WO2020173233A1 - 一种背接触太阳电池组件及其制造方法 - Google Patents

一种背接触太阳电池组件及其制造方法 Download PDF

Info

Publication number
WO2020173233A1
WO2020173233A1 PCT/CN2020/070938 CN2020070938W WO2020173233A1 WO 2020173233 A1 WO2020173233 A1 WO 2020173233A1 CN 2020070938 W CN2020070938 W CN 2020070938W WO 2020173233 A1 WO2020173233 A1 WO 2020173233A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
contact solar
electrode
conductive metal
layer
Prior art date
Application number
PCT/CN2020/070938
Other languages
English (en)
French (fr)
Inventor
李华
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910146681.5A external-priority patent/CN109904268A/zh
Priority claimed from CN201910147433.2A external-priority patent/CN109888033A/zh
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2020173233A1 publication Critical patent/WO2020173233A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of single crystal silicon, in particular to a back contact solar cell module and a manufacturing method thereof. Background technique
  • the cost of silicon wafers accounts for about 30% of the cost of all raw materials for solar cells. Increasing the utilization rate of silicon rods and materials can effectively reduce the success of solar cells.
  • mainstream silicon wafers quadrilateral/near-square are cut from cylindrical silicon rods (prepared by the Czochralski method). Due to the inability to make full use of the corners, more waste materials are generated, and the manufactured cells have a small area (loss The effective area is large), and the power of the module packaged with the same number of cells is also low.
  • the present invention provides a back-contact solar cell module and a manufacturing method thereof, and aims to improve the raw material utilization rate and module power of the back-contact solar cell module.
  • the embodiments of the invention provide a back-contact solar cell assembly, and the back-contact solar cell assembly includes:
  • a rectangular frame and a cell layer with a plurality of solar cells connected in series the frame is filled with the plurality of solar cells connected in series, and the solar cells are obtained by equally dividing the regular hexagonal back contact solar cells , The light receiving area of each solar cell sheet is equal.
  • an embodiment of the present invention provides a back-contact solar cell assembly
  • the back-contact solar cell assembly includes: a battery sheet layer, the back of the battery sheet layer is fixedly connected with an insulating layer, and the insulating layer faces away
  • a plurality of conductive metal foil circuits are fixedly connected to one side of the solar cell layer, gaps are set between adjacent conductive metal foil circuits, and the solar cell layer includes a plurality of solar cells, any of the solar cells
  • the positive and negative electrodes of the sheet are respectively electrically connected to the unconnected conductive metal foil circuit through electrical connectors, and the side of the conductive metal foil circuit facing away from the battery sheet layer is bonded with a polymer backing plate through an adhesive layer ;
  • the solar cells are regular hexagonal back-contact solar cells, one-half regular hexagonal back-contact solar cells, one-third regular hexagonal back-contact solar cells, and one-quarter Any one or a combination of regular hexagonal back-contact solar cells, one-sixth regular hexagonal back-contact solar cells, and one-twelfth regular hexagonal back-contact solar cells.
  • an embodiment of the present invention provides a method for manufacturing a back-contact solar cell module, including the following steps:
  • the conductive metal foil is patterned to form a plurality of conductive metal foil circuits; an insulating layer is formed on the side of the conductive metal foil circuit facing away from the adhesive layer, and the insulating layer is A number of openings are arranged at intervals in the marginal layer;
  • a number of solar cells are laid on the side of the insulating layer facing away from the conductive metal foil circuit to form a cell layer.
  • the positive and negative electrodes of any one of the solar cells are connected to the unconnected all through the electrical connector.
  • the conductive metal Luo circuit is electrically connected;
  • the solar cells are obtained by equally dividing the regular hexagonal back-contact solar cells, and the light-receiving area of each solar cell is equal, and the solar cells can be directly connected in series, compared with the traditional quadrilateral Or nearly square, which can improve the utilization rate of silicon rod raw materials, reduce the waste of raw materials, and reduce the production cost.
  • the frame is filled with solar cells; or the back contact of the regular hexagonal solar cells or their equal sections Combination; Compared with traditional quadrilateral or nearly square solar cells, there is no need to set chamfers at the corners, which avoids the waste of blank areas in the chamfered area when laying traditional chamfered and nearly square solar cells, and can improve back contact with solar cells.
  • the light-receiving area, module power, and power generation efficiency of the module can solve the problem of low raw material utilization rate of the existing solar cell.
  • the back-contact solar cell module of the present invention includes a rectangular frame 100.
  • the frame 100 is filled with a plurality of solar cells 200 connected in series, and the solar cells 200 are back-contacted with the solar cells through a regular hexagon.
  • the solar cell sheet 200 has the same light-receiving area.
  • the solar cells are obtained by equally dividing the regular hexagonal back contact solar cells, and the light-receiving area of each solar cell is equal.
  • the solar cells can be directly connected in series, which simplifies the connection circuit and ensures that each The current corresponding to the maximum power point of the solar cell group is the same, which can avoid the water bucket effect of the solar cell in series, and improve the power generation efficiency of the back contact solar cell module.
  • it can improve the utilization rate of silicon rod raw materials, reduce the waste of raw materials, and reduce the production cost.
  • the frame is filled with solar cells, compared with the traditional quadrilateral or nearly square
  • the solar cells do not need to be chamfered at the corners, avoiding the waste of blank areas in the chamfering area when laying traditional chamfered near-square solar cells, and can improve the light-receiving area, module power and power generation of back-contact solar cell modules effectiveness.
  • the solar cells can be obtained by halving regular hexagonal back-contact solar cells, and the solar cells can also be obtained by quadranging regular hexagonal back-contact solar cells. Only need to meet the solar battery Just fill the frame with the film. The gap between the solar cell sheet and the frame is reduced, and the light receiving area of the back contact solar cell module is increased.
  • the solar cell is obtained by bisecting the regular hexagonal back-contacting solar cell along the vertical line of any side of the regular hexagonal back-contacting solar cell or the angular bisector of any corner.
  • the shaped back contact solar cell sheet can be made from a regular hexagonal stone sheet cut into a cylindrical stone rod, which can improve the utilization rate of the silicon rod raw material, reduce the waste of raw materials, and reduce the production cost.
  • the regular hexagonal solar cell sets are composed of two adjacent solar cell sheets 200, and the regular hexagonal solar cell sets are arranged in a honeycomb shape in the frame 100.
  • the solar cells in the solar cell group can be assembled to form a regular hexagonal solar cell group, and the hexagonal back-contact solar cells can be divided into equal parts.
  • the regular hexagonal solar cell group is arranged in a honeycomb shape in the frame, making the structure of the back contact solar cell module more compact.
  • a small gap can be reserved between adjacent solar cells, even adjacent solar cells
  • the sheets can be close to each other without leaving a gap, make full use of the internal space of the frame, increase the light-receiving area of the back-contact solar cell module, and increase the power generation rate of the back-contact solar cell module.
  • the frame 100 includes a first side 1 10, the first side 1 10 is parallel to any side of the regular hexagonal solar cell group, and the regular hexagonal solar cell is located at the edge
  • the solar cell 200 between the group and the first side 110 is obtained by bisecting the regular hexagonal back contact solar cell along the bisector of any corner of the regular hexagon back contact solar cell.
  • the solar cells in the solar cell group can be assembled to form a regular hexagonal solar cell group, and the hexagonal back-contact solar cells can be divided into equal parts.
  • the solar cells located between the solar cell group and the frame need to meet the requirements to bisect the regular hexagon back contact along the perpendicular line of either side of the solar cell or the angle bisector of any corner.
  • the solar cells obtain solar cells.
  • the solar cells have two shapes, which can fill the gap between the solar cell group and the frame, and increase the light-receiving area of the back-contact solar cell assembly.
  • the frame includes a first side, the first side is parallel to any side of the regular hexagonal solar cell group, and the solar cells between the regular hexagonal solar cell group on the edge and the first side are in contact along the back of the regular hexagon
  • the angle bisector of any corner of the solar cell is obtained by halving the regular hexagonal back contact with the solar cell.
  • the shape of the solar cell is an isosceles trapezoid, which can fill the gap between the solar cell group and the frame and improve the back The receiving area in contact with the solar cell module.
  • the frame 100 includes a second side 120, the second side 120 is perpendicular to any side of the regular hexagonal solar cell group, and the solar cell 200 is located between the regular hexagonal solar cell group on the edge and the second side 120 It is obtained by halving the regular hexagonal back-contact solar cell along the vertical line of either side of the regular hexagonal back-contact solar cell.
  • the solar cells in the solar cell group can be assembled to form a regular hexagonal solar cell group, and the hexagonal back contact solar cells may be divided into equal parts.
  • the solar cells located between the solar cell group and the frame need to meet, Divide the regular hexagonal back-contact solar cell in half along the vertical line of any side of the regular hexagonal back-contacting solar cell or the angle bisector of any corner to obtain the solar cell.
  • the two-shape solar cell can be Fill the gap between the solar cell group and the frame, and increase the light-receiving area of the back-contact solar cell module.
  • the frame includes a second side, the second side is perpendicular to any side of the regular hexagonal solar cell group, and the solar cells between the regular hexagonal solar cell group on the edge and the second side are in contact with each other along the back of the regular hexagon
  • the vertical line on either side of the solar cell is obtained by halving the regular hexagonal back contact solar cell, which can fill the gap between the solar cell group and the frame, and increase the light receiving area of the back contact solar cell module.
  • the solar cell 200 is obtained by quartering a regular hexagonal back contact solar cell, and the solar cell 200 is a right-angled trapezoid.
  • the solar cell sheet is obtained by quartering the regular hexagonal back contact solar cell sheet, and the solar cell sheet is a right-angled trapezoid.
  • the two solar cells can be assembled into a rectangle, and then arrayed, which can fill the gap between the solar cell group and the frame and increase the light-receiving area of the back-contact solar cell module.
  • the solar cell 200 is obtained by twelve-halving regular hexagonal back contact solar cells, and the solar cell 200 is a right triangle.
  • the solar cell sheet is obtained by twelve halves of the regular hexagon back contact solar cell sheet, and the solar cell sheet is a right triangle. Two solar cells can be assembled into a rectangle and then arrayed, which can fill the gap between the solar cell group and the frame, and increase the light-receiving area of the back-contact solar cell module.
  • the adjacent solar cell sheets 200 are connected in series along the long side direction or the wide side direction of the frame 100.
  • adjacent solar cells are connected in series along the long side of the frame.
  • the adjacent solar cells can be connected in series along the long side of the frame. It can reduce the processing difficulty of back-contact solar cell modules and improve the processing efficiency of back-contact solar cell modules.
  • Adjacent solar cells are connected in series along the wide side of the frame. Referring to Fig. 8, the adjacent solar cells can be connected in series along the long side of the frame reciprocally, which can reduce the processing difficulty of back-contact solar cell modules. Improve the processing efficiency of back-contact solar cell modules.
  • the solar cells constitute a cell layer 30, the back of the cell layer 30 is fixedly connected with an insulating layer 40, and the side of the insulating layer 40 facing away from the cell layer 30 is fixedly connected with a plurality of conductive metal foil circuits 50 A gap is provided between adjacent conductive metal foil circuits 50, the solar cells are electrically connected through the conductive metal foil circuit 50, and the side of the conductive metal foil circuit 50 facing away from the cell layer 30 is bonded by the adhesive layer 60. ⁇ 70 ⁇ Object back plate 70.
  • the specific structure can be understood by referring to the content of the corresponding part of the second embodiment.
  • the solar cell 200 is provided with a first electrode 32 and a second electrode 36
  • the first electrode 32 includes a fine grid electrode 33, a through hole electrode 34 and a first connection electrode 35
  • a connection electrode 35 is electrically connected to the through hole electrode 34
  • the second electrode 36 includes a transmission electrode 37 and a second connection electrode 38
  • the transmission electrode 37 is electrically connected to the second connection electrode 38
  • a thin grid is provided on the front of the solar cell 200
  • Electrode 33, the back of the solar cell sheet 200 is provided with a first connection electrode 35, a transmission electrode 37 and a second connection electrode 38, the sum of the number of the first connection electrode 35 and the second connection electrode 38 on any solar cell A 200 It is 100-10000.
  • the back-contact solar cell sheet when the back-contact solar cell sheet is an MWT cell, the back-contact solar cell sheet is provided with a first electrode and a second electrode, and the first electrode includes a fine grid electrode, a through hole electrode and a first connection electrode , The fine grid electrode and the first connection electrode are respectively electrically connected with the through hole electrode, the second electrode includes a transmission electrode and a second connection electrode, the transmission electrode is electrically connected with the second connection electrode, and the back contacting solar cell is provided with a thin grid on the front surface Electrodes, the back side of the back contact solar cell sheet is provided with a first connection electrode, a transmission electrode and a second connection electrode, and the sum of the number of the first connection electrode and the second connection electrode on any back contact solar cell sheet is 100-10000 .
  • first connecting electrodes 35 and the second connecting electrodes 38 are arranged on the back of the solar cell sheet 200 in a dot matrix.
  • the diameter of the first connecting electrode 35 is 0.3-10 mm
  • the diameter of the second connecting electrode 38 is 0.3-10 mm.
  • the solar cells are electrically connected by bus bars or wires.
  • the solar cells can also be electrically connected by bus bars or wires, which can reduce the area occupied by the conductive metal foil by the circuit, thereby reducing the area of the conductive metal foil.
  • the back-contact solar cell module of the present invention includes a cell layer 30, the back of the cell layer 30 is fixedly connected with an insulating layer 40, and the insulating layer 40 faces away from the cell layer There are several fixed connectors on one side of 30
  • the back side of the battery sheet layer is fixedly connected with an insulating layer.
  • the front side of the battery sheet layer refers to the light-receiving surface of the solar cell, and the light-receiving surface refers to the side of the solar cell facing the sun.
  • the back side of the solar cell layer refers to the backlight side of the solar cell, and the backlight side refers to the side of the solar cell facing away from the sun.
  • the insulating layer is fixedly connected to the back side of the solar cell layer to prevent the insulation layer from affecting the solar cell layer for daylighting. The photoelectric conversion efficiency of the back contact solar cell module.
  • a number of conductive metal foil circuits are fixedly connected to the side of the insulating layer facing away from the battery sheet layer, and the conductive metal foil circuits are electrically connected to the electrodes of the battery sheet layer through the electrical connector. Electrically connect two different electrodes that need to be connected in series with back-contacting solar cells to the same conductive metal foil circuit. Specifically, one of the back-contacting solar cells is connected to the positive electrode of the solar cell and the other is back-contacting the negative electrode of the solar cell. It is electrically connected to the same special electric metal foil circuit, and one of the negative electrodes of the back-contacting solar cells and the other positive electrode of the back-contacting solar cells are electrically connected to the same special electric metal foil circuit.
  • the two identical electrodes of two back-contact solar cells in parallel with the same conductive metal LO circuit.
  • one of the back-contacting solar cells and the other back-contacting the anode of the solar cells are electrically connected. It is electrically connected to the same conductive metal foil circuit, and one of the negative poles of the back-contacting solar cells and the other: the negative pole of the back-contacting solar cells are electrically connected to the same special electric metal foil circuit.
  • the positive and negative electrodes of the same back-contacting solar cell are respectively electrically connected to unconnected conductive metal foil circuits, and a gap is provided between adjacent conductive metal foil circuits to avoid short circuit of the solar cell.
  • the bow piece reduces the fragmentation rate of the solar cell piece.
  • the electrodes of the solar cells are led out through the electrical connectors, and then the solar cells are connected in series or in parallel through the conductive metal foil circuit to avoid short circuits caused by the back contact with the solar cells.
  • the insulating layer can prevent the electrical connection of adjacent electrical connectors. The photoelectric conversion efficiency of the solar cell sheet is improved, and the reliability of the back contact solar cell module is improved.
  • the side of the conductive metal foil circuit facing away from the battery sheet layer is bonded with a polymer back plate through an adhesive layer.
  • the conductive metal foil circuit is bonded and fixed to the polymer back plate through the adhesive layer, which is convenient for fixing the conductive metal foil
  • the patterning process is performed to form a conductive metal foil circuit, which improves the processing efficiency and processing accuracy.
  • Back-contact solar cells can be but not only IBC solar cells, MWT solar cells, and EWT solar cells.
  • the light-receiving surface of the back-contact solar cell can be an electrodeless structure (using an IBC cell structure, including a busbar structure on the back and a busbarless structure on the back), or a fine grid electrode structure (using an MWT cell structure).
  • the back contact solar cell uses an N-type silicon substrate or a P-type silicon substrate.
  • the material of the polymer backplane can be, but not only TPT, TPE, KPE, KPK, KPC or KPF.
  • the polymer backsheet can also be made of completely new materials, which can include a polymer multilayer structure composed of several layers of insulating materials (such as PET or PP) and a binder layer or a fluoropolymer coating. And the cost can be greatly reduced, and the electrical insulation is excellent, and the weather resistance can also be guaranteed.
  • the material of the conductive metal foil circuit is any one or a combination of copper, silver, aluminum, nickel, magnesium, iron, titanium, molybdenum, and crow, and the material of the conductive metal foil circuit is copper, silver, aluminum, nickel, and magnesium Alloys of any one of, iron, chin, 4 mesh, and crow or formed by multiple alloys.
  • the electrical connector is a special body.
  • the material of the electrical connector can be but not only conductive paste, solder, solder paste, conductive ink, isotropic conductive adhesive, anisotropic conductive adhesive, block or cylindrical metal, block Or cylindrical metal alloy.
  • the electrical connector can be formed by screen printing or dot-stranding.
  • the material of the electrical connector can be but not only solder paste or conductive filler based on epoxy resin and/or acrylic resin.
  • the front encapsulation layer 20 is fixedly connected to the side of the battery sheet layer 30 facing away from the insulating layer 40
  • the front cover plate 10 is fixedly connected to the side of the front encapsulation layer 20 facing away from the battery sheet layer 30.
  • the material of the front encapsulation layer can be but not only EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyric acid), POE (thermoplastic and/or thermosetting polyolefin) or Ionomer (Do not polymerize polyethylene-acetate ion).
  • the material of the front encapsulation layer is EVA, and the front encapsulation layer is obtained by laminating at 147°C for 10 minutes.
  • the front cover can be but not only embossed tempered glass, the thickness of the front cover is 3.2mm.
  • the insulating layer 40 is provided with a plurality of openings 42 at intervals, and the electrical connection body 41 passes through the openings 42.
  • the insulating layer is provided with a plurality of openings at intervals, and the electrical connectors pass through the openings to ensure that the electrical connectors are electrically connected to the conductive metal foil circuit and the electrodes of the back-contact solar cell, and avoid the insulation layer from obstructing
  • the electrical connectors are respectively electrically connected with the conductive metal foil circuit and the electrodes of the back-contact solar cell sheet, which improves the yield of the back-contact solar cell components. At the same time, it can also reduce the processing difficulty of back contact solar cell modules.
  • the shape of the opening 42 is round or square.
  • the shape of the opening is round or square, which is convenient for processing or forming the opening, reduces the processing difficulty of the back contact solar cell module, and improves the processing efficiency of the back contact solar cell module.
  • the number of openings 42 is 100-50000 or 5000-2000000 or 100-10000 pieces.
  • the number of openings is 100-50000; when the back-contact solar cell sheet is a back-side busbarless IBC cell, the number of openings is 5000 -2000000; when the back contact solar cell is MWT cell, the number of openings is 100-10000.
  • the thickness of the insulating layer 40 is less than 500 microns, the thickness of the insulating layer is> 0, and the thickness of the adhesive layer is 10 to 500 microns.
  • the adhesive layer may be but not only an EVA adhesive film, a POE adhesive film or a PVB film, and the thickness of the adhesive layer is 10-500 microns.
  • the thickness of the insulating layer ⁇ 500 microns, the thickness of the insulating layer> 0, the insulating layer has a certain resistance to thermal deformation, so that the insulating layer deforms less during the lamination process, and facilitates the alignment of the back-contacting solar cell electrodes with the electrical connectors , Improve the processing accuracy of the back contact solar cell module and improve the yield rate.
  • the insulating layer can be prevented from being too thick, and the production cost can be reduced.
  • the thickness of the insulating layer 40 is 50-200 microns.
  • the thickness of the insulating layer is 50-200 microns, and the insulating layer has a certain resistance to thermal deformation, so that the insulating layer deforms less during the lamination process, and facilitates the back contact with the electrode of the solar cell and the electrical connection Body alignment improves the processing accuracy of back-contact solar cell modules and improves the yield rate. At the same time, it can also avoid the insulation layer being too thick, reducing the production cost.
  • the material of the conductive metal foil circuit 50 is copper foil or inscription foil, and the thickness of the conductive metal foil circuit 50 is 10-100 microns.
  • the material of the conductive metal foil circuit is copper foil or aluminum foil
  • the thickness of the conductive metal foil circuit is 10-100 microns
  • the conductive metal foil circuit can provide a low-resistance current path and ensure the conductive metal foil The circuit will not be too thick, and on the premise that the conductivity of the conductive metal foil circuit is ensured, the excessive manufacturing cost of the back contact solar cell module is avoided.
  • the thickness of the conductive metal foil circuit 50 is 10-500 microns.
  • the thickness of the conductive metal foil circuit is 10-500 microns, the conductive metal foil circuit can provide a low-resistance current path, and it is ensured that the conductive metal foil circuit is not too thick. On the premise of the electrical conductivity of the circuit, the manufacturing cost of the back contact solar cell module is avoided to be too high.
  • the conductive metal foil circuit 50 located at the edge of the battery sheet layer 30 exposes the edge of the battery sheet layer 30.
  • the light-receiving area of the back-contact solar cells when the light-receiving area of the back-contact solar cells is the same, it is only necessary to connect the back-contact solar cells in series, and it is not necessary to expose the conductive metal foil circuit to the edge of the cell layer.
  • the light-receiving area of each back-contact solar cell is different, in order to avoid the barrel effect, it is necessary to connect the small-area back-contact solar cell in parallel, and then connect it in series with the large-area back-contact solar cell.
  • the conductive metal foil circuit on the edge exposes the edge of the cell layer, and the part of the conductive metal foil circuit that exposes the edge of the cell layer is used to design the connection circuit, which facilitates the circuit connection between the small-area back contact solar cells and improves the back contact solar cell Processing efficiency of components.
  • the solar cell 200 is provided with a positive fine gate line, a negative fine gate line, a p-type doped region and an n-type doped region, the positive fine gate line is in contact with the p-type doped region, and the negative fine gate line is in contact with the n-type doped region.
  • the positive and negative thin grid wires are electrically connected to the electrical connectors respectively.
  • the sum of the number of positive and negative grid wires on any solar cell 200 is 50-1000, and The number of electrical connectors electrically connected to any one of the positive or negative thin thumb wires is
  • the back-contact solar cell sheet is a back-side busbarless IBC cell
  • the back-contact solar cell sheet is provided with positive electrode fine grid lines, negative electrode fine grid lines, p-type doped regions and n-type doped Area
  • the positive electrode fine gate line is in contact with the p-type doped area
  • the negative electrode fine gate line is in contact with the n-type doped area
  • the positive electrode thin line and the negative electrode thin line are electrically connected to the electrical connector, through the positive electrode thin gate line and the negative electrode
  • the thin grid lines draw current.
  • the sum of the number of positive and negative grid lines on any back-contact solar cell is 50-1000, and the number of electrical connectors electrically connected to any positive or negative grid line is 1 -100.
  • the solar cell 200 is provided with a positive fine gate line, a negative fine gate line, a p-type doped region and an n-type doped region, the positive fine gate line is in contact with the p-type doped region, and the negative fine gate line is in contact with the n-type doped region.
  • the doped area is in contact, the positive electrode fine grid line is electrically connected to the positive electrode connecting electrode, the negative electrode fine grid line is electrically connected to the negative electrode connecting electrode, the positive electrode connecting electrode and the negative electrode connecting electrode are electrically connected to the electrical connector, and any solar cell 200
  • the sum of the number of positive connection electrodes and negative connection electrodes is 2-100, and the number of electrical connectors electrically connected to any one of the positive connection electrodes or negative connection electrodes is 1-100.
  • the back-contact solar cell when the back-contact solar cell is an IBC cell with a main grid on the back, the back-contact solar cell is provided with a positive electrode fine grid line, a negative electrode fine grid line, a p-type doped region and an n-type doped Area, the positive electrode fine grid line is in contact with the p-type doped area, the negative electrode fine grid line is in contact with the n-type doped area, the positive electrode fine grid line is electrically connected to the positive electrode connecting electrode, the negative electrode fine grid line is electrically connected to the negative electrode connecting electrode, and the positive electrode is connected The electrode and the negative electrode connecting electrode are respectively electrically connected to the electrical connector, and current is drawn through the positive electrode connecting electrode and the negative electrode connecting electrode.
  • the sum of the number of positive and negative connection electrodes on any back contact solar cell is 2-100, and the number of electrical connectors electrically connected to any positive or negative connection electrode is 1-100.
  • the solar cell 200 is provided with a first electrode 32 and a second electrode 36
  • the first electrode 32 includes a fine grid electrode 33, a through hole electrode 34 and a first connection electrode 35
  • a connection electrode 35 is electrically connected to the through hole electrode 34
  • the second electrode 36 includes a transmission electrode 37 and a second connection electrode 38
  • the transmission electrode 37 is electrically connected to the second connection electrode 38
  • a thin grid is provided on the front of the solar cell 200
  • Electrode 33, the back of the solar cell sheet 200 is provided with a first connection electrode 35, a transmission electrode 37 and a second connection electrode 38, the sum of the number of the first connection electrode 35 and the second connection electrode 38 on any solar cell A 200 It is 100-10000.
  • the back-contact solar cell sheet when the back-contact solar cell sheet is an MWT cell, the back-contact solar cell sheet is provided with a first electrode and a second electrode, and the first electrode includes a fine grid electrode, a through hole electrode and a first connection electrode , The fine grid electrode and the first connection electrode are respectively electrically connected with the through hole electrode, the second electrode includes a transmission electrode and a second connection electrode, the transmission electrode is electrically connected with the second connection electrode, and the back contacting solar cell is provided with a thin grid on the front surface Electrodes, the back side of the back contact solar cell sheet is provided with a first connection electrode, a transmission electrode and a second connection electrode, and the sum of the number of the first connection electrode and the second connection electrode on any back contact solar cell sheet is 100-10000 .
  • first connecting electrodes 35 and the second connecting electrodes 38 are arranged on the back of the solar cell sheet 200 in a dot matrix.
  • the diameter of the first connecting electrode 35 is 0.3-10 mm
  • the diameter of the second connecting electrode 38 is 0.3-10 mm.
  • the solar cell 200 has a regular hexagonal back Contact solar cells (refer to Figure 19), half of the regular hexagonal back contact solar cells (refer to Figure 10-11 for understanding), and one third of the regular hexagon back contact solar cells (refer to Figure 20- 21 understanding), a quarter of a regular hexagonal back-contact solar cell (refer to Figure 12 for understanding), a sixth of a regular hexagonal back-contact solar cell (refer to Figure 22-24 for understanding), a twelfth
  • a piece of regular hexagonal back contact solar cell (refer to Figure 13 for understanding) any one or a combination of multiple.
  • the regular hexagonal back-contact solar cell is made of regular hexagonal crystalline silicon wafers formed by cutting a crystalline silicon rod. Compared with square solar cells, it can improve the utilization rate of silicon rods and reduce the manufacturing cost of back-contact solar cell modules.
  • Regular hexagonal back-contact solar cells can increase the area of a single silicon chip by about 16%, and increase the power generation of a single chip.
  • the back contact solar cell can be a whole regular hexagon back contact solar cell, one half regular hexagon back contact solar cell, one third regular hexagon back contact solar cell, one quarter Any one or a combination of one or more of the regular hexagonal back-contact solar cells, one-sixth regular hexagonal back-contact solar cells, and one-twelfth regular hexagonal back-contact solar cells.
  • the conductive metal foil is patterned to form a plurality of conductive metal foil circuits 50;
  • An insulating layer 40 is formed on the side of the conductive metal foil circuit 50 facing away from the adhesive layer 60, and the insulating layer 40 is provided with a plurality of openings 42 at intervals;
  • a number of solar cell sheets 200 are laid on the side of the k-edge layer 40 facing away from the conductive metal foil circuit 50 to form a battery sheet layer 30.
  • the positive and negative electrodes of any solar cell 200 are respectively connected to the unconnected conductive metal through the electrical connector 41
  • the foil circuit 50 is electrically connected;
  • the polymer back plate 70, the adhesive layer 60, the conductive metal foil circuit 50, the insulating layer 40, the front encapsulation layer 20 and the front cover plate 10 are laminated to obtain a back-connected solar cell module.
  • the conductive metal foil, the adhesive layer and the polymer back plate are bonded in sequence, wherein the bonding temperature is 100-160°C, and the bonding time is 5-30 seconds.
  • the conductive metal foil is patterned to form a conductive metal foil circuit, which can prevent the conductive metal foil from shifting during the processing of the conductive metal foil and improve the patterning process of the conductive metal foil. Accuracy, at the same time, can also reduce the processing difficulty of the conductive metal foil, and improve the processing efficiency of the back contact solar cell module.
  • Patterning the conductive metal foil can be, but not only, patterning the conductive metal foil by mechanical punching, laser punching, or chemical etching.
  • the laser punching is used for continuous roll-shaped conductive metal foil.
  • Perform patterning The pattern on the conductive metal foil depends on the electrode position of the back-contacting solar cell and whether the back-contacting solar cells are connected in series or In parallel, the patterns on the conductive metal foil can be of various shapes or sizes. Then, undesired parts on the conductive metal foil are removed to form a conductive metal foil circuit.
  • the conductive metal foil circuit is electrically connected to the electrode of the battery sheet layer through the electrical connector.
  • one of the back-contacting solar cells' positive pole and the other back-contacting the solar cell's positive pole are electrically connected. It is electrically connected to the same special electric metal foil circuit, and one of the negative electrodes of the back-contacting solar cells and the other negative electrode of the back-contacting solar cells are electrically connected to the same electric metal foil circuit.
  • the positive and negative poles of the same back-connected corner i solar cell are electrically connected to unconnected conductive metal foil circuits, and a gap is set between adjacent conductive metal foil circuits to avoid short circuit of the solar cell.
  • a number of back-contact solar cells are laid on the side of the insulating layer facing away from the conductive metal foil circuit to form a cell layer.
  • the back-contact solar cells can be laid along the horizontal or vertical direction. Two solar cells are close to each other, and the distance between adjacent cells can be controlled within a small range, or even close to zero, so that the light-receiving area of the back-contact solar cell module can be increased, and the back-contact solar cell is improved.
  • the photoelectric conversion rate of the component is improved.
  • the back contact solar cell module is obtained. There is no need to connect the back contact with the sun in the form of ribbon welding. For the solar cell, avoid the bending of the solar cell when the back contacts the solar cell, and reduce the fragmentation rate of the solar cell.
  • an insulating layer 40 is formed on the side of the conductive metal circuit 50 facing away from the dry layer 60, and the insulating layer 40 is provided with a plurality of openings 42, including:
  • Laser ablation, etching or mechanical stamping is performed on the insulating layer 40 to form an opening 42, and then the insulating layer 40 is laid on the side of the conductive metal foil circuit 50 facing away from the adhesive layer 60.
  • the insulating layer is a polymer multilayer structure composed of several layers of insulating materials and thermal adhesive layers.
  • the opening is processed by methods such as laser ablation, etching or mechanical stamping.
  • the insulating material can be but not only PI (polyimide), PEN (polyethylene naphthalate), PET (polyethylene terephthalate) or PP (polypropylene), thermal
  • the material of the glue layer can be but not only EVA, PVB or POE.
  • the insulation layer has sufficient insulation resistance to prevent short circuits between adjacent electrodes.
  • the composition and thickness of the insulating layer make it have a certain resistance to thermal deformation, so that the insulating layer deforms less during the lamination process, which facilitates the alignment of the back-contacting solar cell electrodes with the electrical connectors, and improves the back-contact solar
  • the processing accuracy of the battery components improves the yield rate.
  • an insulating layer 40 is formed on the side of the conductive metal LO circuit 50 facing away from the dry-connected layer 60.
  • the insulating layer 40 is provided with a plurality of openings 42, including:
  • Screen printing or inkjet printing is performed on the side of the conductive metal foil circuit 50 facing away from the adhesive layer 60 to form an insulating layer 40.
  • the back-contact solar cell is a busbarless IBC battery on the back
  • the number of openings is large
  • the number of openings reaches a certain number, but not only when the number of openings is greater than 500, in order to ensure current
  • the number of openings required in the insulating layer is very large, which will bring great difficulties to the processing.
  • the insulating It is also very difficult to align the layer with the conductive metal foil circuit. Screen printing or inkjet printing can be performed on the side of the conductive metal foil circuit away from the adhesive layer to form an insulating layer.
  • the insulating layer is an insulating adhesive film.
  • the material can be but not only insulating wax or insulating ink.
  • opening positions are reserved, that is, openings are formed at the same time in the process of forming the insulating layer. It can ensure the processing accuracy of the back contact solar cell module, reduce the processing difficulty of the back contact solar cell module, and ensure the yield of the back contact solar cell module.
  • the lamination temperature is 140-150°C
  • the lamination time is 5-15 minutes.
  • the lamination temperature is 140-150°C
  • the lamination time is 5-15 minutes
  • the lamination temperature and lamination time can be adjusted according to the material of the front encapsulation layer.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network innovations. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement it without creative work.
  • one embodiment means that a specific feature, structure or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present invention.
  • the word examples “in one embodiment” here do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses should not be constructed to limit the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” before an element does not exclude the presence of multiple such elements.
  • several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种背接触太阳电池组件及其制造方法,包括长方形边框,边框内被多个串联的太阳电池片填满,太阳电池片通过等分正六边形背接触太阳电池片获得,并且各太阳电池片的受光面积相等,可以将各太阳电池片直接串联,相对于传统的四边形或者近正方形,能够提高硅棒原料的利用率,降低了生产成本,同时,边框内被太阳电池片填满;亦或正六边形背接触太阳电池片或其等分切片的组合;对比传统的四边形或者近正方形太阳电池片,不需要在边角处设置倒角,避免了传统倒角近正方形电池片铺设时位于倒角区域的空白区域的浪费,能够提高背接触太阳电池组件的受光面积、组件功率以及发电效率,能够解决现有的太阳电池片原料利用率低的问题。

Description

一种背接触太阳电池组件及其制造方法 本申请要求在 2019 年 02 月 27 日提交中国专利局、 申请号为 201910147433.2、 发明名称为“太阳电池组件’’以及 2019年 02月 27 日提 交中国专利局、 申请号为 201910146681.5、 发明名称为“背接触太阳电池 组件及其制造方法”的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。 技术领域
本发明涉及单晶娃技术领域,特别是涉及一种背接触太阳电池组件及其 制造方法。 背景;技术
太 ¥电池需要持续降本增效以增强其作为替代能源的竞争优势。硅片的 成本占到太阳电池所有原料成本的 30%左右,提高娃棒娃料的利用率可以有 效降低太阳电池的成未。
目前主流娃片 (四边形 /近正方形)是由圆柱形硅棒(直拉法制备而成) 切割而成, 由于不能充分利用边角而产生较多的废料, 制成的电池片面积小 (损失有效面积大) , 同等数量的电池片封装而成的组件功率也偏低。
发明内容
本发明提供一种背接触太阳电池组件及其制造方法, 旨在提升提高背接 触太阳电池组件的原料利用率以及组件功率。
第一方面, 4^发明实施例提供了一种背接触太阳电池组件, 所述背接触 太阳电池组件包括:
长方形边框和具有多个串联的太阳电池片的电池片层, 所述边框内 被所述多个串联的太阳电池片填满, 所述太阳电池片通过等分正六边形 背接触太阳电池片获得, 各所述太阳电池片的受光面积相等。
第二方面, 本发明实施例提供了一种背接触太阳电池组件, 所述背接触 太阳电池组件包括: 电池片层, 所述电池片层的背面固定连接有绝缘层, 所述绝缘层背向所述电池片层的一侧固定连接有若干导电金属箔电路, 相邻的所述导电金属箔电路之间设置有间隙, 所述电池片层包括有若干 太阳电池片, 任一所述太阳电池片的正极和负极分别通过电连接体与不 相连的所述导电金属箔电路电连接, 所述导电金属箔电路背向所述电池 片层的一侧通过粘接层粘接有聚合物背板;
其中, 所述太阳电池片为正六边形背接触太阳电池片、 二分之一片正 六边形背接触太阳电池片、 三分之一片正六边形背接触太阳电池片、 四分之 一片正六边形背接触太阳电池片、 六分之一片正六边形背接触太阳电池片、 十二分之一片正六边形背接触太阳电池片中任意一种或者多种的组合。
第三方面, 本发明实施例提供了一种背接触太阳电池组件的制造方法, 包括以下步骤:
将导电金属箔、 粘接层和聚合物背板依次粘接;
对所述导电金属箔进行图案化处理, 形成若干导电金属箔电路; 在所述导电金属箔电路背向所述粘接层的一侧形成绝缘层, 所述绝 缘层间隔地设置有若干开口;
将电连接体穿过所述开口, 使得所述电连接体与所述导电金属洛电 路电连接;
在所述绝缘层背向所述导电金属箔电路的一侧铺设若干太阳电池 片, 形成电池片层, 任一所述太阳电池片的正极和负极分别通过所述电 连接体与不相连的所述导电金属洛电路电连接;
在所述电池片层背向所述绝缘层的一侧依次铺设前封装层和前盖 板;
对所述聚合物背板、 所述粘接层、 所述导电金属箔电路、 所述绝缘 层、 所述前封装层和所述前盖板进行层压, 得到背接触太阳电池组件。
根据本申请实施例提供的技术方案, 太阳电池片通过等分正六边形 背接触太阳电池片获得, 并且各太阳电池片的受光面积相等, 可以将各 太阳电池片直接串联, 相对于传统的四边形或者近正方形, 能够提高硅 棒原料的利用率, 减少原料的浪费, 降低了生产成本, 同时, 边框内被 太阳电池片填满; 亦或正六边形背接触太阳电池片或其等分切片的组合; 对比传统的四边形或者近正方形太阳电池片, 不需要在边角处设置倒角, 避免了传统倒角近正方形电池片铺设时位于倒角区域的空白区域的浪费, 能 够提高背接触太阳电池组件的受光面积、组件功率以及发电效率, 能够解决 现有的太阳电池片原料利用率低的问题。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技 术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和其它 目的、 特征和优点能够更明显易懂, 以下特举本发明的具体实施方式。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅 仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性
Figure imgf000004_0001
Figure imgf000005_0001
具体实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 冗整地描述, 显然, 所描述的实施例是本发明一邵分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
请参考图 1-9, 本发明的背接触太阳电池组件, 包括长方形边框 100, 边框 100内被多个串联的太阳电池片 200填满, 太阳电池片 200通过等 分正六边形背接触太阳电池片获得, 各太阳电池片 200的受光面积相等。
在本发明的实施例中, 太阳电池片通过等分正六边形背接触太阳电 池片获得, 并且各太阳电池片的受光面积相等, 可以将各太阳电池片直 接串联, 简化了连接电路, 保证各太阳电池片组的最大功率点对应的电流 相同, 能够避免串联的太阳电池片产生水桶效应, 提高了背接触太阳电池组 件的发电效率。 同时, 能够避免相对于传统的四边形或者近正方形, 能够 提高硅棒原料的利用率, 减少原料的浪费, 降低了生产成本, 同时, 边 框内被太阳电池片填满, 对比传统的四边形或者近正方形太阳电池片, 不需要在边角处设置倒角, 避免了传统倒角近正方形电池片铺设时位于倒 角区域的空白区域的浪费, 能够提高背接触太阳电池组件的受光面积、 组件 功率以及发电效率。
太阳电池片可以为二等分正六边形背接触太阳电池片获得, 太阳电池 片也可以为四等分正六边形背接触太阳电池片获得。 只需要满足太阳电池 片将边框填满即可。 减小了太阳电池片与边框之间的间隙, 提高了背接触 太阳电池组件的受光面积。
参考图 10-1 1 , 进一步的, 沿着正六边形背接触太阳电池片的任一边的 中垂线二等分正六边形背接触太阳电池片获得部分太阳电池片 200 ,沿着正 六边形背接触太阳电池片的任一角的角平分线二等分正六边形背接触太阳 电池片获得部分太阳电池片 200。
在本发明的实施例中, 沿着正六边形背接触太阳电池片的任一边的中 垂线或者任一角的角平分线二等分正六边形背接触太阳电池片获得太阳电 池片, 正六边形背接触太阳电池片可以由圆柱形石圭棒切割成的正六边形石圭 片制得, 能够提高硅棒原料的利用率, 减少原料的浪费, 降低了生产成 本。
进一步的, 还包括多个正六边形太阳电池片组, 正六边形太阳电池 片组由相邻 两块太阳电池片 200拼合构成, 正六边形太阳电池片组在 边框 100内呈蜂巢状排列。
在本发明的实施例中, 太阳电池片组内的太阳电池片只要是能够拼 合构成正六边形太阳电池片组即可, 可以是对六边形背接触太阳电池进 行任意等分。 正六边形太阳电池片组在边框内呈蜂巢状排列, 使得背接触 太阳电池组件的结构更加紧凑, 当然, 相邻的太阳电池片之间可以预留 较小的间隙, 甚至相邻的太阳电池片能够相互紧靠不留间隙, 充分利用 了边框内部空间, 提高了背接触太阳电池组件的受光面积, 提高了背接触 太阳电池组件的发电 率。
参考图 1、 3、 10和 1 1 , 进一步的, 边框 100包括第一边 1 10 , 第一 边 1 10与正六边形太阳电池片组的任一边平行, 位于边缘的正六边形太 阳电池片组与第一边 1 10之间的太阳电池片 200通过沿着正六边形背接触 太阳电池片的任一角的角平分线二等分正六边形背接触太阳电池片获得。
在本发明的实施例中, 太阳电池片组内的太阳电池片只要是能够拼 合构成正六边形太阳电池片组即可, 可以是对六边形背接触太阳电池进 行任意等分。 但是, 位于太阳电池片组与边框之间的太阳电池片需要满足, 沿着正六边形背接触太阳电池片的任一边的中垂线或者任一角的角平分线 二等分正六边形背接触太阳电池片获得太阳电池片, 此时, 太阳电池片者 两 形状, 能够填补太阳电池片组与边框之间的间隙, 提高背接触太阳i 池组件的受光面积。
边框包括第一边, 第一边与正六边形太阳电池片组的任一边平行, 位于边缘的正六边形太阳电池片组与第一边之间的太阳电池片通过沿着 正六边形背接触太阳电池片的任一角的角平分线二等分正六边形背接触太 阳电池片获得, 此时太阳电池片的形状为等腰梯形, 能够填补太阳电池片 组与边框之间的间隙, 提高背接触太阳电池组件的受 面积。
进一步的, 边框 100包括第二边 120 , 第二边 120与正六边形太阳电 池片组的任一边垂直, 位于边缘的正六边形太阳电池片组与第二边 120 之间的太阳电池片 200通过沿着正六边形背接触太阳电池片的任一边的中 垂线二等分正六边形背接触太阳电池片获得。
在未发明的实施例中, 太阳电池片组内的太阳电池片只要是能够拼 合构成正六边形太阳电池片组即可, 可以是对六边形背接触太阳电池进 行任意等分。 但是, 位于太阳电池片组与边框之间的太阳电池片需要满足, 沿着正六边形背接触太阳电池片的任一边的中垂线或者任一角的角平分线 二等分正六边形背接触太阳电池片获得太阳电池片, 此时, 太阳电池片 两 形状, 能够填补太阳电池片组与边框之间的间隙, 提高背接触太阳 电池组件的受光面积。
边框包括第二边, 第二边与正六边形太阳电池片组的任一边垂直, 位于边缘的正六边形太阳电池片组与第二边之间的太阳电池片通过沿着 正六边形背接触太阳电池片的任一边的中垂线二等分正六边形背接触太阳 电池片获得, 能够填补太阳电池片组与边框之间的间隙, 提高背接触太阳 电池组件的受光面积。
参考图 12 , 进一步的, 太阳电池片 200通过四等分正六边形背接触太 阳电池片获得, 太阳电池片 200为直角梯形。
在本发明的实施例中, 四等分正六边形背接触太阳电池片获得太阳电 池片, 太阳电池片为直角梯形。 可以将两块; ^阳电池片拼合成长方形, 然 后再进行阵列, 能够填补太阳电池片组与边框之间的间隙, 提高背接触太 阳电池组件的受光面积。
参考图 13 , 进一步的, 太阳电池片 200通过十二等分正六边形背接触 太阳电池片获得, 太阳电池片 200为直角三角形。
在本发明的实施例中,十二等分正六边形背接触太阳电池片获得太阳电 池片, 太阳电池片为直角三角形。 可以将两块太阳电池片拼合成长方形, 然后再进行阵列, 能够填补太阳电池片组与边框之间的间隙, 提高背接触 太阳电池组件的受光面积。
进一步的,相邻的太阳电池片 200沿着边框 100的长边方向或者宽边方 向依次串联。
在本发明的实施例中, 相邻的太阳电池片沿着边框的长边方向依次串 联, 参考图 2、 4、 6, 可以沿着边框的长边方向往复将相邻的太阳电池片进 行串联, 能够降低背接触太阳电池组件的加工难度, 提高背接触太阳电池组 件的加工效奉。
相邻的太阳电池片沿着边框的宽边方向依次串联, 参考图 8 , 可以沿着 边框的长边方向往复将相邻的太阳电池片进行串联, 能 降低背接触太阳电 池组件的加工难度, 提高背接触太阳电池组件的加工效奉。
参 图 14 , 进一步的, 太阳电池片构成电池片层 30 , 电池片层 30 的背面固定连接有绝缘层 40 , 绝缘层 40背向电池片层 30的一侧固定连 接着若干导电金属箔电路 50 ,相邻的导电金属箔电路 50之间设置有间隙, 太阳电池片通过导电金属箔电路 50电连接, 导电金属箔电路 50背向电 池片层 30的一侧通过粘接层 60粘接有聚合物背板 70。 具体结构可参见 实施例二对应部分的内容理解。
参考图 15 , 进一步的, 太阳电池片 200设置有第一电极 32和第二电 极 36 ,第一电极 32包括细栅电极 33、贯穿孔电极 34和第一连接电极 35 , 细栅电极 33和第一连接电极 35分别与贯穿孔电极 34电连接, 第二电极 36包括传输电极 37和第二连接电极 38 ,传输电极 37与第二连接电极 38 电连接, 太阳电池片 200的正面设置有细栅电极 33 , 太阳电池片 200的 背面设置有第一连接电极 35、 传输电极 37以及第二连接电极 38 , 任一 太阳电池 A 200上的第一连接电极 35和第二连接电极 38的数量之和为 100-10000个。 在本发明的实施例中, 当背接触太阳电池片为 MWT电池时, 背接触太 阳电池片设置有第一电极和第二电极, 第一电极包括细栅电极、 贯穿孔 电极和第一连接电极, 细栅电极和第一连接电极分别与贯穿孔电极电连 接, 第二电极包括传输电极和第二连接电极, 传输电极与第二连接电极 电连接, 背接触太阳电池片的正面设置有细栅电极, 背接触太阳电池片 的背面设置有第一连接电极、 传输电极以及第二连接电极, 任一背接触 太阳电池片上的第一连接电极和第二连接电极的数量之和为 100-10000 个。
进一步的, 第一连接电极 35和第二连接电极 38呈点阵状排布在太阳 电池片 200的背面。
进一步的, 第一连接电极 35的直径为 0.3-10mm , 第二连接电极 38 的直径为 0.3-10mm。
进一步的, 太阳电池片通过汇流条或者导线电连接。
在本发明的实施例中, 太阳电池片也可以通过汇流条或者导线电连 接, 能够减少电路对导电金属箔的占用面积, 从而减少导电金属箔的面 积。
实施例二
本发明的其中一个实施例为, 请参考图 14 , 本发明的背接触太阳电 池组件, 包括电池片层 30 , 电池片层 30的背面固定连接有绝缘层 40 , 绝缘层 40背向电池片层 30的一侧固定连接者若干 |电金属箔电路 50 , 相邻的导电金属箔电路 50之间设置有间隙, 电池片层 30设置有若干太 阳电池片 200 , 任一太阳电池片 200的正极和负极分别通过电连接体 41 与不相连的导电金属箔电路 50电连接, 导电金属箔电路 50背向电池片 层 30的一侧通过粘接层 60粘接有聚合物背板 70。
在本发明的实施例中, 电池片层的背面固定连接有绝缘层, 在本申请 中, 电池片层的正面指的是太阳电池的受光面, 受光面是指太阳电池正 对太阳的一面, 电池片层的背面指的是太阳电池的背光面, 背光面是指 太阳电池背对太阳的一面, 在电池片层的背面固定连接绝缘层, 能够避 免绝缘层影响电池片层进行采光, 保证了背接触太阳电池组件的光电转 化效率。
绝缘层背向电池片层的一侧固定连接有若干导电金属箔电路, 导电 金属箔电路通过电连接体与电池片层的电极实现电连接。 将需要串联的 两块背接触太阳电池片的两个不同的电极与同一个导电金属箔电路电连 接, 具体的, 将其中一块背接触太阳电池片的正极以及另一块背接触太 阳电池片的负极与同一个專电金属洛电路电连接, 将其中一块背接触太 阳电池片的负极以及另一块背接触太阳电池片的正极与同一个專电金属 箔电路电 i接。 将需要并联 4两块背接触太阳电池片的两个相同的电极 与同一个导电金属洛电路电连接, 具体的, 将其中一块背接触太阳电池 片的正极以及另一块背接触太阳电池片的正极与同一个导电金属箔电路 电连接, 将其中一块背接触太阳电池片的负极以及另一 :背接触太阳电 池片的负极与同一个專电金属洛电路电连接。 同一块背接触太阳电池片 的正极和负极分别电连接不相连的导电金属箔电路, 并且相邻的导电金 属箔电路之间设置有间隙, 避免造成太阳电池片短路。 不需要通过焊带 焊接的形式来连接背接触太阳电池片, 避免背接触太阳电池片出现弯曲 弓片, 降低了太阳电池片的破片率。
通过电连接体将太阳电池片的电极引出, 然后通过导电金属箔电路 来实现太阳电池片的串联或者并联, 避免背接触太阳电池片产生短路, 绝缘层能够防止相邻的电连接体电连接, 提高了太阳电池片的光电转化 效率, 提高了背接触太阳电池组件的可靠性。
导电金属箔电路背向电池片层的一侧通过粘接层粘接有聚合物背 板, 通过粘接层来将导电金属箔电路与聚合物背板粘接固定, 便于对导 电金属箔进行固定以及进行图案化处理形成导电金属箔电路, 提高了加 工效率以及加工准确性。
背接触太阳电池片可以但不仅仅为 IBC太阳电池、 MWT太阳电池、 EWT 太阳电池。 背接触太阳电池片的受光面可以是无电极结构(采用 IBC电池结 构, 包括背面有主栅结构和背面无主栅结构) , 也可以是细栅电极结构 (采 用 MWT电池结构) 。 背接触太阳电池片采用 N型娃基底或者 P型娃基底。
聚合物背板的材料可以但不仅仅为 TPT、 TPE、 KPE、 KPK、 KPC或 KPF。聚合物背板也可由完全新型的材料制成,可包括由绝缘材料(例如 PET 或 PP) 组成的若干层和枯结剂层或含氟聚合物涂层复合而 的聚合物多层 结构,厚度和成本可得到大幅降低, 并且电绝缘优异、耐候性也能得到保证。
导电金属箔电路的材料为铜、 银、 铝、 镍、 镁、 铁、 钦、 钼、 鸦中任意 一种或者多种的组合, 导电金属箔电路的材料为铜、 银、 铝、 镍、 镁、 铁、 钦、 4目、 鸦中任意一种的合金或者多种形成的合金。
电连接体为專体, 电连接体的材料可以但不仅仅为导电浆料、 焊料、 焊 膏、 导电墨水、 各向同性导电胶、 各向异性导电胶、 块状或圆柱状金属、 块 状或圆柱状金属合金。 电 接体可以通过丝网印刷或者点股的方式形成, 电 连接体的材料可以但不仅仅为焊膏或以片状银粉为导电填充相、基于环氧树 脂及 /或丙烯酸树脂的导电胶。
进一步的, 电池片层 30背向绝缘层 40的一侧固定连接有前封装层 20 , 前封装层 20背向电池片层 30的一侧固定连接有前盖板 10。
在本发明的实施例中, 前封装层的材料可以但不仅仅为 EVA(乙烯-醋 酸乙烯共聚物) 、 PVB(聚乙烯醇缩丁酸)、 POE(热塑性和 /或热固性聚烯烃) 或者 Ionomer(聚乙烯-乙酸酯离子聚合勿) 。 前封装层的材料为 EVA, 在 147°C条件下进行层压 10分钟获得前封装层。 前盖板可以但不仅仅为压花钢 化玻璃, 前盖板的厚度 3.2mm。
进一步的, 绝缘层 40间隔地设置有若干开口 42 , 电连接体 41穿过 开口 42。
在本发明的实施例中, 绝缘层间隔地设置有若干开口, 电连接体穿过开 口, 能够保证电连接体分别与导电金属箔电路以及背接触太阳电池片的电极 电连接, 避免绝缘层阻碍电连接体分别与导电金属箔电路以及背接触太阳电 池片的电极电连接, 提高了背接触太阳电池组件的良品率。 同时, 也能够降 低背接触太阳电池组件 加工难度。
进一步的, 开口 42的形状为圆形或者方形。
在本发明的实施例中, 开口的形状为圆形或者方形, 便于加工或者形 成开口, 降低背接触太阳电池组件的加工难度, 提高了背接触太阳电池组 件的加工效率。
进一步的, 开口 42数量为 100-50000个或者 5000-2000000个或者 100-10000个。
在本发明的实施例中, 当背接触太阳电池片为背面有主栅 IBC电池时, 开口数量为 100-50000个; 当背接触太阳电池片为背面无主栅 IBC电池时, 开口数量为 5000-2000000个; 当背接触太阳电池片为 MWT电池时, 开口 数量为 100-10000个。
进一步的, 绝缘层 40的厚度 < 500微米, 绝缘层的厚度 > 0 , 粘接层 的厚度为 10-500微米。
在本发明的实施例中, 粘接层可以但不仅仅为 EVA胶膜、 POE胶膜或 PVB膜, 粘接层的厚度为 10-500微米。 绝缘层的厚度 < 500微米, 绝缘 层的厚度 > 0 , 绝缘层具有一定抗热变形能力, 使得绝缘层在层压过程中变 形较小, 便于背接触太阳电池片的电极与电连接体对准, 提高了背接触太阳 电池组件的加工准确性, 提高了良品率。 同时, 也能够避免绝缘层过厚, 降 低了生产制造成本。
进一步的, 绝缘层 40的厚度为 50-200微米。
在本发明的实施例中, 绝缘层的厚度为 50-200微米, 绝缘层具有一 定抗热变形能力, 使得绝缘层在层压过程中变形较小, 便于背接触太阳电池 片的电极与电连接体对准, 提高了背接触太阳电池组件的加工准确性, 提高 了良品率。 同时, 也能够避免绝缘层过厚, 降低了生产制造成本。
进一步的, 导电金属箔电路 50的材料为铜箔或者铭箔, 导电金属箔 电路 50的厚度为 10-100微米。
在本发明的实施例中, 导电金属箔电路的材料为铜箔或者铝箔, 导 电金属箔电路的厚度为 10-100微米, 导电金属箔电路能够提供低电阻的 电流通路, 并且保证了导电金属箔电路不会太厚, 在保证了导电金属箔 电路的导电性能的前提下, 避免背接触太阳电池组件的制造成本过高。
进一步的, 导电金属箔电路 50的厚度为 10-500微米。
在本发明的实施例中, 导电金属箔电路的厚度为 10-500微米, 导电 金属箔电路能够提供低电阻的电流通路, 并且保证了导电金属箔电路不 会太厚, 在保证了导电金属箔电路的导电性能的前提下, 避免背接触太 阳电池组件的制造成本过高。
进一步的, 位于电池片层 30边缘的导电金属箔电路 50露出电池片 层 30边缘。
在本发明的实施例中, 当各背接触太阳电池片的受光面积相同时, 只需要将各背接触太阳电池片进行串联, 不需要使得导电金属箔电路露 出电池片层边缘。 当各背接触太阳电池片的受光面积不同时, 为了避免 木桶效应, 需要将小面积的背接触太阳电池片先进行并联, 再与大面积 的背接触太阳电池片串联, 可以将位于电池层边缘的导电金属箔电路露 出电池片层边缘, 导电金属箔电路露出电池片层边缘的部分用于设计连 接电路, 便于小面积的背接触太阳电池片之间进行电路连接, 提高了背 接触太阳电池组件的加工效率。
进一步的, 太阳电池片 200设置有正极细栅线、 负极细栅线、 p型掺 杂区域和 n型掺杂区域, 正极细栅线与 p型掺杂区域接触, 负极细栅线 与 n型捧杂区域接触, 正极细拇线和负极细拇线分别与电连接体电连接, 任一太阳电池片 200上的正极细栅线与负极细栅线的数量之和为 50-1000 根, 与任一根正极细拇线或者负极细拇线电连接的电连接体的数量为 在本发明的实施例中, 当背接触太阳电池片为背面无主栅 IBC电池时, 背接触太阳电池片设置有正极细栅线、 负极细栅线、 p型掺杂区域和 n型 掺杂区域, 正极细栅线与 p型掺杂区域接触, 负极细栅线与 n型掺杂区 域接触, 正极细拇线和负极细拇线分别与电连接体电连接, 通过正极细 栅线和负极细栅线导出电流。 任一背接触太阳电池片上的正极细栅线与 负极细栅线的数量之和为 50-1000根,与任一根正极细栅线或者负极细栅 线电连接的电连接体的数量为 1 -100个。
进一步的, 太阳电池片 200设置有正极细栅线、 负极细栅线、 p型掺 杂区域和 n型掺杂区域, 正极细栅线与 p型掺杂区域接触, 负极细栅线 与 n型掺杂区域接触, 正极细栅线与正极连接电极电连接, 负极细栅线 与负极连接电极电连接, 正极连接电极和负极连接电极分别与电连接体 电连接, 任一太阳电池片 200上的正极连接电极和负极连接电极的数量 之和为 2-100根,与任一根正极连接电极或者负极连接电极电连接的电连 接体的数量为 1 -100个。
在本发明的实施例中, 当背接触太阳电池片为背面有主栅 IBC电池时, 背接触太阳电池片设置有正极细栅线、 负极细栅线、 p型掺杂区域和 n型 掺杂区域, 正极细栅线与 p型掺杂区域接触, 负极细栅线与 n型掺杂区 域接触, 正极细栅线与正极连接电极电连接, 负极细栅线与负极连接电 极电连接, 正极连接电极和负极连接电极分别与电连接体电连接, 通过 正极连接电极和负极连接电极导出电流。 任一背接触太阳电池片上的正 极连接电极和负极连接电极的数量之和为 2-100根,与任一根正极连接电 极或者负极连接电极电连接的电连接体的数量为 1-100个。
参考图 15 , 进一步的, 太阳电池片 200设置有第一电极 32和第二电 极 36 ,第一电极 32包括细栅电极 33、贯穿孔电极 34和第一连接电极 35 , 细栅电极 33和第一连接电极 35分别与贯穿孔电极 34电连接, 第二电极 36包括传输电极 37和第二连接电极 38 ,传输电极 37与第二连接电极 38 电连接, 太阳电池片 200的正面设置有细栅电极 33 , 太阳电池片 200的 背面设置有第一连接电极 35、 传输电极 37以及第二连接电极 38 , 任一 太阳电池 A 200上的第一连接电极 35和第二连接电极 38的数量之和为 100-10000个。
在本发明的实施例中, 当背接触太阳电池片为 MWT电池时, 背接触太 阳电池片设置有第一电极和第二电极, 第一电极包括细栅电极、 贯穿孔 电极和第一连接电极, 细栅电极和第一连接电极分别与贯穿孔电极电连 接, 第二电极包括传输电极和第二连接电极, 传输电极与第二连接电极 电连接, 背接触太阳电池片的正面设置有细栅电极, 背接触太阳电池片 的背面设置有第一连接电极、 传输电极以及第二连接电极, 任一背接触 太阳电池片上的第一连接电极和第二连接电极的数量之和为 100-10000 个。
进一步的, 第一连接电极 35和第二连接电极 38呈点阵状排布在太阳 电池片 200的背面。
进一步的, 第一连接电极 35的直径为 0.3-10mm , 第二连接电极 38 的直径为 0.3-10mm。
参考图 10-13以及图 19-24 , 进一步的, 太阳电池片 200为正六边形背 接触太阳电池片 (参照图 19) 、 二分之一片正六边形背接触太阳电池片 (参 照图 10-11理解) 、 三分之一片正六边形背接触太阳电池片 (参照图 20-21 理解) 、 四分之一片正六边形背接触太阳电池片 (参照图 12理解) 、 六分 之一片正六边形背接触太阳电池片 (参照图 22-24理解) 、 十二分之一片正 六边形背接触太阳电池片 (参照图 13理解) 中任意一种或者多种的组合。
在采发明的实施例中, 正六边形背接触太阳电池片通过晶体娃棒切割形 成的正六边形晶体硅片制成。 相对于正方形太阳电池片, 能够提高娃棒的利 用率, 降低了背接触太阳电池组件的制造成本, 正六边形背接触太阳电池片 能够提升单片硅片面积 16%左右, 提升单片发电功率。 背接触太阳电池片可 以为整片正六边形背接触太阳电池片、 二分之一片正六边形背接触太阳电池 片、 三分之一片正六边形背接触太阳电池片、 四分之一片正六边形背接触太 阳电池片、 六分之一片正六边形背接触太阳电池片、 十二分之一片正六边形 背接触太阳电池片中任意一种或者多种的组合。 在将整片正六边形背接触太 阳电池片切割成二分之一片正六边形背接触太阳电池片、 三分之一片正六边 形背接触太阳电池片、 四分之一片正六边形背接触太阳电池片、 六分之一片 正六边形背接触太阳电池片、 十二分之一片正六边形背接触太阳电池片时, 均是将整4正六边形背接触太阳电池片进行等分切割。便于对被接触太阳电 池片进行排布, 降低了背接触太阳电池组件的加工难度, 降低了生产制造成 本。
本发明的另一个实施例为, 背接触太阳电池组件的制造方法, 包括 以下步骤:
将导电金属箔、 粘接层 60和聚合物背板 70依次粘接;
对导电金属箔进行图案化处理, 形成若干导电金属箔电路 50;
在导电金属箔电路 50背向粘接层 60的一侧形成绝缘层 40 , 绝缘层 40间隔地设置有若干开口 42;
将电连接体 41穿过开口 42 , 使得电连接体 41与导电金属箔电路 50 电连接.
在 k缘层 40背向导电金属箔电路 50的一侧铺设若干太阳电池片 200 , 形成电池片层 30 , 任一太阳电池片 200的正极和负极分别通过电连 接体 41与不相连的导电金属箔电路 50电连接;
在电池片层 30背向绝缘层 40的一侧依次铺设前封装层 20和前盖板
10;
对聚合物背板 70、 粘接层 60、 导电金属箔电路 50、 绝缘层 40、 前 封装层 20和前盖板 10进行层压, 得到背接 i虫太阳电池组件。
在本发明的实施例中, 将导电金属箔、 粘接层和聚合物背板依次粘 接, 其中粘接温度为 100-160°C , 粘接时间为 5-30秒。 在固定导电金属箔 后, 对导电金属箔进行图案化处理, 形成导电金属箔电路, 能够防止在 对导电金属箔的加工过程中, 导电金属箔产生偏移, 提高了导电金属箔 图案化处理的准确性, 同时, 也能够降低导电金属箔的加工难度, 提高 了背接触太阳电池组件的加工效率。
对导电金属箔进行图案化处理, 可以但不仅仅为通过机械冲切、 激 光冲切或化学蚀刻的方式对导电金属箔进行图案化处理, 其中激光冲切 用于对连续卷状的导电金属箔进行图案化处理。 导电金属箔上的图案取 决于背接触太阳电 ^片的电极位置以及各背接触尖阳电池片是串联或者 并联, 导电金属箔上的图案可以是各种形状或者尺寸的。 然后, 移除导 电金属箔上非所要的部分, 从而形成导电金属箔电路。
导电金属箔电路通过电连接体与电池片层的电极实现电连接。 将需 要串联的两块背接触太阳电池片的两个不同的电极与同一个导电金属箔 电电路连接, 具体的, 将其中一块背接触太阳电池片的正极以及另一块 背接触太阳电池片的负极与同一个專电金属洛电路电连接, 将其中一块 背接触太阳电池片的负极以及另一 背接触太阳电池片的正极与同一个 卓电金属箔电路电连接。 将需要并联 4两块背接触太阳电池片的两个相 同的电极与同一个导电金属洛电路电连接, 具体的, 将其中一块背接触 太阳电池片的正极以及另一块背接触太阳电池片的正极与同一个專电金 属箔电路电连接, 将其中一块背接触太阳电池片的负极以及另一块背接 触太阳电池片的负极与同一个善电金属箔电路电连接。 同一块背接角 i太 阳电池片的正极和负极分别电连接不相连的导电金属箔电路, 并且相邻 的导电金属箔电路之间设置有间隙, 避免造成太阳电池片短路。
参考图 16-18, 在绝缘层背向导电金属箔电路的一侧铺设若干背接触 太阳电池片, 形成电池片层, 可以沿着水平或者竖直方向来铺设背接触 太阳电池片, 相邻的两片太阳电池片相互紧挨, 相邻电池片的间距可以 控制在很小的范围内, 甚至可以做到接近零间距, 使得背接触太阳电池 组件的受光面积能够增加, 提高了背接触太阳电池组件的光电转化率。
通过对聚合物背板、 粘接层、 导电金属箔电路、 绝缘层、 前封装层 和前盖板进行层压, 得到背接触太阳电池组件, 不需要通过焊带焊接的 形式来连接背接触太阳电池片, 避免背接触太阳电池片出现弯曲弓片, 降低了太阳电池片的破片率。
进一步的, 在导电金属洛电路 50背向枯接层 60的一侧形成绝缘层 40, 绝缘层 40间隔地设置有若干开口 42, 包括,
对绝缘层 40进行激光烧蚀、 蚀刻或者机械冲压, 形成开口 42, 再将 绝缘层 40铺设在导电金属箔电路 50背向粘接层 60的一侧。
在本发明的实施例中, 当开口数量不是太多, 可以但不仅仅为开口 数量小于等于 500, 此时, 绝缘层为若干层绝缘材料和热胶合层复合而成的 聚合物多层结构, 通过激光烧蚀、 蚀刻或者机械冲压等方法加工出开口。 绝缘材料可以但不仅仅为 PI(聚酰亚胺)、 PEN(聚萘二曱酸乙二醇酯)、 : PET(聚 对苯二曱酸乙二醇酯)或 PP(聚丙烯),热胶合层的材料可以但不仅仅为 EVA, PVB或者 POE。 绝纟 层具有足够大的绝缘电阻能够防止邻近电极之间产生 短路。 并且, 绝缘层的组分和厚度使其具有一定抗热变形能力, 使得绝缘层 在层压过程中变形较小, 便于背接触太阳电池片的电极与电连接体对准, 提 高了背接触太阳电池组件的加工准确性, 提高了良品率。
一步的, 在导电金属洛电路 50背向枯接层 60的一侧形成绝缘层 40, 绝缘层 40间隔地设置有若干开口 42, 包括,
在导电金属箔电路 50背向粘接层 60的一侧进行丝网印刷或者喷墨 打印, 形成绝缘层 40。
在本发明的实施例中, 当背接触太阳电池片为背面无主栅 IBC电池 时, 并且开口数量较多, 当开口数量达到一定数量, 可以但不仅仅为开 口数量大于 500时, 为了保证电流导出的效果, 在绝缘层上需要的开口 数量非常巨大, 这会给加工带来非常大的困难, 后续制程过程中, 绝缘 层与导电金属箔电路对准也会非常困难, 可以在导电金属箔电路背向粘 接层的一侧进行丝网印刷或者喷墨打印, 形成绝缘层, 绝缘层为绝缘胶 膜, 绝缘胶膜的材料可以但不仅仅为绝缘蜡或绝缘油墨。 在导电金属箔 电路上进行丝网印刷或者喷墨打印形成绝缘层的过程中, 预留了开口位 置, 也就是在形成绝缘层的过程中同时形成了开口。 能够保证背接触太 阳电池组件的加工精度, 降低背接触太阳电池组件的加工难度, 保证背 接触太阳电池组件的良品率。
进一步的, 层压的温度为 140-150°C , 层压的时间为 5-15分钟。 在本发明的实施例中, 层压的温度为 140-150°C , 层压的时间为 5-15 分钟, 层压的温度和层压的时间可以根据前封装层的材料进行调整。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。 本领域技术人员应当理解, 本申请中所涉及的发明范围, 并不限于上述 技术特征的特定组合而成的技术方案, 同时也应涵盖在不脱离所述发明 构思的情况下, 由上述技术特征或其等同特征进行任意组合而形成的其 它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的 技术特征进行互相替换而形成的技术方案。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明 的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或 者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络 革元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例 方案的目的。 本领域普通技术人员在不付出创造性的劳动的情况下, 即可以 理解并实施。
本文中所称的“一个实施例”、 “实施例”或者“一个或者多个实施例”意味 着, 结合实施例描述的特定特征、 结构或者特性包括在本发明的至少一个实 施例中。 此外, 请注意, 这里“在一个实施例中”的词语例子不一定全指同一 个实施例。
在此处所提供的说明书中, 说明了大量具体细节。 然而, 能够理解, 本 发明的实施例可以在没有这些具体细节的情况下被实践。 在一些实例中, 并 未详细示出公知的方法、 结构和技术, 以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求 的限制。 单词“包含”不排除存在未列在权利要求中的元件或步骤。 位于元件 之前的单词“一”或“一个”不排除存在多个这样的元件。 在列举了若干装置的 单元权利要求中, 这些装置中的若干个可以是通过同一个硬件项来具体体 现。 单词第一、 第二、 以及第三等的使用不表示任何顺序。 可将这些单词解 释为名称。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种背接触太阳电池组件, 其特征在于, 所述背接触太阳电池组件 包括:
长方形边框和具有多个串联的太阳电池片的电池片层, 所述边框内 被所述多个串联的太阳电池片填满, 所述太阳电池片通过等分正六边形 背接触太阳电池片获得, 各所述太阳电池片的受光面积相等。
2、 根据权利要求 1所述的背接触太阳电池组件, 其特征在于, 沿着所 述正六边形背接触太阳电池片的任一边的中垂线二等分所述正六边形背接 触太阳电池片, 获得部分所述太阳电池片, 沿着 4述正六边形背接触太阳电 池片的任一角的角平分线二等分所述正六边形背接触太阳电池片, 获得部分 所述太阳电池片。
3、 根据权利要求 2所述的背接触太阳电池组件, 其特征在于, 还包括 多个正六边形太阳电池片组, 所述正六边形太阳电池片组由相邻的两块所述 太阳电池片拼合构成, 所述正六边形太阳电池片组在所述边框内呈蜂巢状排 列。
4、 根据权利要求 3所述的背接触太阳电池组件, 其特征在于, 所述边 框包括第一边, 所述第一边与所述正六边形太阳电池片组的至少一边平行, 位于边缘的所述正六边形太阳电池片组与所述第一边之间的所述太阳电池 片,通过沿着所述正六边形背接触太阳电池片的任一角的角平分线二等分所 述正六边形背接触太阳电池片获得。
5、 根据权利要求 3所述的背接触太阳电池组件, 其特征在于, 所述边 框包括第二边, 所述第二边与所述正六边形太阳电池片组的至少一边垂直, 位于边缘的所述正六边形太阳电池片组与所述第二边之间的所述太阳电池 片,通过沿着所述正六边形背接触太阳电池片的任一边的中垂线二等分所述 正六边形背接触太阳电池片获得。
6、 根据权利要求 1所述的背接触太阳电池组件, 其特征在于, 所述太 阳电池片通过四等分所述正六边形背接触太阳电池片获得, 所述太阳电池片 为直角梯形。
7、 根据权利要求 1所述的背接触太阳电池组件, 其特征在于, 所述太 阳电池片通过十二等分所述正六边形背接触太阳电池片获得, 所述太阳电池 片为直角三角形。
8、 根据权利要求 1所述的背接触太阳电池组件, 其特征在于, 相邻的 所述太阳电池片沿着所述边框的长边方向或者宽边方向依次串联。
9、 根据权利要求 1所述的背接触太阳电池组件, 其特征在于, 所述太 阳电池片构成电池片层, 所述电池片层的背面固定连接有绝缘层, 所述绝缘 层背向所述电池片层的一侧固定连接有若干导电金属箔电路,相邻的所述导 电金属箔电路之间设置有间隙,各所述太阳电池片通过所述导电金属箔电路 电连接, 所述导电金属洛电路背向所述电池片层的一侧通过枯接层枯接有聚 合物背板。
10、根据权利要求 9所述的背接触太阳电池组件, 其特征在于, 所述电 池片层背向所述绝缘层的一侧固定连接有前封装层, 所述前封装层背向所述 电池片层的一侧固定连接有前盖板。
11、 一种背接触太阳电池组件, 其特征在于, 所述背接触太阳电池组件 包括: 电池片层, 所述电池片层的背面固定连接有绝缘层, 所述绝缘层背 向所述电池片层的一侧固定连接有若干导电金属箔电路, 相邻的所述导 电金属箔电路之间设置有间隙, 所述电池片层包括有若干太阳电池片, 任一所述太阳电池片的正极和负极分别通过电连接 4与不相连的所述导 电金属箔电路电连接, 所述导电金属箔电路背向所述电池片层的一侧通 过粘接层粘接有聚合物背板;
其中, 所述太阳电池片为正六边形背接触太阳电池片、 二分之一片正 六边形背接触太阳电池片、 三分之一片正六边形背接触太阳电池片、 四分之 一片正六边形背接触太阳电池片、 六分之一片正六边形背接触太阳电池片、 十二分之一片正六边形背接触太阳电池片中任意一种或者多种的组合。
12、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述电池片层背向所述绝缘层的一侧固定连接有前封装层, 所述前封装层 背向所述电池片层的一侧固定连接有前盖板。
13、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述绝缘层间隔地设置有若干开口, 所述电连接体穿过所述开口。
14、 根据权利要求 13所述的背接触太阳电池组件, 其特征在于, 所 述开口的形状为圆形或者方形, 所述开口数量为 100-50000个或者 5000-2000000个或者 100-10000个。
15、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述绝缘层的厚度 < 500微米, 和 /或,
所述粘接层的厚度为 10-500微米。
16、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述导电金属箔电路的材料为铜箔或者铝箔, 所述导电金属箔电路的厚度 为 10-100微米。
17、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述绝缘层的厚度为 50-200微米, 和 /或,
所述导电金属箔电路的厚度为 10-500微米。
18、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 位 于所述电池片层边缘的所述导电金属箔电路露出所述电池片层边缘。
19、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述太阳电池片设置有正极细栅线、 负极细栅线、 p型掺杂区域和 n型掺杂 区域, 所述正极细栅线与所述 p型参杂区域接触, 所述负极细栅线与所 述 n型掺杂区域接触, 所述正极细栅线和所述负极细栅线分别与所述电 连接体电 i接, 任一所述太阳电池片上的所述正极细栅线与所述负极细 栅线的数量之和为 50-1000根,与任一根所述正极细栅线或者所述负极细 栅线电连接的所述电连接体的数量为 1 -100个。
20、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述太阳电池片设置有正极细栅线、 负极细栅线、 p型掺杂区域和 n型掺杂 区域, 所述正极细栅线与所述 p型彳参杂区域接触, 所述负极细栅线与所 述 n型捧杂区域接触, 所述正极细拇线与正极连接电极电连接, 所述负 极细栅线 负极连接电极电连接, 所述正极连接电极和所述负极连接电 极分别与所述电连接体电连接, 任一所述太阳电池片上的所述正极连接 电极和所述负极连接电极的数量之和为 2-100根,与任一根所述正极连接 电极或者所述负极连接电极电连接的所述电连接体的数量为 1-100个。
21、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述太阳电池片设置有第一电极和第二电极, 所述第一电极包括细栅电极、 贯穿孔电极和第一连接电极, 所述细栅电极和所述第一连接电极分别与 所述贯穿孔电极电连接, 所述第二电极包括传输电极和第二连接电极, 所述传输电极与所述第二连接电极电连接, 所述太阳电池片的正面设置 有所述细栅电极, 所述太阳电池片的背面设置有所述第一连接电极、 所 述传输电极以及所述第二连接电极, 任一所述 阳电池片上的所述第一 连接电极和所述第二连接电极的数量之和为 100-10000个。
22、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述第一连接电极和所述第二连接电极呈点阵状排布在所述太阳电池片的 背面。
23、 根据权利要求 1 1所述的背接触太阳电池组件, 其特征在于, 所 述第一连接电极的直径为 0.3-10mm , 所述第二连接电极的直径为 0.3-10mm。
24、 一种背接触太阳电池组件的制造方法, 其特征在于, 包括以下步 骤:
将导电金属箔、 粘接层和聚合物背板依次粘接;
对所述导电金属箔进行图案化处理, 形成若干导电金属箔电路; 在所述导电金属箔电路背向所述粘接层的一侧形成绝缘层, 所述绝 缘层间隔地设置有若干开口;
将电连接体穿过所述开口, 使得所述电连接体与所述导电金属洛电 路电连接;
在所述绝缘层背向所述导电金属箔电路的一侧铺设若干太阳电池 片, 形成电池片层, 任一所述太阳电池片的正极和负极分别通过所述电 连接体与不相连的所述导电金属洛电路电连接;
在所述电池片层背向所述绝缘层的一侧依次铺设前封装层和前盖 板;
对所述聚合物背板、 所述粘接层、 所述导电金属箔电路、 所述绝缘 层、 所述前封装层和所述前盖板进行层压, 得到背接触太阳电池组件。
25、 根据权利要求 24所述的背接触太阳电池组件的制造方法, 其特 征在于, 在所述导电金属箔电路背向所述粘接层的一侧形成绝缘层, 所 述绝缘层间隔地设置有若干开口, 包括,
对所述绝缘层进行激光烧蚀、 蚀刻或者机械冲压, 形成所述开口, 再将所述绝缘层铺设在所述导电金属箔电路背向所述粘接层的一侧。
26、 根据权利要求 24所述的背接触太阳电池组件的制造方法, 其特 征在于, 在所述导电金属箔电路背向所述粘接层的一侧形成绝缘层, 所 述绝缘层间隔地设置有若干开口, 包括,
所述导电金属箔电路背向所述枯接层的一侧进行丝网印刷或者喷 墨打印, 形成所述绝缘层。
27、 根据权利要求 24所述的背接触太阳电池组件的制造方法, 其特 征在于, 所述层压的温度为 140-150°C , 所述层压的时间为 5-15分钟。
PCT/CN2020/070938 2019-02-27 2020-01-08 一种背接触太阳电池组件及其制造方法 WO2020173233A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910146681.5A CN109904268A (zh) 2019-02-27 2019-02-27 背接触太阳电池组件及其制造方法
CN201910146681.5 2019-02-27
CN201910147433.2 2019-02-27
CN201910147433.2A CN109888033A (zh) 2019-02-27 2019-02-27 太阳电池组件

Publications (1)

Publication Number Publication Date
WO2020173233A1 true WO2020173233A1 (zh) 2020-09-03

Family

ID=72239053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070938 WO2020173233A1 (zh) 2019-02-27 2020-01-08 一种背接触太阳电池组件及其制造方法

Country Status (1)

Country Link
WO (1) WO2020173233A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089705A (en) * 1976-07-28 1978-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hexagon solar power panel
CN201663166U (zh) * 2010-01-08 2010-12-01 湖南天利恩泽太阳能科技有限公司 太阳能电池片
CN103856163A (zh) * 2012-12-04 2014-06-11 杜邦公司 用于背接触式光伏模块的组件
CN103928563A (zh) * 2013-01-10 2014-07-16 杜邦公司 用于光伏组件的集成式背板组装件
CN107123696A (zh) * 2017-06-09 2017-09-01 崔鹏 一种光伏太阳能电池片组件
CN108461557A (zh) * 2018-02-07 2018-08-28 浙江晶盛机电股份有限公司 一种针对直角梯形电池片的封装组件
CN109148618A (zh) * 2018-09-30 2019-01-04 东方日升新能源股份有限公司 一种光伏组件的制作方法及光伏组件
CN109888033A (zh) * 2019-02-27 2019-06-14 泰州隆基乐叶光伏科技有限公司 太阳电池组件
CN109904268A (zh) * 2019-02-27 2019-06-18 泰州隆基乐叶光伏科技有限公司 背接触太阳电池组件及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089705A (en) * 1976-07-28 1978-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hexagon solar power panel
CN201663166U (zh) * 2010-01-08 2010-12-01 湖南天利恩泽太阳能科技有限公司 太阳能电池片
CN103856163A (zh) * 2012-12-04 2014-06-11 杜邦公司 用于背接触式光伏模块的组件
CN103928563A (zh) * 2013-01-10 2014-07-16 杜邦公司 用于光伏组件的集成式背板组装件
CN107123696A (zh) * 2017-06-09 2017-09-01 崔鹏 一种光伏太阳能电池片组件
CN108461557A (zh) * 2018-02-07 2018-08-28 浙江晶盛机电股份有限公司 一种针对直角梯形电池片的封装组件
CN109148618A (zh) * 2018-09-30 2019-01-04 东方日升新能源股份有限公司 一种光伏组件的制作方法及光伏组件
CN109888033A (zh) * 2019-02-27 2019-06-14 泰州隆基乐叶光伏科技有限公司 太阳电池组件
CN109904268A (zh) * 2019-02-27 2019-06-18 泰州隆基乐叶光伏科技有限公司 背接触太阳电池组件及其制造方法

Similar Documents

Publication Publication Date Title
CN106653912B (zh) 一种无栅线全背接触太阳能电池组件
WO2018223868A1 (zh) 一种光伏太阳能电池片组件
CN106409929B (zh) 一种无主栅全背接触太阳能电池组件
WO2018176527A1 (zh) 采用中心汇聚栅线电极的太阳能叠片组件
WO2021232715A1 (zh) 背接触太阳能电池组件及制备方法
WO2020177581A1 (zh) 背接触太阳能电池导电复合板及其制备方法、背接触太阳能电池互联结构以及双面背接触太阳能电池组件
WO2023005913A1 (zh) 太阳能电池串及其制备方法和应用
WO2012005318A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
CN109888033A (zh) 太阳电池组件
AU2020465021A1 (en) Manufacturing method and manufacturing apparatus for interconnection member
CN110246911A (zh) 背接触叠片太阳电池串及制造方法、叠片太阳电池组件
CN107318269A (zh) 太阳能电池及其制造方法、太阳能电池模块、以及布线板
WO2018176182A1 (zh) 一种n型ibc太阳能电池拼片连接的电池串及其制备方法、组件和系统
CN109904268A (zh) 背接触太阳电池组件及其制造方法
US20230327035A1 (en) Interconnection piece and solar cell assembly
JP2010238938A (ja) 太陽電池セル、太陽電池モジュールおよび太陽電池システム
CN209981232U (zh) 背接触叠片太阳电池串及叠片太阳电池组件
CN109904261A (zh) 太阳电池组件
WO2020103358A1 (zh) 一种太阳能电池片及太阳能电池组件
WO2020173233A1 (zh) 一种背接触太阳电池组件及其制造方法
CN110190145A (zh) 背接触叠片太阳电池串及制造方法、叠片太阳电池组件
CN209675313U (zh) 背接触太阳电池组件
WO2022267587A1 (zh) 一种柔性可卷曲的背接触太阳电池模组及其制备方法
CN209675305U (zh) 太阳电池组件
CN209981238U (zh) 太阳电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762800

Country of ref document: EP

Kind code of ref document: A1