WO2022267587A1 - 一种柔性可卷曲的背接触太阳电池模组及其制备方法 - Google Patents

一种柔性可卷曲的背接触太阳电池模组及其制备方法 Download PDF

Info

Publication number
WO2022267587A1
WO2022267587A1 PCT/CN2022/083097 CN2022083097W WO2022267587A1 WO 2022267587 A1 WO2022267587 A1 WO 2022267587A1 CN 2022083097 W CN2022083097 W CN 2022083097W WO 2022267587 A1 WO2022267587 A1 WO 2022267587A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
contact solar
cell module
series
small
Prior art date
Application number
PCT/CN2022/083097
Other languages
English (en)
French (fr)
Inventor
邱新旺
Original Assignee
金阳(泉州)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金阳(泉州)新能源科技有限公司 filed Critical 金阳(泉州)新能源科技有限公司
Publication of WO2022267587A1 publication Critical patent/WO2022267587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of solar cell preparation, in particular to a flexible and rollable IBC or HBC back-contact solar cell module and a preparation method thereof.
  • the solar cell chip was cut into many small cells and then bonded and protected on the surface of the small cells. Because the size of the small cells is small, the bonding of the protective layer requires high precision, resulting in many defects. Furthermore, the positive and negative poles of the small cells that make up the flexible solar panel are on different sides of the battery. During production, the positive and negative poles of the small batteries must be connected in series. During the series welding, the positive and negative sides must be flipped over and welded. On the other side, or both sides of the small battery are laid with interconnection strips and then connected in series at the same time.
  • back-contact solar cells IBC, HBC
  • the PN junction and metal contacts are on the back of the solar cell, and the front surface completely avoids the shielding of the interconnection strips of metal grid electrodes and welding electrodes, which can maximize the use of Incident light, less optical loss, higher short circuit current.
  • the positive and negative electrodes of the battery are on the back of the battery, which can further improve the process efficiency in the operation of welding small battery chips.
  • This kind of solar cell with no shading in front not only has high conversion efficiency, but also has the advantages of beautiful appearance.
  • the present invention provides a flexible and rollable back-contact solar cell module, which is characterized in that the length of the back-contact solar cell module can be infinitely extended, and a plurality of large battery blocks are connected in series or in parallel; the large battery block is composed of a plurality of small battery strings in series or in parallel; the small battery string is composed of a plurality of small square battery slices in series or in parallel; the large battery block, small battery string, and small The series or parallel connection between the slices is welded by horizontal or vertical flexible interconnection strips.
  • the electrodes of the small square cells are all on the back, which are cut from the back-contact solar cells, and the surface of the light-receiving side is bonded with a protective layer with an adhesive layer.
  • the present invention adopts the following technologies:
  • multiple large battery blocks are welded in series or in parallel through flexible interconnection strips to form a back-contact solar battery module.
  • the infinitely extended back-contact solar cell module can also be cut off at a suitable position according to design requirements to re-form a plurality of large cells, and then re-connected in series and parallel through flexible interconnecting strips to form a solar cell that meets the new design requirements. battery module.
  • the back-contact solar cell module is formed by connecting large battery blocks in series
  • the positive and negative electrodes of the large battery blocks are connected by horizontal flexible interconnection strips.
  • the back-contact solar cell module is formed by connecting large battery blocks in parallel, vertically oriented flexible interconnection strips are used to connect the positive and positive electrodes of the large battery blocks, and the negative and negative electrodes.
  • the length of the small square battery pieces is 1-100 mm, and the width is 1-100 mm, and the small square battery pieces are kept at a certain distance from each other.
  • the flexible interconnection strip is 0.1-20mm FCCL soft soldering strip or FPCB or flexible tinned copper strip, and the gap between the small battery strings connected by the flexible interconnection strip is 0.1-5mm.
  • the protective layer is a hard material layer, which can be glass, PC, PMMA, PP, PET or transparent fluorine material layer, and its thickness is 0.2-2mm.
  • the bonding adhesive layer between the small square battery sheet and the protective layer is silica gel, EVA adhesive, POE adhesive, double-sided adhesive, etc., and is cured by UV light or high temperature.
  • the back contact solar cell is one of an interdigitated back contact (IBC) solar cell or an interdigitated back contact heterojunction (HBC) solar cell.
  • IBC interdigitated back contact
  • HBC interdigitated back contact heterojunction
  • the present invention has the following advantages:
  • the back-contact solar cell module provided by the present invention can be infinitely extended, and the large battery blocks constituting the back-contact solar cell module can be connected in series, in parallel, in series-parallel by using flexible interconnection strips in the horizontal and vertical directions simultaneously according to actual application requirements Free combination; and by pre-cutting the back-contact solar cell and the protective layer, and then performing fragmentation after the adhesive layer is bonded, the design of the solar cell module is more flexible and the processing is more convenient. Furthermore, the electrodes of the back-contact solar cell module are all on the back side, which not only facilitates the welding of the flexible interconnection strips, but also does not block the light-receiving surface, effectively improving the light utilization rate. In addition, because the back contact solar cell module provided by the present invention can be infinitely extended, the back contact solar cell module provided by the present invention can also realize the design of solar cell modules with different current and voltage requirements in any width dimension.
  • Fig. 1 is the schematic cross-sectional structure diagram of the back contact solar cell module provided by the present invention
  • Fig. 2 is a schematic diagram of the front structure of the back-contact solar cell module of the embodiment provided by the present invention
  • Fig. 3 is a schematic diagram of cutting the back contact solar cell provided by the present invention into small square cells
  • Fig. 4 is a schematic diagram of the structure of the back contact solar cell provided by the present invention, which is laminated with hard material glass and then scribed into small square cells;
  • Fig. 5 is a schematic diagram of the structure of small square battery slices arranged in small battery strings provided by the present invention and then pasted with high-temperature adhesive tape on the back;
  • Fig. 6 is a schematic structural diagram of two strings of small battery strings arranged side by side provided by the present invention.
  • Fig. 7 is a structural schematic diagram of the invention provided by the present invention after the flexible interconnection strip is welded on the back side between two strings of small battery strings;
  • Fig. 8 is a schematic cross-sectional structural view of two series of small battery strings provided by the present invention connected in series through flexible interconnection strips;
  • Fig. 9 is a schematic structural diagram of a large battery block provided by the present invention.
  • Fig. 10 is a structural schematic diagram of two large battery blocks provided by the present invention being welded and connected by flexible interconnection strips;
  • Fig. 11 is a structural schematic diagram of the infinitely extendable back-contact solar cell module cut off at a suitable position according to the design requirements provided by the present invention.
  • the present invention provides a flexible and rollable back-contact solar cell module, the length of which can be infinitely extended, and consists of a plurality of large battery blocks 10 connected in series or in parallel;
  • the large battery block 10 is composed of a plurality of small battery strings 7 in series or in parallel;
  • the small battery string 7 is composed of a plurality of small square battery slices 2 in series or in parallel;
  • the large battery block 10, small battery strings 7, small square The series or parallel connections between the battery sheets 2 are welded by horizontal or vertical flexible interconnection strips 8 .
  • the electrodes of the small square cell sheet 2 are all on the back, cut from the back contact solar cell 1 , and the surface of the light-receiving surface is bonded with the protective layer 4 with the adhesive layer 3 .
  • the preparation process of the back contact solar cell module is as follows:
  • the back contact solar cell 1 and the protective layer 4 are pre-cut to form a plurality of small square cells 2 and small square protective layers 4 that are not completely disconnected; as shown in Figure 3, the back contact solar cell 1 is an interdigitated Type back-contact heterojunction (HBC) solar cell, the length of the small square battery sheet 2 after cutting is 12.0mm, and the width is 8.0mm, and the positive and negative electrodes of the small square battery sheet are on the back of the battery.
  • HBC Type back-contact heterojunction
  • the adhesive layer 3 is optical silica gel, which is cured at high temperature
  • the protective layer 4 is a hard material transparent glass , the thickness is 0.4mm
  • two large battery blocks 10 are welded in parallel through flexible interconnection strips 8 to form a back-contact solar battery module.
  • the back-contact solar battery module provided by the present invention can be extended infinitely, and the large battery blocks forming the back-contact solar battery module can be connected in series, in parallel, in series-parallel by using flexible interconnection strips in the horizontal and vertical directions simultaneously according to actual application requirements Free combination, and by pre-cutting the back-contact solar cell and the protective layer, and then performing fragmentation after the adhesive layer is bonded, the design of the solar cell module is more flexible and the processing is more convenient. Furthermore, the electrodes of the back-contact solar cell module are all on the back side, which not only facilitates the welding of the flexible interconnection strips, but also does not block the light-receiving surface, effectively improving the light utilization rate. In addition, because the back contact solar cell module provided by the present invention can be infinitely extended, the back contact solar cell module provided by the present invention can also realize the design of solar cell modules with different current and voltage requirements in any width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种柔性可卷曲的背接触太阳电池模组,其长度可无限延长,由多个大电池块串联或并联组成;大电池块由多个小电池串串联或并联组成;小电池串由多个小方块电池片串联或并联组成;大电池块、小电池串、小方块电池片相互之间的串联或并联连接采用水平或垂直方向的柔性互连条焊接。小方块电池片的电极都在背面,由背接触太阳电池切割而成,且受光面表面用胶层贴合保护层。同时制备时采用先对太阳电池和保护层进行预切割后贴合,再进行碎片处理。实现了背接触太阳电池模组可根据实际应用需求对大电池块进行串联、并联、串并联自由结合,且电极不遮挡受光面,使得设计更灵活、加工更方便、光利用率更高。

Description

一种柔性可卷曲的背接触太阳电池模组及其制备方法 技术领域
本发明涉及太阳能电池制备领域,尤其涉及一种柔性可卷曲的IBC或HBC背接触太阳电池模组及其制备方法。
背景技术
前一代柔性太阳电池模组,通过对太阳电池芯片切割成很多小电池片后再在小电池片表面贴合保护,因为小电池片尺寸小,贴合保护层要求精度高,造成较多不良。再者,组成柔性太阳能板的小电池片的正负极在电池不同的面,生产时要将小电池的正负极串焊,串焊时需要在焊完正极或负极面后,翻转后焊接另一面,或者小电池的两面都铺设互连条后同时串焊,由于组成柔性组件的小电池尺寸小,要求的工艺非常精密,加工难度比较大,且小电池焊接时采用统一水平方向焊接,使得柔性电池组件的设计受到一定的局限性。再者,再此外,由于电池的受光面和背面两面都有电极,串焊后的互连条会对发电面产生一定的遮光作用,降低了发电效率。
背接触太阳电池(IBC、HBC)最显著的特点是PN结和金属接触都处于太阳电池的背部,前表面彻底避免了金属栅线电极和焊接电极的互连条的遮挡,能够最大限度地利用入射光,减少光学损失,具有更高的短路电流。同时,电池的正负极都在电池的背面,也可以进一步提高焊接小电池片操作中的工艺效率。这种前面无遮挡的太阳电池不仅转换效率高,而且具有外形美观等优势。
发明内容
为解决现有技术存在的缺陷,本发明提供了一种柔性可卷曲的背接触太阳电池模组,其特征在于,所述背接触太阳电池模组长度可无限延长,由多个大电池块串联或并联组成;所述大电池块由多个小电池串串联或并联组成;所述小电池串由多个小方块电池片串联或并联组成;所述大电池块、小电池串、小方块电池片相互之间的串联或并联连接采用水平或垂直方向的柔性互连条焊接。所述小方块电池片的电极都在背面,由背接触太阳电池切割而成,且受光面表面用胶层贴合保护层。
为获得所述背接触太阳电池模组,本发明采用如下技术:
对背接触太阳电池和保护层进行预切割,形成多块未完全断开的小方块电池和小方块保护层;
用胶层将背接触太阳电池受光面和保护层贴合在一起;
进行碎片处理,形成多块受光面贴合有保护层的小方块电池片;
利用芯片自动裂片排片设备将多块小方块电池片排列好,并用高温胶带贴在背面的中间以固定小方块电池片的位置,再通过柔性互连条串联或并联焊接形成小电池串;
将多串小电池串排列好,再通过柔性互连条串联或并联焊接形成大电池块;
根据设计需求将多块大电池块通过柔性互连条串联或并联焊接形成背接触太阳电池模组。
优选的,所述无限延长的背接触太阳电池模组还可以根据设计需求在合适的位置切断,重新形成多个大电池,再经柔性互连条重新串并联连接, 形成满足新设计要求的太阳电池模组。
优选的,所述背接触太阳电池模组由大电池块串联连接形成时,采用水平方向的柔性互连条将大电池块的正负极进行连接。
优选的,所述背接触太阳电池模组由大电池块并联连接形成时,采用垂直方向的柔性互连条将大电池块的正极与正极、负极与负极进行连接。
优选的,所述小方块电池片长度为1-100mm,宽度为1-100mm,小方块电池片相互之间保持一定的间距。
优选的,所述柔性互连条为0.1-20mm的FCCL软性焊带或FPCB或柔性镀锡铜带,通过柔性互连条连接后的小电池串之间间隙为0.1-5mm。
优选的,所述保护层为硬质材料层,其可以为玻璃、PC、PMMA、PP、PET或透明氟材料层,其厚度为0.2-2mm。
优选的,所述小方块电池片与保护层的贴合胶层为硅胶、EVA胶、POE胶、双面胶等,采用UV光固化或高温固化。
优选的,所述背接触太阳电池为交叉指式背接触(IBC)太阳电池或交叉指式背接触异质结(HBC)太阳电池的一种。
由上述对本发明的描述可知,和现有技术相比,本发明具有如下优点:
本发明提供的背接触太阳电池模组可以无限延长,并根据实际应用需求同时利用水平方向和垂直方向的柔性互连条对组成背接触太阳电池模组的大电池块进行串联、并联、串并联自由结合;且通过对背接触太阳电池和保护层进行预切割,并在胶层贴合后再进行碎片处理,使得太阳能电池组件的设计更灵活、加工更方便。再者,背接触太阳电池模组的电极都在背面,既方便柔性互连条的焊接,又不会遮挡受光面,有效提高光利用率。 此外,因为本发明提供的背接触太阳电池模组可以无限延长,因此,本发明提供的背接触太阳电池模组还可以在任意宽度尺寸上实现不同电流、电压需求的太阳能电池组件的设计。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明提供的背接触太阳电池模组的剖视结构示意图;
图2本发明提供的提供的实施例背接触太阳电池模组的正面结构示意图;
图3为本发明提供的背接触太阳电池切割成小方块电池片示意图;
图4为本本发明提供的背接触太阳电池贴合硬质材料玻璃后再划线成小方块电池片的结构示意图;
图5为本本发明提供的小方块电池片排列成小电池串后背面贴高温胶带的结构示意图;
图6为本本发明提供的小电池串两串并列排放的结构示意图;
图7为本本发明提供的在两串小电池串间背面焊柔性互连条后的结构示意图;
图8为本本发明提供的两串小电池串通过柔性互连条串联连接后的剖视结构示意图;
图9为本发明提供的大电池块的结构示意图;
图10为本发明提供的两块大电池块通过柔性互连条焊接连接的结构示意图;
图11为本发明提供的可无限延长的背接触太阳电池模组根据设计需求在合适的位置切断的结构示意图。
具体实施方式
为了使本发的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1和2所示,本发明提供了一种柔性可卷曲的背接触太阳电池模组,所述背接触太阳电池模组长度可无限延长,由多个大电池块10串联或并联组成;所述大电池块10由多个小电池串7串联或并联组成;所述小电池串7由多个小方块电池片2串联或并联组成;所述大电池块10、小电池串7、小方块电池片2相互之间的串联或并联连接采用水平或垂直方向的柔性互连条8焊接。所述小方块电池片2的电极都在背面,由背接触太阳电池1切割而成,且受光面表面用胶层3贴合保护层4。
所述背接触太阳电池模组制备过程如下:
首先,对背接触太阳电池1和保护层4进行预切割,形成多块未完全断开的小方块电池2和小方块保护层4;图3所示,所述背接触太阳电池1为交叉指式背接触异质结(HBC)太阳电池,切割后的小方块电池片2长度为12.0mm,宽度为8.0mm,且小方块电池片的正负极都在电池的背面。
其次,用胶层3将背接触太阳电池1受光面和保护层4贴合在一起;其中,所述胶层3为光学硅胶,采用温度高温固化;所述保护层4为硬质材料透明玻璃,厚度为0.4mm;
接着,对贴合后的背接触太阳电池1进行碎片处理,形成多块受光面贴合有保护层的小方块电池片2;
图4和5所示,利用芯片自动裂片排片设备将每串20小方块电池片2,相互间隔0.4mm排列好,并用高温胶带6贴在背面的中间以固定小方块电池片2的位置,再通过柔性互连条8串联或并联焊接形成小电池串7;
图9所示,将13串小电池串7排列好,再通过柔性互连条8串联焊接形成大电池块10,并在在最外边小电池串7的正极和负极再焊上柔性互连条8,用与其它大电池块之间的串并联连接。其中,小电池串7相互之间隔0.2mm(图6所示),两串小电池串7正负极间用柔性互连条8串联焊接(图7和8所示)。
图10所示,根据设计需求将两块大电池块10通过柔性互连条8并联焊接形成背接触太阳电池模组。
图11所示,多个大电池块10串并联形成背接触太阳电池模组后,还可以根据设计需求,在需要的位置切断并经柔性互连条重新串联或并联焊接重新组成背接触太阳电池模组。
本发明提供的背接触太阳电池模组可以无限延长,并根据实际应用需求同时利用水平方向和垂直方向的柔性互连条对组成背接触太阳电池模组的大电池块进行串联、并联、串并联自由结合,且通过对背接触太阳电池和保护层进行预切割,并在胶层贴合后再进行碎片处理,使得太阳能电池 组件的设计更灵活、加工更方便。再者,背接触太阳电池模组的电极都在背面,既方便柔性互连条的焊接,又不会遮挡受光面,有效提高光利用率。此外,因为本发明提供的背接触太阳电池模组可以无限延长,因此,本发明提供的背接触太阳电池模组还可以在任意宽度尺寸上实现不同电流、电压需求的太阳能电池组件的设计。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种柔性可卷曲的背接触太阳电池模组,其特征在于:所述背接触太阳电池模组长度可无限延长,由多个大电池块串联或并联组成;所述大电池块由多个小电池串串联或并联组成;所述小电池串由多个小方块电池片串联或并联组成;所述大电池块、小电池串、小方块电池片相互之间的串联或并联连接采用水平或垂直方向的柔性互连条焊接。所述小方块电池片的电极都在背面,由背接触太阳电池切割而成,且受光面表面用胶层贴合保护层。所述背接触太阳电池模组,采用如下技术:
    对背接触太阳电池和保护层进行预切割,形成多块未完全断开的小方块电池和小方块保护层;
    用胶层将背接触太阳电池受光面和保护层贴合在一起;
    进行碎片处理,形成多块受光面贴合有保护层的小方块电池片;
    利用芯片自动裂片排片设备将多块小方块电池片排列好,并用高温胶带贴在背面的中间以固定小方块电池片的位置,再通过柔性互连条串联或并联焊接形成小电池串;
    将多串小电池串排列好,再通过柔性互连条串联或并联焊接形成大电池块;
    根据设计需求将多块大电池块通过柔性互连条串联或并联焊接形成背接触太阳电池模组。
  2. 根据权利要求1所述背接触太阳电池模组,其特征还在于:所述背接触太阳电池模组还可以根据设计需求在合适的位置切断,重新形成多个大电池,再经柔性互连条重新串并联连接,形成满足新设计要求的太阳电池模组。
  3. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:所述的背接触太阳电池模组由大电池块串联连接形成时,采用水平方向的柔性互连条将大电池块的正负极进行连接。
  4. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:所述的背接触太阳电池模组由大电池块关联连接形成时,采用垂直方向的柔性互连条将大电池块的正极与正极、负极与负极进行连接。
  5. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:所述小方块电池片长度为1-100mm,宽度为1-100mm,小方块电池片相互之间保持一定的间距。
  6. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:所述柔性互连条为0.1-20mm的FCCL软性焊带或FPCB或柔性镀锡铜带,通过柔性互连条连接后的小电池串之间间隙为0.1-5mm,所述小电池串由2片以上小方块电池组成。
  7. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:所述保护层为硬质材料层,其可以为玻璃、PC、PMMA、PP、PET或透明氟材料层,其厚度为0.2-2mm。
  8. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:小方块电池片与保护层的贴合胶层为硅胶、EVA胶、POE胶、双面胶等,采用UV光固化或高温固化。
  9. 根据权利要求1或2所述的背接触太阳电池模组,其特征在于:所述背接触太阳电池为交叉指式背接触(IBC)太阳电池或交叉指式背接触异质结(HBC)太阳电池的一种。
PCT/CN2022/083097 2021-06-24 2022-03-25 一种柔性可卷曲的背接触太阳电池模组及其制备方法 WO2022267587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110705336.8A CN115472710A (zh) 2021-06-24 2021-06-24 一种柔性可卷曲的背接触太阳电池模组及其制备方法
CN202110705336.8 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022267587A1 true WO2022267587A1 (zh) 2022-12-29

Family

ID=79024328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083097 WO2022267587A1 (zh) 2021-06-24 2022-03-25 一种柔性可卷曲的背接触太阳电池模组及其制备方法

Country Status (6)

Country Link
US (1) US11742441B2 (zh)
EP (1) EP4109743B1 (zh)
CN (1) CN115472710A (zh)
AU (1) AU2021286436B2 (zh)
ES (1) ES2968340T3 (zh)
WO (1) WO2022267587A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435393A (zh) * 2023-05-19 2023-07-14 金阳(泉州)新能源科技有限公司 一种易卷折太阳能电池模组及其制造方法和制造工装

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201225318A (en) * 2010-10-29 2012-06-16 Applied Materials Inc Monolithic module assembly using back contact solar cells and metal ribbon
US20130104958A1 (en) * 2011-10-31 2013-05-02 E I Du Pont De Nemours And Company Integrated back-sheet for back contact photovoltaic module
CN108429524A (zh) * 2018-05-28 2018-08-21 苏州携创新能源科技有限公司 便携组合式太阳能光伏组件
CN110676345A (zh) * 2019-09-20 2020-01-10 黄河水电光伏产业技术有限公司 晶硅太阳电池串的拼接方法及组件
CN111244217A (zh) * 2020-04-09 2020-06-05 陕西众森电能科技有限公司 一维ibc太阳电池互联方法及结构
CN112490312A (zh) * 2020-12-10 2021-03-12 常州时创能源股份有限公司 一种能够降低切割损失的太阳能电池及制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080223429A1 (en) * 2004-08-09 2008-09-18 The Australian National University Solar Cell (Sliver) Sub-Module Formation
US20080236655A1 (en) * 2007-03-29 2008-10-02 Baldwin Daniel F Solar module manufacturing processes
US20110308563A1 (en) * 2010-06-22 2011-12-22 Miasole Flexible photovoltaic modules in a continuous roll
US9515217B2 (en) * 2012-11-05 2016-12-06 Solexel, Inc. Monolithically isled back contact back junction solar cells
US20170288081A1 (en) * 2013-03-13 2017-10-05 Merlin Solar Technologies, Inc. Photovoltaic module
US9911875B2 (en) * 2013-04-23 2018-03-06 Beamreach-Solexel Assets LLC Solar cell metallization
DE102013218738A1 (de) * 2013-09-18 2015-04-02 Solarworld Industries Sachsen Gmbh Solarzelle mit Kontaktstruktur und Verfahren zu seiner Herstellung
US20170279402A1 (en) * 2016-03-25 2017-09-28 X Development Llc Photovoltaic macro-module for solar power generation
KR101824523B1 (ko) * 2017-01-11 2018-02-01 엘지전자 주식회사 태양 전지 모듈 및 이를 구비하는 휴대용 충전기
US20190288137A1 (en) * 2018-03-15 2019-09-19 The Boeing Company Rollable solar power module with in-plane interconnects
JP7317479B2 (ja) * 2018-09-28 2023-07-31 パナソニックホールディングス株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
US11081606B2 (en) * 2018-12-27 2021-08-03 Solarpaint Ltd. Flexible and rollable photovoltaic cell having enhanced properties of mechanical impact absorption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201225318A (en) * 2010-10-29 2012-06-16 Applied Materials Inc Monolithic module assembly using back contact solar cells and metal ribbon
US20130104958A1 (en) * 2011-10-31 2013-05-02 E I Du Pont De Nemours And Company Integrated back-sheet for back contact photovoltaic module
CN108429524A (zh) * 2018-05-28 2018-08-21 苏州携创新能源科技有限公司 便携组合式太阳能光伏组件
CN110676345A (zh) * 2019-09-20 2020-01-10 黄河水电光伏产业技术有限公司 晶硅太阳电池串的拼接方法及组件
CN111244217A (zh) * 2020-04-09 2020-06-05 陕西众森电能科技有限公司 一维ibc太阳电池互联方法及结构
CN112490312A (zh) * 2020-12-10 2021-03-12 常州时创能源股份有限公司 一种能够降低切割损失的太阳能电池及制备方法

Also Published As

Publication number Publication date
US20220416101A1 (en) 2022-12-29
EP4109743B1 (en) 2023-11-15
AU2021286436A1 (en) 2023-01-19
CN115472710A (zh) 2022-12-13
ES2968340T3 (es) 2024-05-09
EP4109743C0 (en) 2023-11-15
EP4109743A1 (en) 2022-12-28
AU2021286436B2 (en) 2023-06-08
US11742441B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
CN105789359A (zh) 一种双面太阳能电池组件的制作方法
US20130056044A1 (en) Photovoltaic module fabrication with thin single crystal epitaxial silicon devices
CN106252446A (zh) 一种低能耗太阳能电池组件
WO2022247057A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
CN210692545U (zh) 一种无主栅光伏组件
CN205609550U (zh) 一种双面太阳能电池组件
CN112786727A (zh) 无主栅异质结太阳能电池组件互联用复合膜及其制备方法
WO2023232136A1 (zh) 一种基于超薄钢化玻璃的轻质叠瓦光伏组件
CN111477709A (zh) 一种柔性串并联叠瓦光伏组件及其制造方法
WO2022267587A1 (zh) 一种柔性可卷曲的背接触太阳电池模组及其制备方法
US20230327035A1 (en) Interconnection piece and solar cell assembly
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
CN109087961A (zh) 一种光伏组件及其制作方法
CN209981247U (zh) 一种曲面叠瓦光伏组件
CN207993882U (zh) 一种光伏电池片组件的互联结构
CN112563367A (zh) 一种柔性可卷曲的硅基电池模组的制备方法
CN110649119A (zh) 一种基于晶硅的太阳能发电组件及其制备方法
CN205028909U (zh) 一种通过铜带串联电池片的层压组件
CN206040652U (zh) 一种太阳能电池双玻组件
CN108365043A (zh) 一种光伏电池片组件的互联结构
CN211743168U (zh) 一种柔性串并联叠瓦光伏组件
CN217086590U (zh) 一种柔性可卷曲背接触太阳电池模组
CN205028912U (zh) 一种电池片间设有反光半圆柱的光伏层压组件
CN212062449U (zh) 一种柔性可卷曲的硅基电池模组
CN207869063U (zh) 竖版型光伏叠片组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE