的个数, 也可以是实际激活了的 CC的个数, 还可以是 前两者个数减去授权频段 CC个数。
综上所述, 4个载波进行聚合, CC1是授权频段, CC2-CC4是非授权频 段。 Bitmap可以是 4bits, 分别表示 4个载波的状态, 其中 CC1 对应的比特 永远指示该载波为 gNB的传输载波。 CC2-CC4对应的比特则指示这三个载波 的状态。 此外, 也可以只用 3bits指示 CC2-CC4的状态。 同理, 所有 gNB可 以向所有 UE指示相同的 gNB的传输载波, 可以在 UE-specific DCI中向不同 的 UE指示不同的 gNB的传输载波。 若 gNB给 UE配置了 8个载波, 只有 CC1-CC4激活, 则可以用 8bit的 bitmap进行指示, 所有非激活的载波都被指 示为非 gNB的传输载波。
此外, 还可以直接向 UE直接指示载波的索引 index, 当需要指示多个信 道为空的载波时, 采用载波的索引指示方式, 需要的比特数较多。
可选的, UE在接收到 gNB的传输载波指示之前在所有的 CC上信道和 / 或信号检测, 在接收到 gNB的传输载波指示之后, 在 gNB的 COT 内, UE 只在指示的载波上信道和 /或信号检测。 当 gNB的 COT结束时, UE重新在 所有的载波上信道和 /或信号检测。 若授权频段载波没有被指示, 则 UE默认 一直在授权频段上信道和 /或信号检测。
应当说明的是, 上述实施例中, 主要针对下行传输, 同样的, 针对上行 传输也可以在上行控制信息 (Uplink Control Information, UCI) 中按照同样 的方式对 UE传输的 LBT subband或者 CC进行指示。 gNB只需要在接收到 指示后, 在 UE 的 COT内, 对指示的 LBT subband或者 CC进行信道和 /或信 号检测检测。 在其他时候, gNB在所有调度或者配置给 UE的 LBT subband 上进行信道和 /或信号检测; 或者 gNB在所有调度或者配置给 UE的 CC上进 行信道和 /或信号检测。 为了更好的理解上行传输, 以下采用 LBT subband为 例进行说明。 其中上行信道和 /或信号检测包括但不局限于物理上行控制信道 PUCCH 检测, 物理上行共享信道 PUSCH 检测, 探测参考信号 ( Sounding Reference Signal) SRS检测等。
例如, UE的激活 BWP 的 LBT subband的数量为 4个, 分别是 LBT subband 1、 LBT subband 2、 LBT subband 3和 LBT subband 4。 网络设备调度 UE在这 4个 LBT subband上进行上行数据传输。若 UE通过 4个比特位 bitmap 为 0001 指示了传输资源, 可以表示 UE在 LBT subband 1 上未传输, LBT subband 2上未传输, LBT subband3上未传输, LBT subband 4上传输。这样, 网络设备可以在接收到传输资源的指示后, 在 UE剩余的 COT内只对侦听子 带 4进行检测。 同时可以在后续调度中只在 LBT subband 4上调度该 UE。
应理解, 对于载波聚合传输时, CC的指示同 LBT subband类似, 在此不 再赘述。
请参见图 4, 图 4 是本公开实施例提供的一种传输方法的流程图, 该方 法应用于终端, 如图 4所示, 包括以下步骤:
步骤 401, 接收网络设备发送的第一指示信息, 所述第一指示信息通过 位图 bitmap指示检测的传输资源, 所述传输资源为带宽部分 BWP的侦听子 带或载波聚合的成员载波 CC;
步骤 402, 在所述网络设备的 COT内接收到所述第一指示信息后, 在网 络设备剩余的 COT内对所述传输资源进行检测。
可选的, 所述 BWP 在非授权频段上, 且所述 BWP 为所述终端的激活 BWP。
可选的, 所述 CC包括非授权频段的 CCo
可选的, 所述 CC包括或不包括授权频段的 CCo
可选的, 当所述 CC不包括授权频段 CC时, 所述方法还包括: 一直对所述授权频段 CC进行检测。 可选的, 所述传输资源为信道侦听为空的侦听子带中的全部或者部分侦 听子带。
可选的, 所述传输资源包括所述网络设备为所述终端配置的 CC 中信道 侦听为空的全部或者部分非授权频段 CC。
可选的, 所述传输资源还包括所述网络设备为所述终端配置的 CC 中的 授权频段 CCo
可选的, 所述 bitmap指示所述 BWP所有侦听子带的传输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
可选的, 所述 bitmap的比特数为所述 BWP的侦听子带个数或者所述网 络设备为所述终端配置的带宽最大的 BWP的侦听子带个数。
可选的, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子 带的传输状态时, 所述接收网络设备发送的第一指示信息包括:
在第一 CC或第二 CC上接收网络设备发送的所述第一指示信息; 其中, 所述第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除 所述第一 CC之外的 CC ;
当在所述第二 CC 上接收网络设备发送的所述第一指示信息时, 所述方 法还包括:
在所述第二 CC 上接收网络设备发送的第二指示信息, 所述第二指示信 息指示所述第一 CC的索引。
可选的, 所述第二 CC为授权频段 CC或者非授权频段 CC。
可选的, 所述 bitmap 用于指示所述网络设备为所述终端配置的所有 CC 或者所述终端所有激活 CC的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。 可选的, 当所述传输资源为 BWP的侦听子带时, 所述第一指示信息承载 于所述终端专有 DCI中。
可选的, 当所述传输资源为载波聚合的 CC 时, 所述第一指示信息承载 于所述终端专有 DCI或群组公共 DCI中。
可选的, 所述对所述传输资源进行检测包括物理下行控制信道 PDCCH 盲检、 PDSCH检测、 发现参考信号 DRS检测、 信道状态信息 CSI测量和接 收信号强度 RSSI测量中的至少一项。
可选的, 所述方法还包括:
在所述 COT内接收到所述第一指示信息之前以及所述 COT结束后, 在 所述 BWP所有侦听子带或当前激活的全部 CC上进行检测。
需要说明的是, 本实施例作为图 2所示的实施例对应的终端的实施方式, 其具体的实施方式可以参见图 2所示的实施例相关说明, 以及达到相同的有 益效果, 为了避免重复说明, 此处不再赘述。
请参见图 5, 图 5是本公开实施例提供的一种网络设备的结构图, 如图 5 所示, 网络设备 500包括:
发送模块 501, 用于向终端发送第一指示信息, 所述第一指示信息通过 位图 bitmap 指示所述终端检测的传输资源, 所述传输资源为带宽部分 BWP 的侦听子带或载波聚合的成员载波 CC。
可选的, 所述 BWP 在非授权频段上, 且所述 BWP 为所述终端的激活 BWP。
可选的, 所述 CC包括非授权频段的 CCo
可选的, 所述 CC包括或不包括授权频段的 CCo
可选的, 所述 bitmap指示所述 BWP所有侦听子带的传输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
可选的, 所述 bitmap的比特数为所述 BWP的侦听子带个数或者所述网 络设备为所述终端配置的带宽最大的 BWP的侦听子带个数。
可选的, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子 带的传输状态时, 所述发送模块具体用于:在第一 CC或第二 CC上向所述终 端发送所述第一指示信息; 其中, 所述第一 CC为所述 BWP所在的 CC, 所 述第二 CC为载波聚合的 CC中除所述第一 CC之外的 CC;
当在所述第二 CC 上向所述终端发送所述第一指示信息时, 所述发送模 块还用于:
第二在所述第二 CC 上向所述终端发送第二指示信息, 所述第二指示信 息指示所述第一 cc的索引。
可选的, 所述第二 CC为授权频段 CC或者非授权频段 CC。
可选的, 所述 bitmap指示所述网络设备为所述终端配置的所有 CC或者 所述终端所有激活 CC的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。 可选的, 当所述传输资源为 BWP的侦听子带时, 所述第一指示信息承载 于所述终端专有 DCI中。
可选的, 当所述传输资源为载波聚合的 CC 时, 所述第一指示信息承载 于所述终端专有 DCI或者群组公共 DCI中。
可选的, 所述终端检测包括物理下行控制信道 PDCCH盲检、 PDSCH检 测、 发现参考信号 DRS检测、 信道状态信息 CSI测量和接收信号强度 RSSI 测量中的至少一项。
本公开实施例提供的网络设备能够实现图 2的方法实施例中网络设备实 现的各个过程, 其具体的实施方式可以参见图 2所示的实施例相关说明, 以 及达到相同的有益效果, 为了避免重复说明, 此处不再赘述。
请参见图 6, 图 6是本公开实施例提供的一种终端的结构图, 如图 6所 示, 终端 600包括:
接收模块 601, 用于接收网络设备发送的第一指示信息, 所述第一指示 信息通过位图 bitmap 指示检测的传输资源, 所述传输资源为带宽部分 BWP 的侦听子带或载波聚合的成员载波 CC ;
检测模块 602, 用于在所述网络设备的 COT内接收到所述第一指示信息 后, 在网络设备剩余的 COT内对所述传输资源进行检测。
可选的, 所述 BWP 在非授权频段上, 且所述 BWP 为所述终端的激活 BWP。
可选的, 所述 CC包括非授权频段的 CCo
可选的, 所述 CC包括或不包括授权频段的 CCo
可选的, 当所述 CC不包括授权频段 CC时, 所述检测模块还用于: 一直 对所述授权频段 CC进行检测。
可选的, 所述传输资源为信道侦听为空的侦听子带中的全部或者部分侦 听子带。
可选的, 所述传输资源包括所述网络设备为所述终端配置的 CC 中信道 侦听为空的全部或者部分非授权频段 CC。
可选的, 所述传输资源还包括所述网络设备为所述终端配置的 CC 中的 授权频段 CCo
可选的, 所述 bitmap指示所述 BWP所有侦听子带的传输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
可选的, 所述 bitmap的比特数为所述 BWP的侦听子带个数或者所述网 络设备为所述终端配置的带宽最大的 BWP的侦听子带个数。
可选的, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子 带的传输状态时, 所述接收模块 601具体用于:在第一 CC或第二 CC上接收 网络设备发送的所述第一指示信息; 其中, 所述第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除所述第一 CC之外的 CC ;
当在所述第二 CC 上接收网络设备发送的所述第一指示信息时, 所述接 收模块还用于:
在所述第二 CC 上接收网络设备发送的第二指示信息, 所述第二指示信 息指示所述第一 CC的索引。
可选的, 所述第二 CC为授权频段 CC或者非授权频段 CC。
可选的, 所述 bitmap 用于指示所述网络设备为所述终端配置的所有 CC 或者所述终端所有激活 CC的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。 可选的, 当所述传输资源为 BWP的侦听子带时, 所述第一指示信息承载 于所述终端专有 DCI中。
可选的, 当所述传输资源为载波聚合的 CC 时, 所述第一指示信息承载 于所述终端专有 DCI或群组公共 DCI中。
可选的, 所述对所述传输资源进行检测包括物理下行控制信道 PDCCH 盲检、 PDSCH检测、 发现参考信号 DRS检测、 信道状态信息 CSI测量和接 收信号强度 RSSI测量中的至少一项。 可选的, 所述检测模块 602还用于: 在所述 COT内接收到所述第一指示 信息之前以及所述 COT结束后, 在所述 BWP所有侦听子带或当前激活的全 部 CC上进行检测。
本公开实施例提供的终端能够实现图 4的方法实施例中终端实现的各个 过程, 为避免重复, 这里不再赘述。
参见图 7, 图 7是本公开实施例提供的另一种网络设备的结构图, 如图 7 所示, 该网络设备 700包括: 处理器 701、 收发机 702、 存储器 703和总线接 口, 其中:
收发机 702 用于, 向终端发送第一指示信息, 所述第一指示信息通过位 图 bitmap指示所述终端检测的传输资源, 所述传输资源为带宽部分 BWP的 侦听子带或载波聚合的成员载波 CC。
可选的, 所述 BWP 在非授权频段上, 且所述 BWP 为所述终端的激活 BWP。
可选的, 所述 CC包括非授权频段的 CCo
可选的, 所述 CC包括或不包括授权频段的 CCo
可选的, 所述 bitmap指示所述 BWP所有侦听子带的传输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
可选的, 所述 bitmap的比特数为所述 BWP的侦听子带个数或者所述网 络设备为所述终端配置的带宽最大的 BWP的侦听子带个数。
可选的, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子 带的传输状态时, 所述收发机 702具体用于:
在第一 CC或第二 CC上向所述终端发送所述第一指示信息; 其中, 所述 第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除所述 第一 CC之外的 CC ;
当在所述第二 CC 上向所述终端发送所述第一指示信息时, 所述收发机 702还用于:
在所述第二 CC 上向所述终端发送第二指示信息, 所述第二指示信息指 示所述第一 CC的索引。 可选的, 所述第二 CC为授权频段 CC或者非授权频段 CC。
可选的, 所述 bitmap指示所述网络设备为所述终端配置的所有 CC或者 所述终端所有激活 CC的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。 可选的, 当所述传输资源为 BWP的侦听子带时, 所述第一指示信息承载 于所述终端专有 DCI中。
可选的, 当所述传输资源为载波聚合的 CC 时, 所述第一指示信息承载 于所述终端专有 DCI或者群组公共 DCI中。
可选的, 所述终端检测包括物理下行控制信道 PDCCH盲检、 PDSCH检 测、 发现参考信号 DRS检测、 信道状态信息 CSI测量和接收信号强度 RSSI 测量中的至少一项。
在图 7 中, 总线架构可以包括任意数量的互联的总线和桥, 具体由处理 器 701代表的一个或多个处理器和存储器 703代表的存储器的各种电路链接 在一起。 总线架构还可以将诸如外围设备、 稳压器和功率管理电路等之类的 各种其他电路链接在一起, 这些都是本领域所公知的, 因此, 本文不再对其 进行进一步描述。 总线接口提供接口。 收发机 702可以是多个元件, 即包括 发送机和接收机, 提供用于在传输介质上与各种其他装置通信的单元。 针对 不同的用户设备, 用户接口 704还可以是能够外接内接需要设备的接口, 连 接的设备包括但不限于小键盘、 显示器、 扬声器、 麦克风、 操纵杆等。
处理器 701 负责管理总线架构和通常的处理, 存储器 703可以存储处理 器 701在执行操作时所使用的数据。
可选的, 本公开实施例还提供一种网络设备, 包括处理器 701, 存储器 703 , 存储在存储器 703上并可在所述处理器 701上运行的计算机程序, 该计 算机程序被处理器 701 执行时实现上述传输资源指示方法实施例的各个过程, 且能达到相同的技术效果, 为避免重复, 这里不再赘述。
图 8为实现本公开各个实施例的一种终端的硬件结构示意图,该终端 800 包括但不限于: 射频单元 801、 网络模块 802、 音频输出单元 803、 输入单元 804、 传感器 805、 显示单元 806、 用户输入单元 807、 接口单元 808、 存储器 809、 处理器 810、 以及电源 811等部件。 本领域技术人员可以理解, 图 8中 示出的终端结构并不构成对终端的限定, 终端可以包括比图示更多或更少的 部件, 或者组合某些部件, 或者不同的部件布置。 在本公开实施例中, 终端 包括但不限于手机、 平板电脑、 笔记本电脑、 掌上电脑、 车载终端、 可穿戴 设备、 以及计步器等。
射频单元 801 用于, 接收网络设备发送的第一指示信息, 所述第一指示 信息通过位图 bitmap 指示检测的传输资源, 所述传输资源为带宽部分 BWP 的侦听子带或载波聚合的成员载波 CC ;
处理器 810用于,在所述网络设备的 COT内接收到所述第一指示信息后, 在网络设备剩余的 COT内对所述传输资源进行检测。
可选的, 所述 BWP 在非授权频段上, 且所述 BWP 为所述终端的激活 BWP。
可选的, 所述 CC包括非授权频段的 CCo
可选的, 所述 CC包括或不包括授权频段的 CCo
可选的, 当所述 CC不包括授权频段 CC时, 所述处理器 810还用于: 一直对所述授权频段 CC进行检测。
可选的, 所述传输资源为信道侦听为空的侦听子带中的全部或者部分侦 听子带。
可选的, 所述传输资源包括所述网络设备为所述终端配置的 CC 中信道 侦听为空的全部或者部分非授权频段 CC。
可选的, 所述传输资源还包括所述网络设备为所述终端配置的 CC 中的 授权频段 CCo
可选的, 所述 bitmap指示所述 BWP所有侦听子带的传输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
可选的, 所述 bitmap的比特数为所述 BWP的侦听子带个数或者所述网 络设备为所述终端配置的带宽最大的 BWP的侦听子带个数。
可选的, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子 带的传输状态时, 所述射频单元 801具体用于:
在第一 CC或第二 CC上接收网络设备发送的所述第一指示信息; 其中, 所述第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除 所述第一 CC之外的 CC ;
当在所述第二 CC 上接收网络设备发送的所述第一指示信息时, 所述射 频单元 801还用于:
在所述第二 CC 上接收网络设备发送的第二指示信息, 所述第二指示信 息指示所述第一 CC的索引。
可选的, 所述第二 CC为授权频段 CC或者非授权频段 CC。
可选的, 所述 bitmap 用于指示所述网络设备为所述终端配置的所有 CC 或者所述终端所有激活 CC的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。 可选的, 当所述传输资源为 BWP的侦听子带时, 所述第一指示信息承载 于所述终端专有 DCI中。
可选的, 当所述传输资源为载波聚合的 CC 时, 所述第一指示信息承载 于所述终端专有 DCI或群组公共 DCI中。
可选的, 所述对所述传输资源进行检测包括物理下行控制信道 PDCCH 盲检、 PDSCH检测、 发现参考信号 DRS检测、 信道状态信息 CSI测量和接 收信号强度 RSSI测量中的至少一项。
可选的, 所述处理器 810还用于:
在所述 COT内接收到所述第一指示信息之前以及所述 COT结束后, 在 所述 BWP所有侦听子带或当前激活的全部 CC上进行检测。
应理解的是, 本公开实施例中, 射频单元 801 可用于收发信息或通话过 程中, 信号的接收和发送, 具体的, 将来自基站的下行数据接收后, 给处理 器 810处理; 另外, 将上行的数据发送给基站。 通常, 射频单元 801 包括但 不限于天线、 至少一个放大器、 收发信机、 耦合器、 低噪声放大器、 双工器 等。 此外, 射频单元 801还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块 802 为用户提供了无线的宽带互联网访问, 如帮助用 户收发电子邮件、 浏览网页和访问流式媒体等。
音频输出单元 803可以将射频单元 801或网络模块 802接收的或者在存 储器 809 中存储的音频数据转换成音频信号并且输出为声音。 而且, 音频输 出单元 803还可以提供与终端 800执行的特定功能相关的音频输出(例如, 呼 叫信号接收声音、 消息接收声音等等)。 音频输出单元 803包括扬声器、 蜂鸣 器以及受话器等。
输入单元 804用于接收音频或视频信号。 输入单元 804可以包括图形处 理器(Graphics Processing Unit, GPU) 8041和麦克风 8042, 图形处理器 8041 对在视频捕获模式或图像捕获模式中由图像捕获装置 (如摄像头) 获得的静 态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元 806 上。 经图形处理器 8041处理后的图像帧可以存储在存储器 809 (或其它存储 介质) 中或者经由射频单元 801或网络模块 802进行发送。 麦克风 8042可以 接收声音, 并且能够将这样的声音处理为音频数据。 处理后的音频数据可以 在电话通话模式的情况下转换为可经由射频单元 801 发送到移动通信基站的 格式输出。
终端 800还包括至少一种传感器 805, 比如光传感器、 运动传感器以及 其他传感器。 具体地, 光传感器包括环境光传感器及接近传感器, 其中, 环 境光传感器可根据环境光线的明暗来调节显示面板 8061的亮度,接近传感器 可在终端 800移动到耳边时, 关闭显示面板 8061 和 /或背光。 作为运动传感 器的一种, 加速计传感器可检测各个方向上 (一般为三轴) 加速度的大小, 静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、 相关游戏、 磁力计姿态校准)、 振动识别相关功能 (比如计步器、 敲击) 等; 传感器 805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、 陀螺仪、 气压计、 湿度计、 温度计、 红外线传感器等, 在此不再赘述。
显示单元 806 用于显示由用户输入的信息或提供给用户的信息。 显示单 元 806可包括显示面板 8061, 可以采用液晶显示器 (Liquid Crystal Display, LCD)、 有机发光二极管 (Organic Light-Emitting Diode, OLED) 等形式来配 置显示面板 8061。
用户输入单元 807 可用于接收输入的数字或字符信息, 以及产生与终端 的用户设置以及功能控制有关的键信号输入。 具体地, 用户输入单元 807 包 括触控面板 8071 以及其他输入设备 8072。 触控面板 8071, 也称为触摸屏, 可收集用户在其上或附近的触摸操作 (比如用户使用手指、 触笔等任何适合 的物体或附件在触控面板 8071上或在触控面板 8071附近的操作)。触控面板 8071可包括触摸检测装置和触摸控制器两个部分。 其中, 触摸检测装置检测 用户的触摸方位, 并检测触摸操作带来的信号, 将信号传送给触摸控制器; 触摸控制器从触摸检测装置上接收触摸信息, 并将它转换成触点坐标, 再送 给处理器 810, 接收处理器 810 发来的命令并加以执行。 此外, 可以采用电 阻式、 电容式、 红外线以及表面声波等多种类型实现触控面板 8071。 除了触 控面板 8071, 用户输入单元 807还可以包括其他输入设备 8072。 具体地, 其 他输入设备 8072可以包括但不限于物理键盘、 功能键 (比如音量控制按键、 开关按键等)、 轨迹球、 鼠标、 操作杆, 在此不再赘述。
可选的, 触控面板 8071可覆盖在显示面板 8061上, 当触控面板 8071检 测到在其上或附近的触摸操作后,传送给处理器 810以确定触摸事件的类型, 随后处理器 810根据触摸事件的类型在显示面板 8061上提供相应的视觉输出。 虽然在图 8中, 触控面板 8071与显示面板 8061是作为两个独立的部件来实 现终端的输入和输出功能, 但是在某些实施例中, 可以将触控面板 8071与显 示面板 8061集成而实现终端的输入和输出功能, 具体此处不做限定。
接口单元 808为外部装置与终端 800连接的接口。 例如, 外部装置可以 包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线 数据端口、 存储卡端口、 用于连接具有识别模块的装置的端口、 音频输入 /输 出(I/O)端口、 视频 I/O端口、 耳机端口等等。 接口单元 808可以用于接收来 自外部装置的输入(例如, 数据信息、 电力等等)并且将接收到的输入传输到终 端 800 内的一个或多个元件或者可以用于在终端 800和外部装置之间传输数 据。
存储器 809可用于存储软件程序以及各种数据。 存储器 809可主要包括 存储程序区和存储数据区, 其中, 存储程序区可存储操作系统、 至少一个功 能所需的应用程序 (比如声音播放功能、 图像播放功能等) 等; 存储数据区 可存储根据手机的使用所创建的数据(比如音频数据、 电话本等)等。 此外, 存储器 809可以包括高速随机存取存储器, 还可以包括非易失性存储器, 例 如至少一个磁盘存储器件、 闪存器件、 或其他易失性固态存储器件。
处理器 810是终端的控制中心, 利用各种接口和线路连接整个终端的各 个部分, 通过运行或执行存储在存储器 809内的软件程序和 /或模块, 以及调 用存储在存储器 809 内的数据, 执行终端的各种功能和处理数据, 从而对终 端进行整体监控。 处理器 810可包括一个或多个处理单元; 可选的, 处理器 810 可集成应用处理器和调制解调处理器, 其中, 应用处理器主要处理操作 系统、 用户界面和应用程序等, 调制解调处理器主要处理无线通信。 可以理 解的是, 上述调制解调处理器也可以不集成到处理器 810中。
终端 800还可以包括给各个部件供电的电源 811 (比如电池), 可选的, 电源 811 可以通过电源管理系统与处理器 810逻辑相连, 从而通过电源管理 系统实现管理充电、 放电、 以及功耗管理等功能。
另外, 终端 800包括一些未示出的功能模块, 在此不再赘述。
可选的, 本公开实施例还提供一种终端, 包括处理器 810, 存储器 809 , 存储在存储器 809上并可在所述处理器 810上运行的计算机程序, 该计算机 程序被处理器 810执行时实现上述传输方法实施例的各个过程, 且能达到相 同的技术效果, 为避免重复, 这里不再赘述。
本公开实施例还提供一种计算机可读存储介质, 计算机可读存储介质上 存储有计算机程序, 该计算机程序被处理器执行时实现本公开实施例提供的 网络设备侧的传输资源指示方法实施例的各个过程, 或者该计算机程序被处 理器执行时实现本公开实施例提供的终端侧的传输方法实施例的各个过程, 且能达到相同的技术效果, 为避免重复, 这里不再赘述。 其中, 所述的计算 机可读存储介质, 如只读存储器 (Read-Only Memory, 简称 ROM)、 随机存 取存储器 (Random Access Memory, 简称 RAM)、 磁碟或者光盘等。
需要说明的是, 在本文中, 术语“包括”、 “包含’’或者其任何其他变体意 在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者 装置不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包 括为这种过程、 方法、 物品或者装置所固有的要素。 在没有更多限制的情况 下, 由语句“包括一个 ... ...’’限定的要素, 并不排除在包括该要素的过程、 方 法、 物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现, 也可以通过硬 件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本公开的技术 方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出 来, 该计算机软件产品存储在一个存储介质 (如 ROM/RAM、 磁碟、 光盘) 中, 包括若干指令用以使得一台终端 (可以是手机, 计算机, 服务器, 空调 器, 或者基站等) 执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述, 但是本公开并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本公开的启示下, 在不脱离本公开宗旨和权利要求 所保护的范围情况下, 还可做出很多形式, 均属于本公开的保护之内。

Claims

权 利 要 求 书
1、 一种传输资源指示方法, 应用于网络设备, 包括:
向终端发送第一指示信息, 所述第一指示信息通过位图 bitmap指示所述 终端检测的传输资源,所述传输资源为带宽部分 BWP的侦听子带或载波聚合 的成员载波 CC。
2、 根据权利要求 1所述的方法, 其中, 所述 BWP在非授权频段上, 且 所述 BWP为所述终端的激活 BWP。
3、根据权利要求 1所述的方法, 其中, 所述 CC包括非授权频段的 CCo
4、 根据权利要求 3所述的方法, 其中, 所述 CC包括或不包括授权频段 的 CC。
5、 根据权利要求 1所述的方法, 其中, 所述 bitmap指示所述 BWP所有 侦听子带的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
6、根据权利要求 5所述的方法,其中,所述 bitmap的比特数为所述 BWP 的侦听子带个数或者所述网络设备为所述终端配置的带宽最大的 BWP 的侦 听子带个数。
7、 根据权利要求 1 所述的方法, 其中, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子带的传输状态时,所述向终端发送第一指示信 息包括:
在第一 CC或第二 CC上向所述终端发送所述第一指示信息; 其中, 所述 第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除所述 第一 CC之外的 CC ;
当在所述第二 CC 上向所述终端发送所述第一指示信息时, 所述方法还 包括:
在所述第二 CC 上向所述终端发送第二指示信息, 所述第二指示信息指 示所述第一 CC的索引。
8、 根据权利要求 7所述的方法, 其中, 所述第二 CC为授权频段 CC或 者非授权频段 cc。
9、 根据权利要求 1 所述的方法, 其中, 所述 bitmap指示所述网络设备 为所述终端配置的所有 CC或者所述终端所有激活 CC的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。
10、 根据权利要求 2所述的方法, 其中, 当所述传输资源为 BWP的侦听 子带时, 所述第一指示信息承载于所述终端专有下行控制信息 DCI中。
11、 根据权利要求 2所述的方法, 其中, 当所述传输资源为载波聚合的 CC时, 所述第一指示信息承载于所述终端专有 DCI或者群组公共 DCI中。
12、 根据权利要求 1至 11 中任一项所述的方法, 其中, 所述终端检测包 括物理下行控制信道 PDCCH盲检、 物理下行共享信道 PDSCH检测、 发现参 考信号 DRS检测、 信道状态信息 CSI测量和接收信号强度 RSSI测量中的至 少一项。
13、 一种传输方法, 应用于终端, 包括:
接收网络设备发送的第一指示信息, 所述第一指示信息通过位图 bitmap 指示检测的传输资源,所述传输资源为带宽部分 BWP的侦听子带或载波聚合 的成员载波 CC ;
在所述网络设备的信道占用时间 COT内接收到所述第一指示信息后,在 网络设备剩余的 COT内对所述传输资源进行检测。
14、 根据权利要求 13所述的方法, 其中, 所述 BWP在非授权频段上, 且所述 BWP为所述终端的激活 BWP。
15、 根据权利要求 13 所述的方法, 其中, 所述 CC 包括非授权频段的
CC。
16、 根据权利要求 13所述的方法, 其中, 所述 CC包括或不包括授权频 段的 CCo
17、 根据权利要求 16 所述的方法, 其中, 当所述 CC 不包括授权频段 CC时, 所述方法还包括:
一直对所述授权频段 CC进行检测。
18、 根据权利要求 13所述的方法, 其中, 所述传输资源为信道侦听为空 的侦听子带中的全部或者部分侦听子带。
19、 根据权利要求 13所述的方法, 其中, 所述传输资源包括所述网络设 备为所述终端配置的 CC中信道侦听为空的全部或者部分非授权频段 CC。
20、 根据权利要求 19所述的方法, 其中, 所述传输资源还包括所述网络 设备为所述终端配置的 CC中的授权频段 CC。
21、 根据权利要求 13所述的方法, 其中, 所述 bitmap指示所述 BWP所 有侦听子带的传输状态;
其中, 所述 bitmap的每一个比特位对应指示每一个侦听子带是否用于传 输。
22、 根据权利要求 21 所述的方法, 其中, 所述 bitmap的比特数为所述 BWP 的侦听子带个数或者所述网络设备为所述终端配置的带宽最大的 BWP 的侦听子带个数。
23、 根据权利要求 13所述的方法, 其中, 当所述第一指示信息通过所述 bitmap指示所述 BWP的侦听子带的传输状态时,所述接收网络设备发送的第 一指示信息包括:
在第一 CC或第二 CC上接收网络设备发送的所述第一指示信息; 其中, 所述第一 CC为所述 BWP所在的 CC, 所述第二 CC为载波聚合的 CC中除 所述第一 CC之外的 CC ;
当在所述第二 CC 上接收网络设备发送的所述第一指示信息时, 所述方 法还包括:
在所述第二 CC 上接收网络设备发送的第二指示信息, 所述第二指示信 息指示所述第一 CC的索引。
24、 根据权利要求 23所述的方法, 其中, 所述第二 CC为授权频段 CC 或者非授权频段 CC。
25、 根据权利要求 13所述的方法, 其中, 所述 bitmap 用于指示所述网 络设备为所述终端配置的所有 CC或者所述终端所有激活 CC的传输状态; 其中, 所述 bitmap的每一个比特位对应指示每一个 CC是否用于传输。
26、 根据权利要求 13所述的方法, 其中, 当所述传输资源为 BWP的侦 听子带时, 所述第一指示信息承载于所述终端专有下行控制信息 DCI中。
27、 根据权利要求 13所述的方法, 其中, 当所述传输资源为载波聚合的 CC时, 所述第一指示信息承载于所述终端专有 DCI或群组公共 DCI中。
28、 根据权利要求 13所述的方法, 其中, 所述对所述传输资源进行检测 包括物理下行控制信道 PDCCH盲检、 物理下行共享信道 PDSCH检测、 发现 参考信号 DRS检测、 信道状态信息 CSI测量和接收信号强度 RSSI测量中的 至少一项。
29、 根据权利要求 13所述的方法, 还包括:
在所述 COT内接收到所述第一指示信息之前以及所述 COT结束后, 在 所述 BWP所有侦听子带或当前激活的全部 CC上进行检测。
30、 一种网络设备, 包括:
发送模块, 用于向终端发送第一指示信息, 所述第一指示信息通过位图 bitmap指示所述终端检测的传输资源,所述传输资源为带宽部分 BWP的侦听 子带或载波聚合的成员载波 CC。
31、 一种终端, 包括:
接收模块, 用于接收网络设备发送的第一指示信息, 所述第一指示信息 通过位图 bitmap指示检测的传输资源, 所述传输资源为带宽部分 BWP的侦 听子带或载波聚合的成员载波 CC ;
检测模块, 用于在所述网络设备的 COT 内接收到所述第一指示信息后, 在网络设备剩余的 COT内对所述传输资源进行检测。
32、 一种网络设备, 包括: 存储器、 处理器及存储在所述存储器上并可 在所述处理器上运行的程序, 所述程序被所述处理器执行时实现如权利要求 1至 12中任一项所述的传输资源指示方法中的步骤。
33、 一种终端, 包括: 存储器、 处理器及存储在所述存储器上并可在所 述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求 13至 29中任一项所述的传输方法中的步骤。
34、一种计算机可读存储介质,所述计算机可读存储介质上存储有程序, 所述程序被处理器执行时实现如权利要求 1至 12中任一项所述的传输资源指 示方法的步骤, 或者所述程序被处理器执行时实现如权利要求 13至 29 中任 一项所述的传输方法的步骤。
PCT/CN2020/075283 2019-02-27 2020-02-14 传输资源指示方法、传输方法、网络设备和终端 WO2020173313A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217029183A KR20210126090A (ko) 2019-02-27 2020-02-14 전송 자원 지시 방법, 전송 방법, 네트워크 장치 및 단말
EP20763972.5A EP3934146A4 (en) 2019-02-27 2020-02-14 TRANSMISSION RESOURCE INDICATION METHOD, TRANSMISSION METHOD, NETWORK DEVICE AND TERMINAL
BR112021016997A BR112021016997A2 (pt) 2019-02-27 2020-02-14 Método de indicação de recurso de transmissão, método de transmissão, dispositivo de rede e terminal.
SG11202109402YA SG11202109402YA (en) 2019-02-27 2020-02-14 Transmission resource indication method, transmission method, network device, and terminal
JP2021550232A JP7278397B2 (ja) 2019-02-27 2020-02-14 伝送リソース指示方法、伝送方法、ネットワーク機器及び端末
US17/412,490 US20210385866A1 (en) 2019-02-27 2021-08-26 Transmission resource indication method, transmission method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910147710.X 2019-02-27
CN201910147710.XA CN111277384B (zh) 2019-02-27 2019-02-27 传输资源指示方法、传输方法、网络设备和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/412,490 Continuation US20210385866A1 (en) 2019-02-27 2021-08-26 Transmission resource indication method, transmission method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2020173313A1 true WO2020173313A1 (zh) 2020-09-03

Family

ID=71000032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075283 WO2020173313A1 (zh) 2019-02-27 2020-02-14 传输资源指示方法、传输方法、网络设备和终端

Country Status (8)

Country Link
US (1) US20210385866A1 (zh)
EP (1) EP3934146A4 (zh)
JP (1) JP7278397B2 (zh)
KR (1) KR20210126090A (zh)
CN (1) CN111277384B (zh)
BR (1) BR112021016997A2 (zh)
SG (1) SG11202109402YA (zh)
WO (1) WO2020173313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727397A (zh) * 2021-01-05 2022-07-08 大唐移动通信设备有限公司 模式指示方法、终端设备及网络设备
WO2022188023A1 (zh) * 2021-03-09 2022-09-15 北京小米移动软件有限公司 信息处理方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208668A (zh) * 2014-06-06 2015-12-30 上海贝尔股份有限公司 一种载波侦听方法
WO2018171413A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and method for signaling for resource allocation for one or more numerologies
CN108882376A (zh) * 2017-11-10 2018-11-23 华为技术有限公司 一种通信方法、装置以及系统
CN109392176A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 信息发送方法以及相关设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2850897A1 (en) * 2012-05-11 2015-03-25 Nokia Solutions and Networks Oy Wireless communication scheduling on shared spectra
US20160135056A1 (en) * 2014-11-06 2016-05-12 Htc Corporation Device of Handling Measurement Signal on Unlicensed Carrier
WO2016163503A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
US20180042048A1 (en) * 2016-08-03 2018-02-08 Nokia Solutions And Networks Oy Signaling of listen-before-talk type for unlicensed spectrum operation
KR102581097B1 (ko) * 2017-01-04 2023-09-21 인터디지탈 패튼 홀딩스, 인크 무선 시스템들에서의 수신기 피드백
US10856280B2 (en) * 2017-03-15 2020-12-01 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
CN109309550B (zh) * 2017-07-26 2021-10-29 维沃移动通信有限公司 一种bwp的控制方法、相关设备及系统
CN109392113B (zh) * 2017-08-09 2022-09-02 华为技术有限公司 一种接收控制信息、发送控制信息的方法及设备
US10728002B2 (en) * 2017-08-10 2020-07-28 Huawei Technologies Co., Ltd. System and method for enabling reliable and low latency communication
WO2020091565A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 비면허 대역에서 단말의 상향링크 신호 전송 방법 및 상기 방법을 이용하는 장치
EP3681233B1 (en) * 2019-01-10 2022-06-15 Panasonic Intellectual Property Corporation of America Transceiver device and scheduling device
BR112021015966A2 (pt) * 2019-02-13 2021-10-05 Idac Holdings, Inc. Unidade de transmissão/recepção sem fio, e, método
JP7339350B2 (ja) * 2019-02-15 2023-09-05 オッポ広東移動通信有限公司 伝送帯域幅の決定方法、デバイス、及び記憶媒体
US11310798B2 (en) * 2019-02-15 2022-04-19 Electronics And Telecommunications Research Institute Measurement method and apparatus for supporting mobility in communication system
CN111278127B (zh) * 2019-04-03 2022-08-02 维沃移动通信有限公司 一种频域资源分配方法、终端和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208668A (zh) * 2014-06-06 2015-12-30 上海贝尔股份有限公司 一种载波侦听方法
WO2018171413A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and method for signaling for resource allocation for one or more numerologies
CN109392176A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 信息发送方法以及相关设备
CN108882376A (zh) * 2017-11-10 2018-11-23 华为技术有限公司 一种通信方法、装置以及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3934146A4 *

Also Published As

Publication number Publication date
CN111277384B (zh) 2021-09-14
BR112021016997A2 (pt) 2021-11-30
KR20210126090A (ko) 2021-10-19
EP3934146A4 (en) 2022-06-22
CN111277384A (zh) 2020-06-12
SG11202109402YA (en) 2021-09-29
US20210385866A1 (en) 2021-12-09
EP3934146A1 (en) 2022-01-05
JP7278397B2 (ja) 2023-05-19
JP2022522207A (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
US20220046541A1 (en) Channel monitoring method, terminal, and network device
US11825363B2 (en) Resource processing method, apparatus, and system
WO2020253612A1 (zh) Pdcch监听方法和终端
US11968012B2 (en) Information transmission method and terminal
WO2019076171A1 (zh) 非授权频段下的信息传输方法、终端及网络设备
WO2020192547A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2021129478A1 (zh) 小区拥塞的处理方法、终端及网络侧设备
WO2020143658A1 (zh) Pdcch监测方法、装置、终端、基站和存储介质
WO2021063281A1 (zh) 旁链路资源的确定方法及终端
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
US20220217708A1 (en) Uplink transmission method and terminal
US20210385866A1 (en) Transmission resource indication method, transmission method, network device, and terminal
US20220240181A1 (en) Uplink transmission control method and terminal
US20220210832A1 (en) Listen before talk lbt subband division method, apparatus, device, and medium
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2021013006A1 (zh) 参数处理方法、设备及计算机可读存储介质
CN111132355B (zh) 半静态调度传输方法、终端和网络设备
WO2019214458A1 (zh) 操作控制方法、移动通信终端及网络侧设备
US20220248463A1 (en) Listen-before-talk failure processing method, terminal, and network side device
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2021129699A1 (zh) 信道测量参考信号传输方法及终端
WO2021121114A1 (zh) 辅小区休眠指示方法和通信设备
WO2021068873A1 (zh) 资源共享方法、终端及网络设备
WO2020192512A1 (zh) 上行授权变更方法、信息发送方法及通信装置
WO2021027780A1 (zh) 信息处理方法、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016997

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217029183

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020763972

Country of ref document: EP

Effective date: 20210927

ENP Entry into the national phase

Ref document number: 112021016997

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210827