WO2020173220A2 - 一种纳米改性硅酸盐渗透结晶材料及其使用方法 - Google Patents

一种纳米改性硅酸盐渗透结晶材料及其使用方法 Download PDF

Info

Publication number
WO2020173220A2
WO2020173220A2 PCT/CN2020/000090 CN2020000090W WO2020173220A2 WO 2020173220 A2 WO2020173220 A2 WO 2020173220A2 CN 2020000090 W CN2020000090 W CN 2020000090W WO 2020173220 A2 WO2020173220 A2 WO 2020173220A2
Authority
WO
WIPO (PCT)
Prior art keywords
agent
parts
concrete
protection method
sodium
Prior art date
Application number
PCT/CN2020/000090
Other languages
English (en)
French (fr)
Other versions
WO2020173220A3 (zh
WO2020173220A8 (zh
Inventor
詹仰东
铃木義久
Original Assignee
詹仰东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 詹仰东 filed Critical 詹仰东
Priority to US17/434,393 priority Critical patent/US11485688B2/en
Publication of WO2020173220A2 publication Critical patent/WO2020173220A2/zh
Publication of WO2020173220A3 publication Critical patent/WO2020173220A3/zh
Publication of WO2020173220A8 publication Critical patent/WO2020173220A8/zh
Priority to PH12020552285A priority patent/PH12020552285A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4543Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by spraying, e.g. by atomising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0658Retarder inhibited mortars activated by the addition of accelerators or retarder-neutralising agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0683Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients inhibiting by freezing or cooling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5089Silica sols, alkyl, ammonium or alkali metal silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack

Definitions

  • a nano-modified silicate infiltrating crystalline material and its use method This application requires a Chinese invention patent named "a nano-modified silicate infiltrating crystalline material and its use method" filed on February 27, 2019 Apply for the priority of CN201910146232.0, and the entire content of the application is incorporated herein by reference.
  • the present invention relates to the technical field of inorganic concrete durability protection and repair materials, and more specifically to a nano-modified silicate infiltrating crystalline material and its use method. Background technique
  • the number of highway bridges has exceeded 800,000, and the service life of more than 30 years has exceeded 250,000; there are more than 86,000 water conservancy and hydroelectric reservoir dams, and about 70% of the dams in the upper reservoir have been constructed for more than or close to 30 years.
  • the improvement of concrete durability in China's domestic market mainly involves two aspects: First, it is solved from the concrete material technology itself, mainly from the optimization of concrete raw materials, the optimization of concrete mix ratio, the technology of adding more powder to concrete, and the concrete admixture.
  • Technology development, coagulation The improvement of soil pouring construction technology and other aspects; the second is to solve from the concrete surface protection technology, mainly epoxy resin coating materials, polyurea resin coatings, polyurethane coatings, acrylic emulsion coatings, cement-based permeable crystalline waterproof materials, etc.
  • the second aspect of technology is concerned, as a concrete durable protective material technology, the technologies currently used have both the main body of the protective material and the combination of the protective material and concrete. There are serious technical problems of aging and imperviousness. There is no better technical means for protection technology.
  • Inorganic water-based nano-modified silicate permeable crystallization and permanent active concrete protection and repair technology is a new type of environmental protection, integrated with the concrete body, durable and improved concrete, which has been rapidly developed in Europe, America and Japan in the past ten years.
  • the durable protective material technology is fundamentally different from the current traditional protective material that only wears a coat on the concrete surface. Summary of the invention
  • the present invention overcomes the shortcomings in the prior art and provides a nano-modified silicate infiltration crystallization material and a spraying method thereof.
  • a concrete durability protection method including the following steps:
  • the first step is to wash the concrete surface
  • each component of the agent A material are: 5-30 parts of sodium silicate, 5-20 parts of potassium silicate, 0.05-0.5 parts of surfactant, 0.1-1 part of reaction delay agent, 0.1-0.5 part of reducing agent Parts, reaction accelerator 0.1-2 parts, anti-freezing agent 0.01-0.5 parts, metal ion blocking agent 0.1-1 parts, surface strengthening agent 0.1-1 parts, rust inhibitor 0.1-0.5 parts, deionized water 40-70 parts ;
  • each component of the agent B material are: 5-30 parts of calcium hydroxide, 0.05-1 part of surfactant, 5-30 parts of sodium hydroxide, and 40-80 parts of deionized water.
  • the specific steps of spraying in the second step include: step one, spraying the agent A material; step two, spraying the agent A material for the second time after the agent A material in the step one is dried. Further, the specific steps of spraying in the second step include: step one, spraying agent B material; step two, spraying agent A material after the surface of the agent B material in step one is dry; step three, repeating step one , The step two.
  • the surfactant in the agent A is a primary alcohol, a secondary alcohol, dodecyltrimethylammonium chloride, imidazolines, polyoxyethylene tridecyl ether, or castor oil polyoxyethylene ether ester. Of any kind.
  • reaction delay agent in the agent A material is any one of borate, sodium hydroxide or potassium hydroxide.
  • the reducing agent in the agent A material is an inorganic ion reducing agent of thiouric acid or sodium thiosulfate.
  • reaction accelerator in the agent A material is any one of inorganic halide salt type ionic liquid or citrate ion type.
  • the anti-freezing agent in the agent A material is carbonates.
  • metal ion blocking agent in the agent A material is sodium metaphosphate.
  • the surface strengthening agent in the agent A material is magnesium fluoride or magnesium chloride.
  • the rust inhibitor in the agent A material is a diamino silver complex or amino alcohol alkali metal.
  • the surfactant in the agent B material refers to triethanolamine.
  • a nano-modified silicate infiltrating crystalline material which is composed of an agent A and an agent B, wherein the parts of each component of the agent A material are: 5-30 parts of sodium silicate, 5-30 parts of potassium silicate 20 parts, surfactant 0.05-0.5 parts, reaction delay agent 0.1-1 part, reducing agent 0.1-0.5 part, reaction accelerator 0.1-2 part, antifreeze agent 0.01-0.5 part, metal ion blocking agent 0.1-1 part , 0.1-1 part of surface strengthening agent, 0.1-0.5 part of rust inhibitor, 40-70 parts of deionized water;
  • the parts of each component of the B-agent material are: 5-30 parts of calcium hydroxide, 0.05 parts of surfactant -1 part, 5-30 parts of sodium hydroxide, 40-80 parts of deionized water.
  • the surfactant in the agent A is a primary alcohol, a secondary alcohol, dodecyltrimethylammonium chloride, imidazolines, polyoxyethylene tridecyl ether, or castor oil polyoxyethylene ether ester. of Any kind.
  • reaction delay agent in the agent A material is any one of borate, sodium hydroxide or potassium hydroxide.
  • the reducing agent in the agent A material is an inorganic ion reducing agent of thiouric acid or sodium thiosulfate.
  • reaction accelerator in the agent A material is any one of inorganic halide salt type ionic liquid or citrate ion type.
  • the anti-freezing agent in the agent A material is carbonates.
  • metal ion blocking agent in the agent A material is sodium metaphosphate.
  • the surface strengthening agent in the agent A material is magnesium fluoride or magnesium chloride.
  • the rust inhibitor in the agent A material is a diamino silver complex or amino alcohol alkali metal.
  • the surfactant in the agent B material refers to triethanolamine.
  • 'Beneficial effects of the present invention is: an inorganic nano-modified aqueous silicate solution into the concrete surface of the penetration of a depth range and generate consolidated CSH crystals filled concrete surface pores or capillary pores, thereby improving long-term durability of concrete.
  • the agent A material is a nano-modified silicate composite solution
  • the agent B material is a nano-modified complex calcium ion solution.
  • agent A material For newer concrete durability, direct spraying of agent A material is used, while for old concrete that has durability problems, it is necessary to use agent B material and agent A material together to provide the lack of free calcium ions in the old concrete. Promote the effective reaction of the agent A material after penetration.
  • the application method for waterproofing and durability protection of new concrete buildings is as follows: First, rinse the concrete surface with high-pressure water. When the concrete surface is in a wet state, you can spray the first time A material, according to the amount of 200-300ml per square meter After the first spraying, the concrete can be sprayed with the agent A material for the second time. The dosage is 100-200ml per square meter. After the second spraying, the concrete surface does not need special maintenance and protection, such as rain, water storage, etc., to complete the effective waterproof and durability protection of the concrete building surface within 24 hours.
  • Application method for durability protection of old concrete buildings First, use high-pressure water to wash the concrete surface. When the concrete surface is wet, you can spray the first B-agent material. The dosage is 250ml per square meter. After spraying the B-agent material, the concrete can be sprayed with the first A-agent material after the surface is sprayed. The dosage is 250ml per square meter. After the first coat of agent A material is sprayed, the concrete surface is dried, and then the second coat of agent B material is sprayed. After the second coat of agent B material is sprayed, the concrete surface is dried and then the second coat of agent A material is sprayed. After 24 hours The concrete surface does not need special maintenance and protection, such as rain, water storage, etc., which completes the effective durability of the old concrete building surface.
  • the supporting material B agent can provide an alkaline calcium ion complex Penetrate into the concrete to increase the effective free calcium ions, so that after the inorganic water-based nano-modified silicate solution penetrates into the concrete, it will not be unable to react to form CSH crystals due to the lack of free calcium ions in the deteriorated old concrete Lose its due effectiveness.
  • the present invention provides a nano-modified silicate infiltrating crystalline material, which includes two materials: A and B, wherein:
  • the agent A contains 5-30 parts of sodium silicate, 5-20 parts of potassium silicate, 0.05-0.5 parts of surfactants, 0.1-1 parts of reaction delay agents, 0.1-0.5 parts of reducing agents, and 0.1-2 parts of reaction accelerators. Parts, 0.01-0.5 parts of anti-freezing agent, 0.1 -1 parts of metal ion blocking agent, 0.1-1 parts of surface strengthening agent, 0.1-0.5 parts of rust inhibitor, and 40-70 parts of deionized water.
  • the B agent contains 5-30 parts by weight of calcium hydroxide, 0.05-1 parts of surfactant, 5-30 parts of sodium hydroxide, and 40-80 parts of deionized water.
  • the surfactant in the agent A is a primary alcohol, a secondary alcohol, dodecyltrimethylammonium chloride, imidazolines, polyoxyethylene tridecyl ether, or castor oil polyoxyethylene ether ester.
  • Any one of the primary alcohol and secondary alcohol may preferably be ethanol or isobutanol;
  • reaction delay agent in the agent A is preferably borate, sodium hydroxide, and potassium hydroxide;
  • the reducing agent in the agent A is preferably an inorganic ion reducing agent of thiouric acid or sodium thiosulfate;
  • reaction accelerator in the agent A is an inorganic halide salt ionic liquid or a citrate ion
  • the inorganic salt ionic liquid is preferably ammonium chloride, ammonium fluoride or sodium chloride
  • the antifreeze agent in the agent A is carbonate, preferably sodium carbonate or potassium carbonate;
  • metal ion blocking agent in the agent A is sodium metaphosphate
  • the surface strengthening agent in the agent A is magnesium fluoride or magnesium chloride
  • the rust inhibitor in the agent A is diamino silver complex or amino alcohol alkali metal
  • Agent B contains 5-30 parts of alkaline calcium ion complexes, 0.05-1 parts of surfactants, 5-30 parts of sodium hydroxide, and 40-70 parts of deionized water; the surfactants in B are Triethanolamine.
  • agent A Weigh 0.07 parts of dodecyl trimethylammonium chloride, 0.15 parts of sodium borate, 0.3 parts of sodium thiosulfate, 0.15 parts of ammonium chloride, 0.2 parts of potassium carbonate, 0.15 parts of sodium metaphosphate, fluoride 0.15 parts of magnesium, 0.35 parts of sodium alkoxide, 60 parts of deionized water, etc., mixed and stirred in a high-speed shearing kettle with a rotation speed of 1000-2000 rpm, and added 23 parts of sodium silicate solution and 15 parts of potassium silicate solution while stirring at high speed , Until the addition is complete, the mixed solution is completely transparent and uniform liquid.
  • the A-agent material in the present invention is a completely transparent, uniform liquid, which truly realizes nano-level dispersion, and its viscosity is less than 5 mP.s, which is close to water ImP.s.
  • the particles are active, have excellent permeability, and bring about construction Convenience and reliability of application effects, and effectively improve the comprehensive durability of concrete.
  • the inorganic water-based nano-modified silicate infiltration crystalline concrete waterproof and durable protective repair material A material prepared in this embodiment is applied to new concrete (for obvious durability problems, such as whitening, yellowing, and fine cracks) After surface protection, the durability of concrete before and after application changes as follows:
  • Example 1 The agent A material prepared in Example 1 is applied to a new concrete building before and after the durability performance improvement numerical table
  • the surface compressive strength of concrete after the use of agent A increases by more than 10% at 90 days and 29 °/ at 180 days. It shows that the use of agent A material improves the compactness of the concrete surface, so the compressive strength is greatly improved.
  • the 28d drying shrinkage is reduced by more than 23%, which greatly improves the early volume stability of concrete, effectively avoids the generation of micro-cracks caused by early drying shrinkage of concrete, and greatly improves the future durability of concrete.
  • the carbonization depth is reduced by about 50 °/ after using the A material. , The penetration depth of chloride ions is reduced from 50 °/.
  • freeze-thaw resistance is evaluated based on the mass loss rate of less than 5% and the relative dynamic modulus of not less than 50%.
  • the freeze-thaw resistance is greatly improved after the use of agent A materials, and the number of freeze-thaw damage resistance Raise a level.
  • Agent A Weigh 0.05 parts of dodecyl trimethylammonium chloride, 0.10 parts of sodium borate, 0.1 parts of sodium thiosulfate, 0.10 parts of ammonium chloride, 0.15 parts of potassium carbonate, 0.10 parts of sodium metaphosphate, 0.1 part of magnesium fluoride, 0.15 part of sodium alkoxide, 60 parts of deionized water, etc., mix and stir in a high-speed shearing kettle at 1000-2000rpm, and add 20 parts of sodium silicate solution and potassium silicate solution while stirring at high speed 18 parts, until completely added, the mixed solution is completely transparent and uniform liquid.
  • the inorganic water-based nano-modified silicate infiltration crystalline concrete waterproof and durable protective repair material A material prepared in this embodiment is applied to new concrete (for obvious durability problems, such as whitening, yellowing, and fine cracks) After surface protection, the durability of concrete before and after application changes as follows: Table 2 Before and after application of the A material prepared in Example 2 to a new concrete building Durability improvement value table
  • agent A Weigh 0.05 parts of dodecyltrimethylammonium chloride, 0.10 parts of sodium borate, 0.1 parts of sodium thiosulfate, 0.10 parts of ammonium chloride, 0.15 parts of potassium carbonate, 0.10 parts of sodium metaphosphate, fluoride 0.1 part of magnesium, 0.15 part of sodium alkoxide, 60 parts of deionized water, etc., mixed and stirred in a high-speed shearing kettle with a rotation speed of 1000-2000rpm, and added 20 parts of sodium silicate solution and 18 parts of potassium silicate solution while stirring at high speed , Until the addition is complete, the mixed solution is completely transparent and uniform liquid.
  • B agent material weigh 0.13 parts of triethanolamine, 15 parts of sodium hydroxide, 60 parts of deionized water The mixture is mixed, stirred and dispersed in a high-speed shearing siege at 1000-2000 rpm, and 30 parts of the brocade hydroxide solution is added while stirring at a high speed until the addition is complete, and the mixed solution is completely transparent and uniform.
  • the inorganic water-based nano-modified silicate-permeable crystalline concrete waterproof and durable protective repair material prepared in this example is the durability of the concrete before and after the application of the A material and the B material for the surface protection of new concrete and old concrete
  • the performance changes are as follows:
  • Table 3 The durability performance table of the A-agent material and the B-agent material prepared in Example 3 before and after being applied to the old concrete building
  • the concrete itself is a porous multiphase material, and certain capillary pores or micro cracks are inevitably generated during concrete pouring, concrete hardening process and later operation of the project.
  • the active nanoparticles of the present invention can penetrate deep into the concrete after spraying. (The material of the present invention can penetrate 40mm-70mm, while the prior art only has a few millimeters.) These capillary pores or micro-cracks are fully filled, thereby substantially changing the concrete structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种混凝土耐久性防护方法,包括如下步骤:第一步,对混凝土表面实施冲洗;第二步,在所述潮湿的混凝土表面处喷涂A剂材料或者交替喷涂B剂材料和A剂材料;第三步,重复所述第二步。本发明的有益效果是:纳米级活性硅酸盐渗透到混凝土表层一定深度范围内,与混凝土中的游离钙离子反应生成C-S-H结晶体,提高混凝土表层一定深度范围内的密实度,修复混凝土表层一定深度范围的毛细孔、孔隙、微细裂缝等缺陷从而有效提高混凝土的耐久性。未反应的活性纳米硅酸盐物质具有永久活性,在混凝土遇到水份以后能恢复反应活性,继续与混凝土内游离钙离子反应快速生成C-S-H结晶体,实现混凝土耐久性防护的永久性。

Description

一种纳米改性硅酸盐渗透结晶材料及其使用方法 本申请要求于 2019年 2月 27 日递交的名称为 “一种纳米改性硅酸 盐渗透结晶材料及其使用方法” 的中国发明专利申请 CN201910146232.0 的优先权, 所述申请的全部内容通过引用的方式并入本文中。
技术领域
本发明涉及无机类混凝土耐久性防护及修复材料技术领域, 更具体 地说涉及一种纳米改性硅酸盐渗透结晶材料及其使用方法。 背景技术
过去三十年是中国经济快速发展期, 更是基础工程建设、 各领域重 点工程建设的高速发展期, 如市政工程、 交通桥梁隧道、 水利水电大坝 工程、 港口工程等, 随着国家城镇化的完善, 我国主要工程建设高峰期 已过, 基本处于高速建设阶段后期, 而其中混凝土是工程建筑(构)物的主 体。 据统计, 中国国内目前既有混凝土建筑约 724.08亿 m2, 使用超过 30年约有 295.8亿 m2, 占 40 °/。; 公路桥梁数量已超过 80万座, 使用年 限超过 30年已超 25万座; 水利水电水库大坝约有 86000多,约 70 %座以 上水库大坝建设年限超过或接近 30年。
由于多种原因导致混凝土建筑物的寿命因为混凝土材料的耐久性问 题开始受到严重威胁, 并开始显示出突出问题。 中国逐渐重视各领域工 程混凝土的耐久性防护问题, 准备立项通过专业研究院、 大学来研究新 型高性能混凝土耐久性防护材料和技术, 或引进国家上先进的新型混凝 土耐久性防护材料。 因此, 新型高性能混凝土耐久性防护及修复材料是 未来十几年国内一个新技术法杖方向、 市场需求量大、 国家大力支持的 重要技术之一, 其直接经济价值和间接社会价值都会十分巨大。
目前中国国内市场的混凝土耐久性提高, 主要有两个方面工作: 其 一, 就是从混凝土材料技术本身解决, 主要是从混凝土原材料优化、 混 凝土配合比优化、 混凝土多掺粉体技术、 混凝土外加剂技术发展、 混凝 土浇筑施工技术提高等方面; 其二, 就是从混凝土表面防护技术解决, 主要环氧树脂涂料材料、 聚脲树脂涂料、 聚氨酯涂料、 丙烯酸酯乳液涂 料、 水泥基渗透结晶型防水材料等方面。 就第二方面技术来说, 作为混 凝土耐久性防护材料技术方面, 目前所采用的技术都存在防护材料本体 及防护材料与混凝土的结合两个方面都存在老化不耐久的严重技术问 题, 导致在混凝土防护技术方面目前还没有更好的技术手段。
而无机水性纳米改性硅酸盐类渗透结晶并永久性活性的混凝土防护 及修复技术是近十年来欧美及日本快速发展起来的一种新型、 环保、 与 混凝土本体一体化具有耐久性并提高混凝土耐久性的防护材料技术, 与 目前的传统防护材料是在混凝土表面只 “穿一套外衣” 的耐久性防护技 术具有根本性的不同。 发明内容
本发明克服了现有技术中的不足, 提供了一种纳米改性硅酸盐渗透 结晶材料及其喷涂方法。
本发明的目的通过下述技术方案予以实现。
一种混凝土耐久性防护方法, 包括如下步骤:
第一步, 对混凝土表面实施冲洗;
第二步, 在所述潮湿的混凝土表面处喷涂 A剂材料或者交替喷涂 B 剂材料和 A剂材料;
所述 A剂材料各组分的份数为: 硅酸钠 5-30份、 硅酸钾 5-20份、 表面活性剂 0.05-0.5份、 反应延迟剂 0.1-1份、 还原剂 0.1-0.5份、 反应促 进剂 0.1-2份、 抗冻结剂 0.01-0.5份、 金属离子封锁剂 0.1-1份、 表面强 化剂 0.1 - 1份、 防锈剂 0.1-0.5份、 去离子水 40-70份;
所述 B剂材料各组分的份数为:氢氧化钙 5-30份、表面活性剂 0.05- 1 份、 氢氧化纳 5-30份、 去离子水 40-80份。
进一步, 所述第二步中喷涂的具体步骤包括: 步骤一, 喷涂 A剂材 料; 步骤二, 待所述步骤一的 A剂材料变干后喷涂第二遍 A剂材料。 进一步, 所述第二步中喷涂的具体步骤包括: 步骤一, 喷涂 B剂材 料; 步骤二, 待所述步骤一的 B剂材料表干后喷涂 A剂材料; 步骤三, 重复所述步骤一、 所述步骤二。
进一步, 所述 A剂中的表面活性剂为伯醇、 仲醇、 十二烷基三甲基 氨氯、 咪唑啉类、 聚氧乙烯十三烷基醚或蓖麻油聚氧化乙烯醚酯类中的 任一种。
进一步, 所述 A剂材料中的反应延迟剂为硼酸盐类、 氢氧化钠或氢 氧化钾中的任一种。
进一步, 所述 A剂材料中的还原剂为硫尿酸类或硫代硫酸钠类无机 离子还原剂。
进一步, 所述 A剂材料中的反应促进剂为无机卤化物盐类离子液或 柠檬酸盐离子类中的任一种。
进一步, 所述 A剂材料中的抗冻结剂为碳酸盐类。
进一步, 所述 A剂材料中的金属离子封锁剂为偏磷酸钠。
进一步, 所述 A剂材料中的表面强化剂为氟化镁或氯化镁。
进一步, 所述 A剂材料中的防锈剂为二氨基银络合物或胺基醇碱金 属类。
进一步, 所述 B剂材料中的表面活性剂为指三乙醇胺。
一种纳米改性硅酸盐渗透结晶材料, 由 A剂与 B剂配合使用组成, 其中, 所述 A剂材料各组分的份数为: 硅酸钠 5-30份、 硅酸钾 5-20份、 表面活性剂 0.05-0.5份、 反应延迟剂 0.1-1份、 还原剂 0.1-0.5份、 反应促 进剂 0.1 -2份、 抗冻结剂 0.01-0.5份、 金属离子封锁剂 0.1- 1份、 表面强 化剂 0.1-1份、 防锈剂 0.1-0.5份、 去离子水 40-70份; 所述 B剂材料各 组分的份数为: 氢氧化钙 5-30份、 表面活性剂 0.05-1份、 氢氧化钠 5-30 份、 去离子水 40-80份。
进一步, 所述 A剂中的表面活性剂为伯醇、 仲醇、 十二烷基三甲基 氨氯、 咪唑啉类、 聚氧乙烯十三烷基醚或蓖麻油聚氧化乙烯醚酯类中的 任一种。
进一步, 所述 A剂材料中的反应延迟剂为硼酸盐类、 氢氧化钠或氢 氧化钾中的任一种。
进一步, 所述 A剂材料中的还原剂为硫尿酸类或硫代硫酸纳类无机 离子还原剂。
进一步, 所述 A剂材料中的反应促进剂为无机卤化物盐类离子液或 柠檬酸盐离子类中的任一种。
进一步, 所述 A剂材料中的抗冻结剂为碳酸盐类。
进一步, 所述 A剂材料中的金属离子封锁剂为偏磷酸钠。
进一步, 所述 A剂材料中的表面强化剂为氟化镁或氯化镁。
进一步, 所述 A剂材料中的防锈剂为二氨基银络合物或胺基醇碱金 属类。
进一步, 所述 B剂材料中的表面活性剂为指三乙醇胺。 本发明的有益效果为: 一种无机水性纳米改性的硅酸盐溶液渗透入 混凝土表面一定深度范围内并结晶固结生成 C-S-H充填混凝土表层孔隙 或毛细孔隙, 从而提高混凝土长期耐久性。
这种无机水性纳米改性的硅酸盐溶液渗透入混凝土表层深度后, 部 分活性粒子与混凝土内部的 “钙离子” 反应生成 C-S-H凝胶结晶体, 未 经反应的活性粒子随着水份挥发后停留在混凝土孔隙或毛细孔隙中。 一 旦粒子周围发生任何新的孔隙或毛细孔隙, 未经反应的活性粒子再遇到 外来的水之后能再次溶解继续与混凝土内部的“钙离子”反应生成 C-S-H 凝胶结晶体 C-S-H,充填这些新的孔隙或毛细孔隙,提高混凝土的致密性、 强度从而提高混凝土的耐久性。
因此, 可以实现混凝土建筑物在运行中由于多种原因导致细微裂隙 的发生后, 在遇到水份以后, 混凝土保留的未反应的活性纳米改性的硅 酸盐物质能继续与附近的游离钙离子反应快速生成 C-S-H结晶体迅速填 充满细微裂隙, 从而恢复混凝土整体性, 避免因为微细裂隙导致大的裂 隙缺陷, 或因为裂隙产生导致渗漏水内部钙质溶蚀等引起混凝土劣化的 耐久性问题发生。 其中 A剂材料是纳米改性硅酸盐复合溶液, 而 B剂材 料是纳米改性的络合钙离子溶液。 对于较新的混凝土耐久性使用直接喷 涂 A剂材料, 而对于已经出现耐久性问题的老旧混凝土则需要 B剂材料 和 A剂材料配合使用, 以提供老旧混凝土内部游离的钙离子的缺失, 促 进 A剂材料渗透后的有效反应。 具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的说明。
应用于新混凝土建筑物防水及耐久性防护的使用方法为: 首先用高 压水对混凝土表面实施冲洗, 待混凝土表面处于潮湿状态即可喷涂第一 遍 A剂材料, 按照每平米用量为 200-300ml, 待第一遍喷涂后混凝土基本 表干即可喷涂第二遍 A剂材料, 按照每平米用量为 100-200ml。 第二遍喷 涂后 24小时混凝土表面就不需要特殊养护和保护, 如雨淋、 蓄水等, 即 完成了混凝土建筑物表面有效防水及耐久性防护。
应用于旧混凝土建筑物的耐久性防护的使用方法: 首先采用高压水 对混凝土表面实施冲洗, 待混凝土表面处于潮湿状态即可喷涂第一遍 B 剂材料, 按照每平米用量为 250ml, 待第一遍 B剂材料喷涂后混凝土表 千以后即可喷涂第一遍 A剂材料, 按照每平米用量为 250ml。 第一遍 A 剂材料喷涂后混凝土表干以后再实施第二遍 B剂材料的喷涂, 第二遍 B 剂材料喷涂后混凝土表干以后再实施第二遍 A剂材料的喷涂, 之后 24小 时以后混凝土表面就不需要特殊养护和保护, 如雨淋、 蓄水等, 即完成 了旧混凝土建筑物表面有效耐久性防护使用。
对于已经劣化的旧混凝土因为内部由于碳化问题、 裂隙渗漏水钙质 溶蚀、 冻融破坏出现新的微细裂隙等耐久性问题下, 配套的材料 B剂能 提供一种碱性钙离子络合物渗透到混凝土内部提高有效的游离钙离子, 从而实现无机水性纳米改性的娃酸盐溶液渗透入混凝土后, 不会因为已 经劣化的旧混凝土缺少游离的钙离子而无法发生反应生成 C-S-H结晶体 失去应有的效能。 可是实现先喷洒 B剂, 再喷涂 A剂材料, 实现对已经 劣化的混凝土有效性提高表层一定深度范围内(至少 40mm深度)致密性、 提高防水性、 恢复并提高表层强度从而实现提高旧混凝土的寿命。
以上使用方法均不必再涂布前对混凝土表面进行干燥处理, 涂布后 也不必对混凝土表面进行湿润养护, 施工非常方便。
为了实现上述目的, 本发明提供一种纳米改性硅酸盐渗透结晶材料, 其包括 A剂、 B剂两种材料, 其中:
所述 A剂含有硅酸钠 5-30份, 硅酸钾 5-20份, 表面活性剂 0.05-0.5 份, 反应延迟剂 0.1-1份, 还原剂 0.1-0.5份, 反应促进剂 0.1-2份, 抗冻 结剂 0.01 -0.5份, 金属离子封锁剂 0.1 -1份, 表面强化剂 0.1-1份, 防锈 剂 0.1-0.5份, 去离子水 40-70份。 其中 B剂中重量份的有氢氧化钙 5-30 份, 表面活性剂 0.05-1份, 氢氧化钠 5-30份, 去离子水 40-80份。
进一步, 所述 A剂中的表面活性剂为伯醇、 仲醇、 十二烷基三甲基 氨氯、 咪唑啉类、 聚氧乙烯十三烷基醚或蓖麻油聚氧化乙烯醚酯类中的 任一种, 伯醇、 仲醇可以优选为乙醇或异丁醇;
进一步, 所述 A剂中的反应延迟剂, 优选地为硼酸盐类、 氢氧化钠、 氢氧化钾中;
进一步, 所述 A剂中的还原剂, 优选地为硫尿酸类或硫代硫酸纳类 无机离子还原剂;
进一步, 所述 A剂中的反应促进剂, 为无机卤化物盐类离子液或柠 檬酸盐离子类, 无机 化物盐类离子液优选地为氯化铵或氟化铵或氯化 钠;
进一步, 所述 A剂中的抗冻结剂为碳酸盐类, 优选地为碳酸纳或碳 酸钾;
进一步, 所述 A剂中的金属离子封锁剂为偏磷酸钠;
进一步, 所述 A剂中的表面强化剂为氟化镁或氯化镁;
进一步, 所述 A剂中的防锈剂为二氨基银络合物或胺基醇碱金属类, B剂中含有碱性钙离子络合物 5-30份, 表面活性剂 0.05-1份, 氢氧化钠 5-30份, 去离子水 40-70分; 所述的 B中的表面活性剂为三乙醇胺。
实施例 1
A剂材料制备: 称量十二烷基三甲基氨氯 0.07份, 硼酸钠 0.15份, 硫代硫酸钠 0.3份, 氯化铵 0.15份, 碳酸钾 0.2份, 偏磷酸钠 0.15份, 氟化镁 0.15份, 氨基醇钠 0.35份, 去离子水 60份等, 在 1000-2000rpm 转速的高速剪切釜中混合搅拌分散,边高速搅拌边加入硅酸钠溶液 23份, 硅酸钾溶液 15份, 直至完全加完, 混合溶液呈完全透明、 均勻的液体为 止。
本发明中的 A剂材料是完全透明、 均句的液体, 真正实现了纳米级 别的分散, 粘度均小于 5mP.s, 接近于水 ImP.s, 粒子具有活性, 具有优 异渗透性, 带来施工上的便利性和应用效果的可靠性, 并有效提升混凝 土的综合耐久性能。
本实施例所制备的无机水性纳米改性的硅酸盐渗透结晶型混凝土防 水及耐久性防护修复材料 A剂材料应用于新混凝土(为明显出现耐久性问 题, 如表面泛白泛黄、 细裂缝较多、 表面出现浆皮脱落、 表面出现赭红 色绣水外溢等)表面防护以后, 应用前后的混凝土耐久性性能改变如下:
表 1 实施例 1所制备的 A剂材料应用于新混凝土建筑物前后耐久性性能提高数值表
Figure imgf000009_0001
从上表 1可以看出,使用 A剂材料后混凝土的表面抗压强度 90天龄期提 高 10 %多, 180天龄期提高 29 °/。, 说明使用了 A剂材料提高了混凝土表 面的密实度, 因此抗压强度提高较大。 28d干缩降低了 23 %以上, 较大 地提高的混凝土早期体积稳定, 有效避免混凝土因早期干缩而导致微细 裂缝的产生, 大大提高了混凝土未来的耐久性。 使用 A剂材料后碳化深 度降低约 50 °/。、 氯离子渗透深度从降低 50 °/。左右, 都是直接提高了混凝 土的抵抗碳化侵蚀能力和抵抗氯离子渗透而对混凝土内部钢筋的腐蚀可 能性。 按照国家及行业标准规定抗冻融性能以质量损失率小于 5 %、 相对 动弹模量不低于 50 %为评价依据, 使用 A剂材料后抗冻性能得到较大的 改善, 抗冻融破坏次数提高一个等级。
实施例 2
A剂材料制备: 称量十二烷基三甲基氨氯 0.05份, 硼酸钠 0.10份, 硫代硫酸钠 0.1份, 氯化铵 0.10份, 碳酸钾 0.15份, 偏磷酸钠 0.10份, 氟化镁 0.1 份, 氨基醇钠 0.15份, 去离子水 60份等, 在 1000-2000rpm 转速的高速剪切釜中混合搅拌分散,边高速搅拌边加入硅酸钠溶液 20份, 硅酸钾溶液 18份, 直至完全加完, 混合溶液呈完全透明、 均勻的液体为 止。
本实施例所制备的无机水性纳米改性的硅酸盐渗透结晶型混凝土防 水及耐久性防护修复材料 A剂材料应用于新混凝土(为明显出现耐久性问 题, 如表面泛白泛黄、 细裂缝较多、 表面出现浆皮脱落、 表面出现赭红 色绣水外溢等)表面防护以后, 应用前后的混凝土耐久性性能改变如下: 表 2 实施例 2所制备的 A剂材料应用于新混凝土建筑物前后耐久性性能提高数值表
Figure imgf000010_0001
实施例 3
A剂材料制备: 称量十二烷基三甲基氨氯 0.05份, 硼酸钠 0.10份, 硫代硫酸钠 0.1 份, 氯化铵 0.10份, 碳酸钾 0.15份, 偏磷酸钠 0.10份, 氟化镁 0.1 份, 氨基醇钠 0.15份, 去离子水 60份等, 在 1000-2000rpm 转速的高速剪切釜中混合搅拌分散,边高速搅拌边加入硅酸钠溶液 20份, 硅酸钾溶液 18份, 直至完全加完, 混合溶液呈完全透明、 均匀的液体为 止。
B剂材料制备: 称量三乙醇胺 0.13份, 氢氧化钠 15份, 去离子水 60 分, 在 1000〜 2000rpm转速的高速剪切莶中混合搅拌分散, 边高速搅拌 边加入氢氧化锦溶液 30份, 直至完全加完, 混合溶液呈完全透明、 均勻 的液体为止。
本实施例所制备的无机水性纳米改性的硅酸盐渗透结晶型混凝土防水 及耐久性防护修复材料 A剂材料和 B剂材料应用于新混凝土和旧混凝土 表面防护以后, 应用前后的混凝土耐久性性能改变如下:
表 3实施例 3所制备的 A剂材料和 B剂材料应用于旧混凝土建筑物前后耐久性性能表
Figure imgf000011_0001
混凝土本身是多孔多相材料, 混凝土浇筑期间、 混凝土硬化过程及 工程后期运行中都不可避免产生并存在一定的毛细孔或微细裂隙, 本发 明的活性纳米粒子能够在喷涂后渗透到混凝土内部深处 (本发明的材料 能渗透到 40毫米 -70毫米, 而现有技术只有几毫米) 充分填充这些毛细 孔或微裂纹, 从而对混凝土结构产生实质性的改变。 最后应说明的是: 以上所述的各实施例仅用于说明本发明的技术方 案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对前述实施例所记载的技 术方案进行修改, 或者对其中部分或全部技术特征进行等同替换; 而这 些修改或替换, 并不使相应技术方案的本质脱离本发明各实施例技术方 案的范围。

Claims

权 利 要 求 书
1.一种混凝土耐久性防护方法,其特征在于:包括如下步骤:第一步, 对混凝土表面实施冲洗;
第二步, 在所述潮湿的混凝土表面处喷涂 A剂材料或者交替喷涂 B 剂材料和 A剂材料; 所述 A剂材料各组分的份数为: 硅酸钠 5-30份、 硅 酸钾 5-20份、 表面活性剂 0.05-0.5份、
反应延迟剂 0.1-1份、 还原剂 0.1-0.5份、 反应促进剂 0.1 -2份、 抗冻 结剂 0.01 -0.5份、 金属离子封锁剂 0.1-1份、 表面强化剂 0.1-1份、 防锈 剂 0.1-0.5份、 去离子水 40-70份;
所述 B剂材料各组分的份数为:氢氧化钙 5-30份、表面活性剂 0.05- 1 份、 氢氧化纳 5-30份、 去离子水 40-80份。
2.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述 第二步中喷涂的具体步骤包括: 步骤一, 喷涂 A剂材料; 步骤二, 待所 述步骤一的 A剂材料变干后喷涂第二遍 A剂材料。
3.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述 第二步中喷涂的具体步骤包括: 步骤一, 喷涂 B剂材料; 步骤二, 待所 述步骤一的 B剂材料表干后喷涂 A剂材料; 步骤三, 重复所述步骤一、 所述步骤二。
4.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述 A剂中的表面活性剂为伯醇、 仲醇、 十二烷基三甲基氨氯、 咪唑啉类、 聚氧乙烯十三烷基醚或蓖麻油聚氧化乙烯醚酯类中的任一种。
5.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述 A剂材料中的反应延迟剂为硼酸盐类、 氢氧化钠或氢氧化钾中的任一种。
6.根据权利要求 1所述的混凝土建筑物防护喷涂方法, 其特征在于: 所述 A剂材料中的还原剂为硫尿酸类或硫代硫酸钠类无机离子还原剂。
7.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述
A剂材料中的反应促进剂为无机 化物盐类离子液或柠檬酸盐离子类中 的任一种。
8.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述 A剂材料中的抗冻结剂为碳酸盐类。
9.根据权利要求 1所述的混凝土耐久性防护方法, 其特征在于: 所述 A剂材料中的金属离子封锁剂为偏磷酸钠。
10.—种纳米改性硅酸盐渗透结晶材料, 其特征在于: 由 A剂与 B剂 配合使用组成, 其中, 所述 A剂材料各组分的份数为: 硅酸钠 5-30份、 硅酸钾 5-20份、 表面活性剂 0.05-0.5份、 反应延迟剂 0.1 -1份、 还原剂 0.1-0.5份、 反应促进剂 0.1-2份、 抗冻结剂 0.01-0.5份、 金属离子封锁剂 0.1-1份、 表面强化剂 0.1-1份、 防锈剂 0.1-0.5份、 去离子水 40-70份; 所述 B剂材料各组分的份数为:氢氧化钙 5-30份、表面活性剂 0.05-1份、 氢氧化钠 5-30份、 去离子水 40-80份。
PCT/CN2020/000090 2019-02-27 2020-04-27 一种纳米改性硅酸盐渗透结晶材料及其使用方法 WO2020173220A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/434,393 US11485688B2 (en) 2019-02-27 2020-04-27 Nano modified silicate capillary crystalline material and use method thereof
PH12020552285A PH12020552285A1 (en) 2019-02-27 2020-12-29 Nano Modified SilicateÿCapillaryÿCrystalline Material And Use Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910146232.0 2019-02-27
CN201910146232.0A CN109912248B (zh) 2019-02-27 2019-02-27 一种纳米改性硅酸盐渗透结晶材料及其使用方法

Publications (3)

Publication Number Publication Date
WO2020173220A2 true WO2020173220A2 (zh) 2020-09-03
WO2020173220A3 WO2020173220A3 (zh) 2020-10-22
WO2020173220A8 WO2020173220A8 (zh) 2020-12-24

Family

ID=66962543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000090 WO2020173220A2 (zh) 2019-02-27 2020-04-27 一种纳米改性硅酸盐渗透结晶材料及其使用方法

Country Status (4)

Country Link
US (1) US11485688B2 (zh)
CN (1) CN109912248B (zh)
PH (1) PH12020552285A1 (zh)
WO (1) WO2020173220A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777599A (zh) * 2021-01-08 2021-05-11 中国科学院青岛生物能源与过程研究所 一种杨梅状纳米硅颗粒的制备方法及其应用
CN115073211A (zh) * 2022-06-27 2022-09-20 浙江大学杭州国际科创中心 一种纳米增强型渗透硬化剂及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912248B (zh) * 2019-02-27 2020-01-17 詹仰东 一种纳米改性硅酸盐渗透结晶材料及其使用方法
CN110672599B (zh) * 2019-10-15 2022-08-30 詹仰东 一种混凝土防护材料喷涂量的现场检测方法和检测装置
CN111116229B (zh) * 2019-12-30 2022-03-04 苏州佳固士新材料科技有限公司 一种可调颜色的无收缩气硬性裂缝修补剂及其制备方法和应用
CN112321324B (zh) * 2020-11-06 2021-07-30 北京易晟元环保工程有限公司 用于修复高强混凝土微细裂缝的双组分材料及使用方法
CN112411910A (zh) * 2020-11-06 2021-02-26 北京易晟元环保工程有限公司 一种在混凝土基面营造清水效果的施工方法
CN112480729B (zh) * 2020-12-08 2021-11-23 浙江睿光节能科技有限公司 双组分外墙薄体隔热保温材料及使用方法
CN112662239B (zh) * 2020-12-08 2021-11-23 浙江睿光节能科技有限公司 建筑物外墙多功能薄体隔热保温材料及制备方法
CN112831201B (zh) * 2021-01-04 2022-01-04 中国铁路设计集团有限公司 一种硅质无机纳米渗透型混凝土结构防护涂料的制备方法
CN114478064B (zh) * 2021-12-28 2022-12-13 青岛理工大学 一种混凝土养护剂、养护涂层及其制备方法
CN115536303B (zh) * 2022-08-26 2023-11-03 华能莱芜发电有限公司 混凝土内掺型抗渗憎水材料、制备方法及应用
CN115784704A (zh) * 2022-11-14 2023-03-14 北京易晟元环保工程有限公司 抗酸蚀混凝土构筑物修复材料、制备方法及修复施工方法
CN116082865A (zh) * 2023-01-02 2023-05-09 中建西部建设建材科学研究院有限公司 一种混凝土抗碳化表面防护剂
CN116041996A (zh) * 2023-01-02 2023-05-02 中建西部建设建材科学研究院有限公司 一种用搅拌站废水制备的表面防护剂及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807752B2 (en) * 2003-01-27 2010-10-05 Daikin Industries, Ltd. Coating composition
WO2012073258A2 (en) * 2010-11-30 2012-06-07 Pradeep Vasant Joshi A composition suitable for use in building construction
KR101265239B1 (ko) * 2011-01-27 2013-05-16 진도화성주식회사 발수성과 비동결성을 지닌 수성 알칼리규산염계 콘크리트 표면강화제, 상기 콘크리트 표면강화제의 제조방법 및 이를 이용한 콘크리트 표면강화공법
CN102645856A (zh) * 2012-05-11 2012-08-22 胡秋帆 一种用于以405nm激光器直接制版的显影剂
CA2979194A1 (en) * 2015-03-13 2016-09-22 3M Innovative Properties Company Composition suitable for protection comprising copolymer and hydrophilic silane
CN106904928B (zh) * 2017-02-28 2019-05-07 苏州佳固士新材料科技有限公司 一种反应速度可控的水性渗透结晶型防水材料及其制备方法和应用
CN107540304B (zh) * 2017-08-17 2020-02-11 科顺防水科技股份有限公司 一种复合型水泥基渗透结晶型防水材料
CN108751869A (zh) * 2018-07-24 2018-11-06 华南理工大学 一种渗透结晶型自修复混凝土结构及其制作方法
CN109111167B (zh) * 2018-08-10 2020-11-24 安徽朗凯奇建材有限公司 一种抗拉伸水泥基渗透结晶型防水材料
CN109336531A (zh) * 2018-11-16 2019-02-15 禤文坚 一种双组份渗透结晶混凝土裂缝防水修补液及施工方法
CN109912248B (zh) * 2019-02-27 2020-01-17 詹仰东 一种纳米改性硅酸盐渗透结晶材料及其使用方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777599A (zh) * 2021-01-08 2021-05-11 中国科学院青岛生物能源与过程研究所 一种杨梅状纳米硅颗粒的制备方法及其应用
CN115073211A (zh) * 2022-06-27 2022-09-20 浙江大学杭州国际科创中心 一种纳米增强型渗透硬化剂及其制备方法
CN115073211B (zh) * 2022-06-27 2023-05-23 浙江大学杭州国际科创中心 一种纳米增强型渗透硬化剂及其制备方法

Also Published As

Publication number Publication date
US20220041518A1 (en) 2022-02-10
WO2020173220A3 (zh) 2020-10-22
US11485688B2 (en) 2022-11-01
PH12020552285A1 (en) 2021-06-07
CN109912248B (zh) 2020-01-17
WO2020173220A8 (zh) 2020-12-24
CN109912248A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020173220A2 (zh) 一种纳米改性硅酸盐渗透结晶材料及其使用方法
CN103694830B (zh) 一种聚合物水泥防水涂料
CN102503347A (zh) 一种锂基混凝土密封固化剂
US20220371960A1 (en) Anti-corrosive concrete grouting material for coastal structure connection and method for preparing the same
CN108751919B (zh) 一种混凝土用微裂修补材料及其制备方法与应用
CN105461349A (zh) 一种用于钢纤维混凝土表层的阻锈强化剂及其制备方法
WO2021175004A1 (zh) 一种混凝土内掺型防渗抗裂减缩剂及其制备方法
CN108328977B (zh) 一种混凝土修补材料
CN105541173A (zh) 一种渗透型液体硬化剂及其制备方法
CN102557727B (zh) 建筑用水泥基渗透硬化材料及其制备方法
CN111533576A (zh) 一种用于填充混凝土结构微孔的纳米复合材料及其制备方法和应用
CN109734354A (zh) 一种混凝土液体速凝剂的制备方法
CN101475356B (zh) 基于超细粉煤灰微珠的混凝土微裂缝灌浆修补材料
CN111285646A (zh) 一种环氧树脂改性裂缝修补砂浆及其制备和使用方法
CN112110703A (zh) 一种防水抗渗修补砂浆及施工方法与应用
CN111170765B (zh) 一种多组份混凝土表面增强剂及其增强方法
CN104944821A (zh) 一种无机盐防水剂
CN113845329A (zh) 一种隧道衬砌混凝土抗溶蚀外加剂、其制备方法及应用
CN114477839B (zh) 一种海洋混凝土抗腐蚀剂及其制备方法
CN109437967A (zh) 一种纳米二氧化硅密实混凝土的制备方法
CN112830728B (zh) 用于盾构二次注浆的自养护渗透结晶材料、制备方法及应用
CN116477864B (zh) 一种抗裂防水密实剂、制备方法及使用方法
CN110304942A (zh) 一种施工于混凝土地面上的纳米硅密封固剂材料及其使用方法
CN114163200B (zh) 一种高效无机刚性防水涂层及使用方法
CN1260331A (zh) 微硅高效水泥砂浆防水剂

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE