WO2020172933A1 - 一种uwb室内三维定位系统及方法 - Google Patents

一种uwb室内三维定位系统及方法 Download PDF

Info

Publication number
WO2020172933A1
WO2020172933A1 PCT/CN2019/079278 CN2019079278W WO2020172933A1 WO 2020172933 A1 WO2020172933 A1 WO 2020172933A1 CN 2019079278 W CN2019079278 W CN 2019079278W WO 2020172933 A1 WO2020172933 A1 WO 2020172933A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
air pressure
pressure value
positioning tag
positioning
Prior art date
Application number
PCT/CN2019/079278
Other languages
English (en)
French (fr)
Inventor
刘期烈
张强伟
丁升
洪婷
李铮
徐勇军
刘竟成
黄东
周平
Original Assignee
重庆邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆邮电大学 filed Critical 重庆邮电大学
Publication of WO2020172933A1 publication Critical patent/WO2020172933A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present invention relates to the technical field of indoor positioning, in particular to an ultra-wideband (abbreviated, UWB) indoor three-dimensional positioning system and method.
  • UWB ultra-wideband
  • UWB positioning technology has a higher application prospect in indoor positioning technology due to its own characteristics.
  • UWB has a very wide spectrum range and low average transmit power;
  • UWB signals have extremely high time resolution and good multipath resistance;
  • UWB signals have strong penetrating power and are suitable for indoor environments with many obstacles;
  • the pulse width of UWB is very narrow and can reach the nanosecond or sub-nanosecond level, and the theoretical accuracy of UWB positioning can reach the centimeter or even millimeter level.
  • the patent document with the publication number CN207946517U proposes a UWB 3D positioning system based on video assisted positioning.
  • the positioning subsystem includes at least four base stations, and the camera is used to record surveillance video information of the corresponding area and transmit it to the central server.
  • at least three base stations are on the same horizontal plane and at least one base station is set on Outside this plane and near the ceiling area.
  • This solution uses video information to assist positioning to improve the positioning accuracy, but the use of video information to assist positioning greatly increases the complexity of the algorithm and increases the communication overhead.
  • the floor height of ordinary houses is about 3m (meters), which are on the same horizontal plane. The height difference between the first base station and the fourth base station is not large enough, so the height error of the position coordinates of the tag to be located is large.
  • the patent document with publication number CN104902563A proposes a multi-base network UWB three-dimensional positioning system and its positioning method for indoor positioning.
  • the positioning system includes a tag system, a positioning base station, and a monitoring terminal.
  • the real-time positioning module performs cross positioning processing on the tag to obtain the position information of the four positioning base stations to obtain accurate position information and in the position coordinate system. Show up.
  • the method proposed in this patent can theoretically calculate the position coordinate information of the tag to be located, but in practice, the location information may intersect at multiple points or there is no intersection point.
  • the existing UWB indoor three-dimensional positioning technology has the problems of high positioning solution deployment cost, high computational complexity and large height error.
  • the present invention proposes a UWB indoor three-dimensional positioning system and method to provide a technical solution for realizing accurate indoor three-dimensional positioning with lower cost and computational complexity overhead.
  • a UWB indoor three-dimensional positioning system including:
  • the first base station includes a first UWB module for UWB wireless communication with the positioning tag and the second base station; a first barometer module for acquiring the current air pressure value of the first base station; first communication The module is used to communicate with the positioning terminal; the first main control chip is used to measure the flight time of the first wireless signal from the positioning tag to the first base station, and calculate the first base station and the positioning tag Obtain a first air pressure value according to the current air pressure value of the first base station, and obtain the height difference between the first base station and the positioning tag according to the first air pressure value and the second air pressure value;
  • the second base station includes a second UWB module, which is used for UWB wireless communication with the positioning tag and the first base station; and a second main control chip, which is used to measure the distance between the positioning tag and the second base station. Second wireless signal flight time, calculating the second distance between the second base station and the positioning tag, and sending the second distance to the first base station through the second UWB module;
  • the positioning tag is fixed on the target to be positioned and includes: a third UWB module for UWB wireless communication with the first base station and the second base station; and a second barometer module for acquiring the current location tag Air pressure value; a third main control chip, configured to obtain a second air pressure value according to the current air pressure value of the positioning tag, and send the second air pressure value to the first base station through the third UWB module;
  • the positioning terminal includes: a second communication module for communicating with the first base station; and a host for calculating the position coordinates of the positioning tag.
  • the obtaining the first air pressure value according to the current air pressure value of the first base station includes:
  • the first main control chip performs limiting sliding window filtering on the current air pressure value of the first base station to obtain the first air pressure value.
  • the obtaining the second air pressure value according to the current air pressure value of the positioning tag includes:
  • the third main control chip performs limiting sliding window filtering on the current air pressure value of the positioning tag to obtain the second air pressure value.
  • the measuring the flight time of the first wireless signal from the positioning tag to the first base station includes: the first base station and the positioning tag use a bilateral two-way ranging method to obtain the positioning tag to the Flight time of the first wireless signal of the first base station;
  • the measuring the second wireless signal flight time from the positioning tag to the second base station includes: obtaining the positioning tag to the second base station by the second base station and the positioning tag through a bilateral two-way ranging method The second wireless signal flight time.
  • the calculating the first distance between the first base station and the positioning tag includes: the first main control chip calculates the distance between the first base station and the first base station according to the flight time of the first wireless signal and the electromagnetic wave transmission rate For the current distance of the positioning tag, the first main control chip performs limiting sliding window filtering on the distance to obtain the first distance.
  • the calculating the second distance between the second base station and the positioning tag includes: the second main control chip calculates the second base station and the positioning tag according to the flight time of the second wireless signal and the electromagnetic wave transmission rate For the current distance of the tag, the second main control chip performs limiting sliding window filtering on the distance to obtain the second distance.
  • a UWB indoor three-dimensional positioning method including:
  • the first base station measures the current air pressure value of the first base station, and obtains the first air pressure value according to the air pressure value;
  • the positioning tag measures the current air pressure value of the positioning tag, obtains a second air pressure value according to the air pressure value, and sends the second air pressure value to the first base station;
  • the first base station obtains the height difference between the first base station and the positioning tag according to the air pressure difference between the first air pressure value and the second air pressure value;
  • the first base station measures the flight time of the first wireless signal from the positioning tag to the first base station
  • the first base station calculates the first distance from the positioning tag to the first base station
  • the second base station measures the flight time of the second wireless signal from the positioning tag to the second base station
  • the second base station calculates the second distance from the positioning tag to the second base station; sends the second distance to the first base station;
  • the first base station sends the tag number of the positioning tag, the first distance, the second distance, and the height difference to the positioning terminal;
  • the positioning terminal calculates the position coordinates of the positioning tag according to the first distance, the second distance, and the height difference, and obtains three-dimensional position information of the target to be positioned;
  • the first base station and the second base station are fixed on the same vertical wall of the positioning room; the positioning tag is fixed on the target to be positioned corresponding to the positioning tag.
  • the first base station measuring the current air pressure value of the first base station, and obtaining the first air pressure value according to the air pressure value includes, the first base station measuring the current air pressure value of the first base station, and limiting the air pressure value A sliding window filtering to obtain the first air pressure value;
  • the positioning tag measures the current air pressure value of the positioning tag, and obtaining the second air pressure value according to the air pressure value includes, the positioning tag measures the current air pressure value of the positioning tag, and performs limiting sliding window filtering on the air pressure value to obtain all The second air pressure value.
  • measuring the flight time of the first wireless signal from the positioning tag to the first base station by the first base station includes: obtaining the positioning tag by the first base station and the positioning tag through a bilateral two-way ranging method The flight time of the first wireless signal to the first base station;
  • the second base station measuring the second wireless signal flight time from the positioning tag to the second base station includes that the second base station and the positioning tag use a bilateral two-way ranging method to obtain the positioning tag to the Flight time of the second wireless signal of the second base station.
  • the calculation by the first base station of the first distance from the positioning tag to the first base station includes: the first main control chip calculates the first distance based on the flight time of the first wireless signal and the electromagnetic wave transmission rate A current distance between a base station and the positioning tag, and the first main control chip performs limiting sliding window filtering on the distance to obtain the first distance;
  • the second base station calculating the second distance between the second base station and the positioning tag includes: the second main control chip calculates the distance between the second base station and the second base station according to the second wireless signal flight time and electromagnetic wave transmission rate For the current distance of the positioning tag, the second main control chip performs limiting sliding window filtering on the distance to obtain the second distance.
  • the method includes calibrating the barometer module of the positioning tag:
  • the first base station measures the pressure value P Ai of I base station
  • P Ai and P Tj respectively represent the air pressure value of the i-th base station collected by the first base station and the air pressure value of the j-th tag collected by the positioning tag.
  • the first base station and the second base station are arranged on the same vertical wall, and the UWB first wireless signal flight time of the first base station and the positioning tag and the UWB second wireless signal of the second base station and the positioning tag fly Obtain the distance between the target to be positioned to the first base station and the distance from the second base station by time; obtain the altitude difference between the positioning tag and the first base station according to the difference between the air pressure value of the first base station and the air pressure value of the positioning tag, and the positioning terminal
  • the height of the first base station obtains the height information of the target to be positioned, the height information of the target to be positioned, the first distance and the second distance can be used to calculate the three-dimensional position information of the target to be positioned; compared with the prior art, the The cost of the technical solution is low, and only two base stations are needed to achieve three-dimensional positioning; the computational complexity is low, and the position of the target to be positioned can be calculated using the height information and two distance information of the target to be positioned
  • Figure 1 is a system topology diagram of specific embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of a first base station in specific embodiment 1 of the present invention.
  • Fig. 3 is a schematic structural diagram of a second base station in specific embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the positioning label in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of base station deployment in specific embodiment 1 of the present invention.
  • Fig. 6 is a flow chart of the method according to Embodiment 2 of the present invention.
  • This embodiment is a preferred implementation of the UWB indoor three-dimensional positioning system of the present invention.
  • FIG. 1 the topological structure of the positioning system of this embodiment is shown in Fig. 1, including:
  • the first base station, the second base station, the positioning terminal and at least one positioning tag are provided.
  • the first base station and the second base station are fixed on the same vertical wall in the room, as shown in FIG. 5; the positioning tag is fixed on the target to be positioned.
  • the positioning tag, the first base station, and the second base station are wirelessly connected through UWB communication;
  • the first base station and the positioning terminal are connected through wireless or wired communication;
  • connection mode between the first base station and the positioning terminal may be any communication connection mode such as a limited network, WIFI, and a mobile communication network, which is not limited in the present invention
  • the positioning terminal may be an application terminal such as a computer, a server, a tablet computer, a mobile phone, etc., which is not limited in the present invention;
  • the first base station in this embodiment includes:
  • the first UWB module is used to perform UWB wireless communication with the positioning tag and the second base station;
  • the first barometer module is used to obtain the current barometric pressure value of the first base station
  • the barometer module can use a high-resolution digital barometric sensor to improve the accuracy of height measurement.
  • the first communication module is used to communicate with the positioning terminal
  • the first communication module may be a WIFI communication module.
  • the first main control chip is used to measure the flight time of the first wireless signal from the positioning tag to the first base station, and to calculate the first distance between the first base station and the positioning tag;
  • the current air pressure value obtains the first air pressure value, and the height difference between the first base station and the positioning tag is obtained according to the first air pressure value and the second air pressure value:
  • the P A is the first air pressure value
  • the P T is the second air pressure value
  • the Temp is the current temperature value, which can be measured by the first barometer module or the second barometer module
  • the ⁇ H is Height difference
  • the first main control chip performs limiting sliding window filtering on the current air pressure value of the first base station measured by the first barometer module to obtain the first air pressure value;
  • a first-in-first-out air pressure storage unit with a length of M is provided in the first main control chip for storing the air pressure value of the first base station measured most recently;
  • the first main control chip compares the current air pressure value PA NOW of the first base station with the last measured air pressure value PA M of the first base station stored in the first-in first-out air pressure storage unit;
  • the first main control chip stores the PA NOW in the first-in first-out air pressure storage unit, and updates the data of the first-in first-out air pressure storage unit; otherwise, the first The main control chip directly discards the PA NOW ;
  • the first main control chip uses the average value of each air pressure value stored in the first-in first-out air pressure storage unit as the first air pressure value:
  • the calculation method of the first distance is:
  • the first main control chip obtains the first wireless signal flight time T prop1 between the first base station and the positioning tag;
  • the flight time of the first wireless signal can be measured by a bilateral two-way ranging method, a unilateral two-way ranging method, etc.; it can also be directly sent by the positioning tag to send a sending message with a sending time to the first base station ,
  • the first base station uses the difference between the receiving time and the sending time in the message as the first wireless signal flight time; the present invention has no limitation on this;
  • the flight time of the first wireless signal is measured by a bilateral two-way ranging method
  • the specific method of the bilateral two-way ranging method may be:
  • the Location tag first transmits a polling message at time T 1 to the first base station, the first base station receives the polling message at time T 2, the first base station transmits a response message to said positioning tab at time T3; T4 positioned tag
  • the positioning tag sends the final message to the first base station at time T5; the first base station receives the final message at time T6.
  • the first base station calculates the first wireless signal flight time according to the sending time and receiving time of each message:
  • the first chip calculates the current distance DIS NOW between the first base station and the positioning tag, and performs limiting sliding window filtering on the distance to obtain the first distance;
  • a first-in, first-out storage unit with a length of N is provided in the first main control chip for storing the distance between the first base station and the positioning tag obtained N times recently;
  • the first main control chip judges whether
  • the DIS N stores the most recently obtained distance between the first base station and the positioning tag in the first-in-first-out storage unit;
  • the TH DIS is a preset first distance limiting threshold;
  • the first main control chip stores the DIS NOW in the first-in first-out distance storage unit, and updates the first-in first-out distance storage unit data; otherwise, the first main control chip directly discards the DIS NOW ;
  • the first main control chip uses the average value of the distances stored in the first-in first-out distance storage unit as the first distance:
  • the second base station in this embodiment includes:
  • the second UWB module is used for UWB wireless communication with the positioning tag and the first base station;
  • the second main control chip is used to measure the flight time of the second wireless signal from the positioning tag to the second base station, and to calculate the second distance between the second base station and the positioning tag, through the second UWB module Sending the second distance information to the first base station;
  • the calculation method of the second distance is:
  • the second main control chip acquires the second wireless signal flight time between the second base station and the positioning tag
  • the flight time of the second wireless signal can be measured by a bilateral two-way ranging method, a unilateral two-way ranging method, etc., or a sending message with a sending time can be sent directly from the positioning tag to the second base station ,
  • the second base station uses the difference between the receiving time and the sending time in the message as the second wireless signal flight time; the present invention has no limitation on this;
  • the second wireless signal flight time is measured by a bilateral two-way ranging method.
  • the specific measurement method is similar to the first wireless signal flight time measurement method. For details, please refer to the first wireless signal flight time The specific measurement method will not be repeated here;
  • the second chip calculates the second distance between the second base station and the positioning tag according to the flight time of the second wireless signal and the electromagnetic wave transmission rate.
  • the specific calculation method of the second distance is similar to the calculation method of the first distance, and reference may be made to the specific calculation method of the first distance, which will not be repeated here.
  • the positioning label of this embodiment includes:
  • the third UWB module is used to perform UWB wireless communication with the first base station and the second base station;
  • the second barometer module is used to obtain the current barometric pressure value of the positioning tag
  • the third main control chip is configured to obtain a second air pressure value according to the current air pressure value of the positioning tag, and send the second air pressure value to the first base station through the third UWB module;
  • the third main control chip performs limiting sliding window filtering on the current air pressure value of the positioning tag measured by the second barometer module to obtain the second air pressure value ;
  • the specific method of the limiting sliding window filtering is similar to the first air pressure value limiting sliding window filtering method, which will not be repeated here.
  • the positioning terminal includes a second communication module, which is used to communicate with the first base station; and a host, which is used to calculate the position coordinates of the positioning tag to obtain three-dimensional position information of the target to be positioned.
  • the host receives the first distance, the second distance, and the height difference from the first base station through the second communication module, and calculates by combining the position coordinates of the first base station and the second base station The position coordinates of the positioning label:
  • (x, y, z) is the position information of the x-axis, y-axis, and z-axis of the positioning tag in the positioning coordinate system
  • (x 1 , y 1 , z 1 ) is the position information of the first base station in the positioning coordinate system
  • the position information of the x-axis, y-axis, and z-axis, (x 2 , y 2 , z 2 ) is the position information of the x-axis, y-axis, and z-axis with the second base station in the positioning coordinate system
  • r 1 is the first Distance
  • r 2 is the second distance
  • ⁇ H is the height difference between the first base station and the positioning tag
  • the positioning terminal selects the position coordinates within the value range of the positioning coordinate system from the two calculated position coordinates as the position coordinates of the positioning label, and obtains the three-dimensional position information of the target to be positioned.
  • This embodiment uses only two base stations for positioning, and the calculated positioning tag position coordinates have two solutions. As shown in Figure 5, since the two base stations in this embodiment are set on the same vertical wall in the room, The positions corresponding to the two solutions are at the mirror-symmetrical position of the vertical plane where the first base station and the second base station are located, and the position of one of the solutions is outside the range of the positioning coordinates. Therefore, the positioning terminal only needs to simply choose The solution within the value range is used as the position coordinates of the positioning label, and the three-dimensional position information of the target to be positioned can be accurately obtained.
  • This embodiment is a preferred implementation of the UWB indoor three-dimensional positioning method of the present invention.
  • the system applied by the positioning method in this embodiment is the positioning system described in specific embodiment 1, and the system structure is referred to in specific embodiment 1.
  • FIG. 6 the flow of the positioning method of this embodiment is shown in FIG. 2, including:
  • the first base station measures the current air pressure value of the first base station, and obtains the first air pressure value according to the air pressure value;
  • the first base station may directly use the current air pressure value as the first air pressure value; as a preferred implementation solution of this embodiment, this step may further include:
  • the first base station measures and obtains the current barometric pressure value of the first base station
  • S1012 Perform limiting sliding window filtering on the air pressure value to obtain a first air pressure value
  • the specific method of the limiting sliding window filtering is the same as the limiting sliding window filtering of the first air pressure value in the specific embodiment 1, and will not be repeated here.
  • the positioning tag measures the current air pressure value of its corresponding positioning tag, and obtains a second air pressure value according to the air pressure value;
  • the first base station may directly use the current air pressure value as the second air pressure value; as a preferred implementation scheme of this embodiment, this step may further include:
  • the positioning tag measures the current air pressure value of the positioning tag
  • the specific method of the limiting sliding window filtering is the same as the limiting sliding window filtering of the second air pressure value in the specific embodiment 1, and will not be repeated here.
  • the positioning tag sends the second air pressure value to the first base station
  • the first base station calculates the height difference between the first base station and the positioning tag.
  • the P A is the first air pressure value
  • the P T is the second air pressure value
  • the Temp is the current temperature value, which can be measured by the first barometer module or the second barometer module
  • the ⁇ H is Height difference
  • the first base station calculates the first distance from the positioning tag to the first base station
  • the first base station obtains the flight time of the first wireless signal between the first base station and the positioning tag.
  • the specific method for obtaining the flight time of the first wireless signal is the same as that of the specific embodiment 1, and will not be repeated here.
  • S1052 calculate the first distance between the first base station and the positioning tag according to the flight time of the first wireless signal and the electromagnetic wave transmission rate.
  • the specific calculation method of the first distance is the same as that of the specific embodiment 1, and will not be repeated here.
  • the second base station calculates a second distance from the positioning tag to the second base station.
  • the second base station obtains the second wireless signal flight time between the second base station and the positioning tag.
  • the specific method for obtaining the flight time of the second wireless signal is the same as that of the specific embodiment 1, and will not be repeated here.
  • the second base station sends the second distance to the first base station.
  • the first base station sends the tag number of the positioning tag, the first distance, the second distance, and the height difference to the positioning terminal;
  • the positioning terminal calculates the position coordinates of the positioning tag according to the first distance, the second distance, and the height difference, and obtains three-dimensional position information of the target to be positioned;
  • the positioning terminal receives the first distance, the second distance, and the height difference from the first base station, and calculates the position coordinates of the positioning tag by combining the position coordinates of the first base station and the second base station:
  • (x, y, z) is the position information of the x-axis, y-axis, and z-axis of the positioning label in the positioning coordinate system
  • (x 1 , y 1 , z 1 ) is the position information of the first base station in the positioning coordinate system
  • the position information of the x-axis, y-axis, and z-axis, (x 2 , y 2 , z 2 ) is the position information of the x-axis, y-axis, and z-axis with the second base station in the positioning coordinate system
  • r 1 is the first Distance
  • r 2 is the second distance
  • ⁇ H is the height difference between the first base station and the positioning tag
  • the positioning terminal selects the position coordinates within the value range of the positioning coordinate system from the two calculated position coordinates as the position coordinates of the positioning label, and obtains the three-dimensional position information of the target to be positioned.
  • This embodiment uses only two base stations for positioning, and the calculated positioning tag position coordinates have two solutions. As shown in Figure 5, since the two base stations in this embodiment are set on the same vertical wall in the room, The positions corresponding to the two solutions are at the mirror-symmetrical position of the vertical plane where the first base station and the second base station are located, and the position of one of the solutions is outside the range of the positioning coordinates. Therefore, the positioning terminal only needs to simply choose The solution within the value range is used as the position coordinates of the positioning label, and the three-dimensional position information of the target to be positioned can be accurately obtained.
  • the method of this embodiment may further include step S100, calibrating the barometer module of the positioning tag;
  • step S100 further includes:
  • S1001 Set the positioning tag to the same horizontal plane as the first base station
  • the first base station measures the pressure value P Ai of one base station
  • the ⁇ H error is used to correct the measurement data of the barometer module of the positioning tag: every time the second barometer module measures the barometric pressure, it adds ⁇ H error to the measured barometric pressure value as the current barometric value of the positioning tag.
  • the P Ai and the P Tj respectively represent the air pressure value of the i-th base station collected by the first base station and the air pressure value of the j-th tag collected by the positioning tag.
  • the first base station and the second base station are set on the same vertical wall, the UWB first wireless signal flight time of the first base station and the positioning tag and the UWB second wireless signal of the second base station and the positioning tag are used.
  • the signal flight time respectively obtains the distance between the target to be located and the first base station and the distance from the second base station; the altitude difference between the positioning tag and the first base station is obtained according to the difference between the air pressure value of the first base station and the air pressure value of the positioning tag.
  • the terminal obtains the height information of the target to be positioned according to the height of the first base station, and calculates the three-dimensional position information of the target to be positioned by using the height information of the target to be positioned, the first distance and the second distance;
  • the technical solution of the invention is low in cost, and only needs two base stations to achieve three-dimensional positioning; low computational complexity, using the height information and two distance information of the target to be positioned to calculate the position of the target to be positioned; high positioning accuracy, using The barometer measures the pressure value to calculate the altitude information, the resolution can reach 5 cm.
  • the sampling value caused by the occasional pulse interference can be eliminated through the limited sliding window filter. Deviations, to further improve positioning accuracy; in other preferred implementations of the present invention, through two-way bilateral ranging, the problem of time synchronization between the positioning tag and the base station can be avoided, and the time deviation between the positioning tag and the base station can also be eliminated ; Improve the measurement accuracy of wireless signal flight time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种UWB室内三维定位系统,包括:定位终端,固定在房间同一垂直墙面上的第一基站、第二基站,至少一个固定在待定位目标上的定位标签,第一基站和定位标签分别包括了气压计模块用于测量第一气压值和第二气压值,第一基站根据第一气压值和第二气压值计算高度差;第一基站、第二基站和定位标签分别包括了UWB模块,第一基站计算第一基站和定位标签之间的第一距离,第二基站计算第二基站和定位标签之间的第二距离,定位终端根据第一距离、第二距离和高度差计算获得定位标签的位置坐标。本发明还公开了一种用于该定位系统的UWB室内三维定位方法,本发明的技术方案能够在较低成本和计算复杂度开销下实现精确的室内三维定位。

Description

一种UWB室内三维定位系统及方法 技术领域
本发明涉及到室内定位技术领域,特别涉及一种超宽带(简称,UWB)室内三维定位系统及方法。
背景技术
随着信息通信技术日新月异,人们拥有了可靠、稳定的定位技术。全球定位系统(简称,GPS)技术的出现,使得定位技术跳跃式发展,巨大改变了人们的生活习惯,使用者只需拥有GPS接收机即可使用该服务,现在民用GPS也可以达到十米左右的定位精度。但是卫星信号在室内会被严重的影响,从而导致GPS或是北斗无法发定位。为了将室外定位技术运用到室内,目前有多种解决室内定位的技术,如:超声波、红外、蓝牙、WIFI、ZigBee和UWB等室内定位方式。
其中,UWB定位技术由于其自身的特点在室内定位技术方式中拥有较高的应用前景。首先,UWB频谱范围极宽,平均发射功率低;其次,UWB信号有着极高的时间分辨率,具有良好的抗多径能力;UWB信号穿透力强,适用于障碍物较多的室内环境;UWB的脉冲宽度很窄,能够达到纳秒或者亚纳秒级,UWB定位的理论精度可以达到厘米级甚至是毫米级。
现有的UWB室内三维定位技术中,公开号为CN207946517U的专利文献,提出了一种基于视频辅助定位的UWB三维定位系统。在该文献公开的技术方案中,定位子系统包括至少四个基站,摄像头用于记录相应区域的监控视频信息并传输至中心服务器,其中,至少三个基站处在同一水平面且至少 一个基站设置在该平面以外并靠近天花板区域。该方案采用视频信息辅助定位提高了定位精度,但是使用视频信息辅助定位大大增加了算法复杂度,增加了通信的开销,同时,普通住房楼层高度在3m(米)左右,处在同一水平面的三个基站与第四个基站之间的高度差不够大,因此待定位标签的位置坐标的高度误差大。
公开号为CN104902563A的专利文献,提出了一种用于室内定位的多基组网UWB三维定位系统及其定位方法。在该文献公开的技术方案中,定位系统包括标签系统、定位基站、监控终端,实时定位模块对标签获取四个定位基站的方位信息进行交叉定位处理,获得精确地位置信息并在位置坐标系中呈现出来。该专利提出的方法理论上可以解算出待定位标签的位置坐标信息,但是在实践情况下方位消息相互交叉可能相交于多个点或者没有相交点。
综上所述,现有的UWB室内三维定位技术均存在定位方案部署成本高、计算复杂度高且高度误差大的问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提出了一种UWB室内三维定位系统及方法,以提供一种在较低成本和计算复杂度开销下实现精确的室内三维定位的技术方案。
为了实现上述目的,本发明采用了以下技术方案:
一种UWB室内三维定位系统,包括:
第一基站,第二基站,定位终端和至少一个定位标签;所述第一基站和所述第二基站固定在房间的同一墙面上;
所述第一基站包括,第一UWB模块,用于和所述定位标签、所述第二基 站进行UWB无线通信;第一气压计模块,用于获取第一基站的当前气压值;第一通信模块,用于和所述定位终端进行通信;第一主控芯片,用于测量所述定位标签到所述第一基站的第一无线信号飞行时间,计算所述第一基站与所述定位标签的第一距离;根据所述第一基站的当前气压值获得第一气压值,根据所述第一气压值与第二气压值获得所述第一基站与所述定位标签的高度差;
所述第二基站包括,第二UWB模块,用于和所述定位标签、所述第一基站进行UWB无线通信;第二主控芯片,用于测量所述定位标签到所述第二基站的第二无线信号飞行时间,计算所述第二基站与所述定位标签的第二距离,通过所述第二UWB模块发送所述第二距离到所述第一基站;
所述定位标签固定在待定位目标上,包括:第三UWB模块,用于和所述第一基站以及所述第二基站进行UWB无线通信;第二气压计模块,用于获取定位标签的当前气压值;第三主控芯片,用于根据所述定位标签的当前气压值获取第二气压值,通过所述第三UWB模块发送所述第二气压值到所述第一基站;;
所述定位终端包括:第二通信模块,用于和所述第一基站进行通信;主机,用于计算所述定位标签的位置坐标。
进一步的,所述根据所述第一基站的当前气压值获得第一气压值包括:
所述第一主控芯片对所述第一基站的当前气压值进行限幅滑动窗口滤波,获得所述第一气压值。
进一步的,所述根据所述定位标签的当前气压值获取第二气压值包括:
所述第三主控芯片对所述定位标签的当前气压值进行限幅滑动窗口滤 波,获得所述第二气压值。
进一步的,所述测量所述定位标签到所述第一基站的第一无线信号飞行时间包括,所述第一基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第一基站的第一无线信号飞行时间;
所述测量所述定位标签到所述第二基站的第二无线信号飞行时间包括,所述第二基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第二基站的第二无线信号飞行时间。
进一步的,所述计算所述第一基站与所述定位标签的第一距离包括,所述第一主控芯片根据所述第一无线信号飞行时间和电磁波传输速率,计算所述第一基站与所述定位标签的当前距离,所述第一主控芯片对该距离进行限幅滑动窗口滤波,获得所述第一距离。
所述计算所述第二基站与所述定位标签的第二距离包括,所述第二主控芯片根据所述第二无线信号飞行时间和电磁波传输速率,计算所述第二基站与所述定位标签的当前距离,所述第二主控芯片对该距离进行限幅滑动窗口滤波,获得所述第二距离。
一种UWB室内三维定位方法,包括:
第一基站测量第一基站的当前气压值,根据该气压值获取第一气压值;
定位标签测量定位标签的当前气压值,根据该气压值获取第二气压值,发送所述第二气压值到所述第一基站;
第一基站根据所述第一气压值和所述第二气压值的气压差获得所述第一基站和所述定位标签的高度差;
第一基站测量所述定位标签到所述第一基站的第一无线信号飞行时间;
第一基站计算所述定位标签到所述第一基站的第一距离;
第二基站测量所述定位标签到所述第二基站的第二无线信号飞行时间;
第二基站计算所述定位标签到所述第二基站的第二距离;发送所述第二距离到所述第一基站;
第一基站发送所述定位标签的标签号、所述第一距离、所述第二距离和所述高度差到定位终端;
所述定位终端根据所述第一距离、所述第二距离和所述高度差计算所述定位标签的位置坐标,获得待定位目标的三维位置信息;
其中,所述第一基站和所述第二基站固定在定位房间的同一垂直墙面上;所述定位标签固定在该定位标签对应的待定位目标上。
进一步的,所述第一基站测量第一基站的当前气压值,根据该气压值获取第一气压值包括,所述第一基站测量所述第一基站的当前气压值,对该气压值进行限幅滑动窗口滤波,获得所述第一气压值;
所述定位标签测量定位标签的当前气压值,根据该气压值获取第二气压值包括,所述定位标签测量所述定位标签的当前气压值,对该气压值进行限幅滑动窗口滤波,获得所述第二气压值。
进一步的,所述第一基站测量所述定位标签到所述第一基站的第一无线信号飞行时间包括,所述第一基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第一基站的第一无线信号飞行时间;
所述第二基站测量所述定位标签到所述第二基站的第二无线信号飞行时间包括,所述第二基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第二基站的第二无线信号飞行时间。
进一步的,所述第一基站计算所述定位标签到所述第一基站的第一距离包括,所述第一主控芯片根据所述第一无线信号飞行时间和电磁波传输速率,计算所述第一基站与所述定位标签的当前距离,所述第一主控芯片对该距离进行限幅滑动窗口滤波,获得所述第一距离;
所述第二基站计算所述第二基站与所述定位标签的第二距离包括,所述第二主控芯片根据所述第二无线信号飞行时间和电磁波传输速率,计算所述第二基站与所述定位标签的当前距离,所述第二主控芯片对该距离进行限幅滑动窗口滤波,获得所述第二距离。
进一步的,所述方法包括,对所述定位标签的气压计模块进行校准:
将所述定位标签设置到与所述第一基站同一水平面;
第一基站测量获得I个基站气压值P Ai
定位标签测量获得J个标签气压值P Tj
计算第一基站与定位标签的气压误差ΔH error
Figure PCTCN2019079278-appb-000001
用所述ΔH error对所述定位标签的气压计模块的测量数据进行修正;
其中,P Ai和P Tj分别代表第一基站采集到的第i个基站气压值和定位标签采集到的第j个标签气压值。
本发明的技术方案中,在同一垂直墙面设置第一基站和第二基站,通过第一基站和定位标签的UWB第一无线信号飞行时间和第二基站和定位标签的UWB第二无线信号飞行时间分别获取待定位目标到所述第一基站的距离和第二基站的距离;根据第一基站的气压值和定位标签的气压值之差获得定位标签和第一基站的高度差,定位终端根据第一基站的高度获得待定位目标的高 度信息、利用待定位目标的高度信息、第一距离和第二距离即可计算出待定位目标的三维位置信息;与现有技术相比,本发明的技术方案成本低,仅需要两个基站即可实现三维定位;计算复杂度低,利用待定位目标的高度信息和两个距离信息即可计算出待定位目标的位置;定位精度高,利用气压计测量气压值计算高度信息,分辨率可达到5厘米。
附图说明
图1为本发明的具体实施例1系统拓扑结构图。
图2为本发明的具体实施例1第一基站结构示意图。
图3为本发明的具体实施例1第二基站结构示意图。
图4为本发明具体实施例1定位标签结构示意图。
图5为本发明的具体实施例1基站部署示意图。
图6为本发明具体实施例2方法流程图。
具体实施方式
为了更好的说明本发明的技术方案,下面结合附图对本发明的具体实施方式进行详细描述。
具体实施例1
本实施例为本发明UWB室内三维定位系统的一种优选实施方式。
参见图1,本实施例的定位系统拓扑结构如图1所示,包括:
第一基站,第二基站、定位终端和至少一个定位标签,
所述第一基站和所述第二基站固定在房间的同一垂直墙面上,如图5所示;所述定位标签固定在待定位目标上。
所述定位标签、所述第一基站、所述第二基站之间通过UWB通信无线连接;
所述第一基站与所述定位终端通过无线或有线通信连接;
本实施例中,所述第一基站与所述定位终端之间的连接方式可以是有限网络、WIFI、移动通信网络等任意一种通信连接模式,本发明对此没有限制;
所述定位终端可以是电脑、服务器、平板电脑、手机等应用终端,本发明对此没有限制;
如图2所示,本实施例中的所述第一基站包括:
第一UWB模块,用于和所述定位标签、所述第二基站进行UWB无线通信;
第一气压计模块,用于获取第一基站的当前气压值;
作为本实施例的一种优选实现方案,所述气压计模块可以使用高分辨率数字气压传感器,以提高高度测量精确度。
第一通信模块,用于和所述定位终端进行通信;
作为本实施例的一种优选实现方案,所述第一通信模块为可以使用WIFI通信模块。
第一主控芯片,用于测量所述定位标签到所述第一基站的第一无线信号飞行时间,计算所述第一基站与所述定位标签的第一距离;根据所述第一基站的当前气压值获得第一气压值,根据所述第一气压值与第二气压值获得所述第一基站与所述定位标签的高度差:
Figure PCTCN2019079278-appb-000002
其中,所述P A为第一气压值,所述P T为第二气压值,所述Temp为当前温度值,可以由第一气压计模块或第二气压计模块测量获得,所述ΔH为高度差;
作为本实施例的一种优选实现方案,所述第一主控芯片对所述第一气压计模块测量的所述第一基站的当前气压值进行限幅滑动窗口滤波,获得所述 第一气压值;
其中,所述限幅滑动窗口滤波的具体方法为:
第一主控芯片内设置有一个长度为M的先入先出气压存储单元,用于存放最近M次测量的第一基站的气压值;
第一主控芯片比较所述第一基站的当前气压值PA NOW与所述先入先出气压存储单元中最后存入的上一次测量的第一基站的气压值PA M
如果,|PA NOW-PA M|≤TH PA,则,第一主控芯片将所述PA NOW存入所述先入先出气压存储单元,更新所述先入先出气压存储单元数据;否则第一主控芯片直接丢弃所述PA NOW
所述第一主控芯片将所述先入先出气压存储单元中保存的各气压值的平均值作为所述第一气压值:
Figure PCTCN2019079278-appb-000003
其中,m为所述先入先出气压存储单元中存储的气压值的编号;PA m为所述先入先出气压存储单元中存储的的m个气压值;m=1,2,……,M。
所述第一距离的计算方式为:
第一主控芯片获取所述第一基站与所述定位标签之间的第一无线信号飞行时间T prop1
本实施例中,所述第一无线信号飞行时间可以采用双边双向测距方法、单边双向测距方法等方法测量;也可以直接由定位标签发送一个带有发送时间的发送消息到第一基站,第一基站将接收时间和消息中的发送时间之差作为第一无线信号飞行时间;本发明对此没有限制;
作为本实施例的一种优选实现方案,所述第一无线信号飞行时间采用双边双向测距方法测量;
其中,所述双边双向测距方法的具体方法可以是:
定位标签首先在T 1时刻发送轮询消息到所述第一基站,第一基站在T 2时刻接收到轮询消息,第一基站在T3时刻发送响应消息到所述定位标签;定位标签在T4时刻接收到响应消息,定位标签在T5时刻发送最终消息到所述第一基站;第一基站在T6时刻接收到最终消息。所述第一基站接收到最终消息后,根据上述各消息的发送时刻和接收时刻计算所述第一无线信号飞行时间:
Figure PCTCN2019079278-appb-000004
根据所述第一无线信号飞行时间和电磁波传输速率c,计算第一基站与所述定位标签的第一距离DIS 1
作为本实施例的一种实现方案,所述DIS 1可以直接通过所述T prop1计算获得:DIS 1=T prop1×c。
作为本实施例的一种优选实现方案,第一芯片计算所述第一基站与所述定位标签的当前距离DIS NOW,对该距离进行限幅滑动窗口滤波,获得所述第一距离;
DIS NOW=T prop1×c
第一主控芯片内设置有一个长度为N的先入先出存储单元,用于存放最近N次获得的第一基站与所述定位标签的距离;
第一主控芯片判断|DIS NOW-DIS N|是否不大于TH DIS
其中,所述DIS N所述先入先出存储单元中存储的最近一次获得的第一基站与定位标签的距离;所述TH DIS为预设的第一距离限幅门限值;
如果是,第一主控芯片将所述DIS NOW存入所述先入先出距离存储单元,更新所述先入先出距离存储单元数据;否则第一主控芯片直接丢弃所DIS NOW
所述第一主控芯片将所述先入先出距离存储单元中保存的各距离的平均值作为所述第一距离:
Figure PCTCN2019079278-appb-000005
其中,n为所述先入先出距离存储单元中存储的距离的编号;DIS n为所述先入先出距离存储单元中存储的的n个距离;n=1,2,……,N。
如图3所示,本实施例中的所述第二基站包括:
第二UWB模块,用于和所述定位标签、所述第一基站进行UWB无线通信;
第二主控芯片,用于测量所述定位标签到所述第二基站的第二无线信号飞行时间,计算所述第二基站与所述定位标签的第二距离,通过所述第二UWB模块发送所述第二距离信息到所述第一基站;
其中,所述第二距离的计算方式为:
第二主控芯片获取所述第二基站与所述定位标签之间的第二无线信号飞行时间;
本实施例中,所述第二无线信号飞行时间可以采用双边双向测距方法、单边双向测距方法等方法测量,也可以直接由定位标签发送一个带有发送时间的发送消息到第二基站,第二基站将接收时间和消息中的发送时间之差作为第二无线信号飞行时间;本发明对此没有限制;
作为本实施例的一种优选实现方案,所述第二无线信号飞行时间采用双边双向测距方法测量,具体测量方法与第一无线信号飞行时间测量方法相似, 可以参见第一无线信号飞行时间的具体测量方法,在此不再赘述;
第二芯片根据所述第二无线信号飞行时间和电磁波传输速率,计算第二基站与所述定位标签的第二距离。所述第二距离的具体计算方式与第一距离的计算方式相似,可以参见第一距离的具体计算方法,在此不再赘述。
如图4所示,本实施例的定位标签包括:
第三UWB模块,用于和所述第一基站以及所述第二基站进行UWB无线通信;
第二气压计模块,用于获取定位标签的当前气压值;
第三主控芯片,用于根据所述定位标签的当前气压值获取第二气压值,通过所述第三UWB模块发送所述第二气压值到所述第一基站;
作为本实施例的一种优选实现方案,所述第三主控芯片对所述第二气压计模块测量的所述定位标签的当前气压值进行限幅滑动窗口滤波,获得所述第二气压值;其中,所述限幅滑动窗口滤波的具体方法与第一气压值的限幅滑动窗口滤波方法相似,在此不再赘述。
所述定位终端包括,第二通信模块,用于和所述第一基站进行通信;主机,用于计算所述定位标签的位置坐标,获得待定位目标的三维位置信息。
本实施例中,所述主机通过所述第二通信模块接收来自所述第一基站的第一距离、第二距离、高度差,结合所述第一基站和所述第二基站的位置坐标计算所述定位标签的位置坐标:
Figure PCTCN2019079278-appb-000006
其中,(x,y,z)为定位标签在定位坐标系统中的x轴、y轴、z轴的位置信息, (x 1,y 1,z 1)为第一基站在定位坐标系统中的x轴、y轴、z轴的位置信息,(x 2,y 2,z 2)为和第二基站在定位坐标系统中的x轴、y轴、z轴的位置信息,r 1为第一距离,r 2为第二距离,ΔH为第一基站与定位标签的高度差;
定位终端在计出的两个位置坐标中选择位于定位坐标系统取值范围内的位置坐标作为定位标签的位置坐标,获得所述待定位目标的三维位置信息。
本实施例只使用了两个基站来进行定位,计算出的定位标签位置坐标有两个解,如图5所示,由于本实施例中两个基站设置在房间的同一垂直墙面上,因此两个解对应的位置在所述第一基站和第二基站所在垂直面的镜面对称位置,且其中一个解的位置在定位坐标的取值范围之外,因此,定位终端只需要简单的选择在取值范围内的解作为定位标签的位置坐标,即可准确获取待定位目标的三维位置信息。
具体实施例2
本实施例为本发明UWB室内三维定位方法的一种优选实施方式。
本实施例定位方法应用的系统为具体实施例1中所描述的定位系统,系统结构参见具体实施例1。
参见图6,本实施例的定位方法流程如图2所示,包括:
S101、第一基站测量第一基站的当前气压值,根据该气压值获取第一气压值;
本步骤中,第一基站可以直接将该当前气压值作为第一气压值;作为本实施例的一种优选实现方案,本步骤还可以进一步包括:
S1011、第一基站测量获得第一基站的当前气压值;
S1012、对该气压值进行限幅滑动窗口滤波,获得第一气压值;
所述限幅滑动窗口滤波的具体方法与具体实施例1中第一气压值的限幅滑动窗口滤波相同,在此不再赘述。
S102、定位标签测量其对应的定位标签的当前气压值,根据该气压值获取第二气压值;
本步骤中,第一基站可以直接将该当前气压值作为第二气压值;作为本实施例的一种优选实现方案,本步骤还可以进一步包括:
S1021、定位标签测量获得定位标签的当前气压值;
S1022、对该气压值进行限幅滑动窗口滤波,获得第二气压值;
所述限幅滑动窗口滤波的具体方法与具体实施例1中第二气压值的限幅滑动窗口滤波相同,在此不再赘述。
S103、定位标签发送所述第二气压值到所述第一基站;
S104、第一基站计算所述第一基站和所述定位标签的高度差;
Figure PCTCN2019079278-appb-000007
其中,所述P A为第一气压值,所述P T为第二气压值,所述Temp为当前温度值,可以由第一气压计模块或第二气压计模块测量获得,所述ΔH为高度差;S105、第一基站计算所述定位标签到所述第一基站的第一距离;
S1051、第一基站获取第一基站与定位标签之间的第一无线信号飞行时间;
所述第一无线信号飞行时间的具体获取方法与具体实施例1相同,在此不再赘述。
S1052、根据所述第一无线信号飞行时间和电磁波传输速率,计算第一基站与定位标签的第一距离。
所述第一距离的具体计算方法与具体实施例1相同,在此不再赘述。
S106、第二基站计算所述定位标签到所述第二基站的第二距离;
S1061、第二基站获取第二基站与定位标签之间的第二无线信号飞行时间;
所述第二无线信号飞行时间的具体获取方法与具体实施例1相同,在此不再赘述。
S1062、根据所述第二无线信号飞行时间和电磁波传输速率,获得第二基站与定位标签的第二距离。
所述第二距离的具体计算方法与具体实施例1相同,在此不再赘述。
S107、第二基站发送所述第二距离到所述第一基站;
S108、第一基站发送所述定位标签的标签号、所述第一距离、所述第二距离和所述高度差到定位终端;
S109、所述定位终端根据所述第一距离、所述第二距离和所述高度差计算所述定位标签的位置坐标,获得待定位目标的三维位置信息;
定位终端接收来自所述第一基站的第一距离、第二距离、高度差,结合所述第一基站和所述第二基站的位置坐标计算所述定位标签的位置坐标:
Figure PCTCN2019079278-appb-000008
其中,(x,y,z)为定位标签在定位坐标系统中的x轴、y轴、z轴的位置信息,(x 1,y 1,z 1)为第一基站在定位坐标系统中的x轴、y轴、z轴的位置信息,(x 2,y 2,z 2)为和第二基站在定位坐标系统中的x轴、y轴、z轴的位置信息,r 1为第一距离,r 2为第二距离,ΔH为第一基站与定位标签的高度差;
定位终端在计出的两个位置坐标中选择位于定位坐标系统取值范围内的位置坐标作为定位标签的位置坐标,获得所述待定位目标的三维位置信息。
本实施例只使用了两个基站来进行定位,计算出的定位标签位置坐标有两个解,如图5所示,由于本实施例中两个基站设置在房间的同一垂直墙面上,因此两个解对应的位置在所述第一基站和第二基站所在垂直面的镜面对称位置,且其中一个解的位置在定位坐标的取值范围之外,因此,定位终端只需要简单的选择在取值范围内的解作为定位标签的位置坐标,即可准确获取待定位目标的三维位置信息。
作为本实施例的一种优选实现方案,本实施例的方法在所述步骤S101之前,还可以包括步骤S100、对所述定位标签的气压计模块进行校准;
本实施例中,所述步骤S100进一步包括:
S1001、将所述定位标签设置到与所述第一基站同一水平面;
S1002、第一基站测量获得I个基站气压值P Ai
S1003、定位标签测量获得J个标签气压值P Tj
S1004、计算第一基站与定位标签的气压误差ΔH error
Figure PCTCN2019079278-appb-000009
用所述ΔH error对所述定位标签的气压计模块的测量数据进行修正:第二气压计模块每次测量气压后,将测量获得的气压值加ΔH error作为定位标签的当前气压值。所述P Ai和所述P Tj分别代表第一基站采集到的第i个基站气压值和定位标签采集到的第j个标签气压值。
本发明的上述具体实施例中,在同一垂直墙面设置第一基站和第二基站,通过第一基站和定位标签的UWB第一无线信号飞行时间和第二基站和定位标 签的UWB第二无线信号飞行时间分别获取待定位目标到所述第一基站的距离和第二基站的距离;根据第一基站的气压值和定位标签的气压值之差获得定位标签和第一基站的高度差,定位终端根据第一基站的高度获得待定位目标的高度信息、利用待定位目标的高度信息、第一距离和第二距离即可计算出待定位目标的三维位置信息;与现有技术相比,本发明的技术方案成本低,仅需要两个基站即可实现三维定位;计算复杂度低,利用待定位目标的高度信息和两个距离信息即可计算出待定位目标的位置;定位精度高,利用气压计测量气压值计算高度信息,分辨率可达到5厘米。
在本发明的一些优选实现方案中,在计算第一气压值、第二气压值、第一距离、第二距离时,通过限幅滑动窗口滤波可消除由于偶然出现的脉冲干扰所引起的采样值偏差,进一步提高定位精度;在本发明的另一些优选实现方案中,通过双向双边测距,可以避免定位标签与基站之间需要时间同步的问题,还可以消除定位标签与基站之间的时间偏差;提高无线信号飞行时间的测量精度。
需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种UWB室内三维定位系统,其特征在于,所述系统包括:
    第一基站,第二基站,定位终端和至少一个定位标签;所述第一基站和所述第二基站固定在房间的同一墙面上;
    所述第一基站包括,第一UWB模块,用于和所述定位标签、所述第二基站进行UWB无线通信;第一气压计模块,用于获取第一基站的当前气压值;第一通信模块,用于和所述定位终端进行通信;第一主控芯片,用于测量所述定位标签到所述第一基站的第一无线信号飞行时间,计算所述第一基站与所述定位标签的第一距离;根据所述第一基站的当前气压值获得第一气压值,根据所述第一气压值与第二气压值获得所述第一基站与所述定位标签的高度差;
    所述第二基站包括,第二UWB模块,用于和所述定位标签、所述第一基站进行UWB无线通信;第二主控芯片,用于测量所述定位标签到所述第二基站的第二无线信号飞行时间,计算所述第二基站与所述定位标签的第二距离,通过所述第二UWB模块发送第二距离到所述第一基站;
    所述定位标签固定在待定位目标上,包括:第三UWB模块,用于和所述第一基站以及所述第二基站进行UWB无线通信;第二气压计模块,用于获取定位标签的当前气压值;第三主控芯片,用于根据所述定位标签的当前气压值获取第二气压值,通过所述第三UWB模块发送第二气压值到所述第一基站;
    所述定位终端包括:第二通信模块,用于和所述第一基站进行通信;主机,用于计算所述定位标签的位置坐标。
  2. 根据权利要求1所述的系统,其特征在于,所述根据所述第一基站的 当前气压值获得第一气压值包括:
    所述第一主控芯片对所述第一基站的当前气压值进行限幅滑动窗口滤波,获得所述第一气压值。
  3. 根据权利要求1所述的系统,其特征在于,所述根据所述定位标签的当前气压值获取第二气压值包括:
    所述第三主控芯片对所述定位标签的当前气压值进行限幅滑动窗口滤波,获得所述第二气压值。
  4. 根据权利要求1所述的系统,其特征在于:
    所述测量所述定位标签到所述第一基站的第一无线信号飞行时间包括,所述第一基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第一基站的第一无线信号飞行时间;
    所述测量所述定位标签到所述第二基站的第二无线信号飞行时间包括,所述第二基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第二基站的第二无线信号飞行时间。
  5. 根据权利要求4所述的系统,其特征在于:
    所述计算所述第一基站与所述定位标签的第一距离包括,所述第一主控芯片根据所述第一无线信号飞行时间和电磁波传输速率,计算所述第一基站与所述定位标签的当前距离,所述第一主控芯片对该距离进行限幅滑动窗口滤波,获得所述第一距离;
    所述计算所述第二基站与所述定位标签的第二距离包括,所述第二主控芯片根据所述第二无线信号飞行时间和电磁波传输速率,计算所述第二基站与所述定位标签的当前距离,所述第二主控芯片对该距离进行限幅滑动窗口 滤波,获得所述第二距离。
  6. 一种UWB室内三维定位方法,其特征在于,包括:
    第一基站测量第一基站的当前气压值,根据该气压值获取第一气压值;
    定位标签测量定位标签的当前气压值,根据该气压值获取第二气压值,发送所述第二气压值到所述第一基站;
    第一基站根据所述第一气压值和所述第二气压值的气压差获得所述第一基站和所述定位标签的高度差;
    第一基站测量所述定位标签到所述第一基站的第一无线信号飞行时间;
    第一基站计算所述定位标签到所述第一基站的第一距离;
    第二基站测量所述定位标签到所述第二基站的第二无线信号飞行时间;
    第二基站计算所述定位标签到所述第二基站的第二距离;发送所述第二距离到所述第一基站;
    第一基站发送所述定位标签的标签号、所述第一距离、所述第二距离和所述高度差到定位终端;
    所述定位终端根据所述第一距离、所述第二距离和所述高度差计算所述定位标签的位置坐标,获得待定位目标的三维位置信息;
    其中,所述第一基站和所述第二基站固定在定位房间的同一垂直墙面上;所述定位标签固定在该定位标签对应的待定位目标上。
  7. 根据权利要求6所述的方法,其特征在于:
    所述第一基站测量第一基站的当前气压值,根据该气压值获取第一气压值包括,所述第一基站测量所述第一基站的当前气压值,对该气压值进行限幅滑动窗口滤波,获得所述第一气压值;
    所述定位标签测量定位标签的当前气压值,根据该气压值获取第二气压值包括,所述定位标签测量所述定位标签的当前气压值,对该气压值进行限幅滑动窗口滤波,获得所述第二气压值。
  8. 根据权利要求6所述的方法,其特征在于:
    所述第一基站测量所述定位标签到所述第一基站的第一无线信号飞行时间包括,所述第一基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第一基站的第一无线信号飞行时间;
    所述第二基站测量所述定位标签到所述第二基站的第二无线信号飞行时间包括,所述第二基站与所述定位标签通过双边双向测距方法,获得所述定位标签到所述第二基站的第二无线信号飞行时间。
  9. 根据权利要求8所述的方法,其特征在于:
    所述第一基站计算所述定位标签到所述第一基站的第一距离包括,所述第一主控芯片根据所述第一无线信号飞行时间和电磁波传输速率,计算所述第一基站与所述定位标签的当前距离,所述第一主控芯片对该距离进行限幅滑动窗口滤波,获得所述第一距离;
    所述第二基站计算所述第二基站与所述定位标签的第二距离包括,所述第二主控芯片根据所述第二无线信号飞行时间和电磁波传输速率,计算所述第二基站与所述定位标签的当前距离,所述第二主控芯片对该距离进行限幅滑动窗口滤波,获得所述第二距离。
  10. 根据权利要求6~9中任一项所述的方法,其特征在于,所述方法还包括,对所述定位标签的气压计模块进行校准:
    将所述定位标签设置到与所述第一基站同一水平面;
    第一基站测量获得I个基站气压值P Ai
    定位标签测量获得J个标签气压值P Tj
    计算第一基站与定位标签的气压误差ΔH error
    Figure PCTCN2019079278-appb-100001
    用所述ΔH error对所述定位标签的气压计模块的测量数据进行修正;
    其中,P Ai和P Tj分别代表第一基站采集到的第i个基站气压值和定位标签采集到的第j个标签气压值。
PCT/CN2019/079278 2019-02-26 2019-03-22 一种uwb室内三维定位系统及方法 WO2020172933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910140710.7 2019-02-26
CN201910140710.7A CN109696167A (zh) 2019-02-26 2019-02-26 一种uwb室内三维定位系统及方法

Publications (1)

Publication Number Publication Date
WO2020172933A1 true WO2020172933A1 (zh) 2020-09-03

Family

ID=66233661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079278 WO2020172933A1 (zh) 2019-02-26 2019-03-22 一种uwb室内三维定位系统及方法

Country Status (2)

Country Link
CN (1) CN109696167A (zh)
WO (1) WO2020172933A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110401914A (zh) * 2019-07-25 2019-11-01 浙江钧普科技股份有限公司 一种医院定位打点系统及方法
CN110856106B (zh) * 2019-11-20 2021-06-18 重庆邮电大学 基于uwb和气压计的室内高精度三维定位方法
CN111126520B (zh) * 2019-11-28 2023-08-08 清研讯科(北京)科技有限公司 定位方法及装置、存储介质、电子装置
CN111126522B (zh) * 2019-11-28 2023-11-07 清研讯科(北京)科技有限公司 资产定位方法及装置、存储介质、电子装置
CN111126521A (zh) * 2019-11-28 2020-05-08 清研讯科(北京)科技有限公司 资产定位方法及装置、存储介质、电子装置
CN110996387B (zh) * 2019-12-02 2021-05-11 重庆邮电大学 一种基于TOF和位置指纹融合的LoRa定位方法
CN111006668B (zh) * 2019-12-10 2023-07-07 郑州联睿电子科技有限公司 基于超宽带和气压传感器融合的三维定位方法
CN111300376A (zh) * 2020-03-23 2020-06-19 北京海益同展信息科技有限公司 一种巡检机器人、噪声监测方法及噪声监测系统
CN113466786B (zh) * 2020-03-31 2024-06-11 阿里巴巴集团控股有限公司 一种定位方法、装置和系统
CN112747747B (zh) * 2021-01-20 2022-10-11 重庆邮电大学 一种改进的uwb/imu融合室内行人定位方法
CN115453595A (zh) * 2022-10-13 2022-12-09 北京华建云鼎科技股份公司 一种三维定位系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507302A (zh) * 2016-11-04 2017-03-15 南开大学 一种基于uwb的三维室内定位系统
CN106550451A (zh) * 2016-11-01 2017-03-29 哈尔滨工程大学 一种多用户超宽带室内定位系统
US20170123045A1 (en) * 2015-10-29 2017-05-04 Industrial Bank Of Korea Mobile apparatus for measuring relative location based on uwb and method thereof
CN108646215A (zh) * 2018-05-15 2018-10-12 重庆邮电大学 一种基于超宽带的自动跟随快速定位方法
CN108731662A (zh) * 2017-03-15 2018-11-02 酷异有限公司 三维定位装置与方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9684059B2 (en) * 2012-10-22 2017-06-20 Wifive.Co.,Ltd Device for estimating location and method for estimating location by using uplink access point
CN103994754B (zh) * 2014-06-12 2017-01-11 上海扬梓投资管理有限公司 海拔高度测量方法及系统
CN107917713A (zh) * 2017-10-19 2018-04-17 深圳市金立通信设备有限公司 一种计算空间直线距离的方法、终端及计算机可读介质
CN108802787B (zh) * 2018-06-29 2022-07-22 深圳市乐驭智能技术有限公司 定位方法、装置、计算机设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170123045A1 (en) * 2015-10-29 2017-05-04 Industrial Bank Of Korea Mobile apparatus for measuring relative location based on uwb and method thereof
CN106550451A (zh) * 2016-11-01 2017-03-29 哈尔滨工程大学 一种多用户超宽带室内定位系统
CN106507302A (zh) * 2016-11-04 2017-03-15 南开大学 一种基于uwb的三维室内定位系统
CN108731662A (zh) * 2017-03-15 2018-11-02 酷异有限公司 三维定位装置与方法
CN108646215A (zh) * 2018-05-15 2018-10-12 重庆邮电大学 一种基于超宽带的自动跟随快速定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HU, ZHENGQUN : "Application of Differential Barometric Altimetry in Indoor Positioning System based on MS5534C", TRANSDUCER AND MICROSYSTEM TECHNOLOGIES, vol. 30, no. 12, 31 December 2011 (2011-12-31), pages 142-144 - 152, XP009522972, ISSN: 2096-2436 *
LIU, QILIE ET AL.: "An Improved Protocol Based on Location Information in DTN", 2010 2ND INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION, 31 December 2010 (2010-12-31), XP031699130 *
LU JINGYU , YU WENTAO , ZHAO XIN , SUN GUANGYI: "Design of Indoor Positioning System for Mobile Robot based on Ultra-wideband", ROBOTICS AND INDUSTRIAL AUTOMATION, vol. 43, no. 5, 31 December 2017 (2017-12-31), pages 25 - 28, XP009522964 *

Also Published As

Publication number Publication date
CN109696167A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2020172933A1 (zh) 一种uwb室内三维定位系统及方法
CN109788551A (zh) 一种三维室内定位系统及方法
CN110856106B (zh) 基于uwb和气压计的室内高精度三维定位方法
CN104837118B (zh) 一种基于WiFi和BLUETOOTH的室内融合定位系统及方法
US8811199B2 (en) Location detection in a wireless network
WO2018210107A1 (zh) 一种基于Wi-Fi物联网设备网络的定位方法和系统
US10659921B2 (en) Measurement batching
CN106961724B (zh) 一种基于可见光通信的移动目标实时定位方法
CN106686722B (zh) 基于css技术的大型室内环境定位的微基站及工作方法
KR100938806B1 (ko) 알에프수신신호세기의 확률적 필터링을 이용한무선센서노드 위치추적방법
EP3092830B2 (en) Feedback in a positioning system
US20240107260A1 (en) Low level smartphone audio and sensor clock synchronization
CN112964258B (zh) 一种基于tdoa的多单元协同定位系统
Lorincz et al. A robust, decentralized approach to rf-based location tracking
CN203416427U (zh) 基于ZigBee技术的自组网定位系统
CN109141420B (zh) 一种基于众包数据的室内定位方法
CN110650435A (zh) 基于UWB定位和ZigBee定位的机器学习融合方法
CN211826463U (zh) 一种基于tdoa的分布式定位系统
KR100926500B1 (ko) 근거리 정밀 측정 장치 및 방법
Knauth et al. iLOC: a localisation system for visitor tracking & guidance
KR100714089B1 (ko) 데이터 송수신이 가능한 근거리 위치측정 시스템 및 이에이용되는 무선이동장치
CN104080051A (zh) 定位系统及其定位方法
KR102604367B1 (ko) 확장현실을 포함한 가상현실 공간 서비스를 위한 고정밀 위치 움직임 획득장치
Zhou et al. Enhanced Wi-Fi fingerprinting with building structure and user orientation
KR102332560B1 (ko) 저전력 블루투스를 이용한 위치 인식 방법 및 이를 지원하기 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916805

Country of ref document: EP

Kind code of ref document: A1