WO2020171308A1 - 인버터 보호장치 - Google Patents

인버터 보호장치 Download PDF

Info

Publication number
WO2020171308A1
WO2020171308A1 PCT/KR2019/008551 KR2019008551W WO2020171308A1 WO 2020171308 A1 WO2020171308 A1 WO 2020171308A1 KR 2019008551 W KR2019008551 W KR 2019008551W WO 2020171308 A1 WO2020171308 A1 WO 2020171308A1
Authority
WO
WIPO (PCT)
Prior art keywords
power switch
inverter
buffer
switch
power
Prior art date
Application number
PCT/KR2019/008551
Other languages
English (en)
French (fr)
Inventor
양진규
Original Assignee
엘에스일렉트릭 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭 주식회사 filed Critical 엘에스일렉트릭 주식회사
Priority to EP19916362.7A priority Critical patent/EP3930174A4/en
Priority to US17/432,695 priority patent/US11894763B2/en
Priority to CN201980092518.3A priority patent/CN113454900A/zh
Publication of WO2020171308A1 publication Critical patent/WO2020171308A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage

Definitions

  • the present invention relates to an inverter protection device, and more particularly, to an inverter protection device capable of improving the stability of a circuit.
  • IEC61508 is the standard for electric equipment
  • IEC61800-5-2 is established as the standard for driving equipment such as electric motors.
  • the inverter When a safety signal is input, the inverter shall not deliver power to the motor, as defined in IEC61800-5-2.
  • FIG. 1 is a block diagram of a conventional inverter protection device.
  • the conventional inverter protection device 130 is provided inside the inverter 100 and may provide +24V power to the safety relay 140 disposed outside the inverter 100.
  • the safety relay 140 is composed of a first switch 141 and a second switch 142 disposed in parallel, and is in a closed state in a normal operating state.
  • the protection device 130 performs a protection operation when any one of the first and second switches 141 and 142 of the safety relay 140 is opened by various safety operations of the inverter 100 to perform a protection operation, 100).
  • the safety operation of the inverter 100 may be performed by an upper control unit (not shown), or may be performed by a mechanical contact operation.
  • the inverter 100 is composed of a plurality of switching elements, an inverter unit 110 that outputs a DC terminal voltage as an AC voltage and provides it to an electric motor, and a switching element of the inverter unit 110 generates an AC voltage according to a command voltage. It includes a PWM control unit 150 for outputting a pulse width modulation (PWM) control signal to be controlled to be output, and a buffer unit 120 for providing the PWM control signal to the inverter unit 110.
  • PWM pulse width modulation
  • the buffer unit 120 may apply a PWM control signal provided from the PWM control unit 150 to the gate of the switching element of the inverter unit 110. For example, it can be turned on or off by a power of 5V. That is, when 5V power is applied, it is turned on and applies the PWM control signal to the inverter unit 110. When 5V power is not applied, it is turned off and the PWM control signal cannot be applied to the inverter unit 110.
  • the inverter protection device 130 is composed of a first insulating unit 131, a second insulating unit 132, a first power switch 133, a second power switch 134, and a monitoring unit 135. .
  • the first insulating unit 131 may insulate the voltage signal applied from the first switch 141.
  • the second insulator 132 may also insulate the voltage signal applied from the second switch 142. Insulation here means preventing the direct power transfer between the input side and the output side and blocking abnormal voltage for safety.
  • the first insulating part 131 and the second insulating part 132 each include a photo coupler, and power is connected to the secondary side.
  • the first and second power switches 133 and 134 are in a closed state or an open state by using the secondary voltage of each of the first insulating part 131 and the second insulating part 132 as a control voltage.
  • the first and second power switches 133 and 134 of the power switch unit 136 are connected in series, respectively, and may be connected in series with a 5V power line, respectively. That is, when a control voltage is applied from the first and second switches 141 and 142, the first and second power switches 133 and 134 are turned on, and a power of 5V is applied to the buffer unit 120. .
  • the buffer unit 120 When the power of 5V is supplied, the buffer unit 120 is turned on and applies a PMW control signal applied from the PWM control unit 150 to the inverter unit 110.
  • the buffer unit 120 If the power of 5V is not supplied to the buffer unit 120, it is switched to the off state.
  • the PWM control signal applied from the PWM control unit 150 is not applied to the inverter unit 110.
  • the monitoring unit 135 determines whether the voltage signals of node A, node B, and node C are normal. Node A is located between the first insulating part 131 and the first power switch 133. Node B is located between the second insulator 132 and the second power switch 134, and node C is located on the power line between the second power switch 134 and the buffer unit 120.
  • the first power switch 133 and the second power switch 134 are connected in series, and at least one of the first power switch 133 or the second power switch 134 is open. When is, it is configured to cut off the power supply to the buffer unit 120.
  • the voltages on the secondary side of the first and second insulating parts 131 and 132 which are photocouplers act as control voltages of the first power switch 133 and the second power switch 134.
  • the entire circuit constituting the inverter protection device uses the same ground potential, but since the first power switch 133 and the second power switch 134 are connected in series, the first power switch 133 has a ground potential. May become unstable.
  • the ground potential of the first power switch 133 becomes the same as the ground potential of the buffer unit 120 applied through the second power switch 134, thereby ensuring stable operation. can do.
  • the ground potential of the first power switch 133 is in a floating state, and the secondary voltage of the first insulator 131 is applied to the first power switch 133 at 5V. There is a problem that may occur when the normal operation is not performed even if it is performed.
  • the technical problem to be solved by the present invention is to provide an inverter protection device capable of improving the stability of a circuit by preventing a floating state of a ground potential.
  • the inverter protection circuit of the present invention for solving the above technical problem is a pulse width modulation (PWM) control signal provided to the inverter unit of the inverter according to voltage signals received from the first and second switches of safety relays connected in parallel.
  • PWM pulse width modulation
  • the inverter protection device for determining whether or not to block, the first power switch turned on by a first voltage signal applied from the first switch, and turned on by a second voltage signal applied from the second switch. And a second power switch to be in a state, and a buffer unit that is controlled on and off according to output power of the first and second power switches to provide a PWM control signal to the inverter unit.
  • the buffer unit includes a first buffer that receives power when the first power switch is turned on, and a second buffer that receives power when the second power switch is turned on, wherein the The first buffer and the second buffer may be connected in series between the inverter and the pulse width modulation control unit that outputs the pulse width modulation control signal.
  • a first insulating part and a first insulating part respectively positioned between the first switch and the first power switch and between the second switch and the second power switch to insulate the first voltage signal and the second voltage signal It may further include two insulating parts.
  • the first power switch and the second power switch may be replaced by a first insulating type power switch and a second insulating type power switch that insulate the first voltage signal and the second voltage signal, respectively.
  • further comprising a first filter unit and a second filter unit respectively positioned between the first power switch and the first buffer and between the second power switch and the second buffer to remove switching ripple can do.
  • the first filter unit and the second filter are positioned between the first insulating type power switch and the first buffer and between the second insulating type power switch and the second buffer, respectively, to remove switching ripple. It may further include a filter unit.
  • the power switches are independently configured and a plurality of buffers turned on by the power transmitted through the power switches are connected in series, thereby preventing the ground potential of the power switch from floating, thereby improving stability. There is an effect.
  • FIG. 1 is a configuration diagram of a conventional inverter protection device.
  • FIG. 2 is a block diagram of an inverter protection device according to a preferred embodiment of the present invention.
  • 3 and 4 are diagrams illustrating operations of the present invention, respectively.
  • FIG 5 and 6 are block diagrams of an inverter protection device according to another embodiment of the present invention, respectively.
  • protection device 31 first insulation
  • FIG. 2 is a block diagram of an inverter protection device according to a preferred embodiment of the present invention.
  • the inverter protection device 30 of the present invention is provided inside the inverter 1 and can provide +24V power to the safety relay 40 disposed outside the inverter 1. .
  • this is exemplary, and a voltage of a size different from 24V may be provided depending on settings such as the rated voltage of the inverter 1, and power may be provided from the outside of the inverter 1.
  • the safety relay 40 may include a first switch 41 and a second switch 42 disposed in parallel.
  • the safety relay 40 is in a general operating state in a closed state.
  • the safety relay 40 is a relay manufactured according to the safety standards of the relay in order to reinforce the safety of various mechanical devices, and the configuration thereof is as widely known in the relevant technical field, and thus a detailed description thereof will be omitted.
  • the protection device 30 of the present invention performs a protection operation when any one of the first and second switches 41 and 42 of the safety relay 40 is opened by various safety operations of the inverter 1 This is to protect the inverter (1).
  • the safety operation of the inverter 1 may be performed by an upper control unit (not shown), or may be performed by a mechanical contact operation.
  • the inverter 1 is composed of a plurality of switching elements, the inverter unit 10 for outputting the DC terminal voltage as an AC voltage to provide the motor, and the inverter unit 10 according to the command voltage It may include a PWM control unit 50 for outputting a pulse width modulation (PWM) control signal for controlling the switching element of the switch to output an AC voltage, and a buffer unit 20 for providing the PWM control signal to the inverter unit 10.
  • PWM pulse width modulation
  • the switching device of the inverter unit 10 may be, for example, an IGBT, but the present invention is not limited thereto, and various power semiconductor switching devices may be used.
  • the buffer unit 20 may apply a PWM control signal provided from the PWM control unit 50 to the gate of the switching element of the inverter unit 10. For example, it can be turned on or off by a power of 5V. That is, when 5V power is applied, it is turned on and the PWM control signal is applied to the inverter unit 10, and when 5V power is not applied, it is turned off and the PWM control signal can be applied to the inverter unit 10. none.
  • the buffer unit 20 may be a gate block.
  • the inverter protection device 30 includes a first insulating part 31, a second insulating part 32, a first power switch 33, a second power switch 34, and monitoring. It may include a part 35.
  • the first insulation part 31 may insulate the voltage signal applied from the first switch 41.
  • the second insulator 32 may also insulate the voltage signal applied from the second switch 42.
  • Insulation here means preventing the direct power transfer between the input side and the output side and blocking abnormal voltage for safety.
  • Each of the first insulating part 31 and the second insulating part 32 may be a photocoupler.
  • the first and second power switches 33 and 34 may be, for example, metal-oxide-semiconductor field-effect transistors (MOSFETs), but the present invention is not limited thereto, and various power sources For semiconductor switches can be used.
  • MOSFETs metal-oxide-semiconductor field-effect transistors
  • the first and second power switches 33 and 34 are conducted by the secondary side voltage of the first insulating part 31 and the second insulating part 32.
  • the voltage of the secondary side of the first and second power switches 31 and 32 may be a voltage signal higher than the threshold voltages of the first and second power switches 33 and 34.
  • first and second power switches 33 and 34 are selectively controlled by the buffer unit 20 by switching power of 5V, respectively.
  • the first power switch 33 and the second power switch 34 are located in an independent state without mutual coupling relationship.
  • the buffer unit 20 selectively applies a 5V voltage through the first power switch 33 and selectively applies a 5V voltage through the first buffer 21 and the second power switch 34 controlled on and off. It includes a second buffer 22 that is received and controlled on and off.
  • the first buffer 21 and the second buffer 22 are connected in series between the PWM control unit 50 and the inverter unit 10.
  • the PWM control signal of the PWM control unit 50 may be blocked from being supplied to the inverter unit 10.
  • the monitoring unit 35 determines whether the voltage signals of node A, node B, node C, and node D operate in a steady state.
  • the node A is located between the first insulating part 31 and the first power switch 33.
  • the node B is located between the second insulator 32 and the second power switch 34.
  • Node C is located in the power line between the first power switch 33 and the first buffer 21.
  • Node D is located in the power line between the second power switch 34 and the second buffer 22.
  • the monitoring unit 35 may include, for example, an AND gate, which is a logic gate, and when any one of the voltage signals of the nodes A, B, C, and D above is a fault, Monitoring signals can be provided externally.
  • the monitoring signal may be provided to an external user terminal through a communication line.
  • the inverter 1 may also provide monitoring signals to an HMI or PLC.
  • HMI human-machine interface
  • PLC programmable logic controller
  • the monitoring unit 35 may determine whether a voltage signal is normally applied from each node, that is, whether a normal state operation is performed. It does not determine the failure of each device.
  • the monitoring unit 35 may reflect and output the fault condition of the protection device 30 inside the inverter 1.
  • the monitoring unit 35 outputs the normal state of each node of the protection device 30 as a monitoring signal through an AND gate, but the present invention is limited thereto. no.
  • a plurality of monitoring units are arranged, each outputting a monitoring signal indicating the normal state of each node, and the HMI, PLC, or external user terminal may check the status of each node corresponding to the monitoring signal.
  • the state of the circuit can be easily determined through the monitoring unit 35.
  • FIG. 3 is an exemplary view for explaining the operation when each voltage signal is provided to the protection device 30 from the safety relay 40
  • FIG. 4 is a second switch of the safety relay 40 according to the safety operation ( This is an example diagram to explain the operation when the contact point of 42) is open.
  • the voltage signal applied from the first switch 41 of the safety relay 40 is insulated by the first insulating unit 31, and the secondary voltage of the first insulating unit 31 is reduced. It is applied to the first power switch 33, and the first power switch 33 is turned on. Further, the voltage signal applied from the second switch 42 of the safety relay 40 is insulated by the second insulator 32, and the secondary voltage of the second insulator 32 is the second power switch 34 ), the second power switch 34 may be turned on.
  • the first and second buffers 21 and 22 connected in series supply 5V power to the first power switch 33 and the second power. Each is applied through the switch 34, and all are turned on.
  • the PWM control signal generated by the PWM control unit 50 is transmitted to the inverter unit 10 through the buffer unit 20.
  • the first power switch 33 and the second power switch 34 have separate ground potentials, it is possible to prevent an unstable floating state.
  • the voltage signal applied from the first switch 41 of the safety relay 40 is insulated by the first insulator 31, applied to the first power switch 33, and the first power switch 33 Can be stably turned on.
  • the second power switch 34 Since the second power switch 34 is in the off state, it is possible to block the supply of 5V power to the second buffer 22, thereby preventing the PWM control signal of the PWM control unit 50 from being supplied to the inverter unit 10. have.
  • FIG. 5 is a block diagram of an inverter protection device according to another embodiment of the present invention.
  • the 2 power switch 34 may be configured by replacing the first insulated power switch 37 and the second insulated power switch 38 including an insulation function.
  • the first insulation type power switch 37 and the second insulation type power switch 38 may be one module including a transistor having a photo coupler installed at a gate.
  • the first insulated power switch 37 and the second insulated power switch 38 are turned on or on according to voltage signals supplied through the first switch 41 and the second switch 42 of the safety relay 40, respectively. It is turned off to control the supply of 5V power to the first buffer 21 and the second buffer 22.
  • the specific operation is the same as in the above-described embodiment, and the ground potential of the first insulated power switch 37 is prevented from floating regardless of the operating state of the second insulated power switch 38, thereby enabling stable operation. .
  • FIG. 6 is a block diagram of an inverter protection device according to another embodiment of the present invention.
  • the other configuration is the same as the example of the inverter protection device described with reference to FIG. 2, but between the first buffer 21 and the first power switch 33, the second buffer 22 and the second The first filter unit 61 and the second filter unit 62 respectively positioned between the power switches 34 may be further included.
  • the first filter unit 61 and the second filter unit 62 remove switching ripples of the first power switch 33 and the second power switch 34, respectively, to enable stable 5V power supply.
  • first filter unit 61 and the second filter unit 62 may play a role of compensating for a voltage drop due to a diode component of the first power switch 33 and the second power switch 34.
  • the present invention has industrial applicability as a technique for preventing a floating state of an inverter by using natural laws.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

인버터 보호장치가 개시된다. 병렬로 연결된 안전 릴레이의 제1 및 제2스위치로부터 수신되는 전압신호에 따라 인버터의 인버터부에 제공되는 펄스폭변조(PWM) 제어신호의 차단여부를 결정하는, 인버터 보호장치에 있어서, 상기 제1스위치로부터 인가되는 제1전압신호에 의해 온상태가 되는 제1파워 스위치와, 상기 제2스위치로부터 인가되는 제2전압신호에 의해 온상태가 되는 제2파워 스위치와, 상기 제1 및 제2파워 스위치의 출력 전력에 따라 온오프 제어되어 PWM 제어신호를 인버터부에 제공하는 버퍼부를 포함한다.

Description

인버터 보호장치
본 발명은 인버터 보호장치에 관한 것으로, 더 상세하게는 회로의 안정성을 향상시킬 수 있는 인버터 보호장치에 관한 것이다.
근래, 전동기 등 전기기기가 널리 보급되고 있다. 이와 함께 전기 기기의 이상 동작이 중대 사고로 이어질 가능성이 증가하고 있다. 따라서 사고의 리스크를 가능한 한 작게 하는 것이 요구되고 있다.
이들 리스크를 허용범위 내에 넣기 위해서, 국제 규격이 정해져 있다. 전기기기에 관한 규격으로서 IEC61508이 있고, 전동기 등 구동기기의 규격으로서 IEC61800-5-2가 정해져 있다.
안전신호가 입력되는 경우, IEC61800-5-2에 정의된 바와 같이, 인버터는 전동기에 전력을 전달하지 않아야 한다.
도 1은 종래 인버터 보호장치의 블록 구성도이다.
도 1을 참조하면 종래 인버터 보호장치(130)는, 인버터(100)의 내부에 제공되는 것이며, 인버터(100)의 외부에 배치되는 안전 릴레이(140)에 +24V 전원을 제공할 수 있다.
안전 릴레이(140)는 병렬로 배치되는 제1스위치(141) 및 제2스위치(142)로 구성되고, 일반 동작상태에서 닫힌 상태가 된다.
보호장치(130)는, 안전 릴레이(140)의 제1 및 제2스위치(141, 142) 중 어느 하나가 인버터(100)의 다양한 안전동작에 의해 접점이 오픈되는 경우 보호동작을 수행하여 인버터(100)를 보호한다.
인버터(100)의 안전동작은, 상위 제어부(도시되지 않음)에 의해서 수행될 수도 있고, 또는 기계적인 접점동작에 의해 수행될 수도 있다.
상기 인버터(100)는, 복수의 스위칭 소자로 구성되며 직류단 전압을 교류전압으로 출력하여 전동기에 제공하는 인버터부(110)와, 지령전압에 따라 인버터부(110)의 스위칭 소자가 교류전압을 출력하도록 제어하는 펄스폭 변조(PWM) 제어신호를 출력하는 PWM 제어부(150), 및 PWM 제어신호를 인버터부(110)에 제공하는 버퍼부(120)를 포함한다.
버퍼부(120)는 PWM 제어부(150)로부터 제공되는 PWM 제어신호를 인버터부(110)의 스위칭 소자의 게이트에 인가할 수 있다. 예를 들어 5V의 전력에 의해 온 또는 오프상태가 될 수 있다. 즉, 5V 전력이 인가되는 경우 온상태가 되어 PWM 제어신호를 인버터부(110)에 인가한다. 5V 전력이 인가되지 않는 경우에는 오프상태가 되어 PWM 제어신호가 인버터부(110)에 인가될 수 없다.
상기 인버터 보호장치(130)는, 제1절연부(131), 제2절연부(132), 제1파워 스위치(133), 제2파워 스위치(134), 및 모니터링부(135)로 구성된다.
제1절연부(131)는 제1스위치(141)로부터 인가되는 전압신호를 절연할 수 있다. 제2절연부(132)도, 제2스위치(142)로부터 인가되는 전압신호를 절연할 수 있다. 여기서 절연은 안전을 위하여 입력측과 출력측 간의 직접적인 전력의 이동을 방지하고, 이상 전압을 차단하는 의미이다. 제1절연부(131)와 제2절연부(132)는 각각 포토커플러를 포함하며, 2차측에 전원이 연결된다.
제1 및 제2파워 스위치(133, 134)는 제1절연부(131)와 제2절연부(132) 각각의 2차측 전압을 제어전압으로 하여, 닫힌 상태 또는 열린 상태가 된다.
파워 스위치부(136)의 제1 및 제2파워 스위치(133, 134)는 각각 직렬로 연결되며, 5V의 전력 라인과 각각 직렬로 연결될 수 있다. 즉, 제1 및 제2스위치(141, 142)로부터 제어전압이 인가되면, 제1 및 제2파워 스위치(133, 134)는 온상태가 되고, 5V의 전력을 버퍼부(120)로 인가 한다.
버퍼부(120)는 5V의 전력이 공급되는 경우 온상태가 되어 PWM 제어부(150)로부터 인가되는 PMW 제어신호를 인버터부(110)에 인가한다.
만약 버퍼부(120)에 5V의 전력이 공급되지 않는 경우 오프상태로 전환된다. PWM 제어부(150)로부터 인가되는 PWM 제어신호가 인버터부(110)에 인가되지 않는 상태가 된다.
모니터링부(135)는, 노드 A, 노드 B, 노드 C의 전압신호가 정상인지 판별한다. 노드 A는 제1절연부(131)와 제1파워 스위치(133) 사이에 위치한다. 노드 B는 제2절연부(132)와 제2파워 스위치(134) 사이에 위치하며, 노드 C는 제2파워 스위치(134)와 버퍼부(120) 사이의 전력라인에 위치한다.
이처럼 종래 인버터 보호회로는, 제1파워스위치(133)와 제2파워스위치(134)가 상호 직렬연결되어 있으며, 제1파워스위치(133) 또는 제2파워스위치(134) 중 적어도 하나가 열린 상태일 때, 버퍼부(120)에 전력 공급을 차단하도록 구성된다.
앞서 설명한 바와 같이 포토커플러인 제1절연부(131)와 제2절연부(132)의 2차측 전압은 제1파워스위치(133)와 제2파워스위치(134)의 제어전압으로 작용한다.
종래 인버터 보호장치를 구성하는 전체 회로는 동일한 그라운드 전위를 이용하고 있지만, 제1파워스위치(133)와 제2파워스위치(134)가 직렬로 연결되어 있어서, 제1파워스위치(133)는 그라운드 전위가 안정되지 않은 상태가 될 수 있다.
예를 들어 제2파워스위치(134)가 닫힌 상태에서는 제1파워스위치(133)의 그라운드 전위는 제2파워스위치(134)를 통해 인가되는 버퍼부(120)와 동일한 그라운드 전위가 되어 안정적인 동작을 할 수 있다. 그러나 제2파워스위치(134)가 열린 상태에서는 제1파워스위치(133)의 그라운드 전위가 플로팅 상태가 되어 제1절연부(131)의 2차측 전압이 5V로 제1파워스위치(133)에 인가되어도 정상적인 동작을 하지 못하는 경우가 발생할 수 있는 문제점이 있었다.
본 발명이 해결하고자 하는 기술적 과제는, 그라운드 전위의 플로팅 상태를 방지하여, 회로의 안정성을 향상시킬 수 있는 인버터 보호장치를 제공함에 있다.
상기와 같은 기술적 과제를 해결하기 위한 본 발명 인버터 보호 회로는, 병렬로 연결된 안전 릴레이의 제1 및 제2스위치로부터 수신되는 전압신호에 따라 인버터의 인버터부에 제공되는 펄스폭변조(PWM) 제어신호의 차단여부를 결정하는, 인버터 보호장치에 있어서, 상기 제1스위치로부터 인가되는 제1전압신호에 의해 온상태가 되는 제1파워 스위치와, 상기 제2스위치로부터 인가되는 제2전압신호에 의해 온상태가 되는 제2파워 스위치와, 상기 제1 및 제2파워 스위치의 출력 전력에 따라 온오프 제어되어 PWM 제어신호를 인버터부에 제공하는 버퍼부를 포함한다.
본 발명의 실시예에서, 상기 버퍼부는, 상기 제1파워 스위치의 턴온 상태에서 전력을 공급받는 제1버퍼와, 상기 제2파워 스위치의 턴온 상태에서 전력을 공급받는 제2버퍼를 포함하되, 상기 제1버퍼와 제2버퍼는 상기 펄스폭변조 제어신호를 출력하는 펄스폭변조 제어부와 상기 인버터 사이에 직렬 연결될 수 있다.
본 발명의 실시예에서, 상기 제1스위치와 제1파워 스위치 사이와 상기 제2스위치와 제2파워 스위치 사이에 각각 위치하여 제1전압신호와 제2전압신호를 절연하는 제1절연부와 제2절연부를 더 포함할 수 있다.
본 발명의 실시예에서, 상기 제1파워 스위치와 제2파워 스위치는 각각 제1전압신호와 제2전압신호를 절연하는 제1절연형 파워 스위치와 제2절연형 파워 스위치로 대체될 수 있다.
본 발명의 실시예에서, 상기 제1파워 스위치와 제1버퍼의 사이와 제2파워 스위치와 제2버퍼의 사이에 각각 위치하여, 스위칭 리플을 제거하는 제1필터부 및 제2필터부를 더 포함할 수 있다.
본 발명의 실시예에서, 상기 제1절연형 파워 스위치와 제1버퍼의 사이와 제2절연형 파워 스위치와 제2버퍼의 사이에 각각 위치하여, 스위칭 리플을 제거하는 제1필터부 및 제2필터부를 더 포함할 수 있다.
본 발명은, 파워 스위치들을 독립적으로 구성하고, 파워 스위치들을 통해 전달되는 전력에 의해 턴온되는 다수의 버퍼를 직렬 연결하여 구성함으로써, 파워 스위치의 접지 전위가 플로팅 되는 것을 방지하여, 안정성을 향상시킬 수 있는 효과가 있다.
도 1은 종래의 인버터 보호장치의 구성도이다.
도 2는 본 발명의 바람직한 실시예의 인버터 보호장치 블록 구성도이다.
도 3과 도 4는 각각 본 발명의 동작 설명도이다.
도 5와 도 6은 각각 본 발명의 다른 실시예에 따른 인버터 보호장치의 블록 구성도이다.
- 부호의 설명 -
1:인버터 2:전동기
10:인버터부 20:버퍼부
21:제1버퍼 22:제2버퍼
30:보호장치 31:제1절연부
32:제2절연부 33:제1파워 스위치
34:제2파워 스위치 35:모니터링부
36:파워 스위치부 40:안전 릴레이
41:제1스위치 42:제2스위치
50:PWM 제어부
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하에서는, 도면을 참조하여 본 발명의 일실시예에 따른 인버터 보호장치를 설명하기로 한다.
도 2는 본 발명의 바람직한 실시예에 따른 인버터 보호장치의 구성도이다.
도 2를 참조하면, 본 발명 인버터 보호장치(30)는, 인버터(1)의 내부에 제공되는 것이며, 인버터(1)의 외부에 배치되는 안전 릴레이(40)에 +24V 전원을 제공할 수 있다. 다만, 이는 예시적인 것으로서, 인버터(1)의 정격전압 등 설정에 따라 24V와는 다른 크기의 전압이 제공될 수도 있을 것이며, 인버터(1) 외부로부터 전원이 제공될 수도 있을 것이다.
안전 릴레이(40)는 병렬로 배치되는 제1스위치(41) 및 제2스위치(42)를 포함할 수 있다. 안전 릴레이(40)는 닫힌 상태가 일반적인 동작상태이다.
안전 릴레이(40)는 각종 기계장치의 안전을 강화하기 위해 릴레이의 안전기준에 따라 제조된 릴레이로써, 그 구성에 대해서는 해당 기술분야에 대해 널리 알려진 바와 같으므로, 상세한 설명은 생략하기로 한다.
본 발명의 보호장치(30)는, 안전 릴레이(40)의 제1 및 제2스위치(41, 42) 중 어느 하나가 인버터(1)의 다양한 안전동작에 의해 접점이 오픈되는 경우 보호동작을 수행하여 인버터(1)를 보호하기 위한 것이다.
인버터(1)의 안전동작은, 상위 제어부(도시되지 않음)에 의해서 수행될 수도 있고, 또는 기계적인 접점동작에 의해 수행될 수도 있을 것이다.
본 발명의 일실시예에서, 인버터(1)는, 복수의 스위칭 소자로 구성되며 직류단 전압을 교류전압으로 출력하여 전동기에 제공하는 인버터부(10)와, 지령전압에 따라 인버터부(10)의 스위칭 소자가 교류전압을 출력하도록 제어하는 펄스폭 변조(PWM) 제어신호를 출력하는 PWM 제어부(50), 및 PWM 제어신호를 인버터부(10)에 제공하는 버퍼부(20)를 포함할 수 있다.
인버터부(10)의 스위칭소자는 예를 들어 IGBT일 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 다양한 전력용 반도체 스위칭소자가 사용될 수 있다.
버퍼부(20)는 PWM 제어부(50)로부터 제공되는 PWM 제어신호를 인버터부(10)의 스위칭 소자의 게이트에 인가할 수 있다. 예를 들어 5V의 전력에 의해 온 또는 오프상태가 될 수 있다. 즉, 5V 전력이 인가되는 경우 온상태가 되어 PWM 제어신호를 인버터부(10)에 인가하며, 5V 전력이 인가되지 않는 경우에는 오프상태가 되어 PWM 제어신호가 인버터부(10)에 인가될 수 없다.
버퍼부(20)는 게이트 블록일 수 있다.
본 발명의 일실시예에서, 인버터 보호장치(30)는, 제1절연부(31), 제2절연부(32), 제1파워 스위치(33), 제2파워 스위치(34), 및 모니터링부(35)를 포함할 수 있다.
제1절연부(31)는 제1스위치(41)로부터 인가되는 전압신호를 절연할 수 있다. 제2절연부(32)도 제2스위치(42)로부터 인가되는 전압신호를 절연할 수 있다.
여기서 절연은 안전을 위하여 입력측과 출력측 간의 직접적인 전력의 이동을 방지하고, 이상 전압을 차단하는 의미이다.
제1절연부(31)와 제2절연부(32) 각각은 포토커플러일 수 있다.
제1 및 제2파워 스위치(33, 34)는 예를 들어 금속 산화막 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET)일 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 다양한 전력용 반도체 스위치가 사용될 수 있다.
제1 및 제2파워 스위치(33, 34)는 상기 제1절연부(31)와 제2절연부(32)의 2차측 전압에 의해 도통된다. 이때 제1절연부(31)와 제2절연부(32)의 2차측 전압은 제1 및 제2파워 스위치(33, 34)의 문턱전압(threshold voltage)보다 높은 전압신호일 수 있다.
상기 제1 및 제2파워 스위치(33,34)는 각각 5V의 전원을 스위칭하여 상기 버퍼부(20)로 선택적으로 제어하는 것으로 한다. 제1파워 스위치(33)와 제2파워 스위치(34)는 상호 결합관계가 없는 독립된 상태로 위치한다. 또한 버퍼부(20)는 제1파워 스위치(33)를 통해 5V 전압을 선택적으로 인가받아 온오프 제어되는 제1버퍼(21)와, 제2파워 스위치(34)를 통해 5V 전압을 선택적으로 인가받아 온오프 제어되는 제2버퍼(22)를 포함한다.
상기 제1버퍼(21)와 제2버퍼(22)는 PWM 제어부(50)와 인버터부(10) 사이에 직렬연결되어 있다.
따라서 제1파워 스위치(33)와 제2파워 스위치(34)가 모두 닫힌 상태에서 제1버퍼(21)와 제2버퍼(22) 각각에 5V 전원전압을 공급하여, PWM 제어부(50)의 PWM 제어신호가 인버터부(10)로 제공될 수 있게 한다.
제1파워 스위치(33)와 제2파워 스위치(34) 중 적어도 하나 이상이 오픈된 상태가 되면, PWM 제어부(50)의 PWM 제어신호가 인버터부(10)로 제공되는 것을 차단할 수 있다.
모니터링부(35)는, 노드 A, 노드 B, 노드 C 및 노드 D의 전압신호가 정상상태 동작을 하는지 판별한다. 노드 A는 제1절연부(31)와 제1파워 스위치(33) 사이에 위치한다. 노드 B는 제2절연부(32)와 제2파워 스위치(34) 사이에 위치한다. 노드 C는 제1파워 스위치(33)와 제1버퍼(21) 사이의 전력라인에 위치한다. 노드 D는 제2파워 스위치(34)와 제2버퍼(22) 사이의 전력라인에 위치한다.
모니터링부(35)는 예를 들어, 논리게이트인 AND 게이트를 포함할 수 있으며, 위의 A, B, C, D 노드의 전압신호 중 어느 하나가 폴트(FAULT)인 경우, 회로의 폴트를 알리는 모니터링 신호를 외부에 제공할 수 있다. 예를 들어, 모니터링 신호는 통신라인을 통하여 외부의 사용자 단말로 제공될 수도 있다.
또한 인버터(1)에 인간-기계 인터페이스(HMI) 또는 프로그램가능한 로직 컨트롤러(PLC)가 제공되는 경우, HMI 또는 PLC로 모니터링 신호를 제공할 수도 있을 것이다.
본 발명의 일실시예에서 모니터링부(35)는 각 노드에서 전압신호가 정상적으로 인가되고 있는지, 즉 정상상태 동작을 하고 있는지를 판별할 수 있다. 각 소자의 고장을 판별하는 것은 아니다.
즉, 모니터링부(35)는, 인버터(1)의 내부의 보호장치(30)의 고장상태를 반영하여 출력할 수 있을 것이다.
본 발명의 일실시예에서는, 모니터링부(35)가 보호장치(30)의 각 노드의 정상상태를 AND 게이트를 통해 모니터링 신호로써 출력하는 것을 예를 들어 설명하고 있지만, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 복수의 모니터링부가 배치되고, 각 노드의 정상상태를 알리는 모니터링 신호를 각각 출력하며, HMI, PLC 또는 외부 사용자 단말은, 해당 모니터링 신호에 대응하는 노드의 상태를 각각 확인할 수도 있을 것이다.
이와 같이, 본 발명의 일실시예에 의하면, 모니터링부(35)를 통해 회로의 상태를 간단하게 파악할 수 있다.
이하에서는, 도 3 및 도 4를 참조하여 본 발명의 보호장치(30)의 동작을 상세하게 설명하기로 한다.
도 3은 안전 릴레이(40)로부터 각각 전압신호가 보호장치(30)로 제공되는 경우의 동작을 설명하기 위한 일예시도이고, 도 4는 안전동작에 따라 안전 릴레이(40)의 제2스위치(42)의 접점이 오픈된 경우의 동작을 설명하기 위한 일예시도이다.
도 3을 참조로 하면, 안전 릴레이(40)의 제1스위치(41)로부터 인가되는 전압신호는 제1절연부(31)에 의해 절연되고, 제1절연부(31)의 2차측 전압이 제1파워 스위치(33)에 인가되어, 제1파워 스위치(33)가 온상태가 된다. 또, 안전 릴레이(40)의 제2스위치(42)로부터 인가되는 전압신호는 제2절연부(32)에 의해 절연되고, 제2절연부(32)의 2차측 전압이 제2파워 스위치(34)에 인가되어, 제2파워 스위치(34)가 온상태가 될 수 있다.
상기 제1파워 스위치(33)와 제2파워 스위치(34)가 닫힌 상태에서, 직렬로 연결된 제1 및 제2버퍼(21, 22)는 5V전력을 제1파워 스위치(33)와 제2파워 스위치(34)를 통해 각각 인가받아 모두 온상태가 된다.
버퍼부(20)의 상호 직렬연결된 제1 및 제2버퍼(21,22)가 온상태가 되면, PWM 제어부(50)에 의해 생성된 PWM 제어신호가 버퍼부(20)를 통해 인버터부(10)의 스위칭 소자의 게이트에 인가되며, 이에 의해 교류신호가 전동기(2)로 출력될 수 있다.
도 4를 참조 하면, 안전 릴레이(40)의 제2스위치(42)가 안전동작에 의해 오프가 되면, 제2파워 스위치(34)의 게이트에 인가되는 전압신호가 없으므로, 제2파워 스위치(34)는 오프상태(열린 상태)가 된다.
앞서 설명한 바와 같이 종래에는 제2파워 스위치(34)가 열린 상태일 때, 제1파워 스위치(33)의 그라운드 전위가 플로팅된다.
그러나 본 발명은 제1파워 스위치(33)와 제2파워 스위치(34)가 개별적인 그라운드 전위를 가지게 되어 불안정한 플로팅 상태가 되는 것을 방지할 수 있다.
즉, 안전 릴레이(40)의 제1스위치(41)로부터 인가되는 전압신호는 제1절연부(31)에 의해 절연되고, 제1파워 스위치(33)에 인가되어, 제1파워 스위치(33)가 안정적으로 온상태가 될 수 있다.
상기 제2파워 스위치(34)가 오프상태이므로, 제2버퍼(22)에 5V 전력이 공급되는 것을 차단하여, PWM 제어부(50)의 PWM 제어신호가 인버터부(10)에 공급되는 것을 차단할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 인버터 보호장치의 블록 구성도이다.
도 5를 참조하면 다른 구성은 도 2를 참조하여 설명한 인버터 보호장치와 동일하나, 제1절연부(31)와 제2절연부(32)를 사용하지 않고, 제1파워 스위치(33)와 제2파워 스위치(34)를 절연기능이 포함된 제1절연형 파워 스위치(37)와 제2절연형 파워 스위치(38)로 대체하여 구성할 수 있다.
제1절연형 파워 스위치(37)와 제2절연형 파워 스위치(38)는 게이트에 포토 커플러가 설치된 트랜지스터를 포함하는 하나의 모듈일 수 있다.
제1절연형 파워 스위치(37)와 제2절연형 파워 스위치(38)는 각각 안전 릴레이(40)의 제1스위치(41)와 제2스위치(42)를 통해 공급되는 전압신호에 따라 턴온 또는 턴오프되어 5V 전력을 제1버퍼(21)와 제2버퍼(22)에 공급 제어한다.
구체적인 동작은 앞서 설명한 실시예와 동일하며, 제2절연형 파워 스위치(38)의 동작 상태에 무관하게 제1절연형 파워 스위치(37)의 접지 전위가 플로팅 되는 것을 방지하여 안정적인 동작을 할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 인버터 보호장치의 블록 구성도이다.
도 6을 참조하면 다른 구성은 도 2를 참조하여 설명한 인버터 보호장치의 예와 동일하나, 제1버퍼(21)와 제1파워 스위치(33)의 사이와, 제2버퍼(22)와 제2파워 스위치(34)의 사이에 각각 위치하는 제1필터부(61)와 제2필터부(62)를 더 포함하여 구성할 수 있다.
상기 제1필터부(61)와 제2필터부(62)는 각각 제1파워 스위치(33)와 제2파워 스위치(34)의 스위칭 리플을 제거하여 안정적인 5V 전력의 공급이 가능하도록 한다.
또한, 제1필터부(61)와 제2필터부(62)는 제1파워 스위치(33)와 제2파워 스위치(34)의 다이오드 성분에 의한 전압 강하를 보상하는 역할을 할 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 청구범위에 의해서 정해져야 할 것이다.
본 발명은 자연법칙을 이용하여 인버터의 플로팅 상태를 방지하는 기술로서 산업상 이용가능성이 있다.

Claims (6)

  1. 병렬로 연결된 안전 릴레이의 제1 및 제2스위치로부터 수신되는 전압신호에 따라 인버터의 인버터부에 제공되는 펄스폭변조(PWM) 제어신호의 차단여부를 결정하는 인버터 보호장치에 있어서,
    상기 제1스위치로부터 인가되는 제1전압신호에 의해 온상태가 되는 제1파워 스위치;
    상기 제2스위치로부터 인가되는 제2전압신호에 의해 온상태가 되는 제2파워 스위치; 및
    상기 제1 및 제2파워 스위치의 출력 전력에 따라 온오프 제어되어 PWM 제어신호를 인버터부에 제공하는 버퍼부를 포함하는 인버터 보호장치.
  2. 제1항에 있어서,
    상기 버퍼부는, 상기 제1파워 스위치의 턴온 상태에서 전력을 공급받는 제1버퍼와, 상기 제2파워 스위치의 턴온 상태에서 전력을 공급받는 제2버퍼를 포함하되, 상기 제1버퍼와 제2버퍼는 상기 펄스폭변조 제어신호를 출력하는 펄스폭변조 제어부와 상기 인버터 사이에 직렬 연결되는 것을 특징으로 하는 인버터 보호장치.
  3. 제2항에 있어서,
    상기 제1스위치와 제1파워 스위치 사이와 상기 제2스위치와 제2파워 스위치 사이에 각각 위치하여 제1전압신호와 제2전압신호를 절연하는 제1절연부와 제2절연부를 더 포함하는 인버터 보호장치.
  4. 제2항에 있어서,
    상기 제1파워 스위치와 제2파워 스위치는 각각 제1전압신호와 제2전압신호를 절연하는 제1절연형 파워 스위치와 제2절연형 파워 스위치로 대체될 수 있는 것을 특징으로 하는 인버터 보호장치.
  5. 제2항에 있어서,
    상기 제1파워 스위치와 제1버퍼의 사이와 제2파워 스위치와 제2버퍼의 사이에 각각 위치하여, 스위칭 리플을 제거하는 제1필터부 및 제2필터부를 더 포함하는 인버터 보호장치.
  6. 제4항에 있어서,
    상기 제1절연형 파워 스위치와 제1버퍼의 사이와 제2절연형 파워 스위치와 제2버퍼의 사이에 각각 위치하여, 스위칭 리플을 제거하는 제1필터부 및 제2필터부를 더 포함하는 인버터 보호장치.
PCT/KR2019/008551 2019-02-22 2019-07-11 인버터 보호장치 WO2020171308A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19916362.7A EP3930174A4 (en) 2019-02-22 2019-07-11 INVERTER PROTECTION DEVICE
US17/432,695 US11894763B2 (en) 2019-02-22 2019-07-11 Inverter protection device
CN201980092518.3A CN113454900A (zh) 2019-02-22 2019-07-11 逆变器保护装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190021212A KR102281632B1 (ko) 2019-02-22 2019-02-22 인버터 보호장치
KR10-2019-0021212 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171308A1 true WO2020171308A1 (ko) 2020-08-27

Family

ID=72144593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008551 WO2020171308A1 (ko) 2019-02-22 2019-07-11 인버터 보호장치

Country Status (5)

Country Link
US (1) US11894763B2 (ko)
EP (1) EP3930174A4 (ko)
KR (1) KR102281632B1 (ko)
CN (1) CN113454900A (ko)
WO (1) WO2020171308A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079490A (ja) * 2006-09-22 2008-04-03 Taida Electronic Ind Co Ltd ファンシステム及びその保護装置
US20120212076A1 (en) * 2010-07-30 2012-08-23 Yuancheng Lu Protection circuit for electric outlet
JP2015046989A (ja) * 2013-08-28 2015-03-12 日本電産テクノモータ株式会社 モータ駆動装置
JP2016123262A (ja) * 2014-12-19 2016-07-07 ジール・アベッグ エスエー インバータ用保護回路およびインバータシステム
KR20160141979A (ko) * 2015-06-02 2016-12-12 엘에스산전 주식회사 인버터 보호 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831405A (en) * 1996-05-17 1998-11-03 Intel Corporation High precision fan control/alarm circuit
JP5370724B2 (ja) * 2008-10-27 2013-12-18 株式会社安川電機 安全停止回路を備えたモータ制御装置
JP5787127B2 (ja) * 2010-09-03 2015-09-30 富士電機株式会社 電力変換装置の保護回路
JP6107745B2 (ja) * 2014-05-23 2017-04-05 株式会社安川電機 電力変換装置、及び、電力変換装置の異常診断方法
KR20190136233A (ko) * 2018-05-30 2019-12-10 엘에스산전 주식회사 인버터 보호장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079490A (ja) * 2006-09-22 2008-04-03 Taida Electronic Ind Co Ltd ファンシステム及びその保護装置
US20120212076A1 (en) * 2010-07-30 2012-08-23 Yuancheng Lu Protection circuit for electric outlet
JP2015046989A (ja) * 2013-08-28 2015-03-12 日本電産テクノモータ株式会社 モータ駆動装置
JP2016123262A (ja) * 2014-12-19 2016-07-07 ジール・アベッグ エスエー インバータ用保護回路およびインバータシステム
KR20160141979A (ko) * 2015-06-02 2016-12-12 엘에스산전 주식회사 인버터 보호 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930174A4 *

Also Published As

Publication number Publication date
KR20200102782A (ko) 2020-09-01
US20220200269A1 (en) 2022-06-23
US11894763B2 (en) 2024-02-06
EP3930174A4 (en) 2022-11-16
EP3930174A1 (en) 2021-12-29
KR102281632B1 (ko) 2021-07-23
CN113454900A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2016208894A1 (ko) Mmc 컨버터의 서브모듈용 전원공급장치
WO2012075896A1 (en) Lithium battery protection circuitry
WO2019212125A1 (ko) 차단기 제어 모듈
WO2019132373A1 (ko) 전기차용 파워 릴레이 어셈블리 및 그 구동 방법
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2018216850A1 (ko) 전력 변환 장치
WO2018124519A1 (ko) 모듈러 멀티레벨 컨버터 시스템
WO2018044078A1 (ko) Dc-dc 전압 컨버터를 벅 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2020130258A9 (ko) 과전류 보호 전원 절체 스위치
WO2020171308A1 (ko) 인버터 보호장치
WO2018093149A1 (ko) Dc-dc 전압 컨버터를 부스트 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2021034152A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
CN101479907A (zh) 极性切换电路及供电单元
US7573153B2 (en) Power supply apparatus for field devices
WO2020209509A1 (ko) 기중 차단기용 온도상승 방지장치
KR102190205B1 (ko) 인버터 보호장치
WO2019078510A1 (ko) 직류 보호 장치 및 그의 제어 방법
WO2021241871A1 (ko) 고체 절연 스위치
WO2013005932A2 (ko) 릴레이 모듈을 위한 스파크 방지 장치 및 그 방법
WO2017086577A1 (ko) 바이메탈을 이용한 릴레이 독립 제어 시스템 및 방법
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
WO2022211605A1 (ko) 반도체를 이용한 회로 차단기
JP2023507015A (ja) ラインアセンブリの延長部を使用して、直流電流接続を切断するときのアーク放電を回避する技術
WO2018117591A2 (ko) 진공 갭 스위치를 이용한 역전류 주입형 직류 전류 차단 장치 및 방법
WO2021256632A1 (ko) 회로 보호 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019916362

Country of ref document: EP

Effective date: 20210922